src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Thu, 28 Aug 2014 17:05:41 +0200

author
tschatzl
date
Thu, 28 Aug 2014 17:05:41 +0200
changeset 7100
edb5f3b38aab
parent 7091
a8ea2f110d87
child 7118
227a9e5e4b4a
permissions
-rw-r--r--

8054808: Bitmap verification sometimes fails after Full GC aborts concurrent mark.
Summary: The verification code that checked whether no bitmap mark had been found re-read HeapRegion::end() after the check on the bitmap. Concurrent humongous object allocation could have changed HeapRegion::end() in the meantime. Fix this by using the actual end of the region instead of HeapRegion::end() for comparison.
Reviewed-by: brutisso, jmasa

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #if !defined(__clang_major__) && defined(__GNUC__)
    26 #define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
    27 #endif
    29 #include "precompiled.hpp"
    30 #include "code/codeCache.hpp"
    31 #include "code/icBuffer.hpp"
    32 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    33 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    34 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    35 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    36 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    37 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    38 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    39 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    40 #include "gc_implementation/g1/g1EvacFailure.hpp"
    41 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    42 #include "gc_implementation/g1/g1Log.hpp"
    43 #include "gc_implementation/g1/g1MarkSweep.hpp"
    44 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    45 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
    46 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
    47 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    48 #include "gc_implementation/g1/g1StringDedup.hpp"
    49 #include "gc_implementation/g1/g1YCTypes.hpp"
    50 #include "gc_implementation/g1/heapRegion.inline.hpp"
    51 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    52 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
    53 #include "gc_implementation/g1/vm_operations_g1.hpp"
    54 #include "gc_implementation/shared/gcHeapSummary.hpp"
    55 #include "gc_implementation/shared/gcTimer.hpp"
    56 #include "gc_implementation/shared/gcTrace.hpp"
    57 #include "gc_implementation/shared/gcTraceTime.hpp"
    58 #include "gc_implementation/shared/isGCActiveMark.hpp"
    59 #include "memory/allocation.hpp"
    60 #include "memory/gcLocker.inline.hpp"
    61 #include "memory/generationSpec.hpp"
    62 #include "memory/iterator.hpp"
    63 #include "memory/referenceProcessor.hpp"
    64 #include "oops/oop.inline.hpp"
    65 #include "oops/oop.pcgc.inline.hpp"
    66 #include "runtime/orderAccess.inline.hpp"
    67 #include "runtime/vmThread.hpp"
    69 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    71 // turn it on so that the contents of the young list (scan-only /
    72 // to-be-collected) are printed at "strategic" points before / during
    73 // / after the collection --- this is useful for debugging
    74 #define YOUNG_LIST_VERBOSE 0
    75 // CURRENT STATUS
    76 // This file is under construction.  Search for "FIXME".
    78 // INVARIANTS/NOTES
    79 //
    80 // All allocation activity covered by the G1CollectedHeap interface is
    81 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    82 // and allocate_new_tlab, which are the "entry" points to the
    83 // allocation code from the rest of the JVM.  (Note that this does not
    84 // apply to TLAB allocation, which is not part of this interface: it
    85 // is done by clients of this interface.)
    87 // Notes on implementation of parallelism in different tasks.
    88 //
    89 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
    90 // The number of GC workers is passed to heap_region_par_iterate_chunked().
    91 // It does use run_task() which sets _n_workers in the task.
    92 // G1ParTask executes g1_process_roots() ->
    93 // SharedHeap::process_roots() which calls eventually to
    94 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
    95 // SequentialSubTasksDone.  SharedHeap::process_roots() also
    96 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
    97 //
    99 // Local to this file.
   101 class RefineCardTableEntryClosure: public CardTableEntryClosure {
   102   bool _concurrent;
   103 public:
   104   RefineCardTableEntryClosure() : _concurrent(true) { }
   106   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   107     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
   108     // This path is executed by the concurrent refine or mutator threads,
   109     // concurrently, and so we do not care if card_ptr contains references
   110     // that point into the collection set.
   111     assert(!oops_into_cset, "should be");
   113     if (_concurrent && SuspendibleThreadSet::should_yield()) {
   114       // Caller will actually yield.
   115       return false;
   116     }
   117     // Otherwise, we finished successfully; return true.
   118     return true;
   119   }
   121   void set_concurrent(bool b) { _concurrent = b; }
   122 };
   125 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   126   size_t _num_processed;
   127   CardTableModRefBS* _ctbs;
   128   int _histo[256];
   130  public:
   131   ClearLoggedCardTableEntryClosure() :
   132     _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
   133   {
   134     for (int i = 0; i < 256; i++) _histo[i] = 0;
   135   }
   137   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   138     unsigned char* ujb = (unsigned char*)card_ptr;
   139     int ind = (int)(*ujb);
   140     _histo[ind]++;
   142     *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
   143     _num_processed++;
   145     return true;
   146   }
   148   size_t num_processed() { return _num_processed; }
   150   void print_histo() {
   151     gclog_or_tty->print_cr("Card table value histogram:");
   152     for (int i = 0; i < 256; i++) {
   153       if (_histo[i] != 0) {
   154         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   155       }
   156     }
   157   }
   158 };
   160 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
   161  private:
   162   size_t _num_processed;
   164  public:
   165   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
   167   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   168     *card_ptr = CardTableModRefBS::dirty_card_val();
   169     _num_processed++;
   170     return true;
   171   }
   173   size_t num_processed() const { return _num_processed; }
   174 };
   176 YoungList::YoungList(G1CollectedHeap* g1h) :
   177     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
   178     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
   179   guarantee(check_list_empty(false), "just making sure...");
   180 }
   182 void YoungList::push_region(HeapRegion *hr) {
   183   assert(!hr->is_young(), "should not already be young");
   184   assert(hr->get_next_young_region() == NULL, "cause it should!");
   186   hr->set_next_young_region(_head);
   187   _head = hr;
   189   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   190   ++_length;
   191 }
   193 void YoungList::add_survivor_region(HeapRegion* hr) {
   194   assert(hr->is_survivor(), "should be flagged as survivor region");
   195   assert(hr->get_next_young_region() == NULL, "cause it should!");
   197   hr->set_next_young_region(_survivor_head);
   198   if (_survivor_head == NULL) {
   199     _survivor_tail = hr;
   200   }
   201   _survivor_head = hr;
   202   ++_survivor_length;
   203 }
   205 void YoungList::empty_list(HeapRegion* list) {
   206   while (list != NULL) {
   207     HeapRegion* next = list->get_next_young_region();
   208     list->set_next_young_region(NULL);
   209     list->uninstall_surv_rate_group();
   210     list->set_not_young();
   211     list = next;
   212   }
   213 }
   215 void YoungList::empty_list() {
   216   assert(check_list_well_formed(), "young list should be well formed");
   218   empty_list(_head);
   219   _head = NULL;
   220   _length = 0;
   222   empty_list(_survivor_head);
   223   _survivor_head = NULL;
   224   _survivor_tail = NULL;
   225   _survivor_length = 0;
   227   _last_sampled_rs_lengths = 0;
   229   assert(check_list_empty(false), "just making sure...");
   230 }
   232 bool YoungList::check_list_well_formed() {
   233   bool ret = true;
   235   uint length = 0;
   236   HeapRegion* curr = _head;
   237   HeapRegion* last = NULL;
   238   while (curr != NULL) {
   239     if (!curr->is_young()) {
   240       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   241                              "incorrectly tagged (y: %d, surv: %d)",
   242                              curr->bottom(), curr->end(),
   243                              curr->is_young(), curr->is_survivor());
   244       ret = false;
   245     }
   246     ++length;
   247     last = curr;
   248     curr = curr->get_next_young_region();
   249   }
   250   ret = ret && (length == _length);
   252   if (!ret) {
   253     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   254     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
   255                            length, _length);
   256   }
   258   return ret;
   259 }
   261 bool YoungList::check_list_empty(bool check_sample) {
   262   bool ret = true;
   264   if (_length != 0) {
   265     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
   266                   _length);
   267     ret = false;
   268   }
   269   if (check_sample && _last_sampled_rs_lengths != 0) {
   270     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   271     ret = false;
   272   }
   273   if (_head != NULL) {
   274     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   275     ret = false;
   276   }
   277   if (!ret) {
   278     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   279   }
   281   return ret;
   282 }
   284 void
   285 YoungList::rs_length_sampling_init() {
   286   _sampled_rs_lengths = 0;
   287   _curr               = _head;
   288 }
   290 bool
   291 YoungList::rs_length_sampling_more() {
   292   return _curr != NULL;
   293 }
   295 void
   296 YoungList::rs_length_sampling_next() {
   297   assert( _curr != NULL, "invariant" );
   298   size_t rs_length = _curr->rem_set()->occupied();
   300   _sampled_rs_lengths += rs_length;
   302   // The current region may not yet have been added to the
   303   // incremental collection set (it gets added when it is
   304   // retired as the current allocation region).
   305   if (_curr->in_collection_set()) {
   306     // Update the collection set policy information for this region
   307     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   308   }
   310   _curr = _curr->get_next_young_region();
   311   if (_curr == NULL) {
   312     _last_sampled_rs_lengths = _sampled_rs_lengths;
   313     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   314   }
   315 }
   317 void
   318 YoungList::reset_auxilary_lists() {
   319   guarantee( is_empty(), "young list should be empty" );
   320   assert(check_list_well_formed(), "young list should be well formed");
   322   // Add survivor regions to SurvRateGroup.
   323   _g1h->g1_policy()->note_start_adding_survivor_regions();
   324   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   326   int young_index_in_cset = 0;
   327   for (HeapRegion* curr = _survivor_head;
   328        curr != NULL;
   329        curr = curr->get_next_young_region()) {
   330     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   332     // The region is a non-empty survivor so let's add it to
   333     // the incremental collection set for the next evacuation
   334     // pause.
   335     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   336     young_index_in_cset += 1;
   337   }
   338   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
   339   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   341   _head   = _survivor_head;
   342   _length = _survivor_length;
   343   if (_survivor_head != NULL) {
   344     assert(_survivor_tail != NULL, "cause it shouldn't be");
   345     assert(_survivor_length > 0, "invariant");
   346     _survivor_tail->set_next_young_region(NULL);
   347   }
   349   // Don't clear the survivor list handles until the start of
   350   // the next evacuation pause - we need it in order to re-tag
   351   // the survivor regions from this evacuation pause as 'young'
   352   // at the start of the next.
   354   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   356   assert(check_list_well_formed(), "young list should be well formed");
   357 }
   359 void YoungList::print() {
   360   HeapRegion* lists[] = {_head,   _survivor_head};
   361   const char* names[] = {"YOUNG", "SURVIVOR"};
   363   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   364     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   365     HeapRegion *curr = lists[list];
   366     if (curr == NULL)
   367       gclog_or_tty->print_cr("  empty");
   368     while (curr != NULL) {
   369       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
   370                              HR_FORMAT_PARAMS(curr),
   371                              curr->prev_top_at_mark_start(),
   372                              curr->next_top_at_mark_start(),
   373                              curr->age_in_surv_rate_group_cond());
   374       curr = curr->get_next_young_region();
   375     }
   376   }
   378   gclog_or_tty->cr();
   379 }
   381 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
   382   OtherRegionsTable::invalidate(start_idx, num_regions);
   383 }
   385 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions) {
   386   reset_from_card_cache(start_idx, num_regions);
   387 }
   389 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   390 {
   391   // Claim the right to put the region on the dirty cards region list
   392   // by installing a self pointer.
   393   HeapRegion* next = hr->get_next_dirty_cards_region();
   394   if (next == NULL) {
   395     HeapRegion* res = (HeapRegion*)
   396       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   397                           NULL);
   398     if (res == NULL) {
   399       HeapRegion* head;
   400       do {
   401         // Put the region to the dirty cards region list.
   402         head = _dirty_cards_region_list;
   403         next = (HeapRegion*)
   404           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   405         if (next == head) {
   406           assert(hr->get_next_dirty_cards_region() == hr,
   407                  "hr->get_next_dirty_cards_region() != hr");
   408           if (next == NULL) {
   409             // The last region in the list points to itself.
   410             hr->set_next_dirty_cards_region(hr);
   411           } else {
   412             hr->set_next_dirty_cards_region(next);
   413           }
   414         }
   415       } while (next != head);
   416     }
   417   }
   418 }
   420 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   421 {
   422   HeapRegion* head;
   423   HeapRegion* hr;
   424   do {
   425     head = _dirty_cards_region_list;
   426     if (head == NULL) {
   427       return NULL;
   428     }
   429     HeapRegion* new_head = head->get_next_dirty_cards_region();
   430     if (head == new_head) {
   431       // The last region.
   432       new_head = NULL;
   433     }
   434     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   435                                           head);
   436   } while (hr != head);
   437   assert(hr != NULL, "invariant");
   438   hr->set_next_dirty_cards_region(NULL);
   439   return hr;
   440 }
   442 #ifdef ASSERT
   443 // A region is added to the collection set as it is retired
   444 // so an address p can point to a region which will be in the
   445 // collection set but has not yet been retired.  This method
   446 // therefore is only accurate during a GC pause after all
   447 // regions have been retired.  It is used for debugging
   448 // to check if an nmethod has references to objects that can
   449 // be move during a partial collection.  Though it can be
   450 // inaccurate, it is sufficient for G1 because the conservative
   451 // implementation of is_scavengable() for G1 will indicate that
   452 // all nmethods must be scanned during a partial collection.
   453 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   454   if (p == NULL) {
   455     return false;
   456   }
   457   return heap_region_containing(p)->in_collection_set();
   458 }
   459 #endif
   461 // Returns true if the reference points to an object that
   462 // can move in an incremental collection.
   463 bool G1CollectedHeap::is_scavengable(const void* p) {
   464   HeapRegion* hr = heap_region_containing(p);
   465   return !hr->isHumongous();
   466 }
   468 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   469   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   470   CardTableModRefBS* ct_bs = g1_barrier_set();
   472   // Count the dirty cards at the start.
   473   CountNonCleanMemRegionClosure count1(this);
   474   ct_bs->mod_card_iterate(&count1);
   475   int orig_count = count1.n();
   477   // First clear the logged cards.
   478   ClearLoggedCardTableEntryClosure clear;
   479   dcqs.apply_closure_to_all_completed_buffers(&clear);
   480   dcqs.iterate_closure_all_threads(&clear, false);
   481   clear.print_histo();
   483   // Now ensure that there's no dirty cards.
   484   CountNonCleanMemRegionClosure count2(this);
   485   ct_bs->mod_card_iterate(&count2);
   486   if (count2.n() != 0) {
   487     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   488                            count2.n(), orig_count);
   489   }
   490   guarantee(count2.n() == 0, "Card table should be clean.");
   492   RedirtyLoggedCardTableEntryClosure redirty;
   493   dcqs.apply_closure_to_all_completed_buffers(&redirty);
   494   dcqs.iterate_closure_all_threads(&redirty, false);
   495   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   496                          clear.num_processed(), orig_count);
   497   guarantee(redirty.num_processed() == clear.num_processed(),
   498             err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
   499                     redirty.num_processed(), clear.num_processed()));
   501   CountNonCleanMemRegionClosure count3(this);
   502   ct_bs->mod_card_iterate(&count3);
   503   if (count3.n() != orig_count) {
   504     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   505                            orig_count, count3.n());
   506     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   507   }
   508 }
   510 // Private class members.
   512 G1CollectedHeap* G1CollectedHeap::_g1h;
   514 // Private methods.
   516 HeapRegion*
   517 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
   518   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   519   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   520     if (!_secondary_free_list.is_empty()) {
   521       if (G1ConcRegionFreeingVerbose) {
   522         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   523                                "secondary_free_list has %u entries",
   524                                _secondary_free_list.length());
   525       }
   526       // It looks as if there are free regions available on the
   527       // secondary_free_list. Let's move them to the free_list and try
   528       // again to allocate from it.
   529       append_secondary_free_list();
   531       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
   532              "empty we should have moved at least one entry to the free_list");
   533       HeapRegion* res = _hrm.allocate_free_region(is_old);
   534       if (G1ConcRegionFreeingVerbose) {
   535         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   536                                "allocated "HR_FORMAT" from secondary_free_list",
   537                                HR_FORMAT_PARAMS(res));
   538       }
   539       return res;
   540     }
   542     // Wait here until we get notified either when (a) there are no
   543     // more free regions coming or (b) some regions have been moved on
   544     // the secondary_free_list.
   545     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   546   }
   548   if (G1ConcRegionFreeingVerbose) {
   549     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   550                            "could not allocate from secondary_free_list");
   551   }
   552   return NULL;
   553 }
   555 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
   556   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   557          "the only time we use this to allocate a humongous region is "
   558          "when we are allocating a single humongous region");
   560   HeapRegion* res;
   561   if (G1StressConcRegionFreeing) {
   562     if (!_secondary_free_list.is_empty()) {
   563       if (G1ConcRegionFreeingVerbose) {
   564         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   565                                "forced to look at the secondary_free_list");
   566       }
   567       res = new_region_try_secondary_free_list(is_old);
   568       if (res != NULL) {
   569         return res;
   570       }
   571     }
   572   }
   574   res = _hrm.allocate_free_region(is_old);
   576   if (res == NULL) {
   577     if (G1ConcRegionFreeingVerbose) {
   578       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   579                              "res == NULL, trying the secondary_free_list");
   580     }
   581     res = new_region_try_secondary_free_list(is_old);
   582   }
   583   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   584     // Currently, only attempts to allocate GC alloc regions set
   585     // do_expand to true. So, we should only reach here during a
   586     // safepoint. If this assumption changes we might have to
   587     // reconsider the use of _expand_heap_after_alloc_failure.
   588     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   590     ergo_verbose1(ErgoHeapSizing,
   591                   "attempt heap expansion",
   592                   ergo_format_reason("region allocation request failed")
   593                   ergo_format_byte("allocation request"),
   594                   word_size * HeapWordSize);
   595     if (expand(word_size * HeapWordSize)) {
   596       // Given that expand() succeeded in expanding the heap, and we
   597       // always expand the heap by an amount aligned to the heap
   598       // region size, the free list should in theory not be empty.
   599       // In either case allocate_free_region() will check for NULL.
   600       res = _hrm.allocate_free_region(is_old);
   601     } else {
   602       _expand_heap_after_alloc_failure = false;
   603     }
   604   }
   605   return res;
   606 }
   608 HeapWord*
   609 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
   610                                                            uint num_regions,
   611                                                            size_t word_size) {
   612   assert(first != G1_NO_HRM_INDEX, "pre-condition");
   613   assert(isHumongous(word_size), "word_size should be humongous");
   614   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   616   // Index of last region in the series + 1.
   617   uint last = first + num_regions;
   619   // We need to initialize the region(s) we just discovered. This is
   620   // a bit tricky given that it can happen concurrently with
   621   // refinement threads refining cards on these regions and
   622   // potentially wanting to refine the BOT as they are scanning
   623   // those cards (this can happen shortly after a cleanup; see CR
   624   // 6991377). So we have to set up the region(s) carefully and in
   625   // a specific order.
   627   // The word size sum of all the regions we will allocate.
   628   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
   629   assert(word_size <= word_size_sum, "sanity");
   631   // This will be the "starts humongous" region.
   632   HeapRegion* first_hr = region_at(first);
   633   // The header of the new object will be placed at the bottom of
   634   // the first region.
   635   HeapWord* new_obj = first_hr->bottom();
   636   // This will be the new end of the first region in the series that
   637   // should also match the end of the last region in the series.
   638   HeapWord* new_end = new_obj + word_size_sum;
   639   // This will be the new top of the first region that will reflect
   640   // this allocation.
   641   HeapWord* new_top = new_obj + word_size;
   643   // First, we need to zero the header of the space that we will be
   644   // allocating. When we update top further down, some refinement
   645   // threads might try to scan the region. By zeroing the header we
   646   // ensure that any thread that will try to scan the region will
   647   // come across the zero klass word and bail out.
   648   //
   649   // NOTE: It would not have been correct to have used
   650   // CollectedHeap::fill_with_object() and make the space look like
   651   // an int array. The thread that is doing the allocation will
   652   // later update the object header to a potentially different array
   653   // type and, for a very short period of time, the klass and length
   654   // fields will be inconsistent. This could cause a refinement
   655   // thread to calculate the object size incorrectly.
   656   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   658   // We will set up the first region as "starts humongous". This
   659   // will also update the BOT covering all the regions to reflect
   660   // that there is a single object that starts at the bottom of the
   661   // first region.
   662   first_hr->set_startsHumongous(new_top, new_end);
   664   // Then, if there are any, we will set up the "continues
   665   // humongous" regions.
   666   HeapRegion* hr = NULL;
   667   for (uint i = first + 1; i < last; ++i) {
   668     hr = region_at(i);
   669     hr->set_continuesHumongous(first_hr);
   670   }
   671   // If we have "continues humongous" regions (hr != NULL), then the
   672   // end of the last one should match new_end.
   673   assert(hr == NULL || hr->end() == new_end, "sanity");
   675   // Up to this point no concurrent thread would have been able to
   676   // do any scanning on any region in this series. All the top
   677   // fields still point to bottom, so the intersection between
   678   // [bottom,top] and [card_start,card_end] will be empty. Before we
   679   // update the top fields, we'll do a storestore to make sure that
   680   // no thread sees the update to top before the zeroing of the
   681   // object header and the BOT initialization.
   682   OrderAccess::storestore();
   684   // Now that the BOT and the object header have been initialized,
   685   // we can update top of the "starts humongous" region.
   686   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   687          "new_top should be in this region");
   688   first_hr->set_top(new_top);
   689   if (_hr_printer.is_active()) {
   690     HeapWord* bottom = first_hr->bottom();
   691     HeapWord* end = first_hr->orig_end();
   692     if ((first + 1) == last) {
   693       // the series has a single humongous region
   694       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   695     } else {
   696       // the series has more than one humongous regions
   697       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   698     }
   699   }
   701   // Now, we will update the top fields of the "continues humongous"
   702   // regions. The reason we need to do this is that, otherwise,
   703   // these regions would look empty and this will confuse parts of
   704   // G1. For example, the code that looks for a consecutive number
   705   // of empty regions will consider them empty and try to
   706   // re-allocate them. We can extend is_empty() to also include
   707   // !continuesHumongous(), but it is easier to just update the top
   708   // fields here. The way we set top for all regions (i.e., top ==
   709   // end for all regions but the last one, top == new_top for the
   710   // last one) is actually used when we will free up the humongous
   711   // region in free_humongous_region().
   712   hr = NULL;
   713   for (uint i = first + 1; i < last; ++i) {
   714     hr = region_at(i);
   715     if ((i + 1) == last) {
   716       // last continues humongous region
   717       assert(hr->bottom() < new_top && new_top <= hr->end(),
   718              "new_top should fall on this region");
   719       hr->set_top(new_top);
   720       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   721     } else {
   722       // not last one
   723       assert(new_top > hr->end(), "new_top should be above this region");
   724       hr->set_top(hr->end());
   725       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   726     }
   727   }
   728   // If we have continues humongous regions (hr != NULL), then the
   729   // end of the last one should match new_end and its top should
   730   // match new_top.
   731   assert(hr == NULL ||
   732          (hr->end() == new_end && hr->top() == new_top), "sanity");
   733   check_bitmaps("Humongous Region Allocation", first_hr);
   735   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   736   _summary_bytes_used += first_hr->used();
   737   _humongous_set.add(first_hr);
   739   return new_obj;
   740 }
   742 // If could fit into free regions w/o expansion, try.
   743 // Otherwise, if can expand, do so.
   744 // Otherwise, if using ex regions might help, try with ex given back.
   745 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   746   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   748   verify_region_sets_optional();
   750   uint first = G1_NO_HRM_INDEX;
   751   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
   753   if (obj_regions == 1) {
   754     // Only one region to allocate, try to use a fast path by directly allocating
   755     // from the free lists. Do not try to expand here, we will potentially do that
   756     // later.
   757     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
   758     if (hr != NULL) {
   759       first = hr->hrm_index();
   760     }
   761   } else {
   762     // We can't allocate humongous regions spanning more than one region while
   763     // cleanupComplete() is running, since some of the regions we find to be
   764     // empty might not yet be added to the free list. It is not straightforward
   765     // to know in which list they are on so that we can remove them. We only
   766     // need to do this if we need to allocate more than one region to satisfy the
   767     // current humongous allocation request. If we are only allocating one region
   768     // we use the one-region region allocation code (see above), that already
   769     // potentially waits for regions from the secondary free list.
   770     wait_while_free_regions_coming();
   771     append_secondary_free_list_if_not_empty_with_lock();
   773     // Policy: Try only empty regions (i.e. already committed first). Maybe we
   774     // are lucky enough to find some.
   775     first = _hrm.find_contiguous_only_empty(obj_regions);
   776     if (first != G1_NO_HRM_INDEX) {
   777       _hrm.allocate_free_regions_starting_at(first, obj_regions);
   778     }
   779   }
   781   if (first == G1_NO_HRM_INDEX) {
   782     // Policy: We could not find enough regions for the humongous object in the
   783     // free list. Look through the heap to find a mix of free and uncommitted regions.
   784     // If so, try expansion.
   785     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
   786     if (first != G1_NO_HRM_INDEX) {
   787       // We found something. Make sure these regions are committed, i.e. expand
   788       // the heap. Alternatively we could do a defragmentation GC.
   789       ergo_verbose1(ErgoHeapSizing,
   790                     "attempt heap expansion",
   791                     ergo_format_reason("humongous allocation request failed")
   792                     ergo_format_byte("allocation request"),
   793                     word_size * HeapWordSize);
   795       _hrm.expand_at(first, obj_regions);
   796       g1_policy()->record_new_heap_size(num_regions());
   798 #ifdef ASSERT
   799       for (uint i = first; i < first + obj_regions; ++i) {
   800         HeapRegion* hr = region_at(i);
   801         assert(hr->is_empty(), "sanity");
   802         assert(is_on_master_free_list(hr), "sanity");
   803       }
   804 #endif
   805       _hrm.allocate_free_regions_starting_at(first, obj_regions);
   806     } else {
   807       // Policy: Potentially trigger a defragmentation GC.
   808     }
   809   }
   811   HeapWord* result = NULL;
   812   if (first != G1_NO_HRM_INDEX) {
   813     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
   814     assert(result != NULL, "it should always return a valid result");
   816     // A successful humongous object allocation changes the used space
   817     // information of the old generation so we need to recalculate the
   818     // sizes and update the jstat counters here.
   819     g1mm()->update_sizes();
   820   }
   822   verify_region_sets_optional();
   824   return result;
   825 }
   827 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   828   assert_heap_not_locked_and_not_at_safepoint();
   829   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   831   unsigned int dummy_gc_count_before;
   832   int dummy_gclocker_retry_count = 0;
   833   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
   834 }
   836 HeapWord*
   837 G1CollectedHeap::mem_allocate(size_t word_size,
   838                               bool*  gc_overhead_limit_was_exceeded) {
   839   assert_heap_not_locked_and_not_at_safepoint();
   841   // Loop until the allocation is satisfied, or unsatisfied after GC.
   842   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
   843     unsigned int gc_count_before;
   845     HeapWord* result = NULL;
   846     if (!isHumongous(word_size)) {
   847       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
   848     } else {
   849       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
   850     }
   851     if (result != NULL) {
   852       return result;
   853     }
   855     // Create the garbage collection operation...
   856     VM_G1CollectForAllocation op(gc_count_before, word_size);
   857     // ...and get the VM thread to execute it.
   858     VMThread::execute(&op);
   860     if (op.prologue_succeeded() && op.pause_succeeded()) {
   861       // If the operation was successful we'll return the result even
   862       // if it is NULL. If the allocation attempt failed immediately
   863       // after a Full GC, it's unlikely we'll be able to allocate now.
   864       HeapWord* result = op.result();
   865       if (result != NULL && !isHumongous(word_size)) {
   866         // Allocations that take place on VM operations do not do any
   867         // card dirtying and we have to do it here. We only have to do
   868         // this for non-humongous allocations, though.
   869         dirty_young_block(result, word_size);
   870       }
   871       return result;
   872     } else {
   873       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
   874         return NULL;
   875       }
   876       assert(op.result() == NULL,
   877              "the result should be NULL if the VM op did not succeed");
   878     }
   880     // Give a warning if we seem to be looping forever.
   881     if ((QueuedAllocationWarningCount > 0) &&
   882         (try_count % QueuedAllocationWarningCount == 0)) {
   883       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   884     }
   885   }
   887   ShouldNotReachHere();
   888   return NULL;
   889 }
   891 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   892                                            unsigned int *gc_count_before_ret,
   893                                            int* gclocker_retry_count_ret) {
   894   // Make sure you read the note in attempt_allocation_humongous().
   896   assert_heap_not_locked_and_not_at_safepoint();
   897   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   898          "be called for humongous allocation requests");
   900   // We should only get here after the first-level allocation attempt
   901   // (attempt_allocation()) failed to allocate.
   903   // We will loop until a) we manage to successfully perform the
   904   // allocation or b) we successfully schedule a collection which
   905   // fails to perform the allocation. b) is the only case when we'll
   906   // return NULL.
   907   HeapWord* result = NULL;
   908   for (int try_count = 1; /* we'll return */; try_count += 1) {
   909     bool should_try_gc;
   910     unsigned int gc_count_before;
   912     {
   913       MutexLockerEx x(Heap_lock);
   915       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
   916                                                       false /* bot_updates */);
   917       if (result != NULL) {
   918         return result;
   919       }
   921       // If we reach here, attempt_allocation_locked() above failed to
   922       // allocate a new region. So the mutator alloc region should be NULL.
   923       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
   925       if (GC_locker::is_active_and_needs_gc()) {
   926         if (g1_policy()->can_expand_young_list()) {
   927           // No need for an ergo verbose message here,
   928           // can_expand_young_list() does this when it returns true.
   929           result = _mutator_alloc_region.attempt_allocation_force(word_size,
   930                                                       false /* bot_updates */);
   931           if (result != NULL) {
   932             return result;
   933           }
   934         }
   935         should_try_gc = false;
   936       } else {
   937         // The GCLocker may not be active but the GCLocker initiated
   938         // GC may not yet have been performed (GCLocker::needs_gc()
   939         // returns true). In this case we do not try this GC and
   940         // wait until the GCLocker initiated GC is performed, and
   941         // then retry the allocation.
   942         if (GC_locker::needs_gc()) {
   943           should_try_gc = false;
   944         } else {
   945           // Read the GC count while still holding the Heap_lock.
   946           gc_count_before = total_collections();
   947           should_try_gc = true;
   948         }
   949       }
   950     }
   952     if (should_try_gc) {
   953       bool succeeded;
   954       result = do_collection_pause(word_size, gc_count_before, &succeeded,
   955           GCCause::_g1_inc_collection_pause);
   956       if (result != NULL) {
   957         assert(succeeded, "only way to get back a non-NULL result");
   958         return result;
   959       }
   961       if (succeeded) {
   962         // If we get here we successfully scheduled a collection which
   963         // failed to allocate. No point in trying to allocate
   964         // further. We'll just return NULL.
   965         MutexLockerEx x(Heap_lock);
   966         *gc_count_before_ret = total_collections();
   967         return NULL;
   968       }
   969     } else {
   970       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
   971         MutexLockerEx x(Heap_lock);
   972         *gc_count_before_ret = total_collections();
   973         return NULL;
   974       }
   975       // The GCLocker is either active or the GCLocker initiated
   976       // GC has not yet been performed. Stall until it is and
   977       // then retry the allocation.
   978       GC_locker::stall_until_clear();
   979       (*gclocker_retry_count_ret) += 1;
   980     }
   982     // We can reach here if we were unsuccessful in scheduling a
   983     // collection (because another thread beat us to it) or if we were
   984     // stalled due to the GC locker. In either can we should retry the
   985     // allocation attempt in case another thread successfully
   986     // performed a collection and reclaimed enough space. We do the
   987     // first attempt (without holding the Heap_lock) here and the
   988     // follow-on attempt will be at the start of the next loop
   989     // iteration (after taking the Heap_lock).
   990     result = _mutator_alloc_region.attempt_allocation(word_size,
   991                                                       false /* bot_updates */);
   992     if (result != NULL) {
   993       return result;
   994     }
   996     // Give a warning if we seem to be looping forever.
   997     if ((QueuedAllocationWarningCount > 0) &&
   998         (try_count % QueuedAllocationWarningCount == 0)) {
   999       warning("G1CollectedHeap::attempt_allocation_slow() "
  1000               "retries %d times", try_count);
  1004   ShouldNotReachHere();
  1005   return NULL;
  1008 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1009                                           unsigned int * gc_count_before_ret,
  1010                                           int* gclocker_retry_count_ret) {
  1011   // The structure of this method has a lot of similarities to
  1012   // attempt_allocation_slow(). The reason these two were not merged
  1013   // into a single one is that such a method would require several "if
  1014   // allocation is not humongous do this, otherwise do that"
  1015   // conditional paths which would obscure its flow. In fact, an early
  1016   // version of this code did use a unified method which was harder to
  1017   // follow and, as a result, it had subtle bugs that were hard to
  1018   // track down. So keeping these two methods separate allows each to
  1019   // be more readable. It will be good to keep these two in sync as
  1020   // much as possible.
  1022   assert_heap_not_locked_and_not_at_safepoint();
  1023   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1024          "should only be called for humongous allocations");
  1026   // Humongous objects can exhaust the heap quickly, so we should check if we
  1027   // need to start a marking cycle at each humongous object allocation. We do
  1028   // the check before we do the actual allocation. The reason for doing it
  1029   // before the allocation is that we avoid having to keep track of the newly
  1030   // allocated memory while we do a GC.
  1031   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
  1032                                            word_size)) {
  1033     collect(GCCause::_g1_humongous_allocation);
  1036   // We will loop until a) we manage to successfully perform the
  1037   // allocation or b) we successfully schedule a collection which
  1038   // fails to perform the allocation. b) is the only case when we'll
  1039   // return NULL.
  1040   HeapWord* result = NULL;
  1041   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1042     bool should_try_gc;
  1043     unsigned int gc_count_before;
  1046       MutexLockerEx x(Heap_lock);
  1048       // Given that humongous objects are not allocated in young
  1049       // regions, we'll first try to do the allocation without doing a
  1050       // collection hoping that there's enough space in the heap.
  1051       result = humongous_obj_allocate(word_size);
  1052       if (result != NULL) {
  1053         return result;
  1056       if (GC_locker::is_active_and_needs_gc()) {
  1057         should_try_gc = false;
  1058       } else {
  1059          // The GCLocker may not be active but the GCLocker initiated
  1060         // GC may not yet have been performed (GCLocker::needs_gc()
  1061         // returns true). In this case we do not try this GC and
  1062         // wait until the GCLocker initiated GC is performed, and
  1063         // then retry the allocation.
  1064         if (GC_locker::needs_gc()) {
  1065           should_try_gc = false;
  1066         } else {
  1067           // Read the GC count while still holding the Heap_lock.
  1068           gc_count_before = total_collections();
  1069           should_try_gc = true;
  1074     if (should_try_gc) {
  1075       // If we failed to allocate the humongous object, we should try to
  1076       // do a collection pause (if we're allowed) in case it reclaims
  1077       // enough space for the allocation to succeed after the pause.
  1079       bool succeeded;
  1080       result = do_collection_pause(word_size, gc_count_before, &succeeded,
  1081           GCCause::_g1_humongous_allocation);
  1082       if (result != NULL) {
  1083         assert(succeeded, "only way to get back a non-NULL result");
  1084         return result;
  1087       if (succeeded) {
  1088         // If we get here we successfully scheduled a collection which
  1089         // failed to allocate. No point in trying to allocate
  1090         // further. We'll just return NULL.
  1091         MutexLockerEx x(Heap_lock);
  1092         *gc_count_before_ret = total_collections();
  1093         return NULL;
  1095     } else {
  1096       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
  1097         MutexLockerEx x(Heap_lock);
  1098         *gc_count_before_ret = total_collections();
  1099         return NULL;
  1101       // The GCLocker is either active or the GCLocker initiated
  1102       // GC has not yet been performed. Stall until it is and
  1103       // then retry the allocation.
  1104       GC_locker::stall_until_clear();
  1105       (*gclocker_retry_count_ret) += 1;
  1108     // We can reach here if we were unsuccessful in scheduling a
  1109     // collection (because another thread beat us to it) or if we were
  1110     // stalled due to the GC locker. In either can we should retry the
  1111     // allocation attempt in case another thread successfully
  1112     // performed a collection and reclaimed enough space.  Give a
  1113     // warning if we seem to be looping forever.
  1115     if ((QueuedAllocationWarningCount > 0) &&
  1116         (try_count % QueuedAllocationWarningCount == 0)) {
  1117       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1118               "retries %d times", try_count);
  1122   ShouldNotReachHere();
  1123   return NULL;
  1126 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1127                                        bool expect_null_mutator_alloc_region) {
  1128   assert_at_safepoint(true /* should_be_vm_thread */);
  1129   assert(_mutator_alloc_region.get() == NULL ||
  1130                                              !expect_null_mutator_alloc_region,
  1131          "the current alloc region was unexpectedly found to be non-NULL");
  1133   if (!isHumongous(word_size)) {
  1134     return _mutator_alloc_region.attempt_allocation_locked(word_size,
  1135                                                       false /* bot_updates */);
  1136   } else {
  1137     HeapWord* result = humongous_obj_allocate(word_size);
  1138     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
  1139       g1_policy()->set_initiate_conc_mark_if_possible();
  1141     return result;
  1144   ShouldNotReachHere();
  1147 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1148   G1CollectedHeap* _g1h;
  1149   ModRefBarrierSet* _mr_bs;
  1150 public:
  1151   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
  1152     _g1h(g1h), _mr_bs(mr_bs) {}
  1154   bool doHeapRegion(HeapRegion* r) {
  1155     HeapRegionRemSet* hrrs = r->rem_set();
  1157     if (r->continuesHumongous()) {
  1158       // We'll assert that the strong code root list and RSet is empty
  1159       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
  1160       assert(hrrs->occupied() == 0, "RSet should be empty");
  1161       return false;
  1164     _g1h->reset_gc_time_stamps(r);
  1165     hrrs->clear();
  1166     // You might think here that we could clear just the cards
  1167     // corresponding to the used region.  But no: if we leave a dirty card
  1168     // in a region we might allocate into, then it would prevent that card
  1169     // from being enqueued, and cause it to be missed.
  1170     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1171     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1173     return false;
  1175 };
  1177 void G1CollectedHeap::clear_rsets_post_compaction() {
  1178   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
  1179   heap_region_iterate(&rs_clear);
  1182 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1183   G1CollectedHeap*   _g1h;
  1184   UpdateRSOopClosure _cl;
  1185   int                _worker_i;
  1186 public:
  1187   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1188     _cl(g1->g1_rem_set(), worker_i),
  1189     _worker_i(worker_i),
  1190     _g1h(g1)
  1191   { }
  1193   bool doHeapRegion(HeapRegion* r) {
  1194     if (!r->continuesHumongous()) {
  1195       _cl.set_from(r);
  1196       r->oop_iterate(&_cl);
  1198     return false;
  1200 };
  1202 class ParRebuildRSTask: public AbstractGangTask {
  1203   G1CollectedHeap* _g1;
  1204 public:
  1205   ParRebuildRSTask(G1CollectedHeap* g1)
  1206     : AbstractGangTask("ParRebuildRSTask"),
  1207       _g1(g1)
  1208   { }
  1210   void work(uint worker_id) {
  1211     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1212     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1213                                           _g1->workers()->active_workers(),
  1214                                          HeapRegion::RebuildRSClaimValue);
  1216 };
  1218 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1219 private:
  1220   G1HRPrinter* _hr_printer;
  1221 public:
  1222   bool doHeapRegion(HeapRegion* hr) {
  1223     assert(!hr->is_young(), "not expecting to find young regions");
  1224     // We only generate output for non-empty regions.
  1225     if (!hr->is_empty()) {
  1226       if (!hr->isHumongous()) {
  1227         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1228       } else if (hr->startsHumongous()) {
  1229         if (hr->region_num() == 1) {
  1230           // single humongous region
  1231           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1232         } else {
  1233           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1235       } else {
  1236         assert(hr->continuesHumongous(), "only way to get here");
  1237         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1240     return false;
  1243   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1244     : _hr_printer(hr_printer) { }
  1245 };
  1247 void G1CollectedHeap::print_hrm_post_compaction() {
  1248   PostCompactionPrinterClosure cl(hr_printer());
  1249   heap_region_iterate(&cl);
  1252 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1253                                     bool clear_all_soft_refs,
  1254                                     size_t word_size) {
  1255   assert_at_safepoint(true /* should_be_vm_thread */);
  1257   if (GC_locker::check_active_before_gc()) {
  1258     return false;
  1261   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
  1262   gc_timer->register_gc_start();
  1264   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  1265   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
  1267   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1268   ResourceMark rm;
  1270   print_heap_before_gc();
  1271   trace_heap_before_gc(gc_tracer);
  1273   size_t metadata_prev_used = MetaspaceAux::used_bytes();
  1275   verify_region_sets_optional();
  1277   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1278                            collector_policy()->should_clear_all_soft_refs();
  1280   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1283     IsGCActiveMark x;
  1285     // Timing
  1286     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
  1287     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  1288     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  1291       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
  1292       TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1293       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1295       double start = os::elapsedTime();
  1296       g1_policy()->record_full_collection_start();
  1298       // Note: When we have a more flexible GC logging framework that
  1299       // allows us to add optional attributes to a GC log record we
  1300       // could consider timing and reporting how long we wait in the
  1301       // following two methods.
  1302       wait_while_free_regions_coming();
  1303       // If we start the compaction before the CM threads finish
  1304       // scanning the root regions we might trip them over as we'll
  1305       // be moving objects / updating references. So let's wait until
  1306       // they are done. By telling them to abort, they should complete
  1307       // early.
  1308       _cm->root_regions()->abort();
  1309       _cm->root_regions()->wait_until_scan_finished();
  1310       append_secondary_free_list_if_not_empty_with_lock();
  1312       gc_prologue(true);
  1313       increment_total_collections(true /* full gc */);
  1314       increment_old_marking_cycles_started();
  1316       assert(used() == recalculate_used(), "Should be equal");
  1318       verify_before_gc();
  1320       check_bitmaps("Full GC Start");
  1321       pre_full_gc_dump(gc_timer);
  1323       COMPILER2_PRESENT(DerivedPointerTable::clear());
  1325       // Disable discovery and empty the discovered lists
  1326       // for the CM ref processor.
  1327       ref_processor_cm()->disable_discovery();
  1328       ref_processor_cm()->abandon_partial_discovery();
  1329       ref_processor_cm()->verify_no_references_recorded();
  1331       // Abandon current iterations of concurrent marking and concurrent
  1332       // refinement, if any are in progress. We have to do this before
  1333       // wait_until_scan_finished() below.
  1334       concurrent_mark()->abort();
  1336       // Make sure we'll choose a new allocation region afterwards.
  1337       release_mutator_alloc_region();
  1338       abandon_gc_alloc_regions();
  1339       g1_rem_set()->cleanupHRRS();
  1341       // We should call this after we retire any currently active alloc
  1342       // regions so that all the ALLOC / RETIRE events are generated
  1343       // before the start GC event.
  1344       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1346       // We may have added regions to the current incremental collection
  1347       // set between the last GC or pause and now. We need to clear the
  1348       // incremental collection set and then start rebuilding it afresh
  1349       // after this full GC.
  1350       abandon_collection_set(g1_policy()->inc_cset_head());
  1351       g1_policy()->clear_incremental_cset();
  1352       g1_policy()->stop_incremental_cset_building();
  1354       tear_down_region_sets(false /* free_list_only */);
  1355       g1_policy()->set_gcs_are_young(true);
  1357       // See the comments in g1CollectedHeap.hpp and
  1358       // G1CollectedHeap::ref_processing_init() about
  1359       // how reference processing currently works in G1.
  1361       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1362       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1364       // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1365       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1367       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1368       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1370       // Do collection work
  1372         HandleMark hm;  // Discard invalid handles created during gc
  1373         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1376       assert(num_free_regions() == 0, "we should not have added any free regions");
  1377       rebuild_region_sets(false /* free_list_only */);
  1379       // Enqueue any discovered reference objects that have
  1380       // not been removed from the discovered lists.
  1381       ref_processor_stw()->enqueue_discovered_references();
  1383       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1385       MemoryService::track_memory_usage();
  1387       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1388       ref_processor_stw()->verify_no_references_recorded();
  1390       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  1391       ClassLoaderDataGraph::purge();
  1392       MetaspaceAux::verify_metrics();
  1394       // Note: since we've just done a full GC, concurrent
  1395       // marking is no longer active. Therefore we need not
  1396       // re-enable reference discovery for the CM ref processor.
  1397       // That will be done at the start of the next marking cycle.
  1398       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1399       ref_processor_cm()->verify_no_references_recorded();
  1401       reset_gc_time_stamp();
  1402       // Since everything potentially moved, we will clear all remembered
  1403       // sets, and clear all cards.  Later we will rebuild remembered
  1404       // sets. We will also reset the GC time stamps of the regions.
  1405       clear_rsets_post_compaction();
  1406       check_gc_time_stamps();
  1408       // Resize the heap if necessary.
  1409       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1411       if (_hr_printer.is_active()) {
  1412         // We should do this after we potentially resize the heap so
  1413         // that all the COMMIT / UNCOMMIT events are generated before
  1414         // the end GC event.
  1416         print_hrm_post_compaction();
  1417         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1420       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  1421       if (hot_card_cache->use_cache()) {
  1422         hot_card_cache->reset_card_counts();
  1423         hot_card_cache->reset_hot_cache();
  1426       // Rebuild remembered sets of all regions.
  1427       if (G1CollectedHeap::use_parallel_gc_threads()) {
  1428         uint n_workers =
  1429           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1430                                                   workers()->active_workers(),
  1431                                                   Threads::number_of_non_daemon_threads());
  1432         assert(UseDynamicNumberOfGCThreads ||
  1433                n_workers == workers()->total_workers(),
  1434                "If not dynamic should be using all the  workers");
  1435         workers()->set_active_workers(n_workers);
  1436         // Set parallel threads in the heap (_n_par_threads) only
  1437         // before a parallel phase and always reset it to 0 after
  1438         // the phase so that the number of parallel threads does
  1439         // no get carried forward to a serial phase where there
  1440         // may be code that is "possibly_parallel".
  1441         set_par_threads(n_workers);
  1443         ParRebuildRSTask rebuild_rs_task(this);
  1444         assert(check_heap_region_claim_values(
  1445                HeapRegion::InitialClaimValue), "sanity check");
  1446         assert(UseDynamicNumberOfGCThreads ||
  1447                workers()->active_workers() == workers()->total_workers(),
  1448                "Unless dynamic should use total workers");
  1449         // Use the most recent number of  active workers
  1450         assert(workers()->active_workers() > 0,
  1451                "Active workers not properly set");
  1452         set_par_threads(workers()->active_workers());
  1453         workers()->run_task(&rebuild_rs_task);
  1454         set_par_threads(0);
  1455         assert(check_heap_region_claim_values(
  1456                HeapRegion::RebuildRSClaimValue), "sanity check");
  1457         reset_heap_region_claim_values();
  1458       } else {
  1459         RebuildRSOutOfRegionClosure rebuild_rs(this);
  1460         heap_region_iterate(&rebuild_rs);
  1463       // Rebuild the strong code root lists for each region
  1464       rebuild_strong_code_roots();
  1466       if (true) { // FIXME
  1467         MetaspaceGC::compute_new_size();
  1470 #ifdef TRACESPINNING
  1471       ParallelTaskTerminator::print_termination_counts();
  1472 #endif
  1474       // Discard all rset updates
  1475       JavaThread::dirty_card_queue_set().abandon_logs();
  1476       assert(!G1DeferredRSUpdate
  1477              || (G1DeferredRSUpdate &&
  1478                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1480       _young_list->reset_sampled_info();
  1481       // At this point there should be no regions in the
  1482       // entire heap tagged as young.
  1483       assert(check_young_list_empty(true /* check_heap */),
  1484              "young list should be empty at this point");
  1486       // Update the number of full collections that have been completed.
  1487       increment_old_marking_cycles_completed(false /* concurrent */);
  1489       _hrm.verify_optional();
  1490       verify_region_sets_optional();
  1492       verify_after_gc();
  1494       // Clear the previous marking bitmap, if needed for bitmap verification.
  1495       // Note we cannot do this when we clear the next marking bitmap in
  1496       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
  1497       // objects marked during a full GC against the previous bitmap.
  1498       // But we need to clear it before calling check_bitmaps below since
  1499       // the full GC has compacted objects and updated TAMS but not updated
  1500       // the prev bitmap.
  1501       if (G1VerifyBitmaps) {
  1502         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
  1504       check_bitmaps("Full GC End");
  1506       // Start a new incremental collection set for the next pause
  1507       assert(g1_policy()->collection_set() == NULL, "must be");
  1508       g1_policy()->start_incremental_cset_building();
  1510       clear_cset_fast_test();
  1512       init_mutator_alloc_region();
  1514       double end = os::elapsedTime();
  1515       g1_policy()->record_full_collection_end();
  1517       if (G1Log::fine()) {
  1518         g1_policy()->print_heap_transition();
  1521       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  1522       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  1523       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  1524       // before any GC notifications are raised.
  1525       g1mm()->update_sizes();
  1527       gc_epilogue(true);
  1530     if (G1Log::finer()) {
  1531       g1_policy()->print_detailed_heap_transition(true /* full */);
  1534     print_heap_after_gc();
  1535     trace_heap_after_gc(gc_tracer);
  1537     post_full_gc_dump(gc_timer);
  1539     gc_timer->register_gc_end();
  1540     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
  1543   return true;
  1546 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1547   // do_collection() will return whether it succeeded in performing
  1548   // the GC. Currently, there is no facility on the
  1549   // do_full_collection() API to notify the caller than the collection
  1550   // did not succeed (e.g., because it was locked out by the GC
  1551   // locker). So, right now, we'll ignore the return value.
  1552   bool dummy = do_collection(true,                /* explicit_gc */
  1553                              clear_all_soft_refs,
  1554                              0                    /* word_size */);
  1557 // This code is mostly copied from TenuredGeneration.
  1558 void
  1559 G1CollectedHeap::
  1560 resize_if_necessary_after_full_collection(size_t word_size) {
  1561   // Include the current allocation, if any, and bytes that will be
  1562   // pre-allocated to support collections, as "used".
  1563   const size_t used_after_gc = used();
  1564   const size_t capacity_after_gc = capacity();
  1565   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1567   // This is enforced in arguments.cpp.
  1568   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1569          "otherwise the code below doesn't make sense");
  1571   // We don't have floating point command-line arguments
  1572   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1573   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1574   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1575   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1577   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1578   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1580   // We have to be careful here as these two calculations can overflow
  1581   // 32-bit size_t's.
  1582   double used_after_gc_d = (double) used_after_gc;
  1583   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1584   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1586   // Let's make sure that they are both under the max heap size, which
  1587   // by default will make them fit into a size_t.
  1588   double desired_capacity_upper_bound = (double) max_heap_size;
  1589   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1590                                     desired_capacity_upper_bound);
  1591   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1592                                     desired_capacity_upper_bound);
  1594   // We can now safely turn them into size_t's.
  1595   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1596   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1598   // This assert only makes sense here, before we adjust them
  1599   // with respect to the min and max heap size.
  1600   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1601          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1602                  "maximum_desired_capacity = "SIZE_FORMAT,
  1603                  minimum_desired_capacity, maximum_desired_capacity));
  1605   // Should not be greater than the heap max size. No need to adjust
  1606   // it with respect to the heap min size as it's a lower bound (i.e.,
  1607   // we'll try to make the capacity larger than it, not smaller).
  1608   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1609   // Should not be less than the heap min size. No need to adjust it
  1610   // with respect to the heap max size as it's an upper bound (i.e.,
  1611   // we'll try to make the capacity smaller than it, not greater).
  1612   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1614   if (capacity_after_gc < minimum_desired_capacity) {
  1615     // Don't expand unless it's significant
  1616     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1617     ergo_verbose4(ErgoHeapSizing,
  1618                   "attempt heap expansion",
  1619                   ergo_format_reason("capacity lower than "
  1620                                      "min desired capacity after Full GC")
  1621                   ergo_format_byte("capacity")
  1622                   ergo_format_byte("occupancy")
  1623                   ergo_format_byte_perc("min desired capacity"),
  1624                   capacity_after_gc, used_after_gc,
  1625                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1626     expand(expand_bytes);
  1628     // No expansion, now see if we want to shrink
  1629   } else if (capacity_after_gc > maximum_desired_capacity) {
  1630     // Capacity too large, compute shrinking size
  1631     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1632     ergo_verbose4(ErgoHeapSizing,
  1633                   "attempt heap shrinking",
  1634                   ergo_format_reason("capacity higher than "
  1635                                      "max desired capacity after Full GC")
  1636                   ergo_format_byte("capacity")
  1637                   ergo_format_byte("occupancy")
  1638                   ergo_format_byte_perc("max desired capacity"),
  1639                   capacity_after_gc, used_after_gc,
  1640                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1641     shrink(shrink_bytes);
  1646 HeapWord*
  1647 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1648                                            bool* succeeded) {
  1649   assert_at_safepoint(true /* should_be_vm_thread */);
  1651   *succeeded = true;
  1652   // Let's attempt the allocation first.
  1653   HeapWord* result =
  1654     attempt_allocation_at_safepoint(word_size,
  1655                                  false /* expect_null_mutator_alloc_region */);
  1656   if (result != NULL) {
  1657     assert(*succeeded, "sanity");
  1658     return result;
  1661   // In a G1 heap, we're supposed to keep allocation from failing by
  1662   // incremental pauses.  Therefore, at least for now, we'll favor
  1663   // expansion over collection.  (This might change in the future if we can
  1664   // do something smarter than full collection to satisfy a failed alloc.)
  1665   result = expand_and_allocate(word_size);
  1666   if (result != NULL) {
  1667     assert(*succeeded, "sanity");
  1668     return result;
  1671   // Expansion didn't work, we'll try to do a Full GC.
  1672   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1673                                     false, /* clear_all_soft_refs */
  1674                                     word_size);
  1675   if (!gc_succeeded) {
  1676     *succeeded = false;
  1677     return NULL;
  1680   // Retry the allocation
  1681   result = attempt_allocation_at_safepoint(word_size,
  1682                                   true /* expect_null_mutator_alloc_region */);
  1683   if (result != NULL) {
  1684     assert(*succeeded, "sanity");
  1685     return result;
  1688   // Then, try a Full GC that will collect all soft references.
  1689   gc_succeeded = do_collection(false, /* explicit_gc */
  1690                                true,  /* clear_all_soft_refs */
  1691                                word_size);
  1692   if (!gc_succeeded) {
  1693     *succeeded = false;
  1694     return NULL;
  1697   // Retry the allocation once more
  1698   result = attempt_allocation_at_safepoint(word_size,
  1699                                   true /* expect_null_mutator_alloc_region */);
  1700   if (result != NULL) {
  1701     assert(*succeeded, "sanity");
  1702     return result;
  1705   assert(!collector_policy()->should_clear_all_soft_refs(),
  1706          "Flag should have been handled and cleared prior to this point");
  1708   // What else?  We might try synchronous finalization later.  If the total
  1709   // space available is large enough for the allocation, then a more
  1710   // complete compaction phase than we've tried so far might be
  1711   // appropriate.
  1712   assert(*succeeded, "sanity");
  1713   return NULL;
  1716 // Attempting to expand the heap sufficiently
  1717 // to support an allocation of the given "word_size".  If
  1718 // successful, perform the allocation and return the address of the
  1719 // allocated block, or else "NULL".
  1721 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1722   assert_at_safepoint(true /* should_be_vm_thread */);
  1724   verify_region_sets_optional();
  1726   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1727   ergo_verbose1(ErgoHeapSizing,
  1728                 "attempt heap expansion",
  1729                 ergo_format_reason("allocation request failed")
  1730                 ergo_format_byte("allocation request"),
  1731                 word_size * HeapWordSize);
  1732   if (expand(expand_bytes)) {
  1733     _hrm.verify_optional();
  1734     verify_region_sets_optional();
  1735     return attempt_allocation_at_safepoint(word_size,
  1736                                  false /* expect_null_mutator_alloc_region */);
  1738   return NULL;
  1741 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1742   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1743   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1744                                        HeapRegion::GrainBytes);
  1745   ergo_verbose2(ErgoHeapSizing,
  1746                 "expand the heap",
  1747                 ergo_format_byte("requested expansion amount")
  1748                 ergo_format_byte("attempted expansion amount"),
  1749                 expand_bytes, aligned_expand_bytes);
  1751   if (is_maximal_no_gc()) {
  1752     ergo_verbose0(ErgoHeapSizing,
  1753                       "did not expand the heap",
  1754                       ergo_format_reason("heap already fully expanded"));
  1755     return false;
  1758   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
  1759   assert(regions_to_expand > 0, "Must expand by at least one region");
  1761   uint expanded_by = _hrm.expand_by(regions_to_expand);
  1763   if (expanded_by > 0) {
  1764     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
  1765     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1766     g1_policy()->record_new_heap_size(num_regions());
  1767   } else {
  1768     ergo_verbose0(ErgoHeapSizing,
  1769                   "did not expand the heap",
  1770                   ergo_format_reason("heap expansion operation failed"));
  1771     // The expansion of the virtual storage space was unsuccessful.
  1772     // Let's see if it was because we ran out of swap.
  1773     if (G1ExitOnExpansionFailure &&
  1774         _hrm.available() >= regions_to_expand) {
  1775       // We had head room...
  1776       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
  1779   return regions_to_expand > 0;
  1782 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1783   size_t aligned_shrink_bytes =
  1784     ReservedSpace::page_align_size_down(shrink_bytes);
  1785   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1786                                          HeapRegion::GrainBytes);
  1787   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
  1789   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
  1790   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
  1792   ergo_verbose3(ErgoHeapSizing,
  1793                 "shrink the heap",
  1794                 ergo_format_byte("requested shrinking amount")
  1795                 ergo_format_byte("aligned shrinking amount")
  1796                 ergo_format_byte("attempted shrinking amount"),
  1797                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  1798   if (num_regions_removed > 0) {
  1799     g1_policy()->record_new_heap_size(num_regions());
  1800   } else {
  1801     ergo_verbose0(ErgoHeapSizing,
  1802                   "did not shrink the heap",
  1803                   ergo_format_reason("heap shrinking operation failed"));
  1807 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1808   verify_region_sets_optional();
  1810   // We should only reach here at the end of a Full GC which means we
  1811   // should not not be holding to any GC alloc regions. The method
  1812   // below will make sure of that and do any remaining clean up.
  1813   abandon_gc_alloc_regions();
  1815   // Instead of tearing down / rebuilding the free lists here, we
  1816   // could instead use the remove_all_pending() method on free_list to
  1817   // remove only the ones that we need to remove.
  1818   tear_down_region_sets(true /* free_list_only */);
  1819   shrink_helper(shrink_bytes);
  1820   rebuild_region_sets(true /* free_list_only */);
  1822   _hrm.verify_optional();
  1823   verify_region_sets_optional();
  1826 // Public methods.
  1828 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1829 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1830 #endif // _MSC_VER
  1833 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1834   SharedHeap(policy_),
  1835   _g1_policy(policy_),
  1836   _dirty_card_queue_set(false),
  1837   _into_cset_dirty_card_queue_set(false),
  1838   _is_alive_closure_cm(this),
  1839   _is_alive_closure_stw(this),
  1840   _ref_processor_cm(NULL),
  1841   _ref_processor_stw(NULL),
  1842   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1843   _bot_shared(NULL),
  1844   _evac_failure_scan_stack(NULL),
  1845   _mark_in_progress(false),
  1846   _cg1r(NULL), _summary_bytes_used(0),
  1847   _g1mm(NULL),
  1848   _refine_cte_cl(NULL),
  1849   _full_collection(false),
  1850   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
  1851   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
  1852   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
  1853   _humongous_is_live(),
  1854   _has_humongous_reclaim_candidates(false),
  1855   _free_regions_coming(false),
  1856   _young_list(new YoungList(this)),
  1857   _gc_time_stamp(0),
  1858   _retained_old_gc_alloc_region(NULL),
  1859   _survivor_plab_stats(YoungPLABSize, PLABWeight),
  1860   _old_plab_stats(OldPLABSize, PLABWeight),
  1861   _expand_heap_after_alloc_failure(true),
  1862   _surviving_young_words(NULL),
  1863   _old_marking_cycles_started(0),
  1864   _old_marking_cycles_completed(0),
  1865   _concurrent_cycle_started(false),
  1866   _in_cset_fast_test(),
  1867   _dirty_cards_region_list(NULL),
  1868   _worker_cset_start_region(NULL),
  1869   _worker_cset_start_region_time_stamp(NULL),
  1870   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  1871   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  1872   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  1873   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
  1875   _g1h = this;
  1876   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1877     vm_exit_during_initialization("Failed necessary allocation.");
  1880   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1882   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1883   _task_queues = new RefToScanQueueSet(n_queues);
  1885   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1886   assert(n_rem_sets > 0, "Invariant.");
  1888   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  1889   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
  1890   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
  1892   for (int i = 0; i < n_queues; i++) {
  1893     RefToScanQueue* q = new RefToScanQueue();
  1894     q->initialize();
  1895     _task_queues->register_queue(i, q);
  1896     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
  1898   clear_cset_start_regions();
  1900   // Initialize the G1EvacuationFailureALot counters and flags.
  1901   NOT_PRODUCT(reset_evacuation_should_fail();)
  1903   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1906 jint G1CollectedHeap::initialize() {
  1907   CollectedHeap::pre_initialize();
  1908   os::enable_vtime();
  1910   G1Log::init();
  1912   // Necessary to satisfy locking discipline assertions.
  1914   MutexLocker x(Heap_lock);
  1916   // We have to initialize the printer before committing the heap, as
  1917   // it will be used then.
  1918   _hr_printer.set_active(G1PrintHeapRegions);
  1920   // While there are no constraints in the GC code that HeapWordSize
  1921   // be any particular value, there are multiple other areas in the
  1922   // system which believe this to be true (e.g. oop->object_size in some
  1923   // cases incorrectly returns the size in wordSize units rather than
  1924   // HeapWordSize).
  1925   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1927   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1928   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1929   size_t heap_alignment = collector_policy()->heap_alignment();
  1931   // Ensure that the sizes are properly aligned.
  1932   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1933   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1934   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
  1936   _refine_cte_cl = new RefineCardTableEntryClosure();
  1938   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
  1940   // Reserve the maximum.
  1942   // When compressed oops are enabled, the preferred heap base
  1943   // is calculated by subtracting the requested size from the
  1944   // 32Gb boundary and using the result as the base address for
  1945   // heap reservation. If the requested size is not aligned to
  1946   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  1947   // into the ReservedHeapSpace constructor) then the actual
  1948   // base of the reserved heap may end up differing from the
  1949   // address that was requested (i.e. the preferred heap base).
  1950   // If this happens then we could end up using a non-optimal
  1951   // compressed oops mode.
  1953   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
  1954                                                  heap_alignment);
  1956   // It is important to do this in a way such that concurrent readers can't
  1957   // temporarily think something is in the heap.  (I've actually seen this
  1958   // happen in asserts: DLD.)
  1959   _reserved.set_word_size(0);
  1960   _reserved.set_start((HeapWord*)heap_rs.base());
  1961   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1963   // Create the gen rem set (and barrier set) for the entire reserved region.
  1964   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1965   set_barrier_set(rem_set()->bs());
  1966   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
  1967     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
  1968     return JNI_ENOMEM;
  1971   // Also create a G1 rem set.
  1972   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
  1974   // Carve out the G1 part of the heap.
  1976   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
  1977   G1RegionToSpaceMapper* heap_storage =
  1978     G1RegionToSpaceMapper::create_mapper(g1_rs,
  1979                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
  1980                                          HeapRegion::GrainBytes,
  1981                                          1,
  1982                                          mtJavaHeap);
  1983   heap_storage->set_mapping_changed_listener(&_listener);
  1985   // Reserve space for the block offset table. We do not support automatic uncommit
  1986   // for the card table at this time. BOT only.
  1987   ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
  1988   G1RegionToSpaceMapper* bot_storage =
  1989     G1RegionToSpaceMapper::create_mapper(bot_rs,
  1990                                          os::vm_page_size(),
  1991                                          HeapRegion::GrainBytes,
  1992                                          G1BlockOffsetSharedArray::N_bytes,
  1993                                          mtGC);
  1995   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
  1996   G1RegionToSpaceMapper* cardtable_storage =
  1997     G1RegionToSpaceMapper::create_mapper(cardtable_rs,
  1998                                          os::vm_page_size(),
  1999                                          HeapRegion::GrainBytes,
  2000                                          G1BlockOffsetSharedArray::N_bytes,
  2001                                          mtGC);
  2003   // Reserve space for the card counts table.
  2004   ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
  2005   G1RegionToSpaceMapper* card_counts_storage =
  2006     G1RegionToSpaceMapper::create_mapper(card_counts_rs,
  2007                                          os::vm_page_size(),
  2008                                          HeapRegion::GrainBytes,
  2009                                          G1BlockOffsetSharedArray::N_bytes,
  2010                                          mtGC);
  2012   // Reserve space for prev and next bitmap.
  2013   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
  2015   ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
  2016   G1RegionToSpaceMapper* prev_bitmap_storage =
  2017     G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs,
  2018                                          os::vm_page_size(),
  2019                                          HeapRegion::GrainBytes,
  2020                                          CMBitMap::mark_distance(),
  2021                                          mtGC);
  2023   ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
  2024   G1RegionToSpaceMapper* next_bitmap_storage =
  2025     G1RegionToSpaceMapper::create_mapper(next_bitmap_rs,
  2026                                          os::vm_page_size(),
  2027                                          HeapRegion::GrainBytes,
  2028                                          CMBitMap::mark_distance(),
  2029                                          mtGC);
  2031   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
  2032   g1_barrier_set()->initialize(cardtable_storage);
  2033    // Do later initialization work for concurrent refinement.
  2034   _cg1r->init(card_counts_storage);
  2036   // 6843694 - ensure that the maximum region index can fit
  2037   // in the remembered set structures.
  2038   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2039   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2041   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2042   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2043   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  2044             "too many cards per region");
  2046   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
  2048   _bot_shared = new G1BlockOffsetSharedArray(_reserved, bot_storage);
  2050   _g1h = this;
  2052   _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
  2053   _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
  2055   // Create the ConcurrentMark data structure and thread.
  2056   // (Must do this late, so that "max_regions" is defined.)
  2057   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
  2058   if (_cm == NULL || !_cm->completed_initialization()) {
  2059     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
  2060     return JNI_ENOMEM;
  2062   _cmThread = _cm->cmThread();
  2064   // Initialize the from_card cache structure of HeapRegionRemSet.
  2065   HeapRegionRemSet::init_heap(max_regions());
  2067   // Now expand into the initial heap size.
  2068   if (!expand(init_byte_size)) {
  2069     vm_shutdown_during_initialization("Failed to allocate initial heap.");
  2070     return JNI_ENOMEM;
  2073   // Perform any initialization actions delegated to the policy.
  2074   g1_policy()->init();
  2076   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2077                                                SATB_Q_FL_lock,
  2078                                                G1SATBProcessCompletedThreshold,
  2079                                                Shared_SATB_Q_lock);
  2081   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
  2082                                                 DirtyCardQ_CBL_mon,
  2083                                                 DirtyCardQ_FL_lock,
  2084                                                 concurrent_g1_refine()->yellow_zone(),
  2085                                                 concurrent_g1_refine()->red_zone(),
  2086                                                 Shared_DirtyCardQ_lock);
  2088   if (G1DeferredRSUpdate) {
  2089     dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
  2090                                       DirtyCardQ_CBL_mon,
  2091                                       DirtyCardQ_FL_lock,
  2092                                       -1, // never trigger processing
  2093                                       -1, // no limit on length
  2094                                       Shared_DirtyCardQ_lock,
  2095                                       &JavaThread::dirty_card_queue_set());
  2098   // Initialize the card queue set used to hold cards containing
  2099   // references into the collection set.
  2100   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
  2101                                              DirtyCardQ_CBL_mon,
  2102                                              DirtyCardQ_FL_lock,
  2103                                              -1, // never trigger processing
  2104                                              -1, // no limit on length
  2105                                              Shared_DirtyCardQ_lock,
  2106                                              &JavaThread::dirty_card_queue_set());
  2108   // In case we're keeping closure specialization stats, initialize those
  2109   // counts and that mechanism.
  2110   SpecializationStats::clear();
  2112   // Here we allocate the dummy HeapRegion that is required by the
  2113   // G1AllocRegion class.
  2114   HeapRegion* dummy_region = _hrm.get_dummy_region();
  2116   // We'll re-use the same region whether the alloc region will
  2117   // require BOT updates or not and, if it doesn't, then a non-young
  2118   // region will complain that it cannot support allocations without
  2119   // BOT updates. So we'll tag the dummy region as young to avoid that.
  2120   dummy_region->set_young();
  2121   // Make sure it's full.
  2122   dummy_region->set_top(dummy_region->end());
  2123   G1AllocRegion::setup(this, dummy_region);
  2125   init_mutator_alloc_region();
  2127   // Do create of the monitoring and management support so that
  2128   // values in the heap have been properly initialized.
  2129   _g1mm = new G1MonitoringSupport(this);
  2131   G1StringDedup::initialize();
  2133   return JNI_OK;
  2136 void G1CollectedHeap::stop() {
  2137   // Stop all concurrent threads. We do this to make sure these threads
  2138   // do not continue to execute and access resources (e.g. gclog_or_tty)
  2139   // that are destroyed during shutdown.
  2140   _cg1r->stop();
  2141   _cmThread->stop();
  2142   if (G1StringDedup::is_enabled()) {
  2143     G1StringDedup::stop();
  2147 void G1CollectedHeap::clear_humongous_is_live_table() {
  2148   guarantee(G1ReclaimDeadHumongousObjectsAtYoungGC, "Should only be called if true");
  2149   _humongous_is_live.clear();
  2152 size_t G1CollectedHeap::conservative_max_heap_alignment() {
  2153   return HeapRegion::max_region_size();
  2156 void G1CollectedHeap::ref_processing_init() {
  2157   // Reference processing in G1 currently works as follows:
  2158   //
  2159   // * There are two reference processor instances. One is
  2160   //   used to record and process discovered references
  2161   //   during concurrent marking; the other is used to
  2162   //   record and process references during STW pauses
  2163   //   (both full and incremental).
  2164   // * Both ref processors need to 'span' the entire heap as
  2165   //   the regions in the collection set may be dotted around.
  2166   //
  2167   // * For the concurrent marking ref processor:
  2168   //   * Reference discovery is enabled at initial marking.
  2169   //   * Reference discovery is disabled and the discovered
  2170   //     references processed etc during remarking.
  2171   //   * Reference discovery is MT (see below).
  2172   //   * Reference discovery requires a barrier (see below).
  2173   //   * Reference processing may or may not be MT
  2174   //     (depending on the value of ParallelRefProcEnabled
  2175   //     and ParallelGCThreads).
  2176   //   * A full GC disables reference discovery by the CM
  2177   //     ref processor and abandons any entries on it's
  2178   //     discovered lists.
  2179   //
  2180   // * For the STW processor:
  2181   //   * Non MT discovery is enabled at the start of a full GC.
  2182   //   * Processing and enqueueing during a full GC is non-MT.
  2183   //   * During a full GC, references are processed after marking.
  2184   //
  2185   //   * Discovery (may or may not be MT) is enabled at the start
  2186   //     of an incremental evacuation pause.
  2187   //   * References are processed near the end of a STW evacuation pause.
  2188   //   * For both types of GC:
  2189   //     * Discovery is atomic - i.e. not concurrent.
  2190   //     * Reference discovery will not need a barrier.
  2192   SharedHeap::ref_processing_init();
  2193   MemRegion mr = reserved_region();
  2195   // Concurrent Mark ref processor
  2196   _ref_processor_cm =
  2197     new ReferenceProcessor(mr,    // span
  2198                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2199                                 // mt processing
  2200                            (int) ParallelGCThreads,
  2201                                 // degree of mt processing
  2202                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2203                                 // mt discovery
  2204                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2205                                 // degree of mt discovery
  2206                            false,
  2207                                 // Reference discovery is not atomic
  2208                            &_is_alive_closure_cm);
  2209                                 // is alive closure
  2210                                 // (for efficiency/performance)
  2212   // STW ref processor
  2213   _ref_processor_stw =
  2214     new ReferenceProcessor(mr,    // span
  2215                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2216                                 // mt processing
  2217                            MAX2((int)ParallelGCThreads, 1),
  2218                                 // degree of mt processing
  2219                            (ParallelGCThreads > 1),
  2220                                 // mt discovery
  2221                            MAX2((int)ParallelGCThreads, 1),
  2222                                 // degree of mt discovery
  2223                            true,
  2224                                 // Reference discovery is atomic
  2225                            &_is_alive_closure_stw);
  2226                                 // is alive closure
  2227                                 // (for efficiency/performance)
  2230 size_t G1CollectedHeap::capacity() const {
  2231   return _hrm.length() * HeapRegion::GrainBytes;
  2234 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  2235   assert(!hr->continuesHumongous(), "pre-condition");
  2236   hr->reset_gc_time_stamp();
  2237   if (hr->startsHumongous()) {
  2238     uint first_index = hr->hrm_index() + 1;
  2239     uint last_index = hr->last_hc_index();
  2240     for (uint i = first_index; i < last_index; i += 1) {
  2241       HeapRegion* chr = region_at(i);
  2242       assert(chr->continuesHumongous(), "sanity");
  2243       chr->reset_gc_time_stamp();
  2248 #ifndef PRODUCT
  2249 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
  2250 private:
  2251   unsigned _gc_time_stamp;
  2252   bool _failures;
  2254 public:
  2255   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
  2256     _gc_time_stamp(gc_time_stamp), _failures(false) { }
  2258   virtual bool doHeapRegion(HeapRegion* hr) {
  2259     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
  2260     if (_gc_time_stamp != region_gc_time_stamp) {
  2261       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
  2262                              "expected %d", HR_FORMAT_PARAMS(hr),
  2263                              region_gc_time_stamp, _gc_time_stamp);
  2264       _failures = true;
  2266     return false;
  2269   bool failures() { return _failures; }
  2270 };
  2272 void G1CollectedHeap::check_gc_time_stamps() {
  2273   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  2274   heap_region_iterate(&cl);
  2275   guarantee(!cl.failures(), "all GC time stamps should have been reset");
  2277 #endif // PRODUCT
  2279 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2280                                                  DirtyCardQueue* into_cset_dcq,
  2281                                                  bool concurrent,
  2282                                                  uint worker_i) {
  2283   // Clean cards in the hot card cache
  2284   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  2285   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
  2287   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2288   int n_completed_buffers = 0;
  2289   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2290     n_completed_buffers++;
  2292   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
  2293   dcqs.clear_n_completed_buffers();
  2294   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2298 // Computes the sum of the storage used by the various regions.
  2300 size_t G1CollectedHeap::used() const {
  2301   assert(Heap_lock->owner() != NULL,
  2302          "Should be owned on this thread's behalf.");
  2303   size_t result = _summary_bytes_used;
  2304   // Read only once in case it is set to NULL concurrently
  2305   HeapRegion* hr = _mutator_alloc_region.get();
  2306   if (hr != NULL)
  2307     result += hr->used();
  2308   return result;
  2311 size_t G1CollectedHeap::used_unlocked() const {
  2312   size_t result = _summary_bytes_used;
  2313   return result;
  2316 class SumUsedClosure: public HeapRegionClosure {
  2317   size_t _used;
  2318 public:
  2319   SumUsedClosure() : _used(0) {}
  2320   bool doHeapRegion(HeapRegion* r) {
  2321     if (!r->continuesHumongous()) {
  2322       _used += r->used();
  2324     return false;
  2326   size_t result() { return _used; }
  2327 };
  2329 size_t G1CollectedHeap::recalculate_used() const {
  2330   double recalculate_used_start = os::elapsedTime();
  2332   SumUsedClosure blk;
  2333   heap_region_iterate(&blk);
  2335   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
  2336   return blk.result();
  2339 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2340   switch (cause) {
  2341     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
  2342     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
  2343     case GCCause::_g1_humongous_allocation: return true;
  2344     default:                                return false;
  2348 #ifndef PRODUCT
  2349 void G1CollectedHeap::allocate_dummy_regions() {
  2350   // Let's fill up most of the region
  2351   size_t word_size = HeapRegion::GrainWords - 1024;
  2352   // And as a result the region we'll allocate will be humongous.
  2353   guarantee(isHumongous(word_size), "sanity");
  2355   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2356     // Let's use the existing mechanism for the allocation
  2357     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
  2358     if (dummy_obj != NULL) {
  2359       MemRegion mr(dummy_obj, word_size);
  2360       CollectedHeap::fill_with_object(mr);
  2361     } else {
  2362       // If we can't allocate once, we probably cannot allocate
  2363       // again. Let's get out of the loop.
  2364       break;
  2368 #endif // !PRODUCT
  2370 void G1CollectedHeap::increment_old_marking_cycles_started() {
  2371   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
  2372     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
  2373     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
  2374     _old_marking_cycles_started, _old_marking_cycles_completed));
  2376   _old_marking_cycles_started++;
  2379 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
  2380   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2382   // We assume that if concurrent == true, then the caller is a
  2383   // concurrent thread that was joined the Suspendible Thread
  2384   // Set. If there's ever a cheap way to check this, we should add an
  2385   // assert here.
  2387   // Given that this method is called at the end of a Full GC or of a
  2388   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2389   // interrupt a concurrent cycle), the number of full collections
  2390   // completed should be either one (in the case where there was no
  2391   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2392   // behind the number of full collections started.
  2394   // This is the case for the inner caller, i.e. a Full GC.
  2395   assert(concurrent ||
  2396          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
  2397          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
  2398          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
  2399                  "is inconsistent with _old_marking_cycles_completed = %u",
  2400                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2402   // This is the case for the outer caller, i.e. the concurrent cycle.
  2403   assert(!concurrent ||
  2404          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
  2405          err_msg("for outer caller (concurrent cycle): "
  2406                  "_old_marking_cycles_started = %u "
  2407                  "is inconsistent with _old_marking_cycles_completed = %u",
  2408                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2410   _old_marking_cycles_completed += 1;
  2412   // We need to clear the "in_progress" flag in the CM thread before
  2413   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2414   // is set) so that if a waiter requests another System.gc() it doesn't
  2415   // incorrectly see that a marking cycle is still in progress.
  2416   if (concurrent) {
  2417     _cmThread->clear_in_progress();
  2420   // This notify_all() will ensure that a thread that called
  2421   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2422   // and it's waiting for a full GC to finish will be woken up. It is
  2423   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2424   FullGCCount_lock->notify_all();
  2427 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
  2428   _concurrent_cycle_started = true;
  2429   _gc_timer_cm->register_gc_start(start_time);
  2431   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  2432   trace_heap_before_gc(_gc_tracer_cm);
  2435 void G1CollectedHeap::register_concurrent_cycle_end() {
  2436   if (_concurrent_cycle_started) {
  2437     if (_cm->has_aborted()) {
  2438       _gc_tracer_cm->report_concurrent_mode_failure();
  2441     _gc_timer_cm->register_gc_end();
  2442     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
  2444     _concurrent_cycle_started = false;
  2448 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  2449   if (_concurrent_cycle_started) {
  2450     trace_heap_after_gc(_gc_tracer_cm);
  2454 G1YCType G1CollectedHeap::yc_type() {
  2455   bool is_young = g1_policy()->gcs_are_young();
  2456   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
  2457   bool is_during_mark = mark_in_progress();
  2459   if (is_initial_mark) {
  2460     return InitialMark;
  2461   } else if (is_during_mark) {
  2462     return DuringMark;
  2463   } else if (is_young) {
  2464     return Normal;
  2465   } else {
  2466     return Mixed;
  2470 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2471   assert_heap_not_locked();
  2473   unsigned int gc_count_before;
  2474   unsigned int old_marking_count_before;
  2475   bool retry_gc;
  2477   do {
  2478     retry_gc = false;
  2481       MutexLocker ml(Heap_lock);
  2483       // Read the GC count while holding the Heap_lock
  2484       gc_count_before = total_collections();
  2485       old_marking_count_before = _old_marking_cycles_started;
  2488     if (should_do_concurrent_full_gc(cause)) {
  2489       // Schedule an initial-mark evacuation pause that will start a
  2490       // concurrent cycle. We're setting word_size to 0 which means that
  2491       // we are not requesting a post-GC allocation.
  2492       VM_G1IncCollectionPause op(gc_count_before,
  2493                                  0,     /* word_size */
  2494                                  true,  /* should_initiate_conc_mark */
  2495                                  g1_policy()->max_pause_time_ms(),
  2496                                  cause);
  2498       VMThread::execute(&op);
  2499       if (!op.pause_succeeded()) {
  2500         if (old_marking_count_before == _old_marking_cycles_started) {
  2501           retry_gc = op.should_retry_gc();
  2502         } else {
  2503           // A Full GC happened while we were trying to schedule the
  2504           // initial-mark GC. No point in starting a new cycle given
  2505           // that the whole heap was collected anyway.
  2508         if (retry_gc) {
  2509           if (GC_locker::is_active_and_needs_gc()) {
  2510             GC_locker::stall_until_clear();
  2514     } else {
  2515       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
  2516           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2518         // Schedule a standard evacuation pause. We're setting word_size
  2519         // to 0 which means that we are not requesting a post-GC allocation.
  2520         VM_G1IncCollectionPause op(gc_count_before,
  2521                                    0,     /* word_size */
  2522                                    false, /* should_initiate_conc_mark */
  2523                                    g1_policy()->max_pause_time_ms(),
  2524                                    cause);
  2525         VMThread::execute(&op);
  2526       } else {
  2527         // Schedule a Full GC.
  2528         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
  2529         VMThread::execute(&op);
  2532   } while (retry_gc);
  2535 bool G1CollectedHeap::is_in(const void* p) const {
  2536   if (_hrm.reserved().contains(p)) {
  2537     // Given that we know that p is in the reserved space,
  2538     // heap_region_containing_raw() should successfully
  2539     // return the containing region.
  2540     HeapRegion* hr = heap_region_containing_raw(p);
  2541     return hr->is_in(p);
  2542   } else {
  2543     return false;
  2547 #ifdef ASSERT
  2548 bool G1CollectedHeap::is_in_exact(const void* p) const {
  2549   bool contains = reserved_region().contains(p);
  2550   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
  2551   if (contains && available) {
  2552     return true;
  2553   } else {
  2554     return false;
  2557 #endif
  2559 // Iteration functions.
  2561 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
  2563 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2564   ExtendedOopClosure* _cl;
  2565 public:
  2566   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
  2567   bool doHeapRegion(HeapRegion* r) {
  2568     if (!r->continuesHumongous()) {
  2569       r->oop_iterate(_cl);
  2571     return false;
  2573 };
  2575 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
  2576   IterateOopClosureRegionClosure blk(cl);
  2577   heap_region_iterate(&blk);
  2580 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2582 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2583   ObjectClosure* _cl;
  2584 public:
  2585   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2586   bool doHeapRegion(HeapRegion* r) {
  2587     if (! r->continuesHumongous()) {
  2588       r->object_iterate(_cl);
  2590     return false;
  2592 };
  2594 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
  2595   IterateObjectClosureRegionClosure blk(cl);
  2596   heap_region_iterate(&blk);
  2599 // Calls a SpaceClosure on a HeapRegion.
  2601 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2602   SpaceClosure* _cl;
  2603 public:
  2604   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2605   bool doHeapRegion(HeapRegion* r) {
  2606     _cl->do_space(r);
  2607     return false;
  2609 };
  2611 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2612   SpaceClosureRegionClosure blk(cl);
  2613   heap_region_iterate(&blk);
  2616 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2617   _hrm.iterate(cl);
  2620 void
  2621 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2622                                                  uint worker_id,
  2623                                                  uint num_workers,
  2624                                                  jint claim_value) const {
  2625   _hrm.par_iterate(cl, worker_id, num_workers, claim_value);
  2628 class ResetClaimValuesClosure: public HeapRegionClosure {
  2629 public:
  2630   bool doHeapRegion(HeapRegion* r) {
  2631     r->set_claim_value(HeapRegion::InitialClaimValue);
  2632     return false;
  2634 };
  2636 void G1CollectedHeap::reset_heap_region_claim_values() {
  2637   ResetClaimValuesClosure blk;
  2638   heap_region_iterate(&blk);
  2641 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2642   ResetClaimValuesClosure blk;
  2643   collection_set_iterate(&blk);
  2646 #ifdef ASSERT
  2647 // This checks whether all regions in the heap have the correct claim
  2648 // value. I also piggy-backed on this a check to ensure that the
  2649 // humongous_start_region() information on "continues humongous"
  2650 // regions is correct.
  2652 class CheckClaimValuesClosure : public HeapRegionClosure {
  2653 private:
  2654   jint _claim_value;
  2655   uint _failures;
  2656   HeapRegion* _sh_region;
  2658 public:
  2659   CheckClaimValuesClosure(jint claim_value) :
  2660     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2661   bool doHeapRegion(HeapRegion* r) {
  2662     if (r->claim_value() != _claim_value) {
  2663       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2664                              "claim value = %d, should be %d",
  2665                              HR_FORMAT_PARAMS(r),
  2666                              r->claim_value(), _claim_value);
  2667       ++_failures;
  2669     if (!r->isHumongous()) {
  2670       _sh_region = NULL;
  2671     } else if (r->startsHumongous()) {
  2672       _sh_region = r;
  2673     } else if (r->continuesHumongous()) {
  2674       if (r->humongous_start_region() != _sh_region) {
  2675         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2676                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2677                                HR_FORMAT_PARAMS(r),
  2678                                r->humongous_start_region(),
  2679                                _sh_region);
  2680         ++_failures;
  2683     return false;
  2685   uint failures() { return _failures; }
  2686 };
  2688 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2689   CheckClaimValuesClosure cl(claim_value);
  2690   heap_region_iterate(&cl);
  2691   return cl.failures() == 0;
  2694 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2695 private:
  2696   jint _claim_value;
  2697   uint _failures;
  2699 public:
  2700   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2701     _claim_value(claim_value), _failures(0) { }
  2703   uint failures() { return _failures; }
  2705   bool doHeapRegion(HeapRegion* hr) {
  2706     assert(hr->in_collection_set(), "how?");
  2707     assert(!hr->isHumongous(), "H-region in CSet");
  2708     if (hr->claim_value() != _claim_value) {
  2709       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2710                              "claim value = %d, should be %d",
  2711                              HR_FORMAT_PARAMS(hr),
  2712                              hr->claim_value(), _claim_value);
  2713       _failures += 1;
  2715     return false;
  2717 };
  2719 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2720   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2721   collection_set_iterate(&cl);
  2722   return cl.failures() == 0;
  2724 #endif // ASSERT
  2726 // Clear the cached CSet starting regions and (more importantly)
  2727 // the time stamps. Called when we reset the GC time stamp.
  2728 void G1CollectedHeap::clear_cset_start_regions() {
  2729   assert(_worker_cset_start_region != NULL, "sanity");
  2730   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2732   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2733   for (int i = 0; i < n_queues; i++) {
  2734     _worker_cset_start_region[i] = NULL;
  2735     _worker_cset_start_region_time_stamp[i] = 0;
  2739 // Given the id of a worker, obtain or calculate a suitable
  2740 // starting region for iterating over the current collection set.
  2741 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
  2742   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2744   HeapRegion* result = NULL;
  2745   unsigned gc_time_stamp = get_gc_time_stamp();
  2747   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2748     // Cached starting region for current worker was set
  2749     // during the current pause - so it's valid.
  2750     // Note: the cached starting heap region may be NULL
  2751     // (when the collection set is empty).
  2752     result = _worker_cset_start_region[worker_i];
  2753     assert(result == NULL || result->in_collection_set(), "sanity");
  2754     return result;
  2757   // The cached entry was not valid so let's calculate
  2758   // a suitable starting heap region for this worker.
  2760   // We want the parallel threads to start their collection
  2761   // set iteration at different collection set regions to
  2762   // avoid contention.
  2763   // If we have:
  2764   //          n collection set regions
  2765   //          p threads
  2766   // Then thread t will start at region floor ((t * n) / p)
  2768   result = g1_policy()->collection_set();
  2769   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2770     uint cs_size = g1_policy()->cset_region_length();
  2771     uint active_workers = workers()->active_workers();
  2772     assert(UseDynamicNumberOfGCThreads ||
  2773              active_workers == workers()->total_workers(),
  2774              "Unless dynamic should use total workers");
  2776     uint end_ind   = (cs_size * worker_i) / active_workers;
  2777     uint start_ind = 0;
  2779     if (worker_i > 0 &&
  2780         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2781       // Previous workers starting region is valid
  2782       // so let's iterate from there
  2783       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2784       result = _worker_cset_start_region[worker_i - 1];
  2787     for (uint i = start_ind; i < end_ind; i++) {
  2788       result = result->next_in_collection_set();
  2792   // Note: the calculated starting heap region may be NULL
  2793   // (when the collection set is empty).
  2794   assert(result == NULL || result->in_collection_set(), "sanity");
  2795   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2796          "should be updated only once per pause");
  2797   _worker_cset_start_region[worker_i] = result;
  2798   OrderAccess::storestore();
  2799   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2800   return result;
  2803 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2804   HeapRegion* r = g1_policy()->collection_set();
  2805   while (r != NULL) {
  2806     HeapRegion* next = r->next_in_collection_set();
  2807     if (cl->doHeapRegion(r)) {
  2808       cl->incomplete();
  2809       return;
  2811     r = next;
  2815 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2816                                                   HeapRegionClosure *cl) {
  2817   if (r == NULL) {
  2818     // The CSet is empty so there's nothing to do.
  2819     return;
  2822   assert(r->in_collection_set(),
  2823          "Start region must be a member of the collection set.");
  2824   HeapRegion* cur = r;
  2825   while (cur != NULL) {
  2826     HeapRegion* next = cur->next_in_collection_set();
  2827     if (cl->doHeapRegion(cur) && false) {
  2828       cl->incomplete();
  2829       return;
  2831     cur = next;
  2833   cur = g1_policy()->collection_set();
  2834   while (cur != r) {
  2835     HeapRegion* next = cur->next_in_collection_set();
  2836     if (cl->doHeapRegion(cur) && false) {
  2837       cl->incomplete();
  2838       return;
  2840     cur = next;
  2844 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
  2845   HeapRegion* result = _hrm.next_region_in_heap(from);
  2846   while (result != NULL && result->isHumongous()) {
  2847     result = _hrm.next_region_in_heap(result);
  2849   return result;
  2852 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2853   return heap_region_containing(addr);
  2856 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2857   Space* sp = space_containing(addr);
  2858   return sp->block_start(addr);
  2861 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2862   Space* sp = space_containing(addr);
  2863   return sp->block_size(addr);
  2866 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2867   Space* sp = space_containing(addr);
  2868   return sp->block_is_obj(addr);
  2871 bool G1CollectedHeap::supports_tlab_allocation() const {
  2872   return true;
  2875 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2876   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
  2879 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
  2880   return young_list()->eden_used_bytes();
  2883 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
  2884 // must be smaller than the humongous object limit.
  2885 size_t G1CollectedHeap::max_tlab_size() const {
  2886   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
  2889 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2890   // Return the remaining space in the cur alloc region, but not less than
  2891   // the min TLAB size.
  2893   // Also, this value can be at most the humongous object threshold,
  2894   // since we can't allow tlabs to grow big enough to accommodate
  2895   // humongous objects.
  2897   HeapRegion* hr = _mutator_alloc_region.get();
  2898   size_t max_tlab = max_tlab_size() * wordSize;
  2899   if (hr == NULL) {
  2900     return max_tlab;
  2901   } else {
  2902     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
  2906 size_t G1CollectedHeap::max_capacity() const {
  2907   return _hrm.reserved().byte_size();
  2910 jlong G1CollectedHeap::millis_since_last_gc() {
  2911   // assert(false, "NYI");
  2912   return 0;
  2915 void G1CollectedHeap::prepare_for_verify() {
  2916   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2917     ensure_parsability(false);
  2919   g1_rem_set()->prepare_for_verify();
  2922 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
  2923                                               VerifyOption vo) {
  2924   switch (vo) {
  2925   case VerifyOption_G1UsePrevMarking:
  2926     return hr->obj_allocated_since_prev_marking(obj);
  2927   case VerifyOption_G1UseNextMarking:
  2928     return hr->obj_allocated_since_next_marking(obj);
  2929   case VerifyOption_G1UseMarkWord:
  2930     return false;
  2931   default:
  2932     ShouldNotReachHere();
  2934   return false; // keep some compilers happy
  2937 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  2938   switch (vo) {
  2939   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  2940   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  2941   case VerifyOption_G1UseMarkWord:    return NULL;
  2942   default:                            ShouldNotReachHere();
  2944   return NULL; // keep some compilers happy
  2947 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  2948   switch (vo) {
  2949   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  2950   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  2951   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  2952   default:                            ShouldNotReachHere();
  2954   return false; // keep some compilers happy
  2957 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  2958   switch (vo) {
  2959   case VerifyOption_G1UsePrevMarking: return "PTAMS";
  2960   case VerifyOption_G1UseNextMarking: return "NTAMS";
  2961   case VerifyOption_G1UseMarkWord:    return "NONE";
  2962   default:                            ShouldNotReachHere();
  2964   return NULL; // keep some compilers happy
  2967 class VerifyRootsClosure: public OopClosure {
  2968 private:
  2969   G1CollectedHeap* _g1h;
  2970   VerifyOption     _vo;
  2971   bool             _failures;
  2972 public:
  2973   // _vo == UsePrevMarking -> use "prev" marking information,
  2974   // _vo == UseNextMarking -> use "next" marking information,
  2975   // _vo == UseMarkWord    -> use mark word from object header.
  2976   VerifyRootsClosure(VerifyOption vo) :
  2977     _g1h(G1CollectedHeap::heap()),
  2978     _vo(vo),
  2979     _failures(false) { }
  2981   bool failures() { return _failures; }
  2983   template <class T> void do_oop_nv(T* p) {
  2984     T heap_oop = oopDesc::load_heap_oop(p);
  2985     if (!oopDesc::is_null(heap_oop)) {
  2986       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  2987       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  2988         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  2989                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  2990         if (_vo == VerifyOption_G1UseMarkWord) {
  2991           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  2993         obj->print_on(gclog_or_tty);
  2994         _failures = true;
  2999   void do_oop(oop* p)       { do_oop_nv(p); }
  3000   void do_oop(narrowOop* p) { do_oop_nv(p); }
  3001 };
  3003 class G1VerifyCodeRootOopClosure: public OopClosure {
  3004   G1CollectedHeap* _g1h;
  3005   OopClosure* _root_cl;
  3006   nmethod* _nm;
  3007   VerifyOption _vo;
  3008   bool _failures;
  3010   template <class T> void do_oop_work(T* p) {
  3011     // First verify that this root is live
  3012     _root_cl->do_oop(p);
  3014     if (!G1VerifyHeapRegionCodeRoots) {
  3015       // We're not verifying the code roots attached to heap region.
  3016       return;
  3019     // Don't check the code roots during marking verification in a full GC
  3020     if (_vo == VerifyOption_G1UseMarkWord) {
  3021       return;
  3024     // Now verify that the current nmethod (which contains p) is
  3025     // in the code root list of the heap region containing the
  3026     // object referenced by p.
  3028     T heap_oop = oopDesc::load_heap_oop(p);
  3029     if (!oopDesc::is_null(heap_oop)) {
  3030       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3032       // Now fetch the region containing the object
  3033       HeapRegion* hr = _g1h->heap_region_containing(obj);
  3034       HeapRegionRemSet* hrrs = hr->rem_set();
  3035       // Verify that the strong code root list for this region
  3036       // contains the nmethod
  3037       if (!hrrs->strong_code_roots_list_contains(_nm)) {
  3038         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
  3039                               "from nmethod "PTR_FORMAT" not in strong "
  3040                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
  3041                               p, _nm, hr->bottom(), hr->end());
  3042         _failures = true;
  3047 public:
  3048   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
  3049     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
  3051   void do_oop(oop* p) { do_oop_work(p); }
  3052   void do_oop(narrowOop* p) { do_oop_work(p); }
  3054   void set_nmethod(nmethod* nm) { _nm = nm; }
  3055   bool failures() { return _failures; }
  3056 };
  3058 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  3059   G1VerifyCodeRootOopClosure* _oop_cl;
  3061 public:
  3062   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
  3063     _oop_cl(oop_cl) {}
  3065   void do_code_blob(CodeBlob* cb) {
  3066     nmethod* nm = cb->as_nmethod_or_null();
  3067     if (nm != NULL) {
  3068       _oop_cl->set_nmethod(nm);
  3069       nm->oops_do(_oop_cl);
  3072 };
  3074 class YoungRefCounterClosure : public OopClosure {
  3075   G1CollectedHeap* _g1h;
  3076   int              _count;
  3077  public:
  3078   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  3079   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  3080   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
  3082   int count() { return _count; }
  3083   void reset_count() { _count = 0; };
  3084 };
  3086 class VerifyKlassClosure: public KlassClosure {
  3087   YoungRefCounterClosure _young_ref_counter_closure;
  3088   OopClosure *_oop_closure;
  3089  public:
  3090   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  3091   void do_klass(Klass* k) {
  3092     k->oops_do(_oop_closure);
  3094     _young_ref_counter_closure.reset_count();
  3095     k->oops_do(&_young_ref_counter_closure);
  3096     if (_young_ref_counter_closure.count() > 0) {
  3097       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
  3100 };
  3102 class VerifyLivenessOopClosure: public OopClosure {
  3103   G1CollectedHeap* _g1h;
  3104   VerifyOption _vo;
  3105 public:
  3106   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  3107     _g1h(g1h), _vo(vo)
  3108   { }
  3109   void do_oop(narrowOop *p) { do_oop_work(p); }
  3110   void do_oop(      oop *p) { do_oop_work(p); }
  3112   template <class T> void do_oop_work(T *p) {
  3113     oop obj = oopDesc::load_decode_heap_oop(p);
  3114     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  3115               "Dead object referenced by a not dead object");
  3117 };
  3119 class VerifyObjsInRegionClosure: public ObjectClosure {
  3120 private:
  3121   G1CollectedHeap* _g1h;
  3122   size_t _live_bytes;
  3123   HeapRegion *_hr;
  3124   VerifyOption _vo;
  3125 public:
  3126   // _vo == UsePrevMarking -> use "prev" marking information,
  3127   // _vo == UseNextMarking -> use "next" marking information,
  3128   // _vo == UseMarkWord    -> use mark word from object header.
  3129   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  3130     : _live_bytes(0), _hr(hr), _vo(vo) {
  3131     _g1h = G1CollectedHeap::heap();
  3133   void do_object(oop o) {
  3134     VerifyLivenessOopClosure isLive(_g1h, _vo);
  3135     assert(o != NULL, "Huh?");
  3136     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  3137       // If the object is alive according to the mark word,
  3138       // then verify that the marking information agrees.
  3139       // Note we can't verify the contra-positive of the
  3140       // above: if the object is dead (according to the mark
  3141       // word), it may not be marked, or may have been marked
  3142       // but has since became dead, or may have been allocated
  3143       // since the last marking.
  3144       if (_vo == VerifyOption_G1UseMarkWord) {
  3145         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  3148       o->oop_iterate_no_header(&isLive);
  3149       if (!_hr->obj_allocated_since_prev_marking(o)) {
  3150         size_t obj_size = o->size();    // Make sure we don't overflow
  3151         _live_bytes += (obj_size * HeapWordSize);
  3155   size_t live_bytes() { return _live_bytes; }
  3156 };
  3158 class PrintObjsInRegionClosure : public ObjectClosure {
  3159   HeapRegion *_hr;
  3160   G1CollectedHeap *_g1;
  3161 public:
  3162   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  3163     _g1 = G1CollectedHeap::heap();
  3164   };
  3166   void do_object(oop o) {
  3167     if (o != NULL) {
  3168       HeapWord *start = (HeapWord *) o;
  3169       size_t word_sz = o->size();
  3170       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  3171                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  3172                           (void*) o, word_sz,
  3173                           _g1->isMarkedPrev(o),
  3174                           _g1->isMarkedNext(o),
  3175                           _hr->obj_allocated_since_prev_marking(o));
  3176       HeapWord *end = start + word_sz;
  3177       HeapWord *cur;
  3178       int *val;
  3179       for (cur = start; cur < end; cur++) {
  3180         val = (int *) cur;
  3181         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  3185 };
  3187 class VerifyRegionClosure: public HeapRegionClosure {
  3188 private:
  3189   bool             _par;
  3190   VerifyOption     _vo;
  3191   bool             _failures;
  3192 public:
  3193   // _vo == UsePrevMarking -> use "prev" marking information,
  3194   // _vo == UseNextMarking -> use "next" marking information,
  3195   // _vo == UseMarkWord    -> use mark word from object header.
  3196   VerifyRegionClosure(bool par, VerifyOption vo)
  3197     : _par(par),
  3198       _vo(vo),
  3199       _failures(false) {}
  3201   bool failures() {
  3202     return _failures;
  3205   bool doHeapRegion(HeapRegion* r) {
  3206     if (!r->continuesHumongous()) {
  3207       bool failures = false;
  3208       r->verify(_vo, &failures);
  3209       if (failures) {
  3210         _failures = true;
  3211       } else {
  3212         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3213         r->object_iterate(&not_dead_yet_cl);
  3214         if (_vo != VerifyOption_G1UseNextMarking) {
  3215           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3216             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  3217                                    "max_live_bytes "SIZE_FORMAT" "
  3218                                    "< calculated "SIZE_FORMAT,
  3219                                    r->bottom(), r->end(),
  3220                                    r->max_live_bytes(),
  3221                                  not_dead_yet_cl.live_bytes());
  3222             _failures = true;
  3224         } else {
  3225           // When vo == UseNextMarking we cannot currently do a sanity
  3226           // check on the live bytes as the calculation has not been
  3227           // finalized yet.
  3231     return false; // stop the region iteration if we hit a failure
  3233 };
  3235 // This is the task used for parallel verification of the heap regions
  3237 class G1ParVerifyTask: public AbstractGangTask {
  3238 private:
  3239   G1CollectedHeap* _g1h;
  3240   VerifyOption     _vo;
  3241   bool             _failures;
  3243 public:
  3244   // _vo == UsePrevMarking -> use "prev" marking information,
  3245   // _vo == UseNextMarking -> use "next" marking information,
  3246   // _vo == UseMarkWord    -> use mark word from object header.
  3247   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
  3248     AbstractGangTask("Parallel verify task"),
  3249     _g1h(g1h),
  3250     _vo(vo),
  3251     _failures(false) { }
  3253   bool failures() {
  3254     return _failures;
  3257   void work(uint worker_id) {
  3258     HandleMark hm;
  3259     VerifyRegionClosure blk(true, _vo);
  3260     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3261                                           _g1h->workers()->active_workers(),
  3262                                           HeapRegion::ParVerifyClaimValue);
  3263     if (blk.failures()) {
  3264       _failures = true;
  3267 };
  3269 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
  3270   if (SafepointSynchronize::is_at_safepoint()) {
  3271     assert(Thread::current()->is_VM_thread(),
  3272            "Expected to be executed serially by the VM thread at this point");
  3274     if (!silent) { gclog_or_tty->print("Roots "); }
  3275     VerifyRootsClosure rootsCl(vo);
  3276     VerifyKlassClosure klassCl(this, &rootsCl);
  3277     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
  3279     // We apply the relevant closures to all the oops in the
  3280     // system dictionary, class loader data graph, the string table
  3281     // and the nmethods in the code cache.
  3282     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
  3283     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
  3285     process_all_roots(true,            // activate StrongRootsScope
  3286                       SO_AllCodeCache, // roots scanning options
  3287                       &rootsCl,
  3288                       &cldCl,
  3289                       &blobsCl);
  3291     bool failures = rootsCl.failures() || codeRootsCl.failures();
  3293     if (vo != VerifyOption_G1UseMarkWord) {
  3294       // If we're verifying during a full GC then the region sets
  3295       // will have been torn down at the start of the GC. Therefore
  3296       // verifying the region sets will fail. So we only verify
  3297       // the region sets when not in a full GC.
  3298       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3299       verify_region_sets();
  3302     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3303     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3304       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3305              "sanity check");
  3307       G1ParVerifyTask task(this, vo);
  3308       assert(UseDynamicNumberOfGCThreads ||
  3309         workers()->active_workers() == workers()->total_workers(),
  3310         "If not dynamic should be using all the workers");
  3311       int n_workers = workers()->active_workers();
  3312       set_par_threads(n_workers);
  3313       workers()->run_task(&task);
  3314       set_par_threads(0);
  3315       if (task.failures()) {
  3316         failures = true;
  3319       // Checks that the expected amount of parallel work was done.
  3320       // The implication is that n_workers is > 0.
  3321       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3322              "sanity check");
  3324       reset_heap_region_claim_values();
  3326       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3327              "sanity check");
  3328     } else {
  3329       VerifyRegionClosure blk(false, vo);
  3330       heap_region_iterate(&blk);
  3331       if (blk.failures()) {
  3332         failures = true;
  3335     if (!silent) gclog_or_tty->print("RemSet ");
  3336     rem_set()->verify();
  3338     if (G1StringDedup::is_enabled()) {
  3339       if (!silent) gclog_or_tty->print("StrDedup ");
  3340       G1StringDedup::verify();
  3343     if (failures) {
  3344       gclog_or_tty->print_cr("Heap:");
  3345       // It helps to have the per-region information in the output to
  3346       // help us track down what went wrong. This is why we call
  3347       // print_extended_on() instead of print_on().
  3348       print_extended_on(gclog_or_tty);
  3349       gclog_or_tty->cr();
  3350 #ifndef PRODUCT
  3351       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3352         concurrent_mark()->print_reachable("at-verification-failure",
  3353                                            vo, false /* all */);
  3355 #endif
  3356       gclog_or_tty->flush();
  3358     guarantee(!failures, "there should not have been any failures");
  3359   } else {
  3360     if (!silent) {
  3361       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
  3362       if (G1StringDedup::is_enabled()) {
  3363         gclog_or_tty->print(", StrDedup");
  3365       gclog_or_tty->print(") ");
  3370 void G1CollectedHeap::verify(bool silent) {
  3371   verify(silent, VerifyOption_G1UsePrevMarking);
  3374 double G1CollectedHeap::verify(bool guard, const char* msg) {
  3375   double verify_time_ms = 0.0;
  3377   if (guard && total_collections() >= VerifyGCStartAt) {
  3378     double verify_start = os::elapsedTime();
  3379     HandleMark hm;  // Discard invalid handles created during verification
  3380     prepare_for_verify();
  3381     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
  3382     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  3385   return verify_time_ms;
  3388 void G1CollectedHeap::verify_before_gc() {
  3389   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  3390   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
  3393 void G1CollectedHeap::verify_after_gc() {
  3394   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  3395   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
  3398 class PrintRegionClosure: public HeapRegionClosure {
  3399   outputStream* _st;
  3400 public:
  3401   PrintRegionClosure(outputStream* st) : _st(st) {}
  3402   bool doHeapRegion(HeapRegion* r) {
  3403     r->print_on(_st);
  3404     return false;
  3406 };
  3408 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
  3409                                        const HeapRegion* hr,
  3410                                        const VerifyOption vo) const {
  3411   switch (vo) {
  3412   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  3413   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  3414   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  3415   default:                            ShouldNotReachHere();
  3417   return false; // keep some compilers happy
  3420 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
  3421                                        const VerifyOption vo) const {
  3422   switch (vo) {
  3423   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  3424   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  3425   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  3426   default:                            ShouldNotReachHere();
  3428   return false; // keep some compilers happy
  3431 void G1CollectedHeap::print_on(outputStream* st) const {
  3432   st->print(" %-20s", "garbage-first heap");
  3433   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3434             capacity()/K, used_unlocked()/K);
  3435   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3436             _hrm.reserved().start(),
  3437             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
  3438             _hrm.reserved().end());
  3439   st->cr();
  3440   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3441   uint young_regions = _young_list->length();
  3442   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
  3443             (size_t) young_regions * HeapRegion::GrainBytes / K);
  3444   uint survivor_regions = g1_policy()->recorded_survivor_regions();
  3445   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
  3446             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
  3447   st->cr();
  3448   MetaspaceAux::print_on(st);
  3451 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3452   print_on(st);
  3454   // Print the per-region information.
  3455   st->cr();
  3456   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
  3457                "HS=humongous(starts), HC=humongous(continues), "
  3458                "CS=collection set, F=free, TS=gc time stamp, "
  3459                "PTAMS=previous top-at-mark-start, "
  3460                "NTAMS=next top-at-mark-start)");
  3461   PrintRegionClosure blk(st);
  3462   heap_region_iterate(&blk);
  3465 void G1CollectedHeap::print_on_error(outputStream* st) const {
  3466   this->CollectedHeap::print_on_error(st);
  3468   if (_cm != NULL) {
  3469     st->cr();
  3470     _cm->print_on_error(st);
  3474 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3475   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3476     workers()->print_worker_threads_on(st);
  3478   _cmThread->print_on(st);
  3479   st->cr();
  3480   _cm->print_worker_threads_on(st);
  3481   _cg1r->print_worker_threads_on(st);
  3482   if (G1StringDedup::is_enabled()) {
  3483     G1StringDedup::print_worker_threads_on(st);
  3487 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3488   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3489     workers()->threads_do(tc);
  3491   tc->do_thread(_cmThread);
  3492   _cg1r->threads_do(tc);
  3493   if (G1StringDedup::is_enabled()) {
  3494     G1StringDedup::threads_do(tc);
  3498 void G1CollectedHeap::print_tracing_info() const {
  3499   // We'll overload this to mean "trace GC pause statistics."
  3500   if (TraceGen0Time || TraceGen1Time) {
  3501     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3502     // to that.
  3503     g1_policy()->print_tracing_info();
  3505   if (G1SummarizeRSetStats) {
  3506     g1_rem_set()->print_summary_info();
  3508   if (G1SummarizeConcMark) {
  3509     concurrent_mark()->print_summary_info();
  3511   g1_policy()->print_yg_surv_rate_info();
  3512   SpecializationStats::print();
  3515 #ifndef PRODUCT
  3516 // Helpful for debugging RSet issues.
  3518 class PrintRSetsClosure : public HeapRegionClosure {
  3519 private:
  3520   const char* _msg;
  3521   size_t _occupied_sum;
  3523 public:
  3524   bool doHeapRegion(HeapRegion* r) {
  3525     HeapRegionRemSet* hrrs = r->rem_set();
  3526     size_t occupied = hrrs->occupied();
  3527     _occupied_sum += occupied;
  3529     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3530                            HR_FORMAT_PARAMS(r));
  3531     if (occupied == 0) {
  3532       gclog_or_tty->print_cr("  RSet is empty");
  3533     } else {
  3534       hrrs->print();
  3536     gclog_or_tty->print_cr("----------");
  3537     return false;
  3540   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3541     gclog_or_tty->cr();
  3542     gclog_or_tty->print_cr("========================================");
  3543     gclog_or_tty->print_cr("%s", msg);
  3544     gclog_or_tty->cr();
  3547   ~PrintRSetsClosure() {
  3548     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3549     gclog_or_tty->print_cr("========================================");
  3550     gclog_or_tty->cr();
  3552 };
  3554 void G1CollectedHeap::print_cset_rsets() {
  3555   PrintRSetsClosure cl("Printing CSet RSets");
  3556   collection_set_iterate(&cl);
  3559 void G1CollectedHeap::print_all_rsets() {
  3560   PrintRSetsClosure cl("Printing All RSets");;
  3561   heap_region_iterate(&cl);
  3563 #endif // PRODUCT
  3565 G1CollectedHeap* G1CollectedHeap::heap() {
  3566   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3567          "not a garbage-first heap");
  3568   return _g1h;
  3571 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3572   // always_do_update_barrier = false;
  3573   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3574   // Fill TLAB's and such
  3575   accumulate_statistics_all_tlabs();
  3576   ensure_parsability(true);
  3578   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
  3579       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3580     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
  3584 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3586   if (G1SummarizeRSetStats &&
  3587       (G1SummarizeRSetStatsPeriod > 0) &&
  3588       // we are at the end of the GC. Total collections has already been increased.
  3589       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
  3590     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
  3593   // FIXME: what is this about?
  3594   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3595   // is set.
  3596   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3597                         "derived pointer present"));
  3598   // always_do_update_barrier = true;
  3600   resize_all_tlabs();
  3602   // We have just completed a GC. Update the soft reference
  3603   // policy with the new heap occupancy
  3604   Universe::update_heap_info_at_gc();
  3607 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3608                                                unsigned int gc_count_before,
  3609                                                bool* succeeded,
  3610                                                GCCause::Cause gc_cause) {
  3611   assert_heap_not_locked_and_not_at_safepoint();
  3612   g1_policy()->record_stop_world_start();
  3613   VM_G1IncCollectionPause op(gc_count_before,
  3614                              word_size,
  3615                              false, /* should_initiate_conc_mark */
  3616                              g1_policy()->max_pause_time_ms(),
  3617                              gc_cause);
  3618   VMThread::execute(&op);
  3620   HeapWord* result = op.result();
  3621   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3622   assert(result == NULL || ret_succeeded,
  3623          "the result should be NULL if the VM did not succeed");
  3624   *succeeded = ret_succeeded;
  3626   assert_heap_not_locked();
  3627   return result;
  3630 void
  3631 G1CollectedHeap::doConcurrentMark() {
  3632   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3633   if (!_cmThread->in_progress()) {
  3634     _cmThread->set_started();
  3635     CGC_lock->notify();
  3639 size_t G1CollectedHeap::pending_card_num() {
  3640   size_t extra_cards = 0;
  3641   JavaThread *curr = Threads::first();
  3642   while (curr != NULL) {
  3643     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3644     extra_cards += dcq.size();
  3645     curr = curr->next();
  3647   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3648   size_t buffer_size = dcqs.buffer_size();
  3649   size_t buffer_num = dcqs.completed_buffers_num();
  3651   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  3652   // in bytes - not the number of 'entries'. We need to convert
  3653   // into a number of cards.
  3654   return (buffer_size * buffer_num + extra_cards) / oopSize;
  3657 size_t G1CollectedHeap::cards_scanned() {
  3658   return g1_rem_set()->cardsScanned();
  3661 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
  3662   HeapRegion* region = region_at(index);
  3663   assert(region->startsHumongous(), "Must start a humongous object");
  3664   return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
  3667 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
  3668  private:
  3669   size_t _total_humongous;
  3670   size_t _candidate_humongous;
  3671  public:
  3672   RegisterHumongousWithInCSetFastTestClosure() : _total_humongous(0), _candidate_humongous(0) {
  3675   virtual bool doHeapRegion(HeapRegion* r) {
  3676     if (!r->startsHumongous()) {
  3677       return false;
  3679     G1CollectedHeap* g1h = G1CollectedHeap::heap();
  3681     uint region_idx = r->hrm_index();
  3682     bool is_candidate = !g1h->humongous_region_is_always_live(region_idx);
  3683     // Is_candidate already filters out humongous regions with some remembered set.
  3684     // This will not lead to humongous object that we mistakenly keep alive because
  3685     // during young collection the remembered sets will only be added to.
  3686     if (is_candidate) {
  3687       g1h->register_humongous_region_with_in_cset_fast_test(region_idx);
  3688       _candidate_humongous++;
  3690     _total_humongous++;
  3692     return false;
  3695   size_t total_humongous() const { return _total_humongous; }
  3696   size_t candidate_humongous() const { return _candidate_humongous; }
  3697 };
  3699 void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
  3700   if (!G1ReclaimDeadHumongousObjectsAtYoungGC) {
  3701     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0, 0);
  3702     return;
  3705   RegisterHumongousWithInCSetFastTestClosure cl;
  3706   heap_region_iterate(&cl);
  3707   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(cl.total_humongous(),
  3708                                                                   cl.candidate_humongous());
  3709   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
  3711   if (_has_humongous_reclaim_candidates) {
  3712     clear_humongous_is_live_table();
  3716 void
  3717 G1CollectedHeap::setup_surviving_young_words() {
  3718   assert(_surviving_young_words == NULL, "pre-condition");
  3719   uint array_length = g1_policy()->young_cset_region_length();
  3720   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
  3721   if (_surviving_young_words == NULL) {
  3722     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
  3723                           "Not enough space for young surv words summary.");
  3725   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
  3726 #ifdef ASSERT
  3727   for (uint i = 0;  i < array_length; ++i) {
  3728     assert( _surviving_young_words[i] == 0, "memset above" );
  3730 #endif // !ASSERT
  3733 void
  3734 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3735   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3736   uint array_length = g1_policy()->young_cset_region_length();
  3737   for (uint i = 0; i < array_length; ++i) {
  3738     _surviving_young_words[i] += surv_young_words[i];
  3742 void
  3743 G1CollectedHeap::cleanup_surviving_young_words() {
  3744   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3745   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
  3746   _surviving_young_words = NULL;
  3749 #ifdef ASSERT
  3750 class VerifyCSetClosure: public HeapRegionClosure {
  3751 public:
  3752   bool doHeapRegion(HeapRegion* hr) {
  3753     // Here we check that the CSet region's RSet is ready for parallel
  3754     // iteration. The fields that we'll verify are only manipulated
  3755     // when the region is part of a CSet and is collected. Afterwards,
  3756     // we reset these fields when we clear the region's RSet (when the
  3757     // region is freed) so they are ready when the region is
  3758     // re-allocated. The only exception to this is if there's an
  3759     // evacuation failure and instead of freeing the region we leave
  3760     // it in the heap. In that case, we reset these fields during
  3761     // evacuation failure handling.
  3762     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3764     // Here's a good place to add any other checks we'd like to
  3765     // perform on CSet regions.
  3766     return false;
  3768 };
  3769 #endif // ASSERT
  3771 #if TASKQUEUE_STATS
  3772 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3773   st->print_raw_cr("GC Task Stats");
  3774   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3775   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3778 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3779   print_taskqueue_stats_hdr(st);
  3781   TaskQueueStats totals;
  3782   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3783   for (int i = 0; i < n; ++i) {
  3784     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3785     totals += task_queue(i)->stats;
  3787   st->print_raw("tot "); totals.print(st); st->cr();
  3789   DEBUG_ONLY(totals.verify());
  3792 void G1CollectedHeap::reset_taskqueue_stats() {
  3793   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3794   for (int i = 0; i < n; ++i) {
  3795     task_queue(i)->stats.reset();
  3798 #endif // TASKQUEUE_STATS
  3800 void G1CollectedHeap::log_gc_header() {
  3801   if (!G1Log::fine()) {
  3802     return;
  3805   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
  3807   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
  3808     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
  3809     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
  3811   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
  3814 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  3815   if (!G1Log::fine()) {
  3816     return;
  3819   if (G1Log::finer()) {
  3820     if (evacuation_failed()) {
  3821       gclog_or_tty->print(" (to-space exhausted)");
  3823     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3824     g1_policy()->phase_times()->note_gc_end();
  3825     g1_policy()->phase_times()->print(pause_time_sec);
  3826     g1_policy()->print_detailed_heap_transition();
  3827   } else {
  3828     if (evacuation_failed()) {
  3829       gclog_or_tty->print("--");
  3831     g1_policy()->print_heap_transition();
  3832     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3834   gclog_or_tty->flush();
  3837 bool
  3838 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3839   assert_at_safepoint(true /* should_be_vm_thread */);
  3840   guarantee(!is_gc_active(), "collection is not reentrant");
  3842   if (GC_locker::check_active_before_gc()) {
  3843     return false;
  3846   _gc_timer_stw->register_gc_start();
  3848   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
  3850   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3851   ResourceMark rm;
  3853   print_heap_before_gc();
  3854   trace_heap_before_gc(_gc_tracer_stw);
  3856   verify_region_sets_optional();
  3857   verify_dirty_young_regions();
  3859   // This call will decide whether this pause is an initial-mark
  3860   // pause. If it is, during_initial_mark_pause() will return true
  3861   // for the duration of this pause.
  3862   g1_policy()->decide_on_conc_mark_initiation();
  3864   // We do not allow initial-mark to be piggy-backed on a mixed GC.
  3865   assert(!g1_policy()->during_initial_mark_pause() ||
  3866           g1_policy()->gcs_are_young(), "sanity");
  3868   // We also do not allow mixed GCs during marking.
  3869   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  3871   // Record whether this pause is an initial mark. When the current
  3872   // thread has completed its logging output and it's safe to signal
  3873   // the CM thread, the flag's value in the policy has been reset.
  3874   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
  3876   // Inner scope for scope based logging, timers, and stats collection
  3878     EvacuationInfo evacuation_info;
  3880     if (g1_policy()->during_initial_mark_pause()) {
  3881       // We are about to start a marking cycle, so we increment the
  3882       // full collection counter.
  3883       increment_old_marking_cycles_started();
  3884       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
  3887     _gc_tracer_stw->report_yc_type(yc_type());
  3889     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  3891     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3892                                 workers()->active_workers() : 1);
  3893     double pause_start_sec = os::elapsedTime();
  3894     g1_policy()->phase_times()->note_gc_start(active_workers);
  3895     log_gc_header();
  3897     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3898     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3900     // If the secondary_free_list is not empty, append it to the
  3901     // free_list. No need to wait for the cleanup operation to finish;
  3902     // the region allocation code will check the secondary_free_list
  3903     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3904     // set, skip this step so that the region allocation code has to
  3905     // get entries from the secondary_free_list.
  3906     if (!G1StressConcRegionFreeing) {
  3907       append_secondary_free_list_if_not_empty_with_lock();
  3910     assert(check_young_list_well_formed(), "young list should be well formed");
  3911     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3912            "sanity check");
  3914     // Don't dynamically change the number of GC threads this early.  A value of
  3915     // 0 is used to indicate serial work.  When parallel work is done,
  3916     // it will be set.
  3918     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3919       IsGCActiveMark x;
  3921       gc_prologue(false);
  3922       increment_total_collections(false /* full gc */);
  3923       increment_gc_time_stamp();
  3925       verify_before_gc();
  3926       check_bitmaps("GC Start");
  3928       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3930       // Please see comment in g1CollectedHeap.hpp and
  3931       // G1CollectedHeap::ref_processing_init() to see how
  3932       // reference processing currently works in G1.
  3934       // Enable discovery in the STW reference processor
  3935       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  3936                                             true /*verify_no_refs*/);
  3939         // We want to temporarily turn off discovery by the
  3940         // CM ref processor, if necessary, and turn it back on
  3941         // on again later if we do. Using a scoped
  3942         // NoRefDiscovery object will do this.
  3943         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  3945         // Forget the current alloc region (we might even choose it to be part
  3946         // of the collection set!).
  3947         release_mutator_alloc_region();
  3949         // We should call this after we retire the mutator alloc
  3950         // region(s) so that all the ALLOC / RETIRE events are generated
  3951         // before the start GC event.
  3952         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  3954         // This timing is only used by the ergonomics to handle our pause target.
  3955         // It is unclear why this should not include the full pause. We will
  3956         // investigate this in CR 7178365.
  3957         //
  3958         // Preserving the old comment here if that helps the investigation:
  3959         //
  3960         // The elapsed time induced by the start time below deliberately elides
  3961         // the possible verification above.
  3962         double sample_start_time_sec = os::elapsedTime();
  3964 #if YOUNG_LIST_VERBOSE
  3965         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  3966         _young_list->print();
  3967         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3968 #endif // YOUNG_LIST_VERBOSE
  3970         g1_policy()->record_collection_pause_start(sample_start_time_sec);
  3972         double scan_wait_start = os::elapsedTime();
  3973         // We have to wait until the CM threads finish scanning the
  3974         // root regions as it's the only way to ensure that all the
  3975         // objects on them have been correctly scanned before we start
  3976         // moving them during the GC.
  3977         bool waited = _cm->root_regions()->wait_until_scan_finished();
  3978         double wait_time_ms = 0.0;
  3979         if (waited) {
  3980           double scan_wait_end = os::elapsedTime();
  3981           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
  3983         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
  3985 #if YOUNG_LIST_VERBOSE
  3986         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  3987         _young_list->print();
  3988 #endif // YOUNG_LIST_VERBOSE
  3990         if (g1_policy()->during_initial_mark_pause()) {
  3991           concurrent_mark()->checkpointRootsInitialPre();
  3994 #if YOUNG_LIST_VERBOSE
  3995         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  3996         _young_list->print();
  3997         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3998 #endif // YOUNG_LIST_VERBOSE
  4000         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
  4002         register_humongous_regions_with_in_cset_fast_test();
  4004         _cm->note_start_of_gc();
  4005         // We should not verify the per-thread SATB buffers given that
  4006         // we have not filtered them yet (we'll do so during the
  4007         // GC). We also call this after finalize_cset() to
  4008         // ensure that the CSet has been finalized.
  4009         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4010                                  true  /* verify_enqueued_buffers */,
  4011                                  false /* verify_thread_buffers */,
  4012                                  true  /* verify_fingers */);
  4014         if (_hr_printer.is_active()) {
  4015           HeapRegion* hr = g1_policy()->collection_set();
  4016           while (hr != NULL) {
  4017             G1HRPrinter::RegionType type;
  4018             if (!hr->is_young()) {
  4019               type = G1HRPrinter::Old;
  4020             } else if (hr->is_survivor()) {
  4021               type = G1HRPrinter::Survivor;
  4022             } else {
  4023               type = G1HRPrinter::Eden;
  4025             _hr_printer.cset(hr);
  4026             hr = hr->next_in_collection_set();
  4030 #ifdef ASSERT
  4031         VerifyCSetClosure cl;
  4032         collection_set_iterate(&cl);
  4033 #endif // ASSERT
  4035         setup_surviving_young_words();
  4037         // Initialize the GC alloc regions.
  4038         init_gc_alloc_regions(evacuation_info);
  4040         // Actually do the work...
  4041         evacuate_collection_set(evacuation_info);
  4043         // We do this to mainly verify the per-thread SATB buffers
  4044         // (which have been filtered by now) since we didn't verify
  4045         // them earlier. No point in re-checking the stacks / enqueued
  4046         // buffers given that the CSet has not changed since last time
  4047         // we checked.
  4048         _cm->verify_no_cset_oops(false /* verify_stacks */,
  4049                                  false /* verify_enqueued_buffers */,
  4050                                  true  /* verify_thread_buffers */,
  4051                                  true  /* verify_fingers */);
  4053         free_collection_set(g1_policy()->collection_set(), evacuation_info);
  4055         eagerly_reclaim_humongous_regions();
  4057         g1_policy()->clear_collection_set();
  4059         cleanup_surviving_young_words();
  4061         // Start a new incremental collection set for the next pause.
  4062         g1_policy()->start_incremental_cset_building();
  4064         clear_cset_fast_test();
  4066         _young_list->reset_sampled_info();
  4068         // Don't check the whole heap at this point as the
  4069         // GC alloc regions from this pause have been tagged
  4070         // as survivors and moved on to the survivor list.
  4071         // Survivor regions will fail the !is_young() check.
  4072         assert(check_young_list_empty(false /* check_heap */),
  4073           "young list should be empty");
  4075 #if YOUNG_LIST_VERBOSE
  4076         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  4077         _young_list->print();
  4078 #endif // YOUNG_LIST_VERBOSE
  4080         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  4081                                              _young_list->first_survivor_region(),
  4082                                              _young_list->last_survivor_region());
  4084         _young_list->reset_auxilary_lists();
  4086         if (evacuation_failed()) {
  4087           _summary_bytes_used = recalculate_used();
  4088           uint n_queues = MAX2((int)ParallelGCThreads, 1);
  4089           for (uint i = 0; i < n_queues; i++) {
  4090             if (_evacuation_failed_info_array[i].has_failed()) {
  4091               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
  4094         } else {
  4095           // The "used" of the the collection set have already been subtracted
  4096           // when they were freed.  Add in the bytes evacuated.
  4097           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
  4100         if (g1_policy()->during_initial_mark_pause()) {
  4101           // We have to do this before we notify the CM threads that
  4102           // they can start working to make sure that all the
  4103           // appropriate initialization is done on the CM object.
  4104           concurrent_mark()->checkpointRootsInitialPost();
  4105           set_marking_started();
  4106           // Note that we don't actually trigger the CM thread at
  4107           // this point. We do that later when we're sure that
  4108           // the current thread has completed its logging output.
  4111         allocate_dummy_regions();
  4113 #if YOUNG_LIST_VERBOSE
  4114         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  4115         _young_list->print();
  4116         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4117 #endif // YOUNG_LIST_VERBOSE
  4119         init_mutator_alloc_region();
  4122           size_t expand_bytes = g1_policy()->expansion_amount();
  4123           if (expand_bytes > 0) {
  4124             size_t bytes_before = capacity();
  4125             // No need for an ergo verbose message here,
  4126             // expansion_amount() does this when it returns a value > 0.
  4127             if (!expand(expand_bytes)) {
  4128               // We failed to expand the heap. Cannot do anything about it.
  4133         // We redo the verification but now wrt to the new CSet which
  4134         // has just got initialized after the previous CSet was freed.
  4135         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4136                                  true  /* verify_enqueued_buffers */,
  4137                                  true  /* verify_thread_buffers */,
  4138                                  true  /* verify_fingers */);
  4139         _cm->note_end_of_gc();
  4141         // This timing is only used by the ergonomics to handle our pause target.
  4142         // It is unclear why this should not include the full pause. We will
  4143         // investigate this in CR 7178365.
  4144         double sample_end_time_sec = os::elapsedTime();
  4145         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
  4146         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
  4148         MemoryService::track_memory_usage();
  4150         // In prepare_for_verify() below we'll need to scan the deferred
  4151         // update buffers to bring the RSets up-to-date if
  4152         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  4153         // the update buffers we'll probably need to scan cards on the
  4154         // regions we just allocated to (i.e., the GC alloc
  4155         // regions). However, during the last GC we called
  4156         // set_saved_mark() on all the GC alloc regions, so card
  4157         // scanning might skip the [saved_mark_word()...top()] area of
  4158         // those regions (i.e., the area we allocated objects into
  4159         // during the last GC). But it shouldn't. Given that
  4160         // saved_mark_word() is conditional on whether the GC time stamp
  4161         // on the region is current or not, by incrementing the GC time
  4162         // stamp here we invalidate all the GC time stamps on all the
  4163         // regions and saved_mark_word() will simply return top() for
  4164         // all the regions. This is a nicer way of ensuring this rather
  4165         // than iterating over the regions and fixing them. In fact, the
  4166         // GC time stamp increment here also ensures that
  4167         // saved_mark_word() will return top() between pauses, i.e.,
  4168         // during concurrent refinement. So we don't need the
  4169         // is_gc_active() check to decided which top to use when
  4170         // scanning cards (see CR 7039627).
  4171         increment_gc_time_stamp();
  4173         verify_after_gc();
  4174         check_bitmaps("GC End");
  4176         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  4177         ref_processor_stw()->verify_no_references_recorded();
  4179         // CM reference discovery will be re-enabled if necessary.
  4182       // We should do this after we potentially expand the heap so
  4183       // that all the COMMIT events are generated before the end GC
  4184       // event, and after we retire the GC alloc regions so that all
  4185       // RETIRE events are generated before the end GC event.
  4186       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  4188 #ifdef TRACESPINNING
  4189       ParallelTaskTerminator::print_termination_counts();
  4190 #endif
  4192       gc_epilogue(false);
  4195     // Print the remainder of the GC log output.
  4196     log_gc_footer(os::elapsedTime() - pause_start_sec);
  4198     // It is not yet to safe to tell the concurrent mark to
  4199     // start as we have some optional output below. We don't want the
  4200     // output from the concurrent mark thread interfering with this
  4201     // logging output either.
  4203     _hrm.verify_optional();
  4204     verify_region_sets_optional();
  4206     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  4207     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  4209     print_heap_after_gc();
  4210     trace_heap_after_gc(_gc_tracer_stw);
  4212     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  4213     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  4214     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  4215     // before any GC notifications are raised.
  4216     g1mm()->update_sizes();
  4218     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
  4219     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
  4220     _gc_timer_stw->register_gc_end();
  4221     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  4223   // It should now be safe to tell the concurrent mark thread to start
  4224   // without its logging output interfering with the logging output
  4225   // that came from the pause.
  4227   if (should_start_conc_mark) {
  4228     // CAUTION: after the doConcurrentMark() call below,
  4229     // the concurrent marking thread(s) could be running
  4230     // concurrently with us. Make sure that anything after
  4231     // this point does not assume that we are the only GC thread
  4232     // running. Note: of course, the actual marking work will
  4233     // not start until the safepoint itself is released in
  4234     // SuspendibleThreadSet::desynchronize().
  4235     doConcurrentMark();
  4238   return true;
  4241 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  4243   size_t gclab_word_size;
  4244   switch (purpose) {
  4245     case GCAllocForSurvived:
  4246       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
  4247       break;
  4248     case GCAllocForTenured:
  4249       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4250       break;
  4251     default:
  4252       assert(false, "unknown GCAllocPurpose");
  4253       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4254       break;
  4257   // Prevent humongous PLAB sizes for two reasons:
  4258   // * PLABs are allocated using a similar paths as oops, but should
  4259   //   never be in a humongous region
  4260   // * Allowing humongous PLABs needlessly churns the region free lists
  4261   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
  4264 void G1CollectedHeap::init_mutator_alloc_region() {
  4265   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  4266   _mutator_alloc_region.init();
  4269 void G1CollectedHeap::release_mutator_alloc_region() {
  4270   _mutator_alloc_region.release();
  4271   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  4274 void G1CollectedHeap::use_retained_old_gc_alloc_region(EvacuationInfo& evacuation_info) {
  4275   HeapRegion* retained_region = _retained_old_gc_alloc_region;
  4276   _retained_old_gc_alloc_region = NULL;
  4278   // We will discard the current GC alloc region if:
  4279   // a) it's in the collection set (it can happen!),
  4280   // b) it's already full (no point in using it),
  4281   // c) it's empty (this means that it was emptied during
  4282   // a cleanup and it should be on the free list now), or
  4283   // d) it's humongous (this means that it was emptied
  4284   // during a cleanup and was added to the free list, but
  4285   // has been subsequently used to allocate a humongous
  4286   // object that may be less than the region size).
  4287   if (retained_region != NULL &&
  4288       !retained_region->in_collection_set() &&
  4289       !(retained_region->top() == retained_region->end()) &&
  4290       !retained_region->is_empty() &&
  4291       !retained_region->isHumongous()) {
  4292     retained_region->record_top_and_timestamp();
  4293     // The retained region was added to the old region set when it was
  4294     // retired. We have to remove it now, since we don't allow regions
  4295     // we allocate to in the region sets. We'll re-add it later, when
  4296     // it's retired again.
  4297     _old_set.remove(retained_region);
  4298     bool during_im = g1_policy()->during_initial_mark_pause();
  4299     retained_region->note_start_of_copying(during_im);
  4300     _old_gc_alloc_region.set(retained_region);
  4301     _hr_printer.reuse(retained_region);
  4302     evacuation_info.set_alloc_regions_used_before(retained_region->used());
  4306 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
  4307   assert_at_safepoint(true /* should_be_vm_thread */);
  4309   _survivor_gc_alloc_region.init();
  4310   _old_gc_alloc_region.init();
  4312   use_retained_old_gc_alloc_region(evacuation_info);
  4315 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
  4316   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
  4317                                          _old_gc_alloc_region.count());
  4318   _survivor_gc_alloc_region.release();
  4319   // If we have an old GC alloc region to release, we'll save it in
  4320   // _retained_old_gc_alloc_region. If we don't
  4321   // _retained_old_gc_alloc_region will become NULL. This is what we
  4322   // want either way so no reason to check explicitly for either
  4323   // condition.
  4324   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
  4326   if (ResizePLAB) {
  4327     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
  4328     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
  4332 void G1CollectedHeap::abandon_gc_alloc_regions() {
  4333   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  4334   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  4335   _retained_old_gc_alloc_region = NULL;
  4338 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  4339   _drain_in_progress = false;
  4340   set_evac_failure_closure(cl);
  4341   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
  4344 void G1CollectedHeap::finalize_for_evac_failure() {
  4345   assert(_evac_failure_scan_stack != NULL &&
  4346          _evac_failure_scan_stack->length() == 0,
  4347          "Postcondition");
  4348   assert(!_drain_in_progress, "Postcondition");
  4349   delete _evac_failure_scan_stack;
  4350   _evac_failure_scan_stack = NULL;
  4353 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4354   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4356   double remove_self_forwards_start = os::elapsedTime();
  4358   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  4360   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4361     set_par_threads();
  4362     workers()->run_task(&rsfp_task);
  4363     set_par_threads(0);
  4364   } else {
  4365     rsfp_task.work(0);
  4368   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4370   // Reset the claim values in the regions in the collection set.
  4371   reset_cset_heap_region_claim_values();
  4373   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4375   // Now restore saved marks, if any.
  4376   assert(_objs_with_preserved_marks.size() ==
  4377             _preserved_marks_of_objs.size(), "Both or none.");
  4378   while (!_objs_with_preserved_marks.is_empty()) {
  4379     oop obj = _objs_with_preserved_marks.pop();
  4380     markOop m = _preserved_marks_of_objs.pop();
  4381     obj->set_mark(m);
  4383   _objs_with_preserved_marks.clear(true);
  4384   _preserved_marks_of_objs.clear(true);
  4386   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
  4389 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4390   _evac_failure_scan_stack->push(obj);
  4393 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4394   assert(_evac_failure_scan_stack != NULL, "precondition");
  4396   while (_evac_failure_scan_stack->length() > 0) {
  4397      oop obj = _evac_failure_scan_stack->pop();
  4398      _evac_failure_closure->set_region(heap_region_containing(obj));
  4399      obj->oop_iterate_backwards(_evac_failure_closure);
  4403 oop
  4404 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
  4405                                                oop old) {
  4406   assert(obj_in_cs(old),
  4407          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4408                  (HeapWord*) old));
  4409   markOop m = old->mark();
  4410   oop forward_ptr = old->forward_to_atomic(old);
  4411   if (forward_ptr == NULL) {
  4412     // Forward-to-self succeeded.
  4413     assert(_par_scan_state != NULL, "par scan state");
  4414     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4415     uint queue_num = _par_scan_state->queue_num();
  4417     _evacuation_failed = true;
  4418     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
  4419     if (_evac_failure_closure != cl) {
  4420       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4421       assert(!_drain_in_progress,
  4422              "Should only be true while someone holds the lock.");
  4423       // Set the global evac-failure closure to the current thread's.
  4424       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4425       set_evac_failure_closure(cl);
  4426       // Now do the common part.
  4427       handle_evacuation_failure_common(old, m);
  4428       // Reset to NULL.
  4429       set_evac_failure_closure(NULL);
  4430     } else {
  4431       // The lock is already held, and this is recursive.
  4432       assert(_drain_in_progress, "This should only be the recursive case.");
  4433       handle_evacuation_failure_common(old, m);
  4435     return old;
  4436   } else {
  4437     // Forward-to-self failed. Either someone else managed to allocate
  4438     // space for this object (old != forward_ptr) or they beat us in
  4439     // self-forwarding it (old == forward_ptr).
  4440     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4441            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4442                    "should not be in the CSet",
  4443                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4444     return forward_ptr;
  4448 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4449   preserve_mark_if_necessary(old, m);
  4451   HeapRegion* r = heap_region_containing(old);
  4452   if (!r->evacuation_failed()) {
  4453     r->set_evacuation_failed(true);
  4454     _hr_printer.evac_failure(r);
  4457   push_on_evac_failure_scan_stack(old);
  4459   if (!_drain_in_progress) {
  4460     // prevent recursion in copy_to_survivor_space()
  4461     _drain_in_progress = true;
  4462     drain_evac_failure_scan_stack();
  4463     _drain_in_progress = false;
  4467 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4468   assert(evacuation_failed(), "Oversaving!");
  4469   // We want to call the "for_promotion_failure" version only in the
  4470   // case of a promotion failure.
  4471   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4472     _objs_with_preserved_marks.push(obj);
  4473     _preserved_marks_of_objs.push(m);
  4477 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4478                                                   size_t word_size) {
  4479   if (purpose == GCAllocForSurvived) {
  4480     HeapWord* result = survivor_attempt_allocation(word_size);
  4481     if (result != NULL) {
  4482       return result;
  4483     } else {
  4484       // Let's try to allocate in the old gen in case we can fit the
  4485       // object there.
  4486       return old_attempt_allocation(word_size);
  4488   } else {
  4489     assert(purpose ==  GCAllocForTenured, "sanity");
  4490     HeapWord* result = old_attempt_allocation(word_size);
  4491     if (result != NULL) {
  4492       return result;
  4493     } else {
  4494       // Let's try to allocate in the survivors in case we can fit the
  4495       // object there.
  4496       return survivor_attempt_allocation(word_size);
  4500   ShouldNotReachHere();
  4501   // Trying to keep some compilers happy.
  4502   return NULL;
  4505 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
  4506   ParGCAllocBuffer(gclab_word_size), _retired(true) { }
  4508 void G1ParCopyHelper::mark_object(oop obj) {
  4509   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
  4511   // We know that the object is not moving so it's safe to read its size.
  4512   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  4515 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
  4516   assert(from_obj->is_forwarded(), "from obj should be forwarded");
  4517   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  4518   assert(from_obj != to_obj, "should not be self-forwarded");
  4520   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
  4521   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
  4523   // The object might be in the process of being copied by another
  4524   // worker so we cannot trust that its to-space image is
  4525   // well-formed. So we have to read its size from its from-space
  4526   // image which we know should not be changing.
  4527   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
  4530 template <class T>
  4531 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  4532   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
  4533     _scanned_klass->record_modified_oops();
  4537 template <G1Barrier barrier, G1Mark do_mark_object>
  4538 template <class T>
  4539 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
  4540   T heap_oop = oopDesc::load_heap_oop(p);
  4542   if (oopDesc::is_null(heap_oop)) {
  4543     return;
  4546   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  4548   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
  4550   G1CollectedHeap::in_cset_state_t state = _g1->in_cset_state(obj);
  4552   if (state == G1CollectedHeap::InCSet) {
  4553     oop forwardee;
  4554     if (obj->is_forwarded()) {
  4555       forwardee = obj->forwardee();
  4556     } else {
  4557       forwardee = _par_scan_state->copy_to_survivor_space(obj);
  4559     assert(forwardee != NULL, "forwardee should not be NULL");
  4560     oopDesc::encode_store_heap_oop(p, forwardee);
  4561     if (do_mark_object != G1MarkNone && forwardee != obj) {
  4562       // If the object is self-forwarded we don't need to explicitly
  4563       // mark it, the evacuation failure protocol will do so.
  4564       mark_forwarded_object(obj, forwardee);
  4567     if (barrier == G1BarrierKlass) {
  4568       do_klass_barrier(p, forwardee);
  4570   } else {
  4571     if (state == G1CollectedHeap::IsHumongous) {
  4572       _g1->set_humongous_is_live(obj);
  4574     // The object is not in collection set. If we're a root scanning
  4575     // closure during an initial mark pause then attempt to mark the object.
  4576     if (do_mark_object == G1MarkFromRoot) {
  4577       mark_object(obj);
  4581   if (barrier == G1BarrierEvac) {
  4582     _par_scan_state->update_rs(_from, p, _worker_id);
  4586 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
  4587 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
  4589 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4590 protected:
  4591   G1CollectedHeap*              _g1h;
  4592   G1ParScanThreadState*         _par_scan_state;
  4593   RefToScanQueueSet*            _queues;
  4594   ParallelTaskTerminator*       _terminator;
  4596   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4597   RefToScanQueueSet*      queues()         { return _queues; }
  4598   ParallelTaskTerminator* terminator()     { return _terminator; }
  4600 public:
  4601   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4602                                 G1ParScanThreadState* par_scan_state,
  4603                                 RefToScanQueueSet* queues,
  4604                                 ParallelTaskTerminator* terminator)
  4605     : _g1h(g1h), _par_scan_state(par_scan_state),
  4606       _queues(queues), _terminator(terminator) {}
  4608   void do_void();
  4610 private:
  4611   inline bool offer_termination();
  4612 };
  4614 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4615   G1ParScanThreadState* const pss = par_scan_state();
  4616   pss->start_term_time();
  4617   const bool res = terminator()->offer_termination();
  4618   pss->end_term_time();
  4619   return res;
  4622 void G1ParEvacuateFollowersClosure::do_void() {
  4623   G1ParScanThreadState* const pss = par_scan_state();
  4624   pss->trim_queue();
  4625   do {
  4626     pss->steal_and_trim_queue(queues());
  4627   } while (!offer_termination());
  4630 class G1KlassScanClosure : public KlassClosure {
  4631  G1ParCopyHelper* _closure;
  4632  bool             _process_only_dirty;
  4633  int              _count;
  4634  public:
  4635   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
  4636       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  4637   void do_klass(Klass* klass) {
  4638     // If the klass has not been dirtied we know that there's
  4639     // no references into  the young gen and we can skip it.
  4640    if (!_process_only_dirty || klass->has_modified_oops()) {
  4641       // Clean the klass since we're going to scavenge all the metadata.
  4642       klass->clear_modified_oops();
  4644       // Tell the closure that this klass is the Klass to scavenge
  4645       // and is the one to dirty if oops are left pointing into the young gen.
  4646       _closure->set_scanned_klass(klass);
  4648       klass->oops_do(_closure);
  4650       _closure->set_scanned_klass(NULL);
  4652     _count++;
  4654 };
  4656 class G1ParTask : public AbstractGangTask {
  4657 protected:
  4658   G1CollectedHeap*       _g1h;
  4659   RefToScanQueueSet      *_queues;
  4660   ParallelTaskTerminator _terminator;
  4661   uint _n_workers;
  4663   Mutex _stats_lock;
  4664   Mutex* stats_lock() { return &_stats_lock; }
  4666 public:
  4667   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
  4668     : AbstractGangTask("G1 collection"),
  4669       _g1h(g1h),
  4670       _queues(task_queues),
  4671       _terminator(0, _queues),
  4672       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4673   {}
  4675   RefToScanQueueSet* queues() { return _queues; }
  4677   RefToScanQueue *work_queue(int i) {
  4678     return queues()->queue(i);
  4681   ParallelTaskTerminator* terminator() { return &_terminator; }
  4683   virtual void set_for_termination(int active_workers) {
  4684     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
  4685     // in the young space (_par_seq_tasks) in the G1 heap
  4686     // for SequentialSubTasksDone.
  4687     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
  4688     // both of which need setting by set_n_termination().
  4689     _g1h->SharedHeap::set_n_termination(active_workers);
  4690     _g1h->set_n_termination(active_workers);
  4691     terminator()->reset_for_reuse(active_workers);
  4692     _n_workers = active_workers;
  4695   // Helps out with CLD processing.
  4696   //
  4697   // During InitialMark we need to:
  4698   // 1) Scavenge all CLDs for the young GC.
  4699   // 2) Mark all objects directly reachable from strong CLDs.
  4700   template <G1Mark do_mark_object>
  4701   class G1CLDClosure : public CLDClosure {
  4702     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
  4703     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
  4704     G1KlassScanClosure                                _klass_in_cld_closure;
  4705     bool                                              _claim;
  4707    public:
  4708     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
  4709                  bool only_young, bool claim)
  4710         : _oop_closure(oop_closure),
  4711           _oop_in_klass_closure(oop_closure->g1(),
  4712                                 oop_closure->pss(),
  4713                                 oop_closure->rp()),
  4714           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
  4715           _claim(claim) {
  4719     void do_cld(ClassLoaderData* cld) {
  4720       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
  4722   };
  4724   class G1CodeBlobClosure: public CodeBlobClosure {
  4725     OopClosure* _f;
  4727    public:
  4728     G1CodeBlobClosure(OopClosure* f) : _f(f) {}
  4729     void do_code_blob(CodeBlob* blob) {
  4730       nmethod* that = blob->as_nmethod_or_null();
  4731       if (that != NULL) {
  4732         if (!that->test_set_oops_do_mark()) {
  4733           that->oops_do(_f);
  4734           that->fix_oop_relocations();
  4738   };
  4740   void work(uint worker_id) {
  4741     if (worker_id >= _n_workers) return;  // no work needed this round
  4743     double start_time_ms = os::elapsedTime() * 1000.0;
  4744     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
  4747       ResourceMark rm;
  4748       HandleMark   hm;
  4750       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  4752       G1ParScanThreadState            pss(_g1h, worker_id, rp);
  4753       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  4755       pss.set_evac_failure_closure(&evac_failure_cl);
  4757       bool only_young = _g1h->g1_policy()->gcs_are_young();
  4759       // Non-IM young GC.
  4760       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
  4761       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
  4762                                                                                only_young, // Only process dirty klasses.
  4763                                                                                false);     // No need to claim CLDs.
  4764       // IM young GC.
  4765       //    Strong roots closures.
  4766       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
  4767       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
  4768                                                                                false, // Process all klasses.
  4769                                                                                true); // Need to claim CLDs.
  4770       //    Weak roots closures.
  4771       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
  4772       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
  4773                                                                                     false, // Process all klasses.
  4774                                                                                     true); // Need to claim CLDs.
  4776       G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl);
  4777       G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl);
  4778       // IM Weak code roots are handled later.
  4780       OopClosure* strong_root_cl;
  4781       OopClosure* weak_root_cl;
  4782       CLDClosure* strong_cld_cl;
  4783       CLDClosure* weak_cld_cl;
  4784       CodeBlobClosure* strong_code_cl;
  4786       if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4787         // We also need to mark copied objects.
  4788         strong_root_cl = &scan_mark_root_cl;
  4789         strong_cld_cl  = &scan_mark_cld_cl;
  4790         strong_code_cl = &scan_mark_code_cl;
  4791         if (ClassUnloadingWithConcurrentMark) {
  4792           weak_root_cl = &scan_mark_weak_root_cl;
  4793           weak_cld_cl  = &scan_mark_weak_cld_cl;
  4794         } else {
  4795           weak_root_cl = &scan_mark_root_cl;
  4796           weak_cld_cl  = &scan_mark_cld_cl;
  4798       } else {
  4799         strong_root_cl = &scan_only_root_cl;
  4800         weak_root_cl   = &scan_only_root_cl;
  4801         strong_cld_cl  = &scan_only_cld_cl;
  4802         weak_cld_cl    = &scan_only_cld_cl;
  4803         strong_code_cl = &scan_only_code_cl;
  4807       G1ParPushHeapRSClosure  push_heap_rs_cl(_g1h, &pss);
  4809       pss.start_strong_roots();
  4810       _g1h->g1_process_roots(strong_root_cl,
  4811                              weak_root_cl,
  4812                              &push_heap_rs_cl,
  4813                              strong_cld_cl,
  4814                              weak_cld_cl,
  4815                              strong_code_cl,
  4816                              worker_id);
  4818       pss.end_strong_roots();
  4821         double start = os::elapsedTime();
  4822         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4823         evac.do_void();
  4824         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4825         double term_ms = pss.term_time()*1000.0;
  4826         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
  4827         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
  4829       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4830       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4832       if (ParallelGCVerbose) {
  4833         MutexLocker x(stats_lock());
  4834         pss.print_termination_stats(worker_id);
  4837       assert(pss.queue_is_empty(), "should be empty");
  4839       // Close the inner scope so that the ResourceMark and HandleMark
  4840       // destructors are executed here and are included as part of the
  4841       // "GC Worker Time".
  4844     double end_time_ms = os::elapsedTime() * 1000.0;
  4845     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
  4847 };
  4849 // *** Common G1 Evacuation Stuff
  4851 // This method is run in a GC worker.
  4853 void
  4854 G1CollectedHeap::
  4855 g1_process_roots(OopClosure* scan_non_heap_roots,
  4856                  OopClosure* scan_non_heap_weak_roots,
  4857                  OopsInHeapRegionClosure* scan_rs,
  4858                  CLDClosure* scan_strong_clds,
  4859                  CLDClosure* scan_weak_clds,
  4860                  CodeBlobClosure* scan_strong_code,
  4861                  uint worker_i) {
  4863   // First scan the shared roots.
  4864   double ext_roots_start = os::elapsedTime();
  4865   double closure_app_time_sec = 0.0;
  4867   bool during_im = _g1h->g1_policy()->during_initial_mark_pause();
  4868   bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark;
  4870   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4871   BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots);
  4873   process_roots(false, // no scoping; this is parallel code
  4874                 SharedHeap::SO_None,
  4875                 &buf_scan_non_heap_roots,
  4876                 &buf_scan_non_heap_weak_roots,
  4877                 scan_strong_clds,
  4878                 // Unloading Initial Marks handle the weak CLDs separately.
  4879                 (trace_metadata ? NULL : scan_weak_clds),
  4880                 scan_strong_code);
  4882   // Now the CM ref_processor roots.
  4883   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4884     // We need to treat the discovered reference lists of the
  4885     // concurrent mark ref processor as roots and keep entries
  4886     // (which are added by the marking threads) on them live
  4887     // until they can be processed at the end of marking.
  4888     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
  4891   if (trace_metadata) {
  4892     // Barrier to make sure all workers passed
  4893     // the strong CLD and strong nmethods phases.
  4894     active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads());
  4896     // Now take the complement of the strong CLDs.
  4897     ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds);
  4900   // Finish up any enqueued closure apps (attributed as object copy time).
  4901   buf_scan_non_heap_roots.done();
  4902   buf_scan_non_heap_weak_roots.done();
  4904   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds()
  4905       + buf_scan_non_heap_weak_roots.closure_app_seconds();
  4907   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4909   double ext_root_time_ms =
  4910     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4912   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4914   // During conc marking we have to filter the per-thread SATB buffers
  4915   // to make sure we remove any oops into the CSet (which will show up
  4916   // as implicitly live).
  4917   double satb_filtering_ms = 0.0;
  4918   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
  4919     if (mark_in_progress()) {
  4920       double satb_filter_start = os::elapsedTime();
  4922       JavaThread::satb_mark_queue_set().filter_thread_buffers();
  4924       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
  4927   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
  4929   // Now scan the complement of the collection set.
  4930   MarkingCodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots, CodeBlobToOopClosure::FixRelocations);
  4932   g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i);
  4934   _process_strong_tasks->all_tasks_completed();
  4937 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
  4938 private:
  4939   BoolObjectClosure* _is_alive;
  4940   int _initial_string_table_size;
  4941   int _initial_symbol_table_size;
  4943   bool  _process_strings;
  4944   int _strings_processed;
  4945   int _strings_removed;
  4947   bool  _process_symbols;
  4948   int _symbols_processed;
  4949   int _symbols_removed;
  4951   bool _do_in_parallel;
  4952 public:
  4953   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
  4954     AbstractGangTask("String/Symbol Unlinking"),
  4955     _is_alive(is_alive),
  4956     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
  4957     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
  4958     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
  4960     _initial_string_table_size = StringTable::the_table()->table_size();
  4961     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
  4962     if (process_strings) {
  4963       StringTable::clear_parallel_claimed_index();
  4965     if (process_symbols) {
  4966       SymbolTable::clear_parallel_claimed_index();
  4970   ~G1StringSymbolTableUnlinkTask() {
  4971     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
  4972               err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
  4973                       StringTable::parallel_claimed_index(), _initial_string_table_size));
  4974     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
  4975               err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
  4976                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
  4978     if (G1TraceStringSymbolTableScrubbing) {
  4979       gclog_or_tty->print_cr("Cleaned string and symbol table, "
  4980                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
  4981                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
  4982                              strings_processed(), strings_removed(),
  4983                              symbols_processed(), symbols_removed());
  4987   void work(uint worker_id) {
  4988     if (_do_in_parallel) {
  4989       int strings_processed = 0;
  4990       int strings_removed = 0;
  4991       int symbols_processed = 0;
  4992       int symbols_removed = 0;
  4993       if (_process_strings) {
  4994         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
  4995         Atomic::add(strings_processed, &_strings_processed);
  4996         Atomic::add(strings_removed, &_strings_removed);
  4998       if (_process_symbols) {
  4999         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
  5000         Atomic::add(symbols_processed, &_symbols_processed);
  5001         Atomic::add(symbols_removed, &_symbols_removed);
  5003     } else {
  5004       if (_process_strings) {
  5005         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
  5007       if (_process_symbols) {
  5008         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
  5013   size_t strings_processed() const { return (size_t)_strings_processed; }
  5014   size_t strings_removed()   const { return (size_t)_strings_removed; }
  5016   size_t symbols_processed() const { return (size_t)_symbols_processed; }
  5017   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
  5018 };
  5020 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
  5021 private:
  5022   static Monitor* _lock;
  5024   BoolObjectClosure* const _is_alive;
  5025   const bool               _unloading_occurred;
  5026   const uint               _num_workers;
  5028   // Variables used to claim nmethods.
  5029   nmethod* _first_nmethod;
  5030   volatile nmethod* _claimed_nmethod;
  5032   // The list of nmethods that need to be processed by the second pass.
  5033   volatile nmethod* _postponed_list;
  5034   volatile uint     _num_entered_barrier;
  5036  public:
  5037   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
  5038       _is_alive(is_alive),
  5039       _unloading_occurred(unloading_occurred),
  5040       _num_workers(num_workers),
  5041       _first_nmethod(NULL),
  5042       _claimed_nmethod(NULL),
  5043       _postponed_list(NULL),
  5044       _num_entered_barrier(0)
  5046     nmethod::increase_unloading_clock();
  5047     _first_nmethod = CodeCache::alive_nmethod(CodeCache::first());
  5048     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
  5051   ~G1CodeCacheUnloadingTask() {
  5052     CodeCache::verify_clean_inline_caches();
  5054     CodeCache::set_needs_cache_clean(false);
  5055     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
  5057     CodeCache::verify_icholder_relocations();
  5060  private:
  5061   void add_to_postponed_list(nmethod* nm) {
  5062       nmethod* old;
  5063       do {
  5064         old = (nmethod*)_postponed_list;
  5065         nm->set_unloading_next(old);
  5066       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
  5069   void clean_nmethod(nmethod* nm) {
  5070     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
  5072     if (postponed) {
  5073       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
  5074       add_to_postponed_list(nm);
  5077     // Mark that this thread has been cleaned/unloaded.
  5078     // After this call, it will be safe to ask if this nmethod was unloaded or not.
  5079     nm->set_unloading_clock(nmethod::global_unloading_clock());
  5082   void clean_nmethod_postponed(nmethod* nm) {
  5083     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
  5086   static const int MaxClaimNmethods = 16;
  5088   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
  5089     nmethod* first;
  5090     nmethod* last;
  5092     do {
  5093       *num_claimed_nmethods = 0;
  5095       first = last = (nmethod*)_claimed_nmethod;
  5097       if (first != NULL) {
  5098         for (int i = 0; i < MaxClaimNmethods; i++) {
  5099           last = CodeCache::alive_nmethod(CodeCache::next(last));
  5101           if (last == NULL) {
  5102             break;
  5105           claimed_nmethods[i] = last;
  5106           (*num_claimed_nmethods)++;
  5110     } while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first);
  5113   nmethod* claim_postponed_nmethod() {
  5114     nmethod* claim;
  5115     nmethod* next;
  5117     do {
  5118       claim = (nmethod*)_postponed_list;
  5119       if (claim == NULL) {
  5120         return NULL;
  5123       next = claim->unloading_next();
  5125     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
  5127     return claim;
  5130  public:
  5131   // Mark that we're done with the first pass of nmethod cleaning.
  5132   void barrier_mark(uint worker_id) {
  5133     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
  5134     _num_entered_barrier++;
  5135     if (_num_entered_barrier == _num_workers) {
  5136       ml.notify_all();
  5140   // See if we have to wait for the other workers to
  5141   // finish their first-pass nmethod cleaning work.
  5142   void barrier_wait(uint worker_id) {
  5143     if (_num_entered_barrier < _num_workers) {
  5144       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
  5145       while (_num_entered_barrier < _num_workers) {
  5146           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
  5151   // Cleaning and unloading of nmethods. Some work has to be postponed
  5152   // to the second pass, when we know which nmethods survive.
  5153   void work_first_pass(uint worker_id) {
  5154     // The first nmethods is claimed by the first worker.
  5155     if (worker_id == 0 && _first_nmethod != NULL) {
  5156       clean_nmethod(_first_nmethod);
  5157       _first_nmethod = NULL;
  5160     int num_claimed_nmethods;
  5161     nmethod* claimed_nmethods[MaxClaimNmethods];
  5163     while (true) {
  5164       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
  5166       if (num_claimed_nmethods == 0) {
  5167         break;
  5170       for (int i = 0; i < num_claimed_nmethods; i++) {
  5171         clean_nmethod(claimed_nmethods[i]);
  5176   void work_second_pass(uint worker_id) {
  5177     nmethod* nm;
  5178     // Take care of postponed nmethods.
  5179     while ((nm = claim_postponed_nmethod()) != NULL) {
  5180       clean_nmethod_postponed(nm);
  5183 };
  5185 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");
  5187 class G1KlassCleaningTask : public StackObj {
  5188   BoolObjectClosure*                      _is_alive;
  5189   volatile jint                           _clean_klass_tree_claimed;
  5190   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
  5192  public:
  5193   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
  5194       _is_alive(is_alive),
  5195       _clean_klass_tree_claimed(0),
  5196       _klass_iterator() {
  5199  private:
  5200   bool claim_clean_klass_tree_task() {
  5201     if (_clean_klass_tree_claimed) {
  5202       return false;
  5205     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
  5208   InstanceKlass* claim_next_klass() {
  5209     Klass* klass;
  5210     do {
  5211       klass =_klass_iterator.next_klass();
  5212     } while (klass != NULL && !klass->oop_is_instance());
  5214     return (InstanceKlass*)klass;
  5217 public:
  5219   void clean_klass(InstanceKlass* ik) {
  5220     ik->clean_implementors_list(_is_alive);
  5221     ik->clean_method_data(_is_alive);
  5223     // G1 specific cleanup work that has
  5224     // been moved here to be done in parallel.
  5225     ik->clean_dependent_nmethods();
  5228   void work() {
  5229     ResourceMark rm;
  5231     // One worker will clean the subklass/sibling klass tree.
  5232     if (claim_clean_klass_tree_task()) {
  5233       Klass::clean_subklass_tree(_is_alive);
  5236     // All workers will help cleaning the classes,
  5237     InstanceKlass* klass;
  5238     while ((klass = claim_next_klass()) != NULL) {
  5239       clean_klass(klass);
  5242 };
  5244 // To minimize the remark pause times, the tasks below are done in parallel.
  5245 class G1ParallelCleaningTask : public AbstractGangTask {
  5246 private:
  5247   G1StringSymbolTableUnlinkTask _string_symbol_task;
  5248   G1CodeCacheUnloadingTask      _code_cache_task;
  5249   G1KlassCleaningTask           _klass_cleaning_task;
  5251 public:
  5252   // The constructor is run in the VMThread.
  5253   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
  5254       AbstractGangTask("Parallel Cleaning"),
  5255       _string_symbol_task(is_alive, process_strings, process_symbols),
  5256       _code_cache_task(num_workers, is_alive, unloading_occurred),
  5257       _klass_cleaning_task(is_alive) {
  5260   // The parallel work done by all worker threads.
  5261   void work(uint worker_id) {
  5262     // Do first pass of code cache cleaning.
  5263     _code_cache_task.work_first_pass(worker_id);
  5265     // Let the threads mark that the first pass is done.
  5266     _code_cache_task.barrier_mark(worker_id);
  5268     // Clean the Strings and Symbols.
  5269     _string_symbol_task.work(worker_id);
  5271     // Wait for all workers to finish the first code cache cleaning pass.
  5272     _code_cache_task.barrier_wait(worker_id);
  5274     // Do the second code cache cleaning work, which realize on
  5275     // the liveness information gathered during the first pass.
  5276     _code_cache_task.work_second_pass(worker_id);
  5278     // Clean all klasses that were not unloaded.
  5279     _klass_cleaning_task.work();
  5281 };
  5284 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
  5285                                         bool process_strings,
  5286                                         bool process_symbols,
  5287                                         bool class_unloading_occurred) {
  5288   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5289                     workers()->active_workers() : 1);
  5291   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
  5292                                         n_workers, class_unloading_occurred);
  5293   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5294     set_par_threads(n_workers);
  5295     workers()->run_task(&g1_unlink_task);
  5296     set_par_threads(0);
  5297   } else {
  5298     g1_unlink_task.work(0);
  5302 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
  5303                                                      bool process_strings, bool process_symbols) {
  5305     uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5306                      _g1h->workers()->active_workers() : 1);
  5307     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
  5308     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5309       set_par_threads(n_workers);
  5310       workers()->run_task(&g1_unlink_task);
  5311       set_par_threads(0);
  5312     } else {
  5313       g1_unlink_task.work(0);
  5317   if (G1StringDedup::is_enabled()) {
  5318     G1StringDedup::unlink(is_alive);
  5322 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
  5323  private:
  5324   DirtyCardQueueSet* _queue;
  5325  public:
  5326   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
  5328   virtual void work(uint worker_id) {
  5329     double start_time = os::elapsedTime();
  5331     RedirtyLoggedCardTableEntryClosure cl;
  5332     if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
  5333       _queue->par_apply_closure_to_all_completed_buffers(&cl);
  5334     } else {
  5335       _queue->apply_closure_to_all_completed_buffers(&cl);
  5338     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
  5339     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
  5340     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
  5342 };
  5344 void G1CollectedHeap::redirty_logged_cards() {
  5345   guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates.");
  5346   double redirty_logged_cards_start = os::elapsedTime();
  5348   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5349                    _g1h->workers()->active_workers() : 1);
  5351   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
  5352   dirty_card_queue_set().reset_for_par_iteration();
  5353   if (use_parallel_gc_threads()) {
  5354     set_par_threads(n_workers);
  5355     workers()->run_task(&redirty_task);
  5356     set_par_threads(0);
  5357   } else {
  5358     redirty_task.work(0);
  5361   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5362   dcq.merge_bufferlists(&dirty_card_queue_set());
  5363   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5365   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
  5368 // Weak Reference Processing support
  5370 // An always "is_alive" closure that is used to preserve referents.
  5371 // If the object is non-null then it's alive.  Used in the preservation
  5372 // of referent objects that are pointed to by reference objects
  5373 // discovered by the CM ref processor.
  5374 class G1AlwaysAliveClosure: public BoolObjectClosure {
  5375   G1CollectedHeap* _g1;
  5376 public:
  5377   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5378   bool do_object_b(oop p) {
  5379     if (p != NULL) {
  5380       return true;
  5382     return false;
  5384 };
  5386 bool G1STWIsAliveClosure::do_object_b(oop p) {
  5387   // An object is reachable if it is outside the collection set,
  5388   // or is inside and copied.
  5389   return !_g1->obj_in_cs(p) || p->is_forwarded();
  5392 // Non Copying Keep Alive closure
  5393 class G1KeepAliveClosure: public OopClosure {
  5394   G1CollectedHeap* _g1;
  5395 public:
  5396   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5397   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  5398   void do_oop(oop* p) {
  5399     oop obj = *p;
  5401     G1CollectedHeap::in_cset_state_t cset_state = _g1->in_cset_state(obj);
  5402     if (obj == NULL || cset_state == G1CollectedHeap::InNeither) {
  5403       return;
  5405     if (cset_state == G1CollectedHeap::InCSet) {
  5406       assert( obj->is_forwarded(), "invariant" );
  5407       *p = obj->forwardee();
  5408     } else {
  5409       assert(!obj->is_forwarded(), "invariant" );
  5410       assert(cset_state == G1CollectedHeap::IsHumongous,
  5411              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state));
  5412       _g1->set_humongous_is_live(obj);
  5415 };
  5417 // Copying Keep Alive closure - can be called from both
  5418 // serial and parallel code as long as different worker
  5419 // threads utilize different G1ParScanThreadState instances
  5420 // and different queues.
  5422 class G1CopyingKeepAliveClosure: public OopClosure {
  5423   G1CollectedHeap*         _g1h;
  5424   OopClosure*              _copy_non_heap_obj_cl;
  5425   G1ParScanThreadState*    _par_scan_state;
  5427 public:
  5428   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  5429                             OopClosure* non_heap_obj_cl,
  5430                             G1ParScanThreadState* pss):
  5431     _g1h(g1h),
  5432     _copy_non_heap_obj_cl(non_heap_obj_cl),
  5433     _par_scan_state(pss)
  5434   {}
  5436   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  5437   virtual void do_oop(      oop* p) { do_oop_work(p); }
  5439   template <class T> void do_oop_work(T* p) {
  5440     oop obj = oopDesc::load_decode_heap_oop(p);
  5442     if (_g1h->is_in_cset_or_humongous(obj)) {
  5443       // If the referent object has been forwarded (either copied
  5444       // to a new location or to itself in the event of an
  5445       // evacuation failure) then we need to update the reference
  5446       // field and, if both reference and referent are in the G1
  5447       // heap, update the RSet for the referent.
  5448       //
  5449       // If the referent has not been forwarded then we have to keep
  5450       // it alive by policy. Therefore we have copy the referent.
  5451       //
  5452       // If the reference field is in the G1 heap then we can push
  5453       // on the PSS queue. When the queue is drained (after each
  5454       // phase of reference processing) the object and it's followers
  5455       // will be copied, the reference field set to point to the
  5456       // new location, and the RSet updated. Otherwise we need to
  5457       // use the the non-heap or metadata closures directly to copy
  5458       // the referent object and update the pointer, while avoiding
  5459       // updating the RSet.
  5461       if (_g1h->is_in_g1_reserved(p)) {
  5462         _par_scan_state->push_on_queue(p);
  5463       } else {
  5464         assert(!Metaspace::contains((const void*)p),
  5465                err_msg("Unexpectedly found a pointer from metadata: "
  5466                               PTR_FORMAT, p));
  5467         _copy_non_heap_obj_cl->do_oop(p);
  5471 };
  5473 // Serial drain queue closure. Called as the 'complete_gc'
  5474 // closure for each discovered list in some of the
  5475 // reference processing phases.
  5477 class G1STWDrainQueueClosure: public VoidClosure {
  5478 protected:
  5479   G1CollectedHeap* _g1h;
  5480   G1ParScanThreadState* _par_scan_state;
  5482   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  5484 public:
  5485   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  5486     _g1h(g1h),
  5487     _par_scan_state(pss)
  5488   { }
  5490   void do_void() {
  5491     G1ParScanThreadState* const pss = par_scan_state();
  5492     pss->trim_queue();
  5494 };
  5496 // Parallel Reference Processing closures
  5498 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  5499 // processing during G1 evacuation pauses.
  5501 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  5502 private:
  5503   G1CollectedHeap*   _g1h;
  5504   RefToScanQueueSet* _queues;
  5505   FlexibleWorkGang*  _workers;
  5506   int                _active_workers;
  5508 public:
  5509   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  5510                         FlexibleWorkGang* workers,
  5511                         RefToScanQueueSet *task_queues,
  5512                         int n_workers) :
  5513     _g1h(g1h),
  5514     _queues(task_queues),
  5515     _workers(workers),
  5516     _active_workers(n_workers)
  5518     assert(n_workers > 0, "shouldn't call this otherwise");
  5521   // Executes the given task using concurrent marking worker threads.
  5522   virtual void execute(ProcessTask& task);
  5523   virtual void execute(EnqueueTask& task);
  5524 };
  5526 // Gang task for possibly parallel reference processing
  5528 class G1STWRefProcTaskProxy: public AbstractGangTask {
  5529   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5530   ProcessTask&     _proc_task;
  5531   G1CollectedHeap* _g1h;
  5532   RefToScanQueueSet *_task_queues;
  5533   ParallelTaskTerminator* _terminator;
  5535 public:
  5536   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  5537                      G1CollectedHeap* g1h,
  5538                      RefToScanQueueSet *task_queues,
  5539                      ParallelTaskTerminator* terminator) :
  5540     AbstractGangTask("Process reference objects in parallel"),
  5541     _proc_task(proc_task),
  5542     _g1h(g1h),
  5543     _task_queues(task_queues),
  5544     _terminator(terminator)
  5545   {}
  5547   virtual void work(uint worker_id) {
  5548     // The reference processing task executed by a single worker.
  5549     ResourceMark rm;
  5550     HandleMark   hm;
  5552     G1STWIsAliveClosure is_alive(_g1h);
  5554     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
  5555     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5557     pss.set_evac_failure_closure(&evac_failure_cl);
  5559     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5561     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5563     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5565     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5566       // We also need to mark copied objects.
  5567       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5570     // Keep alive closure.
  5571     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
  5573     // Complete GC closure
  5574     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5576     // Call the reference processing task's work routine.
  5577     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5579     // Note we cannot assert that the refs array is empty here as not all
  5580     // of the processing tasks (specifically phase2 - pp2_work) execute
  5581     // the complete_gc closure (which ordinarily would drain the queue) so
  5582     // the queue may not be empty.
  5584 };
  5586 // Driver routine for parallel reference processing.
  5587 // Creates an instance of the ref processing gang
  5588 // task and has the worker threads execute it.
  5589 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5590   assert(_workers != NULL, "Need parallel worker threads.");
  5592   ParallelTaskTerminator terminator(_active_workers, _queues);
  5593   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5595   _g1h->set_par_threads(_active_workers);
  5596   _workers->run_task(&proc_task_proxy);
  5597   _g1h->set_par_threads(0);
  5600 // Gang task for parallel reference enqueueing.
  5602 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5603   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5604   EnqueueTask& _enq_task;
  5606 public:
  5607   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5608     AbstractGangTask("Enqueue reference objects in parallel"),
  5609     _enq_task(enq_task)
  5610   { }
  5612   virtual void work(uint worker_id) {
  5613     _enq_task.work(worker_id);
  5615 };
  5617 // Driver routine for parallel reference enqueueing.
  5618 // Creates an instance of the ref enqueueing gang
  5619 // task and has the worker threads execute it.
  5621 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5622   assert(_workers != NULL, "Need parallel worker threads.");
  5624   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5626   _g1h->set_par_threads(_active_workers);
  5627   _workers->run_task(&enq_task_proxy);
  5628   _g1h->set_par_threads(0);
  5631 // End of weak reference support closures
  5633 // Abstract task used to preserve (i.e. copy) any referent objects
  5634 // that are in the collection set and are pointed to by reference
  5635 // objects discovered by the CM ref processor.
  5637 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5638 protected:
  5639   G1CollectedHeap* _g1h;
  5640   RefToScanQueueSet      *_queues;
  5641   ParallelTaskTerminator _terminator;
  5642   uint _n_workers;
  5644 public:
  5645   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5646     AbstractGangTask("ParPreserveCMReferents"),
  5647     _g1h(g1h),
  5648     _queues(task_queues),
  5649     _terminator(workers, _queues),
  5650     _n_workers(workers)
  5651   { }
  5653   void work(uint worker_id) {
  5654     ResourceMark rm;
  5655     HandleMark   hm;
  5657     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
  5658     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5660     pss.set_evac_failure_closure(&evac_failure_cl);
  5662     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
  5664     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5666     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5668     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5670     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5671       // We also need to mark copied objects.
  5672       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5675     // Is alive closure
  5676     G1AlwaysAliveClosure always_alive(_g1h);
  5678     // Copying keep alive closure. Applied to referent objects that need
  5679     // to be copied.
  5680     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
  5682     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5684     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5685     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5687     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5688     // So this must be true - but assert just in case someone decides to
  5689     // change the worker ids.
  5690     assert(0 <= worker_id && worker_id < limit, "sanity");
  5691     assert(!rp->discovery_is_atomic(), "check this code");
  5693     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5694     for (uint idx = worker_id; idx < limit; idx += stride) {
  5695       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5697       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5698       while (iter.has_next()) {
  5699         // Since discovery is not atomic for the CM ref processor, we
  5700         // can see some null referent objects.
  5701         iter.load_ptrs(DEBUG_ONLY(true));
  5702         oop ref = iter.obj();
  5704         // This will filter nulls.
  5705         if (iter.is_referent_alive()) {
  5706           iter.make_referent_alive();
  5708         iter.move_to_next();
  5712     // Drain the queue - which may cause stealing
  5713     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5714     drain_queue.do_void();
  5715     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5716     assert(pss.queue_is_empty(), "should be");
  5718 };
  5720 // Weak Reference processing during an evacuation pause (part 1).
  5721 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
  5722   double ref_proc_start = os::elapsedTime();
  5724   ReferenceProcessor* rp = _ref_processor_stw;
  5725   assert(rp->discovery_enabled(), "should have been enabled");
  5727   // Any reference objects, in the collection set, that were 'discovered'
  5728   // by the CM ref processor should have already been copied (either by
  5729   // applying the external root copy closure to the discovered lists, or
  5730   // by following an RSet entry).
  5731   //
  5732   // But some of the referents, that are in the collection set, that these
  5733   // reference objects point to may not have been copied: the STW ref
  5734   // processor would have seen that the reference object had already
  5735   // been 'discovered' and would have skipped discovering the reference,
  5736   // but would not have treated the reference object as a regular oop.
  5737   // As a result the copy closure would not have been applied to the
  5738   // referent object.
  5739   //
  5740   // We need to explicitly copy these referent objects - the references
  5741   // will be processed at the end of remarking.
  5742   //
  5743   // We also need to do this copying before we process the reference
  5744   // objects discovered by the STW ref processor in case one of these
  5745   // referents points to another object which is also referenced by an
  5746   // object discovered by the STW ref processor.
  5748   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5749            no_of_gc_workers == workers()->active_workers(),
  5750            "Need to reset active GC workers");
  5752   set_par_threads(no_of_gc_workers);
  5753   G1ParPreserveCMReferentsTask keep_cm_referents(this,
  5754                                                  no_of_gc_workers,
  5755                                                  _task_queues);
  5757   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5758     workers()->run_task(&keep_cm_referents);
  5759   } else {
  5760     keep_cm_referents.work(0);
  5763   set_par_threads(0);
  5765   // Closure to test whether a referent is alive.
  5766   G1STWIsAliveClosure is_alive(this);
  5768   // Even when parallel reference processing is enabled, the processing
  5769   // of JNI refs is serial and performed serially by the current thread
  5770   // rather than by a worker. The following PSS will be used for processing
  5771   // JNI refs.
  5773   // Use only a single queue for this PSS.
  5774   G1ParScanThreadState            pss(this, 0, NULL);
  5776   // We do not embed a reference processor in the copying/scanning
  5777   // closures while we're actually processing the discovered
  5778   // reference objects.
  5779   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5781   pss.set_evac_failure_closure(&evac_failure_cl);
  5783   assert(pss.queue_is_empty(), "pre-condition");
  5785   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5787   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5789   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5791   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5792     // We also need to mark copied objects.
  5793     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5796   // Keep alive closure.
  5797   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
  5799   // Serial Complete GC closure
  5800   G1STWDrainQueueClosure drain_queue(this, &pss);
  5802   // Setup the soft refs policy...
  5803   rp->setup_policy(false);
  5805   ReferenceProcessorStats stats;
  5806   if (!rp->processing_is_mt()) {
  5807     // Serial reference processing...
  5808     stats = rp->process_discovered_references(&is_alive,
  5809                                               &keep_alive,
  5810                                               &drain_queue,
  5811                                               NULL,
  5812                                               _gc_timer_stw,
  5813                                               _gc_tracer_stw->gc_id());
  5814   } else {
  5815     // Parallel reference processing
  5816     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5817     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5819     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5820     stats = rp->process_discovered_references(&is_alive,
  5821                                               &keep_alive,
  5822                                               &drain_queue,
  5823                                               &par_task_executor,
  5824                                               _gc_timer_stw,
  5825                                               _gc_tracer_stw->gc_id());
  5828   _gc_tracer_stw->report_gc_reference_stats(stats);
  5830   // We have completed copying any necessary live referent objects.
  5831   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
  5833   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5834   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
  5837 // Weak Reference processing during an evacuation pause (part 2).
  5838 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
  5839   double ref_enq_start = os::elapsedTime();
  5841   ReferenceProcessor* rp = _ref_processor_stw;
  5842   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5844   // Now enqueue any remaining on the discovered lists on to
  5845   // the pending list.
  5846   if (!rp->processing_is_mt()) {
  5847     // Serial reference processing...
  5848     rp->enqueue_discovered_references();
  5849   } else {
  5850     // Parallel reference enqueueing
  5852     assert(no_of_gc_workers == workers()->active_workers(),
  5853            "Need to reset active workers");
  5854     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5855     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5857     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5858     rp->enqueue_discovered_references(&par_task_executor);
  5861   rp->verify_no_references_recorded();
  5862   assert(!rp->discovery_enabled(), "should have been disabled");
  5864   // FIXME
  5865   // CM's reference processing also cleans up the string and symbol tables.
  5866   // Should we do that here also? We could, but it is a serial operation
  5867   // and could significantly increase the pause time.
  5869   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5870   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
  5873 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
  5874   _expand_heap_after_alloc_failure = true;
  5875   _evacuation_failed = false;
  5877   // Should G1EvacuationFailureALot be in effect for this GC?
  5878   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
  5880   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5882   // Disable the hot card cache.
  5883   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  5884   hot_card_cache->reset_hot_cache_claimed_index();
  5885   hot_card_cache->set_use_cache(false);
  5887   uint n_workers;
  5888   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5889     n_workers =
  5890       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  5891                                      workers()->active_workers(),
  5892                                      Threads::number_of_non_daemon_threads());
  5893     assert(UseDynamicNumberOfGCThreads ||
  5894            n_workers == workers()->total_workers(),
  5895            "If not dynamic should be using all the  workers");
  5896     workers()->set_active_workers(n_workers);
  5897     set_par_threads(n_workers);
  5898   } else {
  5899     assert(n_par_threads() == 0,
  5900            "Should be the original non-parallel value");
  5901     n_workers = 1;
  5904   G1ParTask g1_par_task(this, _task_queues);
  5906   init_for_evac_failure(NULL);
  5908   rem_set()->prepare_for_younger_refs_iterate(true);
  5910   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5911   double start_par_time_sec = os::elapsedTime();
  5912   double end_par_time_sec;
  5915     StrongRootsScope srs(this);
  5916     // InitialMark needs claim bits to keep track of the marked-through CLDs.
  5917     if (g1_policy()->during_initial_mark_pause()) {
  5918       ClassLoaderDataGraph::clear_claimed_marks();
  5921     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5922       // The individual threads will set their evac-failure closures.
  5923       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5924       // These tasks use ShareHeap::_process_strong_tasks
  5925       assert(UseDynamicNumberOfGCThreads ||
  5926              workers()->active_workers() == workers()->total_workers(),
  5927              "If not dynamic should be using all the  workers");
  5928       workers()->run_task(&g1_par_task);
  5929     } else {
  5930       g1_par_task.set_for_termination(n_workers);
  5931       g1_par_task.work(0);
  5933     end_par_time_sec = os::elapsedTime();
  5935     // Closing the inner scope will execute the destructor
  5936     // for the StrongRootsScope object. We record the current
  5937     // elapsed time before closing the scope so that time
  5938     // taken for the SRS destructor is NOT included in the
  5939     // reported parallel time.
  5942   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  5943   g1_policy()->phase_times()->record_par_time(par_time_ms);
  5945   double code_root_fixup_time_ms =
  5946         (os::elapsedTime() - end_par_time_sec) * 1000.0;
  5947   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
  5949   set_par_threads(0);
  5951   // Process any discovered reference objects - we have
  5952   // to do this _before_ we retire the GC alloc regions
  5953   // as we may have to copy some 'reachable' referent
  5954   // objects (and their reachable sub-graphs) that were
  5955   // not copied during the pause.
  5956   process_discovered_references(n_workers);
  5958   // Weak root processing.
  5960     G1STWIsAliveClosure is_alive(this);
  5961     G1KeepAliveClosure keep_alive(this);
  5962     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  5963     if (G1StringDedup::is_enabled()) {
  5964       G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
  5968   release_gc_alloc_regions(n_workers, evacuation_info);
  5969   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5971   // Reset and re-enable the hot card cache.
  5972   // Note the counts for the cards in the regions in the
  5973   // collection set are reset when the collection set is freed.
  5974   hot_card_cache->reset_hot_cache();
  5975   hot_card_cache->set_use_cache(true);
  5977   // Migrate the strong code roots attached to each region in
  5978   // the collection set. Ideally we would like to do this
  5979   // after we have finished the scanning/evacuation of the
  5980   // strong code roots for a particular heap region.
  5981   migrate_strong_code_roots();
  5983   purge_code_root_memory();
  5985   if (g1_policy()->during_initial_mark_pause()) {
  5986     // Reset the claim values set during marking the strong code roots
  5987     reset_heap_region_claim_values();
  5990   finalize_for_evac_failure();
  5992   if (evacuation_failed()) {
  5993     remove_self_forwarding_pointers();
  5995     // Reset the G1EvacuationFailureALot counters and flags
  5996     // Note: the values are reset only when an actual
  5997     // evacuation failure occurs.
  5998     NOT_PRODUCT(reset_evacuation_should_fail();)
  6001   // Enqueue any remaining references remaining on the STW
  6002   // reference processor's discovered lists. We need to do
  6003   // this after the card table is cleaned (and verified) as
  6004   // the act of enqueueing entries on to the pending list
  6005   // will log these updates (and dirty their associated
  6006   // cards). We need these updates logged to update any
  6007   // RSets.
  6008   enqueue_discovered_references(n_workers);
  6010   if (G1DeferredRSUpdate) {
  6011     redirty_logged_cards();
  6013   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  6016 void G1CollectedHeap::free_region(HeapRegion* hr,
  6017                                   FreeRegionList* free_list,
  6018                                   bool par,
  6019                                   bool locked) {
  6020   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  6021   assert(!hr->is_empty(), "the region should not be empty");
  6022   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
  6023   assert(free_list != NULL, "pre-condition");
  6025   if (G1VerifyBitmaps) {
  6026     MemRegion mr(hr->bottom(), hr->end());
  6027     concurrent_mark()->clearRangePrevBitmap(mr);
  6030   // Clear the card counts for this region.
  6031   // Note: we only need to do this if the region is not young
  6032   // (since we don't refine cards in young regions).
  6033   if (!hr->is_young()) {
  6034     _cg1r->hot_card_cache()->reset_card_counts(hr);
  6036   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
  6037   free_list->add_ordered(hr);
  6040 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  6041                                      FreeRegionList* free_list,
  6042                                      bool par) {
  6043   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  6044   assert(free_list != NULL, "pre-condition");
  6046   size_t hr_capacity = hr->capacity();
  6047   // We need to read this before we make the region non-humongous,
  6048   // otherwise the information will be gone.
  6049   uint last_index = hr->last_hc_index();
  6050   hr->set_notHumongous();
  6051   free_region(hr, free_list, par);
  6053   uint i = hr->hrm_index() + 1;
  6054   while (i < last_index) {
  6055     HeapRegion* curr_hr = region_at(i);
  6056     assert(curr_hr->continuesHumongous(), "invariant");
  6057     curr_hr->set_notHumongous();
  6058     free_region(curr_hr, free_list, par);
  6059     i += 1;
  6063 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
  6064                                        const HeapRegionSetCount& humongous_regions_removed) {
  6065   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
  6066     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  6067     _old_set.bulk_remove(old_regions_removed);
  6068     _humongous_set.bulk_remove(humongous_regions_removed);
  6073 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
  6074   assert(list != NULL, "list can't be null");
  6075   if (!list->is_empty()) {
  6076     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  6077     _hrm.insert_list_into_free_list(list);
  6081 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
  6082   assert(_summary_bytes_used >= bytes,
  6083          err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
  6084                   _summary_bytes_used, bytes));
  6085   _summary_bytes_used -= bytes;
  6088 class G1ParCleanupCTTask : public AbstractGangTask {
  6089   G1SATBCardTableModRefBS* _ct_bs;
  6090   G1CollectedHeap* _g1h;
  6091   HeapRegion* volatile _su_head;
  6092 public:
  6093   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
  6094                      G1CollectedHeap* g1h) :
  6095     AbstractGangTask("G1 Par Cleanup CT Task"),
  6096     _ct_bs(ct_bs), _g1h(g1h) { }
  6098   void work(uint worker_id) {
  6099     HeapRegion* r;
  6100     while (r = _g1h->pop_dirty_cards_region()) {
  6101       clear_cards(r);
  6105   void clear_cards(HeapRegion* r) {
  6106     // Cards of the survivors should have already been dirtied.
  6107     if (!r->is_survivor()) {
  6108       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  6111 };
  6113 #ifndef PRODUCT
  6114 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  6115   G1CollectedHeap* _g1h;
  6116   G1SATBCardTableModRefBS* _ct_bs;
  6117 public:
  6118   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
  6119     : _g1h(g1h), _ct_bs(ct_bs) { }
  6120   virtual bool doHeapRegion(HeapRegion* r) {
  6121     if (r->is_survivor()) {
  6122       _g1h->verify_dirty_region(r);
  6123     } else {
  6124       _g1h->verify_not_dirty_region(r);
  6126     return false;
  6128 };
  6130 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  6131   // All of the region should be clean.
  6132   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6133   MemRegion mr(hr->bottom(), hr->end());
  6134   ct_bs->verify_not_dirty_region(mr);
  6137 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  6138   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  6139   // dirty allocated blocks as they allocate them. The thread that
  6140   // retires each region and replaces it with a new one will do a
  6141   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  6142   // not dirty that area (one less thing to have to do while holding
  6143   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  6144   // is dirty.
  6145   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6146   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  6147   if (hr->is_young()) {
  6148     ct_bs->verify_g1_young_region(mr);
  6149   } else {
  6150     ct_bs->verify_dirty_region(mr);
  6154 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  6155   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6156   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  6157     verify_dirty_region(hr);
  6161 void G1CollectedHeap::verify_dirty_young_regions() {
  6162   verify_dirty_young_list(_young_list->first_region());
  6165 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
  6166                                                HeapWord* tams, HeapWord* end) {
  6167   guarantee(tams <= end,
  6168             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
  6169   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
  6170   if (result < end) {
  6171     gclog_or_tty->cr();
  6172     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
  6173                            bitmap_name, result);
  6174     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
  6175                            bitmap_name, tams, end);
  6176     return false;
  6178   return true;
  6181 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
  6182   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
  6183   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
  6185   HeapWord* bottom = hr->bottom();
  6186   HeapWord* ptams  = hr->prev_top_at_mark_start();
  6187   HeapWord* ntams  = hr->next_top_at_mark_start();
  6188   HeapWord* end    = hr->end();
  6190   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
  6192   bool res_n = true;
  6193   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
  6194   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
  6195   // if we happen to be in that state.
  6196   if (mark_in_progress() || !_cmThread->in_progress()) {
  6197     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
  6199   if (!res_p || !res_n) {
  6200     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
  6201                            HR_FORMAT_PARAMS(hr));
  6202     gclog_or_tty->print_cr("#### Caller: %s", caller);
  6203     return false;
  6205   return true;
  6208 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
  6209   if (!G1VerifyBitmaps) return;
  6211   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
  6214 class G1VerifyBitmapClosure : public HeapRegionClosure {
  6215 private:
  6216   const char* _caller;
  6217   G1CollectedHeap* _g1h;
  6218   bool _failures;
  6220 public:
  6221   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
  6222     _caller(caller), _g1h(g1h), _failures(false) { }
  6224   bool failures() { return _failures; }
  6226   virtual bool doHeapRegion(HeapRegion* hr) {
  6227     if (hr->continuesHumongous()) return false;
  6229     bool result = _g1h->verify_bitmaps(_caller, hr);
  6230     if (!result) {
  6231       _failures = true;
  6233     return false;
  6235 };
  6237 void G1CollectedHeap::check_bitmaps(const char* caller) {
  6238   if (!G1VerifyBitmaps) return;
  6240   G1VerifyBitmapClosure cl(caller, this);
  6241   heap_region_iterate(&cl);
  6242   guarantee(!cl.failures(), "bitmap verification");
  6244 #endif // PRODUCT
  6246 void G1CollectedHeap::cleanUpCardTable() {
  6247   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6248   double start = os::elapsedTime();
  6251     // Iterate over the dirty cards region list.
  6252     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  6254     if (G1CollectedHeap::use_parallel_gc_threads()) {
  6255       set_par_threads();
  6256       workers()->run_task(&cleanup_task);
  6257       set_par_threads(0);
  6258     } else {
  6259       while (_dirty_cards_region_list) {
  6260         HeapRegion* r = _dirty_cards_region_list;
  6261         cleanup_task.clear_cards(r);
  6262         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  6263         if (_dirty_cards_region_list == r) {
  6264           // The last region.
  6265           _dirty_cards_region_list = NULL;
  6267         r->set_next_dirty_cards_region(NULL);
  6270 #ifndef PRODUCT
  6271     if (G1VerifyCTCleanup || VerifyAfterGC) {
  6272       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  6273       heap_region_iterate(&cleanup_verifier);
  6275 #endif
  6278   double elapsed = os::elapsedTime() - start;
  6279   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
  6282 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
  6283   size_t pre_used = 0;
  6284   FreeRegionList local_free_list("Local List for CSet Freeing");
  6286   double young_time_ms     = 0.0;
  6287   double non_young_time_ms = 0.0;
  6289   // Since the collection set is a superset of the the young list,
  6290   // all we need to do to clear the young list is clear its
  6291   // head and length, and unlink any young regions in the code below
  6292   _young_list->clear();
  6294   G1CollectorPolicy* policy = g1_policy();
  6296   double start_sec = os::elapsedTime();
  6297   bool non_young = true;
  6299   HeapRegion* cur = cs_head;
  6300   int age_bound = -1;
  6301   size_t rs_lengths = 0;
  6303   while (cur != NULL) {
  6304     assert(!is_on_master_free_list(cur), "sanity");
  6305     if (non_young) {
  6306       if (cur->is_young()) {
  6307         double end_sec = os::elapsedTime();
  6308         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6309         non_young_time_ms += elapsed_ms;
  6311         start_sec = os::elapsedTime();
  6312         non_young = false;
  6314     } else {
  6315       if (!cur->is_young()) {
  6316         double end_sec = os::elapsedTime();
  6317         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6318         young_time_ms += elapsed_ms;
  6320         start_sec = os::elapsedTime();
  6321         non_young = true;
  6325     rs_lengths += cur->rem_set()->occupied_locked();
  6327     HeapRegion* next = cur->next_in_collection_set();
  6328     assert(cur->in_collection_set(), "bad CS");
  6329     cur->set_next_in_collection_set(NULL);
  6330     cur->set_in_collection_set(false);
  6332     if (cur->is_young()) {
  6333       int index = cur->young_index_in_cset();
  6334       assert(index != -1, "invariant");
  6335       assert((uint) index < policy->young_cset_region_length(), "invariant");
  6336       size_t words_survived = _surviving_young_words[index];
  6337       cur->record_surv_words_in_group(words_survived);
  6339       // At this point the we have 'popped' cur from the collection set
  6340       // (linked via next_in_collection_set()) but it is still in the
  6341       // young list (linked via next_young_region()). Clear the
  6342       // _next_young_region field.
  6343       cur->set_next_young_region(NULL);
  6344     } else {
  6345       int index = cur->young_index_in_cset();
  6346       assert(index == -1, "invariant");
  6349     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  6350             (!cur->is_young() && cur->young_index_in_cset() == -1),
  6351             "invariant" );
  6353     if (!cur->evacuation_failed()) {
  6354       MemRegion used_mr = cur->used_region();
  6356       // And the region is empty.
  6357       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  6358       pre_used += cur->used();
  6359       free_region(cur, &local_free_list, false /* par */, true /* locked */);
  6360     } else {
  6361       cur->uninstall_surv_rate_group();
  6362       if (cur->is_young()) {
  6363         cur->set_young_index_in_cset(-1);
  6365       cur->set_not_young();
  6366       cur->set_evacuation_failed(false);
  6367       // The region is now considered to be old.
  6368       _old_set.add(cur);
  6369       evacuation_info.increment_collectionset_used_after(cur->used());
  6371     cur = next;
  6374   evacuation_info.set_regions_freed(local_free_list.length());
  6375   policy->record_max_rs_lengths(rs_lengths);
  6376   policy->cset_regions_freed();
  6378   double end_sec = os::elapsedTime();
  6379   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6381   if (non_young) {
  6382     non_young_time_ms += elapsed_ms;
  6383   } else {
  6384     young_time_ms += elapsed_ms;
  6387   prepend_to_freelist(&local_free_list);
  6388   decrement_summary_bytes(pre_used);
  6389   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  6390   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
  6393 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
  6394  private:
  6395   FreeRegionList* _free_region_list;
  6396   HeapRegionSet* _proxy_set;
  6397   HeapRegionSetCount _humongous_regions_removed;
  6398   size_t _freed_bytes;
  6399  public:
  6401   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
  6402     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
  6405   virtual bool doHeapRegion(HeapRegion* r) {
  6406     if (!r->startsHumongous()) {
  6407       return false;
  6410     G1CollectedHeap* g1h = G1CollectedHeap::heap();
  6412     oop obj = (oop)r->bottom();
  6413     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
  6415     // The following checks whether the humongous object is live are sufficient.
  6416     // The main additional check (in addition to having a reference from the roots
  6417     // or the young gen) is whether the humongous object has a remembered set entry.
  6418     //
  6419     // A humongous object cannot be live if there is no remembered set for it
  6420     // because:
  6421     // - there can be no references from within humongous starts regions referencing
  6422     // the object because we never allocate other objects into them.
  6423     // (I.e. there are no intra-region references that may be missed by the
  6424     // remembered set)
  6425     // - as soon there is a remembered set entry to the humongous starts region
  6426     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
  6427     // until the end of a concurrent mark.
  6428     //
  6429     // It is not required to check whether the object has been found dead by marking
  6430     // or not, in fact it would prevent reclamation within a concurrent cycle, as
  6431     // all objects allocated during that time are considered live.
  6432     // SATB marking is even more conservative than the remembered set.
  6433     // So if at this point in the collection there is no remembered set entry,
  6434     // nobody has a reference to it.
  6435     // At the start of collection we flush all refinement logs, and remembered sets
  6436     // are completely up-to-date wrt to references to the humongous object.
  6437     //
  6438     // Other implementation considerations:
  6439     // - never consider object arrays: while they are a valid target, they have not
  6440     // been observed to be used as temporary objects.
  6441     // - they would also pose considerable effort for cleaning up the the remembered
  6442     // sets.
  6443     // While this cleanup is not strictly necessary to be done (or done instantly),
  6444     // given that their occurrence is very low, this saves us this additional
  6445     // complexity.
  6446     uint region_idx = r->hrm_index();
  6447     if (g1h->humongous_is_live(region_idx) ||
  6448         g1h->humongous_region_is_always_live(region_idx)) {
  6450       if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
  6451         gclog_or_tty->print_cr("Live humongous %d region %d with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
  6452                                r->isHumongous(),
  6453                                region_idx,
  6454                                r->rem_set()->occupied(),
  6455                                r->rem_set()->strong_code_roots_list_length(),
  6456                                next_bitmap->isMarked(r->bottom()),
  6457                                g1h->humongous_is_live(region_idx),
  6458                                obj->is_objArray()
  6459                               );
  6462       return false;
  6465     guarantee(!obj->is_objArray(),
  6466               err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
  6467                       r->bottom()));
  6469     if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
  6470       gclog_or_tty->print_cr("Reclaim humongous region %d start "PTR_FORMAT" region %d length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
  6471                              r->isHumongous(),
  6472                              r->bottom(),
  6473                              region_idx,
  6474                              r->region_num(),
  6475                              r->rem_set()->occupied(),
  6476                              r->rem_set()->strong_code_roots_list_length(),
  6477                              next_bitmap->isMarked(r->bottom()),
  6478                              g1h->humongous_is_live(region_idx),
  6479                              obj->is_objArray()
  6480                             );
  6482     // Need to clear mark bit of the humongous object if already set.
  6483     if (next_bitmap->isMarked(r->bottom())) {
  6484       next_bitmap->clear(r->bottom());
  6486     _freed_bytes += r->used();
  6487     r->set_containing_set(NULL);
  6488     _humongous_regions_removed.increment(1u, r->capacity());
  6489     g1h->free_humongous_region(r, _free_region_list, false);
  6491     return false;
  6494   HeapRegionSetCount& humongous_free_count() {
  6495     return _humongous_regions_removed;
  6498   size_t bytes_freed() const {
  6499     return _freed_bytes;
  6502   size_t humongous_reclaimed() const {
  6503     return _humongous_regions_removed.length();
  6505 };
  6507 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
  6508   assert_at_safepoint(true);
  6510   if (!G1ReclaimDeadHumongousObjectsAtYoungGC || !_has_humongous_reclaim_candidates) {
  6511     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
  6512     return;
  6515   double start_time = os::elapsedTime();
  6517   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
  6519   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
  6520   heap_region_iterate(&cl);
  6522   HeapRegionSetCount empty_set;
  6523   remove_from_old_sets(empty_set, cl.humongous_free_count());
  6525   G1HRPrinter* hr_printer = _g1h->hr_printer();
  6526   if (hr_printer->is_active()) {
  6527     FreeRegionListIterator iter(&local_cleanup_list);
  6528     while (iter.more_available()) {
  6529       HeapRegion* hr = iter.get_next();
  6530       hr_printer->cleanup(hr);
  6534   prepend_to_freelist(&local_cleanup_list);
  6535   decrement_summary_bytes(cl.bytes_freed());
  6537   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
  6538                                                                     cl.humongous_reclaimed());
  6541 // This routine is similar to the above but does not record
  6542 // any policy statistics or update free lists; we are abandoning
  6543 // the current incremental collection set in preparation of a
  6544 // full collection. After the full GC we will start to build up
  6545 // the incremental collection set again.
  6546 // This is only called when we're doing a full collection
  6547 // and is immediately followed by the tearing down of the young list.
  6549 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  6550   HeapRegion* cur = cs_head;
  6552   while (cur != NULL) {
  6553     HeapRegion* next = cur->next_in_collection_set();
  6554     assert(cur->in_collection_set(), "bad CS");
  6555     cur->set_next_in_collection_set(NULL);
  6556     cur->set_in_collection_set(false);
  6557     cur->set_young_index_in_cset(-1);
  6558     cur = next;
  6562 void G1CollectedHeap::set_free_regions_coming() {
  6563   if (G1ConcRegionFreeingVerbose) {
  6564     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6565                            "setting free regions coming");
  6568   assert(!free_regions_coming(), "pre-condition");
  6569   _free_regions_coming = true;
  6572 void G1CollectedHeap::reset_free_regions_coming() {
  6573   assert(free_regions_coming(), "pre-condition");
  6576     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6577     _free_regions_coming = false;
  6578     SecondaryFreeList_lock->notify_all();
  6581   if (G1ConcRegionFreeingVerbose) {
  6582     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6583                            "reset free regions coming");
  6587 void G1CollectedHeap::wait_while_free_regions_coming() {
  6588   // Most of the time we won't have to wait, so let's do a quick test
  6589   // first before we take the lock.
  6590   if (!free_regions_coming()) {
  6591     return;
  6594   if (G1ConcRegionFreeingVerbose) {
  6595     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6596                            "waiting for free regions");
  6600     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6601     while (free_regions_coming()) {
  6602       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  6606   if (G1ConcRegionFreeingVerbose) {
  6607     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6608                            "done waiting for free regions");
  6612 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  6613   assert(heap_lock_held_for_gc(),
  6614               "the heap lock should already be held by or for this thread");
  6615   _young_list->push_region(hr);
  6618 class NoYoungRegionsClosure: public HeapRegionClosure {
  6619 private:
  6620   bool _success;
  6621 public:
  6622   NoYoungRegionsClosure() : _success(true) { }
  6623   bool doHeapRegion(HeapRegion* r) {
  6624     if (r->is_young()) {
  6625       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  6626                              r->bottom(), r->end());
  6627       _success = false;
  6629     return false;
  6631   bool success() { return _success; }
  6632 };
  6634 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  6635   bool ret = _young_list->check_list_empty(check_sample);
  6637   if (check_heap) {
  6638     NoYoungRegionsClosure closure;
  6639     heap_region_iterate(&closure);
  6640     ret = ret && closure.success();
  6643   return ret;
  6646 class TearDownRegionSetsClosure : public HeapRegionClosure {
  6647 private:
  6648   HeapRegionSet *_old_set;
  6650 public:
  6651   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
  6653   bool doHeapRegion(HeapRegion* r) {
  6654     if (r->is_empty()) {
  6655       // We ignore empty regions, we'll empty the free list afterwards
  6656     } else if (r->is_young()) {
  6657       // We ignore young regions, we'll empty the young list afterwards
  6658     } else if (r->isHumongous()) {
  6659       // We ignore humongous regions, we're not tearing down the
  6660       // humongous region set
  6661     } else {
  6662       // The rest should be old
  6663       _old_set->remove(r);
  6665     return false;
  6668   ~TearDownRegionSetsClosure() {
  6669     assert(_old_set->is_empty(), "post-condition");
  6671 };
  6673 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  6674   assert_at_safepoint(true /* should_be_vm_thread */);
  6676   if (!free_list_only) {
  6677     TearDownRegionSetsClosure cl(&_old_set);
  6678     heap_region_iterate(&cl);
  6680     // Note that emptying the _young_list is postponed and instead done as
  6681     // the first step when rebuilding the regions sets again. The reason for
  6682     // this is that during a full GC string deduplication needs to know if
  6683     // a collected region was young or old when the full GC was initiated.
  6685   _hrm.remove_all_free_regions();
  6688 class RebuildRegionSetsClosure : public HeapRegionClosure {
  6689 private:
  6690   bool            _free_list_only;
  6691   HeapRegionSet*   _old_set;
  6692   HeapRegionManager*   _hrm;
  6693   size_t          _total_used;
  6695 public:
  6696   RebuildRegionSetsClosure(bool free_list_only,
  6697                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
  6698     _free_list_only(free_list_only),
  6699     _old_set(old_set), _hrm(hrm), _total_used(0) {
  6700     assert(_hrm->num_free_regions() == 0, "pre-condition");
  6701     if (!free_list_only) {
  6702       assert(_old_set->is_empty(), "pre-condition");
  6706   bool doHeapRegion(HeapRegion* r) {
  6707     if (r->continuesHumongous()) {
  6708       return false;
  6711     if (r->is_empty()) {
  6712       // Add free regions to the free list
  6713       _hrm->insert_into_free_list(r);
  6714     } else if (!_free_list_only) {
  6715       assert(!r->is_young(), "we should not come across young regions");
  6717       if (r->isHumongous()) {
  6718         // We ignore humongous regions, we left the humongous set unchanged
  6719       } else {
  6720         // The rest should be old, add them to the old set
  6721         _old_set->add(r);
  6723       _total_used += r->used();
  6726     return false;
  6729   size_t total_used() {
  6730     return _total_used;
  6732 };
  6734 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  6735   assert_at_safepoint(true /* should_be_vm_thread */);
  6737   if (!free_list_only) {
  6738     _young_list->empty_list();
  6741   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
  6742   heap_region_iterate(&cl);
  6744   if (!free_list_only) {
  6745     _summary_bytes_used = cl.total_used();
  6747   assert(_summary_bytes_used == recalculate_used(),
  6748          err_msg("inconsistent _summary_bytes_used, "
  6749                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
  6750                  _summary_bytes_used, recalculate_used()));
  6753 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  6754   _refine_cte_cl->set_concurrent(concurrent);
  6757 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  6758   HeapRegion* hr = heap_region_containing(p);
  6759   return hr->is_in(p);
  6762 // Methods for the mutator alloc region
  6764 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  6765                                                       bool force) {
  6766   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6767   assert(!force || g1_policy()->can_expand_young_list(),
  6768          "if force is true we should be able to expand the young list");
  6769   bool young_list_full = g1_policy()->is_young_list_full();
  6770   if (force || !young_list_full) {
  6771     HeapRegion* new_alloc_region = new_region(word_size,
  6772                                               false /* is_old */,
  6773                                               false /* do_expand */);
  6774     if (new_alloc_region != NULL) {
  6775       set_region_short_lived_locked(new_alloc_region);
  6776       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  6777       check_bitmaps("Mutator Region Allocation", new_alloc_region);
  6778       return new_alloc_region;
  6781   return NULL;
  6784 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  6785                                                   size_t allocated_bytes) {
  6786   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6787   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  6789   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6790   _summary_bytes_used += allocated_bytes;
  6791   _hr_printer.retire(alloc_region);
  6792   // We update the eden sizes here, when the region is retired,
  6793   // instead of when it's allocated, since this is the point that its
  6794   // used space has been recored in _summary_bytes_used.
  6795   g1mm()->update_eden_size();
  6798 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
  6799                                                     bool force) {
  6800   return _g1h->new_mutator_alloc_region(word_size, force);
  6803 void G1CollectedHeap::set_par_threads() {
  6804   // Don't change the number of workers.  Use the value previously set
  6805   // in the workgroup.
  6806   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6807   uint n_workers = workers()->active_workers();
  6808   assert(UseDynamicNumberOfGCThreads ||
  6809            n_workers == workers()->total_workers(),
  6810       "Otherwise should be using the total number of workers");
  6811   if (n_workers == 0) {
  6812     assert(false, "Should have been set in prior evacuation pause.");
  6813     n_workers = ParallelGCThreads;
  6814     workers()->set_active_workers(n_workers);
  6816   set_par_threads(n_workers);
  6819 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
  6820                                        size_t allocated_bytes) {
  6821   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
  6824 // Methods for the GC alloc regions
  6826 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6827                                                  uint count,
  6828                                                  GCAllocPurpose ap) {
  6829   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6831   if (count < g1_policy()->max_regions(ap)) {
  6832     bool survivor = (ap == GCAllocForSurvived);
  6833     HeapRegion* new_alloc_region = new_region(word_size,
  6834                                               !survivor,
  6835                                               true /* do_expand */);
  6836     if (new_alloc_region != NULL) {
  6837       // We really only need to do this for old regions given that we
  6838       // should never scan survivors. But it doesn't hurt to do it
  6839       // for survivors too.
  6840       new_alloc_region->record_top_and_timestamp();
  6841       if (survivor) {
  6842         new_alloc_region->set_survivor();
  6843         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6844         check_bitmaps("Survivor Region Allocation", new_alloc_region);
  6845       } else {
  6846         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6847         check_bitmaps("Old Region Allocation", new_alloc_region);
  6849       bool during_im = g1_policy()->during_initial_mark_pause();
  6850       new_alloc_region->note_start_of_copying(during_im);
  6851       return new_alloc_region;
  6852     } else {
  6853       g1_policy()->note_alloc_region_limit_reached(ap);
  6856   return NULL;
  6859 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6860                                              size_t allocated_bytes,
  6861                                              GCAllocPurpose ap) {
  6862   bool during_im = g1_policy()->during_initial_mark_pause();
  6863   alloc_region->note_end_of_copying(during_im);
  6864   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6865   if (ap == GCAllocForSurvived) {
  6866     young_list()->add_survivor_region(alloc_region);
  6867   } else {
  6868     _old_set.add(alloc_region);
  6870   _hr_printer.retire(alloc_region);
  6873 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
  6874                                                        bool force) {
  6875   assert(!force, "not supported for GC alloc regions");
  6876   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
  6879 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6880                                           size_t allocated_bytes) {
  6881   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6882                                GCAllocForSurvived);
  6885 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
  6886                                                   bool force) {
  6887   assert(!force, "not supported for GC alloc regions");
  6888   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
  6891 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6892                                      size_t allocated_bytes) {
  6893   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6894                                GCAllocForTenured);
  6897 HeapRegion* OldGCAllocRegion::release() {
  6898   HeapRegion* cur = get();
  6899   if (cur != NULL) {
  6900     // Determine how far we are from the next card boundary. If it is smaller than
  6901     // the minimum object size we can allocate into, expand into the next card.
  6902     HeapWord* top = cur->top();
  6903     HeapWord* aligned_top = (HeapWord*)align_ptr_up(top, G1BlockOffsetSharedArray::N_bytes);
  6905     size_t to_allocate_words = pointer_delta(aligned_top, top, HeapWordSize);
  6907     if (to_allocate_words != 0) {
  6908       // We are not at a card boundary. Fill up, possibly into the next, taking the
  6909       // end of the region and the minimum object size into account.
  6910       to_allocate_words = MIN2(pointer_delta(cur->end(), cur->top(), HeapWordSize),
  6911                                MAX2(to_allocate_words, G1CollectedHeap::min_fill_size()));
  6913       // Skip allocation if there is not enough space to allocate even the smallest
  6914       // possible object. In this case this region will not be retained, so the
  6915       // original problem cannot occur.
  6916       if (to_allocate_words >= G1CollectedHeap::min_fill_size()) {
  6917         HeapWord* dummy = attempt_allocation(to_allocate_words, true /* bot_updates */);
  6918         CollectedHeap::fill_with_object(dummy, to_allocate_words);
  6922   return G1AllocRegion::release();
  6925 // Heap region set verification
  6927 class VerifyRegionListsClosure : public HeapRegionClosure {
  6928 private:
  6929   HeapRegionSet*   _old_set;
  6930   HeapRegionSet*   _humongous_set;
  6931   HeapRegionManager*   _hrm;
  6933 public:
  6934   HeapRegionSetCount _old_count;
  6935   HeapRegionSetCount _humongous_count;
  6936   HeapRegionSetCount _free_count;
  6938   VerifyRegionListsClosure(HeapRegionSet* old_set,
  6939                            HeapRegionSet* humongous_set,
  6940                            HeapRegionManager* hrm) :
  6941     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
  6942     _old_count(), _humongous_count(), _free_count(){ }
  6944   bool doHeapRegion(HeapRegion* hr) {
  6945     if (hr->continuesHumongous()) {
  6946       return false;
  6949     if (hr->is_young()) {
  6950       // TODO
  6951     } else if (hr->startsHumongous()) {
  6952       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
  6953       _humongous_count.increment(1u, hr->capacity());
  6954     } else if (hr->is_empty()) {
  6955       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
  6956       _free_count.increment(1u, hr->capacity());
  6957     } else {
  6958       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
  6959       _old_count.increment(1u, hr->capacity());
  6961     return false;
  6964   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
  6965     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
  6966     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6967         old_set->total_capacity_bytes(), _old_count.capacity()));
  6969     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
  6970     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6971         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
  6973     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
  6974     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6975         free_list->total_capacity_bytes(), _free_count.capacity()));
  6977 };
  6979 void G1CollectedHeap::verify_region_sets() {
  6980   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6982   // First, check the explicit lists.
  6983   _hrm.verify();
  6985     // Given that a concurrent operation might be adding regions to
  6986     // the secondary free list we have to take the lock before
  6987     // verifying it.
  6988     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6989     _secondary_free_list.verify_list();
  6992   // If a concurrent region freeing operation is in progress it will
  6993   // be difficult to correctly attributed any free regions we come
  6994   // across to the correct free list given that they might belong to
  6995   // one of several (free_list, secondary_free_list, any local lists,
  6996   // etc.). So, if that's the case we will skip the rest of the
  6997   // verification operation. Alternatively, waiting for the concurrent
  6998   // operation to complete will have a non-trivial effect on the GC's
  6999   // operation (no concurrent operation will last longer than the
  7000   // interval between two calls to verification) and it might hide
  7001   // any issues that we would like to catch during testing.
  7002   if (free_regions_coming()) {
  7003     return;
  7006   // Make sure we append the secondary_free_list on the free_list so
  7007   // that all free regions we will come across can be safely
  7008   // attributed to the free_list.
  7009   append_secondary_free_list_if_not_empty_with_lock();
  7011   // Finally, make sure that the region accounting in the lists is
  7012   // consistent with what we see in the heap.
  7014   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
  7015   heap_region_iterate(&cl);
  7016   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
  7019 // Optimized nmethod scanning
  7021 class RegisterNMethodOopClosure: public OopClosure {
  7022   G1CollectedHeap* _g1h;
  7023   nmethod* _nm;
  7025   template <class T> void do_oop_work(T* p) {
  7026     T heap_oop = oopDesc::load_heap_oop(p);
  7027     if (!oopDesc::is_null(heap_oop)) {
  7028       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  7029       HeapRegion* hr = _g1h->heap_region_containing(obj);
  7030       assert(!hr->continuesHumongous(),
  7031              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
  7032                      " starting at "HR_FORMAT,
  7033                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
  7035       // HeapRegion::add_strong_code_root() avoids adding duplicate
  7036       // entries but having duplicates is  OK since we "mark" nmethods
  7037       // as visited when we scan the strong code root lists during the GC.
  7038       hr->add_strong_code_root(_nm);
  7039       assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
  7040              err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
  7041                      _nm, HR_FORMAT_PARAMS(hr)));
  7045 public:
  7046   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  7047     _g1h(g1h), _nm(nm) {}
  7049   void do_oop(oop* p)       { do_oop_work(p); }
  7050   void do_oop(narrowOop* p) { do_oop_work(p); }
  7051 };
  7053 class UnregisterNMethodOopClosure: public OopClosure {
  7054   G1CollectedHeap* _g1h;
  7055   nmethod* _nm;
  7057   template <class T> void do_oop_work(T* p) {
  7058     T heap_oop = oopDesc::load_heap_oop(p);
  7059     if (!oopDesc::is_null(heap_oop)) {
  7060       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  7061       HeapRegion* hr = _g1h->heap_region_containing(obj);
  7062       assert(!hr->continuesHumongous(),
  7063              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
  7064                      " starting at "HR_FORMAT,
  7065                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
  7067       hr->remove_strong_code_root(_nm);
  7068       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
  7069              err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
  7070                      _nm, HR_FORMAT_PARAMS(hr)));
  7074 public:
  7075   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  7076     _g1h(g1h), _nm(nm) {}
  7078   void do_oop(oop* p)       { do_oop_work(p); }
  7079   void do_oop(narrowOop* p) { do_oop_work(p); }
  7080 };
  7082 void G1CollectedHeap::register_nmethod(nmethod* nm) {
  7083   CollectedHeap::register_nmethod(nm);
  7085   guarantee(nm != NULL, "sanity");
  7086   RegisterNMethodOopClosure reg_cl(this, nm);
  7087   nm->oops_do(&reg_cl);
  7090 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  7091   CollectedHeap::unregister_nmethod(nm);
  7093   guarantee(nm != NULL, "sanity");
  7094   UnregisterNMethodOopClosure reg_cl(this, nm);
  7095   nm->oops_do(&reg_cl, true);
  7098 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
  7099 public:
  7100   bool doHeapRegion(HeapRegion *hr) {
  7101     assert(!hr->isHumongous(),
  7102            err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
  7103                    HR_FORMAT_PARAMS(hr)));
  7104     hr->migrate_strong_code_roots();
  7105     return false;
  7107 };
  7109 void G1CollectedHeap::migrate_strong_code_roots() {
  7110   MigrateCodeRootsHeapRegionClosure cl;
  7111   double migrate_start = os::elapsedTime();
  7112   collection_set_iterate(&cl);
  7113   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
  7114   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
  7117 void G1CollectedHeap::purge_code_root_memory() {
  7118   double purge_start = os::elapsedTime();
  7119   G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
  7120   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
  7121   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
  7124 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  7125   G1CollectedHeap* _g1h;
  7127 public:
  7128   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
  7129     _g1h(g1h) {}
  7131   void do_code_blob(CodeBlob* cb) {
  7132     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
  7133     if (nm == NULL) {
  7134       return;
  7137     if (ScavengeRootsInCode) {
  7138       _g1h->register_nmethod(nm);
  7141 };
  7143 void G1CollectedHeap::rebuild_strong_code_roots() {
  7144   RebuildStrongCodeRootClosure blob_cl(this);
  7145   CodeCache::blobs_do(&blob_cl);

mercurial