src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Fri, 05 Sep 2014 09:49:19 +0200

author
sjohanss
date
Fri, 05 Sep 2014 09:49:19 +0200
changeset 7118
227a9e5e4b4a
parent 7091
a8ea2f110d87
child 7159
e5668dcf12e9
permissions
-rw-r--r--

8057536: Refactor G1 to allow context specific allocations
Summary: Splitting out a g1 allocator class to simply specialized allocators which can associate each allocation with a given context.
Reviewed-by: mgerdin, brutisso

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #if !defined(__clang_major__) && defined(__GNUC__)
    26 #define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
    27 #endif
    29 #include "precompiled.hpp"
    30 #include "code/codeCache.hpp"
    31 #include "code/icBuffer.hpp"
    32 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    33 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    34 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    35 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    36 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    37 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    38 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    39 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    40 #include "gc_implementation/g1/g1EvacFailure.hpp"
    41 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    42 #include "gc_implementation/g1/g1Log.hpp"
    43 #include "gc_implementation/g1/g1MarkSweep.hpp"
    44 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    45 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
    46 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
    47 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    48 #include "gc_implementation/g1/g1StringDedup.hpp"
    49 #include "gc_implementation/g1/g1YCTypes.hpp"
    50 #include "gc_implementation/g1/heapRegion.inline.hpp"
    51 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    52 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
    53 #include "gc_implementation/g1/vm_operations_g1.hpp"
    54 #include "gc_implementation/shared/gcHeapSummary.hpp"
    55 #include "gc_implementation/shared/gcTimer.hpp"
    56 #include "gc_implementation/shared/gcTrace.hpp"
    57 #include "gc_implementation/shared/gcTraceTime.hpp"
    58 #include "gc_implementation/shared/isGCActiveMark.hpp"
    59 #include "memory/allocation.hpp"
    60 #include "memory/gcLocker.inline.hpp"
    61 #include "memory/generationSpec.hpp"
    62 #include "memory/iterator.hpp"
    63 #include "memory/referenceProcessor.hpp"
    64 #include "oops/oop.inline.hpp"
    65 #include "oops/oop.pcgc.inline.hpp"
    66 #include "runtime/orderAccess.inline.hpp"
    67 #include "runtime/vmThread.hpp"
    69 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    71 // turn it on so that the contents of the young list (scan-only /
    72 // to-be-collected) are printed at "strategic" points before / during
    73 // / after the collection --- this is useful for debugging
    74 #define YOUNG_LIST_VERBOSE 0
    75 // CURRENT STATUS
    76 // This file is under construction.  Search for "FIXME".
    78 // INVARIANTS/NOTES
    79 //
    80 // All allocation activity covered by the G1CollectedHeap interface is
    81 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    82 // and allocate_new_tlab, which are the "entry" points to the
    83 // allocation code from the rest of the JVM.  (Note that this does not
    84 // apply to TLAB allocation, which is not part of this interface: it
    85 // is done by clients of this interface.)
    87 // Notes on implementation of parallelism in different tasks.
    88 //
    89 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
    90 // The number of GC workers is passed to heap_region_par_iterate_chunked().
    91 // It does use run_task() which sets _n_workers in the task.
    92 // G1ParTask executes g1_process_roots() ->
    93 // SharedHeap::process_roots() which calls eventually to
    94 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
    95 // SequentialSubTasksDone.  SharedHeap::process_roots() also
    96 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
    97 //
    99 // Local to this file.
   101 class RefineCardTableEntryClosure: public CardTableEntryClosure {
   102   bool _concurrent;
   103 public:
   104   RefineCardTableEntryClosure() : _concurrent(true) { }
   106   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   107     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
   108     // This path is executed by the concurrent refine or mutator threads,
   109     // concurrently, and so we do not care if card_ptr contains references
   110     // that point into the collection set.
   111     assert(!oops_into_cset, "should be");
   113     if (_concurrent && SuspendibleThreadSet::should_yield()) {
   114       // Caller will actually yield.
   115       return false;
   116     }
   117     // Otherwise, we finished successfully; return true.
   118     return true;
   119   }
   121   void set_concurrent(bool b) { _concurrent = b; }
   122 };
   125 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   126   size_t _num_processed;
   127   CardTableModRefBS* _ctbs;
   128   int _histo[256];
   130  public:
   131   ClearLoggedCardTableEntryClosure() :
   132     _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
   133   {
   134     for (int i = 0; i < 256; i++) _histo[i] = 0;
   135   }
   137   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   138     unsigned char* ujb = (unsigned char*)card_ptr;
   139     int ind = (int)(*ujb);
   140     _histo[ind]++;
   142     *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
   143     _num_processed++;
   145     return true;
   146   }
   148   size_t num_processed() { return _num_processed; }
   150   void print_histo() {
   151     gclog_or_tty->print_cr("Card table value histogram:");
   152     for (int i = 0; i < 256; i++) {
   153       if (_histo[i] != 0) {
   154         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   155       }
   156     }
   157   }
   158 };
   160 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
   161  private:
   162   size_t _num_processed;
   164  public:
   165   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
   167   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   168     *card_ptr = CardTableModRefBS::dirty_card_val();
   169     _num_processed++;
   170     return true;
   171   }
   173   size_t num_processed() const { return _num_processed; }
   174 };
   176 YoungList::YoungList(G1CollectedHeap* g1h) :
   177     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
   178     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
   179   guarantee(check_list_empty(false), "just making sure...");
   180 }
   182 void YoungList::push_region(HeapRegion *hr) {
   183   assert(!hr->is_young(), "should not already be young");
   184   assert(hr->get_next_young_region() == NULL, "cause it should!");
   186   hr->set_next_young_region(_head);
   187   _head = hr;
   189   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   190   ++_length;
   191 }
   193 void YoungList::add_survivor_region(HeapRegion* hr) {
   194   assert(hr->is_survivor(), "should be flagged as survivor region");
   195   assert(hr->get_next_young_region() == NULL, "cause it should!");
   197   hr->set_next_young_region(_survivor_head);
   198   if (_survivor_head == NULL) {
   199     _survivor_tail = hr;
   200   }
   201   _survivor_head = hr;
   202   ++_survivor_length;
   203 }
   205 void YoungList::empty_list(HeapRegion* list) {
   206   while (list != NULL) {
   207     HeapRegion* next = list->get_next_young_region();
   208     list->set_next_young_region(NULL);
   209     list->uninstall_surv_rate_group();
   210     list->set_not_young();
   211     list = next;
   212   }
   213 }
   215 void YoungList::empty_list() {
   216   assert(check_list_well_formed(), "young list should be well formed");
   218   empty_list(_head);
   219   _head = NULL;
   220   _length = 0;
   222   empty_list(_survivor_head);
   223   _survivor_head = NULL;
   224   _survivor_tail = NULL;
   225   _survivor_length = 0;
   227   _last_sampled_rs_lengths = 0;
   229   assert(check_list_empty(false), "just making sure...");
   230 }
   232 bool YoungList::check_list_well_formed() {
   233   bool ret = true;
   235   uint length = 0;
   236   HeapRegion* curr = _head;
   237   HeapRegion* last = NULL;
   238   while (curr != NULL) {
   239     if (!curr->is_young()) {
   240       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   241                              "incorrectly tagged (y: %d, surv: %d)",
   242                              curr->bottom(), curr->end(),
   243                              curr->is_young(), curr->is_survivor());
   244       ret = false;
   245     }
   246     ++length;
   247     last = curr;
   248     curr = curr->get_next_young_region();
   249   }
   250   ret = ret && (length == _length);
   252   if (!ret) {
   253     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   254     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
   255                            length, _length);
   256   }
   258   return ret;
   259 }
   261 bool YoungList::check_list_empty(bool check_sample) {
   262   bool ret = true;
   264   if (_length != 0) {
   265     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
   266                   _length);
   267     ret = false;
   268   }
   269   if (check_sample && _last_sampled_rs_lengths != 0) {
   270     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   271     ret = false;
   272   }
   273   if (_head != NULL) {
   274     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   275     ret = false;
   276   }
   277   if (!ret) {
   278     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   279   }
   281   return ret;
   282 }
   284 void
   285 YoungList::rs_length_sampling_init() {
   286   _sampled_rs_lengths = 0;
   287   _curr               = _head;
   288 }
   290 bool
   291 YoungList::rs_length_sampling_more() {
   292   return _curr != NULL;
   293 }
   295 void
   296 YoungList::rs_length_sampling_next() {
   297   assert( _curr != NULL, "invariant" );
   298   size_t rs_length = _curr->rem_set()->occupied();
   300   _sampled_rs_lengths += rs_length;
   302   // The current region may not yet have been added to the
   303   // incremental collection set (it gets added when it is
   304   // retired as the current allocation region).
   305   if (_curr->in_collection_set()) {
   306     // Update the collection set policy information for this region
   307     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   308   }
   310   _curr = _curr->get_next_young_region();
   311   if (_curr == NULL) {
   312     _last_sampled_rs_lengths = _sampled_rs_lengths;
   313     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   314   }
   315 }
   317 void
   318 YoungList::reset_auxilary_lists() {
   319   guarantee( is_empty(), "young list should be empty" );
   320   assert(check_list_well_formed(), "young list should be well formed");
   322   // Add survivor regions to SurvRateGroup.
   323   _g1h->g1_policy()->note_start_adding_survivor_regions();
   324   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   326   int young_index_in_cset = 0;
   327   for (HeapRegion* curr = _survivor_head;
   328        curr != NULL;
   329        curr = curr->get_next_young_region()) {
   330     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   332     // The region is a non-empty survivor so let's add it to
   333     // the incremental collection set for the next evacuation
   334     // pause.
   335     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   336     young_index_in_cset += 1;
   337   }
   338   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
   339   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   341   _head   = _survivor_head;
   342   _length = _survivor_length;
   343   if (_survivor_head != NULL) {
   344     assert(_survivor_tail != NULL, "cause it shouldn't be");
   345     assert(_survivor_length > 0, "invariant");
   346     _survivor_tail->set_next_young_region(NULL);
   347   }
   349   // Don't clear the survivor list handles until the start of
   350   // the next evacuation pause - we need it in order to re-tag
   351   // the survivor regions from this evacuation pause as 'young'
   352   // at the start of the next.
   354   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   356   assert(check_list_well_formed(), "young list should be well formed");
   357 }
   359 void YoungList::print() {
   360   HeapRegion* lists[] = {_head,   _survivor_head};
   361   const char* names[] = {"YOUNG", "SURVIVOR"};
   363   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   364     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   365     HeapRegion *curr = lists[list];
   366     if (curr == NULL)
   367       gclog_or_tty->print_cr("  empty");
   368     while (curr != NULL) {
   369       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
   370                              HR_FORMAT_PARAMS(curr),
   371                              curr->prev_top_at_mark_start(),
   372                              curr->next_top_at_mark_start(),
   373                              curr->age_in_surv_rate_group_cond());
   374       curr = curr->get_next_young_region();
   375     }
   376   }
   378   gclog_or_tty->cr();
   379 }
   381 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
   382   OtherRegionsTable::invalidate(start_idx, num_regions);
   383 }
   385 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions) {
   386   reset_from_card_cache(start_idx, num_regions);
   387 }
   389 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   390 {
   391   // Claim the right to put the region on the dirty cards region list
   392   // by installing a self pointer.
   393   HeapRegion* next = hr->get_next_dirty_cards_region();
   394   if (next == NULL) {
   395     HeapRegion* res = (HeapRegion*)
   396       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   397                           NULL);
   398     if (res == NULL) {
   399       HeapRegion* head;
   400       do {
   401         // Put the region to the dirty cards region list.
   402         head = _dirty_cards_region_list;
   403         next = (HeapRegion*)
   404           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   405         if (next == head) {
   406           assert(hr->get_next_dirty_cards_region() == hr,
   407                  "hr->get_next_dirty_cards_region() != hr");
   408           if (next == NULL) {
   409             // The last region in the list points to itself.
   410             hr->set_next_dirty_cards_region(hr);
   411           } else {
   412             hr->set_next_dirty_cards_region(next);
   413           }
   414         }
   415       } while (next != head);
   416     }
   417   }
   418 }
   420 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   421 {
   422   HeapRegion* head;
   423   HeapRegion* hr;
   424   do {
   425     head = _dirty_cards_region_list;
   426     if (head == NULL) {
   427       return NULL;
   428     }
   429     HeapRegion* new_head = head->get_next_dirty_cards_region();
   430     if (head == new_head) {
   431       // The last region.
   432       new_head = NULL;
   433     }
   434     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   435                                           head);
   436   } while (hr != head);
   437   assert(hr != NULL, "invariant");
   438   hr->set_next_dirty_cards_region(NULL);
   439   return hr;
   440 }
   442 #ifdef ASSERT
   443 // A region is added to the collection set as it is retired
   444 // so an address p can point to a region which will be in the
   445 // collection set but has not yet been retired.  This method
   446 // therefore is only accurate during a GC pause after all
   447 // regions have been retired.  It is used for debugging
   448 // to check if an nmethod has references to objects that can
   449 // be move during a partial collection.  Though it can be
   450 // inaccurate, it is sufficient for G1 because the conservative
   451 // implementation of is_scavengable() for G1 will indicate that
   452 // all nmethods must be scanned during a partial collection.
   453 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   454   if (p == NULL) {
   455     return false;
   456   }
   457   return heap_region_containing(p)->in_collection_set();
   458 }
   459 #endif
   461 // Returns true if the reference points to an object that
   462 // can move in an incremental collection.
   463 bool G1CollectedHeap::is_scavengable(const void* p) {
   464   HeapRegion* hr = heap_region_containing(p);
   465   return !hr->isHumongous();
   466 }
   468 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   469   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   470   CardTableModRefBS* ct_bs = g1_barrier_set();
   472   // Count the dirty cards at the start.
   473   CountNonCleanMemRegionClosure count1(this);
   474   ct_bs->mod_card_iterate(&count1);
   475   int orig_count = count1.n();
   477   // First clear the logged cards.
   478   ClearLoggedCardTableEntryClosure clear;
   479   dcqs.apply_closure_to_all_completed_buffers(&clear);
   480   dcqs.iterate_closure_all_threads(&clear, false);
   481   clear.print_histo();
   483   // Now ensure that there's no dirty cards.
   484   CountNonCleanMemRegionClosure count2(this);
   485   ct_bs->mod_card_iterate(&count2);
   486   if (count2.n() != 0) {
   487     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   488                            count2.n(), orig_count);
   489   }
   490   guarantee(count2.n() == 0, "Card table should be clean.");
   492   RedirtyLoggedCardTableEntryClosure redirty;
   493   dcqs.apply_closure_to_all_completed_buffers(&redirty);
   494   dcqs.iterate_closure_all_threads(&redirty, false);
   495   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   496                          clear.num_processed(), orig_count);
   497   guarantee(redirty.num_processed() == clear.num_processed(),
   498             err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
   499                     redirty.num_processed(), clear.num_processed()));
   501   CountNonCleanMemRegionClosure count3(this);
   502   ct_bs->mod_card_iterate(&count3);
   503   if (count3.n() != orig_count) {
   504     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   505                            orig_count, count3.n());
   506     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   507   }
   508 }
   510 // Private class members.
   512 G1CollectedHeap* G1CollectedHeap::_g1h;
   514 // Private methods.
   516 HeapRegion*
   517 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
   518   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   519   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   520     if (!_secondary_free_list.is_empty()) {
   521       if (G1ConcRegionFreeingVerbose) {
   522         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   523                                "secondary_free_list has %u entries",
   524                                _secondary_free_list.length());
   525       }
   526       // It looks as if there are free regions available on the
   527       // secondary_free_list. Let's move them to the free_list and try
   528       // again to allocate from it.
   529       append_secondary_free_list();
   531       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
   532              "empty we should have moved at least one entry to the free_list");
   533       HeapRegion* res = _hrm.allocate_free_region(is_old);
   534       if (G1ConcRegionFreeingVerbose) {
   535         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   536                                "allocated "HR_FORMAT" from secondary_free_list",
   537                                HR_FORMAT_PARAMS(res));
   538       }
   539       return res;
   540     }
   542     // Wait here until we get notified either when (a) there are no
   543     // more free regions coming or (b) some regions have been moved on
   544     // the secondary_free_list.
   545     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   546   }
   548   if (G1ConcRegionFreeingVerbose) {
   549     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   550                            "could not allocate from secondary_free_list");
   551   }
   552   return NULL;
   553 }
   555 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
   556   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   557          "the only time we use this to allocate a humongous region is "
   558          "when we are allocating a single humongous region");
   560   HeapRegion* res;
   561   if (G1StressConcRegionFreeing) {
   562     if (!_secondary_free_list.is_empty()) {
   563       if (G1ConcRegionFreeingVerbose) {
   564         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   565                                "forced to look at the secondary_free_list");
   566       }
   567       res = new_region_try_secondary_free_list(is_old);
   568       if (res != NULL) {
   569         return res;
   570       }
   571     }
   572   }
   574   res = _hrm.allocate_free_region(is_old);
   576   if (res == NULL) {
   577     if (G1ConcRegionFreeingVerbose) {
   578       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   579                              "res == NULL, trying the secondary_free_list");
   580     }
   581     res = new_region_try_secondary_free_list(is_old);
   582   }
   583   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   584     // Currently, only attempts to allocate GC alloc regions set
   585     // do_expand to true. So, we should only reach here during a
   586     // safepoint. If this assumption changes we might have to
   587     // reconsider the use of _expand_heap_after_alloc_failure.
   588     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   590     ergo_verbose1(ErgoHeapSizing,
   591                   "attempt heap expansion",
   592                   ergo_format_reason("region allocation request failed")
   593                   ergo_format_byte("allocation request"),
   594                   word_size * HeapWordSize);
   595     if (expand(word_size * HeapWordSize)) {
   596       // Given that expand() succeeded in expanding the heap, and we
   597       // always expand the heap by an amount aligned to the heap
   598       // region size, the free list should in theory not be empty.
   599       // In either case allocate_free_region() will check for NULL.
   600       res = _hrm.allocate_free_region(is_old);
   601     } else {
   602       _expand_heap_after_alloc_failure = false;
   603     }
   604   }
   605   return res;
   606 }
   608 HeapWord*
   609 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
   610                                                            uint num_regions,
   611                                                            size_t word_size,
   612                                                            AllocationContext_t context) {
   613   assert(first != G1_NO_HRM_INDEX, "pre-condition");
   614   assert(isHumongous(word_size), "word_size should be humongous");
   615   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   617   // Index of last region in the series + 1.
   618   uint last = first + num_regions;
   620   // We need to initialize the region(s) we just discovered. This is
   621   // a bit tricky given that it can happen concurrently with
   622   // refinement threads refining cards on these regions and
   623   // potentially wanting to refine the BOT as they are scanning
   624   // those cards (this can happen shortly after a cleanup; see CR
   625   // 6991377). So we have to set up the region(s) carefully and in
   626   // a specific order.
   628   // The word size sum of all the regions we will allocate.
   629   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
   630   assert(word_size <= word_size_sum, "sanity");
   632   // This will be the "starts humongous" region.
   633   HeapRegion* first_hr = region_at(first);
   634   // The header of the new object will be placed at the bottom of
   635   // the first region.
   636   HeapWord* new_obj = first_hr->bottom();
   637   // This will be the new end of the first region in the series that
   638   // should also match the end of the last region in the series.
   639   HeapWord* new_end = new_obj + word_size_sum;
   640   // This will be the new top of the first region that will reflect
   641   // this allocation.
   642   HeapWord* new_top = new_obj + word_size;
   644   // First, we need to zero the header of the space that we will be
   645   // allocating. When we update top further down, some refinement
   646   // threads might try to scan the region. By zeroing the header we
   647   // ensure that any thread that will try to scan the region will
   648   // come across the zero klass word and bail out.
   649   //
   650   // NOTE: It would not have been correct to have used
   651   // CollectedHeap::fill_with_object() and make the space look like
   652   // an int array. The thread that is doing the allocation will
   653   // later update the object header to a potentially different array
   654   // type and, for a very short period of time, the klass and length
   655   // fields will be inconsistent. This could cause a refinement
   656   // thread to calculate the object size incorrectly.
   657   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   659   // We will set up the first region as "starts humongous". This
   660   // will also update the BOT covering all the regions to reflect
   661   // that there is a single object that starts at the bottom of the
   662   // first region.
   663   first_hr->set_startsHumongous(new_top, new_end);
   664   first_hr->set_allocation_context(context);
   665   // Then, if there are any, we will set up the "continues
   666   // humongous" regions.
   667   HeapRegion* hr = NULL;
   668   for (uint i = first + 1; i < last; ++i) {
   669     hr = region_at(i);
   670     hr->set_continuesHumongous(first_hr);
   671     hr->set_allocation_context(context);
   672   }
   673   // If we have "continues humongous" regions (hr != NULL), then the
   674   // end of the last one should match new_end.
   675   assert(hr == NULL || hr->end() == new_end, "sanity");
   677   // Up to this point no concurrent thread would have been able to
   678   // do any scanning on any region in this series. All the top
   679   // fields still point to bottom, so the intersection between
   680   // [bottom,top] and [card_start,card_end] will be empty. Before we
   681   // update the top fields, we'll do a storestore to make sure that
   682   // no thread sees the update to top before the zeroing of the
   683   // object header and the BOT initialization.
   684   OrderAccess::storestore();
   686   // Now that the BOT and the object header have been initialized,
   687   // we can update top of the "starts humongous" region.
   688   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   689          "new_top should be in this region");
   690   first_hr->set_top(new_top);
   691   if (_hr_printer.is_active()) {
   692     HeapWord* bottom = first_hr->bottom();
   693     HeapWord* end = first_hr->orig_end();
   694     if ((first + 1) == last) {
   695       // the series has a single humongous region
   696       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   697     } else {
   698       // the series has more than one humongous regions
   699       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   700     }
   701   }
   703   // Now, we will update the top fields of the "continues humongous"
   704   // regions. The reason we need to do this is that, otherwise,
   705   // these regions would look empty and this will confuse parts of
   706   // G1. For example, the code that looks for a consecutive number
   707   // of empty regions will consider them empty and try to
   708   // re-allocate them. We can extend is_empty() to also include
   709   // !continuesHumongous(), but it is easier to just update the top
   710   // fields here. The way we set top for all regions (i.e., top ==
   711   // end for all regions but the last one, top == new_top for the
   712   // last one) is actually used when we will free up the humongous
   713   // region in free_humongous_region().
   714   hr = NULL;
   715   for (uint i = first + 1; i < last; ++i) {
   716     hr = region_at(i);
   717     if ((i + 1) == last) {
   718       // last continues humongous region
   719       assert(hr->bottom() < new_top && new_top <= hr->end(),
   720              "new_top should fall on this region");
   721       hr->set_top(new_top);
   722       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   723     } else {
   724       // not last one
   725       assert(new_top > hr->end(), "new_top should be above this region");
   726       hr->set_top(hr->end());
   727       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   728     }
   729   }
   730   // If we have continues humongous regions (hr != NULL), then the
   731   // end of the last one should match new_end and its top should
   732   // match new_top.
   733   assert(hr == NULL ||
   734          (hr->end() == new_end && hr->top() == new_top), "sanity");
   735   check_bitmaps("Humongous Region Allocation", first_hr);
   737   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   738   _allocator->increase_used(first_hr->used());
   739   _humongous_set.add(first_hr);
   741   return new_obj;
   742 }
   744 // If could fit into free regions w/o expansion, try.
   745 // Otherwise, if can expand, do so.
   746 // Otherwise, if using ex regions might help, try with ex given back.
   747 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
   748   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   750   verify_region_sets_optional();
   752   uint first = G1_NO_HRM_INDEX;
   753   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
   755   if (obj_regions == 1) {
   756     // Only one region to allocate, try to use a fast path by directly allocating
   757     // from the free lists. Do not try to expand here, we will potentially do that
   758     // later.
   759     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
   760     if (hr != NULL) {
   761       first = hr->hrm_index();
   762     }
   763   } else {
   764     // We can't allocate humongous regions spanning more than one region while
   765     // cleanupComplete() is running, since some of the regions we find to be
   766     // empty might not yet be added to the free list. It is not straightforward
   767     // to know in which list they are on so that we can remove them. We only
   768     // need to do this if we need to allocate more than one region to satisfy the
   769     // current humongous allocation request. If we are only allocating one region
   770     // we use the one-region region allocation code (see above), that already
   771     // potentially waits for regions from the secondary free list.
   772     wait_while_free_regions_coming();
   773     append_secondary_free_list_if_not_empty_with_lock();
   775     // Policy: Try only empty regions (i.e. already committed first). Maybe we
   776     // are lucky enough to find some.
   777     first = _hrm.find_contiguous_only_empty(obj_regions);
   778     if (first != G1_NO_HRM_INDEX) {
   779       _hrm.allocate_free_regions_starting_at(first, obj_regions);
   780     }
   781   }
   783   if (first == G1_NO_HRM_INDEX) {
   784     // Policy: We could not find enough regions for the humongous object in the
   785     // free list. Look through the heap to find a mix of free and uncommitted regions.
   786     // If so, try expansion.
   787     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
   788     if (first != G1_NO_HRM_INDEX) {
   789       // We found something. Make sure these regions are committed, i.e. expand
   790       // the heap. Alternatively we could do a defragmentation GC.
   791       ergo_verbose1(ErgoHeapSizing,
   792                     "attempt heap expansion",
   793                     ergo_format_reason("humongous allocation request failed")
   794                     ergo_format_byte("allocation request"),
   795                     word_size * HeapWordSize);
   797       _hrm.expand_at(first, obj_regions);
   798       g1_policy()->record_new_heap_size(num_regions());
   800 #ifdef ASSERT
   801       for (uint i = first; i < first + obj_regions; ++i) {
   802         HeapRegion* hr = region_at(i);
   803         assert(hr->is_empty(), "sanity");
   804         assert(is_on_master_free_list(hr), "sanity");
   805       }
   806 #endif
   807       _hrm.allocate_free_regions_starting_at(first, obj_regions);
   808     } else {
   809       // Policy: Potentially trigger a defragmentation GC.
   810     }
   811   }
   813   HeapWord* result = NULL;
   814   if (first != G1_NO_HRM_INDEX) {
   815     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
   816                                                        word_size, context);
   817     assert(result != NULL, "it should always return a valid result");
   819     // A successful humongous object allocation changes the used space
   820     // information of the old generation so we need to recalculate the
   821     // sizes and update the jstat counters here.
   822     g1mm()->update_sizes();
   823   }
   825   verify_region_sets_optional();
   827   return result;
   828 }
   830 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   831   assert_heap_not_locked_and_not_at_safepoint();
   832   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   834   unsigned int dummy_gc_count_before;
   835   int dummy_gclocker_retry_count = 0;
   836   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
   837 }
   839 HeapWord*
   840 G1CollectedHeap::mem_allocate(size_t word_size,
   841                               bool*  gc_overhead_limit_was_exceeded) {
   842   assert_heap_not_locked_and_not_at_safepoint();
   844   // Loop until the allocation is satisfied, or unsatisfied after GC.
   845   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
   846     unsigned int gc_count_before;
   848     HeapWord* result = NULL;
   849     if (!isHumongous(word_size)) {
   850       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
   851     } else {
   852       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
   853     }
   854     if (result != NULL) {
   855       return result;
   856     }
   858     // Create the garbage collection operation...
   859     VM_G1CollectForAllocation op(gc_count_before, word_size);
   860     op.set_allocation_context(AllocationContext::current());
   862     // ...and get the VM thread to execute it.
   863     VMThread::execute(&op);
   865     if (op.prologue_succeeded() && op.pause_succeeded()) {
   866       // If the operation was successful we'll return the result even
   867       // if it is NULL. If the allocation attempt failed immediately
   868       // after a Full GC, it's unlikely we'll be able to allocate now.
   869       HeapWord* result = op.result();
   870       if (result != NULL && !isHumongous(word_size)) {
   871         // Allocations that take place on VM operations do not do any
   872         // card dirtying and we have to do it here. We only have to do
   873         // this for non-humongous allocations, though.
   874         dirty_young_block(result, word_size);
   875       }
   876       return result;
   877     } else {
   878       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
   879         return NULL;
   880       }
   881       assert(op.result() == NULL,
   882              "the result should be NULL if the VM op did not succeed");
   883     }
   885     // Give a warning if we seem to be looping forever.
   886     if ((QueuedAllocationWarningCount > 0) &&
   887         (try_count % QueuedAllocationWarningCount == 0)) {
   888       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   889     }
   890   }
   892   ShouldNotReachHere();
   893   return NULL;
   894 }
   896 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   897                                                    AllocationContext_t context,
   898                                                    unsigned int *gc_count_before_ret,
   899                                                    int* gclocker_retry_count_ret) {
   900   // Make sure you read the note in attempt_allocation_humongous().
   902   assert_heap_not_locked_and_not_at_safepoint();
   903   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   904          "be called for humongous allocation requests");
   906   // We should only get here after the first-level allocation attempt
   907   // (attempt_allocation()) failed to allocate.
   909   // We will loop until a) we manage to successfully perform the
   910   // allocation or b) we successfully schedule a collection which
   911   // fails to perform the allocation. b) is the only case when we'll
   912   // return NULL.
   913   HeapWord* result = NULL;
   914   for (int try_count = 1; /* we'll return */; try_count += 1) {
   915     bool should_try_gc;
   916     unsigned int gc_count_before;
   918     {
   919       MutexLockerEx x(Heap_lock);
   920       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
   921                                                                                     false /* bot_updates */);
   922       if (result != NULL) {
   923         return result;
   924       }
   926       // If we reach here, attempt_allocation_locked() above failed to
   927       // allocate a new region. So the mutator alloc region should be NULL.
   928       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
   930       if (GC_locker::is_active_and_needs_gc()) {
   931         if (g1_policy()->can_expand_young_list()) {
   932           // No need for an ergo verbose message here,
   933           // can_expand_young_list() does this when it returns true.
   934           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
   935                                                                                        false /* bot_updates */);
   936           if (result != NULL) {
   937             return result;
   938           }
   939         }
   940         should_try_gc = false;
   941       } else {
   942         // The GCLocker may not be active but the GCLocker initiated
   943         // GC may not yet have been performed (GCLocker::needs_gc()
   944         // returns true). In this case we do not try this GC and
   945         // wait until the GCLocker initiated GC is performed, and
   946         // then retry the allocation.
   947         if (GC_locker::needs_gc()) {
   948           should_try_gc = false;
   949         } else {
   950           // Read the GC count while still holding the Heap_lock.
   951           gc_count_before = total_collections();
   952           should_try_gc = true;
   953         }
   954       }
   955     }
   957     if (should_try_gc) {
   958       bool succeeded;
   959       result = do_collection_pause(word_size, gc_count_before, &succeeded,
   960           GCCause::_g1_inc_collection_pause);
   961       if (result != NULL) {
   962         assert(succeeded, "only way to get back a non-NULL result");
   963         return result;
   964       }
   966       if (succeeded) {
   967         // If we get here we successfully scheduled a collection which
   968         // failed to allocate. No point in trying to allocate
   969         // further. We'll just return NULL.
   970         MutexLockerEx x(Heap_lock);
   971         *gc_count_before_ret = total_collections();
   972         return NULL;
   973       }
   974     } else {
   975       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
   976         MutexLockerEx x(Heap_lock);
   977         *gc_count_before_ret = total_collections();
   978         return NULL;
   979       }
   980       // The GCLocker is either active or the GCLocker initiated
   981       // GC has not yet been performed. Stall until it is and
   982       // then retry the allocation.
   983       GC_locker::stall_until_clear();
   984       (*gclocker_retry_count_ret) += 1;
   985     }
   987     // We can reach here if we were unsuccessful in scheduling a
   988     // collection (because another thread beat us to it) or if we were
   989     // stalled due to the GC locker. In either can we should retry the
   990     // allocation attempt in case another thread successfully
   991     // performed a collection and reclaimed enough space. We do the
   992     // first attempt (without holding the Heap_lock) here and the
   993     // follow-on attempt will be at the start of the next loop
   994     // iteration (after taking the Heap_lock).
   995     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
   996                                                                            false /* bot_updates */);
   997     if (result != NULL) {
   998       return result;
   999     }
  1001     // Give a warning if we seem to be looping forever.
  1002     if ((QueuedAllocationWarningCount > 0) &&
  1003         (try_count % QueuedAllocationWarningCount == 0)) {
  1004       warning("G1CollectedHeap::attempt_allocation_slow() "
  1005               "retries %d times", try_count);
  1009   ShouldNotReachHere();
  1010   return NULL;
  1013 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1014                                                         unsigned int * gc_count_before_ret,
  1015                                                         int* gclocker_retry_count_ret) {
  1016   // The structure of this method has a lot of similarities to
  1017   // attempt_allocation_slow(). The reason these two were not merged
  1018   // into a single one is that such a method would require several "if
  1019   // allocation is not humongous do this, otherwise do that"
  1020   // conditional paths which would obscure its flow. In fact, an early
  1021   // version of this code did use a unified method which was harder to
  1022   // follow and, as a result, it had subtle bugs that were hard to
  1023   // track down. So keeping these two methods separate allows each to
  1024   // be more readable. It will be good to keep these two in sync as
  1025   // much as possible.
  1027   assert_heap_not_locked_and_not_at_safepoint();
  1028   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1029          "should only be called for humongous allocations");
  1031   // Humongous objects can exhaust the heap quickly, so we should check if we
  1032   // need to start a marking cycle at each humongous object allocation. We do
  1033   // the check before we do the actual allocation. The reason for doing it
  1034   // before the allocation is that we avoid having to keep track of the newly
  1035   // allocated memory while we do a GC.
  1036   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
  1037                                            word_size)) {
  1038     collect(GCCause::_g1_humongous_allocation);
  1041   // We will loop until a) we manage to successfully perform the
  1042   // allocation or b) we successfully schedule a collection which
  1043   // fails to perform the allocation. b) is the only case when we'll
  1044   // return NULL.
  1045   HeapWord* result = NULL;
  1046   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1047     bool should_try_gc;
  1048     unsigned int gc_count_before;
  1051       MutexLockerEx x(Heap_lock);
  1053       // Given that humongous objects are not allocated in young
  1054       // regions, we'll first try to do the allocation without doing a
  1055       // collection hoping that there's enough space in the heap.
  1056       result = humongous_obj_allocate(word_size, AllocationContext::current());
  1057       if (result != NULL) {
  1058         return result;
  1061       if (GC_locker::is_active_and_needs_gc()) {
  1062         should_try_gc = false;
  1063       } else {
  1064          // The GCLocker may not be active but the GCLocker initiated
  1065         // GC may not yet have been performed (GCLocker::needs_gc()
  1066         // returns true). In this case we do not try this GC and
  1067         // wait until the GCLocker initiated GC is performed, and
  1068         // then retry the allocation.
  1069         if (GC_locker::needs_gc()) {
  1070           should_try_gc = false;
  1071         } else {
  1072           // Read the GC count while still holding the Heap_lock.
  1073           gc_count_before = total_collections();
  1074           should_try_gc = true;
  1079     if (should_try_gc) {
  1080       // If we failed to allocate the humongous object, we should try to
  1081       // do a collection pause (if we're allowed) in case it reclaims
  1082       // enough space for the allocation to succeed after the pause.
  1084       bool succeeded;
  1085       result = do_collection_pause(word_size, gc_count_before, &succeeded,
  1086           GCCause::_g1_humongous_allocation);
  1087       if (result != NULL) {
  1088         assert(succeeded, "only way to get back a non-NULL result");
  1089         return result;
  1092       if (succeeded) {
  1093         // If we get here we successfully scheduled a collection which
  1094         // failed to allocate. No point in trying to allocate
  1095         // further. We'll just return NULL.
  1096         MutexLockerEx x(Heap_lock);
  1097         *gc_count_before_ret = total_collections();
  1098         return NULL;
  1100     } else {
  1101       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
  1102         MutexLockerEx x(Heap_lock);
  1103         *gc_count_before_ret = total_collections();
  1104         return NULL;
  1106       // The GCLocker is either active or the GCLocker initiated
  1107       // GC has not yet been performed. Stall until it is and
  1108       // then retry the allocation.
  1109       GC_locker::stall_until_clear();
  1110       (*gclocker_retry_count_ret) += 1;
  1113     // We can reach here if we were unsuccessful in scheduling a
  1114     // collection (because another thread beat us to it) or if we were
  1115     // stalled due to the GC locker. In either can we should retry the
  1116     // allocation attempt in case another thread successfully
  1117     // performed a collection and reclaimed enough space.  Give a
  1118     // warning if we seem to be looping forever.
  1120     if ((QueuedAllocationWarningCount > 0) &&
  1121         (try_count % QueuedAllocationWarningCount == 0)) {
  1122       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1123               "retries %d times", try_count);
  1127   ShouldNotReachHere();
  1128   return NULL;
  1131 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1132                                                            AllocationContext_t context,
  1133                                                            bool expect_null_mutator_alloc_region) {
  1134   assert_at_safepoint(true /* should_be_vm_thread */);
  1135   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
  1136                                              !expect_null_mutator_alloc_region,
  1137          "the current alloc region was unexpectedly found to be non-NULL");
  1139   if (!isHumongous(word_size)) {
  1140     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
  1141                                                       false /* bot_updates */);
  1142   } else {
  1143     HeapWord* result = humongous_obj_allocate(word_size, context);
  1144     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
  1145       g1_policy()->set_initiate_conc_mark_if_possible();
  1147     return result;
  1150   ShouldNotReachHere();
  1153 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1154   G1CollectedHeap* _g1h;
  1155   ModRefBarrierSet* _mr_bs;
  1156 public:
  1157   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
  1158     _g1h(g1h), _mr_bs(mr_bs) {}
  1160   bool doHeapRegion(HeapRegion* r) {
  1161     HeapRegionRemSet* hrrs = r->rem_set();
  1163     if (r->continuesHumongous()) {
  1164       // We'll assert that the strong code root list and RSet is empty
  1165       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
  1166       assert(hrrs->occupied() == 0, "RSet should be empty");
  1167       return false;
  1170     _g1h->reset_gc_time_stamps(r);
  1171     hrrs->clear();
  1172     // You might think here that we could clear just the cards
  1173     // corresponding to the used region.  But no: if we leave a dirty card
  1174     // in a region we might allocate into, then it would prevent that card
  1175     // from being enqueued, and cause it to be missed.
  1176     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1177     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1179     return false;
  1181 };
  1183 void G1CollectedHeap::clear_rsets_post_compaction() {
  1184   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
  1185   heap_region_iterate(&rs_clear);
  1188 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1189   G1CollectedHeap*   _g1h;
  1190   UpdateRSOopClosure _cl;
  1191   int                _worker_i;
  1192 public:
  1193   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1194     _cl(g1->g1_rem_set(), worker_i),
  1195     _worker_i(worker_i),
  1196     _g1h(g1)
  1197   { }
  1199   bool doHeapRegion(HeapRegion* r) {
  1200     if (!r->continuesHumongous()) {
  1201       _cl.set_from(r);
  1202       r->oop_iterate(&_cl);
  1204     return false;
  1206 };
  1208 class ParRebuildRSTask: public AbstractGangTask {
  1209   G1CollectedHeap* _g1;
  1210 public:
  1211   ParRebuildRSTask(G1CollectedHeap* g1)
  1212     : AbstractGangTask("ParRebuildRSTask"),
  1213       _g1(g1)
  1214   { }
  1216   void work(uint worker_id) {
  1217     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1218     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1219                                           _g1->workers()->active_workers(),
  1220                                          HeapRegion::RebuildRSClaimValue);
  1222 };
  1224 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1225 private:
  1226   G1HRPrinter* _hr_printer;
  1227 public:
  1228   bool doHeapRegion(HeapRegion* hr) {
  1229     assert(!hr->is_young(), "not expecting to find young regions");
  1230     // We only generate output for non-empty regions.
  1231     if (!hr->is_empty()) {
  1232       if (!hr->isHumongous()) {
  1233         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1234       } else if (hr->startsHumongous()) {
  1235         if (hr->region_num() == 1) {
  1236           // single humongous region
  1237           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1238         } else {
  1239           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1241       } else {
  1242         assert(hr->continuesHumongous(), "only way to get here");
  1243         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1246     return false;
  1249   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1250     : _hr_printer(hr_printer) { }
  1251 };
  1253 void G1CollectedHeap::print_hrm_post_compaction() {
  1254   PostCompactionPrinterClosure cl(hr_printer());
  1255   heap_region_iterate(&cl);
  1258 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1259                                     bool clear_all_soft_refs,
  1260                                     size_t word_size) {
  1261   assert_at_safepoint(true /* should_be_vm_thread */);
  1263   if (GC_locker::check_active_before_gc()) {
  1264     return false;
  1267   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
  1268   gc_timer->register_gc_start();
  1270   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  1271   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
  1273   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1274   ResourceMark rm;
  1276   print_heap_before_gc();
  1277   trace_heap_before_gc(gc_tracer);
  1279   size_t metadata_prev_used = MetaspaceAux::used_bytes();
  1281   verify_region_sets_optional();
  1283   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1284                            collector_policy()->should_clear_all_soft_refs();
  1286   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1289     IsGCActiveMark x;
  1291     // Timing
  1292     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
  1293     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  1294     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  1297       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
  1298       TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1299       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1301       double start = os::elapsedTime();
  1302       g1_policy()->record_full_collection_start();
  1304       // Note: When we have a more flexible GC logging framework that
  1305       // allows us to add optional attributes to a GC log record we
  1306       // could consider timing and reporting how long we wait in the
  1307       // following two methods.
  1308       wait_while_free_regions_coming();
  1309       // If we start the compaction before the CM threads finish
  1310       // scanning the root regions we might trip them over as we'll
  1311       // be moving objects / updating references. So let's wait until
  1312       // they are done. By telling them to abort, they should complete
  1313       // early.
  1314       _cm->root_regions()->abort();
  1315       _cm->root_regions()->wait_until_scan_finished();
  1316       append_secondary_free_list_if_not_empty_with_lock();
  1318       gc_prologue(true);
  1319       increment_total_collections(true /* full gc */);
  1320       increment_old_marking_cycles_started();
  1322       assert(used() == recalculate_used(), "Should be equal");
  1324       verify_before_gc();
  1326       check_bitmaps("Full GC Start");
  1327       pre_full_gc_dump(gc_timer);
  1329       COMPILER2_PRESENT(DerivedPointerTable::clear());
  1331       // Disable discovery and empty the discovered lists
  1332       // for the CM ref processor.
  1333       ref_processor_cm()->disable_discovery();
  1334       ref_processor_cm()->abandon_partial_discovery();
  1335       ref_processor_cm()->verify_no_references_recorded();
  1337       // Abandon current iterations of concurrent marking and concurrent
  1338       // refinement, if any are in progress. We have to do this before
  1339       // wait_until_scan_finished() below.
  1340       concurrent_mark()->abort();
  1342       // Make sure we'll choose a new allocation region afterwards.
  1343       _allocator->release_mutator_alloc_region();
  1344       _allocator->abandon_gc_alloc_regions();
  1345       g1_rem_set()->cleanupHRRS();
  1347       // We should call this after we retire any currently active alloc
  1348       // regions so that all the ALLOC / RETIRE events are generated
  1349       // before the start GC event.
  1350       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1352       // We may have added regions to the current incremental collection
  1353       // set between the last GC or pause and now. We need to clear the
  1354       // incremental collection set and then start rebuilding it afresh
  1355       // after this full GC.
  1356       abandon_collection_set(g1_policy()->inc_cset_head());
  1357       g1_policy()->clear_incremental_cset();
  1358       g1_policy()->stop_incremental_cset_building();
  1360       tear_down_region_sets(false /* free_list_only */);
  1361       g1_policy()->set_gcs_are_young(true);
  1363       // See the comments in g1CollectedHeap.hpp and
  1364       // G1CollectedHeap::ref_processing_init() about
  1365       // how reference processing currently works in G1.
  1367       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1368       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1370       // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1371       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1373       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1374       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1376       // Do collection work
  1378         HandleMark hm;  // Discard invalid handles created during gc
  1379         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1382       assert(num_free_regions() == 0, "we should not have added any free regions");
  1383       rebuild_region_sets(false /* free_list_only */);
  1385       // Enqueue any discovered reference objects that have
  1386       // not been removed from the discovered lists.
  1387       ref_processor_stw()->enqueue_discovered_references();
  1389       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1391       MemoryService::track_memory_usage();
  1393       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1394       ref_processor_stw()->verify_no_references_recorded();
  1396       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  1397       ClassLoaderDataGraph::purge();
  1398       MetaspaceAux::verify_metrics();
  1400       // Note: since we've just done a full GC, concurrent
  1401       // marking is no longer active. Therefore we need not
  1402       // re-enable reference discovery for the CM ref processor.
  1403       // That will be done at the start of the next marking cycle.
  1404       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1405       ref_processor_cm()->verify_no_references_recorded();
  1407       reset_gc_time_stamp();
  1408       // Since everything potentially moved, we will clear all remembered
  1409       // sets, and clear all cards.  Later we will rebuild remembered
  1410       // sets. We will also reset the GC time stamps of the regions.
  1411       clear_rsets_post_compaction();
  1412       check_gc_time_stamps();
  1414       // Resize the heap if necessary.
  1415       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1417       if (_hr_printer.is_active()) {
  1418         // We should do this after we potentially resize the heap so
  1419         // that all the COMMIT / UNCOMMIT events are generated before
  1420         // the end GC event.
  1422         print_hrm_post_compaction();
  1423         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1426       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  1427       if (hot_card_cache->use_cache()) {
  1428         hot_card_cache->reset_card_counts();
  1429         hot_card_cache->reset_hot_cache();
  1432       // Rebuild remembered sets of all regions.
  1433       if (G1CollectedHeap::use_parallel_gc_threads()) {
  1434         uint n_workers =
  1435           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1436                                                   workers()->active_workers(),
  1437                                                   Threads::number_of_non_daemon_threads());
  1438         assert(UseDynamicNumberOfGCThreads ||
  1439                n_workers == workers()->total_workers(),
  1440                "If not dynamic should be using all the  workers");
  1441         workers()->set_active_workers(n_workers);
  1442         // Set parallel threads in the heap (_n_par_threads) only
  1443         // before a parallel phase and always reset it to 0 after
  1444         // the phase so that the number of parallel threads does
  1445         // no get carried forward to a serial phase where there
  1446         // may be code that is "possibly_parallel".
  1447         set_par_threads(n_workers);
  1449         ParRebuildRSTask rebuild_rs_task(this);
  1450         assert(check_heap_region_claim_values(
  1451                HeapRegion::InitialClaimValue), "sanity check");
  1452         assert(UseDynamicNumberOfGCThreads ||
  1453                workers()->active_workers() == workers()->total_workers(),
  1454                "Unless dynamic should use total workers");
  1455         // Use the most recent number of  active workers
  1456         assert(workers()->active_workers() > 0,
  1457                "Active workers not properly set");
  1458         set_par_threads(workers()->active_workers());
  1459         workers()->run_task(&rebuild_rs_task);
  1460         set_par_threads(0);
  1461         assert(check_heap_region_claim_values(
  1462                HeapRegion::RebuildRSClaimValue), "sanity check");
  1463         reset_heap_region_claim_values();
  1464       } else {
  1465         RebuildRSOutOfRegionClosure rebuild_rs(this);
  1466         heap_region_iterate(&rebuild_rs);
  1469       // Rebuild the strong code root lists for each region
  1470       rebuild_strong_code_roots();
  1472       if (true) { // FIXME
  1473         MetaspaceGC::compute_new_size();
  1476 #ifdef TRACESPINNING
  1477       ParallelTaskTerminator::print_termination_counts();
  1478 #endif
  1480       // Discard all rset updates
  1481       JavaThread::dirty_card_queue_set().abandon_logs();
  1482       assert(!G1DeferredRSUpdate
  1483              || (G1DeferredRSUpdate &&
  1484                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1486       _young_list->reset_sampled_info();
  1487       // At this point there should be no regions in the
  1488       // entire heap tagged as young.
  1489       assert(check_young_list_empty(true /* check_heap */),
  1490              "young list should be empty at this point");
  1492       // Update the number of full collections that have been completed.
  1493       increment_old_marking_cycles_completed(false /* concurrent */);
  1495       _hrm.verify_optional();
  1496       verify_region_sets_optional();
  1498       verify_after_gc();
  1500       // Clear the previous marking bitmap, if needed for bitmap verification.
  1501       // Note we cannot do this when we clear the next marking bitmap in
  1502       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
  1503       // objects marked during a full GC against the previous bitmap.
  1504       // But we need to clear it before calling check_bitmaps below since
  1505       // the full GC has compacted objects and updated TAMS but not updated
  1506       // the prev bitmap.
  1507       if (G1VerifyBitmaps) {
  1508         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
  1510       check_bitmaps("Full GC End");
  1512       // Start a new incremental collection set for the next pause
  1513       assert(g1_policy()->collection_set() == NULL, "must be");
  1514       g1_policy()->start_incremental_cset_building();
  1516       clear_cset_fast_test();
  1518       _allocator->init_mutator_alloc_region();
  1520       double end = os::elapsedTime();
  1521       g1_policy()->record_full_collection_end();
  1523       if (G1Log::fine()) {
  1524         g1_policy()->print_heap_transition();
  1527       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  1528       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  1529       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  1530       // before any GC notifications are raised.
  1531       g1mm()->update_sizes();
  1533       gc_epilogue(true);
  1536     if (G1Log::finer()) {
  1537       g1_policy()->print_detailed_heap_transition(true /* full */);
  1540     print_heap_after_gc();
  1541     trace_heap_after_gc(gc_tracer);
  1543     post_full_gc_dump(gc_timer);
  1545     gc_timer->register_gc_end();
  1546     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
  1549   return true;
  1552 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1553   // do_collection() will return whether it succeeded in performing
  1554   // the GC. Currently, there is no facility on the
  1555   // do_full_collection() API to notify the caller than the collection
  1556   // did not succeed (e.g., because it was locked out by the GC
  1557   // locker). So, right now, we'll ignore the return value.
  1558   bool dummy = do_collection(true,                /* explicit_gc */
  1559                              clear_all_soft_refs,
  1560                              0                    /* word_size */);
  1563 // This code is mostly copied from TenuredGeneration.
  1564 void
  1565 G1CollectedHeap::
  1566 resize_if_necessary_after_full_collection(size_t word_size) {
  1567   // Include the current allocation, if any, and bytes that will be
  1568   // pre-allocated to support collections, as "used".
  1569   const size_t used_after_gc = used();
  1570   const size_t capacity_after_gc = capacity();
  1571   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1573   // This is enforced in arguments.cpp.
  1574   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1575          "otherwise the code below doesn't make sense");
  1577   // We don't have floating point command-line arguments
  1578   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1579   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1580   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1581   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1583   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1584   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1586   // We have to be careful here as these two calculations can overflow
  1587   // 32-bit size_t's.
  1588   double used_after_gc_d = (double) used_after_gc;
  1589   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1590   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1592   // Let's make sure that they are both under the max heap size, which
  1593   // by default will make them fit into a size_t.
  1594   double desired_capacity_upper_bound = (double) max_heap_size;
  1595   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1596                                     desired_capacity_upper_bound);
  1597   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1598                                     desired_capacity_upper_bound);
  1600   // We can now safely turn them into size_t's.
  1601   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1602   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1604   // This assert only makes sense here, before we adjust them
  1605   // with respect to the min and max heap size.
  1606   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1607          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1608                  "maximum_desired_capacity = "SIZE_FORMAT,
  1609                  minimum_desired_capacity, maximum_desired_capacity));
  1611   // Should not be greater than the heap max size. No need to adjust
  1612   // it with respect to the heap min size as it's a lower bound (i.e.,
  1613   // we'll try to make the capacity larger than it, not smaller).
  1614   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1615   // Should not be less than the heap min size. No need to adjust it
  1616   // with respect to the heap max size as it's an upper bound (i.e.,
  1617   // we'll try to make the capacity smaller than it, not greater).
  1618   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1620   if (capacity_after_gc < minimum_desired_capacity) {
  1621     // Don't expand unless it's significant
  1622     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1623     ergo_verbose4(ErgoHeapSizing,
  1624                   "attempt heap expansion",
  1625                   ergo_format_reason("capacity lower than "
  1626                                      "min desired capacity after Full GC")
  1627                   ergo_format_byte("capacity")
  1628                   ergo_format_byte("occupancy")
  1629                   ergo_format_byte_perc("min desired capacity"),
  1630                   capacity_after_gc, used_after_gc,
  1631                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1632     expand(expand_bytes);
  1634     // No expansion, now see if we want to shrink
  1635   } else if (capacity_after_gc > maximum_desired_capacity) {
  1636     // Capacity too large, compute shrinking size
  1637     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1638     ergo_verbose4(ErgoHeapSizing,
  1639                   "attempt heap shrinking",
  1640                   ergo_format_reason("capacity higher than "
  1641                                      "max desired capacity after Full GC")
  1642                   ergo_format_byte("capacity")
  1643                   ergo_format_byte("occupancy")
  1644                   ergo_format_byte_perc("max desired capacity"),
  1645                   capacity_after_gc, used_after_gc,
  1646                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1647     shrink(shrink_bytes);
  1652 HeapWord*
  1653 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1654                                            AllocationContext_t context,
  1655                                            bool* succeeded) {
  1656   assert_at_safepoint(true /* should_be_vm_thread */);
  1658   *succeeded = true;
  1659   // Let's attempt the allocation first.
  1660   HeapWord* result =
  1661     attempt_allocation_at_safepoint(word_size,
  1662                                     context,
  1663                                     false /* expect_null_mutator_alloc_region */);
  1664   if (result != NULL) {
  1665     assert(*succeeded, "sanity");
  1666     return result;
  1669   // In a G1 heap, we're supposed to keep allocation from failing by
  1670   // incremental pauses.  Therefore, at least for now, we'll favor
  1671   // expansion over collection.  (This might change in the future if we can
  1672   // do something smarter than full collection to satisfy a failed alloc.)
  1673   result = expand_and_allocate(word_size, context);
  1674   if (result != NULL) {
  1675     assert(*succeeded, "sanity");
  1676     return result;
  1679   // Expansion didn't work, we'll try to do a Full GC.
  1680   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1681                                     false, /* clear_all_soft_refs */
  1682                                     word_size);
  1683   if (!gc_succeeded) {
  1684     *succeeded = false;
  1685     return NULL;
  1688   // Retry the allocation
  1689   result = attempt_allocation_at_safepoint(word_size,
  1690                                            context,
  1691                                            true /* expect_null_mutator_alloc_region */);
  1692   if (result != NULL) {
  1693     assert(*succeeded, "sanity");
  1694     return result;
  1697   // Then, try a Full GC that will collect all soft references.
  1698   gc_succeeded = do_collection(false, /* explicit_gc */
  1699                                true,  /* clear_all_soft_refs */
  1700                                word_size);
  1701   if (!gc_succeeded) {
  1702     *succeeded = false;
  1703     return NULL;
  1706   // Retry the allocation once more
  1707   result = attempt_allocation_at_safepoint(word_size,
  1708                                            context,
  1709                                            true /* expect_null_mutator_alloc_region */);
  1710   if (result != NULL) {
  1711     assert(*succeeded, "sanity");
  1712     return result;
  1715   assert(!collector_policy()->should_clear_all_soft_refs(),
  1716          "Flag should have been handled and cleared prior to this point");
  1718   // What else?  We might try synchronous finalization later.  If the total
  1719   // space available is large enough for the allocation, then a more
  1720   // complete compaction phase than we've tried so far might be
  1721   // appropriate.
  1722   assert(*succeeded, "sanity");
  1723   return NULL;
  1726 // Attempting to expand the heap sufficiently
  1727 // to support an allocation of the given "word_size".  If
  1728 // successful, perform the allocation and return the address of the
  1729 // allocated block, or else "NULL".
  1731 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
  1732   assert_at_safepoint(true /* should_be_vm_thread */);
  1734   verify_region_sets_optional();
  1736   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1737   ergo_verbose1(ErgoHeapSizing,
  1738                 "attempt heap expansion",
  1739                 ergo_format_reason("allocation request failed")
  1740                 ergo_format_byte("allocation request"),
  1741                 word_size * HeapWordSize);
  1742   if (expand(expand_bytes)) {
  1743     _hrm.verify_optional();
  1744     verify_region_sets_optional();
  1745     return attempt_allocation_at_safepoint(word_size,
  1746                                            context,
  1747                                            false /* expect_null_mutator_alloc_region */);
  1749   return NULL;
  1752 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1753   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1754   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1755                                        HeapRegion::GrainBytes);
  1756   ergo_verbose2(ErgoHeapSizing,
  1757                 "expand the heap",
  1758                 ergo_format_byte("requested expansion amount")
  1759                 ergo_format_byte("attempted expansion amount"),
  1760                 expand_bytes, aligned_expand_bytes);
  1762   if (is_maximal_no_gc()) {
  1763     ergo_verbose0(ErgoHeapSizing,
  1764                       "did not expand the heap",
  1765                       ergo_format_reason("heap already fully expanded"));
  1766     return false;
  1769   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
  1770   assert(regions_to_expand > 0, "Must expand by at least one region");
  1772   uint expanded_by = _hrm.expand_by(regions_to_expand);
  1774   if (expanded_by > 0) {
  1775     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
  1776     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1777     g1_policy()->record_new_heap_size(num_regions());
  1778   } else {
  1779     ergo_verbose0(ErgoHeapSizing,
  1780                   "did not expand the heap",
  1781                   ergo_format_reason("heap expansion operation failed"));
  1782     // The expansion of the virtual storage space was unsuccessful.
  1783     // Let's see if it was because we ran out of swap.
  1784     if (G1ExitOnExpansionFailure &&
  1785         _hrm.available() >= regions_to_expand) {
  1786       // We had head room...
  1787       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
  1790   return regions_to_expand > 0;
  1793 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1794   size_t aligned_shrink_bytes =
  1795     ReservedSpace::page_align_size_down(shrink_bytes);
  1796   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1797                                          HeapRegion::GrainBytes);
  1798   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
  1800   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
  1801   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
  1803   ergo_verbose3(ErgoHeapSizing,
  1804                 "shrink the heap",
  1805                 ergo_format_byte("requested shrinking amount")
  1806                 ergo_format_byte("aligned shrinking amount")
  1807                 ergo_format_byte("attempted shrinking amount"),
  1808                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  1809   if (num_regions_removed > 0) {
  1810     g1_policy()->record_new_heap_size(num_regions());
  1811   } else {
  1812     ergo_verbose0(ErgoHeapSizing,
  1813                   "did not shrink the heap",
  1814                   ergo_format_reason("heap shrinking operation failed"));
  1818 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1819   verify_region_sets_optional();
  1821   // We should only reach here at the end of a Full GC which means we
  1822   // should not not be holding to any GC alloc regions. The method
  1823   // below will make sure of that and do any remaining clean up.
  1824   _allocator->abandon_gc_alloc_regions();
  1826   // Instead of tearing down / rebuilding the free lists here, we
  1827   // could instead use the remove_all_pending() method on free_list to
  1828   // remove only the ones that we need to remove.
  1829   tear_down_region_sets(true /* free_list_only */);
  1830   shrink_helper(shrink_bytes);
  1831   rebuild_region_sets(true /* free_list_only */);
  1833   _hrm.verify_optional();
  1834   verify_region_sets_optional();
  1837 // Public methods.
  1839 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1840 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1841 #endif // _MSC_VER
  1844 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1845   SharedHeap(policy_),
  1846   _g1_policy(policy_),
  1847   _dirty_card_queue_set(false),
  1848   _into_cset_dirty_card_queue_set(false),
  1849   _is_alive_closure_cm(this),
  1850   _is_alive_closure_stw(this),
  1851   _ref_processor_cm(NULL),
  1852   _ref_processor_stw(NULL),
  1853   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1854   _bot_shared(NULL),
  1855   _evac_failure_scan_stack(NULL),
  1856   _mark_in_progress(false),
  1857   _cg1r(NULL),
  1858   _g1mm(NULL),
  1859   _refine_cte_cl(NULL),
  1860   _full_collection(false),
  1861   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
  1862   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
  1863   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
  1864   _humongous_is_live(),
  1865   _has_humongous_reclaim_candidates(false),
  1866   _free_regions_coming(false),
  1867   _young_list(new YoungList(this)),
  1868   _gc_time_stamp(0),
  1869   _survivor_plab_stats(YoungPLABSize, PLABWeight),
  1870   _old_plab_stats(OldPLABSize, PLABWeight),
  1871   _expand_heap_after_alloc_failure(true),
  1872   _surviving_young_words(NULL),
  1873   _old_marking_cycles_started(0),
  1874   _old_marking_cycles_completed(0),
  1875   _concurrent_cycle_started(false),
  1876   _in_cset_fast_test(),
  1877   _dirty_cards_region_list(NULL),
  1878   _worker_cset_start_region(NULL),
  1879   _worker_cset_start_region_time_stamp(NULL),
  1880   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  1881   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  1882   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  1883   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
  1885   _g1h = this;
  1886   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1887     vm_exit_during_initialization("Failed necessary allocation.");
  1890   _allocator = G1Allocator::create_allocator(_g1h);
  1891   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1893   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1894   _task_queues = new RefToScanQueueSet(n_queues);
  1896   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1897   assert(n_rem_sets > 0, "Invariant.");
  1899   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  1900   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
  1901   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
  1903   for (int i = 0; i < n_queues; i++) {
  1904     RefToScanQueue* q = new RefToScanQueue();
  1905     q->initialize();
  1906     _task_queues->register_queue(i, q);
  1907     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
  1909   clear_cset_start_regions();
  1911   // Initialize the G1EvacuationFailureALot counters and flags.
  1912   NOT_PRODUCT(reset_evacuation_should_fail();)
  1914   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1917 jint G1CollectedHeap::initialize() {
  1918   CollectedHeap::pre_initialize();
  1919   os::enable_vtime();
  1921   G1Log::init();
  1923   // Necessary to satisfy locking discipline assertions.
  1925   MutexLocker x(Heap_lock);
  1927   // We have to initialize the printer before committing the heap, as
  1928   // it will be used then.
  1929   _hr_printer.set_active(G1PrintHeapRegions);
  1931   // While there are no constraints in the GC code that HeapWordSize
  1932   // be any particular value, there are multiple other areas in the
  1933   // system which believe this to be true (e.g. oop->object_size in some
  1934   // cases incorrectly returns the size in wordSize units rather than
  1935   // HeapWordSize).
  1936   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1938   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1939   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1940   size_t heap_alignment = collector_policy()->heap_alignment();
  1942   // Ensure that the sizes are properly aligned.
  1943   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1944   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1945   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
  1947   _refine_cte_cl = new RefineCardTableEntryClosure();
  1949   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
  1951   // Reserve the maximum.
  1953   // When compressed oops are enabled, the preferred heap base
  1954   // is calculated by subtracting the requested size from the
  1955   // 32Gb boundary and using the result as the base address for
  1956   // heap reservation. If the requested size is not aligned to
  1957   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  1958   // into the ReservedHeapSpace constructor) then the actual
  1959   // base of the reserved heap may end up differing from the
  1960   // address that was requested (i.e. the preferred heap base).
  1961   // If this happens then we could end up using a non-optimal
  1962   // compressed oops mode.
  1964   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
  1965                                                  heap_alignment);
  1967   // It is important to do this in a way such that concurrent readers can't
  1968   // temporarily think something is in the heap.  (I've actually seen this
  1969   // happen in asserts: DLD.)
  1970   _reserved.set_word_size(0);
  1971   _reserved.set_start((HeapWord*)heap_rs.base());
  1972   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1974   // Create the gen rem set (and barrier set) for the entire reserved region.
  1975   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1976   set_barrier_set(rem_set()->bs());
  1977   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
  1978     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
  1979     return JNI_ENOMEM;
  1982   // Also create a G1 rem set.
  1983   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
  1985   // Carve out the G1 part of the heap.
  1987   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
  1988   G1RegionToSpaceMapper* heap_storage =
  1989     G1RegionToSpaceMapper::create_mapper(g1_rs,
  1990                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
  1991                                          HeapRegion::GrainBytes,
  1992                                          1,
  1993                                          mtJavaHeap);
  1994   heap_storage->set_mapping_changed_listener(&_listener);
  1996   // Reserve space for the block offset table. We do not support automatic uncommit
  1997   // for the card table at this time. BOT only.
  1998   ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
  1999   G1RegionToSpaceMapper* bot_storage =
  2000     G1RegionToSpaceMapper::create_mapper(bot_rs,
  2001                                          os::vm_page_size(),
  2002                                          HeapRegion::GrainBytes,
  2003                                          G1BlockOffsetSharedArray::N_bytes,
  2004                                          mtGC);
  2006   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
  2007   G1RegionToSpaceMapper* cardtable_storage =
  2008     G1RegionToSpaceMapper::create_mapper(cardtable_rs,
  2009                                          os::vm_page_size(),
  2010                                          HeapRegion::GrainBytes,
  2011                                          G1BlockOffsetSharedArray::N_bytes,
  2012                                          mtGC);
  2014   // Reserve space for the card counts table.
  2015   ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
  2016   G1RegionToSpaceMapper* card_counts_storage =
  2017     G1RegionToSpaceMapper::create_mapper(card_counts_rs,
  2018                                          os::vm_page_size(),
  2019                                          HeapRegion::GrainBytes,
  2020                                          G1BlockOffsetSharedArray::N_bytes,
  2021                                          mtGC);
  2023   // Reserve space for prev and next bitmap.
  2024   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
  2026   ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
  2027   G1RegionToSpaceMapper* prev_bitmap_storage =
  2028     G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs,
  2029                                          os::vm_page_size(),
  2030                                          HeapRegion::GrainBytes,
  2031                                          CMBitMap::mark_distance(),
  2032                                          mtGC);
  2034   ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
  2035   G1RegionToSpaceMapper* next_bitmap_storage =
  2036     G1RegionToSpaceMapper::create_mapper(next_bitmap_rs,
  2037                                          os::vm_page_size(),
  2038                                          HeapRegion::GrainBytes,
  2039                                          CMBitMap::mark_distance(),
  2040                                          mtGC);
  2042   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
  2043   g1_barrier_set()->initialize(cardtable_storage);
  2044    // Do later initialization work for concurrent refinement.
  2045   _cg1r->init(card_counts_storage);
  2047   // 6843694 - ensure that the maximum region index can fit
  2048   // in the remembered set structures.
  2049   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2050   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2052   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2053   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2054   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  2055             "too many cards per region");
  2057   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
  2059   _bot_shared = new G1BlockOffsetSharedArray(_reserved, bot_storage);
  2061   _g1h = this;
  2063   _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
  2064   _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
  2066   // Create the ConcurrentMark data structure and thread.
  2067   // (Must do this late, so that "max_regions" is defined.)
  2068   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
  2069   if (_cm == NULL || !_cm->completed_initialization()) {
  2070     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
  2071     return JNI_ENOMEM;
  2073   _cmThread = _cm->cmThread();
  2075   // Initialize the from_card cache structure of HeapRegionRemSet.
  2076   HeapRegionRemSet::init_heap(max_regions());
  2078   // Now expand into the initial heap size.
  2079   if (!expand(init_byte_size)) {
  2080     vm_shutdown_during_initialization("Failed to allocate initial heap.");
  2081     return JNI_ENOMEM;
  2084   // Perform any initialization actions delegated to the policy.
  2085   g1_policy()->init();
  2087   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2088                                                SATB_Q_FL_lock,
  2089                                                G1SATBProcessCompletedThreshold,
  2090                                                Shared_SATB_Q_lock);
  2092   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
  2093                                                 DirtyCardQ_CBL_mon,
  2094                                                 DirtyCardQ_FL_lock,
  2095                                                 concurrent_g1_refine()->yellow_zone(),
  2096                                                 concurrent_g1_refine()->red_zone(),
  2097                                                 Shared_DirtyCardQ_lock);
  2099   if (G1DeferredRSUpdate) {
  2100     dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
  2101                                       DirtyCardQ_CBL_mon,
  2102                                       DirtyCardQ_FL_lock,
  2103                                       -1, // never trigger processing
  2104                                       -1, // no limit on length
  2105                                       Shared_DirtyCardQ_lock,
  2106                                       &JavaThread::dirty_card_queue_set());
  2109   // Initialize the card queue set used to hold cards containing
  2110   // references into the collection set.
  2111   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
  2112                                              DirtyCardQ_CBL_mon,
  2113                                              DirtyCardQ_FL_lock,
  2114                                              -1, // never trigger processing
  2115                                              -1, // no limit on length
  2116                                              Shared_DirtyCardQ_lock,
  2117                                              &JavaThread::dirty_card_queue_set());
  2119   // In case we're keeping closure specialization stats, initialize those
  2120   // counts and that mechanism.
  2121   SpecializationStats::clear();
  2123   // Here we allocate the dummy HeapRegion that is required by the
  2124   // G1AllocRegion class.
  2125   HeapRegion* dummy_region = _hrm.get_dummy_region();
  2127   // We'll re-use the same region whether the alloc region will
  2128   // require BOT updates or not and, if it doesn't, then a non-young
  2129   // region will complain that it cannot support allocations without
  2130   // BOT updates. So we'll tag the dummy region as young to avoid that.
  2131   dummy_region->set_young();
  2132   // Make sure it's full.
  2133   dummy_region->set_top(dummy_region->end());
  2134   G1AllocRegion::setup(this, dummy_region);
  2136   _allocator->init_mutator_alloc_region();
  2138   // Do create of the monitoring and management support so that
  2139   // values in the heap have been properly initialized.
  2140   _g1mm = new G1MonitoringSupport(this);
  2142   G1StringDedup::initialize();
  2144   return JNI_OK;
  2147 void G1CollectedHeap::stop() {
  2148   // Stop all concurrent threads. We do this to make sure these threads
  2149   // do not continue to execute and access resources (e.g. gclog_or_tty)
  2150   // that are destroyed during shutdown.
  2151   _cg1r->stop();
  2152   _cmThread->stop();
  2153   if (G1StringDedup::is_enabled()) {
  2154     G1StringDedup::stop();
  2158 void G1CollectedHeap::clear_humongous_is_live_table() {
  2159   guarantee(G1ReclaimDeadHumongousObjectsAtYoungGC, "Should only be called if true");
  2160   _humongous_is_live.clear();
  2163 size_t G1CollectedHeap::conservative_max_heap_alignment() {
  2164   return HeapRegion::max_region_size();
  2167 void G1CollectedHeap::ref_processing_init() {
  2168   // Reference processing in G1 currently works as follows:
  2169   //
  2170   // * There are two reference processor instances. One is
  2171   //   used to record and process discovered references
  2172   //   during concurrent marking; the other is used to
  2173   //   record and process references during STW pauses
  2174   //   (both full and incremental).
  2175   // * Both ref processors need to 'span' the entire heap as
  2176   //   the regions in the collection set may be dotted around.
  2177   //
  2178   // * For the concurrent marking ref processor:
  2179   //   * Reference discovery is enabled at initial marking.
  2180   //   * Reference discovery is disabled and the discovered
  2181   //     references processed etc during remarking.
  2182   //   * Reference discovery is MT (see below).
  2183   //   * Reference discovery requires a barrier (see below).
  2184   //   * Reference processing may or may not be MT
  2185   //     (depending on the value of ParallelRefProcEnabled
  2186   //     and ParallelGCThreads).
  2187   //   * A full GC disables reference discovery by the CM
  2188   //     ref processor and abandons any entries on it's
  2189   //     discovered lists.
  2190   //
  2191   // * For the STW processor:
  2192   //   * Non MT discovery is enabled at the start of a full GC.
  2193   //   * Processing and enqueueing during a full GC is non-MT.
  2194   //   * During a full GC, references are processed after marking.
  2195   //
  2196   //   * Discovery (may or may not be MT) is enabled at the start
  2197   //     of an incremental evacuation pause.
  2198   //   * References are processed near the end of a STW evacuation pause.
  2199   //   * For both types of GC:
  2200   //     * Discovery is atomic - i.e. not concurrent.
  2201   //     * Reference discovery will not need a barrier.
  2203   SharedHeap::ref_processing_init();
  2204   MemRegion mr = reserved_region();
  2206   // Concurrent Mark ref processor
  2207   _ref_processor_cm =
  2208     new ReferenceProcessor(mr,    // span
  2209                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2210                                 // mt processing
  2211                            (int) ParallelGCThreads,
  2212                                 // degree of mt processing
  2213                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2214                                 // mt discovery
  2215                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2216                                 // degree of mt discovery
  2217                            false,
  2218                                 // Reference discovery is not atomic
  2219                            &_is_alive_closure_cm);
  2220                                 // is alive closure
  2221                                 // (for efficiency/performance)
  2223   // STW ref processor
  2224   _ref_processor_stw =
  2225     new ReferenceProcessor(mr,    // span
  2226                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2227                                 // mt processing
  2228                            MAX2((int)ParallelGCThreads, 1),
  2229                                 // degree of mt processing
  2230                            (ParallelGCThreads > 1),
  2231                                 // mt discovery
  2232                            MAX2((int)ParallelGCThreads, 1),
  2233                                 // degree of mt discovery
  2234                            true,
  2235                                 // Reference discovery is atomic
  2236                            &_is_alive_closure_stw);
  2237                                 // is alive closure
  2238                                 // (for efficiency/performance)
  2241 size_t G1CollectedHeap::capacity() const {
  2242   return _hrm.length() * HeapRegion::GrainBytes;
  2245 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  2246   assert(!hr->continuesHumongous(), "pre-condition");
  2247   hr->reset_gc_time_stamp();
  2248   if (hr->startsHumongous()) {
  2249     uint first_index = hr->hrm_index() + 1;
  2250     uint last_index = hr->last_hc_index();
  2251     for (uint i = first_index; i < last_index; i += 1) {
  2252       HeapRegion* chr = region_at(i);
  2253       assert(chr->continuesHumongous(), "sanity");
  2254       chr->reset_gc_time_stamp();
  2259 #ifndef PRODUCT
  2260 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
  2261 private:
  2262   unsigned _gc_time_stamp;
  2263   bool _failures;
  2265 public:
  2266   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
  2267     _gc_time_stamp(gc_time_stamp), _failures(false) { }
  2269   virtual bool doHeapRegion(HeapRegion* hr) {
  2270     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
  2271     if (_gc_time_stamp != region_gc_time_stamp) {
  2272       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
  2273                              "expected %d", HR_FORMAT_PARAMS(hr),
  2274                              region_gc_time_stamp, _gc_time_stamp);
  2275       _failures = true;
  2277     return false;
  2280   bool failures() { return _failures; }
  2281 };
  2283 void G1CollectedHeap::check_gc_time_stamps() {
  2284   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  2285   heap_region_iterate(&cl);
  2286   guarantee(!cl.failures(), "all GC time stamps should have been reset");
  2288 #endif // PRODUCT
  2290 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2291                                                  DirtyCardQueue* into_cset_dcq,
  2292                                                  bool concurrent,
  2293                                                  uint worker_i) {
  2294   // Clean cards in the hot card cache
  2295   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  2296   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
  2298   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2299   int n_completed_buffers = 0;
  2300   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2301     n_completed_buffers++;
  2303   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
  2304   dcqs.clear_n_completed_buffers();
  2305   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2309 // Computes the sum of the storage used by the various regions.
  2310 size_t G1CollectedHeap::used() const {
  2311   return _allocator->used();
  2314 size_t G1CollectedHeap::used_unlocked() const {
  2315   return _allocator->used_unlocked();
  2318 class SumUsedClosure: public HeapRegionClosure {
  2319   size_t _used;
  2320 public:
  2321   SumUsedClosure() : _used(0) {}
  2322   bool doHeapRegion(HeapRegion* r) {
  2323     if (!r->continuesHumongous()) {
  2324       _used += r->used();
  2326     return false;
  2328   size_t result() { return _used; }
  2329 };
  2331 size_t G1CollectedHeap::recalculate_used() const {
  2332   double recalculate_used_start = os::elapsedTime();
  2334   SumUsedClosure blk;
  2335   heap_region_iterate(&blk);
  2337   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
  2338   return blk.result();
  2341 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2342   switch (cause) {
  2343     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
  2344     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
  2345     case GCCause::_g1_humongous_allocation: return true;
  2346     default:                                return false;
  2350 #ifndef PRODUCT
  2351 void G1CollectedHeap::allocate_dummy_regions() {
  2352   // Let's fill up most of the region
  2353   size_t word_size = HeapRegion::GrainWords - 1024;
  2354   // And as a result the region we'll allocate will be humongous.
  2355   guarantee(isHumongous(word_size), "sanity");
  2357   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2358     // Let's use the existing mechanism for the allocation
  2359     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
  2360                                                  AllocationContext::system());
  2361     if (dummy_obj != NULL) {
  2362       MemRegion mr(dummy_obj, word_size);
  2363       CollectedHeap::fill_with_object(mr);
  2364     } else {
  2365       // If we can't allocate once, we probably cannot allocate
  2366       // again. Let's get out of the loop.
  2367       break;
  2371 #endif // !PRODUCT
  2373 void G1CollectedHeap::increment_old_marking_cycles_started() {
  2374   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
  2375     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
  2376     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
  2377     _old_marking_cycles_started, _old_marking_cycles_completed));
  2379   _old_marking_cycles_started++;
  2382 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
  2383   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2385   // We assume that if concurrent == true, then the caller is a
  2386   // concurrent thread that was joined the Suspendible Thread
  2387   // Set. If there's ever a cheap way to check this, we should add an
  2388   // assert here.
  2390   // Given that this method is called at the end of a Full GC or of a
  2391   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2392   // interrupt a concurrent cycle), the number of full collections
  2393   // completed should be either one (in the case where there was no
  2394   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2395   // behind the number of full collections started.
  2397   // This is the case for the inner caller, i.e. a Full GC.
  2398   assert(concurrent ||
  2399          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
  2400          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
  2401          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
  2402                  "is inconsistent with _old_marking_cycles_completed = %u",
  2403                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2405   // This is the case for the outer caller, i.e. the concurrent cycle.
  2406   assert(!concurrent ||
  2407          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
  2408          err_msg("for outer caller (concurrent cycle): "
  2409                  "_old_marking_cycles_started = %u "
  2410                  "is inconsistent with _old_marking_cycles_completed = %u",
  2411                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2413   _old_marking_cycles_completed += 1;
  2415   // We need to clear the "in_progress" flag in the CM thread before
  2416   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2417   // is set) so that if a waiter requests another System.gc() it doesn't
  2418   // incorrectly see that a marking cycle is still in progress.
  2419   if (concurrent) {
  2420     _cmThread->clear_in_progress();
  2423   // This notify_all() will ensure that a thread that called
  2424   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2425   // and it's waiting for a full GC to finish will be woken up. It is
  2426   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2427   FullGCCount_lock->notify_all();
  2430 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
  2431   _concurrent_cycle_started = true;
  2432   _gc_timer_cm->register_gc_start(start_time);
  2434   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  2435   trace_heap_before_gc(_gc_tracer_cm);
  2438 void G1CollectedHeap::register_concurrent_cycle_end() {
  2439   if (_concurrent_cycle_started) {
  2440     if (_cm->has_aborted()) {
  2441       _gc_tracer_cm->report_concurrent_mode_failure();
  2444     _gc_timer_cm->register_gc_end();
  2445     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
  2447     _concurrent_cycle_started = false;
  2451 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  2452   if (_concurrent_cycle_started) {
  2453     trace_heap_after_gc(_gc_tracer_cm);
  2457 G1YCType G1CollectedHeap::yc_type() {
  2458   bool is_young = g1_policy()->gcs_are_young();
  2459   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
  2460   bool is_during_mark = mark_in_progress();
  2462   if (is_initial_mark) {
  2463     return InitialMark;
  2464   } else if (is_during_mark) {
  2465     return DuringMark;
  2466   } else if (is_young) {
  2467     return Normal;
  2468   } else {
  2469     return Mixed;
  2473 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2474   assert_heap_not_locked();
  2476   unsigned int gc_count_before;
  2477   unsigned int old_marking_count_before;
  2478   bool retry_gc;
  2480   do {
  2481     retry_gc = false;
  2484       MutexLocker ml(Heap_lock);
  2486       // Read the GC count while holding the Heap_lock
  2487       gc_count_before = total_collections();
  2488       old_marking_count_before = _old_marking_cycles_started;
  2491     if (should_do_concurrent_full_gc(cause)) {
  2492       // Schedule an initial-mark evacuation pause that will start a
  2493       // concurrent cycle. We're setting word_size to 0 which means that
  2494       // we are not requesting a post-GC allocation.
  2495       VM_G1IncCollectionPause op(gc_count_before,
  2496                                  0,     /* word_size */
  2497                                  true,  /* should_initiate_conc_mark */
  2498                                  g1_policy()->max_pause_time_ms(),
  2499                                  cause);
  2500       op.set_allocation_context(AllocationContext::current());
  2502       VMThread::execute(&op);
  2503       if (!op.pause_succeeded()) {
  2504         if (old_marking_count_before == _old_marking_cycles_started) {
  2505           retry_gc = op.should_retry_gc();
  2506         } else {
  2507           // A Full GC happened while we were trying to schedule the
  2508           // initial-mark GC. No point in starting a new cycle given
  2509           // that the whole heap was collected anyway.
  2512         if (retry_gc) {
  2513           if (GC_locker::is_active_and_needs_gc()) {
  2514             GC_locker::stall_until_clear();
  2518     } else {
  2519       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
  2520           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2522         // Schedule a standard evacuation pause. We're setting word_size
  2523         // to 0 which means that we are not requesting a post-GC allocation.
  2524         VM_G1IncCollectionPause op(gc_count_before,
  2525                                    0,     /* word_size */
  2526                                    false, /* should_initiate_conc_mark */
  2527                                    g1_policy()->max_pause_time_ms(),
  2528                                    cause);
  2529         VMThread::execute(&op);
  2530       } else {
  2531         // Schedule a Full GC.
  2532         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
  2533         VMThread::execute(&op);
  2536   } while (retry_gc);
  2539 bool G1CollectedHeap::is_in(const void* p) const {
  2540   if (_hrm.reserved().contains(p)) {
  2541     // Given that we know that p is in the reserved space,
  2542     // heap_region_containing_raw() should successfully
  2543     // return the containing region.
  2544     HeapRegion* hr = heap_region_containing_raw(p);
  2545     return hr->is_in(p);
  2546   } else {
  2547     return false;
  2551 #ifdef ASSERT
  2552 bool G1CollectedHeap::is_in_exact(const void* p) const {
  2553   bool contains = reserved_region().contains(p);
  2554   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
  2555   if (contains && available) {
  2556     return true;
  2557   } else {
  2558     return false;
  2561 #endif
  2563 // Iteration functions.
  2565 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
  2567 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2568   ExtendedOopClosure* _cl;
  2569 public:
  2570   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
  2571   bool doHeapRegion(HeapRegion* r) {
  2572     if (!r->continuesHumongous()) {
  2573       r->oop_iterate(_cl);
  2575     return false;
  2577 };
  2579 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
  2580   IterateOopClosureRegionClosure blk(cl);
  2581   heap_region_iterate(&blk);
  2584 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2586 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2587   ObjectClosure* _cl;
  2588 public:
  2589   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2590   bool doHeapRegion(HeapRegion* r) {
  2591     if (! r->continuesHumongous()) {
  2592       r->object_iterate(_cl);
  2594     return false;
  2596 };
  2598 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
  2599   IterateObjectClosureRegionClosure blk(cl);
  2600   heap_region_iterate(&blk);
  2603 // Calls a SpaceClosure on a HeapRegion.
  2605 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2606   SpaceClosure* _cl;
  2607 public:
  2608   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2609   bool doHeapRegion(HeapRegion* r) {
  2610     _cl->do_space(r);
  2611     return false;
  2613 };
  2615 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2616   SpaceClosureRegionClosure blk(cl);
  2617   heap_region_iterate(&blk);
  2620 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2621   _hrm.iterate(cl);
  2624 void
  2625 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2626                                                  uint worker_id,
  2627                                                  uint num_workers,
  2628                                                  jint claim_value) const {
  2629   _hrm.par_iterate(cl, worker_id, num_workers, claim_value);
  2632 class ResetClaimValuesClosure: public HeapRegionClosure {
  2633 public:
  2634   bool doHeapRegion(HeapRegion* r) {
  2635     r->set_claim_value(HeapRegion::InitialClaimValue);
  2636     return false;
  2638 };
  2640 void G1CollectedHeap::reset_heap_region_claim_values() {
  2641   ResetClaimValuesClosure blk;
  2642   heap_region_iterate(&blk);
  2645 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2646   ResetClaimValuesClosure blk;
  2647   collection_set_iterate(&blk);
  2650 #ifdef ASSERT
  2651 // This checks whether all regions in the heap have the correct claim
  2652 // value. I also piggy-backed on this a check to ensure that the
  2653 // humongous_start_region() information on "continues humongous"
  2654 // regions is correct.
  2656 class CheckClaimValuesClosure : public HeapRegionClosure {
  2657 private:
  2658   jint _claim_value;
  2659   uint _failures;
  2660   HeapRegion* _sh_region;
  2662 public:
  2663   CheckClaimValuesClosure(jint claim_value) :
  2664     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2665   bool doHeapRegion(HeapRegion* r) {
  2666     if (r->claim_value() != _claim_value) {
  2667       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2668                              "claim value = %d, should be %d",
  2669                              HR_FORMAT_PARAMS(r),
  2670                              r->claim_value(), _claim_value);
  2671       ++_failures;
  2673     if (!r->isHumongous()) {
  2674       _sh_region = NULL;
  2675     } else if (r->startsHumongous()) {
  2676       _sh_region = r;
  2677     } else if (r->continuesHumongous()) {
  2678       if (r->humongous_start_region() != _sh_region) {
  2679         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2680                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2681                                HR_FORMAT_PARAMS(r),
  2682                                r->humongous_start_region(),
  2683                                _sh_region);
  2684         ++_failures;
  2687     return false;
  2689   uint failures() { return _failures; }
  2690 };
  2692 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2693   CheckClaimValuesClosure cl(claim_value);
  2694   heap_region_iterate(&cl);
  2695   return cl.failures() == 0;
  2698 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2699 private:
  2700   jint _claim_value;
  2701   uint _failures;
  2703 public:
  2704   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2705     _claim_value(claim_value), _failures(0) { }
  2707   uint failures() { return _failures; }
  2709   bool doHeapRegion(HeapRegion* hr) {
  2710     assert(hr->in_collection_set(), "how?");
  2711     assert(!hr->isHumongous(), "H-region in CSet");
  2712     if (hr->claim_value() != _claim_value) {
  2713       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2714                              "claim value = %d, should be %d",
  2715                              HR_FORMAT_PARAMS(hr),
  2716                              hr->claim_value(), _claim_value);
  2717       _failures += 1;
  2719     return false;
  2721 };
  2723 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2724   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2725   collection_set_iterate(&cl);
  2726   return cl.failures() == 0;
  2728 #endif // ASSERT
  2730 // Clear the cached CSet starting regions and (more importantly)
  2731 // the time stamps. Called when we reset the GC time stamp.
  2732 void G1CollectedHeap::clear_cset_start_regions() {
  2733   assert(_worker_cset_start_region != NULL, "sanity");
  2734   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2736   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2737   for (int i = 0; i < n_queues; i++) {
  2738     _worker_cset_start_region[i] = NULL;
  2739     _worker_cset_start_region_time_stamp[i] = 0;
  2743 // Given the id of a worker, obtain or calculate a suitable
  2744 // starting region for iterating over the current collection set.
  2745 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
  2746   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2748   HeapRegion* result = NULL;
  2749   unsigned gc_time_stamp = get_gc_time_stamp();
  2751   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2752     // Cached starting region for current worker was set
  2753     // during the current pause - so it's valid.
  2754     // Note: the cached starting heap region may be NULL
  2755     // (when the collection set is empty).
  2756     result = _worker_cset_start_region[worker_i];
  2757     assert(result == NULL || result->in_collection_set(), "sanity");
  2758     return result;
  2761   // The cached entry was not valid so let's calculate
  2762   // a suitable starting heap region for this worker.
  2764   // We want the parallel threads to start their collection
  2765   // set iteration at different collection set regions to
  2766   // avoid contention.
  2767   // If we have:
  2768   //          n collection set regions
  2769   //          p threads
  2770   // Then thread t will start at region floor ((t * n) / p)
  2772   result = g1_policy()->collection_set();
  2773   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2774     uint cs_size = g1_policy()->cset_region_length();
  2775     uint active_workers = workers()->active_workers();
  2776     assert(UseDynamicNumberOfGCThreads ||
  2777              active_workers == workers()->total_workers(),
  2778              "Unless dynamic should use total workers");
  2780     uint end_ind   = (cs_size * worker_i) / active_workers;
  2781     uint start_ind = 0;
  2783     if (worker_i > 0 &&
  2784         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2785       // Previous workers starting region is valid
  2786       // so let's iterate from there
  2787       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2788       result = _worker_cset_start_region[worker_i - 1];
  2791     for (uint i = start_ind; i < end_ind; i++) {
  2792       result = result->next_in_collection_set();
  2796   // Note: the calculated starting heap region may be NULL
  2797   // (when the collection set is empty).
  2798   assert(result == NULL || result->in_collection_set(), "sanity");
  2799   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2800          "should be updated only once per pause");
  2801   _worker_cset_start_region[worker_i] = result;
  2802   OrderAccess::storestore();
  2803   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2804   return result;
  2807 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2808   HeapRegion* r = g1_policy()->collection_set();
  2809   while (r != NULL) {
  2810     HeapRegion* next = r->next_in_collection_set();
  2811     if (cl->doHeapRegion(r)) {
  2812       cl->incomplete();
  2813       return;
  2815     r = next;
  2819 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2820                                                   HeapRegionClosure *cl) {
  2821   if (r == NULL) {
  2822     // The CSet is empty so there's nothing to do.
  2823     return;
  2826   assert(r->in_collection_set(),
  2827          "Start region must be a member of the collection set.");
  2828   HeapRegion* cur = r;
  2829   while (cur != NULL) {
  2830     HeapRegion* next = cur->next_in_collection_set();
  2831     if (cl->doHeapRegion(cur) && false) {
  2832       cl->incomplete();
  2833       return;
  2835     cur = next;
  2837   cur = g1_policy()->collection_set();
  2838   while (cur != r) {
  2839     HeapRegion* next = cur->next_in_collection_set();
  2840     if (cl->doHeapRegion(cur) && false) {
  2841       cl->incomplete();
  2842       return;
  2844     cur = next;
  2848 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
  2849   HeapRegion* result = _hrm.next_region_in_heap(from);
  2850   while (result != NULL && result->isHumongous()) {
  2851     result = _hrm.next_region_in_heap(result);
  2853   return result;
  2856 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2857   return heap_region_containing(addr);
  2860 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2861   Space* sp = space_containing(addr);
  2862   return sp->block_start(addr);
  2865 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2866   Space* sp = space_containing(addr);
  2867   return sp->block_size(addr);
  2870 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2871   Space* sp = space_containing(addr);
  2872   return sp->block_is_obj(addr);
  2875 bool G1CollectedHeap::supports_tlab_allocation() const {
  2876   return true;
  2879 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2880   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
  2883 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
  2884   return young_list()->eden_used_bytes();
  2887 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
  2888 // must be smaller than the humongous object limit.
  2889 size_t G1CollectedHeap::max_tlab_size() const {
  2890   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
  2893 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2894   // Return the remaining space in the cur alloc region, but not less than
  2895   // the min TLAB size.
  2897   // Also, this value can be at most the humongous object threshold,
  2898   // since we can't allow tlabs to grow big enough to accommodate
  2899   // humongous objects.
  2901   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
  2902   size_t max_tlab = max_tlab_size() * wordSize;
  2903   if (hr == NULL) {
  2904     return max_tlab;
  2905   } else {
  2906     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
  2910 size_t G1CollectedHeap::max_capacity() const {
  2911   return _hrm.reserved().byte_size();
  2914 jlong G1CollectedHeap::millis_since_last_gc() {
  2915   // assert(false, "NYI");
  2916   return 0;
  2919 void G1CollectedHeap::prepare_for_verify() {
  2920   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2921     ensure_parsability(false);
  2923   g1_rem_set()->prepare_for_verify();
  2926 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
  2927                                               VerifyOption vo) {
  2928   switch (vo) {
  2929   case VerifyOption_G1UsePrevMarking:
  2930     return hr->obj_allocated_since_prev_marking(obj);
  2931   case VerifyOption_G1UseNextMarking:
  2932     return hr->obj_allocated_since_next_marking(obj);
  2933   case VerifyOption_G1UseMarkWord:
  2934     return false;
  2935   default:
  2936     ShouldNotReachHere();
  2938   return false; // keep some compilers happy
  2941 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  2942   switch (vo) {
  2943   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  2944   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  2945   case VerifyOption_G1UseMarkWord:    return NULL;
  2946   default:                            ShouldNotReachHere();
  2948   return NULL; // keep some compilers happy
  2951 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  2952   switch (vo) {
  2953   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  2954   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  2955   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  2956   default:                            ShouldNotReachHere();
  2958   return false; // keep some compilers happy
  2961 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  2962   switch (vo) {
  2963   case VerifyOption_G1UsePrevMarking: return "PTAMS";
  2964   case VerifyOption_G1UseNextMarking: return "NTAMS";
  2965   case VerifyOption_G1UseMarkWord:    return "NONE";
  2966   default:                            ShouldNotReachHere();
  2968   return NULL; // keep some compilers happy
  2971 class VerifyRootsClosure: public OopClosure {
  2972 private:
  2973   G1CollectedHeap* _g1h;
  2974   VerifyOption     _vo;
  2975   bool             _failures;
  2976 public:
  2977   // _vo == UsePrevMarking -> use "prev" marking information,
  2978   // _vo == UseNextMarking -> use "next" marking information,
  2979   // _vo == UseMarkWord    -> use mark word from object header.
  2980   VerifyRootsClosure(VerifyOption vo) :
  2981     _g1h(G1CollectedHeap::heap()),
  2982     _vo(vo),
  2983     _failures(false) { }
  2985   bool failures() { return _failures; }
  2987   template <class T> void do_oop_nv(T* p) {
  2988     T heap_oop = oopDesc::load_heap_oop(p);
  2989     if (!oopDesc::is_null(heap_oop)) {
  2990       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  2991       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  2992         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  2993                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  2994         if (_vo == VerifyOption_G1UseMarkWord) {
  2995           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  2997         obj->print_on(gclog_or_tty);
  2998         _failures = true;
  3003   void do_oop(oop* p)       { do_oop_nv(p); }
  3004   void do_oop(narrowOop* p) { do_oop_nv(p); }
  3005 };
  3007 class G1VerifyCodeRootOopClosure: public OopClosure {
  3008   G1CollectedHeap* _g1h;
  3009   OopClosure* _root_cl;
  3010   nmethod* _nm;
  3011   VerifyOption _vo;
  3012   bool _failures;
  3014   template <class T> void do_oop_work(T* p) {
  3015     // First verify that this root is live
  3016     _root_cl->do_oop(p);
  3018     if (!G1VerifyHeapRegionCodeRoots) {
  3019       // We're not verifying the code roots attached to heap region.
  3020       return;
  3023     // Don't check the code roots during marking verification in a full GC
  3024     if (_vo == VerifyOption_G1UseMarkWord) {
  3025       return;
  3028     // Now verify that the current nmethod (which contains p) is
  3029     // in the code root list of the heap region containing the
  3030     // object referenced by p.
  3032     T heap_oop = oopDesc::load_heap_oop(p);
  3033     if (!oopDesc::is_null(heap_oop)) {
  3034       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3036       // Now fetch the region containing the object
  3037       HeapRegion* hr = _g1h->heap_region_containing(obj);
  3038       HeapRegionRemSet* hrrs = hr->rem_set();
  3039       // Verify that the strong code root list for this region
  3040       // contains the nmethod
  3041       if (!hrrs->strong_code_roots_list_contains(_nm)) {
  3042         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
  3043                               "from nmethod "PTR_FORMAT" not in strong "
  3044                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
  3045                               p, _nm, hr->bottom(), hr->end());
  3046         _failures = true;
  3051 public:
  3052   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
  3053     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
  3055   void do_oop(oop* p) { do_oop_work(p); }
  3056   void do_oop(narrowOop* p) { do_oop_work(p); }
  3058   void set_nmethod(nmethod* nm) { _nm = nm; }
  3059   bool failures() { return _failures; }
  3060 };
  3062 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  3063   G1VerifyCodeRootOopClosure* _oop_cl;
  3065 public:
  3066   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
  3067     _oop_cl(oop_cl) {}
  3069   void do_code_blob(CodeBlob* cb) {
  3070     nmethod* nm = cb->as_nmethod_or_null();
  3071     if (nm != NULL) {
  3072       _oop_cl->set_nmethod(nm);
  3073       nm->oops_do(_oop_cl);
  3076 };
  3078 class YoungRefCounterClosure : public OopClosure {
  3079   G1CollectedHeap* _g1h;
  3080   int              _count;
  3081  public:
  3082   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  3083   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  3084   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
  3086   int count() { return _count; }
  3087   void reset_count() { _count = 0; };
  3088 };
  3090 class VerifyKlassClosure: public KlassClosure {
  3091   YoungRefCounterClosure _young_ref_counter_closure;
  3092   OopClosure *_oop_closure;
  3093  public:
  3094   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  3095   void do_klass(Klass* k) {
  3096     k->oops_do(_oop_closure);
  3098     _young_ref_counter_closure.reset_count();
  3099     k->oops_do(&_young_ref_counter_closure);
  3100     if (_young_ref_counter_closure.count() > 0) {
  3101       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
  3104 };
  3106 class VerifyLivenessOopClosure: public OopClosure {
  3107   G1CollectedHeap* _g1h;
  3108   VerifyOption _vo;
  3109 public:
  3110   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  3111     _g1h(g1h), _vo(vo)
  3112   { }
  3113   void do_oop(narrowOop *p) { do_oop_work(p); }
  3114   void do_oop(      oop *p) { do_oop_work(p); }
  3116   template <class T> void do_oop_work(T *p) {
  3117     oop obj = oopDesc::load_decode_heap_oop(p);
  3118     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  3119               "Dead object referenced by a not dead object");
  3121 };
  3123 class VerifyObjsInRegionClosure: public ObjectClosure {
  3124 private:
  3125   G1CollectedHeap* _g1h;
  3126   size_t _live_bytes;
  3127   HeapRegion *_hr;
  3128   VerifyOption _vo;
  3129 public:
  3130   // _vo == UsePrevMarking -> use "prev" marking information,
  3131   // _vo == UseNextMarking -> use "next" marking information,
  3132   // _vo == UseMarkWord    -> use mark word from object header.
  3133   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  3134     : _live_bytes(0), _hr(hr), _vo(vo) {
  3135     _g1h = G1CollectedHeap::heap();
  3137   void do_object(oop o) {
  3138     VerifyLivenessOopClosure isLive(_g1h, _vo);
  3139     assert(o != NULL, "Huh?");
  3140     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  3141       // If the object is alive according to the mark word,
  3142       // then verify that the marking information agrees.
  3143       // Note we can't verify the contra-positive of the
  3144       // above: if the object is dead (according to the mark
  3145       // word), it may not be marked, or may have been marked
  3146       // but has since became dead, or may have been allocated
  3147       // since the last marking.
  3148       if (_vo == VerifyOption_G1UseMarkWord) {
  3149         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  3152       o->oop_iterate_no_header(&isLive);
  3153       if (!_hr->obj_allocated_since_prev_marking(o)) {
  3154         size_t obj_size = o->size();    // Make sure we don't overflow
  3155         _live_bytes += (obj_size * HeapWordSize);
  3159   size_t live_bytes() { return _live_bytes; }
  3160 };
  3162 class PrintObjsInRegionClosure : public ObjectClosure {
  3163   HeapRegion *_hr;
  3164   G1CollectedHeap *_g1;
  3165 public:
  3166   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  3167     _g1 = G1CollectedHeap::heap();
  3168   };
  3170   void do_object(oop o) {
  3171     if (o != NULL) {
  3172       HeapWord *start = (HeapWord *) o;
  3173       size_t word_sz = o->size();
  3174       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  3175                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  3176                           (void*) o, word_sz,
  3177                           _g1->isMarkedPrev(o),
  3178                           _g1->isMarkedNext(o),
  3179                           _hr->obj_allocated_since_prev_marking(o));
  3180       HeapWord *end = start + word_sz;
  3181       HeapWord *cur;
  3182       int *val;
  3183       for (cur = start; cur < end; cur++) {
  3184         val = (int *) cur;
  3185         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  3189 };
  3191 class VerifyRegionClosure: public HeapRegionClosure {
  3192 private:
  3193   bool             _par;
  3194   VerifyOption     _vo;
  3195   bool             _failures;
  3196 public:
  3197   // _vo == UsePrevMarking -> use "prev" marking information,
  3198   // _vo == UseNextMarking -> use "next" marking information,
  3199   // _vo == UseMarkWord    -> use mark word from object header.
  3200   VerifyRegionClosure(bool par, VerifyOption vo)
  3201     : _par(par),
  3202       _vo(vo),
  3203       _failures(false) {}
  3205   bool failures() {
  3206     return _failures;
  3209   bool doHeapRegion(HeapRegion* r) {
  3210     if (!r->continuesHumongous()) {
  3211       bool failures = false;
  3212       r->verify(_vo, &failures);
  3213       if (failures) {
  3214         _failures = true;
  3215       } else {
  3216         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3217         r->object_iterate(&not_dead_yet_cl);
  3218         if (_vo != VerifyOption_G1UseNextMarking) {
  3219           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3220             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  3221                                    "max_live_bytes "SIZE_FORMAT" "
  3222                                    "< calculated "SIZE_FORMAT,
  3223                                    r->bottom(), r->end(),
  3224                                    r->max_live_bytes(),
  3225                                  not_dead_yet_cl.live_bytes());
  3226             _failures = true;
  3228         } else {
  3229           // When vo == UseNextMarking we cannot currently do a sanity
  3230           // check on the live bytes as the calculation has not been
  3231           // finalized yet.
  3235     return false; // stop the region iteration if we hit a failure
  3237 };
  3239 // This is the task used for parallel verification of the heap regions
  3241 class G1ParVerifyTask: public AbstractGangTask {
  3242 private:
  3243   G1CollectedHeap* _g1h;
  3244   VerifyOption     _vo;
  3245   bool             _failures;
  3247 public:
  3248   // _vo == UsePrevMarking -> use "prev" marking information,
  3249   // _vo == UseNextMarking -> use "next" marking information,
  3250   // _vo == UseMarkWord    -> use mark word from object header.
  3251   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
  3252     AbstractGangTask("Parallel verify task"),
  3253     _g1h(g1h),
  3254     _vo(vo),
  3255     _failures(false) { }
  3257   bool failures() {
  3258     return _failures;
  3261   void work(uint worker_id) {
  3262     HandleMark hm;
  3263     VerifyRegionClosure blk(true, _vo);
  3264     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3265                                           _g1h->workers()->active_workers(),
  3266                                           HeapRegion::ParVerifyClaimValue);
  3267     if (blk.failures()) {
  3268       _failures = true;
  3271 };
  3273 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
  3274   if (SafepointSynchronize::is_at_safepoint()) {
  3275     assert(Thread::current()->is_VM_thread(),
  3276            "Expected to be executed serially by the VM thread at this point");
  3278     if (!silent) { gclog_or_tty->print("Roots "); }
  3279     VerifyRootsClosure rootsCl(vo);
  3280     VerifyKlassClosure klassCl(this, &rootsCl);
  3281     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
  3283     // We apply the relevant closures to all the oops in the
  3284     // system dictionary, class loader data graph, the string table
  3285     // and the nmethods in the code cache.
  3286     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
  3287     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
  3289     process_all_roots(true,            // activate StrongRootsScope
  3290                       SO_AllCodeCache, // roots scanning options
  3291                       &rootsCl,
  3292                       &cldCl,
  3293                       &blobsCl);
  3295     bool failures = rootsCl.failures() || codeRootsCl.failures();
  3297     if (vo != VerifyOption_G1UseMarkWord) {
  3298       // If we're verifying during a full GC then the region sets
  3299       // will have been torn down at the start of the GC. Therefore
  3300       // verifying the region sets will fail. So we only verify
  3301       // the region sets when not in a full GC.
  3302       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3303       verify_region_sets();
  3306     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3307     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3308       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3309              "sanity check");
  3311       G1ParVerifyTask task(this, vo);
  3312       assert(UseDynamicNumberOfGCThreads ||
  3313         workers()->active_workers() == workers()->total_workers(),
  3314         "If not dynamic should be using all the workers");
  3315       int n_workers = workers()->active_workers();
  3316       set_par_threads(n_workers);
  3317       workers()->run_task(&task);
  3318       set_par_threads(0);
  3319       if (task.failures()) {
  3320         failures = true;
  3323       // Checks that the expected amount of parallel work was done.
  3324       // The implication is that n_workers is > 0.
  3325       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3326              "sanity check");
  3328       reset_heap_region_claim_values();
  3330       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3331              "sanity check");
  3332     } else {
  3333       VerifyRegionClosure blk(false, vo);
  3334       heap_region_iterate(&blk);
  3335       if (blk.failures()) {
  3336         failures = true;
  3339     if (!silent) gclog_or_tty->print("RemSet ");
  3340     rem_set()->verify();
  3342     if (G1StringDedup::is_enabled()) {
  3343       if (!silent) gclog_or_tty->print("StrDedup ");
  3344       G1StringDedup::verify();
  3347     if (failures) {
  3348       gclog_or_tty->print_cr("Heap:");
  3349       // It helps to have the per-region information in the output to
  3350       // help us track down what went wrong. This is why we call
  3351       // print_extended_on() instead of print_on().
  3352       print_extended_on(gclog_or_tty);
  3353       gclog_or_tty->cr();
  3354 #ifndef PRODUCT
  3355       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3356         concurrent_mark()->print_reachable("at-verification-failure",
  3357                                            vo, false /* all */);
  3359 #endif
  3360       gclog_or_tty->flush();
  3362     guarantee(!failures, "there should not have been any failures");
  3363   } else {
  3364     if (!silent) {
  3365       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
  3366       if (G1StringDedup::is_enabled()) {
  3367         gclog_or_tty->print(", StrDedup");
  3369       gclog_or_tty->print(") ");
  3374 void G1CollectedHeap::verify(bool silent) {
  3375   verify(silent, VerifyOption_G1UsePrevMarking);
  3378 double G1CollectedHeap::verify(bool guard, const char* msg) {
  3379   double verify_time_ms = 0.0;
  3381   if (guard && total_collections() >= VerifyGCStartAt) {
  3382     double verify_start = os::elapsedTime();
  3383     HandleMark hm;  // Discard invalid handles created during verification
  3384     prepare_for_verify();
  3385     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
  3386     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  3389   return verify_time_ms;
  3392 void G1CollectedHeap::verify_before_gc() {
  3393   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  3394   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
  3397 void G1CollectedHeap::verify_after_gc() {
  3398   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  3399   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
  3402 class PrintRegionClosure: public HeapRegionClosure {
  3403   outputStream* _st;
  3404 public:
  3405   PrintRegionClosure(outputStream* st) : _st(st) {}
  3406   bool doHeapRegion(HeapRegion* r) {
  3407     r->print_on(_st);
  3408     return false;
  3410 };
  3412 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
  3413                                        const HeapRegion* hr,
  3414                                        const VerifyOption vo) const {
  3415   switch (vo) {
  3416   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  3417   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  3418   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  3419   default:                            ShouldNotReachHere();
  3421   return false; // keep some compilers happy
  3424 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
  3425                                        const VerifyOption vo) const {
  3426   switch (vo) {
  3427   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  3428   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  3429   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  3430   default:                            ShouldNotReachHere();
  3432   return false; // keep some compilers happy
  3435 void G1CollectedHeap::print_on(outputStream* st) const {
  3436   st->print(" %-20s", "garbage-first heap");
  3437   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3438             capacity()/K, used_unlocked()/K);
  3439   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3440             _hrm.reserved().start(),
  3441             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
  3442             _hrm.reserved().end());
  3443   st->cr();
  3444   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3445   uint young_regions = _young_list->length();
  3446   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
  3447             (size_t) young_regions * HeapRegion::GrainBytes / K);
  3448   uint survivor_regions = g1_policy()->recorded_survivor_regions();
  3449   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
  3450             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
  3451   st->cr();
  3452   MetaspaceAux::print_on(st);
  3455 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3456   print_on(st);
  3458   // Print the per-region information.
  3459   st->cr();
  3460   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
  3461                "HS=humongous(starts), HC=humongous(continues), "
  3462                "CS=collection set, F=free, TS=gc time stamp, "
  3463                "PTAMS=previous top-at-mark-start, "
  3464                "NTAMS=next top-at-mark-start)");
  3465   PrintRegionClosure blk(st);
  3466   heap_region_iterate(&blk);
  3469 void G1CollectedHeap::print_on_error(outputStream* st) const {
  3470   this->CollectedHeap::print_on_error(st);
  3472   if (_cm != NULL) {
  3473     st->cr();
  3474     _cm->print_on_error(st);
  3478 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3479   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3480     workers()->print_worker_threads_on(st);
  3482   _cmThread->print_on(st);
  3483   st->cr();
  3484   _cm->print_worker_threads_on(st);
  3485   _cg1r->print_worker_threads_on(st);
  3486   if (G1StringDedup::is_enabled()) {
  3487     G1StringDedup::print_worker_threads_on(st);
  3491 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3492   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3493     workers()->threads_do(tc);
  3495   tc->do_thread(_cmThread);
  3496   _cg1r->threads_do(tc);
  3497   if (G1StringDedup::is_enabled()) {
  3498     G1StringDedup::threads_do(tc);
  3502 void G1CollectedHeap::print_tracing_info() const {
  3503   // We'll overload this to mean "trace GC pause statistics."
  3504   if (TraceGen0Time || TraceGen1Time) {
  3505     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3506     // to that.
  3507     g1_policy()->print_tracing_info();
  3509   if (G1SummarizeRSetStats) {
  3510     g1_rem_set()->print_summary_info();
  3512   if (G1SummarizeConcMark) {
  3513     concurrent_mark()->print_summary_info();
  3515   g1_policy()->print_yg_surv_rate_info();
  3516   SpecializationStats::print();
  3519 #ifndef PRODUCT
  3520 // Helpful for debugging RSet issues.
  3522 class PrintRSetsClosure : public HeapRegionClosure {
  3523 private:
  3524   const char* _msg;
  3525   size_t _occupied_sum;
  3527 public:
  3528   bool doHeapRegion(HeapRegion* r) {
  3529     HeapRegionRemSet* hrrs = r->rem_set();
  3530     size_t occupied = hrrs->occupied();
  3531     _occupied_sum += occupied;
  3533     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3534                            HR_FORMAT_PARAMS(r));
  3535     if (occupied == 0) {
  3536       gclog_or_tty->print_cr("  RSet is empty");
  3537     } else {
  3538       hrrs->print();
  3540     gclog_or_tty->print_cr("----------");
  3541     return false;
  3544   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3545     gclog_or_tty->cr();
  3546     gclog_or_tty->print_cr("========================================");
  3547     gclog_or_tty->print_cr("%s", msg);
  3548     gclog_or_tty->cr();
  3551   ~PrintRSetsClosure() {
  3552     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3553     gclog_or_tty->print_cr("========================================");
  3554     gclog_or_tty->cr();
  3556 };
  3558 void G1CollectedHeap::print_cset_rsets() {
  3559   PrintRSetsClosure cl("Printing CSet RSets");
  3560   collection_set_iterate(&cl);
  3563 void G1CollectedHeap::print_all_rsets() {
  3564   PrintRSetsClosure cl("Printing All RSets");;
  3565   heap_region_iterate(&cl);
  3567 #endif // PRODUCT
  3569 G1CollectedHeap* G1CollectedHeap::heap() {
  3570   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3571          "not a garbage-first heap");
  3572   return _g1h;
  3575 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3576   // always_do_update_barrier = false;
  3577   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3578   // Fill TLAB's and such
  3579   accumulate_statistics_all_tlabs();
  3580   ensure_parsability(true);
  3582   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
  3583       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3584     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
  3588 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3590   if (G1SummarizeRSetStats &&
  3591       (G1SummarizeRSetStatsPeriod > 0) &&
  3592       // we are at the end of the GC. Total collections has already been increased.
  3593       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
  3594     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
  3597   // FIXME: what is this about?
  3598   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3599   // is set.
  3600   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3601                         "derived pointer present"));
  3602   // always_do_update_barrier = true;
  3604   resize_all_tlabs();
  3606   // We have just completed a GC. Update the soft reference
  3607   // policy with the new heap occupancy
  3608   Universe::update_heap_info_at_gc();
  3611 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3612                                                unsigned int gc_count_before,
  3613                                                bool* succeeded,
  3614                                                GCCause::Cause gc_cause) {
  3615   assert_heap_not_locked_and_not_at_safepoint();
  3616   g1_policy()->record_stop_world_start();
  3617   VM_G1IncCollectionPause op(gc_count_before,
  3618                              word_size,
  3619                              false, /* should_initiate_conc_mark */
  3620                              g1_policy()->max_pause_time_ms(),
  3621                              gc_cause);
  3623   op.set_allocation_context(AllocationContext::current());
  3624   VMThread::execute(&op);
  3626   HeapWord* result = op.result();
  3627   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3628   assert(result == NULL || ret_succeeded,
  3629          "the result should be NULL if the VM did not succeed");
  3630   *succeeded = ret_succeeded;
  3632   assert_heap_not_locked();
  3633   return result;
  3636 void
  3637 G1CollectedHeap::doConcurrentMark() {
  3638   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3639   if (!_cmThread->in_progress()) {
  3640     _cmThread->set_started();
  3641     CGC_lock->notify();
  3645 size_t G1CollectedHeap::pending_card_num() {
  3646   size_t extra_cards = 0;
  3647   JavaThread *curr = Threads::first();
  3648   while (curr != NULL) {
  3649     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3650     extra_cards += dcq.size();
  3651     curr = curr->next();
  3653   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3654   size_t buffer_size = dcqs.buffer_size();
  3655   size_t buffer_num = dcqs.completed_buffers_num();
  3657   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  3658   // in bytes - not the number of 'entries'. We need to convert
  3659   // into a number of cards.
  3660   return (buffer_size * buffer_num + extra_cards) / oopSize;
  3663 size_t G1CollectedHeap::cards_scanned() {
  3664   return g1_rem_set()->cardsScanned();
  3667 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
  3668   HeapRegion* region = region_at(index);
  3669   assert(region->startsHumongous(), "Must start a humongous object");
  3670   return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
  3673 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
  3674  private:
  3675   size_t _total_humongous;
  3676   size_t _candidate_humongous;
  3677  public:
  3678   RegisterHumongousWithInCSetFastTestClosure() : _total_humongous(0), _candidate_humongous(0) {
  3681   virtual bool doHeapRegion(HeapRegion* r) {
  3682     if (!r->startsHumongous()) {
  3683       return false;
  3685     G1CollectedHeap* g1h = G1CollectedHeap::heap();
  3687     uint region_idx = r->hrm_index();
  3688     bool is_candidate = !g1h->humongous_region_is_always_live(region_idx);
  3689     // Is_candidate already filters out humongous regions with some remembered set.
  3690     // This will not lead to humongous object that we mistakenly keep alive because
  3691     // during young collection the remembered sets will only be added to.
  3692     if (is_candidate) {
  3693       g1h->register_humongous_region_with_in_cset_fast_test(region_idx);
  3694       _candidate_humongous++;
  3696     _total_humongous++;
  3698     return false;
  3701   size_t total_humongous() const { return _total_humongous; }
  3702   size_t candidate_humongous() const { return _candidate_humongous; }
  3703 };
  3705 void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
  3706   if (!G1ReclaimDeadHumongousObjectsAtYoungGC) {
  3707     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0, 0);
  3708     return;
  3711   RegisterHumongousWithInCSetFastTestClosure cl;
  3712   heap_region_iterate(&cl);
  3713   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(cl.total_humongous(),
  3714                                                                   cl.candidate_humongous());
  3715   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
  3717   if (_has_humongous_reclaim_candidates) {
  3718     clear_humongous_is_live_table();
  3722 void
  3723 G1CollectedHeap::setup_surviving_young_words() {
  3724   assert(_surviving_young_words == NULL, "pre-condition");
  3725   uint array_length = g1_policy()->young_cset_region_length();
  3726   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
  3727   if (_surviving_young_words == NULL) {
  3728     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
  3729                           "Not enough space for young surv words summary.");
  3731   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
  3732 #ifdef ASSERT
  3733   for (uint i = 0;  i < array_length; ++i) {
  3734     assert( _surviving_young_words[i] == 0, "memset above" );
  3736 #endif // !ASSERT
  3739 void
  3740 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3741   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3742   uint array_length = g1_policy()->young_cset_region_length();
  3743   for (uint i = 0; i < array_length; ++i) {
  3744     _surviving_young_words[i] += surv_young_words[i];
  3748 void
  3749 G1CollectedHeap::cleanup_surviving_young_words() {
  3750   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3751   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
  3752   _surviving_young_words = NULL;
  3755 #ifdef ASSERT
  3756 class VerifyCSetClosure: public HeapRegionClosure {
  3757 public:
  3758   bool doHeapRegion(HeapRegion* hr) {
  3759     // Here we check that the CSet region's RSet is ready for parallel
  3760     // iteration. The fields that we'll verify are only manipulated
  3761     // when the region is part of a CSet and is collected. Afterwards,
  3762     // we reset these fields when we clear the region's RSet (when the
  3763     // region is freed) so they are ready when the region is
  3764     // re-allocated. The only exception to this is if there's an
  3765     // evacuation failure and instead of freeing the region we leave
  3766     // it in the heap. In that case, we reset these fields during
  3767     // evacuation failure handling.
  3768     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3770     // Here's a good place to add any other checks we'd like to
  3771     // perform on CSet regions.
  3772     return false;
  3774 };
  3775 #endif // ASSERT
  3777 #if TASKQUEUE_STATS
  3778 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3779   st->print_raw_cr("GC Task Stats");
  3780   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3781   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3784 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3785   print_taskqueue_stats_hdr(st);
  3787   TaskQueueStats totals;
  3788   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3789   for (int i = 0; i < n; ++i) {
  3790     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3791     totals += task_queue(i)->stats;
  3793   st->print_raw("tot "); totals.print(st); st->cr();
  3795   DEBUG_ONLY(totals.verify());
  3798 void G1CollectedHeap::reset_taskqueue_stats() {
  3799   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3800   for (int i = 0; i < n; ++i) {
  3801     task_queue(i)->stats.reset();
  3804 #endif // TASKQUEUE_STATS
  3806 void G1CollectedHeap::log_gc_header() {
  3807   if (!G1Log::fine()) {
  3808     return;
  3811   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
  3813   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
  3814     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
  3815     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
  3817   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
  3820 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  3821   if (!G1Log::fine()) {
  3822     return;
  3825   if (G1Log::finer()) {
  3826     if (evacuation_failed()) {
  3827       gclog_or_tty->print(" (to-space exhausted)");
  3829     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3830     g1_policy()->phase_times()->note_gc_end();
  3831     g1_policy()->phase_times()->print(pause_time_sec);
  3832     g1_policy()->print_detailed_heap_transition();
  3833   } else {
  3834     if (evacuation_failed()) {
  3835       gclog_or_tty->print("--");
  3837     g1_policy()->print_heap_transition();
  3838     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3840   gclog_or_tty->flush();
  3843 bool
  3844 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3845   assert_at_safepoint(true /* should_be_vm_thread */);
  3846   guarantee(!is_gc_active(), "collection is not reentrant");
  3848   if (GC_locker::check_active_before_gc()) {
  3849     return false;
  3852   _gc_timer_stw->register_gc_start();
  3854   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
  3856   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3857   ResourceMark rm;
  3859   print_heap_before_gc();
  3860   trace_heap_before_gc(_gc_tracer_stw);
  3862   verify_region_sets_optional();
  3863   verify_dirty_young_regions();
  3865   // This call will decide whether this pause is an initial-mark
  3866   // pause. If it is, during_initial_mark_pause() will return true
  3867   // for the duration of this pause.
  3868   g1_policy()->decide_on_conc_mark_initiation();
  3870   // We do not allow initial-mark to be piggy-backed on a mixed GC.
  3871   assert(!g1_policy()->during_initial_mark_pause() ||
  3872           g1_policy()->gcs_are_young(), "sanity");
  3874   // We also do not allow mixed GCs during marking.
  3875   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  3877   // Record whether this pause is an initial mark. When the current
  3878   // thread has completed its logging output and it's safe to signal
  3879   // the CM thread, the flag's value in the policy has been reset.
  3880   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
  3882   // Inner scope for scope based logging, timers, and stats collection
  3884     EvacuationInfo evacuation_info;
  3886     if (g1_policy()->during_initial_mark_pause()) {
  3887       // We are about to start a marking cycle, so we increment the
  3888       // full collection counter.
  3889       increment_old_marking_cycles_started();
  3890       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
  3893     _gc_tracer_stw->report_yc_type(yc_type());
  3895     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  3897     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3898                                 workers()->active_workers() : 1);
  3899     double pause_start_sec = os::elapsedTime();
  3900     g1_policy()->phase_times()->note_gc_start(active_workers);
  3901     log_gc_header();
  3903     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3904     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3906     // If the secondary_free_list is not empty, append it to the
  3907     // free_list. No need to wait for the cleanup operation to finish;
  3908     // the region allocation code will check the secondary_free_list
  3909     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3910     // set, skip this step so that the region allocation code has to
  3911     // get entries from the secondary_free_list.
  3912     if (!G1StressConcRegionFreeing) {
  3913       append_secondary_free_list_if_not_empty_with_lock();
  3916     assert(check_young_list_well_formed(), "young list should be well formed");
  3917     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3918            "sanity check");
  3920     // Don't dynamically change the number of GC threads this early.  A value of
  3921     // 0 is used to indicate serial work.  When parallel work is done,
  3922     // it will be set.
  3924     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3925       IsGCActiveMark x;
  3927       gc_prologue(false);
  3928       increment_total_collections(false /* full gc */);
  3929       increment_gc_time_stamp();
  3931       verify_before_gc();
  3932       check_bitmaps("GC Start");
  3934       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3936       // Please see comment in g1CollectedHeap.hpp and
  3937       // G1CollectedHeap::ref_processing_init() to see how
  3938       // reference processing currently works in G1.
  3940       // Enable discovery in the STW reference processor
  3941       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  3942                                             true /*verify_no_refs*/);
  3945         // We want to temporarily turn off discovery by the
  3946         // CM ref processor, if necessary, and turn it back on
  3947         // on again later if we do. Using a scoped
  3948         // NoRefDiscovery object will do this.
  3949         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  3951         // Forget the current alloc region (we might even choose it to be part
  3952         // of the collection set!).
  3953         _allocator->release_mutator_alloc_region();
  3955         // We should call this after we retire the mutator alloc
  3956         // region(s) so that all the ALLOC / RETIRE events are generated
  3957         // before the start GC event.
  3958         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  3960         // This timing is only used by the ergonomics to handle our pause target.
  3961         // It is unclear why this should not include the full pause. We will
  3962         // investigate this in CR 7178365.
  3963         //
  3964         // Preserving the old comment here if that helps the investigation:
  3965         //
  3966         // The elapsed time induced by the start time below deliberately elides
  3967         // the possible verification above.
  3968         double sample_start_time_sec = os::elapsedTime();
  3970 #if YOUNG_LIST_VERBOSE
  3971         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  3972         _young_list->print();
  3973         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3974 #endif // YOUNG_LIST_VERBOSE
  3976         g1_policy()->record_collection_pause_start(sample_start_time_sec);
  3978         double scan_wait_start = os::elapsedTime();
  3979         // We have to wait until the CM threads finish scanning the
  3980         // root regions as it's the only way to ensure that all the
  3981         // objects on them have been correctly scanned before we start
  3982         // moving them during the GC.
  3983         bool waited = _cm->root_regions()->wait_until_scan_finished();
  3984         double wait_time_ms = 0.0;
  3985         if (waited) {
  3986           double scan_wait_end = os::elapsedTime();
  3987           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
  3989         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
  3991 #if YOUNG_LIST_VERBOSE
  3992         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  3993         _young_list->print();
  3994 #endif // YOUNG_LIST_VERBOSE
  3996         if (g1_policy()->during_initial_mark_pause()) {
  3997           concurrent_mark()->checkpointRootsInitialPre();
  4000 #if YOUNG_LIST_VERBOSE
  4001         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  4002         _young_list->print();
  4003         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4004 #endif // YOUNG_LIST_VERBOSE
  4006         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
  4008         register_humongous_regions_with_in_cset_fast_test();
  4010         _cm->note_start_of_gc();
  4011         // We should not verify the per-thread SATB buffers given that
  4012         // we have not filtered them yet (we'll do so during the
  4013         // GC). We also call this after finalize_cset() to
  4014         // ensure that the CSet has been finalized.
  4015         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4016                                  true  /* verify_enqueued_buffers */,
  4017                                  false /* verify_thread_buffers */,
  4018                                  true  /* verify_fingers */);
  4020         if (_hr_printer.is_active()) {
  4021           HeapRegion* hr = g1_policy()->collection_set();
  4022           while (hr != NULL) {
  4023             G1HRPrinter::RegionType type;
  4024             if (!hr->is_young()) {
  4025               type = G1HRPrinter::Old;
  4026             } else if (hr->is_survivor()) {
  4027               type = G1HRPrinter::Survivor;
  4028             } else {
  4029               type = G1HRPrinter::Eden;
  4031             _hr_printer.cset(hr);
  4032             hr = hr->next_in_collection_set();
  4036 #ifdef ASSERT
  4037         VerifyCSetClosure cl;
  4038         collection_set_iterate(&cl);
  4039 #endif // ASSERT
  4041         setup_surviving_young_words();
  4043         // Initialize the GC alloc regions.
  4044         _allocator->init_gc_alloc_regions(evacuation_info);
  4046         // Actually do the work...
  4047         evacuate_collection_set(evacuation_info);
  4049         // We do this to mainly verify the per-thread SATB buffers
  4050         // (which have been filtered by now) since we didn't verify
  4051         // them earlier. No point in re-checking the stacks / enqueued
  4052         // buffers given that the CSet has not changed since last time
  4053         // we checked.
  4054         _cm->verify_no_cset_oops(false /* verify_stacks */,
  4055                                  false /* verify_enqueued_buffers */,
  4056                                  true  /* verify_thread_buffers */,
  4057                                  true  /* verify_fingers */);
  4059         free_collection_set(g1_policy()->collection_set(), evacuation_info);
  4061         eagerly_reclaim_humongous_regions();
  4063         g1_policy()->clear_collection_set();
  4065         cleanup_surviving_young_words();
  4067         // Start a new incremental collection set for the next pause.
  4068         g1_policy()->start_incremental_cset_building();
  4070         clear_cset_fast_test();
  4072         _young_list->reset_sampled_info();
  4074         // Don't check the whole heap at this point as the
  4075         // GC alloc regions from this pause have been tagged
  4076         // as survivors and moved on to the survivor list.
  4077         // Survivor regions will fail the !is_young() check.
  4078         assert(check_young_list_empty(false /* check_heap */),
  4079           "young list should be empty");
  4081 #if YOUNG_LIST_VERBOSE
  4082         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  4083         _young_list->print();
  4084 #endif // YOUNG_LIST_VERBOSE
  4086         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  4087                                              _young_list->first_survivor_region(),
  4088                                              _young_list->last_survivor_region());
  4090         _young_list->reset_auxilary_lists();
  4092         if (evacuation_failed()) {
  4093           _allocator->set_used(recalculate_used());
  4094           uint n_queues = MAX2((int)ParallelGCThreads, 1);
  4095           for (uint i = 0; i < n_queues; i++) {
  4096             if (_evacuation_failed_info_array[i].has_failed()) {
  4097               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
  4100         } else {
  4101           // The "used" of the the collection set have already been subtracted
  4102           // when they were freed.  Add in the bytes evacuated.
  4103           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
  4106         if (g1_policy()->during_initial_mark_pause()) {
  4107           // We have to do this before we notify the CM threads that
  4108           // they can start working to make sure that all the
  4109           // appropriate initialization is done on the CM object.
  4110           concurrent_mark()->checkpointRootsInitialPost();
  4111           set_marking_started();
  4112           // Note that we don't actually trigger the CM thread at
  4113           // this point. We do that later when we're sure that
  4114           // the current thread has completed its logging output.
  4117         allocate_dummy_regions();
  4119 #if YOUNG_LIST_VERBOSE
  4120         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  4121         _young_list->print();
  4122         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4123 #endif // YOUNG_LIST_VERBOSE
  4125         _allocator->init_mutator_alloc_region();
  4128           size_t expand_bytes = g1_policy()->expansion_amount();
  4129           if (expand_bytes > 0) {
  4130             size_t bytes_before = capacity();
  4131             // No need for an ergo verbose message here,
  4132             // expansion_amount() does this when it returns a value > 0.
  4133             if (!expand(expand_bytes)) {
  4134               // We failed to expand the heap. Cannot do anything about it.
  4139         // We redo the verification but now wrt to the new CSet which
  4140         // has just got initialized after the previous CSet was freed.
  4141         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4142                                  true  /* verify_enqueued_buffers */,
  4143                                  true  /* verify_thread_buffers */,
  4144                                  true  /* verify_fingers */);
  4145         _cm->note_end_of_gc();
  4147         // This timing is only used by the ergonomics to handle our pause target.
  4148         // It is unclear why this should not include the full pause. We will
  4149         // investigate this in CR 7178365.
  4150         double sample_end_time_sec = os::elapsedTime();
  4151         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
  4152         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
  4154         MemoryService::track_memory_usage();
  4156         // In prepare_for_verify() below we'll need to scan the deferred
  4157         // update buffers to bring the RSets up-to-date if
  4158         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  4159         // the update buffers we'll probably need to scan cards on the
  4160         // regions we just allocated to (i.e., the GC alloc
  4161         // regions). However, during the last GC we called
  4162         // set_saved_mark() on all the GC alloc regions, so card
  4163         // scanning might skip the [saved_mark_word()...top()] area of
  4164         // those regions (i.e., the area we allocated objects into
  4165         // during the last GC). But it shouldn't. Given that
  4166         // saved_mark_word() is conditional on whether the GC time stamp
  4167         // on the region is current or not, by incrementing the GC time
  4168         // stamp here we invalidate all the GC time stamps on all the
  4169         // regions and saved_mark_word() will simply return top() for
  4170         // all the regions. This is a nicer way of ensuring this rather
  4171         // than iterating over the regions and fixing them. In fact, the
  4172         // GC time stamp increment here also ensures that
  4173         // saved_mark_word() will return top() between pauses, i.e.,
  4174         // during concurrent refinement. So we don't need the
  4175         // is_gc_active() check to decided which top to use when
  4176         // scanning cards (see CR 7039627).
  4177         increment_gc_time_stamp();
  4179         verify_after_gc();
  4180         check_bitmaps("GC End");
  4182         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  4183         ref_processor_stw()->verify_no_references_recorded();
  4185         // CM reference discovery will be re-enabled if necessary.
  4188       // We should do this after we potentially expand the heap so
  4189       // that all the COMMIT events are generated before the end GC
  4190       // event, and after we retire the GC alloc regions so that all
  4191       // RETIRE events are generated before the end GC event.
  4192       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  4194 #ifdef TRACESPINNING
  4195       ParallelTaskTerminator::print_termination_counts();
  4196 #endif
  4198       gc_epilogue(false);
  4201     // Print the remainder of the GC log output.
  4202     log_gc_footer(os::elapsedTime() - pause_start_sec);
  4204     // It is not yet to safe to tell the concurrent mark to
  4205     // start as we have some optional output below. We don't want the
  4206     // output from the concurrent mark thread interfering with this
  4207     // logging output either.
  4209     _hrm.verify_optional();
  4210     verify_region_sets_optional();
  4212     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  4213     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  4215     print_heap_after_gc();
  4216     trace_heap_after_gc(_gc_tracer_stw);
  4218     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  4219     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  4220     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  4221     // before any GC notifications are raised.
  4222     g1mm()->update_sizes();
  4224     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
  4225     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
  4226     _gc_timer_stw->register_gc_end();
  4227     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  4229   // It should now be safe to tell the concurrent mark thread to start
  4230   // without its logging output interfering with the logging output
  4231   // that came from the pause.
  4233   if (should_start_conc_mark) {
  4234     // CAUTION: after the doConcurrentMark() call below,
  4235     // the concurrent marking thread(s) could be running
  4236     // concurrently with us. Make sure that anything after
  4237     // this point does not assume that we are the only GC thread
  4238     // running. Note: of course, the actual marking work will
  4239     // not start until the safepoint itself is released in
  4240     // SuspendibleThreadSet::desynchronize().
  4241     doConcurrentMark();
  4244   return true;
  4247 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  4249   size_t gclab_word_size;
  4250   switch (purpose) {
  4251     case GCAllocForSurvived:
  4252       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
  4253       break;
  4254     case GCAllocForTenured:
  4255       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4256       break;
  4257     default:
  4258       assert(false, "unknown GCAllocPurpose");
  4259       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4260       break;
  4263   // Prevent humongous PLAB sizes for two reasons:
  4264   // * PLABs are allocated using a similar paths as oops, but should
  4265   //   never be in a humongous region
  4266   // * Allowing humongous PLABs needlessly churns the region free lists
  4267   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
  4270 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  4271   _drain_in_progress = false;
  4272   set_evac_failure_closure(cl);
  4273   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
  4276 void G1CollectedHeap::finalize_for_evac_failure() {
  4277   assert(_evac_failure_scan_stack != NULL &&
  4278          _evac_failure_scan_stack->length() == 0,
  4279          "Postcondition");
  4280   assert(!_drain_in_progress, "Postcondition");
  4281   delete _evac_failure_scan_stack;
  4282   _evac_failure_scan_stack = NULL;
  4285 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4286   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4288   double remove_self_forwards_start = os::elapsedTime();
  4290   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  4292   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4293     set_par_threads();
  4294     workers()->run_task(&rsfp_task);
  4295     set_par_threads(0);
  4296   } else {
  4297     rsfp_task.work(0);
  4300   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4302   // Reset the claim values in the regions in the collection set.
  4303   reset_cset_heap_region_claim_values();
  4305   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4307   // Now restore saved marks, if any.
  4308   assert(_objs_with_preserved_marks.size() ==
  4309             _preserved_marks_of_objs.size(), "Both or none.");
  4310   while (!_objs_with_preserved_marks.is_empty()) {
  4311     oop obj = _objs_with_preserved_marks.pop();
  4312     markOop m = _preserved_marks_of_objs.pop();
  4313     obj->set_mark(m);
  4315   _objs_with_preserved_marks.clear(true);
  4316   _preserved_marks_of_objs.clear(true);
  4318   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
  4321 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4322   _evac_failure_scan_stack->push(obj);
  4325 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4326   assert(_evac_failure_scan_stack != NULL, "precondition");
  4328   while (_evac_failure_scan_stack->length() > 0) {
  4329      oop obj = _evac_failure_scan_stack->pop();
  4330      _evac_failure_closure->set_region(heap_region_containing(obj));
  4331      obj->oop_iterate_backwards(_evac_failure_closure);
  4335 oop
  4336 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
  4337                                                oop old) {
  4338   assert(obj_in_cs(old),
  4339          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4340                  (HeapWord*) old));
  4341   markOop m = old->mark();
  4342   oop forward_ptr = old->forward_to_atomic(old);
  4343   if (forward_ptr == NULL) {
  4344     // Forward-to-self succeeded.
  4345     assert(_par_scan_state != NULL, "par scan state");
  4346     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4347     uint queue_num = _par_scan_state->queue_num();
  4349     _evacuation_failed = true;
  4350     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
  4351     if (_evac_failure_closure != cl) {
  4352       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4353       assert(!_drain_in_progress,
  4354              "Should only be true while someone holds the lock.");
  4355       // Set the global evac-failure closure to the current thread's.
  4356       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4357       set_evac_failure_closure(cl);
  4358       // Now do the common part.
  4359       handle_evacuation_failure_common(old, m);
  4360       // Reset to NULL.
  4361       set_evac_failure_closure(NULL);
  4362     } else {
  4363       // The lock is already held, and this is recursive.
  4364       assert(_drain_in_progress, "This should only be the recursive case.");
  4365       handle_evacuation_failure_common(old, m);
  4367     return old;
  4368   } else {
  4369     // Forward-to-self failed. Either someone else managed to allocate
  4370     // space for this object (old != forward_ptr) or they beat us in
  4371     // self-forwarding it (old == forward_ptr).
  4372     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4373            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4374                    "should not be in the CSet",
  4375                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4376     return forward_ptr;
  4380 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4381   preserve_mark_if_necessary(old, m);
  4383   HeapRegion* r = heap_region_containing(old);
  4384   if (!r->evacuation_failed()) {
  4385     r->set_evacuation_failed(true);
  4386     _hr_printer.evac_failure(r);
  4389   push_on_evac_failure_scan_stack(old);
  4391   if (!_drain_in_progress) {
  4392     // prevent recursion in copy_to_survivor_space()
  4393     _drain_in_progress = true;
  4394     drain_evac_failure_scan_stack();
  4395     _drain_in_progress = false;
  4399 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4400   assert(evacuation_failed(), "Oversaving!");
  4401   // We want to call the "for_promotion_failure" version only in the
  4402   // case of a promotion failure.
  4403   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4404     _objs_with_preserved_marks.push(obj);
  4405     _preserved_marks_of_objs.push(m);
  4409 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4410                                                   size_t word_size,
  4411                                                   AllocationContext_t context) {
  4412   if (purpose == GCAllocForSurvived) {
  4413     HeapWord* result = survivor_attempt_allocation(word_size, context);
  4414     if (result != NULL) {
  4415       return result;
  4416     } else {
  4417       // Let's try to allocate in the old gen in case we can fit the
  4418       // object there.
  4419       return old_attempt_allocation(word_size, context);
  4421   } else {
  4422     assert(purpose ==  GCAllocForTenured, "sanity");
  4423     HeapWord* result = old_attempt_allocation(word_size, context);
  4424     if (result != NULL) {
  4425       return result;
  4426     } else {
  4427       // Let's try to allocate in the survivors in case we can fit the
  4428       // object there.
  4429       return survivor_attempt_allocation(word_size, context);
  4433   ShouldNotReachHere();
  4434   // Trying to keep some compilers happy.
  4435   return NULL;
  4438 void G1ParCopyHelper::mark_object(oop obj) {
  4439   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
  4441   // We know that the object is not moving so it's safe to read its size.
  4442   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  4445 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
  4446   assert(from_obj->is_forwarded(), "from obj should be forwarded");
  4447   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  4448   assert(from_obj != to_obj, "should not be self-forwarded");
  4450   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
  4451   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
  4453   // The object might be in the process of being copied by another
  4454   // worker so we cannot trust that its to-space image is
  4455   // well-formed. So we have to read its size from its from-space
  4456   // image which we know should not be changing.
  4457   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
  4460 template <class T>
  4461 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  4462   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
  4463     _scanned_klass->record_modified_oops();
  4467 template <G1Barrier barrier, G1Mark do_mark_object>
  4468 template <class T>
  4469 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
  4470   T heap_oop = oopDesc::load_heap_oop(p);
  4472   if (oopDesc::is_null(heap_oop)) {
  4473     return;
  4476   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  4478   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
  4480   G1CollectedHeap::in_cset_state_t state = _g1->in_cset_state(obj);
  4482   if (state == G1CollectedHeap::InCSet) {
  4483     oop forwardee;
  4484     if (obj->is_forwarded()) {
  4485       forwardee = obj->forwardee();
  4486     } else {
  4487       forwardee = _par_scan_state->copy_to_survivor_space(obj);
  4489     assert(forwardee != NULL, "forwardee should not be NULL");
  4490     oopDesc::encode_store_heap_oop(p, forwardee);
  4491     if (do_mark_object != G1MarkNone && forwardee != obj) {
  4492       // If the object is self-forwarded we don't need to explicitly
  4493       // mark it, the evacuation failure protocol will do so.
  4494       mark_forwarded_object(obj, forwardee);
  4497     if (barrier == G1BarrierKlass) {
  4498       do_klass_barrier(p, forwardee);
  4500   } else {
  4501     if (state == G1CollectedHeap::IsHumongous) {
  4502       _g1->set_humongous_is_live(obj);
  4504     // The object is not in collection set. If we're a root scanning
  4505     // closure during an initial mark pause then attempt to mark the object.
  4506     if (do_mark_object == G1MarkFromRoot) {
  4507       mark_object(obj);
  4511   if (barrier == G1BarrierEvac) {
  4512     _par_scan_state->update_rs(_from, p, _worker_id);
  4516 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
  4517 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
  4519 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4520 protected:
  4521   G1CollectedHeap*              _g1h;
  4522   G1ParScanThreadState*         _par_scan_state;
  4523   RefToScanQueueSet*            _queues;
  4524   ParallelTaskTerminator*       _terminator;
  4526   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4527   RefToScanQueueSet*      queues()         { return _queues; }
  4528   ParallelTaskTerminator* terminator()     { return _terminator; }
  4530 public:
  4531   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4532                                 G1ParScanThreadState* par_scan_state,
  4533                                 RefToScanQueueSet* queues,
  4534                                 ParallelTaskTerminator* terminator)
  4535     : _g1h(g1h), _par_scan_state(par_scan_state),
  4536       _queues(queues), _terminator(terminator) {}
  4538   void do_void();
  4540 private:
  4541   inline bool offer_termination();
  4542 };
  4544 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4545   G1ParScanThreadState* const pss = par_scan_state();
  4546   pss->start_term_time();
  4547   const bool res = terminator()->offer_termination();
  4548   pss->end_term_time();
  4549   return res;
  4552 void G1ParEvacuateFollowersClosure::do_void() {
  4553   G1ParScanThreadState* const pss = par_scan_state();
  4554   pss->trim_queue();
  4555   do {
  4556     pss->steal_and_trim_queue(queues());
  4557   } while (!offer_termination());
  4560 class G1KlassScanClosure : public KlassClosure {
  4561  G1ParCopyHelper* _closure;
  4562  bool             _process_only_dirty;
  4563  int              _count;
  4564  public:
  4565   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
  4566       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  4567   void do_klass(Klass* klass) {
  4568     // If the klass has not been dirtied we know that there's
  4569     // no references into  the young gen and we can skip it.
  4570    if (!_process_only_dirty || klass->has_modified_oops()) {
  4571       // Clean the klass since we're going to scavenge all the metadata.
  4572       klass->clear_modified_oops();
  4574       // Tell the closure that this klass is the Klass to scavenge
  4575       // and is the one to dirty if oops are left pointing into the young gen.
  4576       _closure->set_scanned_klass(klass);
  4578       klass->oops_do(_closure);
  4580       _closure->set_scanned_klass(NULL);
  4582     _count++;
  4584 };
  4586 class G1ParTask : public AbstractGangTask {
  4587 protected:
  4588   G1CollectedHeap*       _g1h;
  4589   RefToScanQueueSet      *_queues;
  4590   ParallelTaskTerminator _terminator;
  4591   uint _n_workers;
  4593   Mutex _stats_lock;
  4594   Mutex* stats_lock() { return &_stats_lock; }
  4596 public:
  4597   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
  4598     : AbstractGangTask("G1 collection"),
  4599       _g1h(g1h),
  4600       _queues(task_queues),
  4601       _terminator(0, _queues),
  4602       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4603   {}
  4605   RefToScanQueueSet* queues() { return _queues; }
  4607   RefToScanQueue *work_queue(int i) {
  4608     return queues()->queue(i);
  4611   ParallelTaskTerminator* terminator() { return &_terminator; }
  4613   virtual void set_for_termination(int active_workers) {
  4614     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
  4615     // in the young space (_par_seq_tasks) in the G1 heap
  4616     // for SequentialSubTasksDone.
  4617     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
  4618     // both of which need setting by set_n_termination().
  4619     _g1h->SharedHeap::set_n_termination(active_workers);
  4620     _g1h->set_n_termination(active_workers);
  4621     terminator()->reset_for_reuse(active_workers);
  4622     _n_workers = active_workers;
  4625   // Helps out with CLD processing.
  4626   //
  4627   // During InitialMark we need to:
  4628   // 1) Scavenge all CLDs for the young GC.
  4629   // 2) Mark all objects directly reachable from strong CLDs.
  4630   template <G1Mark do_mark_object>
  4631   class G1CLDClosure : public CLDClosure {
  4632     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
  4633     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
  4634     G1KlassScanClosure                                _klass_in_cld_closure;
  4635     bool                                              _claim;
  4637    public:
  4638     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
  4639                  bool only_young, bool claim)
  4640         : _oop_closure(oop_closure),
  4641           _oop_in_klass_closure(oop_closure->g1(),
  4642                                 oop_closure->pss(),
  4643                                 oop_closure->rp()),
  4644           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
  4645           _claim(claim) {
  4649     void do_cld(ClassLoaderData* cld) {
  4650       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
  4652   };
  4654   class G1CodeBlobClosure: public CodeBlobClosure {
  4655     OopClosure* _f;
  4657    public:
  4658     G1CodeBlobClosure(OopClosure* f) : _f(f) {}
  4659     void do_code_blob(CodeBlob* blob) {
  4660       nmethod* that = blob->as_nmethod_or_null();
  4661       if (that != NULL) {
  4662         if (!that->test_set_oops_do_mark()) {
  4663           that->oops_do(_f);
  4664           that->fix_oop_relocations();
  4668   };
  4670   void work(uint worker_id) {
  4671     if (worker_id >= _n_workers) return;  // no work needed this round
  4673     double start_time_ms = os::elapsedTime() * 1000.0;
  4674     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
  4677       ResourceMark rm;
  4678       HandleMark   hm;
  4680       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  4682       G1ParScanThreadState            pss(_g1h, worker_id, rp);
  4683       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  4685       pss.set_evac_failure_closure(&evac_failure_cl);
  4687       bool only_young = _g1h->g1_policy()->gcs_are_young();
  4689       // Non-IM young GC.
  4690       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
  4691       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
  4692                                                                                only_young, // Only process dirty klasses.
  4693                                                                                false);     // No need to claim CLDs.
  4694       // IM young GC.
  4695       //    Strong roots closures.
  4696       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
  4697       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
  4698                                                                                false, // Process all klasses.
  4699                                                                                true); // Need to claim CLDs.
  4700       //    Weak roots closures.
  4701       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
  4702       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
  4703                                                                                     false, // Process all klasses.
  4704                                                                                     true); // Need to claim CLDs.
  4706       G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl);
  4707       G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl);
  4708       // IM Weak code roots are handled later.
  4710       OopClosure* strong_root_cl;
  4711       OopClosure* weak_root_cl;
  4712       CLDClosure* strong_cld_cl;
  4713       CLDClosure* weak_cld_cl;
  4714       CodeBlobClosure* strong_code_cl;
  4716       if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4717         // We also need to mark copied objects.
  4718         strong_root_cl = &scan_mark_root_cl;
  4719         strong_cld_cl  = &scan_mark_cld_cl;
  4720         strong_code_cl = &scan_mark_code_cl;
  4721         if (ClassUnloadingWithConcurrentMark) {
  4722           weak_root_cl = &scan_mark_weak_root_cl;
  4723           weak_cld_cl  = &scan_mark_weak_cld_cl;
  4724         } else {
  4725           weak_root_cl = &scan_mark_root_cl;
  4726           weak_cld_cl  = &scan_mark_cld_cl;
  4728       } else {
  4729         strong_root_cl = &scan_only_root_cl;
  4730         weak_root_cl   = &scan_only_root_cl;
  4731         strong_cld_cl  = &scan_only_cld_cl;
  4732         weak_cld_cl    = &scan_only_cld_cl;
  4733         strong_code_cl = &scan_only_code_cl;
  4737       G1ParPushHeapRSClosure  push_heap_rs_cl(_g1h, &pss);
  4739       pss.start_strong_roots();
  4740       _g1h->g1_process_roots(strong_root_cl,
  4741                              weak_root_cl,
  4742                              &push_heap_rs_cl,
  4743                              strong_cld_cl,
  4744                              weak_cld_cl,
  4745                              strong_code_cl,
  4746                              worker_id);
  4748       pss.end_strong_roots();
  4751         double start = os::elapsedTime();
  4752         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4753         evac.do_void();
  4754         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4755         double term_ms = pss.term_time()*1000.0;
  4756         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
  4757         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
  4759       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4760       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4762       if (ParallelGCVerbose) {
  4763         MutexLocker x(stats_lock());
  4764         pss.print_termination_stats(worker_id);
  4767       assert(pss.queue_is_empty(), "should be empty");
  4769       // Close the inner scope so that the ResourceMark and HandleMark
  4770       // destructors are executed here and are included as part of the
  4771       // "GC Worker Time".
  4774     double end_time_ms = os::elapsedTime() * 1000.0;
  4775     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
  4777 };
  4779 // *** Common G1 Evacuation Stuff
  4781 // This method is run in a GC worker.
  4783 void
  4784 G1CollectedHeap::
  4785 g1_process_roots(OopClosure* scan_non_heap_roots,
  4786                  OopClosure* scan_non_heap_weak_roots,
  4787                  OopsInHeapRegionClosure* scan_rs,
  4788                  CLDClosure* scan_strong_clds,
  4789                  CLDClosure* scan_weak_clds,
  4790                  CodeBlobClosure* scan_strong_code,
  4791                  uint worker_i) {
  4793   // First scan the shared roots.
  4794   double ext_roots_start = os::elapsedTime();
  4795   double closure_app_time_sec = 0.0;
  4797   bool during_im = _g1h->g1_policy()->during_initial_mark_pause();
  4798   bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark;
  4800   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4801   BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots);
  4803   process_roots(false, // no scoping; this is parallel code
  4804                 SharedHeap::SO_None,
  4805                 &buf_scan_non_heap_roots,
  4806                 &buf_scan_non_heap_weak_roots,
  4807                 scan_strong_clds,
  4808                 // Unloading Initial Marks handle the weak CLDs separately.
  4809                 (trace_metadata ? NULL : scan_weak_clds),
  4810                 scan_strong_code);
  4812   // Now the CM ref_processor roots.
  4813   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4814     // We need to treat the discovered reference lists of the
  4815     // concurrent mark ref processor as roots and keep entries
  4816     // (which are added by the marking threads) on them live
  4817     // until they can be processed at the end of marking.
  4818     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
  4821   if (trace_metadata) {
  4822     // Barrier to make sure all workers passed
  4823     // the strong CLD and strong nmethods phases.
  4824     active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads());
  4826     // Now take the complement of the strong CLDs.
  4827     ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds);
  4830   // Finish up any enqueued closure apps (attributed as object copy time).
  4831   buf_scan_non_heap_roots.done();
  4832   buf_scan_non_heap_weak_roots.done();
  4834   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds()
  4835       + buf_scan_non_heap_weak_roots.closure_app_seconds();
  4837   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4839   double ext_root_time_ms =
  4840     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4842   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4844   // During conc marking we have to filter the per-thread SATB buffers
  4845   // to make sure we remove any oops into the CSet (which will show up
  4846   // as implicitly live).
  4847   double satb_filtering_ms = 0.0;
  4848   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
  4849     if (mark_in_progress()) {
  4850       double satb_filter_start = os::elapsedTime();
  4852       JavaThread::satb_mark_queue_set().filter_thread_buffers();
  4854       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
  4857   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
  4859   // Now scan the complement of the collection set.
  4860   MarkingCodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots, CodeBlobToOopClosure::FixRelocations);
  4862   g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i);
  4864   _process_strong_tasks->all_tasks_completed();
  4867 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
  4868 private:
  4869   BoolObjectClosure* _is_alive;
  4870   int _initial_string_table_size;
  4871   int _initial_symbol_table_size;
  4873   bool  _process_strings;
  4874   int _strings_processed;
  4875   int _strings_removed;
  4877   bool  _process_symbols;
  4878   int _symbols_processed;
  4879   int _symbols_removed;
  4881   bool _do_in_parallel;
  4882 public:
  4883   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
  4884     AbstractGangTask("String/Symbol Unlinking"),
  4885     _is_alive(is_alive),
  4886     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
  4887     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
  4888     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
  4890     _initial_string_table_size = StringTable::the_table()->table_size();
  4891     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
  4892     if (process_strings) {
  4893       StringTable::clear_parallel_claimed_index();
  4895     if (process_symbols) {
  4896       SymbolTable::clear_parallel_claimed_index();
  4900   ~G1StringSymbolTableUnlinkTask() {
  4901     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
  4902               err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
  4903                       StringTable::parallel_claimed_index(), _initial_string_table_size));
  4904     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
  4905               err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
  4906                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
  4908     if (G1TraceStringSymbolTableScrubbing) {
  4909       gclog_or_tty->print_cr("Cleaned string and symbol table, "
  4910                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
  4911                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
  4912                              strings_processed(), strings_removed(),
  4913                              symbols_processed(), symbols_removed());
  4917   void work(uint worker_id) {
  4918     if (_do_in_parallel) {
  4919       int strings_processed = 0;
  4920       int strings_removed = 0;
  4921       int symbols_processed = 0;
  4922       int symbols_removed = 0;
  4923       if (_process_strings) {
  4924         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
  4925         Atomic::add(strings_processed, &_strings_processed);
  4926         Atomic::add(strings_removed, &_strings_removed);
  4928       if (_process_symbols) {
  4929         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
  4930         Atomic::add(symbols_processed, &_symbols_processed);
  4931         Atomic::add(symbols_removed, &_symbols_removed);
  4933     } else {
  4934       if (_process_strings) {
  4935         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
  4937       if (_process_symbols) {
  4938         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
  4943   size_t strings_processed() const { return (size_t)_strings_processed; }
  4944   size_t strings_removed()   const { return (size_t)_strings_removed; }
  4946   size_t symbols_processed() const { return (size_t)_symbols_processed; }
  4947   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
  4948 };
  4950 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
  4951 private:
  4952   static Monitor* _lock;
  4954   BoolObjectClosure* const _is_alive;
  4955   const bool               _unloading_occurred;
  4956   const uint               _num_workers;
  4958   // Variables used to claim nmethods.
  4959   nmethod* _first_nmethod;
  4960   volatile nmethod* _claimed_nmethod;
  4962   // The list of nmethods that need to be processed by the second pass.
  4963   volatile nmethod* _postponed_list;
  4964   volatile uint     _num_entered_barrier;
  4966  public:
  4967   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
  4968       _is_alive(is_alive),
  4969       _unloading_occurred(unloading_occurred),
  4970       _num_workers(num_workers),
  4971       _first_nmethod(NULL),
  4972       _claimed_nmethod(NULL),
  4973       _postponed_list(NULL),
  4974       _num_entered_barrier(0)
  4976     nmethod::increase_unloading_clock();
  4977     _first_nmethod = CodeCache::alive_nmethod(CodeCache::first());
  4978     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
  4981   ~G1CodeCacheUnloadingTask() {
  4982     CodeCache::verify_clean_inline_caches();
  4984     CodeCache::set_needs_cache_clean(false);
  4985     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
  4987     CodeCache::verify_icholder_relocations();
  4990  private:
  4991   void add_to_postponed_list(nmethod* nm) {
  4992       nmethod* old;
  4993       do {
  4994         old = (nmethod*)_postponed_list;
  4995         nm->set_unloading_next(old);
  4996       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
  4999   void clean_nmethod(nmethod* nm) {
  5000     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
  5002     if (postponed) {
  5003       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
  5004       add_to_postponed_list(nm);
  5007     // Mark that this thread has been cleaned/unloaded.
  5008     // After this call, it will be safe to ask if this nmethod was unloaded or not.
  5009     nm->set_unloading_clock(nmethod::global_unloading_clock());
  5012   void clean_nmethod_postponed(nmethod* nm) {
  5013     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
  5016   static const int MaxClaimNmethods = 16;
  5018   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
  5019     nmethod* first;
  5020     nmethod* last;
  5022     do {
  5023       *num_claimed_nmethods = 0;
  5025       first = last = (nmethod*)_claimed_nmethod;
  5027       if (first != NULL) {
  5028         for (int i = 0; i < MaxClaimNmethods; i++) {
  5029           last = CodeCache::alive_nmethod(CodeCache::next(last));
  5031           if (last == NULL) {
  5032             break;
  5035           claimed_nmethods[i] = last;
  5036           (*num_claimed_nmethods)++;
  5040     } while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first);
  5043   nmethod* claim_postponed_nmethod() {
  5044     nmethod* claim;
  5045     nmethod* next;
  5047     do {
  5048       claim = (nmethod*)_postponed_list;
  5049       if (claim == NULL) {
  5050         return NULL;
  5053       next = claim->unloading_next();
  5055     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
  5057     return claim;
  5060  public:
  5061   // Mark that we're done with the first pass of nmethod cleaning.
  5062   void barrier_mark(uint worker_id) {
  5063     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
  5064     _num_entered_barrier++;
  5065     if (_num_entered_barrier == _num_workers) {
  5066       ml.notify_all();
  5070   // See if we have to wait for the other workers to
  5071   // finish their first-pass nmethod cleaning work.
  5072   void barrier_wait(uint worker_id) {
  5073     if (_num_entered_barrier < _num_workers) {
  5074       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
  5075       while (_num_entered_barrier < _num_workers) {
  5076           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
  5081   // Cleaning and unloading of nmethods. Some work has to be postponed
  5082   // to the second pass, when we know which nmethods survive.
  5083   void work_first_pass(uint worker_id) {
  5084     // The first nmethods is claimed by the first worker.
  5085     if (worker_id == 0 && _first_nmethod != NULL) {
  5086       clean_nmethod(_first_nmethod);
  5087       _first_nmethod = NULL;
  5090     int num_claimed_nmethods;
  5091     nmethod* claimed_nmethods[MaxClaimNmethods];
  5093     while (true) {
  5094       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
  5096       if (num_claimed_nmethods == 0) {
  5097         break;
  5100       for (int i = 0; i < num_claimed_nmethods; i++) {
  5101         clean_nmethod(claimed_nmethods[i]);
  5106   void work_second_pass(uint worker_id) {
  5107     nmethod* nm;
  5108     // Take care of postponed nmethods.
  5109     while ((nm = claim_postponed_nmethod()) != NULL) {
  5110       clean_nmethod_postponed(nm);
  5113 };
  5115 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");
  5117 class G1KlassCleaningTask : public StackObj {
  5118   BoolObjectClosure*                      _is_alive;
  5119   volatile jint                           _clean_klass_tree_claimed;
  5120   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
  5122  public:
  5123   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
  5124       _is_alive(is_alive),
  5125       _clean_klass_tree_claimed(0),
  5126       _klass_iterator() {
  5129  private:
  5130   bool claim_clean_klass_tree_task() {
  5131     if (_clean_klass_tree_claimed) {
  5132       return false;
  5135     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
  5138   InstanceKlass* claim_next_klass() {
  5139     Klass* klass;
  5140     do {
  5141       klass =_klass_iterator.next_klass();
  5142     } while (klass != NULL && !klass->oop_is_instance());
  5144     return (InstanceKlass*)klass;
  5147 public:
  5149   void clean_klass(InstanceKlass* ik) {
  5150     ik->clean_implementors_list(_is_alive);
  5151     ik->clean_method_data(_is_alive);
  5153     // G1 specific cleanup work that has
  5154     // been moved here to be done in parallel.
  5155     ik->clean_dependent_nmethods();
  5158   void work() {
  5159     ResourceMark rm;
  5161     // One worker will clean the subklass/sibling klass tree.
  5162     if (claim_clean_klass_tree_task()) {
  5163       Klass::clean_subklass_tree(_is_alive);
  5166     // All workers will help cleaning the classes,
  5167     InstanceKlass* klass;
  5168     while ((klass = claim_next_klass()) != NULL) {
  5169       clean_klass(klass);
  5172 };
  5174 // To minimize the remark pause times, the tasks below are done in parallel.
  5175 class G1ParallelCleaningTask : public AbstractGangTask {
  5176 private:
  5177   G1StringSymbolTableUnlinkTask _string_symbol_task;
  5178   G1CodeCacheUnloadingTask      _code_cache_task;
  5179   G1KlassCleaningTask           _klass_cleaning_task;
  5181 public:
  5182   // The constructor is run in the VMThread.
  5183   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
  5184       AbstractGangTask("Parallel Cleaning"),
  5185       _string_symbol_task(is_alive, process_strings, process_symbols),
  5186       _code_cache_task(num_workers, is_alive, unloading_occurred),
  5187       _klass_cleaning_task(is_alive) {
  5190   // The parallel work done by all worker threads.
  5191   void work(uint worker_id) {
  5192     // Do first pass of code cache cleaning.
  5193     _code_cache_task.work_first_pass(worker_id);
  5195     // Let the threads mark that the first pass is done.
  5196     _code_cache_task.barrier_mark(worker_id);
  5198     // Clean the Strings and Symbols.
  5199     _string_symbol_task.work(worker_id);
  5201     // Wait for all workers to finish the first code cache cleaning pass.
  5202     _code_cache_task.barrier_wait(worker_id);
  5204     // Do the second code cache cleaning work, which realize on
  5205     // the liveness information gathered during the first pass.
  5206     _code_cache_task.work_second_pass(worker_id);
  5208     // Clean all klasses that were not unloaded.
  5209     _klass_cleaning_task.work();
  5211 };
  5214 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
  5215                                         bool process_strings,
  5216                                         bool process_symbols,
  5217                                         bool class_unloading_occurred) {
  5218   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5219                     workers()->active_workers() : 1);
  5221   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
  5222                                         n_workers, class_unloading_occurred);
  5223   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5224     set_par_threads(n_workers);
  5225     workers()->run_task(&g1_unlink_task);
  5226     set_par_threads(0);
  5227   } else {
  5228     g1_unlink_task.work(0);
  5232 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
  5233                                                      bool process_strings, bool process_symbols) {
  5235     uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5236                      _g1h->workers()->active_workers() : 1);
  5237     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
  5238     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5239       set_par_threads(n_workers);
  5240       workers()->run_task(&g1_unlink_task);
  5241       set_par_threads(0);
  5242     } else {
  5243       g1_unlink_task.work(0);
  5247   if (G1StringDedup::is_enabled()) {
  5248     G1StringDedup::unlink(is_alive);
  5252 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
  5253  private:
  5254   DirtyCardQueueSet* _queue;
  5255  public:
  5256   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
  5258   virtual void work(uint worker_id) {
  5259     double start_time = os::elapsedTime();
  5261     RedirtyLoggedCardTableEntryClosure cl;
  5262     if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
  5263       _queue->par_apply_closure_to_all_completed_buffers(&cl);
  5264     } else {
  5265       _queue->apply_closure_to_all_completed_buffers(&cl);
  5268     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
  5269     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
  5270     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
  5272 };
  5274 void G1CollectedHeap::redirty_logged_cards() {
  5275   guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates.");
  5276   double redirty_logged_cards_start = os::elapsedTime();
  5278   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5279                    _g1h->workers()->active_workers() : 1);
  5281   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
  5282   dirty_card_queue_set().reset_for_par_iteration();
  5283   if (use_parallel_gc_threads()) {
  5284     set_par_threads(n_workers);
  5285     workers()->run_task(&redirty_task);
  5286     set_par_threads(0);
  5287   } else {
  5288     redirty_task.work(0);
  5291   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5292   dcq.merge_bufferlists(&dirty_card_queue_set());
  5293   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5295   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
  5298 // Weak Reference Processing support
  5300 // An always "is_alive" closure that is used to preserve referents.
  5301 // If the object is non-null then it's alive.  Used in the preservation
  5302 // of referent objects that are pointed to by reference objects
  5303 // discovered by the CM ref processor.
  5304 class G1AlwaysAliveClosure: public BoolObjectClosure {
  5305   G1CollectedHeap* _g1;
  5306 public:
  5307   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5308   bool do_object_b(oop p) {
  5309     if (p != NULL) {
  5310       return true;
  5312     return false;
  5314 };
  5316 bool G1STWIsAliveClosure::do_object_b(oop p) {
  5317   // An object is reachable if it is outside the collection set,
  5318   // or is inside and copied.
  5319   return !_g1->obj_in_cs(p) || p->is_forwarded();
  5322 // Non Copying Keep Alive closure
  5323 class G1KeepAliveClosure: public OopClosure {
  5324   G1CollectedHeap* _g1;
  5325 public:
  5326   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5327   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  5328   void do_oop(oop* p) {
  5329     oop obj = *p;
  5331     G1CollectedHeap::in_cset_state_t cset_state = _g1->in_cset_state(obj);
  5332     if (obj == NULL || cset_state == G1CollectedHeap::InNeither) {
  5333       return;
  5335     if (cset_state == G1CollectedHeap::InCSet) {
  5336       assert( obj->is_forwarded(), "invariant" );
  5337       *p = obj->forwardee();
  5338     } else {
  5339       assert(!obj->is_forwarded(), "invariant" );
  5340       assert(cset_state == G1CollectedHeap::IsHumongous,
  5341              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state));
  5342       _g1->set_humongous_is_live(obj);
  5345 };
  5347 // Copying Keep Alive closure - can be called from both
  5348 // serial and parallel code as long as different worker
  5349 // threads utilize different G1ParScanThreadState instances
  5350 // and different queues.
  5352 class G1CopyingKeepAliveClosure: public OopClosure {
  5353   G1CollectedHeap*         _g1h;
  5354   OopClosure*              _copy_non_heap_obj_cl;
  5355   G1ParScanThreadState*    _par_scan_state;
  5357 public:
  5358   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  5359                             OopClosure* non_heap_obj_cl,
  5360                             G1ParScanThreadState* pss):
  5361     _g1h(g1h),
  5362     _copy_non_heap_obj_cl(non_heap_obj_cl),
  5363     _par_scan_state(pss)
  5364   {}
  5366   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  5367   virtual void do_oop(      oop* p) { do_oop_work(p); }
  5369   template <class T> void do_oop_work(T* p) {
  5370     oop obj = oopDesc::load_decode_heap_oop(p);
  5372     if (_g1h->is_in_cset_or_humongous(obj)) {
  5373       // If the referent object has been forwarded (either copied
  5374       // to a new location or to itself in the event of an
  5375       // evacuation failure) then we need to update the reference
  5376       // field and, if both reference and referent are in the G1
  5377       // heap, update the RSet for the referent.
  5378       //
  5379       // If the referent has not been forwarded then we have to keep
  5380       // it alive by policy. Therefore we have copy the referent.
  5381       //
  5382       // If the reference field is in the G1 heap then we can push
  5383       // on the PSS queue. When the queue is drained (after each
  5384       // phase of reference processing) the object and it's followers
  5385       // will be copied, the reference field set to point to the
  5386       // new location, and the RSet updated. Otherwise we need to
  5387       // use the the non-heap or metadata closures directly to copy
  5388       // the referent object and update the pointer, while avoiding
  5389       // updating the RSet.
  5391       if (_g1h->is_in_g1_reserved(p)) {
  5392         _par_scan_state->push_on_queue(p);
  5393       } else {
  5394         assert(!Metaspace::contains((const void*)p),
  5395                err_msg("Unexpectedly found a pointer from metadata: "
  5396                               PTR_FORMAT, p));
  5397         _copy_non_heap_obj_cl->do_oop(p);
  5401 };
  5403 // Serial drain queue closure. Called as the 'complete_gc'
  5404 // closure for each discovered list in some of the
  5405 // reference processing phases.
  5407 class G1STWDrainQueueClosure: public VoidClosure {
  5408 protected:
  5409   G1CollectedHeap* _g1h;
  5410   G1ParScanThreadState* _par_scan_state;
  5412   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  5414 public:
  5415   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  5416     _g1h(g1h),
  5417     _par_scan_state(pss)
  5418   { }
  5420   void do_void() {
  5421     G1ParScanThreadState* const pss = par_scan_state();
  5422     pss->trim_queue();
  5424 };
  5426 // Parallel Reference Processing closures
  5428 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  5429 // processing during G1 evacuation pauses.
  5431 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  5432 private:
  5433   G1CollectedHeap*   _g1h;
  5434   RefToScanQueueSet* _queues;
  5435   FlexibleWorkGang*  _workers;
  5436   int                _active_workers;
  5438 public:
  5439   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  5440                         FlexibleWorkGang* workers,
  5441                         RefToScanQueueSet *task_queues,
  5442                         int n_workers) :
  5443     _g1h(g1h),
  5444     _queues(task_queues),
  5445     _workers(workers),
  5446     _active_workers(n_workers)
  5448     assert(n_workers > 0, "shouldn't call this otherwise");
  5451   // Executes the given task using concurrent marking worker threads.
  5452   virtual void execute(ProcessTask& task);
  5453   virtual void execute(EnqueueTask& task);
  5454 };
  5456 // Gang task for possibly parallel reference processing
  5458 class G1STWRefProcTaskProxy: public AbstractGangTask {
  5459   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5460   ProcessTask&     _proc_task;
  5461   G1CollectedHeap* _g1h;
  5462   RefToScanQueueSet *_task_queues;
  5463   ParallelTaskTerminator* _terminator;
  5465 public:
  5466   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  5467                      G1CollectedHeap* g1h,
  5468                      RefToScanQueueSet *task_queues,
  5469                      ParallelTaskTerminator* terminator) :
  5470     AbstractGangTask("Process reference objects in parallel"),
  5471     _proc_task(proc_task),
  5472     _g1h(g1h),
  5473     _task_queues(task_queues),
  5474     _terminator(terminator)
  5475   {}
  5477   virtual void work(uint worker_id) {
  5478     // The reference processing task executed by a single worker.
  5479     ResourceMark rm;
  5480     HandleMark   hm;
  5482     G1STWIsAliveClosure is_alive(_g1h);
  5484     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
  5485     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5487     pss.set_evac_failure_closure(&evac_failure_cl);
  5489     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5491     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5493     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5495     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5496       // We also need to mark copied objects.
  5497       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5500     // Keep alive closure.
  5501     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
  5503     // Complete GC closure
  5504     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5506     // Call the reference processing task's work routine.
  5507     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5509     // Note we cannot assert that the refs array is empty here as not all
  5510     // of the processing tasks (specifically phase2 - pp2_work) execute
  5511     // the complete_gc closure (which ordinarily would drain the queue) so
  5512     // the queue may not be empty.
  5514 };
  5516 // Driver routine for parallel reference processing.
  5517 // Creates an instance of the ref processing gang
  5518 // task and has the worker threads execute it.
  5519 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5520   assert(_workers != NULL, "Need parallel worker threads.");
  5522   ParallelTaskTerminator terminator(_active_workers, _queues);
  5523   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5525   _g1h->set_par_threads(_active_workers);
  5526   _workers->run_task(&proc_task_proxy);
  5527   _g1h->set_par_threads(0);
  5530 // Gang task for parallel reference enqueueing.
  5532 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5533   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5534   EnqueueTask& _enq_task;
  5536 public:
  5537   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5538     AbstractGangTask("Enqueue reference objects in parallel"),
  5539     _enq_task(enq_task)
  5540   { }
  5542   virtual void work(uint worker_id) {
  5543     _enq_task.work(worker_id);
  5545 };
  5547 // Driver routine for parallel reference enqueueing.
  5548 // Creates an instance of the ref enqueueing gang
  5549 // task and has the worker threads execute it.
  5551 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5552   assert(_workers != NULL, "Need parallel worker threads.");
  5554   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5556   _g1h->set_par_threads(_active_workers);
  5557   _workers->run_task(&enq_task_proxy);
  5558   _g1h->set_par_threads(0);
  5561 // End of weak reference support closures
  5563 // Abstract task used to preserve (i.e. copy) any referent objects
  5564 // that are in the collection set and are pointed to by reference
  5565 // objects discovered by the CM ref processor.
  5567 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5568 protected:
  5569   G1CollectedHeap* _g1h;
  5570   RefToScanQueueSet      *_queues;
  5571   ParallelTaskTerminator _terminator;
  5572   uint _n_workers;
  5574 public:
  5575   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5576     AbstractGangTask("ParPreserveCMReferents"),
  5577     _g1h(g1h),
  5578     _queues(task_queues),
  5579     _terminator(workers, _queues),
  5580     _n_workers(workers)
  5581   { }
  5583   void work(uint worker_id) {
  5584     ResourceMark rm;
  5585     HandleMark   hm;
  5587     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
  5588     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5590     pss.set_evac_failure_closure(&evac_failure_cl);
  5592     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
  5594     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5596     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5598     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5600     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5601       // We also need to mark copied objects.
  5602       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5605     // Is alive closure
  5606     G1AlwaysAliveClosure always_alive(_g1h);
  5608     // Copying keep alive closure. Applied to referent objects that need
  5609     // to be copied.
  5610     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
  5612     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5614     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5615     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5617     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5618     // So this must be true - but assert just in case someone decides to
  5619     // change the worker ids.
  5620     assert(0 <= worker_id && worker_id < limit, "sanity");
  5621     assert(!rp->discovery_is_atomic(), "check this code");
  5623     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5624     for (uint idx = worker_id; idx < limit; idx += stride) {
  5625       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5627       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5628       while (iter.has_next()) {
  5629         // Since discovery is not atomic for the CM ref processor, we
  5630         // can see some null referent objects.
  5631         iter.load_ptrs(DEBUG_ONLY(true));
  5632         oop ref = iter.obj();
  5634         // This will filter nulls.
  5635         if (iter.is_referent_alive()) {
  5636           iter.make_referent_alive();
  5638         iter.move_to_next();
  5642     // Drain the queue - which may cause stealing
  5643     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5644     drain_queue.do_void();
  5645     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5646     assert(pss.queue_is_empty(), "should be");
  5648 };
  5650 // Weak Reference processing during an evacuation pause (part 1).
  5651 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
  5652   double ref_proc_start = os::elapsedTime();
  5654   ReferenceProcessor* rp = _ref_processor_stw;
  5655   assert(rp->discovery_enabled(), "should have been enabled");
  5657   // Any reference objects, in the collection set, that were 'discovered'
  5658   // by the CM ref processor should have already been copied (either by
  5659   // applying the external root copy closure to the discovered lists, or
  5660   // by following an RSet entry).
  5661   //
  5662   // But some of the referents, that are in the collection set, that these
  5663   // reference objects point to may not have been copied: the STW ref
  5664   // processor would have seen that the reference object had already
  5665   // been 'discovered' and would have skipped discovering the reference,
  5666   // but would not have treated the reference object as a regular oop.
  5667   // As a result the copy closure would not have been applied to the
  5668   // referent object.
  5669   //
  5670   // We need to explicitly copy these referent objects - the references
  5671   // will be processed at the end of remarking.
  5672   //
  5673   // We also need to do this copying before we process the reference
  5674   // objects discovered by the STW ref processor in case one of these
  5675   // referents points to another object which is also referenced by an
  5676   // object discovered by the STW ref processor.
  5678   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5679            no_of_gc_workers == workers()->active_workers(),
  5680            "Need to reset active GC workers");
  5682   set_par_threads(no_of_gc_workers);
  5683   G1ParPreserveCMReferentsTask keep_cm_referents(this,
  5684                                                  no_of_gc_workers,
  5685                                                  _task_queues);
  5687   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5688     workers()->run_task(&keep_cm_referents);
  5689   } else {
  5690     keep_cm_referents.work(0);
  5693   set_par_threads(0);
  5695   // Closure to test whether a referent is alive.
  5696   G1STWIsAliveClosure is_alive(this);
  5698   // Even when parallel reference processing is enabled, the processing
  5699   // of JNI refs is serial and performed serially by the current thread
  5700   // rather than by a worker. The following PSS will be used for processing
  5701   // JNI refs.
  5703   // Use only a single queue for this PSS.
  5704   G1ParScanThreadState            pss(this, 0, NULL);
  5706   // We do not embed a reference processor in the copying/scanning
  5707   // closures while we're actually processing the discovered
  5708   // reference objects.
  5709   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5711   pss.set_evac_failure_closure(&evac_failure_cl);
  5713   assert(pss.queue_is_empty(), "pre-condition");
  5715   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5717   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5719   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5721   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5722     // We also need to mark copied objects.
  5723     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5726   // Keep alive closure.
  5727   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
  5729   // Serial Complete GC closure
  5730   G1STWDrainQueueClosure drain_queue(this, &pss);
  5732   // Setup the soft refs policy...
  5733   rp->setup_policy(false);
  5735   ReferenceProcessorStats stats;
  5736   if (!rp->processing_is_mt()) {
  5737     // Serial reference processing...
  5738     stats = rp->process_discovered_references(&is_alive,
  5739                                               &keep_alive,
  5740                                               &drain_queue,
  5741                                               NULL,
  5742                                               _gc_timer_stw,
  5743                                               _gc_tracer_stw->gc_id());
  5744   } else {
  5745     // Parallel reference processing
  5746     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5747     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5749     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5750     stats = rp->process_discovered_references(&is_alive,
  5751                                               &keep_alive,
  5752                                               &drain_queue,
  5753                                               &par_task_executor,
  5754                                               _gc_timer_stw,
  5755                                               _gc_tracer_stw->gc_id());
  5758   _gc_tracer_stw->report_gc_reference_stats(stats);
  5760   // We have completed copying any necessary live referent objects.
  5761   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
  5763   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5764   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
  5767 // Weak Reference processing during an evacuation pause (part 2).
  5768 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
  5769   double ref_enq_start = os::elapsedTime();
  5771   ReferenceProcessor* rp = _ref_processor_stw;
  5772   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5774   // Now enqueue any remaining on the discovered lists on to
  5775   // the pending list.
  5776   if (!rp->processing_is_mt()) {
  5777     // Serial reference processing...
  5778     rp->enqueue_discovered_references();
  5779   } else {
  5780     // Parallel reference enqueueing
  5782     assert(no_of_gc_workers == workers()->active_workers(),
  5783            "Need to reset active workers");
  5784     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5785     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5787     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5788     rp->enqueue_discovered_references(&par_task_executor);
  5791   rp->verify_no_references_recorded();
  5792   assert(!rp->discovery_enabled(), "should have been disabled");
  5794   // FIXME
  5795   // CM's reference processing also cleans up the string and symbol tables.
  5796   // Should we do that here also? We could, but it is a serial operation
  5797   // and could significantly increase the pause time.
  5799   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5800   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
  5803 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
  5804   _expand_heap_after_alloc_failure = true;
  5805   _evacuation_failed = false;
  5807   // Should G1EvacuationFailureALot be in effect for this GC?
  5808   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
  5810   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5812   // Disable the hot card cache.
  5813   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  5814   hot_card_cache->reset_hot_cache_claimed_index();
  5815   hot_card_cache->set_use_cache(false);
  5817   uint n_workers;
  5818   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5819     n_workers =
  5820       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  5821                                      workers()->active_workers(),
  5822                                      Threads::number_of_non_daemon_threads());
  5823     assert(UseDynamicNumberOfGCThreads ||
  5824            n_workers == workers()->total_workers(),
  5825            "If not dynamic should be using all the  workers");
  5826     workers()->set_active_workers(n_workers);
  5827     set_par_threads(n_workers);
  5828   } else {
  5829     assert(n_par_threads() == 0,
  5830            "Should be the original non-parallel value");
  5831     n_workers = 1;
  5834   G1ParTask g1_par_task(this, _task_queues);
  5836   init_for_evac_failure(NULL);
  5838   rem_set()->prepare_for_younger_refs_iterate(true);
  5840   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5841   double start_par_time_sec = os::elapsedTime();
  5842   double end_par_time_sec;
  5845     StrongRootsScope srs(this);
  5846     // InitialMark needs claim bits to keep track of the marked-through CLDs.
  5847     if (g1_policy()->during_initial_mark_pause()) {
  5848       ClassLoaderDataGraph::clear_claimed_marks();
  5851     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5852       // The individual threads will set their evac-failure closures.
  5853       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5854       // These tasks use ShareHeap::_process_strong_tasks
  5855       assert(UseDynamicNumberOfGCThreads ||
  5856              workers()->active_workers() == workers()->total_workers(),
  5857              "If not dynamic should be using all the  workers");
  5858       workers()->run_task(&g1_par_task);
  5859     } else {
  5860       g1_par_task.set_for_termination(n_workers);
  5861       g1_par_task.work(0);
  5863     end_par_time_sec = os::elapsedTime();
  5865     // Closing the inner scope will execute the destructor
  5866     // for the StrongRootsScope object. We record the current
  5867     // elapsed time before closing the scope so that time
  5868     // taken for the SRS destructor is NOT included in the
  5869     // reported parallel time.
  5872   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  5873   g1_policy()->phase_times()->record_par_time(par_time_ms);
  5875   double code_root_fixup_time_ms =
  5876         (os::elapsedTime() - end_par_time_sec) * 1000.0;
  5877   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
  5879   set_par_threads(0);
  5881   // Process any discovered reference objects - we have
  5882   // to do this _before_ we retire the GC alloc regions
  5883   // as we may have to copy some 'reachable' referent
  5884   // objects (and their reachable sub-graphs) that were
  5885   // not copied during the pause.
  5886   process_discovered_references(n_workers);
  5888   // Weak root processing.
  5890     G1STWIsAliveClosure is_alive(this);
  5891     G1KeepAliveClosure keep_alive(this);
  5892     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  5893     if (G1StringDedup::is_enabled()) {
  5894       G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
  5898   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
  5899   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5901   // Reset and re-enable the hot card cache.
  5902   // Note the counts for the cards in the regions in the
  5903   // collection set are reset when the collection set is freed.
  5904   hot_card_cache->reset_hot_cache();
  5905   hot_card_cache->set_use_cache(true);
  5907   // Migrate the strong code roots attached to each region in
  5908   // the collection set. Ideally we would like to do this
  5909   // after we have finished the scanning/evacuation of the
  5910   // strong code roots for a particular heap region.
  5911   migrate_strong_code_roots();
  5913   purge_code_root_memory();
  5915   if (g1_policy()->during_initial_mark_pause()) {
  5916     // Reset the claim values set during marking the strong code roots
  5917     reset_heap_region_claim_values();
  5920   finalize_for_evac_failure();
  5922   if (evacuation_failed()) {
  5923     remove_self_forwarding_pointers();
  5925     // Reset the G1EvacuationFailureALot counters and flags
  5926     // Note: the values are reset only when an actual
  5927     // evacuation failure occurs.
  5928     NOT_PRODUCT(reset_evacuation_should_fail();)
  5931   // Enqueue any remaining references remaining on the STW
  5932   // reference processor's discovered lists. We need to do
  5933   // this after the card table is cleaned (and verified) as
  5934   // the act of enqueueing entries on to the pending list
  5935   // will log these updates (and dirty their associated
  5936   // cards). We need these updates logged to update any
  5937   // RSets.
  5938   enqueue_discovered_references(n_workers);
  5940   if (G1DeferredRSUpdate) {
  5941     redirty_logged_cards();
  5943   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  5946 void G1CollectedHeap::free_region(HeapRegion* hr,
  5947                                   FreeRegionList* free_list,
  5948                                   bool par,
  5949                                   bool locked) {
  5950   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  5951   assert(!hr->is_empty(), "the region should not be empty");
  5952   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
  5953   assert(free_list != NULL, "pre-condition");
  5955   if (G1VerifyBitmaps) {
  5956     MemRegion mr(hr->bottom(), hr->end());
  5957     concurrent_mark()->clearRangePrevBitmap(mr);
  5960   // Clear the card counts for this region.
  5961   // Note: we only need to do this if the region is not young
  5962   // (since we don't refine cards in young regions).
  5963   if (!hr->is_young()) {
  5964     _cg1r->hot_card_cache()->reset_card_counts(hr);
  5966   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
  5967   free_list->add_ordered(hr);
  5970 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  5971                                      FreeRegionList* free_list,
  5972                                      bool par) {
  5973   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  5974   assert(free_list != NULL, "pre-condition");
  5976   size_t hr_capacity = hr->capacity();
  5977   // We need to read this before we make the region non-humongous,
  5978   // otherwise the information will be gone.
  5979   uint last_index = hr->last_hc_index();
  5980   hr->set_notHumongous();
  5981   free_region(hr, free_list, par);
  5983   uint i = hr->hrm_index() + 1;
  5984   while (i < last_index) {
  5985     HeapRegion* curr_hr = region_at(i);
  5986     assert(curr_hr->continuesHumongous(), "invariant");
  5987     curr_hr->set_notHumongous();
  5988     free_region(curr_hr, free_list, par);
  5989     i += 1;
  5993 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
  5994                                        const HeapRegionSetCount& humongous_regions_removed) {
  5995   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
  5996     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5997     _old_set.bulk_remove(old_regions_removed);
  5998     _humongous_set.bulk_remove(humongous_regions_removed);
  6003 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
  6004   assert(list != NULL, "list can't be null");
  6005   if (!list->is_empty()) {
  6006     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  6007     _hrm.insert_list_into_free_list(list);
  6011 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
  6012   _allocator->decrease_used(bytes);
  6015 class G1ParCleanupCTTask : public AbstractGangTask {
  6016   G1SATBCardTableModRefBS* _ct_bs;
  6017   G1CollectedHeap* _g1h;
  6018   HeapRegion* volatile _su_head;
  6019 public:
  6020   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
  6021                      G1CollectedHeap* g1h) :
  6022     AbstractGangTask("G1 Par Cleanup CT Task"),
  6023     _ct_bs(ct_bs), _g1h(g1h) { }
  6025   void work(uint worker_id) {
  6026     HeapRegion* r;
  6027     while (r = _g1h->pop_dirty_cards_region()) {
  6028       clear_cards(r);
  6032   void clear_cards(HeapRegion* r) {
  6033     // Cards of the survivors should have already been dirtied.
  6034     if (!r->is_survivor()) {
  6035       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  6038 };
  6040 #ifndef PRODUCT
  6041 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  6042   G1CollectedHeap* _g1h;
  6043   G1SATBCardTableModRefBS* _ct_bs;
  6044 public:
  6045   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
  6046     : _g1h(g1h), _ct_bs(ct_bs) { }
  6047   virtual bool doHeapRegion(HeapRegion* r) {
  6048     if (r->is_survivor()) {
  6049       _g1h->verify_dirty_region(r);
  6050     } else {
  6051       _g1h->verify_not_dirty_region(r);
  6053     return false;
  6055 };
  6057 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  6058   // All of the region should be clean.
  6059   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6060   MemRegion mr(hr->bottom(), hr->end());
  6061   ct_bs->verify_not_dirty_region(mr);
  6064 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  6065   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  6066   // dirty allocated blocks as they allocate them. The thread that
  6067   // retires each region and replaces it with a new one will do a
  6068   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  6069   // not dirty that area (one less thing to have to do while holding
  6070   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  6071   // is dirty.
  6072   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6073   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  6074   if (hr->is_young()) {
  6075     ct_bs->verify_g1_young_region(mr);
  6076   } else {
  6077     ct_bs->verify_dirty_region(mr);
  6081 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  6082   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6083   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  6084     verify_dirty_region(hr);
  6088 void G1CollectedHeap::verify_dirty_young_regions() {
  6089   verify_dirty_young_list(_young_list->first_region());
  6092 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
  6093                                                HeapWord* tams, HeapWord* end) {
  6094   guarantee(tams <= end,
  6095             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
  6096   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
  6097   if (result < end) {
  6098     gclog_or_tty->cr();
  6099     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
  6100                            bitmap_name, result);
  6101     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
  6102                            bitmap_name, tams, end);
  6103     return false;
  6105   return true;
  6108 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
  6109   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
  6110   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
  6112   HeapWord* bottom = hr->bottom();
  6113   HeapWord* ptams  = hr->prev_top_at_mark_start();
  6114   HeapWord* ntams  = hr->next_top_at_mark_start();
  6115   HeapWord* end    = hr->end();
  6117   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
  6119   bool res_n = true;
  6120   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
  6121   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
  6122   // if we happen to be in that state.
  6123   if (mark_in_progress() || !_cmThread->in_progress()) {
  6124     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
  6126   if (!res_p || !res_n) {
  6127     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
  6128                            HR_FORMAT_PARAMS(hr));
  6129     gclog_or_tty->print_cr("#### Caller: %s", caller);
  6130     return false;
  6132   return true;
  6135 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
  6136   if (!G1VerifyBitmaps) return;
  6138   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
  6141 class G1VerifyBitmapClosure : public HeapRegionClosure {
  6142 private:
  6143   const char* _caller;
  6144   G1CollectedHeap* _g1h;
  6145   bool _failures;
  6147 public:
  6148   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
  6149     _caller(caller), _g1h(g1h), _failures(false) { }
  6151   bool failures() { return _failures; }
  6153   virtual bool doHeapRegion(HeapRegion* hr) {
  6154     if (hr->continuesHumongous()) return false;
  6156     bool result = _g1h->verify_bitmaps(_caller, hr);
  6157     if (!result) {
  6158       _failures = true;
  6160     return false;
  6162 };
  6164 void G1CollectedHeap::check_bitmaps(const char* caller) {
  6165   if (!G1VerifyBitmaps) return;
  6167   G1VerifyBitmapClosure cl(caller, this);
  6168   heap_region_iterate(&cl);
  6169   guarantee(!cl.failures(), "bitmap verification");
  6171 #endif // PRODUCT
  6173 void G1CollectedHeap::cleanUpCardTable() {
  6174   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6175   double start = os::elapsedTime();
  6178     // Iterate over the dirty cards region list.
  6179     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  6181     if (G1CollectedHeap::use_parallel_gc_threads()) {
  6182       set_par_threads();
  6183       workers()->run_task(&cleanup_task);
  6184       set_par_threads(0);
  6185     } else {
  6186       while (_dirty_cards_region_list) {
  6187         HeapRegion* r = _dirty_cards_region_list;
  6188         cleanup_task.clear_cards(r);
  6189         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  6190         if (_dirty_cards_region_list == r) {
  6191           // The last region.
  6192           _dirty_cards_region_list = NULL;
  6194         r->set_next_dirty_cards_region(NULL);
  6197 #ifndef PRODUCT
  6198     if (G1VerifyCTCleanup || VerifyAfterGC) {
  6199       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  6200       heap_region_iterate(&cleanup_verifier);
  6202 #endif
  6205   double elapsed = os::elapsedTime() - start;
  6206   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
  6209 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
  6210   size_t pre_used = 0;
  6211   FreeRegionList local_free_list("Local List for CSet Freeing");
  6213   double young_time_ms     = 0.0;
  6214   double non_young_time_ms = 0.0;
  6216   // Since the collection set is a superset of the the young list,
  6217   // all we need to do to clear the young list is clear its
  6218   // head and length, and unlink any young regions in the code below
  6219   _young_list->clear();
  6221   G1CollectorPolicy* policy = g1_policy();
  6223   double start_sec = os::elapsedTime();
  6224   bool non_young = true;
  6226   HeapRegion* cur = cs_head;
  6227   int age_bound = -1;
  6228   size_t rs_lengths = 0;
  6230   while (cur != NULL) {
  6231     assert(!is_on_master_free_list(cur), "sanity");
  6232     if (non_young) {
  6233       if (cur->is_young()) {
  6234         double end_sec = os::elapsedTime();
  6235         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6236         non_young_time_ms += elapsed_ms;
  6238         start_sec = os::elapsedTime();
  6239         non_young = false;
  6241     } else {
  6242       if (!cur->is_young()) {
  6243         double end_sec = os::elapsedTime();
  6244         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6245         young_time_ms += elapsed_ms;
  6247         start_sec = os::elapsedTime();
  6248         non_young = true;
  6252     rs_lengths += cur->rem_set()->occupied_locked();
  6254     HeapRegion* next = cur->next_in_collection_set();
  6255     assert(cur->in_collection_set(), "bad CS");
  6256     cur->set_next_in_collection_set(NULL);
  6257     cur->set_in_collection_set(false);
  6259     if (cur->is_young()) {
  6260       int index = cur->young_index_in_cset();
  6261       assert(index != -1, "invariant");
  6262       assert((uint) index < policy->young_cset_region_length(), "invariant");
  6263       size_t words_survived = _surviving_young_words[index];
  6264       cur->record_surv_words_in_group(words_survived);
  6266       // At this point the we have 'popped' cur from the collection set
  6267       // (linked via next_in_collection_set()) but it is still in the
  6268       // young list (linked via next_young_region()). Clear the
  6269       // _next_young_region field.
  6270       cur->set_next_young_region(NULL);
  6271     } else {
  6272       int index = cur->young_index_in_cset();
  6273       assert(index == -1, "invariant");
  6276     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  6277             (!cur->is_young() && cur->young_index_in_cset() == -1),
  6278             "invariant" );
  6280     if (!cur->evacuation_failed()) {
  6281       MemRegion used_mr = cur->used_region();
  6283       // And the region is empty.
  6284       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  6285       pre_used += cur->used();
  6286       free_region(cur, &local_free_list, false /* par */, true /* locked */);
  6287     } else {
  6288       cur->uninstall_surv_rate_group();
  6289       if (cur->is_young()) {
  6290         cur->set_young_index_in_cset(-1);
  6292       cur->set_not_young();
  6293       cur->set_evacuation_failed(false);
  6294       // The region is now considered to be old.
  6295       _old_set.add(cur);
  6296       evacuation_info.increment_collectionset_used_after(cur->used());
  6298     cur = next;
  6301   evacuation_info.set_regions_freed(local_free_list.length());
  6302   policy->record_max_rs_lengths(rs_lengths);
  6303   policy->cset_regions_freed();
  6305   double end_sec = os::elapsedTime();
  6306   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6308   if (non_young) {
  6309     non_young_time_ms += elapsed_ms;
  6310   } else {
  6311     young_time_ms += elapsed_ms;
  6314   prepend_to_freelist(&local_free_list);
  6315   decrement_summary_bytes(pre_used);
  6316   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  6317   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
  6320 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
  6321  private:
  6322   FreeRegionList* _free_region_list;
  6323   HeapRegionSet* _proxy_set;
  6324   HeapRegionSetCount _humongous_regions_removed;
  6325   size_t _freed_bytes;
  6326  public:
  6328   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
  6329     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
  6332   virtual bool doHeapRegion(HeapRegion* r) {
  6333     if (!r->startsHumongous()) {
  6334       return false;
  6337     G1CollectedHeap* g1h = G1CollectedHeap::heap();
  6339     oop obj = (oop)r->bottom();
  6340     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
  6342     // The following checks whether the humongous object is live are sufficient.
  6343     // The main additional check (in addition to having a reference from the roots
  6344     // or the young gen) is whether the humongous object has a remembered set entry.
  6345     //
  6346     // A humongous object cannot be live if there is no remembered set for it
  6347     // because:
  6348     // - there can be no references from within humongous starts regions referencing
  6349     // the object because we never allocate other objects into them.
  6350     // (I.e. there are no intra-region references that may be missed by the
  6351     // remembered set)
  6352     // - as soon there is a remembered set entry to the humongous starts region
  6353     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
  6354     // until the end of a concurrent mark.
  6355     //
  6356     // It is not required to check whether the object has been found dead by marking
  6357     // or not, in fact it would prevent reclamation within a concurrent cycle, as
  6358     // all objects allocated during that time are considered live.
  6359     // SATB marking is even more conservative than the remembered set.
  6360     // So if at this point in the collection there is no remembered set entry,
  6361     // nobody has a reference to it.
  6362     // At the start of collection we flush all refinement logs, and remembered sets
  6363     // are completely up-to-date wrt to references to the humongous object.
  6364     //
  6365     // Other implementation considerations:
  6366     // - never consider object arrays: while they are a valid target, they have not
  6367     // been observed to be used as temporary objects.
  6368     // - they would also pose considerable effort for cleaning up the the remembered
  6369     // sets.
  6370     // While this cleanup is not strictly necessary to be done (or done instantly),
  6371     // given that their occurrence is very low, this saves us this additional
  6372     // complexity.
  6373     uint region_idx = r->hrm_index();
  6374     if (g1h->humongous_is_live(region_idx) ||
  6375         g1h->humongous_region_is_always_live(region_idx)) {
  6377       if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
  6378         gclog_or_tty->print_cr("Live humongous %d region %d with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
  6379                                r->isHumongous(),
  6380                                region_idx,
  6381                                r->rem_set()->occupied(),
  6382                                r->rem_set()->strong_code_roots_list_length(),
  6383                                next_bitmap->isMarked(r->bottom()),
  6384                                g1h->humongous_is_live(region_idx),
  6385                                obj->is_objArray()
  6386                               );
  6389       return false;
  6392     guarantee(!obj->is_objArray(),
  6393               err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
  6394                       r->bottom()));
  6396     if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
  6397       gclog_or_tty->print_cr("Reclaim humongous region %d start "PTR_FORMAT" region %d length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
  6398                              r->isHumongous(),
  6399                              r->bottom(),
  6400                              region_idx,
  6401                              r->region_num(),
  6402                              r->rem_set()->occupied(),
  6403                              r->rem_set()->strong_code_roots_list_length(),
  6404                              next_bitmap->isMarked(r->bottom()),
  6405                              g1h->humongous_is_live(region_idx),
  6406                              obj->is_objArray()
  6407                             );
  6409     // Need to clear mark bit of the humongous object if already set.
  6410     if (next_bitmap->isMarked(r->bottom())) {
  6411       next_bitmap->clear(r->bottom());
  6413     _freed_bytes += r->used();
  6414     r->set_containing_set(NULL);
  6415     _humongous_regions_removed.increment(1u, r->capacity());
  6416     g1h->free_humongous_region(r, _free_region_list, false);
  6418     return false;
  6421   HeapRegionSetCount& humongous_free_count() {
  6422     return _humongous_regions_removed;
  6425   size_t bytes_freed() const {
  6426     return _freed_bytes;
  6429   size_t humongous_reclaimed() const {
  6430     return _humongous_regions_removed.length();
  6432 };
  6434 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
  6435   assert_at_safepoint(true);
  6437   if (!G1ReclaimDeadHumongousObjectsAtYoungGC || !_has_humongous_reclaim_candidates) {
  6438     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
  6439     return;
  6442   double start_time = os::elapsedTime();
  6444   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
  6446   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
  6447   heap_region_iterate(&cl);
  6449   HeapRegionSetCount empty_set;
  6450   remove_from_old_sets(empty_set, cl.humongous_free_count());
  6452   G1HRPrinter* hr_printer = _g1h->hr_printer();
  6453   if (hr_printer->is_active()) {
  6454     FreeRegionListIterator iter(&local_cleanup_list);
  6455     while (iter.more_available()) {
  6456       HeapRegion* hr = iter.get_next();
  6457       hr_printer->cleanup(hr);
  6461   prepend_to_freelist(&local_cleanup_list);
  6462   decrement_summary_bytes(cl.bytes_freed());
  6464   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
  6465                                                                     cl.humongous_reclaimed());
  6468 // This routine is similar to the above but does not record
  6469 // any policy statistics or update free lists; we are abandoning
  6470 // the current incremental collection set in preparation of a
  6471 // full collection. After the full GC we will start to build up
  6472 // the incremental collection set again.
  6473 // This is only called when we're doing a full collection
  6474 // and is immediately followed by the tearing down of the young list.
  6476 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  6477   HeapRegion* cur = cs_head;
  6479   while (cur != NULL) {
  6480     HeapRegion* next = cur->next_in_collection_set();
  6481     assert(cur->in_collection_set(), "bad CS");
  6482     cur->set_next_in_collection_set(NULL);
  6483     cur->set_in_collection_set(false);
  6484     cur->set_young_index_in_cset(-1);
  6485     cur = next;
  6489 void G1CollectedHeap::set_free_regions_coming() {
  6490   if (G1ConcRegionFreeingVerbose) {
  6491     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6492                            "setting free regions coming");
  6495   assert(!free_regions_coming(), "pre-condition");
  6496   _free_regions_coming = true;
  6499 void G1CollectedHeap::reset_free_regions_coming() {
  6500   assert(free_regions_coming(), "pre-condition");
  6503     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6504     _free_regions_coming = false;
  6505     SecondaryFreeList_lock->notify_all();
  6508   if (G1ConcRegionFreeingVerbose) {
  6509     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6510                            "reset free regions coming");
  6514 void G1CollectedHeap::wait_while_free_regions_coming() {
  6515   // Most of the time we won't have to wait, so let's do a quick test
  6516   // first before we take the lock.
  6517   if (!free_regions_coming()) {
  6518     return;
  6521   if (G1ConcRegionFreeingVerbose) {
  6522     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6523                            "waiting for free regions");
  6527     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6528     while (free_regions_coming()) {
  6529       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  6533   if (G1ConcRegionFreeingVerbose) {
  6534     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6535                            "done waiting for free regions");
  6539 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  6540   assert(heap_lock_held_for_gc(),
  6541               "the heap lock should already be held by or for this thread");
  6542   _young_list->push_region(hr);
  6545 class NoYoungRegionsClosure: public HeapRegionClosure {
  6546 private:
  6547   bool _success;
  6548 public:
  6549   NoYoungRegionsClosure() : _success(true) { }
  6550   bool doHeapRegion(HeapRegion* r) {
  6551     if (r->is_young()) {
  6552       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  6553                              r->bottom(), r->end());
  6554       _success = false;
  6556     return false;
  6558   bool success() { return _success; }
  6559 };
  6561 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  6562   bool ret = _young_list->check_list_empty(check_sample);
  6564   if (check_heap) {
  6565     NoYoungRegionsClosure closure;
  6566     heap_region_iterate(&closure);
  6567     ret = ret && closure.success();
  6570   return ret;
  6573 class TearDownRegionSetsClosure : public HeapRegionClosure {
  6574 private:
  6575   HeapRegionSet *_old_set;
  6577 public:
  6578   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
  6580   bool doHeapRegion(HeapRegion* r) {
  6581     if (r->is_empty()) {
  6582       // We ignore empty regions, we'll empty the free list afterwards
  6583     } else if (r->is_young()) {
  6584       // We ignore young regions, we'll empty the young list afterwards
  6585     } else if (r->isHumongous()) {
  6586       // We ignore humongous regions, we're not tearing down the
  6587       // humongous region set
  6588     } else {
  6589       // The rest should be old
  6590       _old_set->remove(r);
  6592     return false;
  6595   ~TearDownRegionSetsClosure() {
  6596     assert(_old_set->is_empty(), "post-condition");
  6598 };
  6600 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  6601   assert_at_safepoint(true /* should_be_vm_thread */);
  6603   if (!free_list_only) {
  6604     TearDownRegionSetsClosure cl(&_old_set);
  6605     heap_region_iterate(&cl);
  6607     // Note that emptying the _young_list is postponed and instead done as
  6608     // the first step when rebuilding the regions sets again. The reason for
  6609     // this is that during a full GC string deduplication needs to know if
  6610     // a collected region was young or old when the full GC was initiated.
  6612   _hrm.remove_all_free_regions();
  6615 class RebuildRegionSetsClosure : public HeapRegionClosure {
  6616 private:
  6617   bool            _free_list_only;
  6618   HeapRegionSet*   _old_set;
  6619   HeapRegionManager*   _hrm;
  6620   size_t          _total_used;
  6622 public:
  6623   RebuildRegionSetsClosure(bool free_list_only,
  6624                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
  6625     _free_list_only(free_list_only),
  6626     _old_set(old_set), _hrm(hrm), _total_used(0) {
  6627     assert(_hrm->num_free_regions() == 0, "pre-condition");
  6628     if (!free_list_only) {
  6629       assert(_old_set->is_empty(), "pre-condition");
  6633   bool doHeapRegion(HeapRegion* r) {
  6634     if (r->continuesHumongous()) {
  6635       return false;
  6638     if (r->is_empty()) {
  6639       // Add free regions to the free list
  6640       r->set_allocation_context(AllocationContext::system());
  6641       _hrm->insert_into_free_list(r);
  6642     } else if (!_free_list_only) {
  6643       assert(!r->is_young(), "we should not come across young regions");
  6645       if (r->isHumongous()) {
  6646         // We ignore humongous regions, we left the humongous set unchanged
  6647       } else {
  6648         // The rest should be old, add them to the old set
  6649         _old_set->add(r);
  6651       _total_used += r->used();
  6654     return false;
  6657   size_t total_used() {
  6658     return _total_used;
  6660 };
  6662 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  6663   assert_at_safepoint(true /* should_be_vm_thread */);
  6665   if (!free_list_only) {
  6666     _young_list->empty_list();
  6669   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
  6670   heap_region_iterate(&cl);
  6672   if (!free_list_only) {
  6673     _allocator->set_used(cl.total_used());
  6675   assert(_allocator->used_unlocked() == recalculate_used(),
  6676          err_msg("inconsistent _allocator->used_unlocked(), "
  6677                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
  6678                  _allocator->used_unlocked(), recalculate_used()));
  6681 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  6682   _refine_cte_cl->set_concurrent(concurrent);
  6685 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  6686   HeapRegion* hr = heap_region_containing(p);
  6687   return hr->is_in(p);
  6690 // Methods for the mutator alloc region
  6692 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  6693                                                       bool force) {
  6694   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6695   assert(!force || g1_policy()->can_expand_young_list(),
  6696          "if force is true we should be able to expand the young list");
  6697   bool young_list_full = g1_policy()->is_young_list_full();
  6698   if (force || !young_list_full) {
  6699     HeapRegion* new_alloc_region = new_region(word_size,
  6700                                               false /* is_old */,
  6701                                               false /* do_expand */);
  6702     if (new_alloc_region != NULL) {
  6703       set_region_short_lived_locked(new_alloc_region);
  6704       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  6705       check_bitmaps("Mutator Region Allocation", new_alloc_region);
  6706       return new_alloc_region;
  6709   return NULL;
  6712 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  6713                                                   size_t allocated_bytes) {
  6714   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6715   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  6717   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6718   _allocator->increase_used(allocated_bytes);
  6719   _hr_printer.retire(alloc_region);
  6720   // We update the eden sizes here, when the region is retired,
  6721   // instead of when it's allocated, since this is the point that its
  6722   // used space has been recored in _summary_bytes_used.
  6723   g1mm()->update_eden_size();
  6726 void G1CollectedHeap::set_par_threads() {
  6727   // Don't change the number of workers.  Use the value previously set
  6728   // in the workgroup.
  6729   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6730   uint n_workers = workers()->active_workers();
  6731   assert(UseDynamicNumberOfGCThreads ||
  6732            n_workers == workers()->total_workers(),
  6733       "Otherwise should be using the total number of workers");
  6734   if (n_workers == 0) {
  6735     assert(false, "Should have been set in prior evacuation pause.");
  6736     n_workers = ParallelGCThreads;
  6737     workers()->set_active_workers(n_workers);
  6739   set_par_threads(n_workers);
  6742 // Methods for the GC alloc regions
  6744 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6745                                                  uint count,
  6746                                                  GCAllocPurpose ap) {
  6747   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6749   if (count < g1_policy()->max_regions(ap)) {
  6750     bool survivor = (ap == GCAllocForSurvived);
  6751     HeapRegion* new_alloc_region = new_region(word_size,
  6752                                               !survivor,
  6753                                               true /* do_expand */);
  6754     if (new_alloc_region != NULL) {
  6755       // We really only need to do this for old regions given that we
  6756       // should never scan survivors. But it doesn't hurt to do it
  6757       // for survivors too.
  6758       new_alloc_region->record_top_and_timestamp();
  6759       if (survivor) {
  6760         new_alloc_region->set_survivor();
  6761         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6762         check_bitmaps("Survivor Region Allocation", new_alloc_region);
  6763       } else {
  6764         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6765         check_bitmaps("Old Region Allocation", new_alloc_region);
  6767       bool during_im = g1_policy()->during_initial_mark_pause();
  6768       new_alloc_region->note_start_of_copying(during_im);
  6769       return new_alloc_region;
  6770     } else {
  6771       g1_policy()->note_alloc_region_limit_reached(ap);
  6774   return NULL;
  6777 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6778                                              size_t allocated_bytes,
  6779                                              GCAllocPurpose ap) {
  6780   bool during_im = g1_policy()->during_initial_mark_pause();
  6781   alloc_region->note_end_of_copying(during_im);
  6782   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6783   if (ap == GCAllocForSurvived) {
  6784     young_list()->add_survivor_region(alloc_region);
  6785   } else {
  6786     _old_set.add(alloc_region);
  6788   _hr_printer.retire(alloc_region);
  6791 // Heap region set verification
  6793 class VerifyRegionListsClosure : public HeapRegionClosure {
  6794 private:
  6795   HeapRegionSet*   _old_set;
  6796   HeapRegionSet*   _humongous_set;
  6797   HeapRegionManager*   _hrm;
  6799 public:
  6800   HeapRegionSetCount _old_count;
  6801   HeapRegionSetCount _humongous_count;
  6802   HeapRegionSetCount _free_count;
  6804   VerifyRegionListsClosure(HeapRegionSet* old_set,
  6805                            HeapRegionSet* humongous_set,
  6806                            HeapRegionManager* hrm) :
  6807     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
  6808     _old_count(), _humongous_count(), _free_count(){ }
  6810   bool doHeapRegion(HeapRegion* hr) {
  6811     if (hr->continuesHumongous()) {
  6812       return false;
  6815     if (hr->is_young()) {
  6816       // TODO
  6817     } else if (hr->startsHumongous()) {
  6818       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
  6819       _humongous_count.increment(1u, hr->capacity());
  6820     } else if (hr->is_empty()) {
  6821       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
  6822       _free_count.increment(1u, hr->capacity());
  6823     } else {
  6824       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
  6825       _old_count.increment(1u, hr->capacity());
  6827     return false;
  6830   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
  6831     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
  6832     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6833         old_set->total_capacity_bytes(), _old_count.capacity()));
  6835     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
  6836     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6837         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
  6839     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
  6840     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6841         free_list->total_capacity_bytes(), _free_count.capacity()));
  6843 };
  6845 void G1CollectedHeap::verify_region_sets() {
  6846   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6848   // First, check the explicit lists.
  6849   _hrm.verify();
  6851     // Given that a concurrent operation might be adding regions to
  6852     // the secondary free list we have to take the lock before
  6853     // verifying it.
  6854     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6855     _secondary_free_list.verify_list();
  6858   // If a concurrent region freeing operation is in progress it will
  6859   // be difficult to correctly attributed any free regions we come
  6860   // across to the correct free list given that they might belong to
  6861   // one of several (free_list, secondary_free_list, any local lists,
  6862   // etc.). So, if that's the case we will skip the rest of the
  6863   // verification operation. Alternatively, waiting for the concurrent
  6864   // operation to complete will have a non-trivial effect on the GC's
  6865   // operation (no concurrent operation will last longer than the
  6866   // interval between two calls to verification) and it might hide
  6867   // any issues that we would like to catch during testing.
  6868   if (free_regions_coming()) {
  6869     return;
  6872   // Make sure we append the secondary_free_list on the free_list so
  6873   // that all free regions we will come across can be safely
  6874   // attributed to the free_list.
  6875   append_secondary_free_list_if_not_empty_with_lock();
  6877   // Finally, make sure that the region accounting in the lists is
  6878   // consistent with what we see in the heap.
  6880   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
  6881   heap_region_iterate(&cl);
  6882   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
  6885 // Optimized nmethod scanning
  6887 class RegisterNMethodOopClosure: public OopClosure {
  6888   G1CollectedHeap* _g1h;
  6889   nmethod* _nm;
  6891   template <class T> void do_oop_work(T* p) {
  6892     T heap_oop = oopDesc::load_heap_oop(p);
  6893     if (!oopDesc::is_null(heap_oop)) {
  6894       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6895       HeapRegion* hr = _g1h->heap_region_containing(obj);
  6896       assert(!hr->continuesHumongous(),
  6897              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
  6898                      " starting at "HR_FORMAT,
  6899                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
  6901       // HeapRegion::add_strong_code_root() avoids adding duplicate
  6902       // entries but having duplicates is  OK since we "mark" nmethods
  6903       // as visited when we scan the strong code root lists during the GC.
  6904       hr->add_strong_code_root(_nm);
  6905       assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
  6906              err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
  6907                      _nm, HR_FORMAT_PARAMS(hr)));
  6911 public:
  6912   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  6913     _g1h(g1h), _nm(nm) {}
  6915   void do_oop(oop* p)       { do_oop_work(p); }
  6916   void do_oop(narrowOop* p) { do_oop_work(p); }
  6917 };
  6919 class UnregisterNMethodOopClosure: public OopClosure {
  6920   G1CollectedHeap* _g1h;
  6921   nmethod* _nm;
  6923   template <class T> void do_oop_work(T* p) {
  6924     T heap_oop = oopDesc::load_heap_oop(p);
  6925     if (!oopDesc::is_null(heap_oop)) {
  6926       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6927       HeapRegion* hr = _g1h->heap_region_containing(obj);
  6928       assert(!hr->continuesHumongous(),
  6929              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
  6930                      " starting at "HR_FORMAT,
  6931                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
  6933       hr->remove_strong_code_root(_nm);
  6934       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
  6935              err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
  6936                      _nm, HR_FORMAT_PARAMS(hr)));
  6940 public:
  6941   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  6942     _g1h(g1h), _nm(nm) {}
  6944   void do_oop(oop* p)       { do_oop_work(p); }
  6945   void do_oop(narrowOop* p) { do_oop_work(p); }
  6946 };
  6948 void G1CollectedHeap::register_nmethod(nmethod* nm) {
  6949   CollectedHeap::register_nmethod(nm);
  6951   guarantee(nm != NULL, "sanity");
  6952   RegisterNMethodOopClosure reg_cl(this, nm);
  6953   nm->oops_do(&reg_cl);
  6956 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  6957   CollectedHeap::unregister_nmethod(nm);
  6959   guarantee(nm != NULL, "sanity");
  6960   UnregisterNMethodOopClosure reg_cl(this, nm);
  6961   nm->oops_do(&reg_cl, true);
  6964 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
  6965 public:
  6966   bool doHeapRegion(HeapRegion *hr) {
  6967     assert(!hr->isHumongous(),
  6968            err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
  6969                    HR_FORMAT_PARAMS(hr)));
  6970     hr->migrate_strong_code_roots();
  6971     return false;
  6973 };
  6975 void G1CollectedHeap::migrate_strong_code_roots() {
  6976   MigrateCodeRootsHeapRegionClosure cl;
  6977   double migrate_start = os::elapsedTime();
  6978   collection_set_iterate(&cl);
  6979   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
  6980   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
  6983 void G1CollectedHeap::purge_code_root_memory() {
  6984   double purge_start = os::elapsedTime();
  6985   G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
  6986   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
  6987   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
  6990 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  6991   G1CollectedHeap* _g1h;
  6993 public:
  6994   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
  6995     _g1h(g1h) {}
  6997   void do_code_blob(CodeBlob* cb) {
  6998     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
  6999     if (nm == NULL) {
  7000       return;
  7003     if (ScavengeRootsInCode) {
  7004       _g1h->register_nmethod(nm);
  7007 };
  7009 void G1CollectedHeap::rebuild_strong_code_roots() {
  7010   RebuildStrongCodeRootClosure blob_cl(this);
  7011   CodeCache::blobs_do(&blob_cl);

mercurial