src/share/vm/opto/matcher.hpp

Wed, 02 Jun 2010 22:45:42 -0700

author
jrose
date
Wed, 02 Jun 2010 22:45:42 -0700
changeset 1934
e9ff18c4ace7
parent 1907
c18cbe5936b8
parent 1930
3657cb01ffc5
child 2269
ae065c367d93
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 class Compile;
    26 class Node;
    27 class MachNode;
    28 class MachTypeNode;
    29 class MachOper;
    31 //---------------------------Matcher-------------------------------------------
    32 class Matcher : public PhaseTransform {
    33   friend class VMStructs;
    34   // Private arena of State objects
    35   ResourceArea _states_arena;
    37   VectorSet   _visited;         // Visit bits
    39   // Used to control the Label pass
    40   VectorSet   _shared;          // Shared Ideal Node
    41   VectorSet   _dontcare;        // Nothing the matcher cares about
    43   // Private methods which perform the actual matching and reduction
    44   // Walks the label tree, generating machine nodes
    45   MachNode *ReduceInst( State *s, int rule, Node *&mem);
    46   void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach);
    47   uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds);
    48   void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach );
    50   // If this node already matched using "rule", return the MachNode for it.
    51   MachNode* find_shared_node(Node* n, uint rule);
    53   // Convert a dense opcode number to an expanded rule number
    54   const int *_reduceOp;
    55   const int *_leftOp;
    56   const int *_rightOp;
    58   // Map dense opcode number to info on when rule is swallowed constant.
    59   const bool *_swallowed;
    61   // Map dense rule number to determine if this is an instruction chain rule
    62   const uint _begin_inst_chain_rule;
    63   const uint _end_inst_chain_rule;
    65   // We want to clone constants and possible CmpI-variants.
    66   // If we do not clone CmpI, then we can have many instances of
    67   // condition codes alive at once.  This is OK on some chips and
    68   // bad on others.  Hence the machine-dependent table lookup.
    69   const char *_must_clone;
    71   // Find shared Nodes, or Nodes that otherwise are Matcher roots
    72   void find_shared( Node *n );
    74   // Debug and profile information for nodes in old space:
    75   GrowableArray<Node_Notes*>* _old_node_note_array;
    77   // Node labeling iterator for instruction selection
    78   Node *Label_Root( const Node *n, State *svec, Node *control, const Node *mem );
    80   Node *transform( Node *dummy );
    82   Node_List &_proj_list;        // For Machine nodes killing many values
    84   Node_Array _shared_nodes;
    86   debug_only(Node_Array _old2new_map;)   // Map roots of ideal-trees to machine-roots
    87   debug_only(Node_Array _new2old_map;)   // Maps machine nodes back to ideal
    89   // Accessors for the inherited field PhaseTransform::_nodes:
    90   void   grow_new_node_array(uint idx_limit) {
    91     _nodes.map(idx_limit-1, NULL);
    92   }
    93   bool    has_new_node(const Node* n) const {
    94     return _nodes.at(n->_idx) != NULL;
    95   }
    96   Node*       new_node(const Node* n) const {
    97     assert(has_new_node(n), "set before get");
    98     return _nodes.at(n->_idx);
    99   }
   100   void    set_new_node(const Node* n, Node *nn) {
   101     assert(!has_new_node(n), "set only once");
   102     _nodes.map(n->_idx, nn);
   103   }
   105 #ifdef ASSERT
   106   // Make sure only new nodes are reachable from this node
   107   void verify_new_nodes_only(Node* root);
   109   Node* _mem_node;   // Ideal memory node consumed by mach node
   110 #endif
   112   // Mach node for ConP #NULL
   113   MachNode* _mach_null;
   115 public:
   116   int LabelRootDepth;
   117   static const int base2reg[];        // Map Types to machine register types
   118   // Convert ideal machine register to a register mask for spill-loads
   119   static const RegMask *idealreg2regmask[];
   120   RegMask *idealreg2spillmask  [_last_machine_leaf];
   121   RegMask *idealreg2debugmask  [_last_machine_leaf];
   122   RegMask *idealreg2mhdebugmask[_last_machine_leaf];
   123   void init_spill_mask( Node *ret );
   124   // Convert machine register number to register mask
   125   static uint mreg2regmask_max;
   126   static RegMask mreg2regmask[];
   127   static RegMask STACK_ONLY_mask;
   129   MachNode* mach_null() const { return _mach_null; }
   131   bool    is_shared( Node *n ) { return _shared.test(n->_idx) != 0; }
   132   void   set_shared( Node *n ) {  _shared.set(n->_idx); }
   133   bool   is_visited( Node *n ) { return _visited.test(n->_idx) != 0; }
   134   void  set_visited( Node *n ) { _visited.set(n->_idx); }
   135   bool  is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; }
   136   void set_dontcare( Node *n ) {  _dontcare.set(n->_idx); }
   138   // Mode bit to tell DFA and expand rules whether we are running after
   139   // (or during) register selection.  Usually, the matcher runs before,
   140   // but it will also get called to generate post-allocation spill code.
   141   // In this situation, it is a deadly error to attempt to allocate more
   142   // temporary registers.
   143   bool _allocation_started;
   145   // Machine register names
   146   static const char *regName[];
   147   // Machine register encodings
   148   static const unsigned char _regEncode[];
   149   // Machine Node names
   150   const char **_ruleName;
   151   // Rules that are cheaper to rematerialize than to spill
   152   static const uint _begin_rematerialize;
   153   static const uint _end_rematerialize;
   155   // An array of chars, from 0 to _last_Mach_Reg.
   156   // No Save       = 'N' (for register windows)
   157   // Save on Entry = 'E'
   158   // Save on Call  = 'C'
   159   // Always Save   = 'A' (same as SOE + SOC)
   160   const char *_register_save_policy;
   161   const char *_c_reg_save_policy;
   162   // Convert a machine register to a machine register type, so-as to
   163   // properly match spill code.
   164   const int *_register_save_type;
   165   // Maps from machine register to boolean; true if machine register can
   166   // be holding a call argument in some signature.
   167   static bool can_be_java_arg( int reg );
   168   // Maps from machine register to boolean; true if machine register holds
   169   // a spillable argument.
   170   static bool is_spillable_arg( int reg );
   172   // List of IfFalse or IfTrue Nodes that indicate a taken null test.
   173   // List is valid in the post-matching space.
   174   Node_List _null_check_tests;
   175   void collect_null_checks( Node *proj, Node *orig_proj );
   176   void validate_null_checks( );
   178   Matcher( Node_List &proj_list );
   180   // Select instructions for entire method
   181   void  match( );
   182   // Helper for match
   183   OptoReg::Name warp_incoming_stk_arg( VMReg reg );
   185   // Transform, then walk.  Does implicit DCE while walking.
   186   // Name changed from "transform" to avoid it being virtual.
   187   Node *xform( Node *old_space_node, int Nodes );
   189   // Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce.
   190   MachNode *match_tree( const Node *n );
   191   MachNode *match_sfpt( SafePointNode *sfpt );
   192   // Helper for match_sfpt
   193   OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call );
   195   // Initialize first stack mask and related masks.
   196   void init_first_stack_mask();
   198   // If we should save-on-entry this register
   199   bool is_save_on_entry( int reg );
   201   // Fixup the save-on-entry registers
   202   void Fixup_Save_On_Entry( );
   204   // --- Frame handling ---
   206   // Register number of the stack slot corresponding to the incoming SP.
   207   // Per the Big Picture in the AD file, it is:
   208   //   SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2.
   209   OptoReg::Name _old_SP;
   211   // Register number of the stack slot corresponding to the highest incoming
   212   // argument on the stack.  Per the Big Picture in the AD file, it is:
   213   //   _old_SP + out_preserve_stack_slots + incoming argument size.
   214   OptoReg::Name _in_arg_limit;
   216   // Register number of the stack slot corresponding to the new SP.
   217   // Per the Big Picture in the AD file, it is:
   218   //   _in_arg_limit + pad0
   219   OptoReg::Name _new_SP;
   221   // Register number of the stack slot corresponding to the highest outgoing
   222   // argument on the stack.  Per the Big Picture in the AD file, it is:
   223   //   _new_SP + max outgoing arguments of all calls
   224   OptoReg::Name _out_arg_limit;
   226   OptoRegPair *_parm_regs;        // Array of machine registers per argument
   227   RegMask *_calling_convention_mask; // Array of RegMasks per argument
   229   // Does matcher have a match rule for this ideal node?
   230   static const bool has_match_rule(int opcode);
   231   static const bool _hasMatchRule[_last_opcode];
   233   // Does matcher have a match rule for this ideal node and is the
   234   // predicate (if there is one) true?
   235   // NOTE: If this function is used more commonly in the future, ADLC
   236   // should generate this one.
   237   static const bool match_rule_supported(int opcode);
   239   // Used to determine if we have fast l2f conversion
   240   // USII has it, USIII doesn't
   241   static const bool convL2FSupported(void);
   243   // Vector width in bytes
   244   static const uint vector_width_in_bytes(void);
   246   // Vector ideal reg
   247   static const uint vector_ideal_reg(void);
   249   // Used to determine a "low complexity" 64-bit constant.  (Zero is simple.)
   250   // The standard of comparison is one (StoreL ConL) vs. two (StoreI ConI).
   251   // Depends on the details of 64-bit constant generation on the CPU.
   252   static const bool isSimpleConstant64(jlong con);
   254   // These calls are all generated by the ADLC
   256   // TRUE - grows up, FALSE - grows down (Intel)
   257   virtual bool stack_direction() const;
   259   // Java-Java calling convention
   260   // (what you use when Java calls Java)
   262   // Alignment of stack in bytes, standard Intel word alignment is 4.
   263   // Sparc probably wants at least double-word (8).
   264   static uint stack_alignment_in_bytes();
   265   // Alignment of stack, measured in stack slots.
   266   // The size of stack slots is defined by VMRegImpl::stack_slot_size.
   267   static uint stack_alignment_in_slots() {
   268     return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size);
   269   }
   271   // Array mapping arguments to registers.  Argument 0 is usually the 'this'
   272   // pointer.  Registers can include stack-slots and regular registers.
   273   static void calling_convention( BasicType *, VMRegPair *, uint len, bool is_outgoing );
   275   // Convert a sig into a calling convention register layout
   276   // and find interesting things about it.
   277   static OptoReg::Name  find_receiver( bool is_outgoing );
   278   // Return address register.  On Intel it is a stack-slot.  On PowerPC
   279   // it is the Link register.  On Sparc it is r31?
   280   virtual OptoReg::Name return_addr() const;
   281   RegMask              _return_addr_mask;
   282   // Return value register.  On Intel it is EAX.  On Sparc i0/o0.
   283   static OptoRegPair   return_value(int ideal_reg, bool is_outgoing);
   284   static OptoRegPair c_return_value(int ideal_reg, bool is_outgoing);
   285   RegMask                     _return_value_mask;
   286   // Inline Cache Register
   287   static OptoReg::Name  inline_cache_reg();
   288   static const RegMask &inline_cache_reg_mask();
   289   static int            inline_cache_reg_encode();
   291   // Register for DIVI projection of divmodI
   292   static RegMask divI_proj_mask();
   293   // Register for MODI projection of divmodI
   294   static RegMask modI_proj_mask();
   296   // Register for DIVL projection of divmodL
   297   static RegMask divL_proj_mask();
   298   // Register for MODL projection of divmodL
   299   static RegMask modL_proj_mask();
   301   static const RegMask method_handle_invoke_SP_save_mask();
   303   // Java-Interpreter calling convention
   304   // (what you use when calling between compiled-Java and Interpreted-Java
   306   // Number of callee-save + always-save registers
   307   // Ignores frame pointer and "special" registers
   308   static int  number_of_saved_registers();
   310   // The Method-klass-holder may be passed in the inline_cache_reg
   311   // and then expanded into the inline_cache_reg and a method_oop register
   313   static OptoReg::Name  interpreter_method_oop_reg();
   314   static const RegMask &interpreter_method_oop_reg_mask();
   315   static int            interpreter_method_oop_reg_encode();
   317   static OptoReg::Name  compiler_method_oop_reg();
   318   static const RegMask &compiler_method_oop_reg_mask();
   319   static int            compiler_method_oop_reg_encode();
   321   // Interpreter's Frame Pointer Register
   322   static OptoReg::Name  interpreter_frame_pointer_reg();
   323   static const RegMask &interpreter_frame_pointer_reg_mask();
   325   // Java-Native calling convention
   326   // (what you use when intercalling between Java and C++ code)
   328   // Array mapping arguments to registers.  Argument 0 is usually the 'this'
   329   // pointer.  Registers can include stack-slots and regular registers.
   330   static void c_calling_convention( BasicType*, VMRegPair *, uint );
   331   // Frame pointer. The frame pointer is kept at the base of the stack
   332   // and so is probably the stack pointer for most machines.  On Intel
   333   // it is ESP.  On the PowerPC it is R1.  On Sparc it is SP.
   334   OptoReg::Name  c_frame_pointer() const;
   335   static RegMask c_frame_ptr_mask;
   337   // !!!!! Special stuff for building ScopeDescs
   338   virtual int      regnum_to_fpu_offset(int regnum);
   340   // Is this branch offset small enough to be addressed by a short branch?
   341   bool is_short_branch_offset(int rule, int offset);
   343   // Optional scaling for the parameter to the ClearArray/CopyArray node.
   344   static const bool init_array_count_is_in_bytes;
   346   // Threshold small size (in bytes) for a ClearArray/CopyArray node.
   347   // Anything this size or smaller may get converted to discrete scalar stores.
   348   static const int init_array_short_size;
   350   // Should the Matcher clone shifts on addressing modes, expecting them to
   351   // be subsumed into complex addressing expressions or compute them into
   352   // registers?  True for Intel but false for most RISCs
   353   static const bool clone_shift_expressions;
   355   static bool narrow_oop_use_complex_address();
   357   // Generate implicit null check for narrow oops if it can fold
   358   // into address expression (x64).
   359   //
   360   // [R12 + narrow_oop_reg<<3 + offset] // fold into address expression
   361   // NullCheck narrow_oop_reg
   362   //
   363   // When narrow oops can't fold into address expression (Sparc) and
   364   // base is not null use decode_not_null and normal implicit null check.
   365   // Note, decode_not_null node can be used here since it is referenced
   366   // only on non null path but it requires special handling, see
   367   // collect_null_checks():
   368   //
   369   // decode_not_null narrow_oop_reg, oop_reg // 'shift' and 'add base'
   370   // [oop_reg + offset]
   371   // NullCheck oop_reg
   372   //
   373   // With Zero base and when narrow oops can not fold into address
   374   // expression use normal implicit null check since only shift
   375   // is needed to decode narrow oop.
   376   //
   377   // decode narrow_oop_reg, oop_reg // only 'shift'
   378   // [oop_reg + offset]
   379   // NullCheck oop_reg
   380   //
   381   inline static bool gen_narrow_oop_implicit_null_checks() {
   382     return Universe::narrow_oop_use_implicit_null_checks() &&
   383            (narrow_oop_use_complex_address() ||
   384             Universe::narrow_oop_base() != NULL);
   385   }
   387   // Is it better to copy float constants, or load them directly from memory?
   388   // Intel can load a float constant from a direct address, requiring no
   389   // extra registers.  Most RISCs will have to materialize an address into a
   390   // register first, so they may as well materialize the constant immediately.
   391   static const bool rematerialize_float_constants;
   393   // If CPU can load and store mis-aligned doubles directly then no fixup is
   394   // needed.  Else we split the double into 2 integer pieces and move it
   395   // piece-by-piece.  Only happens when passing doubles into C code or when
   396   // calling i2c adapters as the Java calling convention forces doubles to be
   397   // aligned.
   398   static const bool misaligned_doubles_ok;
   400   // Perform a platform dependent implicit null fixup.  This is needed
   401   // on windows95 to take care of some unusual register constraints.
   402   void pd_implicit_null_fixup(MachNode *load, uint idx);
   404   // Advertise here if the CPU requires explicit rounding operations
   405   // to implement the UseStrictFP mode.
   406   static const bool strict_fp_requires_explicit_rounding;
   408   // Are floats conerted to double when stored to stack during deoptimization?
   409   static bool float_in_double();
   410   // Do ints take an entire long register or just half?
   411   static const bool int_in_long;
   413   // This routine is run whenever a graph fails to match.
   414   // If it returns, the compiler should bailout to interpreter without error.
   415   // In non-product mode, SoftMatchFailure is false to detect non-canonical
   416   // graphs.  Print a message and exit.
   417   static void soft_match_failure() {
   418     if( SoftMatchFailure ) return;
   419     else { fatal("SoftMatchFailure is not allowed except in product"); }
   420   }
   422   // Used by the DFA in dfa_sparc.cpp.  Check for a prior FastLock
   423   // acting as an Acquire and thus we don't need an Acquire here.  We
   424   // retain the Node to act as a compiler ordering barrier.
   425   static bool prior_fast_lock( const Node *acq );
   427   // Used by the DFA in dfa_sparc.cpp.  Check for a following
   428   // FastUnLock acting as a Release and thus we don't need a Release
   429   // here.  We retain the Node to act as a compiler ordering barrier.
   430   static bool post_fast_unlock( const Node *rel );
   432   // Check for a following volatile memory barrier without an
   433   // intervening load and thus we don't need a barrier here.  We
   434   // retain the Node to act as a compiler ordering barrier.
   435   static bool post_store_load_barrier(const Node* mb);
   438 #ifdef ASSERT
   439   void dump_old2new_map();      // machine-independent to machine-dependent
   441   Node* find_old_node(Node* new_node) {
   442     return _new2old_map[new_node->_idx];
   443   }
   444 #endif
   445 };

mercurial