src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp

Wed, 02 Jun 2010 22:45:42 -0700

author
jrose
date
Wed, 02 Jun 2010 22:45:42 -0700
changeset 1934
e9ff18c4ace7
parent 1907
c18cbe5936b8
parent 1926
2d127394260e
child 2071
be3f9c242c9d
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // Classes in support of keeping track of promotions into a non-Contiguous
    26 // space, in this case a CompactibleFreeListSpace.
    28 // Forward declarations
    29 class CompactibleFreeListSpace;
    30 class BlkClosure;
    31 class BlkClosureCareful;
    32 class UpwardsObjectClosure;
    33 class ObjectClosureCareful;
    34 class Klass;
    36 class LinearAllocBlock VALUE_OBJ_CLASS_SPEC {
    37  public:
    38   LinearAllocBlock() : _ptr(0), _word_size(0), _refillSize(0),
    39     _allocation_size_limit(0) {}
    40   void set(HeapWord* ptr, size_t word_size, size_t refill_size,
    41     size_t allocation_size_limit) {
    42     _ptr = ptr;
    43     _word_size = word_size;
    44     _refillSize = refill_size;
    45     _allocation_size_limit = allocation_size_limit;
    46   }
    47   HeapWord* _ptr;
    48   size_t    _word_size;
    49   size_t    _refillSize;
    50   size_t    _allocation_size_limit;  // largest size that will be allocated
    51 };
    53 // Concrete subclass of CompactibleSpace that implements
    54 // a free list space, such as used in the concurrent mark sweep
    55 // generation.
    57 class CompactibleFreeListSpace: public CompactibleSpace {
    58   friend class VMStructs;
    59   friend class ConcurrentMarkSweepGeneration;
    60   friend class ASConcurrentMarkSweepGeneration;
    61   friend class CMSCollector;
    62   friend class CMSPermGenGen;
    63   // Local alloc buffer for promotion into this space.
    64   friend class CFLS_LAB;
    66   // "Size" of chunks of work (executed during parallel remark phases
    67   // of CMS collection); this probably belongs in CMSCollector, although
    68   // it's cached here because it's used in
    69   // initialize_sequential_subtasks_for_rescan() which modifies
    70   // par_seq_tasks which also lives in Space. XXX
    71   const size_t _rescan_task_size;
    72   const size_t _marking_task_size;
    74   // Yet another sequential tasks done structure. This supports
    75   // CMS GC, where we have threads dynamically
    76   // claiming sub-tasks from a larger parallel task.
    77   SequentialSubTasksDone _conc_par_seq_tasks;
    79   BlockOffsetArrayNonContigSpace _bt;
    81   CMSCollector* _collector;
    82   ConcurrentMarkSweepGeneration* _gen;
    84   // Data structures for free blocks (used during allocation/sweeping)
    86   // Allocation is done linearly from two different blocks depending on
    87   // whether the request is small or large, in an effort to reduce
    88   // fragmentation. We assume that any locking for allocation is done
    89   // by the containing generation. Thus, none of the methods in this
    90   // space are re-entrant.
    91   enum SomeConstants {
    92     SmallForLinearAlloc = 16,        // size < this then use _sLAB
    93     SmallForDictionary  = 257,       // size < this then use _indexedFreeList
    94     IndexSetSize        = SmallForDictionary  // keep this odd-sized
    95   };
    96   static int IndexSetStart;
    97   static int IndexSetStride;
    99  private:
   100   enum FitStrategyOptions {
   101     FreeBlockStrategyNone = 0,
   102     FreeBlockBestFitFirst
   103   };
   105   PromotionInfo _promoInfo;
   107   // helps to impose a global total order on freelistLock ranks;
   108   // assumes that CFLSpace's are allocated in global total order
   109   static int   _lockRank;
   111   // a lock protecting the free lists and free blocks;
   112   // mutable because of ubiquity of locking even for otherwise const methods
   113   mutable Mutex _freelistLock;
   114   // locking verifier convenience function
   115   void assert_locked() const PRODUCT_RETURN;
   116   void assert_locked(const Mutex* lock) const PRODUCT_RETURN;
   118   // Linear allocation blocks
   119   LinearAllocBlock _smallLinearAllocBlock;
   121   FreeBlockDictionary::DictionaryChoice _dictionaryChoice;
   122   FreeBlockDictionary* _dictionary;    // ptr to dictionary for large size blocks
   124   FreeList _indexedFreeList[IndexSetSize];
   125                                        // indexed array for small size blocks
   126   // allocation stategy
   127   bool       _fitStrategy;      // Use best fit strategy.
   128   bool       _adaptive_freelists; // Use adaptive freelists
   130   // This is an address close to the largest free chunk in the heap.
   131   // It is currently assumed to be at the end of the heap.  Free
   132   // chunks with addresses greater than nearLargestChunk are coalesced
   133   // in an effort to maintain a large chunk at the end of the heap.
   134   HeapWord*  _nearLargestChunk;
   136   // Used to keep track of limit of sweep for the space
   137   HeapWord* _sweep_limit;
   139   // Support for compacting cms
   140   HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   141   HeapWord* forward(oop q, size_t size, CompactPoint* cp, HeapWord* compact_top);
   143   // Initialization helpers.
   144   void initializeIndexedFreeListArray();
   146   // Extra stuff to manage promotion parallelism.
   148   // a lock protecting the dictionary during par promotion allocation.
   149   mutable Mutex _parDictionaryAllocLock;
   150   Mutex* parDictionaryAllocLock() const { return &_parDictionaryAllocLock; }
   152   // Locks protecting the exact lists during par promotion allocation.
   153   Mutex* _indexedFreeListParLocks[IndexSetSize];
   155   // Attempt to obtain up to "n" blocks of the size "word_sz" (which is
   156   // required to be smaller than "IndexSetSize".)  If successful,
   157   // adds them to "fl", which is required to be an empty free list.
   158   // If the count of "fl" is negative, it's absolute value indicates a
   159   // number of free chunks that had been previously "borrowed" from global
   160   // list of size "word_sz", and must now be decremented.
   161   void par_get_chunk_of_blocks(size_t word_sz, size_t n, FreeList* fl);
   163   // Allocation helper functions
   164   // Allocate using a strategy that takes from the indexed free lists
   165   // first.  This allocation strategy assumes a companion sweeping
   166   // strategy that attempts to keep the needed number of chunks in each
   167   // indexed free lists.
   168   HeapWord* allocate_adaptive_freelists(size_t size);
   169   // Allocate from the linear allocation buffers first.  This allocation
   170   // strategy assumes maximal coalescing can maintain chunks large enough
   171   // to be used as linear allocation buffers.
   172   HeapWord* allocate_non_adaptive_freelists(size_t size);
   174   // Gets a chunk from the linear allocation block (LinAB).  If there
   175   // is not enough space in the LinAB, refills it.
   176   HeapWord*  getChunkFromLinearAllocBlock(LinearAllocBlock* blk, size_t size);
   177   HeapWord*  getChunkFromSmallLinearAllocBlock(size_t size);
   178   // Get a chunk from the space remaining in the linear allocation block.  Do
   179   // not attempt to refill if the space is not available, return NULL.  Do the
   180   // repairs on the linear allocation block as appropriate.
   181   HeapWord*  getChunkFromLinearAllocBlockRemainder(LinearAllocBlock* blk, size_t size);
   182   inline HeapWord*  getChunkFromSmallLinearAllocBlockRemainder(size_t size);
   184   // Helper function for getChunkFromIndexedFreeList.
   185   // Replenish the indexed free list for this "size".  Do not take from an
   186   // underpopulated size.
   187   FreeChunk*  getChunkFromIndexedFreeListHelper(size_t size, bool replenish = true);
   189   // Get a chunk from the indexed free list.  If the indexed free list
   190   // does not have a free chunk, try to replenish the indexed free list
   191   // then get the free chunk from the replenished indexed free list.
   192   inline FreeChunk* getChunkFromIndexedFreeList(size_t size);
   194   // The returned chunk may be larger than requested (or null).
   195   FreeChunk* getChunkFromDictionary(size_t size);
   196   // The returned chunk is the exact size requested (or null).
   197   FreeChunk* getChunkFromDictionaryExact(size_t size);
   199   // Find a chunk in the indexed free list that is the best
   200   // fit for size "numWords".
   201   FreeChunk* bestFitSmall(size_t numWords);
   202   // For free list "fl" of chunks of size > numWords,
   203   // remove a chunk, split off a chunk of size numWords
   204   // and return it.  The split off remainder is returned to
   205   // the free lists.  The old name for getFromListGreater
   206   // was lookInListGreater.
   207   FreeChunk* getFromListGreater(FreeList* fl, size_t numWords);
   208   // Get a chunk in the indexed free list or dictionary,
   209   // by considering a larger chunk and splitting it.
   210   FreeChunk* getChunkFromGreater(size_t numWords);
   211   //  Verify that the given chunk is in the indexed free lists.
   212   bool verifyChunkInIndexedFreeLists(FreeChunk* fc) const;
   213   // Remove the specified chunk from the indexed free lists.
   214   void       removeChunkFromIndexedFreeList(FreeChunk* fc);
   215   // Remove the specified chunk from the dictionary.
   216   void       removeChunkFromDictionary(FreeChunk* fc);
   217   // Split a free chunk into a smaller free chunk of size "new_size".
   218   // Return the smaller free chunk and return the remainder to the
   219   // free lists.
   220   FreeChunk* splitChunkAndReturnRemainder(FreeChunk* chunk, size_t new_size);
   221   // Add a chunk to the free lists.
   222   void       addChunkToFreeLists(HeapWord* chunk, size_t size);
   223   // Add a chunk to the free lists, preferring to suffix it
   224   // to the last free chunk at end of space if possible, and
   225   // updating the block census stats as well as block offset table.
   226   // Take any locks as appropriate if we are multithreaded.
   227   void       addChunkToFreeListsAtEndRecordingStats(HeapWord* chunk, size_t size);
   228   // Add a free chunk to the indexed free lists.
   229   void       returnChunkToFreeList(FreeChunk* chunk);
   230   // Add a free chunk to the dictionary.
   231   void       returnChunkToDictionary(FreeChunk* chunk);
   233   // Functions for maintaining the linear allocation buffers (LinAB).
   234   // Repairing a linear allocation block refers to operations
   235   // performed on the remainder of a LinAB after an allocation
   236   // has been made from it.
   237   void       repairLinearAllocationBlocks();
   238   void       repairLinearAllocBlock(LinearAllocBlock* blk);
   239   void       refillLinearAllocBlock(LinearAllocBlock* blk);
   240   void       refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk);
   241   void       refillLinearAllocBlocksIfNeeded();
   243   void       verify_objects_initialized() const;
   245   // Statistics reporting helper functions
   246   void       reportFreeListStatistics() const;
   247   void       reportIndexedFreeListStatistics() const;
   248   size_t     maxChunkSizeInIndexedFreeLists() const;
   249   size_t     numFreeBlocksInIndexedFreeLists() const;
   250   // Accessor
   251   HeapWord* unallocated_block() const {
   252     HeapWord* ub = _bt.unallocated_block();
   253     assert(ub >= bottom() &&
   254            ub <= end(), "space invariant");
   255     return ub;
   256   }
   257   void freed(HeapWord* start, size_t size) {
   258     _bt.freed(start, size);
   259   }
   261  protected:
   262   // reset the indexed free list to its initial empty condition.
   263   void resetIndexedFreeListArray();
   264   // reset to an initial state with a single free block described
   265   // by the MemRegion parameter.
   266   void reset(MemRegion mr);
   267   // Return the total number of words in the indexed free lists.
   268   size_t     totalSizeInIndexedFreeLists() const;
   270  public:
   271   // Constructor...
   272   CompactibleFreeListSpace(BlockOffsetSharedArray* bs, MemRegion mr,
   273                            bool use_adaptive_freelists,
   274                            FreeBlockDictionary::DictionaryChoice);
   275   // accessors
   276   bool bestFitFirst() { return _fitStrategy == FreeBlockBestFitFirst; }
   277   FreeBlockDictionary* dictionary() const { return _dictionary; }
   278   HeapWord* nearLargestChunk() const { return _nearLargestChunk; }
   279   void set_nearLargestChunk(HeapWord* v) { _nearLargestChunk = v; }
   281   // Set CMS global values
   282   static void set_cms_values();
   284   // Return the free chunk at the end of the space.  If no such
   285   // chunk exists, return NULL.
   286   FreeChunk* find_chunk_at_end();
   288   bool adaptive_freelists() const { return _adaptive_freelists; }
   290   void set_collector(CMSCollector* collector) { _collector = collector; }
   292   // Support for parallelization of rescan and marking
   293   const size_t rescan_task_size()  const { return _rescan_task_size;  }
   294   const size_t marking_task_size() const { return _marking_task_size; }
   295   SequentialSubTasksDone* conc_par_seq_tasks() {return &_conc_par_seq_tasks; }
   296   void initialize_sequential_subtasks_for_rescan(int n_threads);
   297   void initialize_sequential_subtasks_for_marking(int n_threads,
   298          HeapWord* low = NULL);
   300   // Space enquiries
   301   size_t used() const;
   302   size_t free() const;
   303   size_t max_alloc_in_words() const;
   304   // XXX: should have a less conservative used_region() than that of
   305   // Space; we could consider keeping track of highest allocated
   306   // address and correcting that at each sweep, as the sweeper
   307   // goes through the entire allocated part of the generation. We
   308   // could also use that information to keep the sweeper from
   309   // sweeping more than is necessary. The allocator and sweeper will
   310   // of course need to synchronize on this, since the sweeper will
   311   // try to bump down the address and the allocator will try to bump it up.
   312   // For now, however, we'll just use the default used_region()
   313   // which overestimates the region by returning the entire
   314   // committed region (this is safe, but inefficient).
   316   // Returns a subregion of the space containing all the objects in
   317   // the space.
   318   MemRegion used_region() const {
   319     return MemRegion(bottom(),
   320                      BlockOffsetArrayUseUnallocatedBlock ?
   321                      unallocated_block() : end());
   322   }
   324   // This is needed because the default implementation uses block_start()
   325   // which can;t be used at certain times (for example phase 3 of mark-sweep).
   326   // A better fix is to change the assertions in phase 3 of mark-sweep to
   327   // use is_in_reserved(), but that is deferred since the is_in() assertions
   328   // are buried through several layers of callers and are used elsewhere
   329   // as well.
   330   bool is_in(const void* p) const {
   331     return used_region().contains(p);
   332   }
   334   virtual bool is_free_block(const HeapWord* p) const;
   336   // Resizing support
   337   void set_end(HeapWord* value);  // override
   339   // mutual exclusion support
   340   Mutex* freelistLock() const { return &_freelistLock; }
   342   // Iteration support
   343   void oop_iterate(MemRegion mr, OopClosure* cl);
   344   void oop_iterate(OopClosure* cl);
   346   void object_iterate(ObjectClosure* blk);
   347   // Apply the closure to each object in the space whose references
   348   // point to objects in the heap.  The usage of CompactibleFreeListSpace
   349   // by the ConcurrentMarkSweepGeneration for concurrent GC's allows
   350   // objects in the space with references to objects that are no longer
   351   // valid.  For example, an object may reference another object
   352   // that has already been sweep up (collected).  This method uses
   353   // obj_is_alive() to determine whether it is safe to iterate of
   354   // an object.
   355   void safe_object_iterate(ObjectClosure* blk);
   356   void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
   358   // Requires that "mr" be entirely within the space.
   359   // Apply "cl->do_object" to all objects that intersect with "mr".
   360   // If the iteration encounters an unparseable portion of the region,
   361   // terminate the iteration and return the address of the start of the
   362   // subregion that isn't done.  Return of "NULL" indicates that the
   363   // interation completed.
   364   virtual HeapWord*
   365        object_iterate_careful_m(MemRegion mr,
   366                                 ObjectClosureCareful* cl);
   367   virtual HeapWord*
   368        object_iterate_careful(ObjectClosureCareful* cl);
   370   // Override: provides a DCTO_CL specific to this kind of space.
   371   DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
   372                                      CardTableModRefBS::PrecisionStyle precision,
   373                                      HeapWord* boundary);
   375   void blk_iterate(BlkClosure* cl);
   376   void blk_iterate_careful(BlkClosureCareful* cl);
   377   HeapWord* block_start_const(const void* p) const;
   378   HeapWord* block_start_careful(const void* p) const;
   379   size_t block_size(const HeapWord* p) const;
   380   size_t block_size_no_stall(HeapWord* p, const CMSCollector* c) const;
   381   bool block_is_obj(const HeapWord* p) const;
   382   bool obj_is_alive(const HeapWord* p) const;
   383   size_t block_size_nopar(const HeapWord* p) const;
   384   bool block_is_obj_nopar(const HeapWord* p) const;
   386   // iteration support for promotion
   387   void save_marks();
   388   bool no_allocs_since_save_marks();
   389   void object_iterate_since_last_GC(ObjectClosure* cl);
   391   // iteration support for sweeping
   392   void save_sweep_limit() {
   393     _sweep_limit = BlockOffsetArrayUseUnallocatedBlock ?
   394                    unallocated_block() : end();
   395   }
   396   NOT_PRODUCT(
   397     void clear_sweep_limit() { _sweep_limit = NULL; }
   398   )
   399   HeapWord* sweep_limit() { return _sweep_limit; }
   401   // Apply "blk->do_oop" to the addresses of all reference fields in objects
   402   // promoted into this generation since the most recent save_marks() call.
   403   // Fields in objects allocated by applications of the closure
   404   // *are* included in the iteration. Thus, when the iteration completes
   405   // there should be no further such objects remaining.
   406   #define CFLS_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   407     void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
   408   ALL_SINCE_SAVE_MARKS_CLOSURES(CFLS_OOP_SINCE_SAVE_MARKS_DECL)
   409   #undef CFLS_OOP_SINCE_SAVE_MARKS_DECL
   411   // Allocation support
   412   HeapWord* allocate(size_t size);
   413   HeapWord* par_allocate(size_t size);
   415   oop       promote(oop obj, size_t obj_size);
   416   void      gc_prologue();
   417   void      gc_epilogue();
   419   // This call is used by a containing CMS generation / collector
   420   // to inform the CFLS space that a sweep has been completed
   421   // and that the space can do any related house-keeping functions.
   422   void      sweep_completed();
   424   // For an object in this space, the mark-word's two
   425   // LSB's having the value [11] indicates that it has been
   426   // promoted since the most recent call to save_marks() on
   427   // this generation and has not subsequently been iterated
   428   // over (using oop_since_save_marks_iterate() above).
   429   // This property holds only for single-threaded collections,
   430   // and is typically used for Cheney scans; for MT scavenges,
   431   // the property holds for all objects promoted during that
   432   // scavenge for the duration of the scavenge and is used
   433   // by card-scanning to avoid scanning objects (being) promoted
   434   // during that scavenge.
   435   bool obj_allocated_since_save_marks(const oop obj) const {
   436     assert(is_in_reserved(obj), "Wrong space?");
   437     return ((PromotedObject*)obj)->hasPromotedMark();
   438   }
   440   // A worst-case estimate of the space required (in HeapWords) to expand the
   441   // heap when promoting an obj of size obj_size.
   442   size_t expansionSpaceRequired(size_t obj_size) const;
   444   FreeChunk* allocateScratch(size_t size);
   446   // returns true if either the small or large linear allocation buffer is empty.
   447   bool       linearAllocationWouldFail() const;
   449   // Adjust the chunk for the minimum size.  This version is called in
   450   // most cases in CompactibleFreeListSpace methods.
   451   inline static size_t adjustObjectSize(size_t size) {
   452     return (size_t) align_object_size(MAX2(size, (size_t)MinChunkSize));
   453   }
   454   // This is a virtual version of adjustObjectSize() that is called
   455   // only occasionally when the compaction space changes and the type
   456   // of the new compaction space is is only known to be CompactibleSpace.
   457   size_t adjust_object_size_v(size_t size) const {
   458     return adjustObjectSize(size);
   459   }
   460   // Minimum size of a free block.
   461   virtual size_t minimum_free_block_size() const { return MinChunkSize; }
   462   void      removeFreeChunkFromFreeLists(FreeChunk* chunk);
   463   void      addChunkAndRepairOffsetTable(HeapWord* chunk, size_t size,
   464               bool coalesced);
   466   // Support for decisions regarding concurrent collection policy
   467   bool should_concurrent_collect() const;
   469   // Support for compaction
   470   void prepare_for_compaction(CompactPoint* cp);
   471   void adjust_pointers();
   472   void compact();
   473   // reset the space to reflect the fact that a compaction of the
   474   // space has been done.
   475   virtual void reset_after_compaction();
   477   // Debugging support
   478   void print()                            const;
   479   void prepare_for_verify();
   480   void verify(bool allow_dirty)           const;
   481   void verifyFreeLists()                  const PRODUCT_RETURN;
   482   void verifyIndexedFreeLists()           const;
   483   void verifyIndexedFreeList(size_t size) const;
   484   // verify that the given chunk is in the free lists.
   485   bool verifyChunkInFreeLists(FreeChunk* fc) const;
   486   // Do some basic checks on the the free lists.
   487   void checkFreeListConsistency()         const PRODUCT_RETURN;
   489   // Printing support
   490   void dump_at_safepoint_with_locks(CMSCollector* c, outputStream* st);
   491   void print_indexed_free_lists(outputStream* st) const;
   492   void print_dictionary_free_lists(outputStream* st) const;
   493   void print_promo_info_blocks(outputStream* st) const;
   495   NOT_PRODUCT (
   496     void initializeIndexedFreeListArrayReturnedBytes();
   497     size_t sumIndexedFreeListArrayReturnedBytes();
   498     // Return the total number of chunks in the indexed free lists.
   499     size_t totalCountInIndexedFreeLists() const;
   500     // Return the total numberof chunks in the space.
   501     size_t totalCount();
   502   )
   504   // The census consists of counts of the quantities such as
   505   // the current count of the free chunks, number of chunks
   506   // created as a result of the split of a larger chunk or
   507   // coalescing of smaller chucks, etc.  The counts in the
   508   // census is used to make decisions on splitting and
   509   // coalescing of chunks during the sweep of garbage.
   511   // Print the statistics for the free lists.
   512   void printFLCensus(size_t sweep_count) const;
   514   // Statistics functions
   515   // Initialize census for lists before the sweep.
   516   void beginSweepFLCensus(float inter_sweep_current,
   517                           float inter_sweep_estimate,
   518                           float intra_sweep_estimate);
   519   // Set the surplus for each of the free lists.
   520   void setFLSurplus();
   521   // Set the hint for each of the free lists.
   522   void setFLHints();
   523   // Clear the census for each of the free lists.
   524   void clearFLCensus();
   525   // Perform functions for the census after the end of the sweep.
   526   void endSweepFLCensus(size_t sweep_count);
   527   // Return true if the count of free chunks is greater
   528   // than the desired number of free chunks.
   529   bool coalOverPopulated(size_t size);
   531 // Record (for each size):
   532 //
   533 //   split-births = #chunks added due to splits in (prev-sweep-end,
   534 //      this-sweep-start)
   535 //   split-deaths = #chunks removed for splits in (prev-sweep-end,
   536 //      this-sweep-start)
   537 //   num-curr     = #chunks at start of this sweep
   538 //   num-prev     = #chunks at end of previous sweep
   539 //
   540 // The above are quantities that are measured. Now define:
   541 //
   542 //   num-desired := num-prev + split-births - split-deaths - num-curr
   543 //
   544 // Roughly, num-prev + split-births is the supply,
   545 // split-deaths is demand due to other sizes
   546 // and num-curr is what we have left.
   547 //
   548 // Thus, num-desired is roughly speaking the "legitimate demand"
   549 // for blocks of this size and what we are striving to reach at the
   550 // end of the current sweep.
   551 //
   552 // For a given list, let num-len be its current population.
   553 // Define, for a free list of a given size:
   554 //
   555 //   coal-overpopulated := num-len >= num-desired * coal-surplus
   556 // (coal-surplus is set to 1.05, i.e. we allow a little slop when
   557 // coalescing -- we do not coalesce unless we think that the current
   558 // supply has exceeded the estimated demand by more than 5%).
   559 //
   560 // For the set of sizes in the binary tree, which is neither dense nor
   561 // closed, it may be the case that for a particular size we have never
   562 // had, or do not now have, or did not have at the previous sweep,
   563 // chunks of that size. We need to extend the definition of
   564 // coal-overpopulated to such sizes as well:
   565 //
   566 //   For a chunk in/not in the binary tree, extend coal-overpopulated
   567 //   defined above to include all sizes as follows:
   568 //
   569 //   . a size that is non-existent is coal-overpopulated
   570 //   . a size that has a num-desired <= 0 as defined above is
   571 //     coal-overpopulated.
   572 //
   573 // Also define, for a chunk heap-offset C and mountain heap-offset M:
   574 //
   575 //   close-to-mountain := C >= 0.99 * M
   576 //
   577 // Now, the coalescing strategy is:
   578 //
   579 //    Coalesce left-hand chunk with right-hand chunk if and
   580 //    only if:
   581 //
   582 //      EITHER
   583 //        . left-hand chunk is of a size that is coal-overpopulated
   584 //      OR
   585 //        . right-hand chunk is close-to-mountain
   586   void smallCoalBirth(size_t size);
   587   void smallCoalDeath(size_t size);
   588   void coalBirth(size_t size);
   589   void coalDeath(size_t size);
   590   void smallSplitBirth(size_t size);
   591   void smallSplitDeath(size_t size);
   592   void splitBirth(size_t size);
   593   void splitDeath(size_t size);
   594   void split(size_t from, size_t to1);
   596   double flsFrag() const;
   597 };
   599 // A parallel-GC-thread-local allocation buffer for allocation into a
   600 // CompactibleFreeListSpace.
   601 class CFLS_LAB : public CHeapObj {
   602   // The space that this buffer allocates into.
   603   CompactibleFreeListSpace* _cfls;
   605   // Our local free lists.
   606   FreeList _indexedFreeList[CompactibleFreeListSpace::IndexSetSize];
   608   // Initialized from a command-line arg.
   610   // Allocation statistics in support of dynamic adjustment of
   611   // #blocks to claim per get_from_global_pool() call below.
   612   static AdaptiveWeightedAverage
   613                  _blocks_to_claim  [CompactibleFreeListSpace::IndexSetSize];
   614   static size_t _global_num_blocks [CompactibleFreeListSpace::IndexSetSize];
   615   static int    _global_num_workers[CompactibleFreeListSpace::IndexSetSize];
   616   size_t        _num_blocks        [CompactibleFreeListSpace::IndexSetSize];
   618   // Internal work method
   619   void get_from_global_pool(size_t word_sz, FreeList* fl);
   621 public:
   622   CFLS_LAB(CompactibleFreeListSpace* cfls);
   624   // Allocate and return a block of the given size, or else return NULL.
   625   HeapWord* alloc(size_t word_sz);
   627   // Return any unused portions of the buffer to the global pool.
   628   void retire(int tid);
   630   // Dynamic OldPLABSize sizing
   631   static void compute_desired_plab_size();
   632   // When the settings are modified from default static initialization
   633   static void modify_initialization(size_t n, unsigned wt);
   634 };
   636 size_t PromotionInfo::refillSize() const {
   637   const size_t CMSSpoolBlockSize = 256;
   638   const size_t sz = heap_word_size(sizeof(SpoolBlock) + sizeof(markOop)
   639                                    * CMSSpoolBlockSize);
   640   return CompactibleFreeListSpace::adjustObjectSize(sz);
   641 }

mercurial