src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1876
a8127dc669ba
child 1934
e9ff18c4ace7
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

     1 /*
     2  * Copyright (c) 2001, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // Classes in support of keeping track of promotions into a non-Contiguous
    26 // space, in this case a CompactibleFreeListSpace.
    28 // Forward declarations
    29 class CompactibleFreeListSpace;
    30 class BlkClosure;
    31 class BlkClosureCareful;
    32 class UpwardsObjectClosure;
    33 class ObjectClosureCareful;
    34 class Klass;
    36 class LinearAllocBlock VALUE_OBJ_CLASS_SPEC {
    37  public:
    38   LinearAllocBlock() : _ptr(0), _word_size(0), _refillSize(0),
    39     _allocation_size_limit(0) {}
    40   void set(HeapWord* ptr, size_t word_size, size_t refill_size,
    41     size_t allocation_size_limit) {
    42     _ptr = ptr;
    43     _word_size = word_size;
    44     _refillSize = refill_size;
    45     _allocation_size_limit = allocation_size_limit;
    46   }
    47   HeapWord* _ptr;
    48   size_t    _word_size;
    49   size_t    _refillSize;
    50   size_t    _allocation_size_limit;  // largest size that will be allocated
    51 };
    53 // Concrete subclass of CompactibleSpace that implements
    54 // a free list space, such as used in the concurrent mark sweep
    55 // generation.
    57 class CompactibleFreeListSpace: public CompactibleSpace {
    58   friend class VMStructs;
    59   friend class ConcurrentMarkSweepGeneration;
    60   friend class ASConcurrentMarkSweepGeneration;
    61   friend class CMSCollector;
    62   friend class CMSPermGenGen;
    63   // Local alloc buffer for promotion into this space.
    64   friend class CFLS_LAB;
    66   // "Size" of chunks of work (executed during parallel remark phases
    67   // of CMS collection); this probably belongs in CMSCollector, although
    68   // it's cached here because it's used in
    69   // initialize_sequential_subtasks_for_rescan() which modifies
    70   // par_seq_tasks which also lives in Space. XXX
    71   const size_t _rescan_task_size;
    72   const size_t _marking_task_size;
    74   // Yet another sequential tasks done structure. This supports
    75   // CMS GC, where we have threads dynamically
    76   // claiming sub-tasks from a larger parallel task.
    77   SequentialSubTasksDone _conc_par_seq_tasks;
    79   BlockOffsetArrayNonContigSpace _bt;
    81   CMSCollector* _collector;
    82   ConcurrentMarkSweepGeneration* _gen;
    84   // Data structures for free blocks (used during allocation/sweeping)
    86   // Allocation is done linearly from two different blocks depending on
    87   // whether the request is small or large, in an effort to reduce
    88   // fragmentation. We assume that any locking for allocation is done
    89   // by the containing generation. Thus, none of the methods in this
    90   // space are re-entrant.
    91   enum SomeConstants {
    92     SmallForLinearAlloc = 16,        // size < this then use _sLAB
    93     SmallForDictionary  = 257,       // size < this then use _indexedFreeList
    94     IndexSetSize        = SmallForDictionary,  // keep this odd-sized
    95     IndexSetStart       = MinObjAlignment,
    96     IndexSetStride      = MinObjAlignment
    97   };
    99  private:
   100   enum FitStrategyOptions {
   101     FreeBlockStrategyNone = 0,
   102     FreeBlockBestFitFirst
   103   };
   105   PromotionInfo _promoInfo;
   107   // helps to impose a global total order on freelistLock ranks;
   108   // assumes that CFLSpace's are allocated in global total order
   109   static int   _lockRank;
   111   // a lock protecting the free lists and free blocks;
   112   // mutable because of ubiquity of locking even for otherwise const methods
   113   mutable Mutex _freelistLock;
   114   // locking verifier convenience function
   115   void assert_locked() const PRODUCT_RETURN;
   116   void assert_locked(const Mutex* lock) const PRODUCT_RETURN;
   118   // Linear allocation blocks
   119   LinearAllocBlock _smallLinearAllocBlock;
   121   FreeBlockDictionary::DictionaryChoice _dictionaryChoice;
   122   FreeBlockDictionary* _dictionary;    // ptr to dictionary for large size blocks
   124   FreeList _indexedFreeList[IndexSetSize];
   125                                        // indexed array for small size blocks
   126   // allocation stategy
   127   bool       _fitStrategy;      // Use best fit strategy.
   128   bool       _adaptive_freelists; // Use adaptive freelists
   130   // This is an address close to the largest free chunk in the heap.
   131   // It is currently assumed to be at the end of the heap.  Free
   132   // chunks with addresses greater than nearLargestChunk are coalesced
   133   // in an effort to maintain a large chunk at the end of the heap.
   134   HeapWord*  _nearLargestChunk;
   136   // Used to keep track of limit of sweep for the space
   137   HeapWord* _sweep_limit;
   139   // Support for compacting cms
   140   HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   141   HeapWord* forward(oop q, size_t size, CompactPoint* cp, HeapWord* compact_top);
   143   // Initialization helpers.
   144   void initializeIndexedFreeListArray();
   146   // Extra stuff to manage promotion parallelism.
   148   // a lock protecting the dictionary during par promotion allocation.
   149   mutable Mutex _parDictionaryAllocLock;
   150   Mutex* parDictionaryAllocLock() const { return &_parDictionaryAllocLock; }
   152   // Locks protecting the exact lists during par promotion allocation.
   153   Mutex* _indexedFreeListParLocks[IndexSetSize];
   155   // Attempt to obtain up to "n" blocks of the size "word_sz" (which is
   156   // required to be smaller than "IndexSetSize".)  If successful,
   157   // adds them to "fl", which is required to be an empty free list.
   158   // If the count of "fl" is negative, it's absolute value indicates a
   159   // number of free chunks that had been previously "borrowed" from global
   160   // list of size "word_sz", and must now be decremented.
   161   void par_get_chunk_of_blocks(size_t word_sz, size_t n, FreeList* fl);
   163   // Allocation helper functions
   164   // Allocate using a strategy that takes from the indexed free lists
   165   // first.  This allocation strategy assumes a companion sweeping
   166   // strategy that attempts to keep the needed number of chunks in each
   167   // indexed free lists.
   168   HeapWord* allocate_adaptive_freelists(size_t size);
   169   // Allocate from the linear allocation buffers first.  This allocation
   170   // strategy assumes maximal coalescing can maintain chunks large enough
   171   // to be used as linear allocation buffers.
   172   HeapWord* allocate_non_adaptive_freelists(size_t size);
   174   // Gets a chunk from the linear allocation block (LinAB).  If there
   175   // is not enough space in the LinAB, refills it.
   176   HeapWord*  getChunkFromLinearAllocBlock(LinearAllocBlock* blk, size_t size);
   177   HeapWord*  getChunkFromSmallLinearAllocBlock(size_t size);
   178   // Get a chunk from the space remaining in the linear allocation block.  Do
   179   // not attempt to refill if the space is not available, return NULL.  Do the
   180   // repairs on the linear allocation block as appropriate.
   181   HeapWord*  getChunkFromLinearAllocBlockRemainder(LinearAllocBlock* blk, size_t size);
   182   inline HeapWord*  getChunkFromSmallLinearAllocBlockRemainder(size_t size);
   184   // Helper function for getChunkFromIndexedFreeList.
   185   // Replenish the indexed free list for this "size".  Do not take from an
   186   // underpopulated size.
   187   FreeChunk*  getChunkFromIndexedFreeListHelper(size_t size, bool replenish = true);
   189   // Get a chunk from the indexed free list.  If the indexed free list
   190   // does not have a free chunk, try to replenish the indexed free list
   191   // then get the free chunk from the replenished indexed free list.
   192   inline FreeChunk* getChunkFromIndexedFreeList(size_t size);
   194   // The returned chunk may be larger than requested (or null).
   195   FreeChunk* getChunkFromDictionary(size_t size);
   196   // The returned chunk is the exact size requested (or null).
   197   FreeChunk* getChunkFromDictionaryExact(size_t size);
   199   // Find a chunk in the indexed free list that is the best
   200   // fit for size "numWords".
   201   FreeChunk* bestFitSmall(size_t numWords);
   202   // For free list "fl" of chunks of size > numWords,
   203   // remove a chunk, split off a chunk of size numWords
   204   // and return it.  The split off remainder is returned to
   205   // the free lists.  The old name for getFromListGreater
   206   // was lookInListGreater.
   207   FreeChunk* getFromListGreater(FreeList* fl, size_t numWords);
   208   // Get a chunk in the indexed free list or dictionary,
   209   // by considering a larger chunk and splitting it.
   210   FreeChunk* getChunkFromGreater(size_t numWords);
   211   //  Verify that the given chunk is in the indexed free lists.
   212   bool verifyChunkInIndexedFreeLists(FreeChunk* fc) const;
   213   // Remove the specified chunk from the indexed free lists.
   214   void       removeChunkFromIndexedFreeList(FreeChunk* fc);
   215   // Remove the specified chunk from the dictionary.
   216   void       removeChunkFromDictionary(FreeChunk* fc);
   217   // Split a free chunk into a smaller free chunk of size "new_size".
   218   // Return the smaller free chunk and return the remainder to the
   219   // free lists.
   220   FreeChunk* splitChunkAndReturnRemainder(FreeChunk* chunk, size_t new_size);
   221   // Add a chunk to the free lists.
   222   void       addChunkToFreeLists(HeapWord* chunk, size_t size);
   223   // Add a chunk to the free lists, preferring to suffix it
   224   // to the last free chunk at end of space if possible, and
   225   // updating the block census stats as well as block offset table.
   226   // Take any locks as appropriate if we are multithreaded.
   227   void       addChunkToFreeListsAtEndRecordingStats(HeapWord* chunk, size_t size);
   228   // Add a free chunk to the indexed free lists.
   229   void       returnChunkToFreeList(FreeChunk* chunk);
   230   // Add a free chunk to the dictionary.
   231   void       returnChunkToDictionary(FreeChunk* chunk);
   233   // Functions for maintaining the linear allocation buffers (LinAB).
   234   // Repairing a linear allocation block refers to operations
   235   // performed on the remainder of a LinAB after an allocation
   236   // has been made from it.
   237   void       repairLinearAllocationBlocks();
   238   void       repairLinearAllocBlock(LinearAllocBlock* blk);
   239   void       refillLinearAllocBlock(LinearAllocBlock* blk);
   240   void       refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk);
   241   void       refillLinearAllocBlocksIfNeeded();
   243   void       verify_objects_initialized() const;
   245   // Statistics reporting helper functions
   246   void       reportFreeListStatistics() const;
   247   void       reportIndexedFreeListStatistics() const;
   248   size_t     maxChunkSizeInIndexedFreeLists() const;
   249   size_t     numFreeBlocksInIndexedFreeLists() const;
   250   // Accessor
   251   HeapWord* unallocated_block() const {
   252     HeapWord* ub = _bt.unallocated_block();
   253     assert(ub >= bottom() &&
   254            ub <= end(), "space invariant");
   255     return ub;
   256   }
   257   void freed(HeapWord* start, size_t size) {
   258     _bt.freed(start, size);
   259   }
   261  protected:
   262   // reset the indexed free list to its initial empty condition.
   263   void resetIndexedFreeListArray();
   264   // reset to an initial state with a single free block described
   265   // by the MemRegion parameter.
   266   void reset(MemRegion mr);
   267   // Return the total number of words in the indexed free lists.
   268   size_t     totalSizeInIndexedFreeLists() const;
   270  public:
   271   // Constructor...
   272   CompactibleFreeListSpace(BlockOffsetSharedArray* bs, MemRegion mr,
   273                            bool use_adaptive_freelists,
   274                            FreeBlockDictionary::DictionaryChoice);
   275   // accessors
   276   bool bestFitFirst() { return _fitStrategy == FreeBlockBestFitFirst; }
   277   FreeBlockDictionary* dictionary() const { return _dictionary; }
   278   HeapWord* nearLargestChunk() const { return _nearLargestChunk; }
   279   void set_nearLargestChunk(HeapWord* v) { _nearLargestChunk = v; }
   281   // Return the free chunk at the end of the space.  If no such
   282   // chunk exists, return NULL.
   283   FreeChunk* find_chunk_at_end();
   285   bool adaptive_freelists() const { return _adaptive_freelists; }
   287   void set_collector(CMSCollector* collector) { _collector = collector; }
   289   // Support for parallelization of rescan and marking
   290   const size_t rescan_task_size()  const { return _rescan_task_size;  }
   291   const size_t marking_task_size() const { return _marking_task_size; }
   292   SequentialSubTasksDone* conc_par_seq_tasks() {return &_conc_par_seq_tasks; }
   293   void initialize_sequential_subtasks_for_rescan(int n_threads);
   294   void initialize_sequential_subtasks_for_marking(int n_threads,
   295          HeapWord* low = NULL);
   297   // Space enquiries
   298   size_t used() const;
   299   size_t free() const;
   300   size_t max_alloc_in_words() const;
   301   // XXX: should have a less conservative used_region() than that of
   302   // Space; we could consider keeping track of highest allocated
   303   // address and correcting that at each sweep, as the sweeper
   304   // goes through the entire allocated part of the generation. We
   305   // could also use that information to keep the sweeper from
   306   // sweeping more than is necessary. The allocator and sweeper will
   307   // of course need to synchronize on this, since the sweeper will
   308   // try to bump down the address and the allocator will try to bump it up.
   309   // For now, however, we'll just use the default used_region()
   310   // which overestimates the region by returning the entire
   311   // committed region (this is safe, but inefficient).
   313   // Returns a subregion of the space containing all the objects in
   314   // the space.
   315   MemRegion used_region() const {
   316     return MemRegion(bottom(),
   317                      BlockOffsetArrayUseUnallocatedBlock ?
   318                      unallocated_block() : end());
   319   }
   321   // This is needed because the default implementation uses block_start()
   322   // which can;t be used at certain times (for example phase 3 of mark-sweep).
   323   // A better fix is to change the assertions in phase 3 of mark-sweep to
   324   // use is_in_reserved(), but that is deferred since the is_in() assertions
   325   // are buried through several layers of callers and are used elsewhere
   326   // as well.
   327   bool is_in(const void* p) const {
   328     return used_region().contains(p);
   329   }
   331   virtual bool is_free_block(const HeapWord* p) const;
   333   // Resizing support
   334   void set_end(HeapWord* value);  // override
   336   // mutual exclusion support
   337   Mutex* freelistLock() const { return &_freelistLock; }
   339   // Iteration support
   340   void oop_iterate(MemRegion mr, OopClosure* cl);
   341   void oop_iterate(OopClosure* cl);
   343   void object_iterate(ObjectClosure* blk);
   344   // Apply the closure to each object in the space whose references
   345   // point to objects in the heap.  The usage of CompactibleFreeListSpace
   346   // by the ConcurrentMarkSweepGeneration for concurrent GC's allows
   347   // objects in the space with references to objects that are no longer
   348   // valid.  For example, an object may reference another object
   349   // that has already been sweep up (collected).  This method uses
   350   // obj_is_alive() to determine whether it is safe to iterate of
   351   // an object.
   352   void safe_object_iterate(ObjectClosure* blk);
   353   void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
   355   // Requires that "mr" be entirely within the space.
   356   // Apply "cl->do_object" to all objects that intersect with "mr".
   357   // If the iteration encounters an unparseable portion of the region,
   358   // terminate the iteration and return the address of the start of the
   359   // subregion that isn't done.  Return of "NULL" indicates that the
   360   // interation completed.
   361   virtual HeapWord*
   362        object_iterate_careful_m(MemRegion mr,
   363                                 ObjectClosureCareful* cl);
   364   virtual HeapWord*
   365        object_iterate_careful(ObjectClosureCareful* cl);
   367   // Override: provides a DCTO_CL specific to this kind of space.
   368   DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
   369                                      CardTableModRefBS::PrecisionStyle precision,
   370                                      HeapWord* boundary);
   372   void blk_iterate(BlkClosure* cl);
   373   void blk_iterate_careful(BlkClosureCareful* cl);
   374   HeapWord* block_start_const(const void* p) const;
   375   HeapWord* block_start_careful(const void* p) const;
   376   size_t block_size(const HeapWord* p) const;
   377   size_t block_size_no_stall(HeapWord* p, const CMSCollector* c) const;
   378   bool block_is_obj(const HeapWord* p) const;
   379   bool obj_is_alive(const HeapWord* p) const;
   380   size_t block_size_nopar(const HeapWord* p) const;
   381   bool block_is_obj_nopar(const HeapWord* p) const;
   383   // iteration support for promotion
   384   void save_marks();
   385   bool no_allocs_since_save_marks();
   386   void object_iterate_since_last_GC(ObjectClosure* cl);
   388   // iteration support for sweeping
   389   void save_sweep_limit() {
   390     _sweep_limit = BlockOffsetArrayUseUnallocatedBlock ?
   391                    unallocated_block() : end();
   392   }
   393   NOT_PRODUCT(
   394     void clear_sweep_limit() { _sweep_limit = NULL; }
   395   )
   396   HeapWord* sweep_limit() { return _sweep_limit; }
   398   // Apply "blk->do_oop" to the addresses of all reference fields in objects
   399   // promoted into this generation since the most recent save_marks() call.
   400   // Fields in objects allocated by applications of the closure
   401   // *are* included in the iteration. Thus, when the iteration completes
   402   // there should be no further such objects remaining.
   403   #define CFLS_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   404     void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
   405   ALL_SINCE_SAVE_MARKS_CLOSURES(CFLS_OOP_SINCE_SAVE_MARKS_DECL)
   406   #undef CFLS_OOP_SINCE_SAVE_MARKS_DECL
   408   // Allocation support
   409   HeapWord* allocate(size_t size);
   410   HeapWord* par_allocate(size_t size);
   412   oop       promote(oop obj, size_t obj_size);
   413   void      gc_prologue();
   414   void      gc_epilogue();
   416   // This call is used by a containing CMS generation / collector
   417   // to inform the CFLS space that a sweep has been completed
   418   // and that the space can do any related house-keeping functions.
   419   void      sweep_completed();
   421   // For an object in this space, the mark-word's two
   422   // LSB's having the value [11] indicates that it has been
   423   // promoted since the most recent call to save_marks() on
   424   // this generation and has not subsequently been iterated
   425   // over (using oop_since_save_marks_iterate() above).
   426   // This property holds only for single-threaded collections,
   427   // and is typically used for Cheney scans; for MT scavenges,
   428   // the property holds for all objects promoted during that
   429   // scavenge for the duration of the scavenge and is used
   430   // by card-scanning to avoid scanning objects (being) promoted
   431   // during that scavenge.
   432   bool obj_allocated_since_save_marks(const oop obj) const {
   433     assert(is_in_reserved(obj), "Wrong space?");
   434     return ((PromotedObject*)obj)->hasPromotedMark();
   435   }
   437   // A worst-case estimate of the space required (in HeapWords) to expand the
   438   // heap when promoting an obj of size obj_size.
   439   size_t expansionSpaceRequired(size_t obj_size) const;
   441   FreeChunk* allocateScratch(size_t size);
   443   // returns true if either the small or large linear allocation buffer is empty.
   444   bool       linearAllocationWouldFail() const;
   446   // Adjust the chunk for the minimum size.  This version is called in
   447   // most cases in CompactibleFreeListSpace methods.
   448   inline static size_t adjustObjectSize(size_t size) {
   449     return (size_t) align_object_size(MAX2(size, (size_t)MinChunkSize));
   450   }
   451   // This is a virtual version of adjustObjectSize() that is called
   452   // only occasionally when the compaction space changes and the type
   453   // of the new compaction space is is only known to be CompactibleSpace.
   454   size_t adjust_object_size_v(size_t size) const {
   455     return adjustObjectSize(size);
   456   }
   457   // Minimum size of a free block.
   458   virtual size_t minimum_free_block_size() const { return MinChunkSize; }
   459   void      removeFreeChunkFromFreeLists(FreeChunk* chunk);
   460   void      addChunkAndRepairOffsetTable(HeapWord* chunk, size_t size,
   461               bool coalesced);
   463   // Support for decisions regarding concurrent collection policy
   464   bool should_concurrent_collect() const;
   466   // Support for compaction
   467   void prepare_for_compaction(CompactPoint* cp);
   468   void adjust_pointers();
   469   void compact();
   470   // reset the space to reflect the fact that a compaction of the
   471   // space has been done.
   472   virtual void reset_after_compaction();
   474   // Debugging support
   475   void print()                            const;
   476   void prepare_for_verify();
   477   void verify(bool allow_dirty)           const;
   478   void verifyFreeLists()                  const PRODUCT_RETURN;
   479   void verifyIndexedFreeLists()           const;
   480   void verifyIndexedFreeList(size_t size) const;
   481   // verify that the given chunk is in the free lists.
   482   bool verifyChunkInFreeLists(FreeChunk* fc) const;
   483   // Do some basic checks on the the free lists.
   484   void checkFreeListConsistency()         const PRODUCT_RETURN;
   486   // Printing support
   487   void dump_at_safepoint_with_locks(CMSCollector* c, outputStream* st);
   488   void print_indexed_free_lists(outputStream* st) const;
   489   void print_dictionary_free_lists(outputStream* st) const;
   490   void print_promo_info_blocks(outputStream* st) const;
   492   NOT_PRODUCT (
   493     void initializeIndexedFreeListArrayReturnedBytes();
   494     size_t sumIndexedFreeListArrayReturnedBytes();
   495     // Return the total number of chunks in the indexed free lists.
   496     size_t totalCountInIndexedFreeLists() const;
   497     // Return the total numberof chunks in the space.
   498     size_t totalCount();
   499   )
   501   // The census consists of counts of the quantities such as
   502   // the current count of the free chunks, number of chunks
   503   // created as a result of the split of a larger chunk or
   504   // coalescing of smaller chucks, etc.  The counts in the
   505   // census is used to make decisions on splitting and
   506   // coalescing of chunks during the sweep of garbage.
   508   // Print the statistics for the free lists.
   509   void printFLCensus(size_t sweep_count) const;
   511   // Statistics functions
   512   // Initialize census for lists before the sweep.
   513   void beginSweepFLCensus(float inter_sweep_current,
   514                           float inter_sweep_estimate,
   515                           float intra_sweep_estimate);
   516   // Set the surplus for each of the free lists.
   517   void setFLSurplus();
   518   // Set the hint for each of the free lists.
   519   void setFLHints();
   520   // Clear the census for each of the free lists.
   521   void clearFLCensus();
   522   // Perform functions for the census after the end of the sweep.
   523   void endSweepFLCensus(size_t sweep_count);
   524   // Return true if the count of free chunks is greater
   525   // than the desired number of free chunks.
   526   bool coalOverPopulated(size_t size);
   528 // Record (for each size):
   529 //
   530 //   split-births = #chunks added due to splits in (prev-sweep-end,
   531 //      this-sweep-start)
   532 //   split-deaths = #chunks removed for splits in (prev-sweep-end,
   533 //      this-sweep-start)
   534 //   num-curr     = #chunks at start of this sweep
   535 //   num-prev     = #chunks at end of previous sweep
   536 //
   537 // The above are quantities that are measured. Now define:
   538 //
   539 //   num-desired := num-prev + split-births - split-deaths - num-curr
   540 //
   541 // Roughly, num-prev + split-births is the supply,
   542 // split-deaths is demand due to other sizes
   543 // and num-curr is what we have left.
   544 //
   545 // Thus, num-desired is roughly speaking the "legitimate demand"
   546 // for blocks of this size and what we are striving to reach at the
   547 // end of the current sweep.
   548 //
   549 // For a given list, let num-len be its current population.
   550 // Define, for a free list of a given size:
   551 //
   552 //   coal-overpopulated := num-len >= num-desired * coal-surplus
   553 // (coal-surplus is set to 1.05, i.e. we allow a little slop when
   554 // coalescing -- we do not coalesce unless we think that the current
   555 // supply has exceeded the estimated demand by more than 5%).
   556 //
   557 // For the set of sizes in the binary tree, which is neither dense nor
   558 // closed, it may be the case that for a particular size we have never
   559 // had, or do not now have, or did not have at the previous sweep,
   560 // chunks of that size. We need to extend the definition of
   561 // coal-overpopulated to such sizes as well:
   562 //
   563 //   For a chunk in/not in the binary tree, extend coal-overpopulated
   564 //   defined above to include all sizes as follows:
   565 //
   566 //   . a size that is non-existent is coal-overpopulated
   567 //   . a size that has a num-desired <= 0 as defined above is
   568 //     coal-overpopulated.
   569 //
   570 // Also define, for a chunk heap-offset C and mountain heap-offset M:
   571 //
   572 //   close-to-mountain := C >= 0.99 * M
   573 //
   574 // Now, the coalescing strategy is:
   575 //
   576 //    Coalesce left-hand chunk with right-hand chunk if and
   577 //    only if:
   578 //
   579 //      EITHER
   580 //        . left-hand chunk is of a size that is coal-overpopulated
   581 //      OR
   582 //        . right-hand chunk is close-to-mountain
   583   void smallCoalBirth(size_t size);
   584   void smallCoalDeath(size_t size);
   585   void coalBirth(size_t size);
   586   void coalDeath(size_t size);
   587   void smallSplitBirth(size_t size);
   588   void smallSplitDeath(size_t size);
   589   void splitBirth(size_t size);
   590   void splitDeath(size_t size);
   591   void split(size_t from, size_t to1);
   593   double flsFrag() const;
   594 };
   596 // A parallel-GC-thread-local allocation buffer for allocation into a
   597 // CompactibleFreeListSpace.
   598 class CFLS_LAB : public CHeapObj {
   599   // The space that this buffer allocates into.
   600   CompactibleFreeListSpace* _cfls;
   602   // Our local free lists.
   603   FreeList _indexedFreeList[CompactibleFreeListSpace::IndexSetSize];
   605   // Initialized from a command-line arg.
   607   // Allocation statistics in support of dynamic adjustment of
   608   // #blocks to claim per get_from_global_pool() call below.
   609   static AdaptiveWeightedAverage
   610                  _blocks_to_claim  [CompactibleFreeListSpace::IndexSetSize];
   611   static size_t _global_num_blocks [CompactibleFreeListSpace::IndexSetSize];
   612   static int    _global_num_workers[CompactibleFreeListSpace::IndexSetSize];
   613   size_t        _num_blocks        [CompactibleFreeListSpace::IndexSetSize];
   615   // Internal work method
   616   void get_from_global_pool(size_t word_sz, FreeList* fl);
   618 public:
   619   CFLS_LAB(CompactibleFreeListSpace* cfls);
   621   // Allocate and return a block of the given size, or else return NULL.
   622   HeapWord* alloc(size_t word_sz);
   624   // Return any unused portions of the buffer to the global pool.
   625   void retire(int tid);
   627   // Dynamic OldPLABSize sizing
   628   static void compute_desired_plab_size();
   629   // When the settings are modified from default static initialization
   630   static void modify_initialization(size_t n, unsigned wt);
   631 };
   633 size_t PromotionInfo::refillSize() const {
   634   const size_t CMSSpoolBlockSize = 256;
   635   const size_t sz = heap_word_size(sizeof(SpoolBlock) + sizeof(markOop)
   636                                    * CMSSpoolBlockSize);
   637   return CompactibleFreeListSpace::adjustObjectSize(sz);
   638 }

mercurial