src/share/vm/gc_implementation/g1/concurrentMark.hpp

Tue, 19 Mar 2013 00:57:39 -0700

author
johnc
date
Tue, 19 Mar 2013 00:57:39 -0700
changeset 4788
e864cc14ca75
parent 4787
fa08949fe0cb
child 4904
7b835924c31c
permissions
-rw-r--r--

8009940: G1: assert(_finger == _heap_end) failed, concurrentMark.cpp:809
Summary: Skip reference processing if the global marking stack overflows during remark. Refactor and rename set_phase(); move code that sets the concurrency level into its own routine. Do not call set_phase() from within parallel reference processing; use the concurrency level routine instead. The marking state should only set reset by CMTask[0] during the concurrent phase of the marking cycle; if an overflow occurs at any stage during the remark, the marking state will be reset after reference processing.
Reviewed-by: brutisso, jmasa

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    28 #include "gc_implementation/g1/heapRegionSets.hpp"
    29 #include "utilities/taskqueue.hpp"
    31 class G1CollectedHeap;
    32 class CMTask;
    33 typedef GenericTaskQueue<oop, mtGC>            CMTaskQueue;
    34 typedef GenericTaskQueueSet<CMTaskQueue, mtGC> CMTaskQueueSet;
    36 // Closure used by CM during concurrent reference discovery
    37 // and reference processing (during remarking) to determine
    38 // if a particular object is alive. It is primarily used
    39 // to determine if referents of discovered reference objects
    40 // are alive. An instance is also embedded into the
    41 // reference processor as the _is_alive_non_header field
    42 class G1CMIsAliveClosure: public BoolObjectClosure {
    43   G1CollectedHeap* _g1;
    44  public:
    45   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
    47   void do_object(oop obj) {
    48     ShouldNotCallThis();
    49   }
    50   bool do_object_b(oop obj);
    51 };
    53 // A generic CM bit map.  This is essentially a wrapper around the BitMap
    54 // class, with one bit per (1<<_shifter) HeapWords.
    56 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
    57  protected:
    58   HeapWord* _bmStartWord;      // base address of range covered by map
    59   size_t    _bmWordSize;       // map size (in #HeapWords covered)
    60   const int _shifter;          // map to char or bit
    61   VirtualSpace _virtual_space; // underlying the bit map
    62   BitMap    _bm;               // the bit map itself
    64  public:
    65   // constructor
    66   CMBitMapRO(int shifter);
    68   enum { do_yield = true };
    70   // inquiries
    71   HeapWord* startWord()   const { return _bmStartWord; }
    72   size_t    sizeInWords() const { return _bmWordSize;  }
    73   // the following is one past the last word in space
    74   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
    76   // read marks
    78   bool isMarked(HeapWord* addr) const {
    79     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
    80            "outside underlying space?");
    81     return _bm.at(heapWordToOffset(addr));
    82   }
    84   // iteration
    85   inline bool iterate(BitMapClosure* cl, MemRegion mr);
    86   inline bool iterate(BitMapClosure* cl);
    88   // Return the address corresponding to the next marked bit at or after
    89   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    90   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    91   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
    92                                      HeapWord* limit = NULL) const;
    93   // Return the address corresponding to the next unmarked bit at or after
    94   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    95   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    96   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
    97                                        HeapWord* limit = NULL) const;
    99   // conversion utilities
   100   HeapWord* offsetToHeapWord(size_t offset) const {
   101     return _bmStartWord + (offset << _shifter);
   102   }
   103   size_t heapWordToOffset(HeapWord* addr) const {
   104     return pointer_delta(addr, _bmStartWord) >> _shifter;
   105   }
   106   int heapWordDiffToOffsetDiff(size_t diff) const;
   108   // The argument addr should be the start address of a valid object
   109   HeapWord* nextObject(HeapWord* addr) {
   110     oop obj = (oop) addr;
   111     HeapWord* res =  addr + obj->size();
   112     assert(offsetToHeapWord(heapWordToOffset(res)) == res, "sanity");
   113     return res;
   114   }
   116   // debugging
   117   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
   118 };
   120 class CMBitMap : public CMBitMapRO {
   122  public:
   123   // constructor
   124   CMBitMap(int shifter) :
   125     CMBitMapRO(shifter) {}
   127   // Allocates the back store for the marking bitmap
   128   bool allocate(ReservedSpace heap_rs);
   130   // write marks
   131   void mark(HeapWord* addr) {
   132     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   133            "outside underlying space?");
   134     _bm.set_bit(heapWordToOffset(addr));
   135   }
   136   void clear(HeapWord* addr) {
   137     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   138            "outside underlying space?");
   139     _bm.clear_bit(heapWordToOffset(addr));
   140   }
   141   bool parMark(HeapWord* addr) {
   142     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   143            "outside underlying space?");
   144     return _bm.par_set_bit(heapWordToOffset(addr));
   145   }
   146   bool parClear(HeapWord* addr) {
   147     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   148            "outside underlying space?");
   149     return _bm.par_clear_bit(heapWordToOffset(addr));
   150   }
   151   void markRange(MemRegion mr);
   152   void clearAll();
   153   void clearRange(MemRegion mr);
   155   // Starting at the bit corresponding to "addr" (inclusive), find the next
   156   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
   157   // the end of this run (stopping at "end_addr").  Return the MemRegion
   158   // covering from the start of the region corresponding to the first bit
   159   // of the run to the end of the region corresponding to the last bit of
   160   // the run.  If there is no "1" bit at or after "addr", return an empty
   161   // MemRegion.
   162   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
   163 };
   165 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
   166 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
   167   VirtualSpace _virtual_space;   // Underlying backing store for actual stack
   168   ConcurrentMark* _cm;
   169   oop* _base;        // bottom of stack
   170   jint _index;       // one more than last occupied index
   171   jint _capacity;    // max #elements
   172   jint _saved_index; // value of _index saved at start of GC
   173   NOT_PRODUCT(jint _max_depth;)   // max depth plumbed during run
   175   bool  _overflow;
   176   bool  _should_expand;
   177   DEBUG_ONLY(bool _drain_in_progress;)
   178   DEBUG_ONLY(bool _drain_in_progress_yields;)
   180  public:
   181   CMMarkStack(ConcurrentMark* cm);
   182   ~CMMarkStack();
   184 #ifndef PRODUCT
   185   jint max_depth() const {
   186     return _max_depth;
   187   }
   188 #endif
   190   bool allocate(size_t capacity);
   192   oop pop() {
   193     if (!isEmpty()) {
   194       return _base[--_index] ;
   195     }
   196     return NULL;
   197   }
   199   // If overflow happens, don't do the push, and record the overflow.
   200   // *Requires* that "ptr" is already marked.
   201   void push(oop ptr) {
   202     if (isFull()) {
   203       // Record overflow.
   204       _overflow = true;
   205       return;
   206     } else {
   207       _base[_index++] = ptr;
   208       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   209     }
   210   }
   211   // Non-block impl.  Note: concurrency is allowed only with other
   212   // "par_push" operations, not with "pop" or "drain".  We would need
   213   // parallel versions of them if such concurrency was desired.
   214   void par_push(oop ptr);
   216   // Pushes the first "n" elements of "ptr_arr" on the stack.
   217   // Non-block impl.  Note: concurrency is allowed only with other
   218   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
   219   void par_adjoin_arr(oop* ptr_arr, int n);
   221   // Pushes the first "n" elements of "ptr_arr" on the stack.
   222   // Locking impl: concurrency is allowed only with
   223   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
   224   // locking strategy.
   225   void par_push_arr(oop* ptr_arr, int n);
   227   // If returns false, the array was empty.  Otherwise, removes up to "max"
   228   // elements from the stack, and transfers them to "ptr_arr" in an
   229   // unspecified order.  The actual number transferred is given in "n" ("n
   230   // == 0" is deliberately redundant with the return value.)  Locking impl:
   231   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
   232   // operations, which use the same locking strategy.
   233   bool par_pop_arr(oop* ptr_arr, int max, int* n);
   235   // Drain the mark stack, applying the given closure to all fields of
   236   // objects on the stack.  (That is, continue until the stack is empty,
   237   // even if closure applications add entries to the stack.)  The "bm"
   238   // argument, if non-null, may be used to verify that only marked objects
   239   // are on the mark stack.  If "yield_after" is "true", then the
   240   // concurrent marker performing the drain offers to yield after
   241   // processing each object.  If a yield occurs, stops the drain operation
   242   // and returns false.  Otherwise, returns true.
   243   template<class OopClosureClass>
   244   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
   246   bool isEmpty()    { return _index == 0; }
   247   bool isFull()     { return _index == _capacity; }
   248   int  maxElems()   { return _capacity; }
   250   bool overflow() { return _overflow; }
   251   void clear_overflow() { _overflow = false; }
   253   bool should_expand() const { return _should_expand; }
   254   void set_should_expand();
   256   // Expand the stack, typically in response to an overflow condition
   257   void expand();
   259   int  size() { return _index; }
   261   void setEmpty()   { _index = 0; clear_overflow(); }
   263   // Record the current index.
   264   void note_start_of_gc();
   266   // Make sure that we have not added any entries to the stack during GC.
   267   void note_end_of_gc();
   269   // iterate over the oops in the mark stack, up to the bound recorded via
   270   // the call above.
   271   void oops_do(OopClosure* f);
   272 };
   274 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
   275 private:
   276 #ifndef PRODUCT
   277   uintx _num_remaining;
   278   bool _force;
   279 #endif // !defined(PRODUCT)
   281 public:
   282   void init() PRODUCT_RETURN;
   283   void update() PRODUCT_RETURN;
   284   bool should_force() PRODUCT_RETURN_( return false; );
   285 };
   287 // this will enable a variety of different statistics per GC task
   288 #define _MARKING_STATS_       0
   289 // this will enable the higher verbose levels
   290 #define _MARKING_VERBOSE_     0
   292 #if _MARKING_STATS_
   293 #define statsOnly(statement)  \
   294 do {                          \
   295   statement ;                 \
   296 } while (0)
   297 #else // _MARKING_STATS_
   298 #define statsOnly(statement)  \
   299 do {                          \
   300 } while (0)
   301 #endif // _MARKING_STATS_
   303 typedef enum {
   304   no_verbose  = 0,   // verbose turned off
   305   stats_verbose,     // only prints stats at the end of marking
   306   low_verbose,       // low verbose, mostly per region and per major event
   307   medium_verbose,    // a bit more detailed than low
   308   high_verbose       // per object verbose
   309 } CMVerboseLevel;
   311 class YoungList;
   313 // Root Regions are regions that are not empty at the beginning of a
   314 // marking cycle and which we might collect during an evacuation pause
   315 // while the cycle is active. Given that, during evacuation pauses, we
   316 // do not copy objects that are explicitly marked, what we have to do
   317 // for the root regions is to scan them and mark all objects reachable
   318 // from them. According to the SATB assumptions, we only need to visit
   319 // each object once during marking. So, as long as we finish this scan
   320 // before the next evacuation pause, we can copy the objects from the
   321 // root regions without having to mark them or do anything else to them.
   322 //
   323 // Currently, we only support root region scanning once (at the start
   324 // of the marking cycle) and the root regions are all the survivor
   325 // regions populated during the initial-mark pause.
   326 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
   327 private:
   328   YoungList*           _young_list;
   329   ConcurrentMark*      _cm;
   331   volatile bool        _scan_in_progress;
   332   volatile bool        _should_abort;
   333   HeapRegion* volatile _next_survivor;
   335 public:
   336   CMRootRegions();
   337   // We actually do most of the initialization in this method.
   338   void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
   340   // Reset the claiming / scanning of the root regions.
   341   void prepare_for_scan();
   343   // Forces get_next() to return NULL so that the iteration aborts early.
   344   void abort() { _should_abort = true; }
   346   // Return true if the CM thread are actively scanning root regions,
   347   // false otherwise.
   348   bool scan_in_progress() { return _scan_in_progress; }
   350   // Claim the next root region to scan atomically, or return NULL if
   351   // all have been claimed.
   352   HeapRegion* claim_next();
   354   // Flag that we're done with root region scanning and notify anyone
   355   // who's waiting on it. If aborted is false, assume that all regions
   356   // have been claimed.
   357   void scan_finished();
   359   // If CM threads are still scanning root regions, wait until they
   360   // are done. Return true if we had to wait, false otherwise.
   361   bool wait_until_scan_finished();
   362 };
   364 class ConcurrentMarkThread;
   366 class ConcurrentMark: public CHeapObj<mtGC> {
   367   friend class CMMarkStack;
   368   friend class ConcurrentMarkThread;
   369   friend class CMTask;
   370   friend class CMBitMapClosure;
   371   friend class CMGlobalObjectClosure;
   372   friend class CMRemarkTask;
   373   friend class CMConcurrentMarkingTask;
   374   friend class G1ParNoteEndTask;
   375   friend class CalcLiveObjectsClosure;
   376   friend class G1CMRefProcTaskProxy;
   377   friend class G1CMRefProcTaskExecutor;
   378   friend class G1CMKeepAliveAndDrainClosure;
   379   friend class G1CMDrainMarkingStackClosure;
   381 protected:
   382   ConcurrentMarkThread* _cmThread;   // the thread doing the work
   383   G1CollectedHeap*      _g1h;        // the heap.
   384   uint                  _parallel_marking_threads; // the number of marking
   385                                                    // threads we're use
   386   uint                  _max_parallel_marking_threads; // max number of marking
   387                                                    // threads we'll ever use
   388   double                _sleep_factor; // how much we have to sleep, with
   389                                        // respect to the work we just did, to
   390                                        // meet the marking overhead goal
   391   double                _marking_task_overhead; // marking target overhead for
   392                                                 // a single task
   394   // same as the two above, but for the cleanup task
   395   double                _cleanup_sleep_factor;
   396   double                _cleanup_task_overhead;
   398   FreeRegionList        _cleanup_list;
   400   // Concurrent marking support structures
   401   CMBitMap                _markBitMap1;
   402   CMBitMap                _markBitMap2;
   403   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
   404   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
   406   BitMap                  _region_bm;
   407   BitMap                  _card_bm;
   409   // Heap bounds
   410   HeapWord*               _heap_start;
   411   HeapWord*               _heap_end;
   413   // Root region tracking and claiming.
   414   CMRootRegions           _root_regions;
   416   // For gray objects
   417   CMMarkStack             _markStack; // Grey objects behind global finger.
   418   HeapWord* volatile      _finger;  // the global finger, region aligned,
   419                                     // always points to the end of the
   420                                     // last claimed region
   422   // marking tasks
   423   uint                    _max_worker_id;// maximum worker id
   424   uint                    _active_tasks; // task num currently active
   425   CMTask**                _tasks;        // task queue array (max_worker_id len)
   426   CMTaskQueueSet*         _task_queues;  // task queue set
   427   ParallelTaskTerminator  _terminator;   // for termination
   429   // Two sync barriers that are used to synchronise tasks when an
   430   // overflow occurs. The algorithm is the following. All tasks enter
   431   // the first one to ensure that they have all stopped manipulating
   432   // the global data structures. After they exit it, they re-initialise
   433   // their data structures and task 0 re-initialises the global data
   434   // structures. Then, they enter the second sync barrier. This
   435   // ensure, that no task starts doing work before all data
   436   // structures (local and global) have been re-initialised. When they
   437   // exit it, they are free to start working again.
   438   WorkGangBarrierSync     _first_overflow_barrier_sync;
   439   WorkGangBarrierSync     _second_overflow_barrier_sync;
   441   // this is set by any task, when an overflow on the global data
   442   // structures is detected.
   443   volatile bool           _has_overflown;
   444   // true: marking is concurrent, false: we're in remark
   445   volatile bool           _concurrent;
   446   // set at the end of a Full GC so that marking aborts
   447   volatile bool           _has_aborted;
   449   // used when remark aborts due to an overflow to indicate that
   450   // another concurrent marking phase should start
   451   volatile bool           _restart_for_overflow;
   453   // This is true from the very start of concurrent marking until the
   454   // point when all the tasks complete their work. It is really used
   455   // to determine the points between the end of concurrent marking and
   456   // time of remark.
   457   volatile bool           _concurrent_marking_in_progress;
   459   // verbose level
   460   CMVerboseLevel          _verbose_level;
   462   // All of these times are in ms.
   463   NumberSeq _init_times;
   464   NumberSeq _remark_times;
   465   NumberSeq   _remark_mark_times;
   466   NumberSeq   _remark_weak_ref_times;
   467   NumberSeq _cleanup_times;
   468   double    _total_counting_time;
   469   double    _total_rs_scrub_time;
   471   double*   _accum_task_vtime;   // accumulated task vtime
   473   FlexibleWorkGang* _parallel_workers;
   475   ForceOverflowSettings _force_overflow_conc;
   476   ForceOverflowSettings _force_overflow_stw;
   478   void weakRefsWork(bool clear_all_soft_refs);
   480   void swapMarkBitMaps();
   482   // It resets the global marking data structures, as well as the
   483   // task local ones; should be called during initial mark.
   484   void reset();
   486   // Resets all the marking data structures. Called when we have to restart
   487   // marking or when marking completes (via set_non_marking_state below).
   488   void reset_marking_state(bool clear_overflow = true);
   490   // We do this after we're done with marking so that the marking data
   491   // structures are initialised to a sensible and predictable state.
   492   void set_non_marking_state();
   494   // Called to indicate how many threads are currently active.
   495   void set_concurrency(uint active_tasks);
   497   // It should be called to indicate which phase we're in (concurrent
   498   // mark or remark) and how many threads are currently active.
   499   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
   501   // prints all gathered CM-related statistics
   502   void print_stats();
   504   bool cleanup_list_is_empty() {
   505     return _cleanup_list.is_empty();
   506   }
   508   // accessor methods
   509   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
   510   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
   511   double sleep_factor()                     { return _sleep_factor; }
   512   double marking_task_overhead()            { return _marking_task_overhead;}
   513   double cleanup_sleep_factor()             { return _cleanup_sleep_factor; }
   514   double cleanup_task_overhead()            { return _cleanup_task_overhead;}
   516   bool use_parallel_marking_threads() const {
   517     assert(parallel_marking_threads() <=
   518            max_parallel_marking_threads(), "sanity");
   519     assert((_parallel_workers == NULL && parallel_marking_threads() == 0) ||
   520            parallel_marking_threads() > 0,
   521            "parallel workers not set up correctly");
   522     return _parallel_workers != NULL;
   523   }
   525   HeapWord*               finger()          { return _finger;   }
   526   bool                    concurrent()      { return _concurrent; }
   527   uint                    active_tasks()    { return _active_tasks; }
   528   ParallelTaskTerminator* terminator()      { return &_terminator; }
   530   // It claims the next available region to be scanned by a marking
   531   // task/thread. It might return NULL if the next region is empty or
   532   // we have run out of regions. In the latter case, out_of_regions()
   533   // determines whether we've really run out of regions or the task
   534   // should call claim_region() again. This might seem a bit
   535   // awkward. Originally, the code was written so that claim_region()
   536   // either successfully returned with a non-empty region or there
   537   // were no more regions to be claimed. The problem with this was
   538   // that, in certain circumstances, it iterated over large chunks of
   539   // the heap finding only empty regions and, while it was working, it
   540   // was preventing the calling task to call its regular clock
   541   // method. So, this way, each task will spend very little time in
   542   // claim_region() and is allowed to call the regular clock method
   543   // frequently.
   544   HeapRegion* claim_region(uint worker_id);
   546   // It determines whether we've run out of regions to scan.
   547   bool        out_of_regions() { return _finger == _heap_end; }
   549   // Returns the task with the given id
   550   CMTask* task(int id) {
   551     assert(0 <= id && id < (int) _active_tasks,
   552            "task id not within active bounds");
   553     return _tasks[id];
   554   }
   556   // Returns the task queue with the given id
   557   CMTaskQueue* task_queue(int id) {
   558     assert(0 <= id && id < (int) _active_tasks,
   559            "task queue id not within active bounds");
   560     return (CMTaskQueue*) _task_queues->queue(id);
   561   }
   563   // Returns the task queue set
   564   CMTaskQueueSet* task_queues()  { return _task_queues; }
   566   // Access / manipulation of the overflow flag which is set to
   567   // indicate that the global stack has overflown
   568   bool has_overflown()           { return _has_overflown; }
   569   void set_has_overflown()       { _has_overflown = true; }
   570   void clear_has_overflown()     { _has_overflown = false; }
   571   bool restart_for_overflow()    { return _restart_for_overflow; }
   573   bool has_aborted()             { return _has_aborted; }
   575   // Methods to enter the two overflow sync barriers
   576   void enter_first_sync_barrier(uint worker_id);
   577   void enter_second_sync_barrier(uint worker_id);
   579   ForceOverflowSettings* force_overflow_conc() {
   580     return &_force_overflow_conc;
   581   }
   583   ForceOverflowSettings* force_overflow_stw() {
   584     return &_force_overflow_stw;
   585   }
   587   ForceOverflowSettings* force_overflow() {
   588     if (concurrent()) {
   589       return force_overflow_conc();
   590     } else {
   591       return force_overflow_stw();
   592     }
   593   }
   595   // Live Data Counting data structures...
   596   // These data structures are initialized at the start of
   597   // marking. They are written to while marking is active.
   598   // They are aggregated during remark; the aggregated values
   599   // are then used to populate the _region_bm, _card_bm, and
   600   // the total live bytes, which are then subsequently updated
   601   // during cleanup.
   603   // An array of bitmaps (one bit map per task). Each bitmap
   604   // is used to record the cards spanned by the live objects
   605   // marked by that task/worker.
   606   BitMap*  _count_card_bitmaps;
   608   // Used to record the number of marked live bytes
   609   // (for each region, by worker thread).
   610   size_t** _count_marked_bytes;
   612   // Card index of the bottom of the G1 heap. Used for biasing indices into
   613   // the card bitmaps.
   614   intptr_t _heap_bottom_card_num;
   616   // Set to true when initialization is complete
   617   bool _completed_initialization;
   619 public:
   620   // Manipulation of the global mark stack.
   621   // Notice that the first mark_stack_push is CAS-based, whereas the
   622   // two below are Mutex-based. This is OK since the first one is only
   623   // called during evacuation pauses and doesn't compete with the
   624   // other two (which are called by the marking tasks during
   625   // concurrent marking or remark).
   626   bool mark_stack_push(oop p) {
   627     _markStack.par_push(p);
   628     if (_markStack.overflow()) {
   629       set_has_overflown();
   630       return false;
   631     }
   632     return true;
   633   }
   634   bool mark_stack_push(oop* arr, int n) {
   635     _markStack.par_push_arr(arr, n);
   636     if (_markStack.overflow()) {
   637       set_has_overflown();
   638       return false;
   639     }
   640     return true;
   641   }
   642   void mark_stack_pop(oop* arr, int max, int* n) {
   643     _markStack.par_pop_arr(arr, max, n);
   644   }
   645   size_t mark_stack_size()                { return _markStack.size(); }
   646   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
   647   bool mark_stack_overflow()              { return _markStack.overflow(); }
   648   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
   650   CMRootRegions* root_regions() { return &_root_regions; }
   652   bool concurrent_marking_in_progress() {
   653     return _concurrent_marking_in_progress;
   654   }
   655   void set_concurrent_marking_in_progress() {
   656     _concurrent_marking_in_progress = true;
   657   }
   658   void clear_concurrent_marking_in_progress() {
   659     _concurrent_marking_in_progress = false;
   660   }
   662   void update_accum_task_vtime(int i, double vtime) {
   663     _accum_task_vtime[i] += vtime;
   664   }
   666   double all_task_accum_vtime() {
   667     double ret = 0.0;
   668     for (uint i = 0; i < _max_worker_id; ++i)
   669       ret += _accum_task_vtime[i];
   670     return ret;
   671   }
   673   // Attempts to steal an object from the task queues of other tasks
   674   bool try_stealing(uint worker_id, int* hash_seed, oop& obj) {
   675     return _task_queues->steal(worker_id, hash_seed, obj);
   676   }
   678   ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs);
   679   ~ConcurrentMark();
   681   ConcurrentMarkThread* cmThread() { return _cmThread; }
   683   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
   684   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
   686   // Returns the number of GC threads to be used in a concurrent
   687   // phase based on the number of GC threads being used in a STW
   688   // phase.
   689   uint scale_parallel_threads(uint n_par_threads);
   691   // Calculates the number of GC threads to be used in a concurrent phase.
   692   uint calc_parallel_marking_threads();
   694   // The following three are interaction between CM and
   695   // G1CollectedHeap
   697   // This notifies CM that a root during initial-mark needs to be
   698   // grayed. It is MT-safe. word_size is the size of the object in
   699   // words. It is passed explicitly as sometimes we cannot calculate
   700   // it from the given object because it might be in an inconsistent
   701   // state (e.g., in to-space and being copied). So the caller is
   702   // responsible for dealing with this issue (e.g., get the size from
   703   // the from-space image when the to-space image might be
   704   // inconsistent) and always passing the size. hr is the region that
   705   // contains the object and it's passed optionally from callers who
   706   // might already have it (no point in recalculating it).
   707   inline void grayRoot(oop obj, size_t word_size,
   708                        uint worker_id, HeapRegion* hr = NULL);
   710   // It iterates over the heap and for each object it comes across it
   711   // will dump the contents of its reference fields, as well as
   712   // liveness information for the object and its referents. The dump
   713   // will be written to a file with the following name:
   714   // G1PrintReachableBaseFile + "." + str.
   715   // vo decides whether the prev (vo == UsePrevMarking), the next
   716   // (vo == UseNextMarking) marking information, or the mark word
   717   // (vo == UseMarkWord) will be used to determine the liveness of
   718   // each object / referent.
   719   // If all is true, all objects in the heap will be dumped, otherwise
   720   // only the live ones. In the dump the following symbols / breviations
   721   // are used:
   722   //   M : an explicitly live object (its bitmap bit is set)
   723   //   > : an implicitly live object (over tams)
   724   //   O : an object outside the G1 heap (typically: in the perm gen)
   725   //   NOT : a reference field whose referent is not live
   726   //   AND MARKED : indicates that an object is both explicitly and
   727   //   implicitly live (it should be one or the other, not both)
   728   void print_reachable(const char* str,
   729                        VerifyOption vo, bool all) PRODUCT_RETURN;
   731   // Clear the next marking bitmap (will be called concurrently).
   732   void clearNextBitmap();
   734   // These two do the work that needs to be done before and after the
   735   // initial root checkpoint. Since this checkpoint can be done at two
   736   // different points (i.e. an explicit pause or piggy-backed on a
   737   // young collection), then it's nice to be able to easily share the
   738   // pre/post code. It might be the case that we can put everything in
   739   // the post method. TP
   740   void checkpointRootsInitialPre();
   741   void checkpointRootsInitialPost();
   743   // Scan all the root regions and mark everything reachable from
   744   // them.
   745   void scanRootRegions();
   747   // Scan a single root region and mark everything reachable from it.
   748   void scanRootRegion(HeapRegion* hr, uint worker_id);
   750   // Do concurrent phase of marking, to a tentative transitive closure.
   751   void markFromRoots();
   753   void checkpointRootsFinal(bool clear_all_soft_refs);
   754   void checkpointRootsFinalWork();
   755   void cleanup();
   756   void completeCleanup();
   758   // Mark in the previous bitmap.  NB: this is usually read-only, so use
   759   // this carefully!
   760   inline void markPrev(oop p);
   762   // Clears marks for all objects in the given range, for the prev,
   763   // next, or both bitmaps.  NB: the previous bitmap is usually
   764   // read-only, so use this carefully!
   765   void clearRangePrevBitmap(MemRegion mr);
   766   void clearRangeNextBitmap(MemRegion mr);
   767   void clearRangeBothBitmaps(MemRegion mr);
   769   // Notify data structures that a GC has started.
   770   void note_start_of_gc() {
   771     _markStack.note_start_of_gc();
   772   }
   774   // Notify data structures that a GC is finished.
   775   void note_end_of_gc() {
   776     _markStack.note_end_of_gc();
   777   }
   779   // Verify that there are no CSet oops on the stacks (taskqueues /
   780   // global mark stack), enqueued SATB buffers, per-thread SATB
   781   // buffers, and fingers (global / per-task). The boolean parameters
   782   // decide which of the above data structures to verify. If marking
   783   // is not in progress, it's a no-op.
   784   void verify_no_cset_oops(bool verify_stacks,
   785                            bool verify_enqueued_buffers,
   786                            bool verify_thread_buffers,
   787                            bool verify_fingers) PRODUCT_RETURN;
   789   // It is called at the end of an evacuation pause during marking so
   790   // that CM is notified of where the new end of the heap is. It
   791   // doesn't do anything if concurrent_marking_in_progress() is false,
   792   // unless the force parameter is true.
   793   void update_g1_committed(bool force = false);
   795   bool isMarked(oop p) const {
   796     assert(p != NULL && p->is_oop(), "expected an oop");
   797     HeapWord* addr = (HeapWord*)p;
   798     assert(addr >= _nextMarkBitMap->startWord() ||
   799            addr < _nextMarkBitMap->endWord(), "in a region");
   801     return _nextMarkBitMap->isMarked(addr);
   802   }
   804   inline bool not_yet_marked(oop p) const;
   806   // XXX Debug code
   807   bool containing_card_is_marked(void* p);
   808   bool containing_cards_are_marked(void* start, void* last);
   810   bool isPrevMarked(oop p) const {
   811     assert(p != NULL && p->is_oop(), "expected an oop");
   812     HeapWord* addr = (HeapWord*)p;
   813     assert(addr >= _prevMarkBitMap->startWord() ||
   814            addr < _prevMarkBitMap->endWord(), "in a region");
   816     return _prevMarkBitMap->isMarked(addr);
   817   }
   819   inline bool do_yield_check(uint worker_i = 0);
   820   inline bool should_yield();
   822   // Called to abort the marking cycle after a Full GC takes palce.
   823   void abort();
   825   // This prints the global/local fingers. It is used for debugging.
   826   NOT_PRODUCT(void print_finger();)
   828   void print_summary_info();
   830   void print_worker_threads_on(outputStream* st) const;
   832   // The following indicate whether a given verbose level has been
   833   // set. Notice that anything above stats is conditional to
   834   // _MARKING_VERBOSE_ having been set to 1
   835   bool verbose_stats() {
   836     return _verbose_level >= stats_verbose;
   837   }
   838   bool verbose_low() {
   839     return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
   840   }
   841   bool verbose_medium() {
   842     return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
   843   }
   844   bool verbose_high() {
   845     return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
   846   }
   848   // Liveness counting
   850   // Utility routine to set an exclusive range of cards on the given
   851   // card liveness bitmap
   852   inline void set_card_bitmap_range(BitMap* card_bm,
   853                                     BitMap::idx_t start_idx,
   854                                     BitMap::idx_t end_idx,
   855                                     bool is_par);
   857   // Returns the card number of the bottom of the G1 heap.
   858   // Used in biasing indices into accounting card bitmaps.
   859   intptr_t heap_bottom_card_num() const {
   860     return _heap_bottom_card_num;
   861   }
   863   // Returns the card bitmap for a given task or worker id.
   864   BitMap* count_card_bitmap_for(uint worker_id) {
   865     assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
   866     assert(_count_card_bitmaps != NULL, "uninitialized");
   867     BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
   868     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
   869     return task_card_bm;
   870   }
   872   // Returns the array containing the marked bytes for each region,
   873   // for the given worker or task id.
   874   size_t* count_marked_bytes_array_for(uint worker_id) {
   875     assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
   876     assert(_count_marked_bytes != NULL, "uninitialized");
   877     size_t* marked_bytes_array = _count_marked_bytes[worker_id];
   878     assert(marked_bytes_array != NULL, "uninitialized");
   879     return marked_bytes_array;
   880   }
   882   // Returns the index in the liveness accounting card table bitmap
   883   // for the given address
   884   inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
   886   // Counts the size of the given memory region in the the given
   887   // marked_bytes array slot for the given HeapRegion.
   888   // Sets the bits in the given card bitmap that are associated with the
   889   // cards that are spanned by the memory region.
   890   inline void count_region(MemRegion mr, HeapRegion* hr,
   891                            size_t* marked_bytes_array,
   892                            BitMap* task_card_bm);
   894   // Counts the given memory region in the task/worker counting
   895   // data structures for the given worker id.
   896   inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
   898   // Counts the given memory region in the task/worker counting
   899   // data structures for the given worker id.
   900   inline void count_region(MemRegion mr, uint worker_id);
   902   // Counts the given object in the given task/worker counting
   903   // data structures.
   904   inline void count_object(oop obj, HeapRegion* hr,
   905                            size_t* marked_bytes_array,
   906                            BitMap* task_card_bm);
   908   // Counts the given object in the task/worker counting data
   909   // structures for the given worker id.
   910   inline void count_object(oop obj, HeapRegion* hr, uint worker_id);
   912   // Attempts to mark the given object and, if successful, counts
   913   // the object in the given task/worker counting structures.
   914   inline bool par_mark_and_count(oop obj, HeapRegion* hr,
   915                                  size_t* marked_bytes_array,
   916                                  BitMap* task_card_bm);
   918   // Attempts to mark the given object and, if successful, counts
   919   // the object in the task/worker counting structures for the
   920   // given worker id.
   921   inline bool par_mark_and_count(oop obj, size_t word_size,
   922                                  HeapRegion* hr, uint worker_id);
   924   // Attempts to mark the given object and, if successful, counts
   925   // the object in the task/worker counting structures for the
   926   // given worker id.
   927   inline bool par_mark_and_count(oop obj, HeapRegion* hr, uint worker_id);
   929   // Similar to the above routine but we don't know the heap region that
   930   // contains the object to be marked/counted, which this routine looks up.
   931   inline bool par_mark_and_count(oop obj, uint worker_id);
   933   // Similar to the above routine but there are times when we cannot
   934   // safely calculate the size of obj due to races and we, therefore,
   935   // pass the size in as a parameter. It is the caller's reponsibility
   936   // to ensure that the size passed in for obj is valid.
   937   inline bool par_mark_and_count(oop obj, size_t word_size, uint worker_id);
   939   // Unconditionally mark the given object, and unconditinally count
   940   // the object in the counting structures for worker id 0.
   941   // Should *not* be called from parallel code.
   942   inline bool mark_and_count(oop obj, HeapRegion* hr);
   944   // Similar to the above routine but we don't know the heap region that
   945   // contains the object to be marked/counted, which this routine looks up.
   946   // Should *not* be called from parallel code.
   947   inline bool mark_and_count(oop obj);
   949   // Returns true if initialization was successfully completed.
   950   bool completed_initialization() const {
   951     return _completed_initialization;
   952   }
   954 protected:
   955   // Clear all the per-task bitmaps and arrays used to store the
   956   // counting data.
   957   void clear_all_count_data();
   959   // Aggregates the counting data for each worker/task
   960   // that was constructed while marking. Also sets
   961   // the amount of marked bytes for each region and
   962   // the top at concurrent mark count.
   963   void aggregate_count_data();
   965   // Verification routine
   966   void verify_count_data();
   967 };
   969 // A class representing a marking task.
   970 class CMTask : public TerminatorTerminator {
   971 private:
   972   enum PrivateConstants {
   973     // the regular clock call is called once the scanned words reaches
   974     // this limit
   975     words_scanned_period          = 12*1024,
   976     // the regular clock call is called once the number of visited
   977     // references reaches this limit
   978     refs_reached_period           = 384,
   979     // initial value for the hash seed, used in the work stealing code
   980     init_hash_seed                = 17,
   981     // how many entries will be transferred between global stack and
   982     // local queues
   983     global_stack_transfer_size    = 16
   984   };
   986   uint                        _worker_id;
   987   G1CollectedHeap*            _g1h;
   988   ConcurrentMark*             _cm;
   989   CMBitMap*                   _nextMarkBitMap;
   990   // the task queue of this task
   991   CMTaskQueue*                _task_queue;
   992 private:
   993   // the task queue set---needed for stealing
   994   CMTaskQueueSet*             _task_queues;
   995   // indicates whether the task has been claimed---this is only  for
   996   // debugging purposes
   997   bool                        _claimed;
   999   // number of calls to this task
  1000   int                         _calls;
  1002   // when the virtual timer reaches this time, the marking step should
  1003   // exit
  1004   double                      _time_target_ms;
  1005   // the start time of the current marking step
  1006   double                      _start_time_ms;
  1008   // the oop closure used for iterations over oops
  1009   G1CMOopClosure*             _cm_oop_closure;
  1011   // the region this task is scanning, NULL if we're not scanning any
  1012   HeapRegion*                 _curr_region;
  1013   // the local finger of this task, NULL if we're not scanning a region
  1014   HeapWord*                   _finger;
  1015   // limit of the region this task is scanning, NULL if we're not scanning one
  1016   HeapWord*                   _region_limit;
  1018   // the number of words this task has scanned
  1019   size_t                      _words_scanned;
  1020   // When _words_scanned reaches this limit, the regular clock is
  1021   // called. Notice that this might be decreased under certain
  1022   // circumstances (i.e. when we believe that we did an expensive
  1023   // operation).
  1024   size_t                      _words_scanned_limit;
  1025   // the initial value of _words_scanned_limit (i.e. what it was
  1026   // before it was decreased).
  1027   size_t                      _real_words_scanned_limit;
  1029   // the number of references this task has visited
  1030   size_t                      _refs_reached;
  1031   // When _refs_reached reaches this limit, the regular clock is
  1032   // called. Notice this this might be decreased under certain
  1033   // circumstances (i.e. when we believe that we did an expensive
  1034   // operation).
  1035   size_t                      _refs_reached_limit;
  1036   // the initial value of _refs_reached_limit (i.e. what it was before
  1037   // it was decreased).
  1038   size_t                      _real_refs_reached_limit;
  1040   // used by the work stealing stuff
  1041   int                         _hash_seed;
  1042   // if this is true, then the task has aborted for some reason
  1043   bool                        _has_aborted;
  1044   // set when the task aborts because it has met its time quota
  1045   bool                        _has_timed_out;
  1046   // true when we're draining SATB buffers; this avoids the task
  1047   // aborting due to SATB buffers being available (as we're already
  1048   // dealing with them)
  1049   bool                        _draining_satb_buffers;
  1051   // number sequence of past step times
  1052   NumberSeq                   _step_times_ms;
  1053   // elapsed time of this task
  1054   double                      _elapsed_time_ms;
  1055   // termination time of this task
  1056   double                      _termination_time_ms;
  1057   // when this task got into the termination protocol
  1058   double                      _termination_start_time_ms;
  1060   // true when the task is during a concurrent phase, false when it is
  1061   // in the remark phase (so, in the latter case, we do not have to
  1062   // check all the things that we have to check during the concurrent
  1063   // phase, i.e. SATB buffer availability...)
  1064   bool                        _concurrent;
  1066   TruncatedSeq                _marking_step_diffs_ms;
  1068   // Counting data structures. Embedding the task's marked_bytes_array
  1069   // and card bitmap into the actual task saves having to go through
  1070   // the ConcurrentMark object.
  1071   size_t*                     _marked_bytes_array;
  1072   BitMap*                     _card_bm;
  1074   // LOTS of statistics related with this task
  1075 #if _MARKING_STATS_
  1076   NumberSeq                   _all_clock_intervals_ms;
  1077   double                      _interval_start_time_ms;
  1079   int                         _aborted;
  1080   int                         _aborted_overflow;
  1081   int                         _aborted_cm_aborted;
  1082   int                         _aborted_yield;
  1083   int                         _aborted_timed_out;
  1084   int                         _aborted_satb;
  1085   int                         _aborted_termination;
  1087   int                         _steal_attempts;
  1088   int                         _steals;
  1090   int                         _clock_due_to_marking;
  1091   int                         _clock_due_to_scanning;
  1093   int                         _local_pushes;
  1094   int                         _local_pops;
  1095   int                         _local_max_size;
  1096   int                         _objs_scanned;
  1098   int                         _global_pushes;
  1099   int                         _global_pops;
  1100   int                         _global_max_size;
  1102   int                         _global_transfers_to;
  1103   int                         _global_transfers_from;
  1105   int                         _regions_claimed;
  1106   int                         _objs_found_on_bitmap;
  1108   int                         _satb_buffers_processed;
  1109 #endif // _MARKING_STATS_
  1111   // it updates the local fields after this task has claimed
  1112   // a new region to scan
  1113   void setup_for_region(HeapRegion* hr);
  1114   // it brings up-to-date the limit of the region
  1115   void update_region_limit();
  1117   // called when either the words scanned or the refs visited limit
  1118   // has been reached
  1119   void reached_limit();
  1120   // recalculates the words scanned and refs visited limits
  1121   void recalculate_limits();
  1122   // decreases the words scanned and refs visited limits when we reach
  1123   // an expensive operation
  1124   void decrease_limits();
  1125   // it checks whether the words scanned or refs visited reached their
  1126   // respective limit and calls reached_limit() if they have
  1127   void check_limits() {
  1128     if (_words_scanned >= _words_scanned_limit ||
  1129         _refs_reached >= _refs_reached_limit) {
  1130       reached_limit();
  1133   // this is supposed to be called regularly during a marking step as
  1134   // it checks a bunch of conditions that might cause the marking step
  1135   // to abort
  1136   void regular_clock_call();
  1137   bool concurrent() { return _concurrent; }
  1139 public:
  1140   // It resets the task; it should be called right at the beginning of
  1141   // a marking phase.
  1142   void reset(CMBitMap* _nextMarkBitMap);
  1143   // it clears all the fields that correspond to a claimed region.
  1144   void clear_region_fields();
  1146   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
  1148   // The main method of this class which performs a marking step
  1149   // trying not to exceed the given duration. However, it might exit
  1150   // prematurely, according to some conditions (i.e. SATB buffers are
  1151   // available for processing).
  1152   void do_marking_step(double target_ms,
  1153                        bool do_termination,
  1154                        bool is_serial);
  1156   // These two calls start and stop the timer
  1157   void record_start_time() {
  1158     _elapsed_time_ms = os::elapsedTime() * 1000.0;
  1160   void record_end_time() {
  1161     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
  1164   // returns the worker ID associated with this task.
  1165   uint worker_id() { return _worker_id; }
  1167   // From TerminatorTerminator. It determines whether this task should
  1168   // exit the termination protocol after it's entered it.
  1169   virtual bool should_exit_termination();
  1171   // Resets the local region fields after a task has finished scanning a
  1172   // region; or when they have become stale as a result of the region
  1173   // being evacuated.
  1174   void giveup_current_region();
  1176   HeapWord* finger()            { return _finger; }
  1178   bool has_aborted()            { return _has_aborted; }
  1179   void set_has_aborted()        { _has_aborted = true; }
  1180   void clear_has_aborted()      { _has_aborted = false; }
  1181   bool has_timed_out()          { return _has_timed_out; }
  1182   bool claimed()                { return _claimed; }
  1184   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
  1186   // It grays the object by marking it and, if necessary, pushing it
  1187   // on the local queue
  1188   inline void deal_with_reference(oop obj);
  1190   // It scans an object and visits its children.
  1191   void scan_object(oop obj);
  1193   // It pushes an object on the local queue.
  1194   inline void push(oop obj);
  1196   // These two move entries to/from the global stack.
  1197   void move_entries_to_global_stack();
  1198   void get_entries_from_global_stack();
  1200   // It pops and scans objects from the local queue. If partially is
  1201   // true, then it stops when the queue size is of a given limit. If
  1202   // partially is false, then it stops when the queue is empty.
  1203   void drain_local_queue(bool partially);
  1204   // It moves entries from the global stack to the local queue and
  1205   // drains the local queue. If partially is true, then it stops when
  1206   // both the global stack and the local queue reach a given size. If
  1207   // partially if false, it tries to empty them totally.
  1208   void drain_global_stack(bool partially);
  1209   // It keeps picking SATB buffers and processing them until no SATB
  1210   // buffers are available.
  1211   void drain_satb_buffers();
  1213   // moves the local finger to a new location
  1214   inline void move_finger_to(HeapWord* new_finger) {
  1215     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
  1216     _finger = new_finger;
  1219   CMTask(uint worker_id, ConcurrentMark *cm,
  1220          size_t* marked_bytes, BitMap* card_bm,
  1221          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
  1223   // it prints statistics associated with this task
  1224   void print_stats();
  1226 #if _MARKING_STATS_
  1227   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
  1228 #endif // _MARKING_STATS_
  1229 };
  1231 // Class that's used to to print out per-region liveness
  1232 // information. It's currently used at the end of marking and also
  1233 // after we sort the old regions at the end of the cleanup operation.
  1234 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
  1235 private:
  1236   outputStream* _out;
  1238   // Accumulators for these values.
  1239   size_t _total_used_bytes;
  1240   size_t _total_capacity_bytes;
  1241   size_t _total_prev_live_bytes;
  1242   size_t _total_next_live_bytes;
  1244   // These are set up when we come across a "stars humongous" region
  1245   // (as this is where most of this information is stored, not in the
  1246   // subsequent "continues humongous" regions). After that, for every
  1247   // region in a given humongous region series we deduce the right
  1248   // values for it by simply subtracting the appropriate amount from
  1249   // these fields. All these values should reach 0 after we've visited
  1250   // the last region in the series.
  1251   size_t _hum_used_bytes;
  1252   size_t _hum_capacity_bytes;
  1253   size_t _hum_prev_live_bytes;
  1254   size_t _hum_next_live_bytes;
  1256   static double perc(size_t val, size_t total) {
  1257     if (total == 0) {
  1258       return 0.0;
  1259     } else {
  1260       return 100.0 * ((double) val / (double) total);
  1264   static double bytes_to_mb(size_t val) {
  1265     return (double) val / (double) M;
  1268   // See the .cpp file.
  1269   size_t get_hum_bytes(size_t* hum_bytes);
  1270   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
  1271                      size_t* prev_live_bytes, size_t* next_live_bytes);
  1273 public:
  1274   // The header and footer are printed in the constructor and
  1275   // destructor respectively.
  1276   G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
  1277   virtual bool doHeapRegion(HeapRegion* r);
  1278   ~G1PrintRegionLivenessInfoClosure();
  1279 };
  1281 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial