src/share/vm/gc_implementation/g1/concurrentMark.hpp

Wed, 10 Apr 2013 14:26:49 +0200

author
stefank
date
Wed, 10 Apr 2013 14:26:49 +0200
changeset 4904
7b835924c31c
parent 4788
e864cc14ca75
child 5122
05a17f270c7e
permissions
-rw-r--r--

8011872: Include Bit Map addresses in the hs_err files
Reviewed-by: brutisso, jmasa

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    28 #include "gc_implementation/g1/heapRegionSets.hpp"
    29 #include "utilities/taskqueue.hpp"
    31 class G1CollectedHeap;
    32 class CMTask;
    33 typedef GenericTaskQueue<oop, mtGC>            CMTaskQueue;
    34 typedef GenericTaskQueueSet<CMTaskQueue, mtGC> CMTaskQueueSet;
    36 // Closure used by CM during concurrent reference discovery
    37 // and reference processing (during remarking) to determine
    38 // if a particular object is alive. It is primarily used
    39 // to determine if referents of discovered reference objects
    40 // are alive. An instance is also embedded into the
    41 // reference processor as the _is_alive_non_header field
    42 class G1CMIsAliveClosure: public BoolObjectClosure {
    43   G1CollectedHeap* _g1;
    44  public:
    45   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
    47   void do_object(oop obj) {
    48     ShouldNotCallThis();
    49   }
    50   bool do_object_b(oop obj);
    51 };
    53 // A generic CM bit map.  This is essentially a wrapper around the BitMap
    54 // class, with one bit per (1<<_shifter) HeapWords.
    56 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
    57  protected:
    58   HeapWord* _bmStartWord;      // base address of range covered by map
    59   size_t    _bmWordSize;       // map size (in #HeapWords covered)
    60   const int _shifter;          // map to char or bit
    61   VirtualSpace _virtual_space; // underlying the bit map
    62   BitMap    _bm;               // the bit map itself
    64  public:
    65   // constructor
    66   CMBitMapRO(int shifter);
    68   enum { do_yield = true };
    70   // inquiries
    71   HeapWord* startWord()   const { return _bmStartWord; }
    72   size_t    sizeInWords() const { return _bmWordSize;  }
    73   // the following is one past the last word in space
    74   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
    76   // read marks
    78   bool isMarked(HeapWord* addr) const {
    79     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
    80            "outside underlying space?");
    81     return _bm.at(heapWordToOffset(addr));
    82   }
    84   // iteration
    85   inline bool iterate(BitMapClosure* cl, MemRegion mr);
    86   inline bool iterate(BitMapClosure* cl);
    88   // Return the address corresponding to the next marked bit at or after
    89   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    90   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    91   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
    92                                      HeapWord* limit = NULL) const;
    93   // Return the address corresponding to the next unmarked bit at or after
    94   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    95   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    96   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
    97                                        HeapWord* limit = NULL) const;
    99   // conversion utilities
   100   HeapWord* offsetToHeapWord(size_t offset) const {
   101     return _bmStartWord + (offset << _shifter);
   102   }
   103   size_t heapWordToOffset(HeapWord* addr) const {
   104     return pointer_delta(addr, _bmStartWord) >> _shifter;
   105   }
   106   int heapWordDiffToOffsetDiff(size_t diff) const;
   108   // The argument addr should be the start address of a valid object
   109   HeapWord* nextObject(HeapWord* addr) {
   110     oop obj = (oop) addr;
   111     HeapWord* res =  addr + obj->size();
   112     assert(offsetToHeapWord(heapWordToOffset(res)) == res, "sanity");
   113     return res;
   114   }
   116   void print_on_error(outputStream* st, const char* prefix) const;
   118   // debugging
   119   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
   120 };
   122 class CMBitMap : public CMBitMapRO {
   124  public:
   125   // constructor
   126   CMBitMap(int shifter) :
   127     CMBitMapRO(shifter) {}
   129   // Allocates the back store for the marking bitmap
   130   bool allocate(ReservedSpace heap_rs);
   132   // write marks
   133   void mark(HeapWord* addr) {
   134     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   135            "outside underlying space?");
   136     _bm.set_bit(heapWordToOffset(addr));
   137   }
   138   void clear(HeapWord* addr) {
   139     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   140            "outside underlying space?");
   141     _bm.clear_bit(heapWordToOffset(addr));
   142   }
   143   bool parMark(HeapWord* addr) {
   144     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   145            "outside underlying space?");
   146     return _bm.par_set_bit(heapWordToOffset(addr));
   147   }
   148   bool parClear(HeapWord* addr) {
   149     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   150            "outside underlying space?");
   151     return _bm.par_clear_bit(heapWordToOffset(addr));
   152   }
   153   void markRange(MemRegion mr);
   154   void clearAll();
   155   void clearRange(MemRegion mr);
   157   // Starting at the bit corresponding to "addr" (inclusive), find the next
   158   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
   159   // the end of this run (stopping at "end_addr").  Return the MemRegion
   160   // covering from the start of the region corresponding to the first bit
   161   // of the run to the end of the region corresponding to the last bit of
   162   // the run.  If there is no "1" bit at or after "addr", return an empty
   163   // MemRegion.
   164   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
   165 };
   167 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
   168 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
   169   VirtualSpace _virtual_space;   // Underlying backing store for actual stack
   170   ConcurrentMark* _cm;
   171   oop* _base;        // bottom of stack
   172   jint _index;       // one more than last occupied index
   173   jint _capacity;    // max #elements
   174   jint _saved_index; // value of _index saved at start of GC
   175   NOT_PRODUCT(jint _max_depth;)   // max depth plumbed during run
   177   bool  _overflow;
   178   bool  _should_expand;
   179   DEBUG_ONLY(bool _drain_in_progress;)
   180   DEBUG_ONLY(bool _drain_in_progress_yields;)
   182  public:
   183   CMMarkStack(ConcurrentMark* cm);
   184   ~CMMarkStack();
   186 #ifndef PRODUCT
   187   jint max_depth() const {
   188     return _max_depth;
   189   }
   190 #endif
   192   bool allocate(size_t capacity);
   194   oop pop() {
   195     if (!isEmpty()) {
   196       return _base[--_index] ;
   197     }
   198     return NULL;
   199   }
   201   // If overflow happens, don't do the push, and record the overflow.
   202   // *Requires* that "ptr" is already marked.
   203   void push(oop ptr) {
   204     if (isFull()) {
   205       // Record overflow.
   206       _overflow = true;
   207       return;
   208     } else {
   209       _base[_index++] = ptr;
   210       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   211     }
   212   }
   213   // Non-block impl.  Note: concurrency is allowed only with other
   214   // "par_push" operations, not with "pop" or "drain".  We would need
   215   // parallel versions of them if such concurrency was desired.
   216   void par_push(oop ptr);
   218   // Pushes the first "n" elements of "ptr_arr" on the stack.
   219   // Non-block impl.  Note: concurrency is allowed only with other
   220   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
   221   void par_adjoin_arr(oop* ptr_arr, int n);
   223   // Pushes the first "n" elements of "ptr_arr" on the stack.
   224   // Locking impl: concurrency is allowed only with
   225   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
   226   // locking strategy.
   227   void par_push_arr(oop* ptr_arr, int n);
   229   // If returns false, the array was empty.  Otherwise, removes up to "max"
   230   // elements from the stack, and transfers them to "ptr_arr" in an
   231   // unspecified order.  The actual number transferred is given in "n" ("n
   232   // == 0" is deliberately redundant with the return value.)  Locking impl:
   233   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
   234   // operations, which use the same locking strategy.
   235   bool par_pop_arr(oop* ptr_arr, int max, int* n);
   237   // Drain the mark stack, applying the given closure to all fields of
   238   // objects on the stack.  (That is, continue until the stack is empty,
   239   // even if closure applications add entries to the stack.)  The "bm"
   240   // argument, if non-null, may be used to verify that only marked objects
   241   // are on the mark stack.  If "yield_after" is "true", then the
   242   // concurrent marker performing the drain offers to yield after
   243   // processing each object.  If a yield occurs, stops the drain operation
   244   // and returns false.  Otherwise, returns true.
   245   template<class OopClosureClass>
   246   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
   248   bool isEmpty()    { return _index == 0; }
   249   bool isFull()     { return _index == _capacity; }
   250   int  maxElems()   { return _capacity; }
   252   bool overflow() { return _overflow; }
   253   void clear_overflow() { _overflow = false; }
   255   bool should_expand() const { return _should_expand; }
   256   void set_should_expand();
   258   // Expand the stack, typically in response to an overflow condition
   259   void expand();
   261   int  size() { return _index; }
   263   void setEmpty()   { _index = 0; clear_overflow(); }
   265   // Record the current index.
   266   void note_start_of_gc();
   268   // Make sure that we have not added any entries to the stack during GC.
   269   void note_end_of_gc();
   271   // iterate over the oops in the mark stack, up to the bound recorded via
   272   // the call above.
   273   void oops_do(OopClosure* f);
   274 };
   276 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
   277 private:
   278 #ifndef PRODUCT
   279   uintx _num_remaining;
   280   bool _force;
   281 #endif // !defined(PRODUCT)
   283 public:
   284   void init() PRODUCT_RETURN;
   285   void update() PRODUCT_RETURN;
   286   bool should_force() PRODUCT_RETURN_( return false; );
   287 };
   289 // this will enable a variety of different statistics per GC task
   290 #define _MARKING_STATS_       0
   291 // this will enable the higher verbose levels
   292 #define _MARKING_VERBOSE_     0
   294 #if _MARKING_STATS_
   295 #define statsOnly(statement)  \
   296 do {                          \
   297   statement ;                 \
   298 } while (0)
   299 #else // _MARKING_STATS_
   300 #define statsOnly(statement)  \
   301 do {                          \
   302 } while (0)
   303 #endif // _MARKING_STATS_
   305 typedef enum {
   306   no_verbose  = 0,   // verbose turned off
   307   stats_verbose,     // only prints stats at the end of marking
   308   low_verbose,       // low verbose, mostly per region and per major event
   309   medium_verbose,    // a bit more detailed than low
   310   high_verbose       // per object verbose
   311 } CMVerboseLevel;
   313 class YoungList;
   315 // Root Regions are regions that are not empty at the beginning of a
   316 // marking cycle and which we might collect during an evacuation pause
   317 // while the cycle is active. Given that, during evacuation pauses, we
   318 // do not copy objects that are explicitly marked, what we have to do
   319 // for the root regions is to scan them and mark all objects reachable
   320 // from them. According to the SATB assumptions, we only need to visit
   321 // each object once during marking. So, as long as we finish this scan
   322 // before the next evacuation pause, we can copy the objects from the
   323 // root regions without having to mark them or do anything else to them.
   324 //
   325 // Currently, we only support root region scanning once (at the start
   326 // of the marking cycle) and the root regions are all the survivor
   327 // regions populated during the initial-mark pause.
   328 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
   329 private:
   330   YoungList*           _young_list;
   331   ConcurrentMark*      _cm;
   333   volatile bool        _scan_in_progress;
   334   volatile bool        _should_abort;
   335   HeapRegion* volatile _next_survivor;
   337 public:
   338   CMRootRegions();
   339   // We actually do most of the initialization in this method.
   340   void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
   342   // Reset the claiming / scanning of the root regions.
   343   void prepare_for_scan();
   345   // Forces get_next() to return NULL so that the iteration aborts early.
   346   void abort() { _should_abort = true; }
   348   // Return true if the CM thread are actively scanning root regions,
   349   // false otherwise.
   350   bool scan_in_progress() { return _scan_in_progress; }
   352   // Claim the next root region to scan atomically, or return NULL if
   353   // all have been claimed.
   354   HeapRegion* claim_next();
   356   // Flag that we're done with root region scanning and notify anyone
   357   // who's waiting on it. If aborted is false, assume that all regions
   358   // have been claimed.
   359   void scan_finished();
   361   // If CM threads are still scanning root regions, wait until they
   362   // are done. Return true if we had to wait, false otherwise.
   363   bool wait_until_scan_finished();
   364 };
   366 class ConcurrentMarkThread;
   368 class ConcurrentMark: public CHeapObj<mtGC> {
   369   friend class CMMarkStack;
   370   friend class ConcurrentMarkThread;
   371   friend class CMTask;
   372   friend class CMBitMapClosure;
   373   friend class CMGlobalObjectClosure;
   374   friend class CMRemarkTask;
   375   friend class CMConcurrentMarkingTask;
   376   friend class G1ParNoteEndTask;
   377   friend class CalcLiveObjectsClosure;
   378   friend class G1CMRefProcTaskProxy;
   379   friend class G1CMRefProcTaskExecutor;
   380   friend class G1CMKeepAliveAndDrainClosure;
   381   friend class G1CMDrainMarkingStackClosure;
   383 protected:
   384   ConcurrentMarkThread* _cmThread;   // the thread doing the work
   385   G1CollectedHeap*      _g1h;        // the heap.
   386   uint                  _parallel_marking_threads; // the number of marking
   387                                                    // threads we're use
   388   uint                  _max_parallel_marking_threads; // max number of marking
   389                                                    // threads we'll ever use
   390   double                _sleep_factor; // how much we have to sleep, with
   391                                        // respect to the work we just did, to
   392                                        // meet the marking overhead goal
   393   double                _marking_task_overhead; // marking target overhead for
   394                                                 // a single task
   396   // same as the two above, but for the cleanup task
   397   double                _cleanup_sleep_factor;
   398   double                _cleanup_task_overhead;
   400   FreeRegionList        _cleanup_list;
   402   // Concurrent marking support structures
   403   CMBitMap                _markBitMap1;
   404   CMBitMap                _markBitMap2;
   405   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
   406   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
   408   BitMap                  _region_bm;
   409   BitMap                  _card_bm;
   411   // Heap bounds
   412   HeapWord*               _heap_start;
   413   HeapWord*               _heap_end;
   415   // Root region tracking and claiming.
   416   CMRootRegions           _root_regions;
   418   // For gray objects
   419   CMMarkStack             _markStack; // Grey objects behind global finger.
   420   HeapWord* volatile      _finger;  // the global finger, region aligned,
   421                                     // always points to the end of the
   422                                     // last claimed region
   424   // marking tasks
   425   uint                    _max_worker_id;// maximum worker id
   426   uint                    _active_tasks; // task num currently active
   427   CMTask**                _tasks;        // task queue array (max_worker_id len)
   428   CMTaskQueueSet*         _task_queues;  // task queue set
   429   ParallelTaskTerminator  _terminator;   // for termination
   431   // Two sync barriers that are used to synchronise tasks when an
   432   // overflow occurs. The algorithm is the following. All tasks enter
   433   // the first one to ensure that they have all stopped manipulating
   434   // the global data structures. After they exit it, they re-initialise
   435   // their data structures and task 0 re-initialises the global data
   436   // structures. Then, they enter the second sync barrier. This
   437   // ensure, that no task starts doing work before all data
   438   // structures (local and global) have been re-initialised. When they
   439   // exit it, they are free to start working again.
   440   WorkGangBarrierSync     _first_overflow_barrier_sync;
   441   WorkGangBarrierSync     _second_overflow_barrier_sync;
   443   // this is set by any task, when an overflow on the global data
   444   // structures is detected.
   445   volatile bool           _has_overflown;
   446   // true: marking is concurrent, false: we're in remark
   447   volatile bool           _concurrent;
   448   // set at the end of a Full GC so that marking aborts
   449   volatile bool           _has_aborted;
   451   // used when remark aborts due to an overflow to indicate that
   452   // another concurrent marking phase should start
   453   volatile bool           _restart_for_overflow;
   455   // This is true from the very start of concurrent marking until the
   456   // point when all the tasks complete their work. It is really used
   457   // to determine the points between the end of concurrent marking and
   458   // time of remark.
   459   volatile bool           _concurrent_marking_in_progress;
   461   // verbose level
   462   CMVerboseLevel          _verbose_level;
   464   // All of these times are in ms.
   465   NumberSeq _init_times;
   466   NumberSeq _remark_times;
   467   NumberSeq   _remark_mark_times;
   468   NumberSeq   _remark_weak_ref_times;
   469   NumberSeq _cleanup_times;
   470   double    _total_counting_time;
   471   double    _total_rs_scrub_time;
   473   double*   _accum_task_vtime;   // accumulated task vtime
   475   FlexibleWorkGang* _parallel_workers;
   477   ForceOverflowSettings _force_overflow_conc;
   478   ForceOverflowSettings _force_overflow_stw;
   480   void weakRefsWork(bool clear_all_soft_refs);
   482   void swapMarkBitMaps();
   484   // It resets the global marking data structures, as well as the
   485   // task local ones; should be called during initial mark.
   486   void reset();
   488   // Resets all the marking data structures. Called when we have to restart
   489   // marking or when marking completes (via set_non_marking_state below).
   490   void reset_marking_state(bool clear_overflow = true);
   492   // We do this after we're done with marking so that the marking data
   493   // structures are initialised to a sensible and predictable state.
   494   void set_non_marking_state();
   496   // Called to indicate how many threads are currently active.
   497   void set_concurrency(uint active_tasks);
   499   // It should be called to indicate which phase we're in (concurrent
   500   // mark or remark) and how many threads are currently active.
   501   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
   503   // prints all gathered CM-related statistics
   504   void print_stats();
   506   bool cleanup_list_is_empty() {
   507     return _cleanup_list.is_empty();
   508   }
   510   // accessor methods
   511   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
   512   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
   513   double sleep_factor()                     { return _sleep_factor; }
   514   double marking_task_overhead()            { return _marking_task_overhead;}
   515   double cleanup_sleep_factor()             { return _cleanup_sleep_factor; }
   516   double cleanup_task_overhead()            { return _cleanup_task_overhead;}
   518   bool use_parallel_marking_threads() const {
   519     assert(parallel_marking_threads() <=
   520            max_parallel_marking_threads(), "sanity");
   521     assert((_parallel_workers == NULL && parallel_marking_threads() == 0) ||
   522            parallel_marking_threads() > 0,
   523            "parallel workers not set up correctly");
   524     return _parallel_workers != NULL;
   525   }
   527   HeapWord*               finger()          { return _finger;   }
   528   bool                    concurrent()      { return _concurrent; }
   529   uint                    active_tasks()    { return _active_tasks; }
   530   ParallelTaskTerminator* terminator()      { return &_terminator; }
   532   // It claims the next available region to be scanned by a marking
   533   // task/thread. It might return NULL if the next region is empty or
   534   // we have run out of regions. In the latter case, out_of_regions()
   535   // determines whether we've really run out of regions or the task
   536   // should call claim_region() again. This might seem a bit
   537   // awkward. Originally, the code was written so that claim_region()
   538   // either successfully returned with a non-empty region or there
   539   // were no more regions to be claimed. The problem with this was
   540   // that, in certain circumstances, it iterated over large chunks of
   541   // the heap finding only empty regions and, while it was working, it
   542   // was preventing the calling task to call its regular clock
   543   // method. So, this way, each task will spend very little time in
   544   // claim_region() and is allowed to call the regular clock method
   545   // frequently.
   546   HeapRegion* claim_region(uint worker_id);
   548   // It determines whether we've run out of regions to scan.
   549   bool        out_of_regions() { return _finger == _heap_end; }
   551   // Returns the task with the given id
   552   CMTask* task(int id) {
   553     assert(0 <= id && id < (int) _active_tasks,
   554            "task id not within active bounds");
   555     return _tasks[id];
   556   }
   558   // Returns the task queue with the given id
   559   CMTaskQueue* task_queue(int id) {
   560     assert(0 <= id && id < (int) _active_tasks,
   561            "task queue id not within active bounds");
   562     return (CMTaskQueue*) _task_queues->queue(id);
   563   }
   565   // Returns the task queue set
   566   CMTaskQueueSet* task_queues()  { return _task_queues; }
   568   // Access / manipulation of the overflow flag which is set to
   569   // indicate that the global stack has overflown
   570   bool has_overflown()           { return _has_overflown; }
   571   void set_has_overflown()       { _has_overflown = true; }
   572   void clear_has_overflown()     { _has_overflown = false; }
   573   bool restart_for_overflow()    { return _restart_for_overflow; }
   575   bool has_aborted()             { return _has_aborted; }
   577   // Methods to enter the two overflow sync barriers
   578   void enter_first_sync_barrier(uint worker_id);
   579   void enter_second_sync_barrier(uint worker_id);
   581   ForceOverflowSettings* force_overflow_conc() {
   582     return &_force_overflow_conc;
   583   }
   585   ForceOverflowSettings* force_overflow_stw() {
   586     return &_force_overflow_stw;
   587   }
   589   ForceOverflowSettings* force_overflow() {
   590     if (concurrent()) {
   591       return force_overflow_conc();
   592     } else {
   593       return force_overflow_stw();
   594     }
   595   }
   597   // Live Data Counting data structures...
   598   // These data structures are initialized at the start of
   599   // marking. They are written to while marking is active.
   600   // They are aggregated during remark; the aggregated values
   601   // are then used to populate the _region_bm, _card_bm, and
   602   // the total live bytes, which are then subsequently updated
   603   // during cleanup.
   605   // An array of bitmaps (one bit map per task). Each bitmap
   606   // is used to record the cards spanned by the live objects
   607   // marked by that task/worker.
   608   BitMap*  _count_card_bitmaps;
   610   // Used to record the number of marked live bytes
   611   // (for each region, by worker thread).
   612   size_t** _count_marked_bytes;
   614   // Card index of the bottom of the G1 heap. Used for biasing indices into
   615   // the card bitmaps.
   616   intptr_t _heap_bottom_card_num;
   618   // Set to true when initialization is complete
   619   bool _completed_initialization;
   621 public:
   622   // Manipulation of the global mark stack.
   623   // Notice that the first mark_stack_push is CAS-based, whereas the
   624   // two below are Mutex-based. This is OK since the first one is only
   625   // called during evacuation pauses and doesn't compete with the
   626   // other two (which are called by the marking tasks during
   627   // concurrent marking or remark).
   628   bool mark_stack_push(oop p) {
   629     _markStack.par_push(p);
   630     if (_markStack.overflow()) {
   631       set_has_overflown();
   632       return false;
   633     }
   634     return true;
   635   }
   636   bool mark_stack_push(oop* arr, int n) {
   637     _markStack.par_push_arr(arr, n);
   638     if (_markStack.overflow()) {
   639       set_has_overflown();
   640       return false;
   641     }
   642     return true;
   643   }
   644   void mark_stack_pop(oop* arr, int max, int* n) {
   645     _markStack.par_pop_arr(arr, max, n);
   646   }
   647   size_t mark_stack_size()                { return _markStack.size(); }
   648   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
   649   bool mark_stack_overflow()              { return _markStack.overflow(); }
   650   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
   652   CMRootRegions* root_regions() { return &_root_regions; }
   654   bool concurrent_marking_in_progress() {
   655     return _concurrent_marking_in_progress;
   656   }
   657   void set_concurrent_marking_in_progress() {
   658     _concurrent_marking_in_progress = true;
   659   }
   660   void clear_concurrent_marking_in_progress() {
   661     _concurrent_marking_in_progress = false;
   662   }
   664   void update_accum_task_vtime(int i, double vtime) {
   665     _accum_task_vtime[i] += vtime;
   666   }
   668   double all_task_accum_vtime() {
   669     double ret = 0.0;
   670     for (uint i = 0; i < _max_worker_id; ++i)
   671       ret += _accum_task_vtime[i];
   672     return ret;
   673   }
   675   // Attempts to steal an object from the task queues of other tasks
   676   bool try_stealing(uint worker_id, int* hash_seed, oop& obj) {
   677     return _task_queues->steal(worker_id, hash_seed, obj);
   678   }
   680   ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs);
   681   ~ConcurrentMark();
   683   ConcurrentMarkThread* cmThread() { return _cmThread; }
   685   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
   686   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
   688   // Returns the number of GC threads to be used in a concurrent
   689   // phase based on the number of GC threads being used in a STW
   690   // phase.
   691   uint scale_parallel_threads(uint n_par_threads);
   693   // Calculates the number of GC threads to be used in a concurrent phase.
   694   uint calc_parallel_marking_threads();
   696   // The following three are interaction between CM and
   697   // G1CollectedHeap
   699   // This notifies CM that a root during initial-mark needs to be
   700   // grayed. It is MT-safe. word_size is the size of the object in
   701   // words. It is passed explicitly as sometimes we cannot calculate
   702   // it from the given object because it might be in an inconsistent
   703   // state (e.g., in to-space and being copied). So the caller is
   704   // responsible for dealing with this issue (e.g., get the size from
   705   // the from-space image when the to-space image might be
   706   // inconsistent) and always passing the size. hr is the region that
   707   // contains the object and it's passed optionally from callers who
   708   // might already have it (no point in recalculating it).
   709   inline void grayRoot(oop obj, size_t word_size,
   710                        uint worker_id, HeapRegion* hr = NULL);
   712   // It iterates over the heap and for each object it comes across it
   713   // will dump the contents of its reference fields, as well as
   714   // liveness information for the object and its referents. The dump
   715   // will be written to a file with the following name:
   716   // G1PrintReachableBaseFile + "." + str.
   717   // vo decides whether the prev (vo == UsePrevMarking), the next
   718   // (vo == UseNextMarking) marking information, or the mark word
   719   // (vo == UseMarkWord) will be used to determine the liveness of
   720   // each object / referent.
   721   // If all is true, all objects in the heap will be dumped, otherwise
   722   // only the live ones. In the dump the following symbols / breviations
   723   // are used:
   724   //   M : an explicitly live object (its bitmap bit is set)
   725   //   > : an implicitly live object (over tams)
   726   //   O : an object outside the G1 heap (typically: in the perm gen)
   727   //   NOT : a reference field whose referent is not live
   728   //   AND MARKED : indicates that an object is both explicitly and
   729   //   implicitly live (it should be one or the other, not both)
   730   void print_reachable(const char* str,
   731                        VerifyOption vo, bool all) PRODUCT_RETURN;
   733   // Clear the next marking bitmap (will be called concurrently).
   734   void clearNextBitmap();
   736   // These two do the work that needs to be done before and after the
   737   // initial root checkpoint. Since this checkpoint can be done at two
   738   // different points (i.e. an explicit pause or piggy-backed on a
   739   // young collection), then it's nice to be able to easily share the
   740   // pre/post code. It might be the case that we can put everything in
   741   // the post method. TP
   742   void checkpointRootsInitialPre();
   743   void checkpointRootsInitialPost();
   745   // Scan all the root regions and mark everything reachable from
   746   // them.
   747   void scanRootRegions();
   749   // Scan a single root region and mark everything reachable from it.
   750   void scanRootRegion(HeapRegion* hr, uint worker_id);
   752   // Do concurrent phase of marking, to a tentative transitive closure.
   753   void markFromRoots();
   755   void checkpointRootsFinal(bool clear_all_soft_refs);
   756   void checkpointRootsFinalWork();
   757   void cleanup();
   758   void completeCleanup();
   760   // Mark in the previous bitmap.  NB: this is usually read-only, so use
   761   // this carefully!
   762   inline void markPrev(oop p);
   764   // Clears marks for all objects in the given range, for the prev,
   765   // next, or both bitmaps.  NB: the previous bitmap is usually
   766   // read-only, so use this carefully!
   767   void clearRangePrevBitmap(MemRegion mr);
   768   void clearRangeNextBitmap(MemRegion mr);
   769   void clearRangeBothBitmaps(MemRegion mr);
   771   // Notify data structures that a GC has started.
   772   void note_start_of_gc() {
   773     _markStack.note_start_of_gc();
   774   }
   776   // Notify data structures that a GC is finished.
   777   void note_end_of_gc() {
   778     _markStack.note_end_of_gc();
   779   }
   781   // Verify that there are no CSet oops on the stacks (taskqueues /
   782   // global mark stack), enqueued SATB buffers, per-thread SATB
   783   // buffers, and fingers (global / per-task). The boolean parameters
   784   // decide which of the above data structures to verify. If marking
   785   // is not in progress, it's a no-op.
   786   void verify_no_cset_oops(bool verify_stacks,
   787                            bool verify_enqueued_buffers,
   788                            bool verify_thread_buffers,
   789                            bool verify_fingers) PRODUCT_RETURN;
   791   // It is called at the end of an evacuation pause during marking so
   792   // that CM is notified of where the new end of the heap is. It
   793   // doesn't do anything if concurrent_marking_in_progress() is false,
   794   // unless the force parameter is true.
   795   void update_g1_committed(bool force = false);
   797   bool isMarked(oop p) const {
   798     assert(p != NULL && p->is_oop(), "expected an oop");
   799     HeapWord* addr = (HeapWord*)p;
   800     assert(addr >= _nextMarkBitMap->startWord() ||
   801            addr < _nextMarkBitMap->endWord(), "in a region");
   803     return _nextMarkBitMap->isMarked(addr);
   804   }
   806   inline bool not_yet_marked(oop p) const;
   808   // XXX Debug code
   809   bool containing_card_is_marked(void* p);
   810   bool containing_cards_are_marked(void* start, void* last);
   812   bool isPrevMarked(oop p) const {
   813     assert(p != NULL && p->is_oop(), "expected an oop");
   814     HeapWord* addr = (HeapWord*)p;
   815     assert(addr >= _prevMarkBitMap->startWord() ||
   816            addr < _prevMarkBitMap->endWord(), "in a region");
   818     return _prevMarkBitMap->isMarked(addr);
   819   }
   821   inline bool do_yield_check(uint worker_i = 0);
   822   inline bool should_yield();
   824   // Called to abort the marking cycle after a Full GC takes palce.
   825   void abort();
   827   // This prints the global/local fingers. It is used for debugging.
   828   NOT_PRODUCT(void print_finger();)
   830   void print_summary_info();
   832   void print_worker_threads_on(outputStream* st) const;
   834   void print_on_error(outputStream* st) const;
   836   // The following indicate whether a given verbose level has been
   837   // set. Notice that anything above stats is conditional to
   838   // _MARKING_VERBOSE_ having been set to 1
   839   bool verbose_stats() {
   840     return _verbose_level >= stats_verbose;
   841   }
   842   bool verbose_low() {
   843     return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
   844   }
   845   bool verbose_medium() {
   846     return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
   847   }
   848   bool verbose_high() {
   849     return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
   850   }
   852   // Liveness counting
   854   // Utility routine to set an exclusive range of cards on the given
   855   // card liveness bitmap
   856   inline void set_card_bitmap_range(BitMap* card_bm,
   857                                     BitMap::idx_t start_idx,
   858                                     BitMap::idx_t end_idx,
   859                                     bool is_par);
   861   // Returns the card number of the bottom of the G1 heap.
   862   // Used in biasing indices into accounting card bitmaps.
   863   intptr_t heap_bottom_card_num() const {
   864     return _heap_bottom_card_num;
   865   }
   867   // Returns the card bitmap for a given task or worker id.
   868   BitMap* count_card_bitmap_for(uint worker_id) {
   869     assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
   870     assert(_count_card_bitmaps != NULL, "uninitialized");
   871     BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
   872     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
   873     return task_card_bm;
   874   }
   876   // Returns the array containing the marked bytes for each region,
   877   // for the given worker or task id.
   878   size_t* count_marked_bytes_array_for(uint worker_id) {
   879     assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
   880     assert(_count_marked_bytes != NULL, "uninitialized");
   881     size_t* marked_bytes_array = _count_marked_bytes[worker_id];
   882     assert(marked_bytes_array != NULL, "uninitialized");
   883     return marked_bytes_array;
   884   }
   886   // Returns the index in the liveness accounting card table bitmap
   887   // for the given address
   888   inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
   890   // Counts the size of the given memory region in the the given
   891   // marked_bytes array slot for the given HeapRegion.
   892   // Sets the bits in the given card bitmap that are associated with the
   893   // cards that are spanned by the memory region.
   894   inline void count_region(MemRegion mr, HeapRegion* hr,
   895                            size_t* marked_bytes_array,
   896                            BitMap* task_card_bm);
   898   // Counts the given memory region in the task/worker counting
   899   // data structures for the given worker id.
   900   inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
   902   // Counts the given memory region in the task/worker counting
   903   // data structures for the given worker id.
   904   inline void count_region(MemRegion mr, uint worker_id);
   906   // Counts the given object in the given task/worker counting
   907   // data structures.
   908   inline void count_object(oop obj, HeapRegion* hr,
   909                            size_t* marked_bytes_array,
   910                            BitMap* task_card_bm);
   912   // Counts the given object in the task/worker counting data
   913   // structures for the given worker id.
   914   inline void count_object(oop obj, HeapRegion* hr, uint worker_id);
   916   // Attempts to mark the given object and, if successful, counts
   917   // the object in the given task/worker counting structures.
   918   inline bool par_mark_and_count(oop obj, HeapRegion* hr,
   919                                  size_t* marked_bytes_array,
   920                                  BitMap* task_card_bm);
   922   // Attempts to mark the given object and, if successful, counts
   923   // the object in the task/worker counting structures for the
   924   // given worker id.
   925   inline bool par_mark_and_count(oop obj, size_t word_size,
   926                                  HeapRegion* hr, uint worker_id);
   928   // Attempts to mark the given object and, if successful, counts
   929   // the object in the task/worker counting structures for the
   930   // given worker id.
   931   inline bool par_mark_and_count(oop obj, HeapRegion* hr, uint worker_id);
   933   // Similar to the above routine but we don't know the heap region that
   934   // contains the object to be marked/counted, which this routine looks up.
   935   inline bool par_mark_and_count(oop obj, uint worker_id);
   937   // Similar to the above routine but there are times when we cannot
   938   // safely calculate the size of obj due to races and we, therefore,
   939   // pass the size in as a parameter. It is the caller's reponsibility
   940   // to ensure that the size passed in for obj is valid.
   941   inline bool par_mark_and_count(oop obj, size_t word_size, uint worker_id);
   943   // Unconditionally mark the given object, and unconditinally count
   944   // the object in the counting structures for worker id 0.
   945   // Should *not* be called from parallel code.
   946   inline bool mark_and_count(oop obj, HeapRegion* hr);
   948   // Similar to the above routine but we don't know the heap region that
   949   // contains the object to be marked/counted, which this routine looks up.
   950   // Should *not* be called from parallel code.
   951   inline bool mark_and_count(oop obj);
   953   // Returns true if initialization was successfully completed.
   954   bool completed_initialization() const {
   955     return _completed_initialization;
   956   }
   958 protected:
   959   // Clear all the per-task bitmaps and arrays used to store the
   960   // counting data.
   961   void clear_all_count_data();
   963   // Aggregates the counting data for each worker/task
   964   // that was constructed while marking. Also sets
   965   // the amount of marked bytes for each region and
   966   // the top at concurrent mark count.
   967   void aggregate_count_data();
   969   // Verification routine
   970   void verify_count_data();
   971 };
   973 // A class representing a marking task.
   974 class CMTask : public TerminatorTerminator {
   975 private:
   976   enum PrivateConstants {
   977     // the regular clock call is called once the scanned words reaches
   978     // this limit
   979     words_scanned_period          = 12*1024,
   980     // the regular clock call is called once the number of visited
   981     // references reaches this limit
   982     refs_reached_period           = 384,
   983     // initial value for the hash seed, used in the work stealing code
   984     init_hash_seed                = 17,
   985     // how many entries will be transferred between global stack and
   986     // local queues
   987     global_stack_transfer_size    = 16
   988   };
   990   uint                        _worker_id;
   991   G1CollectedHeap*            _g1h;
   992   ConcurrentMark*             _cm;
   993   CMBitMap*                   _nextMarkBitMap;
   994   // the task queue of this task
   995   CMTaskQueue*                _task_queue;
   996 private:
   997   // the task queue set---needed for stealing
   998   CMTaskQueueSet*             _task_queues;
   999   // indicates whether the task has been claimed---this is only  for
  1000   // debugging purposes
  1001   bool                        _claimed;
  1003   // number of calls to this task
  1004   int                         _calls;
  1006   // when the virtual timer reaches this time, the marking step should
  1007   // exit
  1008   double                      _time_target_ms;
  1009   // the start time of the current marking step
  1010   double                      _start_time_ms;
  1012   // the oop closure used for iterations over oops
  1013   G1CMOopClosure*             _cm_oop_closure;
  1015   // the region this task is scanning, NULL if we're not scanning any
  1016   HeapRegion*                 _curr_region;
  1017   // the local finger of this task, NULL if we're not scanning a region
  1018   HeapWord*                   _finger;
  1019   // limit of the region this task is scanning, NULL if we're not scanning one
  1020   HeapWord*                   _region_limit;
  1022   // the number of words this task has scanned
  1023   size_t                      _words_scanned;
  1024   // When _words_scanned reaches this limit, the regular clock is
  1025   // called. Notice that this might be decreased under certain
  1026   // circumstances (i.e. when we believe that we did an expensive
  1027   // operation).
  1028   size_t                      _words_scanned_limit;
  1029   // the initial value of _words_scanned_limit (i.e. what it was
  1030   // before it was decreased).
  1031   size_t                      _real_words_scanned_limit;
  1033   // the number of references this task has visited
  1034   size_t                      _refs_reached;
  1035   // When _refs_reached reaches this limit, the regular clock is
  1036   // called. Notice this this might be decreased under certain
  1037   // circumstances (i.e. when we believe that we did an expensive
  1038   // operation).
  1039   size_t                      _refs_reached_limit;
  1040   // the initial value of _refs_reached_limit (i.e. what it was before
  1041   // it was decreased).
  1042   size_t                      _real_refs_reached_limit;
  1044   // used by the work stealing stuff
  1045   int                         _hash_seed;
  1046   // if this is true, then the task has aborted for some reason
  1047   bool                        _has_aborted;
  1048   // set when the task aborts because it has met its time quota
  1049   bool                        _has_timed_out;
  1050   // true when we're draining SATB buffers; this avoids the task
  1051   // aborting due to SATB buffers being available (as we're already
  1052   // dealing with them)
  1053   bool                        _draining_satb_buffers;
  1055   // number sequence of past step times
  1056   NumberSeq                   _step_times_ms;
  1057   // elapsed time of this task
  1058   double                      _elapsed_time_ms;
  1059   // termination time of this task
  1060   double                      _termination_time_ms;
  1061   // when this task got into the termination protocol
  1062   double                      _termination_start_time_ms;
  1064   // true when the task is during a concurrent phase, false when it is
  1065   // in the remark phase (so, in the latter case, we do not have to
  1066   // check all the things that we have to check during the concurrent
  1067   // phase, i.e. SATB buffer availability...)
  1068   bool                        _concurrent;
  1070   TruncatedSeq                _marking_step_diffs_ms;
  1072   // Counting data structures. Embedding the task's marked_bytes_array
  1073   // and card bitmap into the actual task saves having to go through
  1074   // the ConcurrentMark object.
  1075   size_t*                     _marked_bytes_array;
  1076   BitMap*                     _card_bm;
  1078   // LOTS of statistics related with this task
  1079 #if _MARKING_STATS_
  1080   NumberSeq                   _all_clock_intervals_ms;
  1081   double                      _interval_start_time_ms;
  1083   int                         _aborted;
  1084   int                         _aborted_overflow;
  1085   int                         _aborted_cm_aborted;
  1086   int                         _aborted_yield;
  1087   int                         _aborted_timed_out;
  1088   int                         _aborted_satb;
  1089   int                         _aborted_termination;
  1091   int                         _steal_attempts;
  1092   int                         _steals;
  1094   int                         _clock_due_to_marking;
  1095   int                         _clock_due_to_scanning;
  1097   int                         _local_pushes;
  1098   int                         _local_pops;
  1099   int                         _local_max_size;
  1100   int                         _objs_scanned;
  1102   int                         _global_pushes;
  1103   int                         _global_pops;
  1104   int                         _global_max_size;
  1106   int                         _global_transfers_to;
  1107   int                         _global_transfers_from;
  1109   int                         _regions_claimed;
  1110   int                         _objs_found_on_bitmap;
  1112   int                         _satb_buffers_processed;
  1113 #endif // _MARKING_STATS_
  1115   // it updates the local fields after this task has claimed
  1116   // a new region to scan
  1117   void setup_for_region(HeapRegion* hr);
  1118   // it brings up-to-date the limit of the region
  1119   void update_region_limit();
  1121   // called when either the words scanned or the refs visited limit
  1122   // has been reached
  1123   void reached_limit();
  1124   // recalculates the words scanned and refs visited limits
  1125   void recalculate_limits();
  1126   // decreases the words scanned and refs visited limits when we reach
  1127   // an expensive operation
  1128   void decrease_limits();
  1129   // it checks whether the words scanned or refs visited reached their
  1130   // respective limit and calls reached_limit() if they have
  1131   void check_limits() {
  1132     if (_words_scanned >= _words_scanned_limit ||
  1133         _refs_reached >= _refs_reached_limit) {
  1134       reached_limit();
  1137   // this is supposed to be called regularly during a marking step as
  1138   // it checks a bunch of conditions that might cause the marking step
  1139   // to abort
  1140   void regular_clock_call();
  1141   bool concurrent() { return _concurrent; }
  1143 public:
  1144   // It resets the task; it should be called right at the beginning of
  1145   // a marking phase.
  1146   void reset(CMBitMap* _nextMarkBitMap);
  1147   // it clears all the fields that correspond to a claimed region.
  1148   void clear_region_fields();
  1150   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
  1152   // The main method of this class which performs a marking step
  1153   // trying not to exceed the given duration. However, it might exit
  1154   // prematurely, according to some conditions (i.e. SATB buffers are
  1155   // available for processing).
  1156   void do_marking_step(double target_ms,
  1157                        bool do_termination,
  1158                        bool is_serial);
  1160   // These two calls start and stop the timer
  1161   void record_start_time() {
  1162     _elapsed_time_ms = os::elapsedTime() * 1000.0;
  1164   void record_end_time() {
  1165     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
  1168   // returns the worker ID associated with this task.
  1169   uint worker_id() { return _worker_id; }
  1171   // From TerminatorTerminator. It determines whether this task should
  1172   // exit the termination protocol after it's entered it.
  1173   virtual bool should_exit_termination();
  1175   // Resets the local region fields after a task has finished scanning a
  1176   // region; or when they have become stale as a result of the region
  1177   // being evacuated.
  1178   void giveup_current_region();
  1180   HeapWord* finger()            { return _finger; }
  1182   bool has_aborted()            { return _has_aborted; }
  1183   void set_has_aborted()        { _has_aborted = true; }
  1184   void clear_has_aborted()      { _has_aborted = false; }
  1185   bool has_timed_out()          { return _has_timed_out; }
  1186   bool claimed()                { return _claimed; }
  1188   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
  1190   // It grays the object by marking it and, if necessary, pushing it
  1191   // on the local queue
  1192   inline void deal_with_reference(oop obj);
  1194   // It scans an object and visits its children.
  1195   void scan_object(oop obj);
  1197   // It pushes an object on the local queue.
  1198   inline void push(oop obj);
  1200   // These two move entries to/from the global stack.
  1201   void move_entries_to_global_stack();
  1202   void get_entries_from_global_stack();
  1204   // It pops and scans objects from the local queue. If partially is
  1205   // true, then it stops when the queue size is of a given limit. If
  1206   // partially is false, then it stops when the queue is empty.
  1207   void drain_local_queue(bool partially);
  1208   // It moves entries from the global stack to the local queue and
  1209   // drains the local queue. If partially is true, then it stops when
  1210   // both the global stack and the local queue reach a given size. If
  1211   // partially if false, it tries to empty them totally.
  1212   void drain_global_stack(bool partially);
  1213   // It keeps picking SATB buffers and processing them until no SATB
  1214   // buffers are available.
  1215   void drain_satb_buffers();
  1217   // moves the local finger to a new location
  1218   inline void move_finger_to(HeapWord* new_finger) {
  1219     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
  1220     _finger = new_finger;
  1223   CMTask(uint worker_id, ConcurrentMark *cm,
  1224          size_t* marked_bytes, BitMap* card_bm,
  1225          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
  1227   // it prints statistics associated with this task
  1228   void print_stats();
  1230 #if _MARKING_STATS_
  1231   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
  1232 #endif // _MARKING_STATS_
  1233 };
  1235 // Class that's used to to print out per-region liveness
  1236 // information. It's currently used at the end of marking and also
  1237 // after we sort the old regions at the end of the cleanup operation.
  1238 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
  1239 private:
  1240   outputStream* _out;
  1242   // Accumulators for these values.
  1243   size_t _total_used_bytes;
  1244   size_t _total_capacity_bytes;
  1245   size_t _total_prev_live_bytes;
  1246   size_t _total_next_live_bytes;
  1248   // These are set up when we come across a "stars humongous" region
  1249   // (as this is where most of this information is stored, not in the
  1250   // subsequent "continues humongous" regions). After that, for every
  1251   // region in a given humongous region series we deduce the right
  1252   // values for it by simply subtracting the appropriate amount from
  1253   // these fields. All these values should reach 0 after we've visited
  1254   // the last region in the series.
  1255   size_t _hum_used_bytes;
  1256   size_t _hum_capacity_bytes;
  1257   size_t _hum_prev_live_bytes;
  1258   size_t _hum_next_live_bytes;
  1260   static double perc(size_t val, size_t total) {
  1261     if (total == 0) {
  1262       return 0.0;
  1263     } else {
  1264       return 100.0 * ((double) val / (double) total);
  1268   static double bytes_to_mb(size_t val) {
  1269     return (double) val / (double) M;
  1272   // See the .cpp file.
  1273   size_t get_hum_bytes(size_t* hum_bytes);
  1274   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
  1275                      size_t* prev_live_bytes, size_t* next_live_bytes);
  1277 public:
  1278   // The header and footer are printed in the constructor and
  1279   // destructor respectively.
  1280   G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
  1281   virtual bool doHeapRegion(HeapRegion* r);
  1282   ~G1PrintRegionLivenessInfoClosure();
  1283 };
  1285 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial