src/share/vm/runtime/safepoint.cpp

Tue, 16 Feb 2010 16:17:46 -0800

author
kvn
date
Tue, 16 Feb 2010 16:17:46 -0800
changeset 1698
e7b1cc79bd25
parent 1438
528d98fe1037
child 1726
4b0f2f4918ed
permissions
-rw-r--r--

6926697: "optimized" VM build failed: The type "AdapterHandlerTableIterator" is incomplete
Summary: Define AdapterHandlerTableIterator class as non product instead of debug.
Reviewed-by: never

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_safepoint.cpp.incl"
    28 // --------------------------------------------------------------------------------------------------
    29 // Implementation of Safepoint begin/end
    31 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
    32 volatile int  SafepointSynchronize::_waiting_to_block = 0;
    33 jlong SafepointSynchronize::_last_safepoint = 0;
    34 volatile int SafepointSynchronize::_safepoint_counter = 0;
    35 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
    36 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
    37 static bool timeout_error_printed = false;
    39 // Roll all threads forward to a safepoint and suspend them all
    40 void SafepointSynchronize::begin() {
    42   Thread* myThread = Thread::current();
    43   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
    45   _last_safepoint = os::javaTimeNanos();
    47 #ifndef SERIALGC
    48   if (UseConcMarkSweepGC) {
    49     // In the future we should investigate whether CMS can use the
    50     // more-general mechanism below.  DLD (01/05).
    51     ConcurrentMarkSweepThread::synchronize(false);
    52   } else if (UseG1GC) {
    53     ConcurrentGCThread::safepoint_synchronize();
    54   }
    55 #endif // SERIALGC
    57   // By getting the Threads_lock, we assure that no threads are about to start or
    58   // exit. It is released again in SafepointSynchronize::end().
    59   Threads_lock->lock();
    61   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
    63   int nof_threads = Threads::number_of_threads();
    65   if (TraceSafepoint) {
    66     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
    67   }
    69   RuntimeService::record_safepoint_begin();
    71   {
    72   MutexLocker mu(Safepoint_lock);
    74   // Set number of threads to wait for, before we initiate the callbacks
    75   _waiting_to_block = nof_threads;
    76   TryingToBlock     = 0 ;
    77   int still_running = nof_threads;
    79   // Save the starting time, so that it can be compared to see if this has taken
    80   // too long to complete.
    81   jlong safepoint_limit_time;
    82   timeout_error_printed = false;
    84   // PrintSafepointStatisticsTimeout can be specified separately. When
    85   // specified, PrintSafepointStatistics will be set to true in
    86   // deferred_initialize_stat method. The initialization has to be done
    87   // early enough to avoid any races. See bug 6880029 for details.
    88   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
    89     deferred_initialize_stat();
    90   }
    92   // Begin the process of bringing the system to a safepoint.
    93   // Java threads can be in several different states and are
    94   // stopped by different mechanisms:
    95   //
    96   //  1. Running interpreted
    97   //     The interpeter dispatch table is changed to force it to
    98   //     check for a safepoint condition between bytecodes.
    99   //  2. Running in native code
   100   //     When returning from the native code, a Java thread must check
   101   //     the safepoint _state to see if we must block.  If the
   102   //     VM thread sees a Java thread in native, it does
   103   //     not wait for this thread to block.  The order of the memory
   104   //     writes and reads of both the safepoint state and the Java
   105   //     threads state is critical.  In order to guarantee that the
   106   //     memory writes are serialized with respect to each other,
   107   //     the VM thread issues a memory barrier instruction
   108   //     (on MP systems).  In order to avoid the overhead of issuing
   109   //     a memory barrier for each Java thread making native calls, each Java
   110   //     thread performs a write to a single memory page after changing
   111   //     the thread state.  The VM thread performs a sequence of
   112   //     mprotect OS calls which forces all previous writes from all
   113   //     Java threads to be serialized.  This is done in the
   114   //     os::serialize_thread_states() call.  This has proven to be
   115   //     much more efficient than executing a membar instruction
   116   //     on every call to native code.
   117   //  3. Running compiled Code
   118   //     Compiled code reads a global (Safepoint Polling) page that
   119   //     is set to fault if we are trying to get to a safepoint.
   120   //  4. Blocked
   121   //     A thread which is blocked will not be allowed to return from the
   122   //     block condition until the safepoint operation is complete.
   123   //  5. In VM or Transitioning between states
   124   //     If a Java thread is currently running in the VM or transitioning
   125   //     between states, the safepointing code will wait for the thread to
   126   //     block itself when it attempts transitions to a new state.
   127   //
   128   _state            = _synchronizing;
   129   OrderAccess::fence();
   131   // Flush all thread states to memory
   132   if (!UseMembar) {
   133     os::serialize_thread_states();
   134   }
   136   // Make interpreter safepoint aware
   137   Interpreter::notice_safepoints();
   139   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
   140     // Make polling safepoint aware
   141     guarantee (PageArmed == 0, "invariant") ;
   142     PageArmed = 1 ;
   143     os::make_polling_page_unreadable();
   144   }
   146   // Consider using active_processor_count() ... but that call is expensive.
   147   int ncpus = os::processor_count() ;
   149 #ifdef ASSERT
   150   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   151     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
   152   }
   153 #endif // ASSERT
   155   if (SafepointTimeout)
   156     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
   158   // Iterate through all threads until it have been determined how to stop them all at a safepoint
   159   unsigned int iterations = 0;
   160   int steps = 0 ;
   161   while(still_running > 0) {
   162     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   163       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
   164       ThreadSafepointState *cur_state = cur->safepoint_state();
   165       if (cur_state->is_running()) {
   166         cur_state->examine_state_of_thread();
   167         if (!cur_state->is_running()) {
   168            still_running--;
   169            // consider adjusting steps downward:
   170            //   steps = 0
   171            //   steps -= NNN
   172            //   steps >>= 1
   173            //   steps = MIN(steps, 2000-100)
   174            //   if (iterations != 0) steps -= NNN
   175         }
   176         if (TraceSafepoint && Verbose) cur_state->print();
   177       }
   178     }
   180     if (PrintSafepointStatistics && iterations == 0) {
   181       begin_statistics(nof_threads, still_running);
   182     }
   184     if (still_running > 0) {
   185       // Check for if it takes to long
   186       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
   187         print_safepoint_timeout(_spinning_timeout);
   188       }
   190       // Spin to avoid context switching.
   191       // There's a tension between allowing the mutators to run (and rendezvous)
   192       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
   193       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
   194       // spinning by the VM thread on a saturated system can increase rendezvous latency.
   195       // Blocking or yielding incur their own penalties in the form of context switching
   196       // and the resultant loss of $ residency.
   197       //
   198       // Further complicating matters is that yield() does not work as naively expected
   199       // on many platforms -- yield() does not guarantee that any other ready threads
   200       // will run.   As such we revert yield_all() after some number of iterations.
   201       // Yield_all() is implemented as a short unconditional sleep on some platforms.
   202       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
   203       // can actually increase the time it takes the VM thread to detect that a system-wide
   204       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
   205       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
   206       // In that case the mutators will be stalled waiting for the safepoint to complete and the
   207       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
   208       // will eventually wake up and detect that all mutators are safe, at which point
   209       // we'll again make progress.
   210       //
   211       // Beware too that that the VMThread typically runs at elevated priority.
   212       // Its default priority is higher than the default mutator priority.
   213       // Obviously, this complicates spinning.
   214       //
   215       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
   216       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
   217       //
   218       // See the comments in synchronizer.cpp for additional remarks on spinning.
   219       //
   220       // In the future we might:
   221       // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
   222       //    This is tricky as the path used by a thread exiting the JVM (say on
   223       //    on JNI call-out) simply stores into its state field.  The burden
   224       //    is placed on the VM thread, which must poll (spin).
   225       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
   226       //    we might aggressively scan the stacks of threads that are already safe.
   227       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
   228       //    If all the mutators are ONPROC there's no reason to sleep or yield.
   229       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
   230       // 5. Check system saturation.  If the system is not fully saturated then
   231       //    simply spin and avoid sleep/yield.
   232       // 6. As still-running mutators rendezvous they could unpark the sleeping
   233       //    VMthread.  This works well for still-running mutators that become
   234       //    safe.  The VMthread must still poll for mutators that call-out.
   235       // 7. Drive the policy on time-since-begin instead of iterations.
   236       // 8. Consider making the spin duration a function of the # of CPUs:
   237       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
   238       //    Alternately, instead of counting iterations of the outer loop
   239       //    we could count the # of threads visited in the inner loop, above.
   240       // 9. On windows consider using the return value from SwitchThreadTo()
   241       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
   243       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
   244          guarantee (PageArmed == 0, "invariant") ;
   245          PageArmed = 1 ;
   246          os::make_polling_page_unreadable();
   247       }
   249       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
   250       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
   251       ++steps ;
   252       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
   253         SpinPause() ;     // MP-Polite spin
   254       } else
   255       if (steps < DeferThrSuspendLoopCount) {
   256         os::NakedYield() ;
   257       } else {
   258         os::yield_all(steps) ;
   259         // Alternately, the VM thread could transiently depress its scheduling priority or
   260         // transiently increase the priority of the tardy mutator(s).
   261       }
   263       iterations ++ ;
   264     }
   265     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
   266   }
   267   assert(still_running == 0, "sanity check");
   269   if (PrintSafepointStatistics) {
   270     update_statistics_on_spin_end();
   271   }
   273   // wait until all threads are stopped
   274   while (_waiting_to_block > 0) {
   275     if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
   276     if (!SafepointTimeout || timeout_error_printed) {
   277       Safepoint_lock->wait(true);  // true, means with no safepoint checks
   278     } else {
   279       // Compute remaining time
   280       jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
   282       // If there is no remaining time, then there is an error
   283       if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
   284         print_safepoint_timeout(_blocking_timeout);
   285       }
   286     }
   287   }
   288   assert(_waiting_to_block == 0, "sanity check");
   290 #ifndef PRODUCT
   291   if (SafepointTimeout) {
   292     jlong current_time = os::javaTimeNanos();
   293     if (safepoint_limit_time < current_time) {
   294       tty->print_cr("# SafepointSynchronize: Finished after "
   295                     INT64_FORMAT_W(6) " ms",
   296                     ((current_time - safepoint_limit_time) / MICROUNITS +
   297                      SafepointTimeoutDelay));
   298     }
   299   }
   300 #endif
   302   assert((_safepoint_counter & 0x1) == 0, "must be even");
   303   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   304   _safepoint_counter ++;
   306   // Record state
   307   _state = _synchronized;
   309   OrderAccess::fence();
   311   if (TraceSafepoint) {
   312     VM_Operation *op = VMThread::vm_operation();
   313     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
   314   }
   316   RuntimeService::record_safepoint_synchronized();
   317   if (PrintSafepointStatistics) {
   318     update_statistics_on_sync_end(os::javaTimeNanos());
   319   }
   321   // Call stuff that needs to be run when a safepoint is just about to be completed
   322   do_cleanup_tasks();
   323   }
   324 }
   326 // Wake up all threads, so they are ready to resume execution after the safepoint
   327 // operation has been carried out
   328 void SafepointSynchronize::end() {
   330   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   331   assert((_safepoint_counter & 0x1) == 1, "must be odd");
   332   _safepoint_counter ++;
   333   // memory fence isn't required here since an odd _safepoint_counter
   334   // value can do no harm and a fence is issued below anyway.
   336   DEBUG_ONLY(Thread* myThread = Thread::current();)
   337   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
   339   if (PrintSafepointStatistics) {
   340     end_statistics(os::javaTimeNanos());
   341   }
   343 #ifdef ASSERT
   344   // A pending_exception cannot be installed during a safepoint.  The threads
   345   // may install an async exception after they come back from a safepoint into
   346   // pending_exception after they unblock.  But that should happen later.
   347   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
   348     assert (!(cur->has_pending_exception() &&
   349               cur->safepoint_state()->is_at_poll_safepoint()),
   350             "safepoint installed a pending exception");
   351   }
   352 #endif // ASSERT
   354   if (PageArmed) {
   355     // Make polling safepoint aware
   356     os::make_polling_page_readable();
   357     PageArmed = 0 ;
   358   }
   360   // Remove safepoint check from interpreter
   361   Interpreter::ignore_safepoints();
   363   {
   364     MutexLocker mu(Safepoint_lock);
   366     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
   368     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
   369     // when they get restarted.
   370     _state = _not_synchronized;
   371     OrderAccess::fence();
   373     if (TraceSafepoint) {
   374        tty->print_cr("Leaving safepoint region");
   375     }
   377     // Start suspended threads
   378     for(JavaThread *current = Threads::first(); current; current = current->next()) {
   379       // A problem occurring on Solaris is when attempting to restart threads
   380       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
   381       // to the next one (since it has been running the longest).  We then have
   382       // to wait for a cpu to become available before we can continue restarting
   383       // threads.
   384       // FIXME: This causes the performance of the VM to degrade when active and with
   385       // large numbers of threads.  Apparently this is due to the synchronous nature
   386       // of suspending threads.
   387       //
   388       // TODO-FIXME: the comments above are vestigial and no longer apply.
   389       // Furthermore, using solaris' schedctl in this particular context confers no benefit
   390       if (VMThreadHintNoPreempt) {
   391         os::hint_no_preempt();
   392       }
   393       ThreadSafepointState* cur_state = current->safepoint_state();
   394       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
   395       cur_state->restart();
   396       assert(cur_state->is_running(), "safepoint state has not been reset");
   397     }
   399     RuntimeService::record_safepoint_end();
   401     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
   402     // blocked in signal_thread_blocked
   403     Threads_lock->unlock();
   405   }
   406 #ifndef SERIALGC
   407   // If there are any concurrent GC threads resume them.
   408   if (UseConcMarkSweepGC) {
   409     ConcurrentMarkSweepThread::desynchronize(false);
   410   } else if (UseG1GC) {
   411     ConcurrentGCThread::safepoint_desynchronize();
   412   }
   413 #endif // SERIALGC
   414 }
   416 bool SafepointSynchronize::is_cleanup_needed() {
   417   // Need a safepoint if some inline cache buffers is non-empty
   418   if (!InlineCacheBuffer::is_empty()) return true;
   419   return false;
   420 }
   422 jlong CounterDecay::_last_timestamp = 0;
   424 static void do_method(methodOop m) {
   425   m->invocation_counter()->decay();
   426 }
   428 void CounterDecay::decay() {
   429   _last_timestamp = os::javaTimeMillis();
   431   // This operation is going to be performed only at the end of a safepoint
   432   // and hence GC's will not be going on, all Java mutators are suspended
   433   // at this point and hence SystemDictionary_lock is also not needed.
   434   assert(SafepointSynchronize::is_at_safepoint(), "can only be executed at a safepoint");
   435   int nclasses = SystemDictionary::number_of_classes();
   436   double classes_per_tick = nclasses * (CounterDecayMinIntervalLength * 1e-3 /
   437                                         CounterHalfLifeTime);
   438   for (int i = 0; i < classes_per_tick; i++) {
   439     klassOop k = SystemDictionary::try_get_next_class();
   440     if (k != NULL && k->klass_part()->oop_is_instance()) {
   441       instanceKlass::cast(k)->methods_do(do_method);
   442     }
   443   }
   444 }
   446 // Various cleaning tasks that should be done periodically at safepoints
   447 void SafepointSynchronize::do_cleanup_tasks() {
   448   jlong cleanup_time;
   450   // Update fat-monitor pool, since this is a safepoint.
   451   if (TraceSafepoint) {
   452     cleanup_time = os::javaTimeNanos();
   453   }
   455   ObjectSynchronizer::deflate_idle_monitors();
   456   InlineCacheBuffer::update_inline_caches();
   457   if(UseCounterDecay && CounterDecay::is_decay_needed()) {
   458     CounterDecay::decay();
   459   }
   460   NMethodSweeper::sweep();
   462   if (TraceSafepoint) {
   463     tty->print_cr("do_cleanup_tasks takes "INT64_FORMAT_W(6) "ms",
   464                   (os::javaTimeNanos() - cleanup_time) / MICROUNITS);
   465   }
   466 }
   469 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
   470   switch(state) {
   471   case _thread_in_native:
   472     // native threads are safe if they have no java stack or have walkable stack
   473     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
   475    // blocked threads should have already have walkable stack
   476   case _thread_blocked:
   477     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
   478     return true;
   480   default:
   481     return false;
   482   }
   483 }
   486 // -------------------------------------------------------------------------------------------------------
   487 // Implementation of Safepoint callback point
   489 void SafepointSynchronize::block(JavaThread *thread) {
   490   assert(thread != NULL, "thread must be set");
   491   assert(thread->is_Java_thread(), "not a Java thread");
   493   // Threads shouldn't block if they are in the middle of printing, but...
   494   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
   496   // Only bail from the block() call if the thread is gone from the
   497   // thread list; starting to exit should still block.
   498   if (thread->is_terminated()) {
   499      // block current thread if we come here from native code when VM is gone
   500      thread->block_if_vm_exited();
   502      // otherwise do nothing
   503      return;
   504   }
   506   JavaThreadState state = thread->thread_state();
   507   thread->frame_anchor()->make_walkable(thread);
   509   // Check that we have a valid thread_state at this point
   510   switch(state) {
   511     case _thread_in_vm_trans:
   512     case _thread_in_Java:        // From compiled code
   514       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
   515       // we pretend we are still in the VM.
   516       thread->set_thread_state(_thread_in_vm);
   518       if (is_synchronizing()) {
   519          Atomic::inc (&TryingToBlock) ;
   520       }
   522       // We will always be holding the Safepoint_lock when we are examine the state
   523       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
   524       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
   525       Safepoint_lock->lock_without_safepoint_check();
   526       if (is_synchronizing()) {
   527         // Decrement the number of threads to wait for and signal vm thread
   528         assert(_waiting_to_block > 0, "sanity check");
   529         _waiting_to_block--;
   530         thread->safepoint_state()->set_has_called_back(true);
   532         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
   533         if (_waiting_to_block == 0) {
   534           Safepoint_lock->notify_all();
   535         }
   536       }
   538       // We transition the thread to state _thread_blocked here, but
   539       // we can't do our usual check for external suspension and then
   540       // self-suspend after the lock_without_safepoint_check() call
   541       // below because we are often called during transitions while
   542       // we hold different locks. That would leave us suspended while
   543       // holding a resource which results in deadlocks.
   544       thread->set_thread_state(_thread_blocked);
   545       Safepoint_lock->unlock();
   547       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
   548       // the entire safepoint, the threads will all line up here during the safepoint.
   549       Threads_lock->lock_without_safepoint_check();
   550       // restore original state. This is important if the thread comes from compiled code, so it
   551       // will continue to execute with the _thread_in_Java state.
   552       thread->set_thread_state(state);
   553       Threads_lock->unlock();
   554       break;
   556     case _thread_in_native_trans:
   557     case _thread_blocked_trans:
   558     case _thread_new_trans:
   559       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
   560         thread->print_thread_state();
   561         fatal("Deadlock in safepoint code.  "
   562               "Should have called back to the VM before blocking.");
   563       }
   565       // We transition the thread to state _thread_blocked here, but
   566       // we can't do our usual check for external suspension and then
   567       // self-suspend after the lock_without_safepoint_check() call
   568       // below because we are often called during transitions while
   569       // we hold different locks. That would leave us suspended while
   570       // holding a resource which results in deadlocks.
   571       thread->set_thread_state(_thread_blocked);
   573       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
   574       // the safepoint code might still be waiting for it to block. We need to change the state here,
   575       // so it can see that it is at a safepoint.
   577       // Block until the safepoint operation is completed.
   578       Threads_lock->lock_without_safepoint_check();
   580       // Restore state
   581       thread->set_thread_state(state);
   583       Threads_lock->unlock();
   584       break;
   586     default:
   587      fatal1("Illegal threadstate encountered: %d", state);
   588   }
   590   // Check for pending. async. exceptions or suspends - except if the
   591   // thread was blocked inside the VM. has_special_runtime_exit_condition()
   592   // is called last since it grabs a lock and we only want to do that when
   593   // we must.
   594   //
   595   // Note: we never deliver an async exception at a polling point as the
   596   // compiler may not have an exception handler for it. The polling
   597   // code will notice the async and deoptimize and the exception will
   598   // be delivered. (Polling at a return point is ok though). Sure is
   599   // a lot of bother for a deprecated feature...
   600   //
   601   // We don't deliver an async exception if the thread state is
   602   // _thread_in_native_trans so JNI functions won't be called with
   603   // a surprising pending exception. If the thread state is going back to java,
   604   // async exception is checked in check_special_condition_for_native_trans().
   606   if (state != _thread_blocked_trans &&
   607       state != _thread_in_vm_trans &&
   608       thread->has_special_runtime_exit_condition()) {
   609     thread->handle_special_runtime_exit_condition(
   610       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
   611   }
   612 }
   614 // ------------------------------------------------------------------------------------------------------
   615 // Exception handlers
   617 #ifndef PRODUCT
   618 #ifdef _LP64
   619 #define PTR_PAD ""
   620 #else
   621 #define PTR_PAD "        "
   622 #endif
   624 static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
   625   bool is_oop = newptr ? ((oop)newptr)->is_oop() : false;
   626   tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
   627                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
   628                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
   629 }
   631 static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
   632   bool is_oop = newptr ? ((oop)(intptr_t)newptr)->is_oop() : false;
   633   tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
   634                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
   635                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
   636 }
   638 #ifdef SPARC
   639 static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
   640 #ifdef _LP64
   641   tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
   642   const int incr = 1;           // Increment to skip a long, in units of intptr_t
   643 #else
   644   tty->print_cr("--------+--address-+------before-----------+-------after----------+");
   645   const int incr = 2;           // Increment to skip a long, in units of intptr_t
   646 #endif
   647   tty->print_cr("---SP---|");
   648   for( int i=0; i<16; i++ ) {
   649     tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   650   tty->print_cr("--------|");
   651   for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
   652     tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   653   tty->print("     pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
   654   tty->print_cr("--------|");
   655   tty->print(" G1     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   656   tty->print(" G3     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   657   tty->print(" G4     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   658   tty->print(" G5     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   659   tty->print_cr(" FSR    |"PTR_FORMAT" "PTR64_FORMAT"       "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
   660   old_sp += incr; new_sp += incr; was_oops += incr;
   661   // Skip the floats
   662   tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
   663   tty->print_cr("---FP---|");
   664   old_sp += incr*32;  new_sp += incr*32;  was_oops += incr*32;
   665   for( int i2=0; i2<16; i2++ ) {
   666     tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   667   tty->print_cr("");
   668 }
   669 #endif  // SPARC
   670 #endif  // PRODUCT
   673 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
   674   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
   675   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
   676   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
   678   // Uncomment this to get some serious before/after printing of the
   679   // Sparc safepoint-blob frame structure.
   680   /*
   681   intptr_t* sp = thread->last_Java_sp();
   682   intptr_t stack_copy[150];
   683   for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
   684   bool was_oops[150];
   685   for( int i=0; i<150; i++ )
   686     was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
   687   */
   689   if (ShowSafepointMsgs) {
   690     tty->print("handle_polling_page_exception: ");
   691   }
   693   if (PrintSafepointStatistics) {
   694     inc_page_trap_count();
   695   }
   697   ThreadSafepointState* state = thread->safepoint_state();
   699   state->handle_polling_page_exception();
   700   // print_me(sp,stack_copy,was_oops);
   701 }
   704 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
   705   if (!timeout_error_printed) {
   706     timeout_error_printed = true;
   707     // Print out the thread infor which didn't reach the safepoint for debugging
   708     // purposes (useful when there are lots of threads in the debugger).
   709     tty->print_cr("");
   710     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
   711     if (reason ==  _spinning_timeout) {
   712       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
   713     } else if (reason == _blocking_timeout) {
   714       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
   715     }
   717     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
   718     ThreadSafepointState *cur_state;
   719     ResourceMark rm;
   720     for(JavaThread *cur_thread = Threads::first(); cur_thread;
   721         cur_thread = cur_thread->next()) {
   722       cur_state = cur_thread->safepoint_state();
   724       if (cur_thread->thread_state() != _thread_blocked &&
   725           ((reason == _spinning_timeout && cur_state->is_running()) ||
   726            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
   727         tty->print("# ");
   728         cur_thread->print();
   729         tty->print_cr("");
   730       }
   731     }
   732     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
   733   }
   735   // To debug the long safepoint, specify both DieOnSafepointTimeout &
   736   // ShowMessageBoxOnError.
   737   if (DieOnSafepointTimeout) {
   738     char msg[1024];
   739     VM_Operation *op = VMThread::vm_operation();
   740     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
   741             SafepointTimeoutDelay,
   742             op != NULL ? op->name() : "no vm operation");
   743     fatal(msg);
   744   }
   745 }
   748 // -------------------------------------------------------------------------------------------------------
   749 // Implementation of ThreadSafepointState
   751 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
   752   _thread = thread;
   753   _type   = _running;
   754   _has_called_back = false;
   755   _at_poll_safepoint = false;
   756 }
   758 void ThreadSafepointState::create(JavaThread *thread) {
   759   ThreadSafepointState *state = new ThreadSafepointState(thread);
   760   thread->set_safepoint_state(state);
   761 }
   763 void ThreadSafepointState::destroy(JavaThread *thread) {
   764   if (thread->safepoint_state()) {
   765     delete(thread->safepoint_state());
   766     thread->set_safepoint_state(NULL);
   767   }
   768 }
   770 void ThreadSafepointState::examine_state_of_thread() {
   771   assert(is_running(), "better be running or just have hit safepoint poll");
   773   JavaThreadState state = _thread->thread_state();
   775   // Check for a thread that is suspended. Note that thread resume tries
   776   // to grab the Threads_lock which we own here, so a thread cannot be
   777   // resumed during safepoint synchronization.
   779   // We check to see if this thread is suspended without locking to
   780   // avoid deadlocking with a third thread that is waiting for this
   781   // thread to be suspended. The third thread can notice the safepoint
   782   // that we're trying to start at the beginning of its SR_lock->wait()
   783   // call. If that happens, then the third thread will block on the
   784   // safepoint while still holding the underlying SR_lock. We won't be
   785   // able to get the SR_lock and we'll deadlock.
   786   //
   787   // We don't need to grab the SR_lock here for two reasons:
   788   // 1) The suspend flags are both volatile and are set with an
   789   //    Atomic::cmpxchg() call so we should see the suspended
   790   //    state right away.
   791   // 2) We're being called from the safepoint polling loop; if
   792   //    we don't see the suspended state on this iteration, then
   793   //    we'll come around again.
   794   //
   795   bool is_suspended = _thread->is_ext_suspended();
   796   if (is_suspended) {
   797     roll_forward(_at_safepoint);
   798     return;
   799   }
   801   // Some JavaThread states have an initial safepoint state of
   802   // running, but are actually at a safepoint. We will happily
   803   // agree and update the safepoint state here.
   804   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
   805       roll_forward(_at_safepoint);
   806       return;
   807   }
   809   if (state == _thread_in_vm) {
   810     roll_forward(_call_back);
   811     return;
   812   }
   814   // All other thread states will continue to run until they
   815   // transition and self-block in state _blocked
   816   // Safepoint polling in compiled code causes the Java threads to do the same.
   817   // Note: new threads may require a malloc so they must be allowed to finish
   819   assert(is_running(), "examine_state_of_thread on non-running thread");
   820   return;
   821 }
   823 // Returns true is thread could not be rolled forward at present position.
   824 void ThreadSafepointState::roll_forward(suspend_type type) {
   825   _type = type;
   827   switch(_type) {
   828     case _at_safepoint:
   829       SafepointSynchronize::signal_thread_at_safepoint();
   830       break;
   832     case _call_back:
   833       set_has_called_back(false);
   834       break;
   836     case _running:
   837     default:
   838       ShouldNotReachHere();
   839   }
   840 }
   842 void ThreadSafepointState::restart() {
   843   switch(type()) {
   844     case _at_safepoint:
   845     case _call_back:
   846       break;
   848     case _running:
   849     default:
   850        tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
   851                       _thread, _type);
   852        _thread->print();
   853       ShouldNotReachHere();
   854   }
   855   _type = _running;
   856   set_has_called_back(false);
   857 }
   860 void ThreadSafepointState::print_on(outputStream *st) const {
   861   const char *s;
   863   switch(_type) {
   864     case _running                : s = "_running";              break;
   865     case _at_safepoint           : s = "_at_safepoint";         break;
   866     case _call_back              : s = "_call_back";            break;
   867     default:
   868       ShouldNotReachHere();
   869   }
   871   st->print_cr("Thread: " INTPTR_FORMAT
   872               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
   873                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
   874                _at_poll_safepoint);
   876   _thread->print_thread_state_on(st);
   877 }
   880 // ---------------------------------------------------------------------------------------------------------------------
   882 // Block the thread at the safepoint poll or poll return.
   883 void ThreadSafepointState::handle_polling_page_exception() {
   885   // Check state.  block() will set thread state to thread_in_vm which will
   886   // cause the safepoint state _type to become _call_back.
   887   assert(type() == ThreadSafepointState::_running,
   888          "polling page exception on thread not running state");
   890   // Step 1: Find the nmethod from the return address
   891   if (ShowSafepointMsgs && Verbose) {
   892     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
   893   }
   894   address real_return_addr = thread()->saved_exception_pc();
   896   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
   897   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
   898   nmethod* nm = (nmethod*)cb;
   900   // Find frame of caller
   901   frame stub_fr = thread()->last_frame();
   902   CodeBlob* stub_cb = stub_fr.cb();
   903   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
   904   RegisterMap map(thread(), true);
   905   frame caller_fr = stub_fr.sender(&map);
   907   // Should only be poll_return or poll
   908   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
   910   // This is a poll immediately before a return. The exception handling code
   911   // has already had the effect of causing the return to occur, so the execution
   912   // will continue immediately after the call. In addition, the oopmap at the
   913   // return point does not mark the return value as an oop (if it is), so
   914   // it needs a handle here to be updated.
   915   if( nm->is_at_poll_return(real_return_addr) ) {
   916     // See if return type is an oop.
   917     bool return_oop = nm->method()->is_returning_oop();
   918     Handle return_value;
   919     if (return_oop) {
   920       // The oop result has been saved on the stack together with all
   921       // the other registers. In order to preserve it over GCs we need
   922       // to keep it in a handle.
   923       oop result = caller_fr.saved_oop_result(&map);
   924       assert(result == NULL || result->is_oop(), "must be oop");
   925       return_value = Handle(thread(), result);
   926       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
   927     }
   929     // Block the thread
   930     SafepointSynchronize::block(thread());
   932     // restore oop result, if any
   933     if (return_oop) {
   934       caller_fr.set_saved_oop_result(&map, return_value());
   935     }
   936   }
   938   // This is a safepoint poll. Verify the return address and block.
   939   else {
   940     set_at_poll_safepoint(true);
   942     // verify the blob built the "return address" correctly
   943     assert(real_return_addr == caller_fr.pc(), "must match");
   945     // Block the thread
   946     SafepointSynchronize::block(thread());
   947     set_at_poll_safepoint(false);
   949     // If we have a pending async exception deoptimize the frame
   950     // as otherwise we may never deliver it.
   951     if (thread()->has_async_condition()) {
   952       ThreadInVMfromJavaNoAsyncException __tiv(thread());
   953       VM_DeoptimizeFrame deopt(thread(), caller_fr.id());
   954       VMThread::execute(&deopt);
   955     }
   957     // If an exception has been installed we must check for a pending deoptimization
   958     // Deoptimize frame if exception has been thrown.
   960     if (thread()->has_pending_exception() ) {
   961       RegisterMap map(thread(), true);
   962       frame caller_fr = stub_fr.sender(&map);
   963       if (caller_fr.is_deoptimized_frame()) {
   964         // The exception patch will destroy registers that are still
   965         // live and will be needed during deoptimization. Defer the
   966         // Async exception should have defered the exception until the
   967         // next safepoint which will be detected when we get into
   968         // the interpreter so if we have an exception now things
   969         // are messed up.
   971         fatal("Exception installed and deoptimization is pending");
   972       }
   973     }
   974   }
   975 }
   978 //
   979 //                     Statistics & Instrumentations
   980 //
   981 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
   982 int    SafepointSynchronize::_cur_stat_index = 0;
   983 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
   984 julong SafepointSynchronize::_coalesced_vmop_count = 0;
   985 jlong  SafepointSynchronize::_max_sync_time = 0;
   987 // last_safepoint_start_time records the start time of last safepoint.
   988 static jlong  last_safepoint_start_time = 0;
   989 static jlong  sync_end_time = 0;
   990 static bool   need_to_track_page_armed_status = false;
   991 static bool   init_done = false;
   993 void SafepointSynchronize::deferred_initialize_stat() {
   994   if (init_done) return;
   996   if (PrintSafepointStatisticsCount <= 0) {
   997     fatal("Wrong PrintSafepointStatisticsCount");
   998   }
  1000   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
  1001   // be printed right away, in which case, _safepoint_stats will regress to
  1002   // a single element array. Otherwise, it is a circular ring buffer with default
  1003   // size of PrintSafepointStatisticsCount.
  1004   int stats_array_size;
  1005   if (PrintSafepointStatisticsTimeout > 0) {
  1006     stats_array_size = 1;
  1007     PrintSafepointStatistics = true;
  1008   } else {
  1009     stats_array_size = PrintSafepointStatisticsCount;
  1011   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
  1012                                                  * sizeof(SafepointStats));
  1013   guarantee(_safepoint_stats != NULL,
  1014             "not enough memory for safepoint instrumentation data");
  1016   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
  1017     need_to_track_page_armed_status = true;
  1020   tty->print("     vmop_name               "
  1021              "[threads: total initially_running wait_to_block] ");
  1022   tty->print("[time: spin block sync] "
  1023              "[vmop_time  time_elapsed] ");
  1025   // no page armed status printed out if it is always armed.
  1026   if (need_to_track_page_armed_status) {
  1027     tty->print("page_armed ");
  1030   tty->print_cr("page_trap_count");
  1032   init_done = true;
  1035 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
  1036   assert(init_done, "safepoint statistics array hasn't been initialized");
  1037   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1039   VM_Operation *op = VMThread::vm_operation();
  1040   spstat->_vmop_type = (op != NULL ? op->type() : -1);
  1041   if (op != NULL) {
  1042     _safepoint_reasons[spstat->_vmop_type]++;
  1045   spstat->_nof_total_threads = nof_threads;
  1046   spstat->_nof_initial_running_threads = nof_running;
  1047   spstat->_nof_threads_hit_page_trap = 0;
  1049   // Records the start time of spinning. The real time spent on spinning
  1050   // will be adjusted when spin is done. Same trick is applied for time
  1051   // spent on waiting for threads to block.
  1052   if (nof_running != 0) {
  1053     spstat->_time_to_spin = os::javaTimeNanos();
  1054   }  else {
  1055     spstat->_time_to_spin = 0;
  1058   if (last_safepoint_start_time == 0) {
  1059     spstat->_time_elapsed_since_last_safepoint = 0;
  1060   } else {
  1061     spstat->_time_elapsed_since_last_safepoint = _last_safepoint -
  1062       last_safepoint_start_time;
  1064   last_safepoint_start_time = _last_safepoint;
  1067 void SafepointSynchronize::update_statistics_on_spin_end() {
  1068   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1070   jlong cur_time = os::javaTimeNanos();
  1072   spstat->_nof_threads_wait_to_block = _waiting_to_block;
  1073   if (spstat->_nof_initial_running_threads != 0) {
  1074     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
  1077   if (need_to_track_page_armed_status) {
  1078     spstat->_page_armed = (PageArmed == 1);
  1081   // Records the start time of waiting for to block. Updated when block is done.
  1082   if (_waiting_to_block != 0) {
  1083     spstat->_time_to_wait_to_block = cur_time;
  1084   } else {
  1085     spstat->_time_to_wait_to_block = 0;
  1089 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
  1090   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1092   if (spstat->_nof_threads_wait_to_block != 0) {
  1093     spstat->_time_to_wait_to_block = end_time -
  1094       spstat->_time_to_wait_to_block;
  1097   // Records the end time of sync which will be used to calculate the total
  1098   // vm operation time. Again, the real time spending in syncing will be deducted
  1099   // from the start of the sync time later when end_statistics is called.
  1100   spstat->_time_to_sync = end_time - _last_safepoint;
  1101   if (spstat->_time_to_sync > _max_sync_time) {
  1102     _max_sync_time = spstat->_time_to_sync;
  1104   sync_end_time = end_time;
  1107 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
  1108   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1110   // Update the vm operation time.
  1111   spstat->_time_to_exec_vmop = vmop_end_time -  sync_end_time;
  1112   // Only the sync time longer than the specified
  1113   // PrintSafepointStatisticsTimeout will be printed out right away.
  1114   // By default, it is -1 meaning all samples will be put into the list.
  1115   if ( PrintSafepointStatisticsTimeout > 0) {
  1116     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1117       print_statistics();
  1119   } else {
  1120     // The safepoint statistics will be printed out when the _safepoin_stats
  1121     // array fills up.
  1122     if (_cur_stat_index != PrintSafepointStatisticsCount - 1) {
  1123       _cur_stat_index ++;
  1124     } else {
  1125       print_statistics();
  1126       _cur_stat_index = 0;
  1127       tty->print_cr("");
  1132 void SafepointSynchronize::print_statistics() {
  1133   int index;
  1134   SafepointStats* sstats = _safepoint_stats;
  1136   for (index = 0; index <= _cur_stat_index; index++) {
  1137     sstats = &_safepoint_stats[index];
  1138     tty->print("%-28s       ["
  1139                INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
  1140                "]   ",
  1141                sstats->_vmop_type == -1 ? "no vm operation" :
  1142                VM_Operation::name(sstats->_vmop_type),
  1143                sstats->_nof_total_threads,
  1144                sstats->_nof_initial_running_threads,
  1145                sstats->_nof_threads_wait_to_block);
  1146     // "/ MICROUNITS " is to convert the unit from nanos to millis.
  1147     tty->print("       ["
  1148                INT64_FORMAT_W(6)INT64_FORMAT_W(6)INT64_FORMAT_W(6)
  1149                "]     "
  1150                "["INT64_FORMAT_W(6)INT64_FORMAT_W(9) "]          ",
  1151                sstats->_time_to_spin / MICROUNITS,
  1152                sstats->_time_to_wait_to_block / MICROUNITS,
  1153                sstats->_time_to_sync / MICROUNITS,
  1154                sstats->_time_to_exec_vmop / MICROUNITS,
  1155                sstats->_time_elapsed_since_last_safepoint / MICROUNITS);
  1157     if (need_to_track_page_armed_status) {
  1158       tty->print(INT32_FORMAT"         ", sstats->_page_armed);
  1160     tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
  1164 // This method will be called when VM exits. It will first call
  1165 // print_statistics to print out the rest of the sampling.  Then
  1166 // it tries to summarize the sampling.
  1167 void SafepointSynchronize::print_stat_on_exit() {
  1168   if (_safepoint_stats == NULL) return;
  1170   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1172   // During VM exit, end_statistics may not get called and in that
  1173   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
  1174   // don't print it out.
  1175   // Approximate the vm op time.
  1176   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
  1177     os::javaTimeNanos() - sync_end_time;
  1179   if ( PrintSafepointStatisticsTimeout < 0 ||
  1180        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1181     print_statistics();
  1183   tty->print_cr("");
  1185   // Print out polling page sampling status.
  1186   if (!need_to_track_page_armed_status) {
  1187     if (UseCompilerSafepoints) {
  1188       tty->print_cr("Polling page always armed");
  1190   } else {
  1191     tty->print_cr("Defer polling page loop count = %d\n",
  1192                  DeferPollingPageLoopCount);
  1195   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
  1196     if (_safepoint_reasons[index] != 0) {
  1197       tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
  1198                     _safepoint_reasons[index]);
  1202   tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
  1203                 _coalesced_vmop_count);
  1204   tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
  1205                 _max_sync_time / MICROUNITS);
  1208 // ------------------------------------------------------------------------------------------------
  1209 // Non-product code
  1211 #ifndef PRODUCT
  1213 void SafepointSynchronize::print_state() {
  1214   if (_state == _not_synchronized) {
  1215     tty->print_cr("not synchronized");
  1216   } else if (_state == _synchronizing || _state == _synchronized) {
  1217     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
  1218                   "synchronized");
  1220     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
  1221        cur->safepoint_state()->print();
  1226 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
  1227   if (ShowSafepointMsgs) {
  1228     va_list ap;
  1229     va_start(ap, format);
  1230     tty->vprint_cr(format, ap);
  1231     va_end(ap);
  1235 #endif // !PRODUCT

mercurial