src/share/vm/runtime/safepoint.cpp

Wed, 10 Mar 2010 21:42:26 -0800

author
xlu
date
Wed, 10 Mar 2010 21:42:26 -0800
changeset 1726
4b0f2f4918ed
parent 1438
528d98fe1037
child 1756
0f6600cee529
permissions
-rw-r--r--

6933402: RFE: Improve PrintSafepointStatistics output to track cleanup time
Summary: Improve the usability of safepoint statistics data. See bug evaluation for more details.
Reviewed-by: ysr, dholmes

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_safepoint.cpp.incl"
    28 // --------------------------------------------------------------------------------------------------
    29 // Implementation of Safepoint begin/end
    31 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
    32 volatile int  SafepointSynchronize::_waiting_to_block = 0;
    33 volatile int SafepointSynchronize::_safepoint_counter = 0;
    34 long  SafepointSynchronize::_end_of_last_safepoint = 0;
    35 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
    36 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
    37 static bool timeout_error_printed = false;
    39 // Roll all threads forward to a safepoint and suspend them all
    40 void SafepointSynchronize::begin() {
    42   Thread* myThread = Thread::current();
    43   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
    45   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
    46     _safepoint_begin_time = os::javaTimeNanos();
    47     _ts_of_current_safepoint = tty->time_stamp().seconds();
    48   }
    50 #ifndef SERIALGC
    51   if (UseConcMarkSweepGC) {
    52     // In the future we should investigate whether CMS can use the
    53     // more-general mechanism below.  DLD (01/05).
    54     ConcurrentMarkSweepThread::synchronize(false);
    55   } else if (UseG1GC) {
    56     ConcurrentGCThread::safepoint_synchronize();
    57   }
    58 #endif // SERIALGC
    60   // By getting the Threads_lock, we assure that no threads are about to start or
    61   // exit. It is released again in SafepointSynchronize::end().
    62   Threads_lock->lock();
    64   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
    66   int nof_threads = Threads::number_of_threads();
    68   if (TraceSafepoint) {
    69     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
    70   }
    72   RuntimeService::record_safepoint_begin();
    74   {
    75   MutexLocker mu(Safepoint_lock);
    77   // Set number of threads to wait for, before we initiate the callbacks
    78   _waiting_to_block = nof_threads;
    79   TryingToBlock     = 0 ;
    80   int still_running = nof_threads;
    82   // Save the starting time, so that it can be compared to see if this has taken
    83   // too long to complete.
    84   jlong safepoint_limit_time;
    85   timeout_error_printed = false;
    87   // PrintSafepointStatisticsTimeout can be specified separately. When
    88   // specified, PrintSafepointStatistics will be set to true in
    89   // deferred_initialize_stat method. The initialization has to be done
    90   // early enough to avoid any races. See bug 6880029 for details.
    91   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
    92     deferred_initialize_stat();
    93   }
    95   // Begin the process of bringing the system to a safepoint.
    96   // Java threads can be in several different states and are
    97   // stopped by different mechanisms:
    98   //
    99   //  1. Running interpreted
   100   //     The interpeter dispatch table is changed to force it to
   101   //     check for a safepoint condition between bytecodes.
   102   //  2. Running in native code
   103   //     When returning from the native code, a Java thread must check
   104   //     the safepoint _state to see if we must block.  If the
   105   //     VM thread sees a Java thread in native, it does
   106   //     not wait for this thread to block.  The order of the memory
   107   //     writes and reads of both the safepoint state and the Java
   108   //     threads state is critical.  In order to guarantee that the
   109   //     memory writes are serialized with respect to each other,
   110   //     the VM thread issues a memory barrier instruction
   111   //     (on MP systems).  In order to avoid the overhead of issuing
   112   //     a memory barrier for each Java thread making native calls, each Java
   113   //     thread performs a write to a single memory page after changing
   114   //     the thread state.  The VM thread performs a sequence of
   115   //     mprotect OS calls which forces all previous writes from all
   116   //     Java threads to be serialized.  This is done in the
   117   //     os::serialize_thread_states() call.  This has proven to be
   118   //     much more efficient than executing a membar instruction
   119   //     on every call to native code.
   120   //  3. Running compiled Code
   121   //     Compiled code reads a global (Safepoint Polling) page that
   122   //     is set to fault if we are trying to get to a safepoint.
   123   //  4. Blocked
   124   //     A thread which is blocked will not be allowed to return from the
   125   //     block condition until the safepoint operation is complete.
   126   //  5. In VM or Transitioning between states
   127   //     If a Java thread is currently running in the VM or transitioning
   128   //     between states, the safepointing code will wait for the thread to
   129   //     block itself when it attempts transitions to a new state.
   130   //
   131   _state            = _synchronizing;
   132   OrderAccess::fence();
   134   // Flush all thread states to memory
   135   if (!UseMembar) {
   136     os::serialize_thread_states();
   137   }
   139   // Make interpreter safepoint aware
   140   Interpreter::notice_safepoints();
   142   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
   143     // Make polling safepoint aware
   144     guarantee (PageArmed == 0, "invariant") ;
   145     PageArmed = 1 ;
   146     os::make_polling_page_unreadable();
   147   }
   149   // Consider using active_processor_count() ... but that call is expensive.
   150   int ncpus = os::processor_count() ;
   152 #ifdef ASSERT
   153   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   154     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
   155   }
   156 #endif // ASSERT
   158   if (SafepointTimeout)
   159     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
   161   // Iterate through all threads until it have been determined how to stop them all at a safepoint
   162   unsigned int iterations = 0;
   163   int steps = 0 ;
   164   while(still_running > 0) {
   165     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   166       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
   167       ThreadSafepointState *cur_state = cur->safepoint_state();
   168       if (cur_state->is_running()) {
   169         cur_state->examine_state_of_thread();
   170         if (!cur_state->is_running()) {
   171            still_running--;
   172            // consider adjusting steps downward:
   173            //   steps = 0
   174            //   steps -= NNN
   175            //   steps >>= 1
   176            //   steps = MIN(steps, 2000-100)
   177            //   if (iterations != 0) steps -= NNN
   178         }
   179         if (TraceSafepoint && Verbose) cur_state->print();
   180       }
   181     }
   183     if (PrintSafepointStatistics && iterations == 0) {
   184       begin_statistics(nof_threads, still_running);
   185     }
   187     if (still_running > 0) {
   188       // Check for if it takes to long
   189       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
   190         print_safepoint_timeout(_spinning_timeout);
   191       }
   193       // Spin to avoid context switching.
   194       // There's a tension between allowing the mutators to run (and rendezvous)
   195       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
   196       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
   197       // spinning by the VM thread on a saturated system can increase rendezvous latency.
   198       // Blocking or yielding incur their own penalties in the form of context switching
   199       // and the resultant loss of $ residency.
   200       //
   201       // Further complicating matters is that yield() does not work as naively expected
   202       // on many platforms -- yield() does not guarantee that any other ready threads
   203       // will run.   As such we revert yield_all() after some number of iterations.
   204       // Yield_all() is implemented as a short unconditional sleep on some platforms.
   205       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
   206       // can actually increase the time it takes the VM thread to detect that a system-wide
   207       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
   208       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
   209       // In that case the mutators will be stalled waiting for the safepoint to complete and the
   210       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
   211       // will eventually wake up and detect that all mutators are safe, at which point
   212       // we'll again make progress.
   213       //
   214       // Beware too that that the VMThread typically runs at elevated priority.
   215       // Its default priority is higher than the default mutator priority.
   216       // Obviously, this complicates spinning.
   217       //
   218       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
   219       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
   220       //
   221       // See the comments in synchronizer.cpp for additional remarks on spinning.
   222       //
   223       // In the future we might:
   224       // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
   225       //    This is tricky as the path used by a thread exiting the JVM (say on
   226       //    on JNI call-out) simply stores into its state field.  The burden
   227       //    is placed on the VM thread, which must poll (spin).
   228       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
   229       //    we might aggressively scan the stacks of threads that are already safe.
   230       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
   231       //    If all the mutators are ONPROC there's no reason to sleep or yield.
   232       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
   233       // 5. Check system saturation.  If the system is not fully saturated then
   234       //    simply spin and avoid sleep/yield.
   235       // 6. As still-running mutators rendezvous they could unpark the sleeping
   236       //    VMthread.  This works well for still-running mutators that become
   237       //    safe.  The VMthread must still poll for mutators that call-out.
   238       // 7. Drive the policy on time-since-begin instead of iterations.
   239       // 8. Consider making the spin duration a function of the # of CPUs:
   240       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
   241       //    Alternately, instead of counting iterations of the outer loop
   242       //    we could count the # of threads visited in the inner loop, above.
   243       // 9. On windows consider using the return value from SwitchThreadTo()
   244       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
   246       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
   247          guarantee (PageArmed == 0, "invariant") ;
   248          PageArmed = 1 ;
   249          os::make_polling_page_unreadable();
   250       }
   252       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
   253       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
   254       ++steps ;
   255       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
   256         SpinPause() ;     // MP-Polite spin
   257       } else
   258       if (steps < DeferThrSuspendLoopCount) {
   259         os::NakedYield() ;
   260       } else {
   261         os::yield_all(steps) ;
   262         // Alternately, the VM thread could transiently depress its scheduling priority or
   263         // transiently increase the priority of the tardy mutator(s).
   264       }
   266       iterations ++ ;
   267     }
   268     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
   269   }
   270   assert(still_running == 0, "sanity check");
   272   if (PrintSafepointStatistics) {
   273     update_statistics_on_spin_end();
   274   }
   276   // wait until all threads are stopped
   277   while (_waiting_to_block > 0) {
   278     if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
   279     if (!SafepointTimeout || timeout_error_printed) {
   280       Safepoint_lock->wait(true);  // true, means with no safepoint checks
   281     } else {
   282       // Compute remaining time
   283       jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
   285       // If there is no remaining time, then there is an error
   286       if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
   287         print_safepoint_timeout(_blocking_timeout);
   288       }
   289     }
   290   }
   291   assert(_waiting_to_block == 0, "sanity check");
   293 #ifndef PRODUCT
   294   if (SafepointTimeout) {
   295     jlong current_time = os::javaTimeNanos();
   296     if (safepoint_limit_time < current_time) {
   297       tty->print_cr("# SafepointSynchronize: Finished after "
   298                     INT64_FORMAT_W(6) " ms",
   299                     ((current_time - safepoint_limit_time) / MICROUNITS +
   300                      SafepointTimeoutDelay));
   301     }
   302   }
   303 #endif
   305   assert((_safepoint_counter & 0x1) == 0, "must be even");
   306   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   307   _safepoint_counter ++;
   309   // Record state
   310   _state = _synchronized;
   312   OrderAccess::fence();
   314   if (TraceSafepoint) {
   315     VM_Operation *op = VMThread::vm_operation();
   316     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
   317   }
   319   RuntimeService::record_safepoint_synchronized();
   320   if (PrintSafepointStatistics) {
   321     update_statistics_on_sync_end(os::javaTimeNanos());
   322   }
   324   // Call stuff that needs to be run when a safepoint is just about to be completed
   325   do_cleanup_tasks();
   327   if (PrintSafepointStatistics) {
   328     // Record how much time spend on the above cleanup tasks
   329     update_statistics_on_cleanup_end(os::javaTimeNanos());
   330   }
   331   }
   332 }
   334 // Wake up all threads, so they are ready to resume execution after the safepoint
   335 // operation has been carried out
   336 void SafepointSynchronize::end() {
   338   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   339   assert((_safepoint_counter & 0x1) == 1, "must be odd");
   340   _safepoint_counter ++;
   341   // memory fence isn't required here since an odd _safepoint_counter
   342   // value can do no harm and a fence is issued below anyway.
   344   DEBUG_ONLY(Thread* myThread = Thread::current();)
   345   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
   347   if (PrintSafepointStatistics) {
   348     end_statistics(os::javaTimeNanos());
   349   }
   351 #ifdef ASSERT
   352   // A pending_exception cannot be installed during a safepoint.  The threads
   353   // may install an async exception after they come back from a safepoint into
   354   // pending_exception after they unblock.  But that should happen later.
   355   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
   356     assert (!(cur->has_pending_exception() &&
   357               cur->safepoint_state()->is_at_poll_safepoint()),
   358             "safepoint installed a pending exception");
   359   }
   360 #endif // ASSERT
   362   if (PageArmed) {
   363     // Make polling safepoint aware
   364     os::make_polling_page_readable();
   365     PageArmed = 0 ;
   366   }
   368   // Remove safepoint check from interpreter
   369   Interpreter::ignore_safepoints();
   371   {
   372     MutexLocker mu(Safepoint_lock);
   374     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
   376     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
   377     // when they get restarted.
   378     _state = _not_synchronized;
   379     OrderAccess::fence();
   381     if (TraceSafepoint) {
   382        tty->print_cr("Leaving safepoint region");
   383     }
   385     // Start suspended threads
   386     for(JavaThread *current = Threads::first(); current; current = current->next()) {
   387       // A problem occurring on Solaris is when attempting to restart threads
   388       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
   389       // to the next one (since it has been running the longest).  We then have
   390       // to wait for a cpu to become available before we can continue restarting
   391       // threads.
   392       // FIXME: This causes the performance of the VM to degrade when active and with
   393       // large numbers of threads.  Apparently this is due to the synchronous nature
   394       // of suspending threads.
   395       //
   396       // TODO-FIXME: the comments above are vestigial and no longer apply.
   397       // Furthermore, using solaris' schedctl in this particular context confers no benefit
   398       if (VMThreadHintNoPreempt) {
   399         os::hint_no_preempt();
   400       }
   401       ThreadSafepointState* cur_state = current->safepoint_state();
   402       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
   403       cur_state->restart();
   404       assert(cur_state->is_running(), "safepoint state has not been reset");
   405     }
   407     RuntimeService::record_safepoint_end();
   409     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
   410     // blocked in signal_thread_blocked
   411     Threads_lock->unlock();
   413   }
   414 #ifndef SERIALGC
   415   // If there are any concurrent GC threads resume them.
   416   if (UseConcMarkSweepGC) {
   417     ConcurrentMarkSweepThread::desynchronize(false);
   418   } else if (UseG1GC) {
   419     ConcurrentGCThread::safepoint_desynchronize();
   420   }
   421 #endif // SERIALGC
   422   // record this time so VMThread can keep track how much time has elasped
   423   // since last safepoint.
   424   _end_of_last_safepoint = os::javaTimeMillis();
   425 }
   427 bool SafepointSynchronize::is_cleanup_needed() {
   428   // Need a safepoint if some inline cache buffers is non-empty
   429   if (!InlineCacheBuffer::is_empty()) return true;
   430   return false;
   431 }
   433 jlong CounterDecay::_last_timestamp = 0;
   435 static void do_method(methodOop m) {
   436   m->invocation_counter()->decay();
   437 }
   439 void CounterDecay::decay() {
   440   _last_timestamp = os::javaTimeMillis();
   442   // This operation is going to be performed only at the end of a safepoint
   443   // and hence GC's will not be going on, all Java mutators are suspended
   444   // at this point and hence SystemDictionary_lock is also not needed.
   445   assert(SafepointSynchronize::is_at_safepoint(), "can only be executed at a safepoint");
   446   int nclasses = SystemDictionary::number_of_classes();
   447   double classes_per_tick = nclasses * (CounterDecayMinIntervalLength * 1e-3 /
   448                                         CounterHalfLifeTime);
   449   for (int i = 0; i < classes_per_tick; i++) {
   450     klassOop k = SystemDictionary::try_get_next_class();
   451     if (k != NULL && k->klass_part()->oop_is_instance()) {
   452       instanceKlass::cast(k)->methods_do(do_method);
   453     }
   454   }
   455 }
   457 // Various cleaning tasks that should be done periodically at safepoints
   458 void SafepointSynchronize::do_cleanup_tasks() {
   459   {
   460     TraceTime t1("deflating idle monitors", TraceSafepoint);
   461     ObjectSynchronizer::deflate_idle_monitors();
   462   }
   464   {
   465     TraceTime t2("updating inline caches", TraceSafepoint);
   466     InlineCacheBuffer::update_inline_caches();
   467   }
   469   if(UseCounterDecay && CounterDecay::is_decay_needed()) {
   470     TraceTime t3("decaying counter", TraceSafepoint);
   471     CounterDecay::decay();
   472   }
   474   TraceTime t4("sweeping nmethods", TraceSafepoint);
   475   NMethodSweeper::sweep();
   476 }
   479 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
   480   switch(state) {
   481   case _thread_in_native:
   482     // native threads are safe if they have no java stack or have walkable stack
   483     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
   485    // blocked threads should have already have walkable stack
   486   case _thread_blocked:
   487     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
   488     return true;
   490   default:
   491     return false;
   492   }
   493 }
   496 // -------------------------------------------------------------------------------------------------------
   497 // Implementation of Safepoint callback point
   499 void SafepointSynchronize::block(JavaThread *thread) {
   500   assert(thread != NULL, "thread must be set");
   501   assert(thread->is_Java_thread(), "not a Java thread");
   503   // Threads shouldn't block if they are in the middle of printing, but...
   504   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
   506   // Only bail from the block() call if the thread is gone from the
   507   // thread list; starting to exit should still block.
   508   if (thread->is_terminated()) {
   509      // block current thread if we come here from native code when VM is gone
   510      thread->block_if_vm_exited();
   512      // otherwise do nothing
   513      return;
   514   }
   516   JavaThreadState state = thread->thread_state();
   517   thread->frame_anchor()->make_walkable(thread);
   519   // Check that we have a valid thread_state at this point
   520   switch(state) {
   521     case _thread_in_vm_trans:
   522     case _thread_in_Java:        // From compiled code
   524       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
   525       // we pretend we are still in the VM.
   526       thread->set_thread_state(_thread_in_vm);
   528       if (is_synchronizing()) {
   529          Atomic::inc (&TryingToBlock) ;
   530       }
   532       // We will always be holding the Safepoint_lock when we are examine the state
   533       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
   534       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
   535       Safepoint_lock->lock_without_safepoint_check();
   536       if (is_synchronizing()) {
   537         // Decrement the number of threads to wait for and signal vm thread
   538         assert(_waiting_to_block > 0, "sanity check");
   539         _waiting_to_block--;
   540         thread->safepoint_state()->set_has_called_back(true);
   542         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
   543         if (_waiting_to_block == 0) {
   544           Safepoint_lock->notify_all();
   545         }
   546       }
   548       // We transition the thread to state _thread_blocked here, but
   549       // we can't do our usual check for external suspension and then
   550       // self-suspend after the lock_without_safepoint_check() call
   551       // below because we are often called during transitions while
   552       // we hold different locks. That would leave us suspended while
   553       // holding a resource which results in deadlocks.
   554       thread->set_thread_state(_thread_blocked);
   555       Safepoint_lock->unlock();
   557       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
   558       // the entire safepoint, the threads will all line up here during the safepoint.
   559       Threads_lock->lock_without_safepoint_check();
   560       // restore original state. This is important if the thread comes from compiled code, so it
   561       // will continue to execute with the _thread_in_Java state.
   562       thread->set_thread_state(state);
   563       Threads_lock->unlock();
   564       break;
   566     case _thread_in_native_trans:
   567     case _thread_blocked_trans:
   568     case _thread_new_trans:
   569       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
   570         thread->print_thread_state();
   571         fatal("Deadlock in safepoint code.  "
   572               "Should have called back to the VM before blocking.");
   573       }
   575       // We transition the thread to state _thread_blocked here, but
   576       // we can't do our usual check for external suspension and then
   577       // self-suspend after the lock_without_safepoint_check() call
   578       // below because we are often called during transitions while
   579       // we hold different locks. That would leave us suspended while
   580       // holding a resource which results in deadlocks.
   581       thread->set_thread_state(_thread_blocked);
   583       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
   584       // the safepoint code might still be waiting for it to block. We need to change the state here,
   585       // so it can see that it is at a safepoint.
   587       // Block until the safepoint operation is completed.
   588       Threads_lock->lock_without_safepoint_check();
   590       // Restore state
   591       thread->set_thread_state(state);
   593       Threads_lock->unlock();
   594       break;
   596     default:
   597      fatal1("Illegal threadstate encountered: %d", state);
   598   }
   600   // Check for pending. async. exceptions or suspends - except if the
   601   // thread was blocked inside the VM. has_special_runtime_exit_condition()
   602   // is called last since it grabs a lock and we only want to do that when
   603   // we must.
   604   //
   605   // Note: we never deliver an async exception at a polling point as the
   606   // compiler may not have an exception handler for it. The polling
   607   // code will notice the async and deoptimize and the exception will
   608   // be delivered. (Polling at a return point is ok though). Sure is
   609   // a lot of bother for a deprecated feature...
   610   //
   611   // We don't deliver an async exception if the thread state is
   612   // _thread_in_native_trans so JNI functions won't be called with
   613   // a surprising pending exception. If the thread state is going back to java,
   614   // async exception is checked in check_special_condition_for_native_trans().
   616   if (state != _thread_blocked_trans &&
   617       state != _thread_in_vm_trans &&
   618       thread->has_special_runtime_exit_condition()) {
   619     thread->handle_special_runtime_exit_condition(
   620       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
   621   }
   622 }
   624 // ------------------------------------------------------------------------------------------------------
   625 // Exception handlers
   627 #ifndef PRODUCT
   628 #ifdef _LP64
   629 #define PTR_PAD ""
   630 #else
   631 #define PTR_PAD "        "
   632 #endif
   634 static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
   635   bool is_oop = newptr ? ((oop)newptr)->is_oop() : false;
   636   tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
   637                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
   638                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
   639 }
   641 static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
   642   bool is_oop = newptr ? ((oop)(intptr_t)newptr)->is_oop() : false;
   643   tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
   644                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
   645                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
   646 }
   648 #ifdef SPARC
   649 static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
   650 #ifdef _LP64
   651   tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
   652   const int incr = 1;           // Increment to skip a long, in units of intptr_t
   653 #else
   654   tty->print_cr("--------+--address-+------before-----------+-------after----------+");
   655   const int incr = 2;           // Increment to skip a long, in units of intptr_t
   656 #endif
   657   tty->print_cr("---SP---|");
   658   for( int i=0; i<16; i++ ) {
   659     tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   660   tty->print_cr("--------|");
   661   for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
   662     tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   663   tty->print("     pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
   664   tty->print_cr("--------|");
   665   tty->print(" G1     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   666   tty->print(" G3     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   667   tty->print(" G4     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   668   tty->print(" G5     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   669   tty->print_cr(" FSR    |"PTR_FORMAT" "PTR64_FORMAT"       "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
   670   old_sp += incr; new_sp += incr; was_oops += incr;
   671   // Skip the floats
   672   tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
   673   tty->print_cr("---FP---|");
   674   old_sp += incr*32;  new_sp += incr*32;  was_oops += incr*32;
   675   for( int i2=0; i2<16; i2++ ) {
   676     tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   677   tty->print_cr("");
   678 }
   679 #endif  // SPARC
   680 #endif  // PRODUCT
   683 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
   684   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
   685   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
   686   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
   688   // Uncomment this to get some serious before/after printing of the
   689   // Sparc safepoint-blob frame structure.
   690   /*
   691   intptr_t* sp = thread->last_Java_sp();
   692   intptr_t stack_copy[150];
   693   for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
   694   bool was_oops[150];
   695   for( int i=0; i<150; i++ )
   696     was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
   697   */
   699   if (ShowSafepointMsgs) {
   700     tty->print("handle_polling_page_exception: ");
   701   }
   703   if (PrintSafepointStatistics) {
   704     inc_page_trap_count();
   705   }
   707   ThreadSafepointState* state = thread->safepoint_state();
   709   state->handle_polling_page_exception();
   710   // print_me(sp,stack_copy,was_oops);
   711 }
   714 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
   715   if (!timeout_error_printed) {
   716     timeout_error_printed = true;
   717     // Print out the thread infor which didn't reach the safepoint for debugging
   718     // purposes (useful when there are lots of threads in the debugger).
   719     tty->print_cr("");
   720     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
   721     if (reason ==  _spinning_timeout) {
   722       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
   723     } else if (reason == _blocking_timeout) {
   724       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
   725     }
   727     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
   728     ThreadSafepointState *cur_state;
   729     ResourceMark rm;
   730     for(JavaThread *cur_thread = Threads::first(); cur_thread;
   731         cur_thread = cur_thread->next()) {
   732       cur_state = cur_thread->safepoint_state();
   734       if (cur_thread->thread_state() != _thread_blocked &&
   735           ((reason == _spinning_timeout && cur_state->is_running()) ||
   736            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
   737         tty->print("# ");
   738         cur_thread->print();
   739         tty->print_cr("");
   740       }
   741     }
   742     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
   743   }
   745   // To debug the long safepoint, specify both DieOnSafepointTimeout &
   746   // ShowMessageBoxOnError.
   747   if (DieOnSafepointTimeout) {
   748     char msg[1024];
   749     VM_Operation *op = VMThread::vm_operation();
   750     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
   751             SafepointTimeoutDelay,
   752             op != NULL ? op->name() : "no vm operation");
   753     fatal(msg);
   754   }
   755 }
   758 // -------------------------------------------------------------------------------------------------------
   759 // Implementation of ThreadSafepointState
   761 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
   762   _thread = thread;
   763   _type   = _running;
   764   _has_called_back = false;
   765   _at_poll_safepoint = false;
   766 }
   768 void ThreadSafepointState::create(JavaThread *thread) {
   769   ThreadSafepointState *state = new ThreadSafepointState(thread);
   770   thread->set_safepoint_state(state);
   771 }
   773 void ThreadSafepointState::destroy(JavaThread *thread) {
   774   if (thread->safepoint_state()) {
   775     delete(thread->safepoint_state());
   776     thread->set_safepoint_state(NULL);
   777   }
   778 }
   780 void ThreadSafepointState::examine_state_of_thread() {
   781   assert(is_running(), "better be running or just have hit safepoint poll");
   783   JavaThreadState state = _thread->thread_state();
   785   // Check for a thread that is suspended. Note that thread resume tries
   786   // to grab the Threads_lock which we own here, so a thread cannot be
   787   // resumed during safepoint synchronization.
   789   // We check to see if this thread is suspended without locking to
   790   // avoid deadlocking with a third thread that is waiting for this
   791   // thread to be suspended. The third thread can notice the safepoint
   792   // that we're trying to start at the beginning of its SR_lock->wait()
   793   // call. If that happens, then the third thread will block on the
   794   // safepoint while still holding the underlying SR_lock. We won't be
   795   // able to get the SR_lock and we'll deadlock.
   796   //
   797   // We don't need to grab the SR_lock here for two reasons:
   798   // 1) The suspend flags are both volatile and are set with an
   799   //    Atomic::cmpxchg() call so we should see the suspended
   800   //    state right away.
   801   // 2) We're being called from the safepoint polling loop; if
   802   //    we don't see the suspended state on this iteration, then
   803   //    we'll come around again.
   804   //
   805   bool is_suspended = _thread->is_ext_suspended();
   806   if (is_suspended) {
   807     roll_forward(_at_safepoint);
   808     return;
   809   }
   811   // Some JavaThread states have an initial safepoint state of
   812   // running, but are actually at a safepoint. We will happily
   813   // agree and update the safepoint state here.
   814   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
   815       roll_forward(_at_safepoint);
   816       return;
   817   }
   819   if (state == _thread_in_vm) {
   820     roll_forward(_call_back);
   821     return;
   822   }
   824   // All other thread states will continue to run until they
   825   // transition and self-block in state _blocked
   826   // Safepoint polling in compiled code causes the Java threads to do the same.
   827   // Note: new threads may require a malloc so they must be allowed to finish
   829   assert(is_running(), "examine_state_of_thread on non-running thread");
   830   return;
   831 }
   833 // Returns true is thread could not be rolled forward at present position.
   834 void ThreadSafepointState::roll_forward(suspend_type type) {
   835   _type = type;
   837   switch(_type) {
   838     case _at_safepoint:
   839       SafepointSynchronize::signal_thread_at_safepoint();
   840       break;
   842     case _call_back:
   843       set_has_called_back(false);
   844       break;
   846     case _running:
   847     default:
   848       ShouldNotReachHere();
   849   }
   850 }
   852 void ThreadSafepointState::restart() {
   853   switch(type()) {
   854     case _at_safepoint:
   855     case _call_back:
   856       break;
   858     case _running:
   859     default:
   860        tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
   861                       _thread, _type);
   862        _thread->print();
   863       ShouldNotReachHere();
   864   }
   865   _type = _running;
   866   set_has_called_back(false);
   867 }
   870 void ThreadSafepointState::print_on(outputStream *st) const {
   871   const char *s;
   873   switch(_type) {
   874     case _running                : s = "_running";              break;
   875     case _at_safepoint           : s = "_at_safepoint";         break;
   876     case _call_back              : s = "_call_back";            break;
   877     default:
   878       ShouldNotReachHere();
   879   }
   881   st->print_cr("Thread: " INTPTR_FORMAT
   882               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
   883                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
   884                _at_poll_safepoint);
   886   _thread->print_thread_state_on(st);
   887 }
   890 // ---------------------------------------------------------------------------------------------------------------------
   892 // Block the thread at the safepoint poll or poll return.
   893 void ThreadSafepointState::handle_polling_page_exception() {
   895   // Check state.  block() will set thread state to thread_in_vm which will
   896   // cause the safepoint state _type to become _call_back.
   897   assert(type() == ThreadSafepointState::_running,
   898          "polling page exception on thread not running state");
   900   // Step 1: Find the nmethod from the return address
   901   if (ShowSafepointMsgs && Verbose) {
   902     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
   903   }
   904   address real_return_addr = thread()->saved_exception_pc();
   906   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
   907   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
   908   nmethod* nm = (nmethod*)cb;
   910   // Find frame of caller
   911   frame stub_fr = thread()->last_frame();
   912   CodeBlob* stub_cb = stub_fr.cb();
   913   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
   914   RegisterMap map(thread(), true);
   915   frame caller_fr = stub_fr.sender(&map);
   917   // Should only be poll_return or poll
   918   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
   920   // This is a poll immediately before a return. The exception handling code
   921   // has already had the effect of causing the return to occur, so the execution
   922   // will continue immediately after the call. In addition, the oopmap at the
   923   // return point does not mark the return value as an oop (if it is), so
   924   // it needs a handle here to be updated.
   925   if( nm->is_at_poll_return(real_return_addr) ) {
   926     // See if return type is an oop.
   927     bool return_oop = nm->method()->is_returning_oop();
   928     Handle return_value;
   929     if (return_oop) {
   930       // The oop result has been saved on the stack together with all
   931       // the other registers. In order to preserve it over GCs we need
   932       // to keep it in a handle.
   933       oop result = caller_fr.saved_oop_result(&map);
   934       assert(result == NULL || result->is_oop(), "must be oop");
   935       return_value = Handle(thread(), result);
   936       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
   937     }
   939     // Block the thread
   940     SafepointSynchronize::block(thread());
   942     // restore oop result, if any
   943     if (return_oop) {
   944       caller_fr.set_saved_oop_result(&map, return_value());
   945     }
   946   }
   948   // This is a safepoint poll. Verify the return address and block.
   949   else {
   950     set_at_poll_safepoint(true);
   952     // verify the blob built the "return address" correctly
   953     assert(real_return_addr == caller_fr.pc(), "must match");
   955     // Block the thread
   956     SafepointSynchronize::block(thread());
   957     set_at_poll_safepoint(false);
   959     // If we have a pending async exception deoptimize the frame
   960     // as otherwise we may never deliver it.
   961     if (thread()->has_async_condition()) {
   962       ThreadInVMfromJavaNoAsyncException __tiv(thread());
   963       VM_DeoptimizeFrame deopt(thread(), caller_fr.id());
   964       VMThread::execute(&deopt);
   965     }
   967     // If an exception has been installed we must check for a pending deoptimization
   968     // Deoptimize frame if exception has been thrown.
   970     if (thread()->has_pending_exception() ) {
   971       RegisterMap map(thread(), true);
   972       frame caller_fr = stub_fr.sender(&map);
   973       if (caller_fr.is_deoptimized_frame()) {
   974         // The exception patch will destroy registers that are still
   975         // live and will be needed during deoptimization. Defer the
   976         // Async exception should have defered the exception until the
   977         // next safepoint which will be detected when we get into
   978         // the interpreter so if we have an exception now things
   979         // are messed up.
   981         fatal("Exception installed and deoptimization is pending");
   982       }
   983     }
   984   }
   985 }
   988 //
   989 //                     Statistics & Instrumentations
   990 //
   991 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
   992 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
   993 int    SafepointSynchronize::_cur_stat_index = 0;
   994 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
   995 julong SafepointSynchronize::_coalesced_vmop_count = 0;
   996 jlong  SafepointSynchronize::_max_sync_time = 0;
   997 jlong  SafepointSynchronize::_max_vmop_time = 0;
   998 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
  1000 static jlong  cleanup_end_time = 0;
  1001 static bool   need_to_track_page_armed_status = false;
  1002 static bool   init_done = false;
  1004 // Helper method to print the header.
  1005 static void print_header() {
  1006   tty->print("         vmop                    "
  1007              "[threads: total initially_running wait_to_block]    ");
  1008   tty->print("[time: spin block sync cleanup vmop] ");
  1010   // no page armed status printed out if it is always armed.
  1011   if (need_to_track_page_armed_status) {
  1012     tty->print("page_armed ");
  1015   tty->print_cr("page_trap_count");
  1018 void SafepointSynchronize::deferred_initialize_stat() {
  1019   if (init_done) return;
  1021   if (PrintSafepointStatisticsCount <= 0) {
  1022     fatal("Wrong PrintSafepointStatisticsCount");
  1025   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
  1026   // be printed right away, in which case, _safepoint_stats will regress to
  1027   // a single element array. Otherwise, it is a circular ring buffer with default
  1028   // size of PrintSafepointStatisticsCount.
  1029   int stats_array_size;
  1030   if (PrintSafepointStatisticsTimeout > 0) {
  1031     stats_array_size = 1;
  1032     PrintSafepointStatistics = true;
  1033   } else {
  1034     stats_array_size = PrintSafepointStatisticsCount;
  1036   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
  1037                                                  * sizeof(SafepointStats));
  1038   guarantee(_safepoint_stats != NULL,
  1039             "not enough memory for safepoint instrumentation data");
  1041   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
  1042     need_to_track_page_armed_status = true;
  1044   init_done = true;
  1047 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
  1048   assert(init_done, "safepoint statistics array hasn't been initialized");
  1049   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1051   spstat->_time_stamp = _ts_of_current_safepoint;
  1053   VM_Operation *op = VMThread::vm_operation();
  1054   spstat->_vmop_type = (op != NULL ? op->type() : -1);
  1055   if (op != NULL) {
  1056     _safepoint_reasons[spstat->_vmop_type]++;
  1059   spstat->_nof_total_threads = nof_threads;
  1060   spstat->_nof_initial_running_threads = nof_running;
  1061   spstat->_nof_threads_hit_page_trap = 0;
  1063   // Records the start time of spinning. The real time spent on spinning
  1064   // will be adjusted when spin is done. Same trick is applied for time
  1065   // spent on waiting for threads to block.
  1066   if (nof_running != 0) {
  1067     spstat->_time_to_spin = os::javaTimeNanos();
  1068   }  else {
  1069     spstat->_time_to_spin = 0;
  1073 void SafepointSynchronize::update_statistics_on_spin_end() {
  1074   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1076   jlong cur_time = os::javaTimeNanos();
  1078   spstat->_nof_threads_wait_to_block = _waiting_to_block;
  1079   if (spstat->_nof_initial_running_threads != 0) {
  1080     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
  1083   if (need_to_track_page_armed_status) {
  1084     spstat->_page_armed = (PageArmed == 1);
  1087   // Records the start time of waiting for to block. Updated when block is done.
  1088   if (_waiting_to_block != 0) {
  1089     spstat->_time_to_wait_to_block = cur_time;
  1090   } else {
  1091     spstat->_time_to_wait_to_block = 0;
  1095 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
  1096   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1098   if (spstat->_nof_threads_wait_to_block != 0) {
  1099     spstat->_time_to_wait_to_block = end_time -
  1100       spstat->_time_to_wait_to_block;
  1103   // Records the end time of sync which will be used to calculate the total
  1104   // vm operation time. Again, the real time spending in syncing will be deducted
  1105   // from the start of the sync time later when end_statistics is called.
  1106   spstat->_time_to_sync = end_time - _safepoint_begin_time;
  1107   if (spstat->_time_to_sync > _max_sync_time) {
  1108     _max_sync_time = spstat->_time_to_sync;
  1111   spstat->_time_to_do_cleanups = end_time;
  1114 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
  1115   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1117   // Record how long spent in cleanup tasks.
  1118   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
  1120   cleanup_end_time = end_time;
  1123 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
  1124   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1126   // Update the vm operation time.
  1127   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
  1128   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
  1129     _max_vmop_time = spstat->_time_to_exec_vmop;
  1131   // Only the sync time longer than the specified
  1132   // PrintSafepointStatisticsTimeout will be printed out right away.
  1133   // By default, it is -1 meaning all samples will be put into the list.
  1134   if ( PrintSafepointStatisticsTimeout > 0) {
  1135     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1136       print_statistics();
  1138   } else {
  1139     // The safepoint statistics will be printed out when the _safepoin_stats
  1140     // array fills up.
  1141     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
  1142       print_statistics();
  1143       _cur_stat_index = 0;
  1144     } else {
  1145       _cur_stat_index++;
  1150 void SafepointSynchronize::print_statistics() {
  1151   SafepointStats* sstats = _safepoint_stats;
  1153   for (int index = 0; index <= _cur_stat_index; index++) {
  1154     if (index % 30 == 0) {
  1155       print_header();
  1157     sstats = &_safepoint_stats[index];
  1158     tty->print("%.3f: ", sstats->_time_stamp);
  1159     tty->print("%-26s       ["
  1160                INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
  1161                "    ]    ",
  1162                sstats->_vmop_type == -1 ? "no vm operation" :
  1163                VM_Operation::name(sstats->_vmop_type),
  1164                sstats->_nof_total_threads,
  1165                sstats->_nof_initial_running_threads,
  1166                sstats->_nof_threads_wait_to_block);
  1167     // "/ MICROUNITS " is to convert the unit from nanos to millis.
  1168     tty->print("  ["
  1169                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
  1170                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
  1171                INT64_FORMAT_W(6)"    ]  ",
  1172                sstats->_time_to_spin / MICROUNITS,
  1173                sstats->_time_to_wait_to_block / MICROUNITS,
  1174                sstats->_time_to_sync / MICROUNITS,
  1175                sstats->_time_to_do_cleanups / MICROUNITS,
  1176                sstats->_time_to_exec_vmop / MICROUNITS);
  1178     if (need_to_track_page_armed_status) {
  1179       tty->print(INT32_FORMAT"         ", sstats->_page_armed);
  1181     tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
  1185 // This method will be called when VM exits. It will first call
  1186 // print_statistics to print out the rest of the sampling.  Then
  1187 // it tries to summarize the sampling.
  1188 void SafepointSynchronize::print_stat_on_exit() {
  1189   if (_safepoint_stats == NULL) return;
  1191   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1193   // During VM exit, end_statistics may not get called and in that
  1194   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
  1195   // don't print it out.
  1196   // Approximate the vm op time.
  1197   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
  1198     os::javaTimeNanos() - cleanup_end_time;
  1200   if ( PrintSafepointStatisticsTimeout < 0 ||
  1201        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1202     print_statistics();
  1204   tty->print_cr("");
  1206   // Print out polling page sampling status.
  1207   if (!need_to_track_page_armed_status) {
  1208     if (UseCompilerSafepoints) {
  1209       tty->print_cr("Polling page always armed");
  1211   } else {
  1212     tty->print_cr("Defer polling page loop count = %d\n",
  1213                  DeferPollingPageLoopCount);
  1216   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
  1217     if (_safepoint_reasons[index] != 0) {
  1218       tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
  1219                     _safepoint_reasons[index]);
  1223   tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
  1224                 _coalesced_vmop_count);
  1225   tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
  1226                 _max_sync_time / MICROUNITS);
  1227   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
  1228                 INT64_FORMAT_W(5)" ms",
  1229                 _max_vmop_time / MICROUNITS);
  1232 // ------------------------------------------------------------------------------------------------
  1233 // Non-product code
  1235 #ifndef PRODUCT
  1237 void SafepointSynchronize::print_state() {
  1238   if (_state == _not_synchronized) {
  1239     tty->print_cr("not synchronized");
  1240   } else if (_state == _synchronizing || _state == _synchronized) {
  1241     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
  1242                   "synchronized");
  1244     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
  1245        cur->safepoint_state()->print();
  1250 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
  1251   if (ShowSafepointMsgs) {
  1252     va_list ap;
  1253     va_start(ap, format);
  1254     tty->vprint_cr(format, ap);
  1255     va_end(ap);
  1259 #endif // !PRODUCT

mercurial