src/share/vm/runtime/os.cpp

Mon, 12 Nov 2012 15:58:11 -0500

author
hseigel
date
Mon, 12 Nov 2012 15:58:11 -0500
changeset 4277
e4f764ddb06a
parent 4193
716c64bda5ba
child 4280
80e866b1d053
permissions
-rw-r--r--

7122219: Passed StringTableSize value not verified
Summary: Check that the values specified for -XX:StringTableSize are within a certain range.
Reviewed-by: dholmes, coleenp

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/icBuffer.hpp"
    31 #include "code/vtableStubs.hpp"
    32 #include "gc_implementation/shared/vmGCOperations.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "memory/allocation.inline.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvm.h"
    37 #include "prims/jvm_misc.hpp"
    38 #include "prims/privilegedStack.hpp"
    39 #include "runtime/arguments.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/interfaceSupport.hpp"
    42 #include "runtime/java.hpp"
    43 #include "runtime/javaCalls.hpp"
    44 #include "runtime/mutexLocker.hpp"
    45 #include "runtime/os.hpp"
    46 #include "runtime/stubRoutines.hpp"
    47 #include "services/attachListener.hpp"
    48 #include "services/memTracker.hpp"
    49 #include "services/threadService.hpp"
    50 #include "utilities/defaultStream.hpp"
    51 #include "utilities/events.hpp"
    52 #ifdef TARGET_OS_FAMILY_linux
    53 # include "os_linux.inline.hpp"
    54 # include "thread_linux.inline.hpp"
    55 #endif
    56 #ifdef TARGET_OS_FAMILY_solaris
    57 # include "os_solaris.inline.hpp"
    58 # include "thread_solaris.inline.hpp"
    59 #endif
    60 #ifdef TARGET_OS_FAMILY_windows
    61 # include "os_windows.inline.hpp"
    62 # include "thread_windows.inline.hpp"
    63 #endif
    64 #ifdef TARGET_OS_FAMILY_bsd
    65 # include "os_bsd.inline.hpp"
    66 # include "thread_bsd.inline.hpp"
    67 #endif
    69 # include <signal.h>
    71 OSThread*         os::_starting_thread    = NULL;
    72 address           os::_polling_page       = NULL;
    73 volatile int32_t* os::_mem_serialize_page = NULL;
    74 uintptr_t         os::_serialize_page_mask = 0;
    75 long              os::_rand_seed          = 1;
    76 int               os::_processor_count    = 0;
    77 size_t            os::_page_sizes[os::page_sizes_max];
    79 #ifndef PRODUCT
    80 julong os::num_mallocs = 0;         // # of calls to malloc/realloc
    81 julong os::alloc_bytes = 0;         // # of bytes allocated
    82 julong os::num_frees = 0;           // # of calls to free
    83 julong os::free_bytes = 0;          // # of bytes freed
    84 #endif
    86 void os_init_globals() {
    87   // Called from init_globals().
    88   // See Threads::create_vm() in thread.cpp, and init.cpp.
    89   os::init_globals();
    90 }
    92 // Fill in buffer with current local time as an ISO-8601 string.
    93 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
    94 // Returns buffer, or NULL if it failed.
    95 // This would mostly be a call to
    96 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
    97 // except that on Windows the %z behaves badly, so we do it ourselves.
    98 // Also, people wanted milliseconds on there,
    99 // and strftime doesn't do milliseconds.
   100 char* os::iso8601_time(char* buffer, size_t buffer_length) {
   101   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
   102   //                                      1         2
   103   //                             12345678901234567890123456789
   104   static const char* iso8601_format =
   105     "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
   106   static const size_t needed_buffer = 29;
   108   // Sanity check the arguments
   109   if (buffer == NULL) {
   110     assert(false, "NULL buffer");
   111     return NULL;
   112   }
   113   if (buffer_length < needed_buffer) {
   114     assert(false, "buffer_length too small");
   115     return NULL;
   116   }
   117   // Get the current time
   118   jlong milliseconds_since_19700101 = javaTimeMillis();
   119   const int milliseconds_per_microsecond = 1000;
   120   const time_t seconds_since_19700101 =
   121     milliseconds_since_19700101 / milliseconds_per_microsecond;
   122   const int milliseconds_after_second =
   123     milliseconds_since_19700101 % milliseconds_per_microsecond;
   124   // Convert the time value to a tm and timezone variable
   125   struct tm time_struct;
   126   if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
   127     assert(false, "Failed localtime_pd");
   128     return NULL;
   129   }
   130 #if defined(_ALLBSD_SOURCE)
   131   const time_t zone = (time_t) time_struct.tm_gmtoff;
   132 #else
   133   const time_t zone = timezone;
   134 #endif
   136   // If daylight savings time is in effect,
   137   // we are 1 hour East of our time zone
   138   const time_t seconds_per_minute = 60;
   139   const time_t minutes_per_hour = 60;
   140   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
   141   time_t UTC_to_local = zone;
   142   if (time_struct.tm_isdst > 0) {
   143     UTC_to_local = UTC_to_local - seconds_per_hour;
   144   }
   145   // Compute the time zone offset.
   146   //    localtime_pd() sets timezone to the difference (in seconds)
   147   //    between UTC and and local time.
   148   //    ISO 8601 says we need the difference between local time and UTC,
   149   //    we change the sign of the localtime_pd() result.
   150   const time_t local_to_UTC = -(UTC_to_local);
   151   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
   152   char sign_local_to_UTC = '+';
   153   time_t abs_local_to_UTC = local_to_UTC;
   154   if (local_to_UTC < 0) {
   155     sign_local_to_UTC = '-';
   156     abs_local_to_UTC = -(abs_local_to_UTC);
   157   }
   158   // Convert time zone offset seconds to hours and minutes.
   159   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
   160   const time_t zone_min =
   161     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
   163   // Print an ISO 8601 date and time stamp into the buffer
   164   const int year = 1900 + time_struct.tm_year;
   165   const int month = 1 + time_struct.tm_mon;
   166   const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
   167                                    year,
   168                                    month,
   169                                    time_struct.tm_mday,
   170                                    time_struct.tm_hour,
   171                                    time_struct.tm_min,
   172                                    time_struct.tm_sec,
   173                                    milliseconds_after_second,
   174                                    sign_local_to_UTC,
   175                                    zone_hours,
   176                                    zone_min);
   177   if (printed == 0) {
   178     assert(false, "Failed jio_printf");
   179     return NULL;
   180   }
   181   return buffer;
   182 }
   184 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
   185 #ifdef ASSERT
   186   if (!(!thread->is_Java_thread() ||
   187          Thread::current() == thread  ||
   188          Threads_lock->owned_by_self()
   189          || thread->is_Compiler_thread()
   190         )) {
   191     assert(false, "possibility of dangling Thread pointer");
   192   }
   193 #endif
   195   if (p >= MinPriority && p <= MaxPriority) {
   196     int priority = java_to_os_priority[p];
   197     return set_native_priority(thread, priority);
   198   } else {
   199     assert(false, "Should not happen");
   200     return OS_ERR;
   201   }
   202 }
   204 // The mapping from OS priority back to Java priority may be inexact because
   205 // Java priorities can map M:1 with native priorities. If you want the definite
   206 // Java priority then use JavaThread::java_priority()
   207 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
   208   int p;
   209   int os_prio;
   210   OSReturn ret = get_native_priority(thread, &os_prio);
   211   if (ret != OS_OK) return ret;
   213   if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
   214     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
   215   } else {
   216     // niceness values are in reverse order
   217     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
   218   }
   219   priority = (ThreadPriority)p;
   220   return OS_OK;
   221 }
   224 // --------------------- sun.misc.Signal (optional) ---------------------
   227 // SIGBREAK is sent by the keyboard to query the VM state
   228 #ifndef SIGBREAK
   229 #define SIGBREAK SIGQUIT
   230 #endif
   232 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
   235 static void signal_thread_entry(JavaThread* thread, TRAPS) {
   236   os::set_priority(thread, NearMaxPriority);
   237   while (true) {
   238     int sig;
   239     {
   240       // FIXME : Currently we have not decieded what should be the status
   241       //         for this java thread blocked here. Once we decide about
   242       //         that we should fix this.
   243       sig = os::signal_wait();
   244     }
   245     if (sig == os::sigexitnum_pd()) {
   246        // Terminate the signal thread
   247        return;
   248     }
   250     switch (sig) {
   251       case SIGBREAK: {
   252         // Check if the signal is a trigger to start the Attach Listener - in that
   253         // case don't print stack traces.
   254         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
   255           continue;
   256         }
   257         // Print stack traces
   258         // Any SIGBREAK operations added here should make sure to flush
   259         // the output stream (e.g. tty->flush()) after output.  See 4803766.
   260         // Each module also prints an extra carriage return after its output.
   261         VM_PrintThreads op;
   262         VMThread::execute(&op);
   263         VM_PrintJNI jni_op;
   264         VMThread::execute(&jni_op);
   265         VM_FindDeadlocks op1(tty);
   266         VMThread::execute(&op1);
   267         Universe::print_heap_at_SIGBREAK();
   268         if (PrintClassHistogram) {
   269           VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */,
   270                                    true /* need_prologue */);
   271           VMThread::execute(&op1);
   272         }
   273         if (JvmtiExport::should_post_data_dump()) {
   274           JvmtiExport::post_data_dump();
   275         }
   276         break;
   277       }
   278       default: {
   279         // Dispatch the signal to java
   280         HandleMark hm(THREAD);
   281         Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
   282         KlassHandle klass (THREAD, k);
   283         if (klass.not_null()) {
   284           JavaValue result(T_VOID);
   285           JavaCallArguments args;
   286           args.push_int(sig);
   287           JavaCalls::call_static(
   288             &result,
   289             klass,
   290             vmSymbols::dispatch_name(),
   291             vmSymbols::int_void_signature(),
   292             &args,
   293             THREAD
   294           );
   295         }
   296         if (HAS_PENDING_EXCEPTION) {
   297           // tty is initialized early so we don't expect it to be null, but
   298           // if it is we can't risk doing an initialization that might
   299           // trigger additional out-of-memory conditions
   300           if (tty != NULL) {
   301             char klass_name[256];
   302             char tmp_sig_name[16];
   303             const char* sig_name = "UNKNOWN";
   304             InstanceKlass::cast(PENDING_EXCEPTION->klass())->
   305               name()->as_klass_external_name(klass_name, 256);
   306             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
   307               sig_name = tmp_sig_name;
   308             warning("Exception %s occurred dispatching signal %s to handler"
   309                     "- the VM may need to be forcibly terminated",
   310                     klass_name, sig_name );
   311           }
   312           CLEAR_PENDING_EXCEPTION;
   313         }
   314       }
   315     }
   316   }
   317 }
   320 void os::signal_init() {
   321   if (!ReduceSignalUsage) {
   322     // Setup JavaThread for processing signals
   323     EXCEPTION_MARK;
   324     Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
   325     instanceKlassHandle klass (THREAD, k);
   326     instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
   328     const char thread_name[] = "Signal Dispatcher";
   329     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
   331     // Initialize thread_oop to put it into the system threadGroup
   332     Handle thread_group (THREAD, Universe::system_thread_group());
   333     JavaValue result(T_VOID);
   334     JavaCalls::call_special(&result, thread_oop,
   335                            klass,
   336                            vmSymbols::object_initializer_name(),
   337                            vmSymbols::threadgroup_string_void_signature(),
   338                            thread_group,
   339                            string,
   340                            CHECK);
   342     KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
   343     JavaCalls::call_special(&result,
   344                             thread_group,
   345                             group,
   346                             vmSymbols::add_method_name(),
   347                             vmSymbols::thread_void_signature(),
   348                             thread_oop,         // ARG 1
   349                             CHECK);
   351     os::signal_init_pd();
   353     { MutexLocker mu(Threads_lock);
   354       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
   356       // At this point it may be possible that no osthread was created for the
   357       // JavaThread due to lack of memory. We would have to throw an exception
   358       // in that case. However, since this must work and we do not allow
   359       // exceptions anyway, check and abort if this fails.
   360       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
   361         vm_exit_during_initialization("java.lang.OutOfMemoryError",
   362                                       "unable to create new native thread");
   363       }
   365       java_lang_Thread::set_thread(thread_oop(), signal_thread);
   366       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
   367       java_lang_Thread::set_daemon(thread_oop());
   369       signal_thread->set_threadObj(thread_oop());
   370       Threads::add(signal_thread);
   371       Thread::start(signal_thread);
   372     }
   373     // Handle ^BREAK
   374     os::signal(SIGBREAK, os::user_handler());
   375   }
   376 }
   379 void os::terminate_signal_thread() {
   380   if (!ReduceSignalUsage)
   381     signal_notify(sigexitnum_pd());
   382 }
   385 // --------------------- loading libraries ---------------------
   387 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
   388 extern struct JavaVM_ main_vm;
   390 static void* _native_java_library = NULL;
   392 void* os::native_java_library() {
   393   if (_native_java_library == NULL) {
   394     char buffer[JVM_MAXPATHLEN];
   395     char ebuf[1024];
   397     // Try to load verify dll first. In 1.3 java dll depends on it and is not
   398     // always able to find it when the loading executable is outside the JDK.
   399     // In order to keep working with 1.2 we ignore any loading errors.
   400     dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "verify");
   401     dll_load(buffer, ebuf, sizeof(ebuf));
   403     // Load java dll
   404     dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "java");
   405     _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
   406     if (_native_java_library == NULL) {
   407       vm_exit_during_initialization("Unable to load native library", ebuf);
   408     }
   410 #if defined(__OpenBSD__)
   411     // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
   412     // ignore errors
   413     dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "net");
   414     dll_load(buffer, ebuf, sizeof(ebuf));
   415 #endif
   416   }
   417   static jboolean onLoaded = JNI_FALSE;
   418   if (onLoaded) {
   419     // We may have to wait to fire OnLoad until TLS is initialized.
   420     if (ThreadLocalStorage::is_initialized()) {
   421       // The JNI_OnLoad handling is normally done by method load in
   422       // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
   423       // explicitly so we have to check for JNI_OnLoad as well
   424       const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
   425       JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
   426           JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
   427       if (JNI_OnLoad != NULL) {
   428         JavaThread* thread = JavaThread::current();
   429         ThreadToNativeFromVM ttn(thread);
   430         HandleMark hm(thread);
   431         jint ver = (*JNI_OnLoad)(&main_vm, NULL);
   432         onLoaded = JNI_TRUE;
   433         if (!Threads::is_supported_jni_version_including_1_1(ver)) {
   434           vm_exit_during_initialization("Unsupported JNI version");
   435         }
   436       }
   437     }
   438   }
   439   return _native_java_library;
   440 }
   442 // --------------------- heap allocation utilities ---------------------
   444 char *os::strdup(const char *str, MEMFLAGS flags) {
   445   size_t size = strlen(str);
   446   char *dup_str = (char *)malloc(size + 1, flags);
   447   if (dup_str == NULL) return NULL;
   448   strcpy(dup_str, str);
   449   return dup_str;
   450 }
   454 #ifdef ASSERT
   455 #define space_before             (MallocCushion + sizeof(double))
   456 #define space_after              MallocCushion
   457 #define size_addr_from_base(p)   (size_t*)(p + space_before - sizeof(size_t))
   458 #define size_addr_from_obj(p)    ((size_t*)p - 1)
   459 // MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
   460 // NB: cannot be debug variable, because these aren't set from the command line until
   461 // *after* the first few allocs already happened
   462 #define MallocCushion            16
   463 #else
   464 #define space_before             0
   465 #define space_after              0
   466 #define size_addr_from_base(p)   should not use w/o ASSERT
   467 #define size_addr_from_obj(p)    should not use w/o ASSERT
   468 #define MallocCushion            0
   469 #endif
   470 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
   472 #ifdef ASSERT
   473 inline size_t get_size(void* obj) {
   474   size_t size = *size_addr_from_obj(obj);
   475   if (size < 0) {
   476     fatal(err_msg("free: size field of object #" PTR_FORMAT " was overwritten ("
   477                   SIZE_FORMAT ")", obj, size));
   478   }
   479   return size;
   480 }
   482 u_char* find_cushion_backwards(u_char* start) {
   483   u_char* p = start;
   484   while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
   485          p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
   486   // ok, we have four consecutive marker bytes; find start
   487   u_char* q = p - 4;
   488   while (*q == badResourceValue) q--;
   489   return q + 1;
   490 }
   492 u_char* find_cushion_forwards(u_char* start) {
   493   u_char* p = start;
   494   while (p[0] != badResourceValue || p[1] != badResourceValue ||
   495          p[2] != badResourceValue || p[3] != badResourceValue) p++;
   496   // ok, we have four consecutive marker bytes; find end of cushion
   497   u_char* q = p + 4;
   498   while (*q == badResourceValue) q++;
   499   return q - MallocCushion;
   500 }
   502 void print_neighbor_blocks(void* ptr) {
   503   // find block allocated before ptr (not entirely crash-proof)
   504   if (MallocCushion < 4) {
   505     tty->print_cr("### cannot find previous block (MallocCushion < 4)");
   506     return;
   507   }
   508   u_char* start_of_this_block = (u_char*)ptr - space_before;
   509   u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
   510   // look for cushion in front of prev. block
   511   u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
   512   ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
   513   u_char* obj = start_of_prev_block + space_before;
   514   if (size <= 0 ) {
   515     // start is bad; mayhave been confused by OS data inbetween objects
   516     // search one more backwards
   517     start_of_prev_block = find_cushion_backwards(start_of_prev_block);
   518     size = *size_addr_from_base(start_of_prev_block);
   519     obj = start_of_prev_block + space_before;
   520   }
   522   if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
   523     tty->print_cr("### previous object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
   524   } else {
   525     tty->print_cr("### previous object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
   526   }
   528   // now find successor block
   529   u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
   530   start_of_next_block = find_cushion_forwards(start_of_next_block);
   531   u_char* next_obj = start_of_next_block + space_before;
   532   ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
   533   if (start_of_next_block[0] == badResourceValue &&
   534       start_of_next_block[1] == badResourceValue &&
   535       start_of_next_block[2] == badResourceValue &&
   536       start_of_next_block[3] == badResourceValue) {
   537     tty->print_cr("### next object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
   538   } else {
   539     tty->print_cr("### next object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
   540   }
   541 }
   544 void report_heap_error(void* memblock, void* bad, const char* where) {
   545   tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
   546   tty->print_cr("## memory stomp: byte at " PTR_FORMAT " %s object " PTR_FORMAT, bad, where, memblock);
   547   print_neighbor_blocks(memblock);
   548   fatal("memory stomping error");
   549 }
   551 void verify_block(void* memblock) {
   552   size_t size = get_size(memblock);
   553   if (MallocCushion) {
   554     u_char* ptr = (u_char*)memblock - space_before;
   555     for (int i = 0; i < MallocCushion; i++) {
   556       if (ptr[i] != badResourceValue) {
   557         report_heap_error(memblock, ptr+i, "in front of");
   558       }
   559     }
   560     u_char* end = (u_char*)memblock + size + space_after;
   561     for (int j = -MallocCushion; j < 0; j++) {
   562       if (end[j] != badResourceValue) {
   563         report_heap_error(memblock, end+j, "after");
   564       }
   565     }
   566   }
   567 }
   568 #endif
   570 void* os::malloc(size_t size, MEMFLAGS memflags, address caller) {
   571   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
   572   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
   574   if (size == 0) {
   575     // return a valid pointer if size is zero
   576     // if NULL is returned the calling functions assume out of memory.
   577     size = 1;
   578   }
   579   if (size > size + space_before + space_after) { // Check for rollover.
   580     return NULL;
   581   }
   582   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   583   u_char* ptr = (u_char*)::malloc(size + space_before + space_after);
   585 #ifdef ASSERT
   586   if (ptr == NULL) return NULL;
   587   if (MallocCushion) {
   588     for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
   589     u_char* end = ptr + space_before + size;
   590     for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
   591     for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
   592   }
   593   // put size just before data
   594   *size_addr_from_base(ptr) = size;
   595 #endif
   596   u_char* memblock = ptr + space_before;
   597   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   598     tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
   599     breakpoint();
   600   }
   601   debug_only(if (paranoid) verify_block(memblock));
   602   if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
   604   // we do not track MallocCushion memory
   605     MemTracker::record_malloc((address)memblock, size, memflags, caller == 0 ? CALLER_PC : caller);
   607   return memblock;
   608 }
   611 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, address caller) {
   612 #ifndef ASSERT
   613   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
   614   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
   615   void* ptr = ::realloc(memblock, size);
   616   if (ptr != NULL) {
   617     MemTracker::record_realloc((address)memblock, (address)ptr, size, memflags,
   618      caller == 0 ? CALLER_PC : caller);
   619   }
   620   return ptr;
   621 #else
   622   if (memblock == NULL) {
   623     return malloc(size, memflags, (caller == 0 ? CALLER_PC : caller));
   624   }
   625   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   626     tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
   627     breakpoint();
   628   }
   629   verify_block(memblock);
   630   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   631   if (size == 0) return NULL;
   632   // always move the block
   633   void* ptr = malloc(size, memflags, caller == 0 ? CALLER_PC : caller);
   634   if (PrintMalloc) tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
   635   // Copy to new memory if malloc didn't fail
   636   if ( ptr != NULL ) {
   637     memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
   638     if (paranoid) verify_block(ptr);
   639     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
   640       tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
   641       breakpoint();
   642     }
   643     free(memblock);
   644   }
   645   return ptr;
   646 #endif
   647 }
   650 void  os::free(void *memblock, MEMFLAGS memflags) {
   651   NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
   652 #ifdef ASSERT
   653   if (memblock == NULL) return;
   654   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   655     if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
   656     breakpoint();
   657   }
   658   verify_block(memblock);
   659   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   660   // Added by detlefs.
   661   if (MallocCushion) {
   662     u_char* ptr = (u_char*)memblock - space_before;
   663     for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
   664       guarantee(*p == badResourceValue,
   665                 "Thing freed should be malloc result.");
   666       *p = (u_char)freeBlockPad;
   667     }
   668     size_t size = get_size(memblock);
   669     inc_stat_counter(&free_bytes, size);
   670     u_char* end = ptr + space_before + size;
   671     for (u_char* q = end; q < end + MallocCushion; q++) {
   672       guarantee(*q == badResourceValue,
   673                 "Thing freed should be malloc result.");
   674       *q = (u_char)freeBlockPad;
   675     }
   676     if (PrintMalloc && tty != NULL)
   677       fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
   678   } else if (PrintMalloc && tty != NULL) {
   679     // tty->print_cr("os::free %p", memblock);
   680     fprintf(stderr, "os::free " PTR_FORMAT "\n", (uintptr_t)memblock);
   681   }
   682 #endif
   683   MemTracker::record_free((address)memblock, memflags);
   685   ::free((char*)memblock - space_before);
   686 }
   688 void os::init_random(long initval) {
   689   _rand_seed = initval;
   690 }
   693 long os::random() {
   694   /* standard, well-known linear congruential random generator with
   695    * next_rand = (16807*seed) mod (2**31-1)
   696    * see
   697    * (1) "Random Number Generators: Good Ones Are Hard to Find",
   698    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
   699    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
   700    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
   701   */
   702   const long a = 16807;
   703   const unsigned long m = 2147483647;
   704   const long q = m / a;        assert(q == 127773, "weird math");
   705   const long r = m % a;        assert(r == 2836, "weird math");
   707   // compute az=2^31p+q
   708   unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
   709   unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
   710   lo += (hi & 0x7FFF) << 16;
   712   // if q overflowed, ignore the overflow and increment q
   713   if (lo > m) {
   714     lo &= m;
   715     ++lo;
   716   }
   717   lo += hi >> 15;
   719   // if (p+q) overflowed, ignore the overflow and increment (p+q)
   720   if (lo > m) {
   721     lo &= m;
   722     ++lo;
   723   }
   724   return (_rand_seed = lo);
   725 }
   727 // The INITIALIZED state is distinguished from the SUSPENDED state because the
   728 // conditions in which a thread is first started are different from those in which
   729 // a suspension is resumed.  These differences make it hard for us to apply the
   730 // tougher checks when starting threads that we want to do when resuming them.
   731 // However, when start_thread is called as a result of Thread.start, on a Java
   732 // thread, the operation is synchronized on the Java Thread object.  So there
   733 // cannot be a race to start the thread and hence for the thread to exit while
   734 // we are working on it.  Non-Java threads that start Java threads either have
   735 // to do so in a context in which races are impossible, or should do appropriate
   736 // locking.
   738 void os::start_thread(Thread* thread) {
   739   // guard suspend/resume
   740   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
   741   OSThread* osthread = thread->osthread();
   742   osthread->set_state(RUNNABLE);
   743   pd_start_thread(thread);
   744 }
   746 //---------------------------------------------------------------------------
   747 // Helper functions for fatal error handler
   749 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
   750   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
   752   int cols = 0;
   753   int cols_per_line = 0;
   754   switch (unitsize) {
   755     case 1: cols_per_line = 16; break;
   756     case 2: cols_per_line = 8;  break;
   757     case 4: cols_per_line = 4;  break;
   758     case 8: cols_per_line = 2;  break;
   759     default: return;
   760   }
   762   address p = start;
   763   st->print(PTR_FORMAT ":   ", start);
   764   while (p < end) {
   765     switch (unitsize) {
   766       case 1: st->print("%02x", *(u1*)p); break;
   767       case 2: st->print("%04x", *(u2*)p); break;
   768       case 4: st->print("%08x", *(u4*)p); break;
   769       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
   770     }
   771     p += unitsize;
   772     cols++;
   773     if (cols >= cols_per_line && p < end) {
   774        cols = 0;
   775        st->cr();
   776        st->print(PTR_FORMAT ":   ", p);
   777     } else {
   778        st->print(" ");
   779     }
   780   }
   781   st->cr();
   782 }
   784 void os::print_environment_variables(outputStream* st, const char** env_list,
   785                                      char* buffer, int len) {
   786   if (env_list) {
   787     st->print_cr("Environment Variables:");
   789     for (int i = 0; env_list[i] != NULL; i++) {
   790       if (getenv(env_list[i], buffer, len)) {
   791         st->print(env_list[i]);
   792         st->print("=");
   793         st->print_cr(buffer);
   794       }
   795     }
   796   }
   797 }
   799 void os::print_cpu_info(outputStream* st) {
   800   // cpu
   801   st->print("CPU:");
   802   st->print("total %d", os::processor_count());
   803   // It's not safe to query number of active processors after crash
   804   // st->print("(active %d)", os::active_processor_count());
   805   st->print(" %s", VM_Version::cpu_features());
   806   st->cr();
   807   pd_print_cpu_info(st);
   808 }
   810 void os::print_date_and_time(outputStream *st) {
   811   time_t tloc;
   812   (void)time(&tloc);
   813   st->print("time: %s", ctime(&tloc));  // ctime adds newline.
   815   double t = os::elapsedTime();
   816   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
   817   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
   818   //       before printf. We lost some precision, but who cares?
   819   st->print_cr("elapsed time: %d seconds", (int)t);
   820 }
   822 // moved from debug.cpp (used to be find()) but still called from there
   823 // The verbose parameter is only set by the debug code in one case
   824 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
   825   address addr = (address)x;
   826   CodeBlob* b = CodeCache::find_blob_unsafe(addr);
   827   if (b != NULL) {
   828     if (b->is_buffer_blob()) {
   829       // the interpreter is generated into a buffer blob
   830       InterpreterCodelet* i = Interpreter::codelet_containing(addr);
   831       if (i != NULL) {
   832         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
   833         i->print_on(st);
   834         return;
   835       }
   836       if (Interpreter::contains(addr)) {
   837         st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
   838                      " (not bytecode specific)", addr);
   839         return;
   840       }
   841       //
   842       if (AdapterHandlerLibrary::contains(b)) {
   843         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
   844         AdapterHandlerLibrary::print_handler_on(st, b);
   845       }
   846       // the stubroutines are generated into a buffer blob
   847       StubCodeDesc* d = StubCodeDesc::desc_for(addr);
   848       if (d != NULL) {
   849         st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
   850         d->print_on(st);
   851         st->cr();
   852         return;
   853       }
   854       if (StubRoutines::contains(addr)) {
   855         st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
   856                      "stub routine", addr);
   857         return;
   858       }
   859       // the InlineCacheBuffer is using stubs generated into a buffer blob
   860       if (InlineCacheBuffer::contains(addr)) {
   861         st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
   862         return;
   863       }
   864       VtableStub* v = VtableStubs::stub_containing(addr);
   865       if (v != NULL) {
   866         st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
   867         v->print_on(st);
   868         st->cr();
   869         return;
   870       }
   871     }
   872     nmethod* nm = b->as_nmethod_or_null();
   873     if (nm != NULL) {
   874       ResourceMark rm;
   875       st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
   876                 addr, (int)(addr - nm->entry_point()), nm);
   877       if (verbose) {
   878         st->print(" for ");
   879         nm->method()->print_value_on(st);
   880       }
   881       st->cr();
   882       nm->print_nmethod(verbose);
   883       return;
   884     }
   885     st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
   886     b->print_on(st);
   887     return;
   888   }
   890   if (Universe::heap()->is_in(addr)) {
   891     HeapWord* p = Universe::heap()->block_start(addr);
   892     bool print = false;
   893     // If we couldn't find it it just may mean that heap wasn't parseable
   894     // See if we were just given an oop directly
   895     if (p != NULL && Universe::heap()->block_is_obj(p)) {
   896       print = true;
   897     } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
   898       p = (HeapWord*) addr;
   899       print = true;
   900     }
   901     if (print) {
   902       if (p == (HeapWord*) addr) {
   903         st->print_cr(INTPTR_FORMAT " is an oop", addr);
   904       } else {
   905         st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
   906       }
   907       oop(p)->print_on(st);
   908       return;
   909     }
   910   } else {
   911     if (Universe::heap()->is_in_reserved(addr)) {
   912       st->print_cr(INTPTR_FORMAT " is an unallocated location "
   913                    "in the heap", addr);
   914       return;
   915     }
   916   }
   917   if (JNIHandles::is_global_handle((jobject) addr)) {
   918     st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
   919     return;
   920   }
   921   if (JNIHandles::is_weak_global_handle((jobject) addr)) {
   922     st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
   923     return;
   924   }
   925 #ifndef PRODUCT
   926   // we don't keep the block list in product mode
   927   if (JNIHandleBlock::any_contains((jobject) addr)) {
   928     st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
   929     return;
   930   }
   931 #endif
   933   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
   934     // Check for privilege stack
   935     if (thread->privileged_stack_top() != NULL &&
   936         thread->privileged_stack_top()->contains(addr)) {
   937       st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
   938                    "for thread: " INTPTR_FORMAT, addr, thread);
   939       if (verbose) thread->print_on(st);
   940       return;
   941     }
   942     // If the addr is a java thread print information about that.
   943     if (addr == (address)thread) {
   944       if (verbose) {
   945         thread->print_on(st);
   946       } else {
   947         st->print_cr(INTPTR_FORMAT " is a thread", addr);
   948       }
   949       return;
   950     }
   951     // If the addr is in the stack region for this thread then report that
   952     // and print thread info
   953     if (thread->stack_base() >= addr &&
   954         addr > (thread->stack_base() - thread->stack_size())) {
   955       st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
   956                    INTPTR_FORMAT, addr, thread);
   957       if (verbose) thread->print_on(st);
   958       return;
   959     }
   961   }
   963 #ifndef PRODUCT
   964   // Check if in metaspace.
   965   if (ClassLoaderDataGraph::contains((address)addr)) {
   966     // Use addr->print() from the debugger instead (not here)
   967     st->print_cr(INTPTR_FORMAT
   968                  " is pointing into metadata", addr);
   969     return;
   970   }
   971 #endif
   973   // Try an OS specific find
   974   if (os::find(addr, st)) {
   975     return;
   976   }
   978   st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
   979 }
   981 // Looks like all platforms except IA64 can use the same function to check
   982 // if C stack is walkable beyond current frame. The check for fp() is not
   983 // necessary on Sparc, but it's harmless.
   984 bool os::is_first_C_frame(frame* fr) {
   985 #ifdef IA64
   986   // In order to walk native frames on Itanium, we need to access the unwind
   987   // table, which is inside ELF. We don't want to parse ELF after fatal error,
   988   // so return true for IA64. If we need to support C stack walking on IA64,
   989   // this function needs to be moved to CPU specific files, as fp() on IA64
   990   // is register stack, which grows towards higher memory address.
   991   return true;
   992 #endif
   994   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
   995   // Check usp first, because if that's bad the other accessors may fault
   996   // on some architectures.  Ditto ufp second, etc.
   997   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
   998   // sp on amd can be 32 bit aligned.
   999   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
  1001   uintptr_t usp    = (uintptr_t)fr->sp();
  1002   if ((usp & sp_align_mask) != 0) return true;
  1004   uintptr_t ufp    = (uintptr_t)fr->fp();
  1005   if ((ufp & fp_align_mask) != 0) return true;
  1007   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
  1008   if ((old_sp & sp_align_mask) != 0) return true;
  1009   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
  1011   uintptr_t old_fp = (uintptr_t)fr->link();
  1012   if ((old_fp & fp_align_mask) != 0) return true;
  1013   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
  1015   // stack grows downwards; if old_fp is below current fp or if the stack
  1016   // frame is too large, either the stack is corrupted or fp is not saved
  1017   // on stack (i.e. on x86, ebp may be used as general register). The stack
  1018   // is not walkable beyond current frame.
  1019   if (old_fp < ufp) return true;
  1020   if (old_fp - ufp > 64 * K) return true;
  1022   return false;
  1025 #ifdef ASSERT
  1026 extern "C" void test_random() {
  1027   const double m = 2147483647;
  1028   double mean = 0.0, variance = 0.0, t;
  1029   long reps = 10000;
  1030   unsigned long seed = 1;
  1032   tty->print_cr("seed %ld for %ld repeats...", seed, reps);
  1033   os::init_random(seed);
  1034   long num;
  1035   for (int k = 0; k < reps; k++) {
  1036     num = os::random();
  1037     double u = (double)num / m;
  1038     assert(u >= 0.0 && u <= 1.0, "bad random number!");
  1040     // calculate mean and variance of the random sequence
  1041     mean += u;
  1042     variance += (u*u);
  1044   mean /= reps;
  1045   variance /= (reps - 1);
  1047   assert(num == 1043618065, "bad seed");
  1048   tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
  1049   tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
  1050   const double eps = 0.0001;
  1051   t = fabsd(mean - 0.5018);
  1052   assert(t < eps, "bad mean");
  1053   t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
  1054   assert(t < eps, "bad variance");
  1056 #endif
  1059 // Set up the boot classpath.
  1061 char* os::format_boot_path(const char* format_string,
  1062                            const char* home,
  1063                            int home_len,
  1064                            char fileSep,
  1065                            char pathSep) {
  1066     assert((fileSep == '/' && pathSep == ':') ||
  1067            (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
  1069     // Scan the format string to determine the length of the actual
  1070     // boot classpath, and handle platform dependencies as well.
  1071     int formatted_path_len = 0;
  1072     const char* p;
  1073     for (p = format_string; *p != 0; ++p) {
  1074         if (*p == '%') formatted_path_len += home_len - 1;
  1075         ++formatted_path_len;
  1078     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
  1079     if (formatted_path == NULL) {
  1080         return NULL;
  1083     // Create boot classpath from format, substituting separator chars and
  1084     // java home directory.
  1085     char* q = formatted_path;
  1086     for (p = format_string; *p != 0; ++p) {
  1087         switch (*p) {
  1088         case '%':
  1089             strcpy(q, home);
  1090             q += home_len;
  1091             break;
  1092         case '/':
  1093             *q++ = fileSep;
  1094             break;
  1095         case ':':
  1096             *q++ = pathSep;
  1097             break;
  1098         default:
  1099             *q++ = *p;
  1102     *q = '\0';
  1104     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
  1105     return formatted_path;
  1109 bool os::set_boot_path(char fileSep, char pathSep) {
  1110     const char* home = Arguments::get_java_home();
  1111     int home_len = (int)strlen(home);
  1113     static const char* meta_index_dir_format = "%/lib/";
  1114     static const char* meta_index_format = "%/lib/meta-index";
  1115     char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
  1116     if (meta_index == NULL) return false;
  1117     char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
  1118     if (meta_index_dir == NULL) return false;
  1119     Arguments::set_meta_index_path(meta_index, meta_index_dir);
  1121     // Any modification to the JAR-file list, for the boot classpath must be
  1122     // aligned with install/install/make/common/Pack.gmk. Note: boot class
  1123     // path class JARs, are stripped for StackMapTable to reduce download size.
  1124     static const char classpath_format[] =
  1125         "%/lib/resources.jar:"
  1126         "%/lib/rt.jar:"
  1127         "%/lib/sunrsasign.jar:"
  1128         "%/lib/jsse.jar:"
  1129         "%/lib/jce.jar:"
  1130         "%/lib/charsets.jar:"
  1131         "%/lib/jfr.jar:"
  1132 #ifdef __APPLE__
  1133         "%/lib/JObjC.jar:"
  1134 #endif
  1135         "%/classes";
  1136     char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
  1137     if (sysclasspath == NULL) return false;
  1138     Arguments::set_sysclasspath(sysclasspath);
  1140     return true;
  1143 /*
  1144  * Splits a path, based on its separator, the number of
  1145  * elements is returned back in n.
  1146  * It is the callers responsibility to:
  1147  *   a> check the value of n, and n may be 0.
  1148  *   b> ignore any empty path elements
  1149  *   c> free up the data.
  1150  */
  1151 char** os::split_path(const char* path, int* n) {
  1152   *n = 0;
  1153   if (path == NULL || strlen(path) == 0) {
  1154     return NULL;
  1156   const char psepchar = *os::path_separator();
  1157   char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
  1158   if (inpath == NULL) {
  1159     return NULL;
  1161   strncpy(inpath, path, strlen(path));
  1162   int count = 1;
  1163   char* p = strchr(inpath, psepchar);
  1164   // Get a count of elements to allocate memory
  1165   while (p != NULL) {
  1166     count++;
  1167     p++;
  1168     p = strchr(p, psepchar);
  1170   char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
  1171   if (opath == NULL) {
  1172     return NULL;
  1175   // do the actual splitting
  1176   p = inpath;
  1177   for (int i = 0 ; i < count ; i++) {
  1178     size_t len = strcspn(p, os::path_separator());
  1179     if (len > JVM_MAXPATHLEN) {
  1180       return NULL;
  1182     // allocate the string and add terminator storage
  1183     char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
  1184     if (s == NULL) {
  1185       return NULL;
  1187     strncpy(s, p, len);
  1188     s[len] = '\0';
  1189     opath[i] = s;
  1190     p += len + 1;
  1192   FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
  1193   *n = count;
  1194   return opath;
  1197 void os::set_memory_serialize_page(address page) {
  1198   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
  1199   _mem_serialize_page = (volatile int32_t *)page;
  1200   // We initialize the serialization page shift count here
  1201   // We assume a cache line size of 64 bytes
  1202   assert(SerializePageShiftCount == count,
  1203          "thread size changed, fix SerializePageShiftCount constant");
  1204   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
  1207 static volatile intptr_t SerializePageLock = 0;
  1209 // This method is called from signal handler when SIGSEGV occurs while the current
  1210 // thread tries to store to the "read-only" memory serialize page during state
  1211 // transition.
  1212 void os::block_on_serialize_page_trap() {
  1213   if (TraceSafepoint) {
  1214     tty->print_cr("Block until the serialize page permission restored");
  1216   // When VMThread is holding the SerializePageLock during modifying the
  1217   // access permission of the memory serialize page, the following call
  1218   // will block until the permission of that page is restored to rw.
  1219   // Generally, it is unsafe to manipulate locks in signal handlers, but in
  1220   // this case, it's OK as the signal is synchronous and we know precisely when
  1221   // it can occur.
  1222   Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
  1223   Thread::muxRelease(&SerializePageLock);
  1226 // Serialize all thread state variables
  1227 void os::serialize_thread_states() {
  1228   // On some platforms such as Solaris & Linux, the time duration of the page
  1229   // permission restoration is observed to be much longer than expected  due to
  1230   // scheduler starvation problem etc. To avoid the long synchronization
  1231   // time and expensive page trap spinning, 'SerializePageLock' is used to block
  1232   // the mutator thread if such case is encountered. See bug 6546278 for details.
  1233   Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
  1234   os::protect_memory((char *)os::get_memory_serialize_page(),
  1235                      os::vm_page_size(), MEM_PROT_READ);
  1236   os::protect_memory((char *)os::get_memory_serialize_page(),
  1237                      os::vm_page_size(), MEM_PROT_RW);
  1238   Thread::muxRelease(&SerializePageLock);
  1241 // Returns true if the current stack pointer is above the stack shadow
  1242 // pages, false otherwise.
  1244 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
  1245   assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
  1246   address sp = current_stack_pointer();
  1247   // Check if we have StackShadowPages above the yellow zone.  This parameter
  1248   // is dependent on the depth of the maximum VM call stack possible from
  1249   // the handler for stack overflow.  'instanceof' in the stack overflow
  1250   // handler or a println uses at least 8k stack of VM and native code
  1251   // respectively.
  1252   const int framesize_in_bytes =
  1253     Interpreter::size_top_interpreter_activation(method()) * wordSize;
  1254   int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
  1255                       * vm_page_size()) + framesize_in_bytes;
  1256   // The very lower end of the stack
  1257   address stack_limit = thread->stack_base() - thread->stack_size();
  1258   return (sp > (stack_limit + reserved_area));
  1261 size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
  1262                                 uint min_pages)
  1264   assert(min_pages > 0, "sanity");
  1265   if (UseLargePages) {
  1266     const size_t max_page_size = region_max_size / min_pages;
  1268     for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
  1269       const size_t sz = _page_sizes[i];
  1270       const size_t mask = sz - 1;
  1271       if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
  1272         // The largest page size with no fragmentation.
  1273         return sz;
  1276       if (sz <= max_page_size) {
  1277         // The largest page size that satisfies the min_pages requirement.
  1278         return sz;
  1283   return vm_page_size();
  1286 #ifndef PRODUCT
  1287 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
  1289   if (TracePageSizes) {
  1290     tty->print("%s: ", str);
  1291     for (int i = 0; i < count; ++i) {
  1292       tty->print(" " SIZE_FORMAT, page_sizes[i]);
  1294     tty->cr();
  1298 void os::trace_page_sizes(const char* str, const size_t region_min_size,
  1299                           const size_t region_max_size, const size_t page_size,
  1300                           const char* base, const size_t size)
  1302   if (TracePageSizes) {
  1303     tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
  1304                   " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
  1305                   " size=" SIZE_FORMAT,
  1306                   str, region_min_size, region_max_size,
  1307                   page_size, base, size);
  1310 #endif  // #ifndef PRODUCT
  1312 // This is the working definition of a server class machine:
  1313 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
  1314 // because the graphics memory (?) sometimes masks physical memory.
  1315 // If you want to change the definition of a server class machine
  1316 // on some OS or platform, e.g., >=4GB on Windohs platforms,
  1317 // then you'll have to parameterize this method based on that state,
  1318 // as was done for logical processors here, or replicate and
  1319 // specialize this method for each platform.  (Or fix os to have
  1320 // some inheritance structure and use subclassing.  Sigh.)
  1321 // If you want some platform to always or never behave as a server
  1322 // class machine, change the setting of AlwaysActAsServerClassMachine
  1323 // and NeverActAsServerClassMachine in globals*.hpp.
  1324 bool os::is_server_class_machine() {
  1325   // First check for the early returns
  1326   if (NeverActAsServerClassMachine) {
  1327     return false;
  1329   if (AlwaysActAsServerClassMachine) {
  1330     return true;
  1332   // Then actually look at the machine
  1333   bool         result            = false;
  1334   const unsigned int    server_processors = 2;
  1335   const julong server_memory     = 2UL * G;
  1336   // We seem not to get our full complement of memory.
  1337   //     We allow some part (1/8?) of the memory to be "missing",
  1338   //     based on the sizes of DIMMs, and maybe graphics cards.
  1339   const julong missing_memory   = 256UL * M;
  1341   /* Is this a server class machine? */
  1342   if ((os::active_processor_count() >= (int)server_processors) &&
  1343       (os::physical_memory() >= (server_memory - missing_memory))) {
  1344     const unsigned int logical_processors =
  1345       VM_Version::logical_processors_per_package();
  1346     if (logical_processors > 1) {
  1347       const unsigned int physical_packages =
  1348         os::active_processor_count() / logical_processors;
  1349       if (physical_packages > server_processors) {
  1350         result = true;
  1352     } else {
  1353       result = true;
  1356   return result;
  1359 // Read file line by line, if line is longer than bsize,
  1360 // skip rest of line.
  1361 int os::get_line_chars(int fd, char* buf, const size_t bsize){
  1362   size_t sz, i = 0;
  1364   // read until EOF, EOL or buf is full
  1365   while ((sz = (int) read(fd, &buf[i], 1)) == 1 && i < (bsize-2) && buf[i] != '\n') {
  1366      ++i;
  1369   if (buf[i] == '\n') {
  1370     // EOL reached so ignore EOL character and return
  1372     buf[i] = 0;
  1373     return (int) i;
  1376   buf[i+1] = 0;
  1378   if (sz != 1) {
  1379     // EOF reached. if we read chars before EOF return them and
  1380     // return EOF on next call otherwise return EOF
  1382     return (i == 0) ? -1 : (int) i;
  1385   // line is longer than size of buf, skip to EOL
  1386   char ch;
  1387   while (read(fd, &ch, 1) == 1 && ch != '\n') {
  1388     // Do nothing
  1391   // return initial part of line that fits in buf.
  1392   // If we reached EOF, it will be returned on next call.
  1394   return (int) i;
  1397 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
  1398   return os::pd_create_stack_guard_pages(addr, bytes);
  1402 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  1403   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
  1404   if (result != NULL) {
  1405     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
  1408   return result;
  1410 char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
  1411   char* result = pd_attempt_reserve_memory_at(bytes, addr);
  1412   if (result != NULL) {
  1413     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
  1415   return result;
  1418 void os::split_reserved_memory(char *base, size_t size,
  1419                                  size_t split, bool realloc) {
  1420   pd_split_reserved_memory(base, size, split, realloc);
  1423 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
  1424   bool res = pd_commit_memory(addr, bytes, executable);
  1425   if (res) {
  1426     MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
  1428   return res;
  1431 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  1432                               bool executable) {
  1433   bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
  1434   if (res) {
  1435     MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
  1437   return res;
  1440 bool os::uncommit_memory(char* addr, size_t bytes) {
  1441   bool res = pd_uncommit_memory(addr, bytes);
  1442   if (res) {
  1443     MemTracker::record_virtual_memory_uncommit((address)addr, bytes);
  1445   return res;
  1448 bool os::release_memory(char* addr, size_t bytes) {
  1449   bool res = pd_release_memory(addr, bytes);
  1450   if (res) {
  1451     MemTracker::record_virtual_memory_release((address)addr, bytes);
  1453   return res;
  1457 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  1458                            char *addr, size_t bytes, bool read_only,
  1459                            bool allow_exec) {
  1460   char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
  1461   if (result != NULL) {
  1462     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
  1463     MemTracker::record_virtual_memory_commit((address)result, bytes, CALLER_PC);
  1465   return result;
  1468 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  1469                              char *addr, size_t bytes, bool read_only,
  1470                              bool allow_exec) {
  1471   return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
  1472                     read_only, allow_exec);
  1475 bool os::unmap_memory(char *addr, size_t bytes) {
  1476   bool result = pd_unmap_memory(addr, bytes);
  1477   if (result) {
  1478     MemTracker::record_virtual_memory_uncommit((address)addr, bytes);
  1479     MemTracker::record_virtual_memory_release((address)addr, bytes);
  1481   return result;
  1484 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  1485   pd_free_memory(addr, bytes, alignment_hint);
  1488 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  1489   pd_realign_memory(addr, bytes, alignment_hint);

mercurial