src/share/vm/runtime/os.cpp

Fri, 16 Nov 2012 09:19:12 -0500

author
coleenp
date
Fri, 16 Nov 2012 09:19:12 -0500
changeset 4280
80e866b1d053
parent 4261
6cb0d32b828b
parent 4277
e4f764ddb06a
child 4299
f34d701e952e
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/icBuffer.hpp"
    31 #include "code/vtableStubs.hpp"
    32 #include "gc_implementation/shared/vmGCOperations.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "memory/allocation.inline.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvm.h"
    37 #include "prims/jvm_misc.hpp"
    38 #include "prims/privilegedStack.hpp"
    39 #include "runtime/arguments.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/interfaceSupport.hpp"
    42 #include "runtime/java.hpp"
    43 #include "runtime/javaCalls.hpp"
    44 #include "runtime/mutexLocker.hpp"
    45 #include "runtime/os.hpp"
    46 #include "runtime/stubRoutines.hpp"
    47 #include "services/attachListener.hpp"
    48 #include "services/memTracker.hpp"
    49 #include "services/threadService.hpp"
    50 #include "utilities/defaultStream.hpp"
    51 #include "utilities/events.hpp"
    52 #ifdef TARGET_OS_FAMILY_linux
    53 # include "os_linux.inline.hpp"
    54 # include "thread_linux.inline.hpp"
    55 #endif
    56 #ifdef TARGET_OS_FAMILY_solaris
    57 # include "os_solaris.inline.hpp"
    58 # include "thread_solaris.inline.hpp"
    59 #endif
    60 #ifdef TARGET_OS_FAMILY_windows
    61 # include "os_windows.inline.hpp"
    62 # include "thread_windows.inline.hpp"
    63 #endif
    64 #ifdef TARGET_OS_FAMILY_bsd
    65 # include "os_bsd.inline.hpp"
    66 # include "thread_bsd.inline.hpp"
    67 #endif
    69 # include <signal.h>
    71 OSThread*         os::_starting_thread    = NULL;
    72 address           os::_polling_page       = NULL;
    73 volatile int32_t* os::_mem_serialize_page = NULL;
    74 uintptr_t         os::_serialize_page_mask = 0;
    75 long              os::_rand_seed          = 1;
    76 int               os::_processor_count    = 0;
    77 size_t            os::_page_sizes[os::page_sizes_max];
    79 #ifndef PRODUCT
    80 julong os::num_mallocs = 0;         // # of calls to malloc/realloc
    81 julong os::alloc_bytes = 0;         // # of bytes allocated
    82 julong os::num_frees = 0;           // # of calls to free
    83 julong os::free_bytes = 0;          // # of bytes freed
    84 #endif
    86 void os_init_globals() {
    87   // Called from init_globals().
    88   // See Threads::create_vm() in thread.cpp, and init.cpp.
    89   os::init_globals();
    90 }
    92 // Fill in buffer with current local time as an ISO-8601 string.
    93 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
    94 // Returns buffer, or NULL if it failed.
    95 // This would mostly be a call to
    96 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
    97 // except that on Windows the %z behaves badly, so we do it ourselves.
    98 // Also, people wanted milliseconds on there,
    99 // and strftime doesn't do milliseconds.
   100 char* os::iso8601_time(char* buffer, size_t buffer_length) {
   101   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
   102   //                                      1         2
   103   //                             12345678901234567890123456789
   104   static const char* iso8601_format =
   105     "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
   106   static const size_t needed_buffer = 29;
   108   // Sanity check the arguments
   109   if (buffer == NULL) {
   110     assert(false, "NULL buffer");
   111     return NULL;
   112   }
   113   if (buffer_length < needed_buffer) {
   114     assert(false, "buffer_length too small");
   115     return NULL;
   116   }
   117   // Get the current time
   118   jlong milliseconds_since_19700101 = javaTimeMillis();
   119   const int milliseconds_per_microsecond = 1000;
   120   const time_t seconds_since_19700101 =
   121     milliseconds_since_19700101 / milliseconds_per_microsecond;
   122   const int milliseconds_after_second =
   123     milliseconds_since_19700101 % milliseconds_per_microsecond;
   124   // Convert the time value to a tm and timezone variable
   125   struct tm time_struct;
   126   if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
   127     assert(false, "Failed localtime_pd");
   128     return NULL;
   129   }
   130 #if defined(_ALLBSD_SOURCE)
   131   const time_t zone = (time_t) time_struct.tm_gmtoff;
   132 #else
   133   const time_t zone = timezone;
   134 #endif
   136   // If daylight savings time is in effect,
   137   // we are 1 hour East of our time zone
   138   const time_t seconds_per_minute = 60;
   139   const time_t minutes_per_hour = 60;
   140   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
   141   time_t UTC_to_local = zone;
   142   if (time_struct.tm_isdst > 0) {
   143     UTC_to_local = UTC_to_local - seconds_per_hour;
   144   }
   145   // Compute the time zone offset.
   146   //    localtime_pd() sets timezone to the difference (in seconds)
   147   //    between UTC and and local time.
   148   //    ISO 8601 says we need the difference between local time and UTC,
   149   //    we change the sign of the localtime_pd() result.
   150   const time_t local_to_UTC = -(UTC_to_local);
   151   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
   152   char sign_local_to_UTC = '+';
   153   time_t abs_local_to_UTC = local_to_UTC;
   154   if (local_to_UTC < 0) {
   155     sign_local_to_UTC = '-';
   156     abs_local_to_UTC = -(abs_local_to_UTC);
   157   }
   158   // Convert time zone offset seconds to hours and minutes.
   159   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
   160   const time_t zone_min =
   161     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
   163   // Print an ISO 8601 date and time stamp into the buffer
   164   const int year = 1900 + time_struct.tm_year;
   165   const int month = 1 + time_struct.tm_mon;
   166   const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
   167                                    year,
   168                                    month,
   169                                    time_struct.tm_mday,
   170                                    time_struct.tm_hour,
   171                                    time_struct.tm_min,
   172                                    time_struct.tm_sec,
   173                                    milliseconds_after_second,
   174                                    sign_local_to_UTC,
   175                                    zone_hours,
   176                                    zone_min);
   177   if (printed == 0) {
   178     assert(false, "Failed jio_printf");
   179     return NULL;
   180   }
   181   return buffer;
   182 }
   184 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
   185 #ifdef ASSERT
   186   if (!(!thread->is_Java_thread() ||
   187          Thread::current() == thread  ||
   188          Threads_lock->owned_by_self()
   189          || thread->is_Compiler_thread()
   190         )) {
   191     assert(false, "possibility of dangling Thread pointer");
   192   }
   193 #endif
   195   if (p >= MinPriority && p <= MaxPriority) {
   196     int priority = java_to_os_priority[p];
   197     return set_native_priority(thread, priority);
   198   } else {
   199     assert(false, "Should not happen");
   200     return OS_ERR;
   201   }
   202 }
   204 // The mapping from OS priority back to Java priority may be inexact because
   205 // Java priorities can map M:1 with native priorities. If you want the definite
   206 // Java priority then use JavaThread::java_priority()
   207 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
   208   int p;
   209   int os_prio;
   210   OSReturn ret = get_native_priority(thread, &os_prio);
   211   if (ret != OS_OK) return ret;
   213   if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
   214     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
   215   } else {
   216     // niceness values are in reverse order
   217     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
   218   }
   219   priority = (ThreadPriority)p;
   220   return OS_OK;
   221 }
   224 // --------------------- sun.misc.Signal (optional) ---------------------
   227 // SIGBREAK is sent by the keyboard to query the VM state
   228 #ifndef SIGBREAK
   229 #define SIGBREAK SIGQUIT
   230 #endif
   232 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
   235 static void signal_thread_entry(JavaThread* thread, TRAPS) {
   236   os::set_priority(thread, NearMaxPriority);
   237   while (true) {
   238     int sig;
   239     {
   240       // FIXME : Currently we have not decieded what should be the status
   241       //         for this java thread blocked here. Once we decide about
   242       //         that we should fix this.
   243       sig = os::signal_wait();
   244     }
   245     if (sig == os::sigexitnum_pd()) {
   246        // Terminate the signal thread
   247        return;
   248     }
   250     switch (sig) {
   251       case SIGBREAK: {
   252         // Check if the signal is a trigger to start the Attach Listener - in that
   253         // case don't print stack traces.
   254         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
   255           continue;
   256         }
   257         // Print stack traces
   258         // Any SIGBREAK operations added here should make sure to flush
   259         // the output stream (e.g. tty->flush()) after output.  See 4803766.
   260         // Each module also prints an extra carriage return after its output.
   261         VM_PrintThreads op;
   262         VMThread::execute(&op);
   263         VM_PrintJNI jni_op;
   264         VMThread::execute(&jni_op);
   265         VM_FindDeadlocks op1(tty);
   266         VMThread::execute(&op1);
   267         Universe::print_heap_at_SIGBREAK();
   268         if (PrintClassHistogram) {
   269           VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */,
   270                                    true /* need_prologue */);
   271           VMThread::execute(&op1);
   272         }
   273         if (JvmtiExport::should_post_data_dump()) {
   274           JvmtiExport::post_data_dump();
   275         }
   276         break;
   277       }
   278       default: {
   279         // Dispatch the signal to java
   280         HandleMark hm(THREAD);
   281         Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
   282         KlassHandle klass (THREAD, k);
   283         if (klass.not_null()) {
   284           JavaValue result(T_VOID);
   285           JavaCallArguments args;
   286           args.push_int(sig);
   287           JavaCalls::call_static(
   288             &result,
   289             klass,
   290             vmSymbols::dispatch_name(),
   291             vmSymbols::int_void_signature(),
   292             &args,
   293             THREAD
   294           );
   295         }
   296         if (HAS_PENDING_EXCEPTION) {
   297           // tty is initialized early so we don't expect it to be null, but
   298           // if it is we can't risk doing an initialization that might
   299           // trigger additional out-of-memory conditions
   300           if (tty != NULL) {
   301             char klass_name[256];
   302             char tmp_sig_name[16];
   303             const char* sig_name = "UNKNOWN";
   304             InstanceKlass::cast(PENDING_EXCEPTION->klass())->
   305               name()->as_klass_external_name(klass_name, 256);
   306             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
   307               sig_name = tmp_sig_name;
   308             warning("Exception %s occurred dispatching signal %s to handler"
   309                     "- the VM may need to be forcibly terminated",
   310                     klass_name, sig_name );
   311           }
   312           CLEAR_PENDING_EXCEPTION;
   313         }
   314       }
   315     }
   316   }
   317 }
   320 void os::signal_init() {
   321   if (!ReduceSignalUsage) {
   322     // Setup JavaThread for processing signals
   323     EXCEPTION_MARK;
   324     Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
   325     instanceKlassHandle klass (THREAD, k);
   326     instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
   328     const char thread_name[] = "Signal Dispatcher";
   329     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
   331     // Initialize thread_oop to put it into the system threadGroup
   332     Handle thread_group (THREAD, Universe::system_thread_group());
   333     JavaValue result(T_VOID);
   334     JavaCalls::call_special(&result, thread_oop,
   335                            klass,
   336                            vmSymbols::object_initializer_name(),
   337                            vmSymbols::threadgroup_string_void_signature(),
   338                            thread_group,
   339                            string,
   340                            CHECK);
   342     KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
   343     JavaCalls::call_special(&result,
   344                             thread_group,
   345                             group,
   346                             vmSymbols::add_method_name(),
   347                             vmSymbols::thread_void_signature(),
   348                             thread_oop,         // ARG 1
   349                             CHECK);
   351     os::signal_init_pd();
   353     { MutexLocker mu(Threads_lock);
   354       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
   356       // At this point it may be possible that no osthread was created for the
   357       // JavaThread due to lack of memory. We would have to throw an exception
   358       // in that case. However, since this must work and we do not allow
   359       // exceptions anyway, check and abort if this fails.
   360       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
   361         vm_exit_during_initialization("java.lang.OutOfMemoryError",
   362                                       "unable to create new native thread");
   363       }
   365       java_lang_Thread::set_thread(thread_oop(), signal_thread);
   366       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
   367       java_lang_Thread::set_daemon(thread_oop());
   369       signal_thread->set_threadObj(thread_oop());
   370       Threads::add(signal_thread);
   371       Thread::start(signal_thread);
   372     }
   373     // Handle ^BREAK
   374     os::signal(SIGBREAK, os::user_handler());
   375   }
   376 }
   379 void os::terminate_signal_thread() {
   380   if (!ReduceSignalUsage)
   381     signal_notify(sigexitnum_pd());
   382 }
   385 // --------------------- loading libraries ---------------------
   387 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
   388 extern struct JavaVM_ main_vm;
   390 static void* _native_java_library = NULL;
   392 void* os::native_java_library() {
   393   if (_native_java_library == NULL) {
   394     char buffer[JVM_MAXPATHLEN];
   395     char ebuf[1024];
   397     // Try to load verify dll first. In 1.3 java dll depends on it and is not
   398     // always able to find it when the loading executable is outside the JDK.
   399     // In order to keep working with 1.2 we ignore any loading errors.
   400     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
   401                        "verify")) {
   402       dll_load(buffer, ebuf, sizeof(ebuf));
   403     }
   405     // Load java dll
   406     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
   407                        "java")) {
   408       _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
   409     }
   410     if (_native_java_library == NULL) {
   411       vm_exit_during_initialization("Unable to load native library", ebuf);
   412     }
   414 #if defined(__OpenBSD__)
   415     // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
   416     // ignore errors
   417     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
   418                        "net")) {
   419       dll_load(buffer, ebuf, sizeof(ebuf));
   420     }
   421 #endif
   422   }
   423   static jboolean onLoaded = JNI_FALSE;
   424   if (onLoaded) {
   425     // We may have to wait to fire OnLoad until TLS is initialized.
   426     if (ThreadLocalStorage::is_initialized()) {
   427       // The JNI_OnLoad handling is normally done by method load in
   428       // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
   429       // explicitly so we have to check for JNI_OnLoad as well
   430       const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
   431       JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
   432           JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
   433       if (JNI_OnLoad != NULL) {
   434         JavaThread* thread = JavaThread::current();
   435         ThreadToNativeFromVM ttn(thread);
   436         HandleMark hm(thread);
   437         jint ver = (*JNI_OnLoad)(&main_vm, NULL);
   438         onLoaded = JNI_TRUE;
   439         if (!Threads::is_supported_jni_version_including_1_1(ver)) {
   440           vm_exit_during_initialization("Unsupported JNI version");
   441         }
   442       }
   443     }
   444   }
   445   return _native_java_library;
   446 }
   448 // --------------------- heap allocation utilities ---------------------
   450 char *os::strdup(const char *str, MEMFLAGS flags) {
   451   size_t size = strlen(str);
   452   char *dup_str = (char *)malloc(size + 1, flags);
   453   if (dup_str == NULL) return NULL;
   454   strcpy(dup_str, str);
   455   return dup_str;
   456 }
   460 #ifdef ASSERT
   461 #define space_before             (MallocCushion + sizeof(double))
   462 #define space_after              MallocCushion
   463 #define size_addr_from_base(p)   (size_t*)(p + space_before - sizeof(size_t))
   464 #define size_addr_from_obj(p)    ((size_t*)p - 1)
   465 // MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
   466 // NB: cannot be debug variable, because these aren't set from the command line until
   467 // *after* the first few allocs already happened
   468 #define MallocCushion            16
   469 #else
   470 #define space_before             0
   471 #define space_after              0
   472 #define size_addr_from_base(p)   should not use w/o ASSERT
   473 #define size_addr_from_obj(p)    should not use w/o ASSERT
   474 #define MallocCushion            0
   475 #endif
   476 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
   478 #ifdef ASSERT
   479 inline size_t get_size(void* obj) {
   480   size_t size = *size_addr_from_obj(obj);
   481   if (size < 0) {
   482     fatal(err_msg("free: size field of object #" PTR_FORMAT " was overwritten ("
   483                   SIZE_FORMAT ")", obj, size));
   484   }
   485   return size;
   486 }
   488 u_char* find_cushion_backwards(u_char* start) {
   489   u_char* p = start;
   490   while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
   491          p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
   492   // ok, we have four consecutive marker bytes; find start
   493   u_char* q = p - 4;
   494   while (*q == badResourceValue) q--;
   495   return q + 1;
   496 }
   498 u_char* find_cushion_forwards(u_char* start) {
   499   u_char* p = start;
   500   while (p[0] != badResourceValue || p[1] != badResourceValue ||
   501          p[2] != badResourceValue || p[3] != badResourceValue) p++;
   502   // ok, we have four consecutive marker bytes; find end of cushion
   503   u_char* q = p + 4;
   504   while (*q == badResourceValue) q++;
   505   return q - MallocCushion;
   506 }
   508 void print_neighbor_blocks(void* ptr) {
   509   // find block allocated before ptr (not entirely crash-proof)
   510   if (MallocCushion < 4) {
   511     tty->print_cr("### cannot find previous block (MallocCushion < 4)");
   512     return;
   513   }
   514   u_char* start_of_this_block = (u_char*)ptr - space_before;
   515   u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
   516   // look for cushion in front of prev. block
   517   u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
   518   ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
   519   u_char* obj = start_of_prev_block + space_before;
   520   if (size <= 0 ) {
   521     // start is bad; mayhave been confused by OS data inbetween objects
   522     // search one more backwards
   523     start_of_prev_block = find_cushion_backwards(start_of_prev_block);
   524     size = *size_addr_from_base(start_of_prev_block);
   525     obj = start_of_prev_block + space_before;
   526   }
   528   if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
   529     tty->print_cr("### previous object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
   530   } else {
   531     tty->print_cr("### previous object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
   532   }
   534   // now find successor block
   535   u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
   536   start_of_next_block = find_cushion_forwards(start_of_next_block);
   537   u_char* next_obj = start_of_next_block + space_before;
   538   ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
   539   if (start_of_next_block[0] == badResourceValue &&
   540       start_of_next_block[1] == badResourceValue &&
   541       start_of_next_block[2] == badResourceValue &&
   542       start_of_next_block[3] == badResourceValue) {
   543     tty->print_cr("### next object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
   544   } else {
   545     tty->print_cr("### next object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
   546   }
   547 }
   550 void report_heap_error(void* memblock, void* bad, const char* where) {
   551   tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
   552   tty->print_cr("## memory stomp: byte at " PTR_FORMAT " %s object " PTR_FORMAT, bad, where, memblock);
   553   print_neighbor_blocks(memblock);
   554   fatal("memory stomping error");
   555 }
   557 void verify_block(void* memblock) {
   558   size_t size = get_size(memblock);
   559   if (MallocCushion) {
   560     u_char* ptr = (u_char*)memblock - space_before;
   561     for (int i = 0; i < MallocCushion; i++) {
   562       if (ptr[i] != badResourceValue) {
   563         report_heap_error(memblock, ptr+i, "in front of");
   564       }
   565     }
   566     u_char* end = (u_char*)memblock + size + space_after;
   567     for (int j = -MallocCushion; j < 0; j++) {
   568       if (end[j] != badResourceValue) {
   569         report_heap_error(memblock, end+j, "after");
   570       }
   571     }
   572   }
   573 }
   574 #endif
   576 void* os::malloc(size_t size, MEMFLAGS memflags, address caller) {
   577   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
   578   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
   580   if (size == 0) {
   581     // return a valid pointer if size is zero
   582     // if NULL is returned the calling functions assume out of memory.
   583     size = 1;
   584   }
   585   if (size > size + space_before + space_after) { // Check for rollover.
   586     return NULL;
   587   }
   588   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   589   u_char* ptr = (u_char*)::malloc(size + space_before + space_after);
   591 #ifdef ASSERT
   592   if (ptr == NULL) return NULL;
   593   if (MallocCushion) {
   594     for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
   595     u_char* end = ptr + space_before + size;
   596     for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
   597     for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
   598   }
   599   // put size just before data
   600   *size_addr_from_base(ptr) = size;
   601 #endif
   602   u_char* memblock = ptr + space_before;
   603   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   604     tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
   605     breakpoint();
   606   }
   607   debug_only(if (paranoid) verify_block(memblock));
   608   if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
   610   // we do not track MallocCushion memory
   611     MemTracker::record_malloc((address)memblock, size, memflags, caller == 0 ? CALLER_PC : caller);
   613   return memblock;
   614 }
   617 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, address caller) {
   618 #ifndef ASSERT
   619   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
   620   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
   621   void* ptr = ::realloc(memblock, size);
   622   if (ptr != NULL) {
   623     MemTracker::record_realloc((address)memblock, (address)ptr, size, memflags,
   624      caller == 0 ? CALLER_PC : caller);
   625   }
   626   return ptr;
   627 #else
   628   if (memblock == NULL) {
   629     return malloc(size, memflags, (caller == 0 ? CALLER_PC : caller));
   630   }
   631   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   632     tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
   633     breakpoint();
   634   }
   635   verify_block(memblock);
   636   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   637   if (size == 0) return NULL;
   638   // always move the block
   639   void* ptr = malloc(size, memflags, caller == 0 ? CALLER_PC : caller);
   640   if (PrintMalloc) tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
   641   // Copy to new memory if malloc didn't fail
   642   if ( ptr != NULL ) {
   643     memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
   644     if (paranoid) verify_block(ptr);
   645     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
   646       tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
   647       breakpoint();
   648     }
   649     free(memblock);
   650   }
   651   return ptr;
   652 #endif
   653 }
   656 void  os::free(void *memblock, MEMFLAGS memflags) {
   657   NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
   658 #ifdef ASSERT
   659   if (memblock == NULL) return;
   660   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   661     if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
   662     breakpoint();
   663   }
   664   verify_block(memblock);
   665   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   666   // Added by detlefs.
   667   if (MallocCushion) {
   668     u_char* ptr = (u_char*)memblock - space_before;
   669     for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
   670       guarantee(*p == badResourceValue,
   671                 "Thing freed should be malloc result.");
   672       *p = (u_char)freeBlockPad;
   673     }
   674     size_t size = get_size(memblock);
   675     inc_stat_counter(&free_bytes, size);
   676     u_char* end = ptr + space_before + size;
   677     for (u_char* q = end; q < end + MallocCushion; q++) {
   678       guarantee(*q == badResourceValue,
   679                 "Thing freed should be malloc result.");
   680       *q = (u_char)freeBlockPad;
   681     }
   682     if (PrintMalloc && tty != NULL)
   683       fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
   684   } else if (PrintMalloc && tty != NULL) {
   685     // tty->print_cr("os::free %p", memblock);
   686     fprintf(stderr, "os::free " PTR_FORMAT "\n", (uintptr_t)memblock);
   687   }
   688 #endif
   689   MemTracker::record_free((address)memblock, memflags);
   691   ::free((char*)memblock - space_before);
   692 }
   694 void os::init_random(long initval) {
   695   _rand_seed = initval;
   696 }
   699 long os::random() {
   700   /* standard, well-known linear congruential random generator with
   701    * next_rand = (16807*seed) mod (2**31-1)
   702    * see
   703    * (1) "Random Number Generators: Good Ones Are Hard to Find",
   704    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
   705    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
   706    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
   707   */
   708   const long a = 16807;
   709   const unsigned long m = 2147483647;
   710   const long q = m / a;        assert(q == 127773, "weird math");
   711   const long r = m % a;        assert(r == 2836, "weird math");
   713   // compute az=2^31p+q
   714   unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
   715   unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
   716   lo += (hi & 0x7FFF) << 16;
   718   // if q overflowed, ignore the overflow and increment q
   719   if (lo > m) {
   720     lo &= m;
   721     ++lo;
   722   }
   723   lo += hi >> 15;
   725   // if (p+q) overflowed, ignore the overflow and increment (p+q)
   726   if (lo > m) {
   727     lo &= m;
   728     ++lo;
   729   }
   730   return (_rand_seed = lo);
   731 }
   733 // The INITIALIZED state is distinguished from the SUSPENDED state because the
   734 // conditions in which a thread is first started are different from those in which
   735 // a suspension is resumed.  These differences make it hard for us to apply the
   736 // tougher checks when starting threads that we want to do when resuming them.
   737 // However, when start_thread is called as a result of Thread.start, on a Java
   738 // thread, the operation is synchronized on the Java Thread object.  So there
   739 // cannot be a race to start the thread and hence for the thread to exit while
   740 // we are working on it.  Non-Java threads that start Java threads either have
   741 // to do so in a context in which races are impossible, or should do appropriate
   742 // locking.
   744 void os::start_thread(Thread* thread) {
   745   // guard suspend/resume
   746   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
   747   OSThread* osthread = thread->osthread();
   748   osthread->set_state(RUNNABLE);
   749   pd_start_thread(thread);
   750 }
   752 //---------------------------------------------------------------------------
   753 // Helper functions for fatal error handler
   755 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
   756   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
   758   int cols = 0;
   759   int cols_per_line = 0;
   760   switch (unitsize) {
   761     case 1: cols_per_line = 16; break;
   762     case 2: cols_per_line = 8;  break;
   763     case 4: cols_per_line = 4;  break;
   764     case 8: cols_per_line = 2;  break;
   765     default: return;
   766   }
   768   address p = start;
   769   st->print(PTR_FORMAT ":   ", start);
   770   while (p < end) {
   771     switch (unitsize) {
   772       case 1: st->print("%02x", *(u1*)p); break;
   773       case 2: st->print("%04x", *(u2*)p); break;
   774       case 4: st->print("%08x", *(u4*)p); break;
   775       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
   776     }
   777     p += unitsize;
   778     cols++;
   779     if (cols >= cols_per_line && p < end) {
   780        cols = 0;
   781        st->cr();
   782        st->print(PTR_FORMAT ":   ", p);
   783     } else {
   784        st->print(" ");
   785     }
   786   }
   787   st->cr();
   788 }
   790 void os::print_environment_variables(outputStream* st, const char** env_list,
   791                                      char* buffer, int len) {
   792   if (env_list) {
   793     st->print_cr("Environment Variables:");
   795     for (int i = 0; env_list[i] != NULL; i++) {
   796       if (getenv(env_list[i], buffer, len)) {
   797         st->print(env_list[i]);
   798         st->print("=");
   799         st->print_cr(buffer);
   800       }
   801     }
   802   }
   803 }
   805 void os::print_cpu_info(outputStream* st) {
   806   // cpu
   807   st->print("CPU:");
   808   st->print("total %d", os::processor_count());
   809   // It's not safe to query number of active processors after crash
   810   // st->print("(active %d)", os::active_processor_count());
   811   st->print(" %s", VM_Version::cpu_features());
   812   st->cr();
   813   pd_print_cpu_info(st);
   814 }
   816 void os::print_date_and_time(outputStream *st) {
   817   time_t tloc;
   818   (void)time(&tloc);
   819   st->print("time: %s", ctime(&tloc));  // ctime adds newline.
   821   double t = os::elapsedTime();
   822   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
   823   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
   824   //       before printf. We lost some precision, but who cares?
   825   st->print_cr("elapsed time: %d seconds", (int)t);
   826 }
   828 // moved from debug.cpp (used to be find()) but still called from there
   829 // The verbose parameter is only set by the debug code in one case
   830 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
   831   address addr = (address)x;
   832   CodeBlob* b = CodeCache::find_blob_unsafe(addr);
   833   if (b != NULL) {
   834     if (b->is_buffer_blob()) {
   835       // the interpreter is generated into a buffer blob
   836       InterpreterCodelet* i = Interpreter::codelet_containing(addr);
   837       if (i != NULL) {
   838         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
   839         i->print_on(st);
   840         return;
   841       }
   842       if (Interpreter::contains(addr)) {
   843         st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
   844                      " (not bytecode specific)", addr);
   845         return;
   846       }
   847       //
   848       if (AdapterHandlerLibrary::contains(b)) {
   849         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
   850         AdapterHandlerLibrary::print_handler_on(st, b);
   851       }
   852       // the stubroutines are generated into a buffer blob
   853       StubCodeDesc* d = StubCodeDesc::desc_for(addr);
   854       if (d != NULL) {
   855         st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
   856         d->print_on(st);
   857         st->cr();
   858         return;
   859       }
   860       if (StubRoutines::contains(addr)) {
   861         st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
   862                      "stub routine", addr);
   863         return;
   864       }
   865       // the InlineCacheBuffer is using stubs generated into a buffer blob
   866       if (InlineCacheBuffer::contains(addr)) {
   867         st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
   868         return;
   869       }
   870       VtableStub* v = VtableStubs::stub_containing(addr);
   871       if (v != NULL) {
   872         st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
   873         v->print_on(st);
   874         st->cr();
   875         return;
   876       }
   877     }
   878     nmethod* nm = b->as_nmethod_or_null();
   879     if (nm != NULL) {
   880       ResourceMark rm;
   881       st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
   882                 addr, (int)(addr - nm->entry_point()), nm);
   883       if (verbose) {
   884         st->print(" for ");
   885         nm->method()->print_value_on(st);
   886       }
   887       st->cr();
   888       nm->print_nmethod(verbose);
   889       return;
   890     }
   891     st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
   892     b->print_on(st);
   893     return;
   894   }
   896   if (Universe::heap()->is_in(addr)) {
   897     HeapWord* p = Universe::heap()->block_start(addr);
   898     bool print = false;
   899     // If we couldn't find it it just may mean that heap wasn't parseable
   900     // See if we were just given an oop directly
   901     if (p != NULL && Universe::heap()->block_is_obj(p)) {
   902       print = true;
   903     } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
   904       p = (HeapWord*) addr;
   905       print = true;
   906     }
   907     if (print) {
   908       if (p == (HeapWord*) addr) {
   909         st->print_cr(INTPTR_FORMAT " is an oop", addr);
   910       } else {
   911         st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
   912       }
   913       oop(p)->print_on(st);
   914       return;
   915     }
   916   } else {
   917     if (Universe::heap()->is_in_reserved(addr)) {
   918       st->print_cr(INTPTR_FORMAT " is an unallocated location "
   919                    "in the heap", addr);
   920       return;
   921     }
   922   }
   923   if (JNIHandles::is_global_handle((jobject) addr)) {
   924     st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
   925     return;
   926   }
   927   if (JNIHandles::is_weak_global_handle((jobject) addr)) {
   928     st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
   929     return;
   930   }
   931 #ifndef PRODUCT
   932   // we don't keep the block list in product mode
   933   if (JNIHandleBlock::any_contains((jobject) addr)) {
   934     st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
   935     return;
   936   }
   937 #endif
   939   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
   940     // Check for privilege stack
   941     if (thread->privileged_stack_top() != NULL &&
   942         thread->privileged_stack_top()->contains(addr)) {
   943       st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
   944                    "for thread: " INTPTR_FORMAT, addr, thread);
   945       if (verbose) thread->print_on(st);
   946       return;
   947     }
   948     // If the addr is a java thread print information about that.
   949     if (addr == (address)thread) {
   950       if (verbose) {
   951         thread->print_on(st);
   952       } else {
   953         st->print_cr(INTPTR_FORMAT " is a thread", addr);
   954       }
   955       return;
   956     }
   957     // If the addr is in the stack region for this thread then report that
   958     // and print thread info
   959     if (thread->stack_base() >= addr &&
   960         addr > (thread->stack_base() - thread->stack_size())) {
   961       st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
   962                    INTPTR_FORMAT, addr, thread);
   963       if (verbose) thread->print_on(st);
   964       return;
   965     }
   967   }
   969 #ifndef PRODUCT
   970   // Check if in metaspace.
   971   if (ClassLoaderDataGraph::contains((address)addr)) {
   972     // Use addr->print() from the debugger instead (not here)
   973     st->print_cr(INTPTR_FORMAT
   974                  " is pointing into metadata", addr);
   975     return;
   976   }
   977 #endif
   979   // Try an OS specific find
   980   if (os::find(addr, st)) {
   981     return;
   982   }
   984   st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
   985 }
   987 // Looks like all platforms except IA64 can use the same function to check
   988 // if C stack is walkable beyond current frame. The check for fp() is not
   989 // necessary on Sparc, but it's harmless.
   990 bool os::is_first_C_frame(frame* fr) {
   991 #ifdef IA64
   992   // In order to walk native frames on Itanium, we need to access the unwind
   993   // table, which is inside ELF. We don't want to parse ELF after fatal error,
   994   // so return true for IA64. If we need to support C stack walking on IA64,
   995   // this function needs to be moved to CPU specific files, as fp() on IA64
   996   // is register stack, which grows towards higher memory address.
   997   return true;
   998 #endif
  1000   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
  1001   // Check usp first, because if that's bad the other accessors may fault
  1002   // on some architectures.  Ditto ufp second, etc.
  1003   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
  1004   // sp on amd can be 32 bit aligned.
  1005   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
  1007   uintptr_t usp    = (uintptr_t)fr->sp();
  1008   if ((usp & sp_align_mask) != 0) return true;
  1010   uintptr_t ufp    = (uintptr_t)fr->fp();
  1011   if ((ufp & fp_align_mask) != 0) return true;
  1013   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
  1014   if ((old_sp & sp_align_mask) != 0) return true;
  1015   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
  1017   uintptr_t old_fp = (uintptr_t)fr->link();
  1018   if ((old_fp & fp_align_mask) != 0) return true;
  1019   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
  1021   // stack grows downwards; if old_fp is below current fp or if the stack
  1022   // frame is too large, either the stack is corrupted or fp is not saved
  1023   // on stack (i.e. on x86, ebp may be used as general register). The stack
  1024   // is not walkable beyond current frame.
  1025   if (old_fp < ufp) return true;
  1026   if (old_fp - ufp > 64 * K) return true;
  1028   return false;
  1031 #ifdef ASSERT
  1032 extern "C" void test_random() {
  1033   const double m = 2147483647;
  1034   double mean = 0.0, variance = 0.0, t;
  1035   long reps = 10000;
  1036   unsigned long seed = 1;
  1038   tty->print_cr("seed %ld for %ld repeats...", seed, reps);
  1039   os::init_random(seed);
  1040   long num;
  1041   for (int k = 0; k < reps; k++) {
  1042     num = os::random();
  1043     double u = (double)num / m;
  1044     assert(u >= 0.0 && u <= 1.0, "bad random number!");
  1046     // calculate mean and variance of the random sequence
  1047     mean += u;
  1048     variance += (u*u);
  1050   mean /= reps;
  1051   variance /= (reps - 1);
  1053   assert(num == 1043618065, "bad seed");
  1054   tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
  1055   tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
  1056   const double eps = 0.0001;
  1057   t = fabsd(mean - 0.5018);
  1058   assert(t < eps, "bad mean");
  1059   t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
  1060   assert(t < eps, "bad variance");
  1062 #endif
  1065 // Set up the boot classpath.
  1067 char* os::format_boot_path(const char* format_string,
  1068                            const char* home,
  1069                            int home_len,
  1070                            char fileSep,
  1071                            char pathSep) {
  1072     assert((fileSep == '/' && pathSep == ':') ||
  1073            (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
  1075     // Scan the format string to determine the length of the actual
  1076     // boot classpath, and handle platform dependencies as well.
  1077     int formatted_path_len = 0;
  1078     const char* p;
  1079     for (p = format_string; *p != 0; ++p) {
  1080         if (*p == '%') formatted_path_len += home_len - 1;
  1081         ++formatted_path_len;
  1084     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
  1085     if (formatted_path == NULL) {
  1086         return NULL;
  1089     // Create boot classpath from format, substituting separator chars and
  1090     // java home directory.
  1091     char* q = formatted_path;
  1092     for (p = format_string; *p != 0; ++p) {
  1093         switch (*p) {
  1094         case '%':
  1095             strcpy(q, home);
  1096             q += home_len;
  1097             break;
  1098         case '/':
  1099             *q++ = fileSep;
  1100             break;
  1101         case ':':
  1102             *q++ = pathSep;
  1103             break;
  1104         default:
  1105             *q++ = *p;
  1108     *q = '\0';
  1110     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
  1111     return formatted_path;
  1115 bool os::set_boot_path(char fileSep, char pathSep) {
  1116     const char* home = Arguments::get_java_home();
  1117     int home_len = (int)strlen(home);
  1119     static const char* meta_index_dir_format = "%/lib/";
  1120     static const char* meta_index_format = "%/lib/meta-index";
  1121     char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
  1122     if (meta_index == NULL) return false;
  1123     char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
  1124     if (meta_index_dir == NULL) return false;
  1125     Arguments::set_meta_index_path(meta_index, meta_index_dir);
  1127     // Any modification to the JAR-file list, for the boot classpath must be
  1128     // aligned with install/install/make/common/Pack.gmk. Note: boot class
  1129     // path class JARs, are stripped for StackMapTable to reduce download size.
  1130     static const char classpath_format[] =
  1131         "%/lib/resources.jar:"
  1132         "%/lib/rt.jar:"
  1133         "%/lib/sunrsasign.jar:"
  1134         "%/lib/jsse.jar:"
  1135         "%/lib/jce.jar:"
  1136         "%/lib/charsets.jar:"
  1137         "%/lib/jfr.jar:"
  1138 #ifdef __APPLE__
  1139         "%/lib/JObjC.jar:"
  1140 #endif
  1141         "%/classes";
  1142     char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
  1143     if (sysclasspath == NULL) return false;
  1144     Arguments::set_sysclasspath(sysclasspath);
  1146     return true;
  1149 /*
  1150  * Splits a path, based on its separator, the number of
  1151  * elements is returned back in n.
  1152  * It is the callers responsibility to:
  1153  *   a> check the value of n, and n may be 0.
  1154  *   b> ignore any empty path elements
  1155  *   c> free up the data.
  1156  */
  1157 char** os::split_path(const char* path, int* n) {
  1158   *n = 0;
  1159   if (path == NULL || strlen(path) == 0) {
  1160     return NULL;
  1162   const char psepchar = *os::path_separator();
  1163   char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
  1164   if (inpath == NULL) {
  1165     return NULL;
  1167   strcpy(inpath, path);
  1168   int count = 1;
  1169   char* p = strchr(inpath, psepchar);
  1170   // Get a count of elements to allocate memory
  1171   while (p != NULL) {
  1172     count++;
  1173     p++;
  1174     p = strchr(p, psepchar);
  1176   char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
  1177   if (opath == NULL) {
  1178     return NULL;
  1181   // do the actual splitting
  1182   p = inpath;
  1183   for (int i = 0 ; i < count ; i++) {
  1184     size_t len = strcspn(p, os::path_separator());
  1185     if (len > JVM_MAXPATHLEN) {
  1186       return NULL;
  1188     // allocate the string and add terminator storage
  1189     char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
  1190     if (s == NULL) {
  1191       return NULL;
  1193     strncpy(s, p, len);
  1194     s[len] = '\0';
  1195     opath[i] = s;
  1196     p += len + 1;
  1198   FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
  1199   *n = count;
  1200   return opath;
  1203 void os::set_memory_serialize_page(address page) {
  1204   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
  1205   _mem_serialize_page = (volatile int32_t *)page;
  1206   // We initialize the serialization page shift count here
  1207   // We assume a cache line size of 64 bytes
  1208   assert(SerializePageShiftCount == count,
  1209          "thread size changed, fix SerializePageShiftCount constant");
  1210   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
  1213 static volatile intptr_t SerializePageLock = 0;
  1215 // This method is called from signal handler when SIGSEGV occurs while the current
  1216 // thread tries to store to the "read-only" memory serialize page during state
  1217 // transition.
  1218 void os::block_on_serialize_page_trap() {
  1219   if (TraceSafepoint) {
  1220     tty->print_cr("Block until the serialize page permission restored");
  1222   // When VMThread is holding the SerializePageLock during modifying the
  1223   // access permission of the memory serialize page, the following call
  1224   // will block until the permission of that page is restored to rw.
  1225   // Generally, it is unsafe to manipulate locks in signal handlers, but in
  1226   // this case, it's OK as the signal is synchronous and we know precisely when
  1227   // it can occur.
  1228   Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
  1229   Thread::muxRelease(&SerializePageLock);
  1232 // Serialize all thread state variables
  1233 void os::serialize_thread_states() {
  1234   // On some platforms such as Solaris & Linux, the time duration of the page
  1235   // permission restoration is observed to be much longer than expected  due to
  1236   // scheduler starvation problem etc. To avoid the long synchronization
  1237   // time and expensive page trap spinning, 'SerializePageLock' is used to block
  1238   // the mutator thread if such case is encountered. See bug 6546278 for details.
  1239   Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
  1240   os::protect_memory((char *)os::get_memory_serialize_page(),
  1241                      os::vm_page_size(), MEM_PROT_READ);
  1242   os::protect_memory((char *)os::get_memory_serialize_page(),
  1243                      os::vm_page_size(), MEM_PROT_RW);
  1244   Thread::muxRelease(&SerializePageLock);
  1247 // Returns true if the current stack pointer is above the stack shadow
  1248 // pages, false otherwise.
  1250 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
  1251   assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
  1252   address sp = current_stack_pointer();
  1253   // Check if we have StackShadowPages above the yellow zone.  This parameter
  1254   // is dependent on the depth of the maximum VM call stack possible from
  1255   // the handler for stack overflow.  'instanceof' in the stack overflow
  1256   // handler or a println uses at least 8k stack of VM and native code
  1257   // respectively.
  1258   const int framesize_in_bytes =
  1259     Interpreter::size_top_interpreter_activation(method()) * wordSize;
  1260   int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
  1261                       * vm_page_size()) + framesize_in_bytes;
  1262   // The very lower end of the stack
  1263   address stack_limit = thread->stack_base() - thread->stack_size();
  1264   return (sp > (stack_limit + reserved_area));
  1267 size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
  1268                                 uint min_pages)
  1270   assert(min_pages > 0, "sanity");
  1271   if (UseLargePages) {
  1272     const size_t max_page_size = region_max_size / min_pages;
  1274     for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
  1275       const size_t sz = _page_sizes[i];
  1276       const size_t mask = sz - 1;
  1277       if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
  1278         // The largest page size with no fragmentation.
  1279         return sz;
  1282       if (sz <= max_page_size) {
  1283         // The largest page size that satisfies the min_pages requirement.
  1284         return sz;
  1289   return vm_page_size();
  1292 #ifndef PRODUCT
  1293 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
  1295   if (TracePageSizes) {
  1296     tty->print("%s: ", str);
  1297     for (int i = 0; i < count; ++i) {
  1298       tty->print(" " SIZE_FORMAT, page_sizes[i]);
  1300     tty->cr();
  1304 void os::trace_page_sizes(const char* str, const size_t region_min_size,
  1305                           const size_t region_max_size, const size_t page_size,
  1306                           const char* base, const size_t size)
  1308   if (TracePageSizes) {
  1309     tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
  1310                   " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
  1311                   " size=" SIZE_FORMAT,
  1312                   str, region_min_size, region_max_size,
  1313                   page_size, base, size);
  1316 #endif  // #ifndef PRODUCT
  1318 // This is the working definition of a server class machine:
  1319 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
  1320 // because the graphics memory (?) sometimes masks physical memory.
  1321 // If you want to change the definition of a server class machine
  1322 // on some OS or platform, e.g., >=4GB on Windohs platforms,
  1323 // then you'll have to parameterize this method based on that state,
  1324 // as was done for logical processors here, or replicate and
  1325 // specialize this method for each platform.  (Or fix os to have
  1326 // some inheritance structure and use subclassing.  Sigh.)
  1327 // If you want some platform to always or never behave as a server
  1328 // class machine, change the setting of AlwaysActAsServerClassMachine
  1329 // and NeverActAsServerClassMachine in globals*.hpp.
  1330 bool os::is_server_class_machine() {
  1331   // First check for the early returns
  1332   if (NeverActAsServerClassMachine) {
  1333     return false;
  1335   if (AlwaysActAsServerClassMachine) {
  1336     return true;
  1338   // Then actually look at the machine
  1339   bool         result            = false;
  1340   const unsigned int    server_processors = 2;
  1341   const julong server_memory     = 2UL * G;
  1342   // We seem not to get our full complement of memory.
  1343   //     We allow some part (1/8?) of the memory to be "missing",
  1344   //     based on the sizes of DIMMs, and maybe graphics cards.
  1345   const julong missing_memory   = 256UL * M;
  1347   /* Is this a server class machine? */
  1348   if ((os::active_processor_count() >= (int)server_processors) &&
  1349       (os::physical_memory() >= (server_memory - missing_memory))) {
  1350     const unsigned int logical_processors =
  1351       VM_Version::logical_processors_per_package();
  1352     if (logical_processors > 1) {
  1353       const unsigned int physical_packages =
  1354         os::active_processor_count() / logical_processors;
  1355       if (physical_packages > server_processors) {
  1356         result = true;
  1358     } else {
  1359       result = true;
  1362   return result;
  1365 // Read file line by line, if line is longer than bsize,
  1366 // skip rest of line.
  1367 int os::get_line_chars(int fd, char* buf, const size_t bsize){
  1368   size_t sz, i = 0;
  1370   // read until EOF, EOL or buf is full
  1371   while ((sz = (int) read(fd, &buf[i], 1)) == 1 && i < (bsize-2) && buf[i] != '\n') {
  1372      ++i;
  1375   if (buf[i] == '\n') {
  1376     // EOL reached so ignore EOL character and return
  1378     buf[i] = 0;
  1379     return (int) i;
  1382   buf[i+1] = 0;
  1384   if (sz != 1) {
  1385     // EOF reached. if we read chars before EOF return them and
  1386     // return EOF on next call otherwise return EOF
  1388     return (i == 0) ? -1 : (int) i;
  1391   // line is longer than size of buf, skip to EOL
  1392   char ch;
  1393   while (read(fd, &ch, 1) == 1 && ch != '\n') {
  1394     // Do nothing
  1397   // return initial part of line that fits in buf.
  1398   // If we reached EOF, it will be returned on next call.
  1400   return (int) i;
  1403 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
  1404   return os::pd_create_stack_guard_pages(addr, bytes);
  1408 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  1409   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
  1410   if (result != NULL) {
  1411     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
  1414   return result;
  1416 char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
  1417   char* result = pd_attempt_reserve_memory_at(bytes, addr);
  1418   if (result != NULL) {
  1419     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
  1421   return result;
  1424 void os::split_reserved_memory(char *base, size_t size,
  1425                                  size_t split, bool realloc) {
  1426   pd_split_reserved_memory(base, size, split, realloc);
  1429 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
  1430   bool res = pd_commit_memory(addr, bytes, executable);
  1431   if (res) {
  1432     MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
  1434   return res;
  1437 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  1438                               bool executable) {
  1439   bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
  1440   if (res) {
  1441     MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
  1443   return res;
  1446 bool os::uncommit_memory(char* addr, size_t bytes) {
  1447   bool res = pd_uncommit_memory(addr, bytes);
  1448   if (res) {
  1449     MemTracker::record_virtual_memory_uncommit((address)addr, bytes);
  1451   return res;
  1454 bool os::release_memory(char* addr, size_t bytes) {
  1455   bool res = pd_release_memory(addr, bytes);
  1456   if (res) {
  1457     MemTracker::record_virtual_memory_release((address)addr, bytes);
  1459   return res;
  1463 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  1464                            char *addr, size_t bytes, bool read_only,
  1465                            bool allow_exec) {
  1466   char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
  1467   if (result != NULL) {
  1468     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
  1469     MemTracker::record_virtual_memory_commit((address)result, bytes, CALLER_PC);
  1471   return result;
  1474 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  1475                              char *addr, size_t bytes, bool read_only,
  1476                              bool allow_exec) {
  1477   return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
  1478                     read_only, allow_exec);
  1481 bool os::unmap_memory(char *addr, size_t bytes) {
  1482   bool result = pd_unmap_memory(addr, bytes);
  1483   if (result) {
  1484     MemTracker::record_virtual_memory_uncommit((address)addr, bytes);
  1485     MemTracker::record_virtual_memory_release((address)addr, bytes);
  1487   return result;
  1490 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  1491   pd_free_memory(addr, bytes, alignment_hint);
  1494 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  1495   pd_realign_memory(addr, bytes, alignment_hint);

mercurial