src/cpu/x86/vm/vm_version_x86.hpp

Tue, 21 Jun 2011 09:04:55 -0700

author
never
date
Tue, 21 Jun 2011 09:04:55 -0700
changeset 2980
de6a837d75cf
parent 2761
15c9a0e16269
child 2984
6ae7a1561b53
permissions
-rw-r--r--

7056380: VM crashes with SIGSEGV in compiled code
Summary: code was using andq reg, imm instead of addq addr, imm
Reviewed-by: kvn, jrose, twisti

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_X86_VM_VM_VERSION_X86_HPP
    26 #define CPU_X86_VM_VM_VERSION_X86_HPP
    28 #include "runtime/globals_extension.hpp"
    29 #include "runtime/vm_version.hpp"
    31 class VM_Version : public Abstract_VM_Version {
    32 public:
    33   // cpuid result register layouts.  These are all unions of a uint32_t
    34   // (in case anyone wants access to the register as a whole) and a bitfield.
    36   union StdCpuid1Eax {
    37     uint32_t value;
    38     struct {
    39       uint32_t stepping   : 4,
    40                model      : 4,
    41                family     : 4,
    42                proc_type  : 2,
    43                           : 2,
    44                ext_model  : 4,
    45                ext_family : 8,
    46                           : 4;
    47     } bits;
    48   };
    50   union StdCpuid1Ebx { // example, unused
    51     uint32_t value;
    52     struct {
    53       uint32_t brand_id         : 8,
    54                clflush_size     : 8,
    55                threads_per_cpu  : 8,
    56                apic_id          : 8;
    57     } bits;
    58   };
    60   union StdCpuid1Ecx {
    61     uint32_t value;
    62     struct {
    63       uint32_t sse3     : 1,
    64                         : 2,
    65                monitor  : 1,
    66                         : 1,
    67                vmx      : 1,
    68                         : 1,
    69                est      : 1,
    70                         : 1,
    71                ssse3    : 1,
    72                cid      : 1,
    73                         : 2,
    74                cmpxchg16: 1,
    75                         : 4,
    76                dca      : 1,
    77                sse4_1   : 1,
    78                sse4_2   : 1,
    79                         : 2,
    80                popcnt   : 1,
    81                         : 8;
    82     } bits;
    83   };
    85   union StdCpuid1Edx {
    86     uint32_t value;
    87     struct {
    88       uint32_t          : 4,
    89                tsc      : 1,
    90                         : 3,
    91                cmpxchg8 : 1,
    92                         : 6,
    93                cmov     : 1,
    94                         : 7,
    95                mmx      : 1,
    96                fxsr     : 1,
    97                sse      : 1,
    98                sse2     : 1,
    99                         : 1,
   100                ht       : 1,
   101                         : 3;
   102     } bits;
   103   };
   105   union DcpCpuid4Eax {
   106     uint32_t value;
   107     struct {
   108       uint32_t cache_type    : 5,
   109                              : 21,
   110                cores_per_cpu : 6;
   111     } bits;
   112   };
   114   union DcpCpuid4Ebx {
   115     uint32_t value;
   116     struct {
   117       uint32_t L1_line_size  : 12,
   118                partitions    : 10,
   119                associativity : 10;
   120     } bits;
   121   };
   123   union TplCpuidBEbx {
   124     uint32_t value;
   125     struct {
   126       uint32_t logical_cpus : 16,
   127                             : 16;
   128     } bits;
   129   };
   131   union ExtCpuid1Ecx {
   132     uint32_t value;
   133     struct {
   134       uint32_t LahfSahf     : 1,
   135                CmpLegacy    : 1,
   136                             : 4,
   137                lzcnt        : 1,
   138                sse4a        : 1,
   139                misalignsse  : 1,
   140                prefetchw    : 1,
   141                             : 22;
   142     } bits;
   143   };
   145   union ExtCpuid1Edx {
   146     uint32_t value;
   147     struct {
   148       uint32_t           : 22,
   149                mmx_amd   : 1,
   150                mmx       : 1,
   151                fxsr      : 1,
   152                          : 4,
   153                long_mode : 1,
   154                tdnow2    : 1,
   155                tdnow     : 1;
   156     } bits;
   157   };
   159   union ExtCpuid5Ex {
   160     uint32_t value;
   161     struct {
   162       uint32_t L1_line_size : 8,
   163                L1_tag_lines : 8,
   164                L1_assoc     : 8,
   165                L1_size      : 8;
   166     } bits;
   167   };
   169   union ExtCpuid8Ecx {
   170     uint32_t value;
   171     struct {
   172       uint32_t cores_per_cpu : 8,
   173                              : 24;
   174     } bits;
   175   };
   177 protected:
   178    static int _cpu;
   179    static int _model;
   180    static int _stepping;
   181    static int _cpuFeatures;     // features returned by the "cpuid" instruction
   182                                 // 0 if this instruction is not available
   183    static const char* _features_str;
   185    enum {
   186      CPU_CX8    = (1 << 0), // next bits are from cpuid 1 (EDX)
   187      CPU_CMOV   = (1 << 1),
   188      CPU_FXSR   = (1 << 2),
   189      CPU_HT     = (1 << 3),
   190      CPU_MMX    = (1 << 4),
   191      CPU_3DNOW_PREFETCH  = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
   192                                      // may not necessarily support other 3dnow instructions
   193      CPU_SSE    = (1 << 6),
   194      CPU_SSE2   = (1 << 7),
   195      CPU_SSE3   = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
   196      CPU_SSSE3  = (1 << 9),
   197      CPU_SSE4A  = (1 << 10),
   198      CPU_SSE4_1 = (1 << 11),
   199      CPU_SSE4_2 = (1 << 12),
   200      CPU_POPCNT = (1 << 13),
   201      CPU_LZCNT  = (1 << 14)
   202    } cpuFeatureFlags;
   204   // cpuid information block.  All info derived from executing cpuid with
   205   // various function numbers is stored here.  Intel and AMD info is
   206   // merged in this block: accessor methods disentangle it.
   207   //
   208   // The info block is laid out in subblocks of 4 dwords corresponding to
   209   // eax, ebx, ecx and edx, whether or not they contain anything useful.
   210   struct CpuidInfo {
   211     // cpuid function 0
   212     uint32_t std_max_function;
   213     uint32_t std_vendor_name_0;
   214     uint32_t std_vendor_name_1;
   215     uint32_t std_vendor_name_2;
   217     // cpuid function 1
   218     StdCpuid1Eax std_cpuid1_eax;
   219     StdCpuid1Ebx std_cpuid1_ebx;
   220     StdCpuid1Ecx std_cpuid1_ecx;
   221     StdCpuid1Edx std_cpuid1_edx;
   223     // cpuid function 4 (deterministic cache parameters)
   224     DcpCpuid4Eax dcp_cpuid4_eax;
   225     DcpCpuid4Ebx dcp_cpuid4_ebx;
   226     uint32_t     dcp_cpuid4_ecx; // unused currently
   227     uint32_t     dcp_cpuid4_edx; // unused currently
   229     // cpuid function 0xB (processor topology)
   230     // ecx = 0
   231     uint32_t     tpl_cpuidB0_eax;
   232     TplCpuidBEbx tpl_cpuidB0_ebx;
   233     uint32_t     tpl_cpuidB0_ecx; // unused currently
   234     uint32_t     tpl_cpuidB0_edx; // unused currently
   236     // ecx = 1
   237     uint32_t     tpl_cpuidB1_eax;
   238     TplCpuidBEbx tpl_cpuidB1_ebx;
   239     uint32_t     tpl_cpuidB1_ecx; // unused currently
   240     uint32_t     tpl_cpuidB1_edx; // unused currently
   242     // ecx = 2
   243     uint32_t     tpl_cpuidB2_eax;
   244     TplCpuidBEbx tpl_cpuidB2_ebx;
   245     uint32_t     tpl_cpuidB2_ecx; // unused currently
   246     uint32_t     tpl_cpuidB2_edx; // unused currently
   248     // cpuid function 0x80000000 // example, unused
   249     uint32_t ext_max_function;
   250     uint32_t ext_vendor_name_0;
   251     uint32_t ext_vendor_name_1;
   252     uint32_t ext_vendor_name_2;
   254     // cpuid function 0x80000001
   255     uint32_t     ext_cpuid1_eax; // reserved
   256     uint32_t     ext_cpuid1_ebx; // reserved
   257     ExtCpuid1Ecx ext_cpuid1_ecx;
   258     ExtCpuid1Edx ext_cpuid1_edx;
   260     // cpuid functions 0x80000002 thru 0x80000004: example, unused
   261     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
   262     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
   263     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
   265     // cpuid function 0x80000005 //AMD L1, Intel reserved
   266     uint32_t     ext_cpuid5_eax; // unused currently
   267     uint32_t     ext_cpuid5_ebx; // reserved
   268     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
   269     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
   271     // cpuid function 0x80000008
   272     uint32_t     ext_cpuid8_eax; // unused currently
   273     uint32_t     ext_cpuid8_ebx; // reserved
   274     ExtCpuid8Ecx ext_cpuid8_ecx;
   275     uint32_t     ext_cpuid8_edx; // reserved
   276   };
   278   // The actual cpuid info block
   279   static CpuidInfo _cpuid_info;
   281   // Extractors and predicates
   282   static uint32_t extended_cpu_family() {
   283     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
   284     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
   285     return result;
   286   }
   287   static uint32_t extended_cpu_model() {
   288     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
   289     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
   290     return result;
   291   }
   292   static uint32_t cpu_stepping() {
   293     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
   294     return result;
   295   }
   296   static uint logical_processor_count() {
   297     uint result = threads_per_core();
   298     return result;
   299   }
   300   static uint32_t feature_flags() {
   301     uint32_t result = 0;
   302     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
   303       result |= CPU_CX8;
   304     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
   305       result |= CPU_CMOV;
   306     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
   307         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
   308       result |= CPU_FXSR;
   309     // HT flag is set for multi-core processors also.
   310     if (threads_per_core() > 1)
   311       result |= CPU_HT;
   312     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
   313         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
   314       result |= CPU_MMX;
   315     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
   316       result |= CPU_SSE;
   317     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
   318       result |= CPU_SSE2;
   319     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
   320       result |= CPU_SSE3;
   321     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
   322       result |= CPU_SSSE3;
   323     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
   324       result |= CPU_SSE4_1;
   325     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
   326       result |= CPU_SSE4_2;
   327     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
   328       result |= CPU_POPCNT;
   330     // AMD features.
   331     if (is_amd()) {
   332       if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
   333           (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
   334         result |= CPU_3DNOW_PREFETCH;
   335       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
   336         result |= CPU_LZCNT;
   337       if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
   338         result |= CPU_SSE4A;
   339     }
   341     return result;
   342   }
   344   static void get_processor_features();
   346 public:
   347   // Offsets for cpuid asm stub
   348   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
   349   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
   350   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
   351   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
   352   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
   353   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
   354   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
   355   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
   356   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
   358   // Initialization
   359   static void initialize();
   361   // Asserts
   362   static void assert_is_initialized() {
   363     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
   364   }
   366   //
   367   // Processor family:
   368   //       3   -  386
   369   //       4   -  486
   370   //       5   -  Pentium
   371   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
   372   //              Pentium M, Core Solo, Core Duo, Core2 Duo
   373   //    family 6 model:   9,        13,       14,        15
   374   //    0x0f   -  Pentium 4, Opteron
   375   //
   376   // Note: The cpu family should be used to select between
   377   //       instruction sequences which are valid on all Intel
   378   //       processors.  Use the feature test functions below to
   379   //       determine whether a particular instruction is supported.
   380   //
   381   static int  cpu_family()        { return _cpu;}
   382   static bool is_P6()             { return cpu_family() >= 6; }
   384   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
   385   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
   387   static bool supports_processor_topology() {
   388     return (_cpuid_info.std_max_function >= 0xB) &&
   389            // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
   390            // Some cpus have max cpuid >= 0xB but do not support processor topology.
   391            ((_cpuid_info.tpl_cpuidB0_eax & 0x1f | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
   392   }
   394   static uint cores_per_cpu()  {
   395     uint result = 1;
   396     if (is_intel()) {
   397       if (supports_processor_topology()) {
   398         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
   399                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
   400       } else {
   401         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
   402       }
   403     } else if (is_amd()) {
   404       result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
   405     }
   406     return result;
   407   }
   409   static uint threads_per_core()  {
   410     uint result = 1;
   411     if (is_intel() && supports_processor_topology()) {
   412       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
   413     } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
   414       result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
   415                cores_per_cpu();
   416     }
   417     return result;
   418   }
   420   static intx L1_data_cache_line_size()  {
   421     intx result = 0;
   422     if (is_intel()) {
   423       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
   424     } else if (is_amd()) {
   425       result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
   426     }
   427     if (result < 32) // not defined ?
   428       result = 32;   // 32 bytes by default on x86 and other x64
   429     return result;
   430   }
   432   //
   433   // Feature identification
   434   //
   435   static bool supports_cpuid()    { return _cpuFeatures  != 0; }
   436   static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
   437   static bool supports_cmov()     { return (_cpuFeatures & CPU_CMOV) != 0; }
   438   static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
   439   static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
   440   static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
   441   static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
   442   static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
   443   static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
   444   static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
   445   static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
   446   static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
   447   static bool supports_popcnt()   { return (_cpuFeatures & CPU_POPCNT) != 0; }
   448   //
   449   // AMD features
   450   //
   451   static bool supports_3dnow_prefetch()    { return (_cpuFeatures & CPU_3DNOW_PREFETCH) != 0; }
   452   static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
   453   static bool supports_lzcnt()    { return (_cpuFeatures & CPU_LZCNT) != 0; }
   454   static bool supports_sse4a()    { return (_cpuFeatures & CPU_SSE4A) != 0; }
   456   // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
   457   static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
   458                                            supports_sse3() && _model != 0x1C; }
   460   static bool supports_compare_and_exchange() { return true; }
   462   static const char* cpu_features()           { return _features_str; }
   464   static intx allocate_prefetch_distance() {
   465     // This method should be called before allocate_prefetch_style().
   466     //
   467     // Hardware prefetching (distance/size in bytes):
   468     // Pentium 3 -  64 /  32
   469     // Pentium 4 - 256 / 128
   470     // Athlon    -  64 /  32 ????
   471     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
   472     // Core      - 128 /  64
   473     //
   474     // Software prefetching (distance in bytes / instruction with best score):
   475     // Pentium 3 - 128 / prefetchnta
   476     // Pentium 4 - 512 / prefetchnta
   477     // Athlon    - 128 / prefetchnta
   478     // Opteron   - 256 / prefetchnta
   479     // Core      - 256 / prefetchnta
   480     // It will be used only when AllocatePrefetchStyle > 0
   482     intx count = AllocatePrefetchDistance;
   483     if (count < 0) {   // default ?
   484       if (is_amd()) {  // AMD
   485         if (supports_sse2())
   486           count = 256; // Opteron
   487         else
   488           count = 128; // Athlon
   489       } else {         // Intel
   490         if (supports_sse2())
   491           if (cpu_family() == 6) {
   492             count = 256; // Pentium M, Core, Core2
   493           } else {
   494             count = 512; // Pentium 4
   495           }
   496         else
   497           count = 128; // Pentium 3 (and all other old CPUs)
   498       }
   499     }
   500     return count;
   501   }
   502   static intx allocate_prefetch_style() {
   503     assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
   504     // Return 0 if AllocatePrefetchDistance was not defined.
   505     return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
   506   }
   508   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
   509   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
   510   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
   511   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
   513   // gc copy/scan is disabled if prefetchw isn't supported, because
   514   // Prefetch::write emits an inlined prefetchw on Linux.
   515   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
   516   // The used prefetcht0 instruction works for both amd64 and em64t.
   517   static intx prefetch_copy_interval_in_bytes() {
   518     intx interval = PrefetchCopyIntervalInBytes;
   519     return interval >= 0 ? interval : 576;
   520   }
   521   static intx prefetch_scan_interval_in_bytes() {
   522     intx interval = PrefetchScanIntervalInBytes;
   523     return interval >= 0 ? interval : 576;
   524   }
   525   static intx prefetch_fields_ahead() {
   526     intx count = PrefetchFieldsAhead;
   527     return count >= 0 ? count : 1;
   528   }
   529 };
   531 #endif // CPU_X86_VM_VM_VERSION_X86_HPP

mercurial