src/cpu/x86/vm/templateTable_x86_64.cpp

Tue, 21 Jun 2011 09:04:55 -0700

author
never
date
Tue, 21 Jun 2011 09:04:55 -0700
changeset 2980
de6a837d75cf
parent 2816
286c498ae0d4
child 2982
ddd894528dbc
permissions
-rw-r--r--

7056380: VM crashes with SIGSEGV in compiled code
Summary: code was using andq reg, imm instead of addq addr, imm
Reviewed-by: kvn, jrose, twisti

     1 /*
     2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "interpreter/interpreterRuntime.hpp"
    28 #include "interpreter/templateTable.hpp"
    29 #include "memory/universe.inline.hpp"
    30 #include "oops/methodDataOop.hpp"
    31 #include "oops/objArrayKlass.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "prims/methodHandles.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/stubRoutines.hpp"
    36 #include "runtime/synchronizer.hpp"
    38 #ifndef CC_INTERP
    40 #define __ _masm->
    42 // Platform-dependent initialization
    44 void TemplateTable::pd_initialize() {
    45   // No amd64 specific initialization
    46 }
    48 // Address computation: local variables
    50 static inline Address iaddress(int n) {
    51   return Address(r14, Interpreter::local_offset_in_bytes(n));
    52 }
    54 static inline Address laddress(int n) {
    55   return iaddress(n + 1);
    56 }
    58 static inline Address faddress(int n) {
    59   return iaddress(n);
    60 }
    62 static inline Address daddress(int n) {
    63   return laddress(n);
    64 }
    66 static inline Address aaddress(int n) {
    67   return iaddress(n);
    68 }
    70 static inline Address iaddress(Register r) {
    71   return Address(r14, r, Address::times_8);
    72 }
    74 static inline Address laddress(Register r) {
    75   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
    76 }
    78 static inline Address faddress(Register r) {
    79   return iaddress(r);
    80 }
    82 static inline Address daddress(Register r) {
    83   return laddress(r);
    84 }
    86 static inline Address aaddress(Register r) {
    87   return iaddress(r);
    88 }
    90 static inline Address at_rsp() {
    91   return Address(rsp, 0);
    92 }
    94 // At top of Java expression stack which may be different than esp().  It
    95 // isn't for category 1 objects.
    96 static inline Address at_tos   () {
    97   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    98 }
   100 static inline Address at_tos_p1() {
   101   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
   102 }
   104 static inline Address at_tos_p2() {
   105   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
   106 }
   108 static inline Address at_tos_p3() {
   109   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
   110 }
   112 // Condition conversion
   113 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   114   switch (cc) {
   115   case TemplateTable::equal        : return Assembler::notEqual;
   116   case TemplateTable::not_equal    : return Assembler::equal;
   117   case TemplateTable::less         : return Assembler::greaterEqual;
   118   case TemplateTable::less_equal   : return Assembler::greater;
   119   case TemplateTable::greater      : return Assembler::lessEqual;
   120   case TemplateTable::greater_equal: return Assembler::less;
   121   }
   122   ShouldNotReachHere();
   123   return Assembler::zero;
   124 }
   127 // Miscelaneous helper routines
   128 // Store an oop (or NULL) at the address described by obj.
   129 // If val == noreg this means store a NULL
   131 static void do_oop_store(InterpreterMacroAssembler* _masm,
   132                          Address obj,
   133                          Register val,
   134                          BarrierSet::Name barrier,
   135                          bool precise) {
   136   assert(val == noreg || val == rax, "parameter is just for looks");
   137   switch (barrier) {
   138 #ifndef SERIALGC
   139     case BarrierSet::G1SATBCT:
   140     case BarrierSet::G1SATBCTLogging:
   141       {
   142         // flatten object address if needed
   143         if (obj.index() == noreg && obj.disp() == 0) {
   144           if (obj.base() != rdx) {
   145             __ movq(rdx, obj.base());
   146           }
   147         } else {
   148           __ leaq(rdx, obj);
   149         }
   150         __ g1_write_barrier_pre(rdx /* obj */,
   151                                 rbx /* pre_val */,
   152                                 r15_thread /* thread */,
   153                                 r8  /* tmp */,
   154                                 val != noreg /* tosca_live */,
   155                                 false /* expand_call */);
   156         if (val == noreg) {
   157           __ store_heap_oop_null(Address(rdx, 0));
   158         } else {
   159           __ store_heap_oop(Address(rdx, 0), val);
   160           __ g1_write_barrier_post(rdx /* store_adr */,
   161                                    val /* new_val */,
   162                                    r15_thread /* thread */,
   163                                    r8 /* tmp */,
   164                                    rbx /* tmp2 */);
   165         }
   167       }
   168       break;
   169 #endif // SERIALGC
   170     case BarrierSet::CardTableModRef:
   171     case BarrierSet::CardTableExtension:
   172       {
   173         if (val == noreg) {
   174           __ store_heap_oop_null(obj);
   175         } else {
   176           __ store_heap_oop(obj, val);
   177           // flatten object address if needed
   178           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   179             __ store_check(obj.base());
   180           } else {
   181             __ leaq(rdx, obj);
   182             __ store_check(rdx);
   183           }
   184         }
   185       }
   186       break;
   187     case BarrierSet::ModRef:
   188     case BarrierSet::Other:
   189       if (val == noreg) {
   190         __ store_heap_oop_null(obj);
   191       } else {
   192         __ store_heap_oop(obj, val);
   193       }
   194       break;
   195     default      :
   196       ShouldNotReachHere();
   198   }
   199 }
   201 Address TemplateTable::at_bcp(int offset) {
   202   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   203   return Address(r13, offset);
   204 }
   206 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
   207                                    Register scratch,
   208                                    bool load_bc_into_scratch/*=true*/) {
   209   if (!RewriteBytecodes) {
   210     return;
   211   }
   212   // the pair bytecodes have already done the load.
   213   if (load_bc_into_scratch) {
   214     __ movl(bc, bytecode);
   215   }
   216   Label patch_done;
   217   if (JvmtiExport::can_post_breakpoint()) {
   218     Label fast_patch;
   219     // if a breakpoint is present we can't rewrite the stream directly
   220     __ movzbl(scratch, at_bcp(0));
   221     __ cmpl(scratch, Bytecodes::_breakpoint);
   222     __ jcc(Assembler::notEqual, fast_patch);
   223     __ get_method(scratch);
   224     // Let breakpoint table handling rewrite to quicker bytecode
   225     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, r13, bc);
   226 #ifndef ASSERT
   227     __ jmpb(patch_done);
   228 #else
   229     __ jmp(patch_done);
   230 #endif
   231     __ bind(fast_patch);
   232   }
   233 #ifdef ASSERT
   234   Label okay;
   235   __ load_unsigned_byte(scratch, at_bcp(0));
   236   __ cmpl(scratch, (int) Bytecodes::java_code(bytecode));
   237   __ jcc(Assembler::equal, okay);
   238   __ cmpl(scratch, bc);
   239   __ jcc(Assembler::equal, okay);
   240   __ stop("patching the wrong bytecode");
   241   __ bind(okay);
   242 #endif
   243   // patch bytecode
   244   __ movb(at_bcp(0), bc);
   245   __ bind(patch_done);
   246 }
   249 // Individual instructions
   251 void TemplateTable::nop() {
   252   transition(vtos, vtos);
   253   // nothing to do
   254 }
   256 void TemplateTable::shouldnotreachhere() {
   257   transition(vtos, vtos);
   258   __ stop("shouldnotreachhere bytecode");
   259 }
   261 void TemplateTable::aconst_null() {
   262   transition(vtos, atos);
   263   __ xorl(rax, rax);
   264 }
   266 void TemplateTable::iconst(int value) {
   267   transition(vtos, itos);
   268   if (value == 0) {
   269     __ xorl(rax, rax);
   270   } else {
   271     __ movl(rax, value);
   272   }
   273 }
   275 void TemplateTable::lconst(int value) {
   276   transition(vtos, ltos);
   277   if (value == 0) {
   278     __ xorl(rax, rax);
   279   } else {
   280     __ movl(rax, value);
   281   }
   282 }
   284 void TemplateTable::fconst(int value) {
   285   transition(vtos, ftos);
   286   static float one = 1.0f, two = 2.0f;
   287   switch (value) {
   288   case 0:
   289     __ xorps(xmm0, xmm0);
   290     break;
   291   case 1:
   292     __ movflt(xmm0, ExternalAddress((address) &one));
   293     break;
   294   case 2:
   295     __ movflt(xmm0, ExternalAddress((address) &two));
   296     break;
   297   default:
   298     ShouldNotReachHere();
   299     break;
   300   }
   301 }
   303 void TemplateTable::dconst(int value) {
   304   transition(vtos, dtos);
   305   static double one = 1.0;
   306   switch (value) {
   307   case 0:
   308     __ xorpd(xmm0, xmm0);
   309     break;
   310   case 1:
   311     __ movdbl(xmm0, ExternalAddress((address) &one));
   312     break;
   313   default:
   314     ShouldNotReachHere();
   315     break;
   316   }
   317 }
   319 void TemplateTable::bipush() {
   320   transition(vtos, itos);
   321   __ load_signed_byte(rax, at_bcp(1));
   322 }
   324 void TemplateTable::sipush() {
   325   transition(vtos, itos);
   326   __ load_unsigned_short(rax, at_bcp(1));
   327   __ bswapl(rax);
   328   __ sarl(rax, 16);
   329 }
   331 void TemplateTable::ldc(bool wide) {
   332   transition(vtos, vtos);
   333   Label call_ldc, notFloat, notClass, Done;
   335   if (wide) {
   336     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   337   } else {
   338     __ load_unsigned_byte(rbx, at_bcp(1));
   339   }
   341   __ get_cpool_and_tags(rcx, rax);
   342   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   343   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   345   // get type
   346   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   348   // unresolved string - get the resolved string
   349   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
   350   __ jccb(Assembler::equal, call_ldc);
   352   // unresolved class - get the resolved class
   353   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   354   __ jccb(Assembler::equal, call_ldc);
   356   // unresolved class in error state - call into runtime to throw the error
   357   // from the first resolution attempt
   358   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   359   __ jccb(Assembler::equal, call_ldc);
   361   // resolved class - need to call vm to get java mirror of the class
   362   __ cmpl(rdx, JVM_CONSTANT_Class);
   363   __ jcc(Assembler::notEqual, notClass);
   365   __ bind(call_ldc);
   366   __ movl(c_rarg1, wide);
   367   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
   368   __ push_ptr(rax);
   369   __ verify_oop(rax);
   370   __ jmp(Done);
   372   __ bind(notClass);
   373   __ cmpl(rdx, JVM_CONSTANT_Float);
   374   __ jccb(Assembler::notEqual, notFloat);
   375   // ftos
   376   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   377   __ push_f();
   378   __ jmp(Done);
   380   __ bind(notFloat);
   381 #ifdef ASSERT
   382   {
   383     Label L;
   384     __ cmpl(rdx, JVM_CONSTANT_Integer);
   385     __ jcc(Assembler::equal, L);
   386     __ cmpl(rdx, JVM_CONSTANT_String);
   387     __ jcc(Assembler::equal, L);
   388     __ stop("unexpected tag type in ldc");
   389     __ bind(L);
   390   }
   391 #endif
   392   // atos and itos
   393   Label isOop;
   394   __ cmpl(rdx, JVM_CONSTANT_Integer);
   395   __ jcc(Assembler::notEqual, isOop);
   396   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
   397   __ push_i(rax);
   398   __ jmp(Done);
   400   __ bind(isOop);
   401   __ movptr(rax, Address(rcx, rbx, Address::times_8, base_offset));
   402   __ push_ptr(rax);
   404   if (VerifyOops) {
   405     __ verify_oop(rax);
   406   }
   408   __ bind(Done);
   409 }
   411 // Fast path for caching oop constants.
   412 // %%% We should use this to handle Class and String constants also.
   413 // %%% It will simplify the ldc/primitive path considerably.
   414 void TemplateTable::fast_aldc(bool wide) {
   415   transition(vtos, atos);
   417   if (!EnableInvokeDynamic) {
   418     // We should not encounter this bytecode if !EnableInvokeDynamic.
   419     // The verifier will stop it.  However, if we get past the verifier,
   420     // this will stop the thread in a reasonable way, without crashing the JVM.
   421     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
   422                      InterpreterRuntime::throw_IncompatibleClassChangeError));
   423     // the call_VM checks for exception, so we should never return here.
   424     __ should_not_reach_here();
   425     return;
   426   }
   428   const Register cache = rcx;
   429   const Register index = rdx;
   431   resolve_cache_and_index(f1_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1));
   432   if (VerifyOops) {
   433     __ verify_oop(rax);
   434   }
   436   Label L_done, L_throw_exception;
   437   const Register con_klass_temp = rcx;  // same as cache
   438   const Register array_klass_temp = rdx;  // same as index
   439   __ load_klass(con_klass_temp, rax);
   440   __ lea(array_klass_temp, ExternalAddress((address)Universe::systemObjArrayKlassObj_addr()));
   441   __ cmpptr(con_klass_temp, Address(array_klass_temp, 0));
   442   __ jcc(Assembler::notEqual, L_done);
   443   __ cmpl(Address(rax, arrayOopDesc::length_offset_in_bytes()), 0);
   444   __ jcc(Assembler::notEqual, L_throw_exception);
   445   __ xorptr(rax, rax);
   446   __ jmp(L_done);
   448   // Load the exception from the system-array which wraps it:
   449   __ bind(L_throw_exception);
   450   __ load_heap_oop(rax, Address(rax, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   451   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   453   __ bind(L_done);
   454 }
   456 void TemplateTable::ldc2_w() {
   457   transition(vtos, vtos);
   458   Label Long, Done;
   459   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   461   __ get_cpool_and_tags(rcx, rax);
   462   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   463   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   465   // get type
   466   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
   467           JVM_CONSTANT_Double);
   468   __ jccb(Assembler::notEqual, Long);
   469   // dtos
   470   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   471   __ push_d();
   472   __ jmpb(Done);
   474   __ bind(Long);
   475   // ltos
   476   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
   477   __ push_l();
   479   __ bind(Done);
   480 }
   482 void TemplateTable::locals_index(Register reg, int offset) {
   483   __ load_unsigned_byte(reg, at_bcp(offset));
   484   __ negptr(reg);
   485 }
   487 void TemplateTable::iload() {
   488   transition(vtos, itos);
   489   if (RewriteFrequentPairs) {
   490     Label rewrite, done;
   491     const Register bc = c_rarg3;
   492     assert(rbx != bc, "register damaged");
   494     // get next byte
   495     __ load_unsigned_byte(rbx,
   496                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   497     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   498     // last two iloads in a pair.  Comparing against fast_iload means that
   499     // the next bytecode is neither an iload or a caload, and therefore
   500     // an iload pair.
   501     __ cmpl(rbx, Bytecodes::_iload);
   502     __ jcc(Assembler::equal, done);
   504     __ cmpl(rbx, Bytecodes::_fast_iload);
   505     __ movl(bc, Bytecodes::_fast_iload2);
   506     __ jccb(Assembler::equal, rewrite);
   508     // if _caload, rewrite to fast_icaload
   509     __ cmpl(rbx, Bytecodes::_caload);
   510     __ movl(bc, Bytecodes::_fast_icaload);
   511     __ jccb(Assembler::equal, rewrite);
   513     // rewrite so iload doesn't check again.
   514     __ movl(bc, Bytecodes::_fast_iload);
   516     // rewrite
   517     // bc: fast bytecode
   518     __ bind(rewrite);
   519     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
   520     __ bind(done);
   521   }
   523   // Get the local value into tos
   524   locals_index(rbx);
   525   __ movl(rax, iaddress(rbx));
   526 }
   528 void TemplateTable::fast_iload2() {
   529   transition(vtos, itos);
   530   locals_index(rbx);
   531   __ movl(rax, iaddress(rbx));
   532   __ push(itos);
   533   locals_index(rbx, 3);
   534   __ movl(rax, iaddress(rbx));
   535 }
   537 void TemplateTable::fast_iload() {
   538   transition(vtos, itos);
   539   locals_index(rbx);
   540   __ movl(rax, iaddress(rbx));
   541 }
   543 void TemplateTable::lload() {
   544   transition(vtos, ltos);
   545   locals_index(rbx);
   546   __ movq(rax, laddress(rbx));
   547 }
   549 void TemplateTable::fload() {
   550   transition(vtos, ftos);
   551   locals_index(rbx);
   552   __ movflt(xmm0, faddress(rbx));
   553 }
   555 void TemplateTable::dload() {
   556   transition(vtos, dtos);
   557   locals_index(rbx);
   558   __ movdbl(xmm0, daddress(rbx));
   559 }
   561 void TemplateTable::aload() {
   562   transition(vtos, atos);
   563   locals_index(rbx);
   564   __ movptr(rax, aaddress(rbx));
   565 }
   567 void TemplateTable::locals_index_wide(Register reg) {
   568   __ movl(reg, at_bcp(2));
   569   __ bswapl(reg);
   570   __ shrl(reg, 16);
   571   __ negptr(reg);
   572 }
   574 void TemplateTable::wide_iload() {
   575   transition(vtos, itos);
   576   locals_index_wide(rbx);
   577   __ movl(rax, iaddress(rbx));
   578 }
   580 void TemplateTable::wide_lload() {
   581   transition(vtos, ltos);
   582   locals_index_wide(rbx);
   583   __ movq(rax, laddress(rbx));
   584 }
   586 void TemplateTable::wide_fload() {
   587   transition(vtos, ftos);
   588   locals_index_wide(rbx);
   589   __ movflt(xmm0, faddress(rbx));
   590 }
   592 void TemplateTable::wide_dload() {
   593   transition(vtos, dtos);
   594   locals_index_wide(rbx);
   595   __ movdbl(xmm0, daddress(rbx));
   596 }
   598 void TemplateTable::wide_aload() {
   599   transition(vtos, atos);
   600   locals_index_wide(rbx);
   601   __ movptr(rax, aaddress(rbx));
   602 }
   604 void TemplateTable::index_check(Register array, Register index) {
   605   // destroys rbx
   606   // check array
   607   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   608   // sign extend index for use by indexed load
   609   __ movl2ptr(index, index);
   610   // check index
   611   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   612   if (index != rbx) {
   613     // ??? convention: move aberrant index into ebx for exception message
   614     assert(rbx != array, "different registers");
   615     __ movl(rbx, index);
   616   }
   617   __ jump_cc(Assembler::aboveEqual,
   618              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   619 }
   621 void TemplateTable::iaload() {
   622   transition(itos, itos);
   623   __ pop_ptr(rdx);
   624   // eax: index
   625   // rdx: array
   626   index_check(rdx, rax); // kills rbx
   627   __ movl(rax, Address(rdx, rax,
   628                        Address::times_4,
   629                        arrayOopDesc::base_offset_in_bytes(T_INT)));
   630 }
   632 void TemplateTable::laload() {
   633   transition(itos, ltos);
   634   __ pop_ptr(rdx);
   635   // eax: index
   636   // rdx: array
   637   index_check(rdx, rax); // kills rbx
   638   __ movq(rax, Address(rdx, rbx,
   639                        Address::times_8,
   640                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
   641 }
   643 void TemplateTable::faload() {
   644   transition(itos, ftos);
   645   __ pop_ptr(rdx);
   646   // eax: index
   647   // rdx: array
   648   index_check(rdx, rax); // kills rbx
   649   __ movflt(xmm0, Address(rdx, rax,
   650                          Address::times_4,
   651                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   652 }
   654 void TemplateTable::daload() {
   655   transition(itos, dtos);
   656   __ pop_ptr(rdx);
   657   // eax: index
   658   // rdx: array
   659   index_check(rdx, rax); // kills rbx
   660   __ movdbl(xmm0, Address(rdx, rax,
   661                           Address::times_8,
   662                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   663 }
   665 void TemplateTable::aaload() {
   666   transition(itos, atos);
   667   __ pop_ptr(rdx);
   668   // eax: index
   669   // rdx: array
   670   index_check(rdx, rax); // kills rbx
   671   __ load_heap_oop(rax, Address(rdx, rax,
   672                                 UseCompressedOops ? Address::times_4 : Address::times_8,
   673                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   674 }
   676 void TemplateTable::baload() {
   677   transition(itos, itos);
   678   __ pop_ptr(rdx);
   679   // eax: index
   680   // rdx: array
   681   index_check(rdx, rax); // kills rbx
   682   __ load_signed_byte(rax,
   683                       Address(rdx, rax,
   684                               Address::times_1,
   685                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   686 }
   688 void TemplateTable::caload() {
   689   transition(itos, itos);
   690   __ pop_ptr(rdx);
   691   // eax: index
   692   // rdx: array
   693   index_check(rdx, rax); // kills rbx
   694   __ load_unsigned_short(rax,
   695                          Address(rdx, rax,
   696                                  Address::times_2,
   697                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   698 }
   700 // iload followed by caload frequent pair
   701 void TemplateTable::fast_icaload() {
   702   transition(vtos, itos);
   703   // load index out of locals
   704   locals_index(rbx);
   705   __ movl(rax, iaddress(rbx));
   707   // eax: index
   708   // rdx: array
   709   __ pop_ptr(rdx);
   710   index_check(rdx, rax); // kills rbx
   711   __ load_unsigned_short(rax,
   712                          Address(rdx, rax,
   713                                  Address::times_2,
   714                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   715 }
   717 void TemplateTable::saload() {
   718   transition(itos, itos);
   719   __ pop_ptr(rdx);
   720   // eax: index
   721   // rdx: array
   722   index_check(rdx, rax); // kills rbx
   723   __ load_signed_short(rax,
   724                        Address(rdx, rax,
   725                                Address::times_2,
   726                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   727 }
   729 void TemplateTable::iload(int n) {
   730   transition(vtos, itos);
   731   __ movl(rax, iaddress(n));
   732 }
   734 void TemplateTable::lload(int n) {
   735   transition(vtos, ltos);
   736   __ movq(rax, laddress(n));
   737 }
   739 void TemplateTable::fload(int n) {
   740   transition(vtos, ftos);
   741   __ movflt(xmm0, faddress(n));
   742 }
   744 void TemplateTable::dload(int n) {
   745   transition(vtos, dtos);
   746   __ movdbl(xmm0, daddress(n));
   747 }
   749 void TemplateTable::aload(int n) {
   750   transition(vtos, atos);
   751   __ movptr(rax, aaddress(n));
   752 }
   754 void TemplateTable::aload_0() {
   755   transition(vtos, atos);
   756   // According to bytecode histograms, the pairs:
   757   //
   758   // _aload_0, _fast_igetfield
   759   // _aload_0, _fast_agetfield
   760   // _aload_0, _fast_fgetfield
   761   //
   762   // occur frequently. If RewriteFrequentPairs is set, the (slow)
   763   // _aload_0 bytecode checks if the next bytecode is either
   764   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
   765   // rewrites the current bytecode into a pair bytecode; otherwise it
   766   // rewrites the current bytecode into _fast_aload_0 that doesn't do
   767   // the pair check anymore.
   768   //
   769   // Note: If the next bytecode is _getfield, the rewrite must be
   770   //       delayed, otherwise we may miss an opportunity for a pair.
   771   //
   772   // Also rewrite frequent pairs
   773   //   aload_0, aload_1
   774   //   aload_0, iload_1
   775   // These bytecodes with a small amount of code are most profitable
   776   // to rewrite
   777   if (RewriteFrequentPairs) {
   778     Label rewrite, done;
   779     const Register bc = c_rarg3;
   780     assert(rbx != bc, "register damaged");
   781     // get next byte
   782     __ load_unsigned_byte(rbx,
   783                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   785     // do actual aload_0
   786     aload(0);
   788     // if _getfield then wait with rewrite
   789     __ cmpl(rbx, Bytecodes::_getfield);
   790     __ jcc(Assembler::equal, done);
   792     // if _igetfield then reqrite to _fast_iaccess_0
   793     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
   794            Bytecodes::_aload_0,
   795            "fix bytecode definition");
   796     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   797     __ movl(bc, Bytecodes::_fast_iaccess_0);
   798     __ jccb(Assembler::equal, rewrite);
   800     // if _agetfield then reqrite to _fast_aaccess_0
   801     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
   802            Bytecodes::_aload_0,
   803            "fix bytecode definition");
   804     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   805     __ movl(bc, Bytecodes::_fast_aaccess_0);
   806     __ jccb(Assembler::equal, rewrite);
   808     // if _fgetfield then reqrite to _fast_faccess_0
   809     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
   810            Bytecodes::_aload_0,
   811            "fix bytecode definition");
   812     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   813     __ movl(bc, Bytecodes::_fast_faccess_0);
   814     __ jccb(Assembler::equal, rewrite);
   816     // else rewrite to _fast_aload0
   817     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
   818            Bytecodes::_aload_0,
   819            "fix bytecode definition");
   820     __ movl(bc, Bytecodes::_fast_aload_0);
   822     // rewrite
   823     // bc: fast bytecode
   824     __ bind(rewrite);
   825     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
   827     __ bind(done);
   828   } else {
   829     aload(0);
   830   }
   831 }
   833 void TemplateTable::istore() {
   834   transition(itos, vtos);
   835   locals_index(rbx);
   836   __ movl(iaddress(rbx), rax);
   837 }
   839 void TemplateTable::lstore() {
   840   transition(ltos, vtos);
   841   locals_index(rbx);
   842   __ movq(laddress(rbx), rax);
   843 }
   845 void TemplateTable::fstore() {
   846   transition(ftos, vtos);
   847   locals_index(rbx);
   848   __ movflt(faddress(rbx), xmm0);
   849 }
   851 void TemplateTable::dstore() {
   852   transition(dtos, vtos);
   853   locals_index(rbx);
   854   __ movdbl(daddress(rbx), xmm0);
   855 }
   857 void TemplateTable::astore() {
   858   transition(vtos, vtos);
   859   __ pop_ptr(rax);
   860   locals_index(rbx);
   861   __ movptr(aaddress(rbx), rax);
   862 }
   864 void TemplateTable::wide_istore() {
   865   transition(vtos, vtos);
   866   __ pop_i();
   867   locals_index_wide(rbx);
   868   __ movl(iaddress(rbx), rax);
   869 }
   871 void TemplateTable::wide_lstore() {
   872   transition(vtos, vtos);
   873   __ pop_l();
   874   locals_index_wide(rbx);
   875   __ movq(laddress(rbx), rax);
   876 }
   878 void TemplateTable::wide_fstore() {
   879   transition(vtos, vtos);
   880   __ pop_f();
   881   locals_index_wide(rbx);
   882   __ movflt(faddress(rbx), xmm0);
   883 }
   885 void TemplateTable::wide_dstore() {
   886   transition(vtos, vtos);
   887   __ pop_d();
   888   locals_index_wide(rbx);
   889   __ movdbl(daddress(rbx), xmm0);
   890 }
   892 void TemplateTable::wide_astore() {
   893   transition(vtos, vtos);
   894   __ pop_ptr(rax);
   895   locals_index_wide(rbx);
   896   __ movptr(aaddress(rbx), rax);
   897 }
   899 void TemplateTable::iastore() {
   900   transition(itos, vtos);
   901   __ pop_i(rbx);
   902   __ pop_ptr(rdx);
   903   // eax: value
   904   // ebx: index
   905   // rdx: array
   906   index_check(rdx, rbx); // prefer index in ebx
   907   __ movl(Address(rdx, rbx,
   908                   Address::times_4,
   909                   arrayOopDesc::base_offset_in_bytes(T_INT)),
   910           rax);
   911 }
   913 void TemplateTable::lastore() {
   914   transition(ltos, vtos);
   915   __ pop_i(rbx);
   916   __ pop_ptr(rdx);
   917   // rax: value
   918   // ebx: index
   919   // rdx: array
   920   index_check(rdx, rbx); // prefer index in ebx
   921   __ movq(Address(rdx, rbx,
   922                   Address::times_8,
   923                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
   924           rax);
   925 }
   927 void TemplateTable::fastore() {
   928   transition(ftos, vtos);
   929   __ pop_i(rbx);
   930   __ pop_ptr(rdx);
   931   // xmm0: value
   932   // ebx:  index
   933   // rdx:  array
   934   index_check(rdx, rbx); // prefer index in ebx
   935   __ movflt(Address(rdx, rbx,
   936                    Address::times_4,
   937                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
   938            xmm0);
   939 }
   941 void TemplateTable::dastore() {
   942   transition(dtos, vtos);
   943   __ pop_i(rbx);
   944   __ pop_ptr(rdx);
   945   // xmm0: value
   946   // ebx:  index
   947   // rdx:  array
   948   index_check(rdx, rbx); // prefer index in ebx
   949   __ movdbl(Address(rdx, rbx,
   950                    Address::times_8,
   951                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
   952            xmm0);
   953 }
   955 void TemplateTable::aastore() {
   956   Label is_null, ok_is_subtype, done;
   957   transition(vtos, vtos);
   958   // stack: ..., array, index, value
   959   __ movptr(rax, at_tos());    // value
   960   __ movl(rcx, at_tos_p1()); // index
   961   __ movptr(rdx, at_tos_p2()); // array
   963   Address element_address(rdx, rcx,
   964                           UseCompressedOops? Address::times_4 : Address::times_8,
   965                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   967   index_check(rdx, rcx);     // kills rbx
   968   // do array store check - check for NULL value first
   969   __ testptr(rax, rax);
   970   __ jcc(Assembler::zero, is_null);
   972   // Move subklass into rbx
   973   __ load_klass(rbx, rax);
   974   // Move superklass into rax
   975   __ load_klass(rax, rdx);
   976   __ movptr(rax, Address(rax,
   977                          sizeof(oopDesc) +
   978                          objArrayKlass::element_klass_offset_in_bytes()));
   979   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
   980   __ lea(rdx, element_address);
   982   // Generate subtype check.  Blows rcx, rdi
   983   // Superklass in rax.  Subklass in rbx.
   984   __ gen_subtype_check(rbx, ok_is_subtype);
   986   // Come here on failure
   987   // object is at TOS
   988   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   990   // Come here on success
   991   __ bind(ok_is_subtype);
   993   // Get the value we will store
   994   __ movptr(rax, at_tos());
   995   // Now store using the appropriate barrier
   996   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   997   __ jmp(done);
   999   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
  1000   __ bind(is_null);
  1001   __ profile_null_seen(rbx);
  1003   // Store a NULL
  1004   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
  1006   // Pop stack arguments
  1007   __ bind(done);
  1008   __ addptr(rsp, 3 * Interpreter::stackElementSize);
  1011 void TemplateTable::bastore() {
  1012   transition(itos, vtos);
  1013   __ pop_i(rbx);
  1014   __ pop_ptr(rdx);
  1015   // eax: value
  1016   // ebx: index
  1017   // rdx: array
  1018   index_check(rdx, rbx); // prefer index in ebx
  1019   __ movb(Address(rdx, rbx,
  1020                   Address::times_1,
  1021                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
  1022           rax);
  1025 void TemplateTable::castore() {
  1026   transition(itos, vtos);
  1027   __ pop_i(rbx);
  1028   __ pop_ptr(rdx);
  1029   // eax: value
  1030   // ebx: index
  1031   // rdx: array
  1032   index_check(rdx, rbx);  // prefer index in ebx
  1033   __ movw(Address(rdx, rbx,
  1034                   Address::times_2,
  1035                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
  1036           rax);
  1039 void TemplateTable::sastore() {
  1040   castore();
  1043 void TemplateTable::istore(int n) {
  1044   transition(itos, vtos);
  1045   __ movl(iaddress(n), rax);
  1048 void TemplateTable::lstore(int n) {
  1049   transition(ltos, vtos);
  1050   __ movq(laddress(n), rax);
  1053 void TemplateTable::fstore(int n) {
  1054   transition(ftos, vtos);
  1055   __ movflt(faddress(n), xmm0);
  1058 void TemplateTable::dstore(int n) {
  1059   transition(dtos, vtos);
  1060   __ movdbl(daddress(n), xmm0);
  1063 void TemplateTable::astore(int n) {
  1064   transition(vtos, vtos);
  1065   __ pop_ptr(rax);
  1066   __ movptr(aaddress(n), rax);
  1069 void TemplateTable::pop() {
  1070   transition(vtos, vtos);
  1071   __ addptr(rsp, Interpreter::stackElementSize);
  1074 void TemplateTable::pop2() {
  1075   transition(vtos, vtos);
  1076   __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1079 void TemplateTable::dup() {
  1080   transition(vtos, vtos);
  1081   __ load_ptr(0, rax);
  1082   __ push_ptr(rax);
  1083   // stack: ..., a, a
  1086 void TemplateTable::dup_x1() {
  1087   transition(vtos, vtos);
  1088   // stack: ..., a, b
  1089   __ load_ptr( 0, rax);  // load b
  1090   __ load_ptr( 1, rcx);  // load a
  1091   __ store_ptr(1, rax);  // store b
  1092   __ store_ptr(0, rcx);  // store a
  1093   __ push_ptr(rax);      // push b
  1094   // stack: ..., b, a, b
  1097 void TemplateTable::dup_x2() {
  1098   transition(vtos, vtos);
  1099   // stack: ..., a, b, c
  1100   __ load_ptr( 0, rax);  // load c
  1101   __ load_ptr( 2, rcx);  // load a
  1102   __ store_ptr(2, rax);  // store c in a
  1103   __ push_ptr(rax);      // push c
  1104   // stack: ..., c, b, c, c
  1105   __ load_ptr( 2, rax);  // load b
  1106   __ store_ptr(2, rcx);  // store a in b
  1107   // stack: ..., c, a, c, c
  1108   __ store_ptr(1, rax);  // store b in c
  1109   // stack: ..., c, a, b, c
  1112 void TemplateTable::dup2() {
  1113   transition(vtos, vtos);
  1114   // stack: ..., a, b
  1115   __ load_ptr(1, rax);  // load a
  1116   __ push_ptr(rax);     // push a
  1117   __ load_ptr(1, rax);  // load b
  1118   __ push_ptr(rax);     // push b
  1119   // stack: ..., a, b, a, b
  1122 void TemplateTable::dup2_x1() {
  1123   transition(vtos, vtos);
  1124   // stack: ..., a, b, c
  1125   __ load_ptr( 0, rcx);  // load c
  1126   __ load_ptr( 1, rax);  // load b
  1127   __ push_ptr(rax);      // push b
  1128   __ push_ptr(rcx);      // push c
  1129   // stack: ..., a, b, c, b, c
  1130   __ store_ptr(3, rcx);  // store c in b
  1131   // stack: ..., a, c, c, b, c
  1132   __ load_ptr( 4, rcx);  // load a
  1133   __ store_ptr(2, rcx);  // store a in 2nd c
  1134   // stack: ..., a, c, a, b, c
  1135   __ store_ptr(4, rax);  // store b in a
  1136   // stack: ..., b, c, a, b, c
  1139 void TemplateTable::dup2_x2() {
  1140   transition(vtos, vtos);
  1141   // stack: ..., a, b, c, d
  1142   __ load_ptr( 0, rcx);  // load d
  1143   __ load_ptr( 1, rax);  // load c
  1144   __ push_ptr(rax);      // push c
  1145   __ push_ptr(rcx);      // push d
  1146   // stack: ..., a, b, c, d, c, d
  1147   __ load_ptr( 4, rax);  // load b
  1148   __ store_ptr(2, rax);  // store b in d
  1149   __ store_ptr(4, rcx);  // store d in b
  1150   // stack: ..., a, d, c, b, c, d
  1151   __ load_ptr( 5, rcx);  // load a
  1152   __ load_ptr( 3, rax);  // load c
  1153   __ store_ptr(3, rcx);  // store a in c
  1154   __ store_ptr(5, rax);  // store c in a
  1155   // stack: ..., c, d, a, b, c, d
  1158 void TemplateTable::swap() {
  1159   transition(vtos, vtos);
  1160   // stack: ..., a, b
  1161   __ load_ptr( 1, rcx);  // load a
  1162   __ load_ptr( 0, rax);  // load b
  1163   __ store_ptr(0, rcx);  // store a in b
  1164   __ store_ptr(1, rax);  // store b in a
  1165   // stack: ..., b, a
  1168 void TemplateTable::iop2(Operation op) {
  1169   transition(itos, itos);
  1170   switch (op) {
  1171   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
  1172   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1173   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
  1174   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
  1175   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
  1176   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
  1177   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
  1178   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
  1179   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
  1180   default   : ShouldNotReachHere();
  1184 void TemplateTable::lop2(Operation op) {
  1185   transition(ltos, ltos);
  1186   switch (op) {
  1187   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
  1188   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
  1189   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
  1190   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
  1191   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
  1192   default   : ShouldNotReachHere();
  1196 void TemplateTable::idiv() {
  1197   transition(itos, itos);
  1198   __ movl(rcx, rax);
  1199   __ pop_i(rax);
  1200   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1201   //       they are not equal, one could do a normal division (no correction
  1202   //       needed), which may speed up this implementation for the common case.
  1203   //       (see also JVM spec., p.243 & p.271)
  1204   __ corrected_idivl(rcx);
  1207 void TemplateTable::irem() {
  1208   transition(itos, itos);
  1209   __ movl(rcx, rax);
  1210   __ pop_i(rax);
  1211   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1212   //       they are not equal, one could do a normal division (no correction
  1213   //       needed), which may speed up this implementation for the common case.
  1214   //       (see also JVM spec., p.243 & p.271)
  1215   __ corrected_idivl(rcx);
  1216   __ movl(rax, rdx);
  1219 void TemplateTable::lmul() {
  1220   transition(ltos, ltos);
  1221   __ pop_l(rdx);
  1222   __ imulq(rax, rdx);
  1225 void TemplateTable::ldiv() {
  1226   transition(ltos, ltos);
  1227   __ mov(rcx, rax);
  1228   __ pop_l(rax);
  1229   // generate explicit div0 check
  1230   __ testq(rcx, rcx);
  1231   __ jump_cc(Assembler::zero,
  1232              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1233   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1234   //       they are not equal, one could do a normal division (no correction
  1235   //       needed), which may speed up this implementation for the common case.
  1236   //       (see also JVM spec., p.243 & p.271)
  1237   __ corrected_idivq(rcx); // kills rbx
  1240 void TemplateTable::lrem() {
  1241   transition(ltos, ltos);
  1242   __ mov(rcx, rax);
  1243   __ pop_l(rax);
  1244   __ testq(rcx, rcx);
  1245   __ jump_cc(Assembler::zero,
  1246              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1247   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1248   //       they are not equal, one could do a normal division (no correction
  1249   //       needed), which may speed up this implementation for the common case.
  1250   //       (see also JVM spec., p.243 & p.271)
  1251   __ corrected_idivq(rcx); // kills rbx
  1252   __ mov(rax, rdx);
  1255 void TemplateTable::lshl() {
  1256   transition(itos, ltos);
  1257   __ movl(rcx, rax);                             // get shift count
  1258   __ pop_l(rax);                                 // get shift value
  1259   __ shlq(rax);
  1262 void TemplateTable::lshr() {
  1263   transition(itos, ltos);
  1264   __ movl(rcx, rax);                             // get shift count
  1265   __ pop_l(rax);                                 // get shift value
  1266   __ sarq(rax);
  1269 void TemplateTable::lushr() {
  1270   transition(itos, ltos);
  1271   __ movl(rcx, rax);                             // get shift count
  1272   __ pop_l(rax);                                 // get shift value
  1273   __ shrq(rax);
  1276 void TemplateTable::fop2(Operation op) {
  1277   transition(ftos, ftos);
  1278   switch (op) {
  1279   case add:
  1280     __ addss(xmm0, at_rsp());
  1281     __ addptr(rsp, Interpreter::stackElementSize);
  1282     break;
  1283   case sub:
  1284     __ movflt(xmm1, xmm0);
  1285     __ pop_f(xmm0);
  1286     __ subss(xmm0, xmm1);
  1287     break;
  1288   case mul:
  1289     __ mulss(xmm0, at_rsp());
  1290     __ addptr(rsp, Interpreter::stackElementSize);
  1291     break;
  1292   case div:
  1293     __ movflt(xmm1, xmm0);
  1294     __ pop_f(xmm0);
  1295     __ divss(xmm0, xmm1);
  1296     break;
  1297   case rem:
  1298     __ movflt(xmm1, xmm0);
  1299     __ pop_f(xmm0);
  1300     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
  1301     break;
  1302   default:
  1303     ShouldNotReachHere();
  1304     break;
  1308 void TemplateTable::dop2(Operation op) {
  1309   transition(dtos, dtos);
  1310   switch (op) {
  1311   case add:
  1312     __ addsd(xmm0, at_rsp());
  1313     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1314     break;
  1315   case sub:
  1316     __ movdbl(xmm1, xmm0);
  1317     __ pop_d(xmm0);
  1318     __ subsd(xmm0, xmm1);
  1319     break;
  1320   case mul:
  1321     __ mulsd(xmm0, at_rsp());
  1322     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1323     break;
  1324   case div:
  1325     __ movdbl(xmm1, xmm0);
  1326     __ pop_d(xmm0);
  1327     __ divsd(xmm0, xmm1);
  1328     break;
  1329   case rem:
  1330     __ movdbl(xmm1, xmm0);
  1331     __ pop_d(xmm0);
  1332     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
  1333     break;
  1334   default:
  1335     ShouldNotReachHere();
  1336     break;
  1340 void TemplateTable::ineg() {
  1341   transition(itos, itos);
  1342   __ negl(rax);
  1345 void TemplateTable::lneg() {
  1346   transition(ltos, ltos);
  1347   __ negq(rax);
  1350 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  1351 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  1352   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  1353   // of 128-bits operands for SSE instructions.
  1354   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
  1355   // Store the value to a 128-bits operand.
  1356   operand[0] = lo;
  1357   operand[1] = hi;
  1358   return operand;
  1361 // Buffer for 128-bits masks used by SSE instructions.
  1362 static jlong float_signflip_pool[2*2];
  1363 static jlong double_signflip_pool[2*2];
  1365 void TemplateTable::fneg() {
  1366   transition(ftos, ftos);
  1367   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
  1368   __ xorps(xmm0, ExternalAddress((address) float_signflip));
  1371 void TemplateTable::dneg() {
  1372   transition(dtos, dtos);
  1373   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
  1374   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
  1377 void TemplateTable::iinc() {
  1378   transition(vtos, vtos);
  1379   __ load_signed_byte(rdx, at_bcp(2)); // get constant
  1380   locals_index(rbx);
  1381   __ addl(iaddress(rbx), rdx);
  1384 void TemplateTable::wide_iinc() {
  1385   transition(vtos, vtos);
  1386   __ movl(rdx, at_bcp(4)); // get constant
  1387   locals_index_wide(rbx);
  1388   __ bswapl(rdx); // swap bytes & sign-extend constant
  1389   __ sarl(rdx, 16);
  1390   __ addl(iaddress(rbx), rdx);
  1391   // Note: should probably use only one movl to get both
  1392   //       the index and the constant -> fix this
  1395 void TemplateTable::convert() {
  1396   // Checking
  1397 #ifdef ASSERT
  1399     TosState tos_in  = ilgl;
  1400     TosState tos_out = ilgl;
  1401     switch (bytecode()) {
  1402     case Bytecodes::_i2l: // fall through
  1403     case Bytecodes::_i2f: // fall through
  1404     case Bytecodes::_i2d: // fall through
  1405     case Bytecodes::_i2b: // fall through
  1406     case Bytecodes::_i2c: // fall through
  1407     case Bytecodes::_i2s: tos_in = itos; break;
  1408     case Bytecodes::_l2i: // fall through
  1409     case Bytecodes::_l2f: // fall through
  1410     case Bytecodes::_l2d: tos_in = ltos; break;
  1411     case Bytecodes::_f2i: // fall through
  1412     case Bytecodes::_f2l: // fall through
  1413     case Bytecodes::_f2d: tos_in = ftos; break;
  1414     case Bytecodes::_d2i: // fall through
  1415     case Bytecodes::_d2l: // fall through
  1416     case Bytecodes::_d2f: tos_in = dtos; break;
  1417     default             : ShouldNotReachHere();
  1419     switch (bytecode()) {
  1420     case Bytecodes::_l2i: // fall through
  1421     case Bytecodes::_f2i: // fall through
  1422     case Bytecodes::_d2i: // fall through
  1423     case Bytecodes::_i2b: // fall through
  1424     case Bytecodes::_i2c: // fall through
  1425     case Bytecodes::_i2s: tos_out = itos; break;
  1426     case Bytecodes::_i2l: // fall through
  1427     case Bytecodes::_f2l: // fall through
  1428     case Bytecodes::_d2l: tos_out = ltos; break;
  1429     case Bytecodes::_i2f: // fall through
  1430     case Bytecodes::_l2f: // fall through
  1431     case Bytecodes::_d2f: tos_out = ftos; break;
  1432     case Bytecodes::_i2d: // fall through
  1433     case Bytecodes::_l2d: // fall through
  1434     case Bytecodes::_f2d: tos_out = dtos; break;
  1435     default             : ShouldNotReachHere();
  1437     transition(tos_in, tos_out);
  1439 #endif // ASSERT
  1441   static const int64_t is_nan = 0x8000000000000000L;
  1443   // Conversion
  1444   switch (bytecode()) {
  1445   case Bytecodes::_i2l:
  1446     __ movslq(rax, rax);
  1447     break;
  1448   case Bytecodes::_i2f:
  1449     __ cvtsi2ssl(xmm0, rax);
  1450     break;
  1451   case Bytecodes::_i2d:
  1452     __ cvtsi2sdl(xmm0, rax);
  1453     break;
  1454   case Bytecodes::_i2b:
  1455     __ movsbl(rax, rax);
  1456     break;
  1457   case Bytecodes::_i2c:
  1458     __ movzwl(rax, rax);
  1459     break;
  1460   case Bytecodes::_i2s:
  1461     __ movswl(rax, rax);
  1462     break;
  1463   case Bytecodes::_l2i:
  1464     __ movl(rax, rax);
  1465     break;
  1466   case Bytecodes::_l2f:
  1467     __ cvtsi2ssq(xmm0, rax);
  1468     break;
  1469   case Bytecodes::_l2d:
  1470     __ cvtsi2sdq(xmm0, rax);
  1471     break;
  1472   case Bytecodes::_f2i:
  1474     Label L;
  1475     __ cvttss2sil(rax, xmm0);
  1476     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1477     __ jcc(Assembler::notEqual, L);
  1478     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1479     __ bind(L);
  1481     break;
  1482   case Bytecodes::_f2l:
  1484     Label L;
  1485     __ cvttss2siq(rax, xmm0);
  1486     // NaN or overflow/underflow?
  1487     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1488     __ jcc(Assembler::notEqual, L);
  1489     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1490     __ bind(L);
  1492     break;
  1493   case Bytecodes::_f2d:
  1494     __ cvtss2sd(xmm0, xmm0);
  1495     break;
  1496   case Bytecodes::_d2i:
  1498     Label L;
  1499     __ cvttsd2sil(rax, xmm0);
  1500     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1501     __ jcc(Assembler::notEqual, L);
  1502     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
  1503     __ bind(L);
  1505     break;
  1506   case Bytecodes::_d2l:
  1508     Label L;
  1509     __ cvttsd2siq(rax, xmm0);
  1510     // NaN or overflow/underflow?
  1511     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1512     __ jcc(Assembler::notEqual, L);
  1513     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
  1514     __ bind(L);
  1516     break;
  1517   case Bytecodes::_d2f:
  1518     __ cvtsd2ss(xmm0, xmm0);
  1519     break;
  1520   default:
  1521     ShouldNotReachHere();
  1525 void TemplateTable::lcmp() {
  1526   transition(ltos, itos);
  1527   Label done;
  1528   __ pop_l(rdx);
  1529   __ cmpq(rdx, rax);
  1530   __ movl(rax, -1);
  1531   __ jccb(Assembler::less, done);
  1532   __ setb(Assembler::notEqual, rax);
  1533   __ movzbl(rax, rax);
  1534   __ bind(done);
  1537 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1538   Label done;
  1539   if (is_float) {
  1540     // XXX get rid of pop here, use ... reg, mem32
  1541     __ pop_f(xmm1);
  1542     __ ucomiss(xmm1, xmm0);
  1543   } else {
  1544     // XXX get rid of pop here, use ... reg, mem64
  1545     __ pop_d(xmm1);
  1546     __ ucomisd(xmm1, xmm0);
  1548   if (unordered_result < 0) {
  1549     __ movl(rax, -1);
  1550     __ jccb(Assembler::parity, done);
  1551     __ jccb(Assembler::below, done);
  1552     __ setb(Assembler::notEqual, rdx);
  1553     __ movzbl(rax, rdx);
  1554   } else {
  1555     __ movl(rax, 1);
  1556     __ jccb(Assembler::parity, done);
  1557     __ jccb(Assembler::above, done);
  1558     __ movl(rax, 0);
  1559     __ jccb(Assembler::equal, done);
  1560     __ decrementl(rax);
  1562   __ bind(done);
  1565 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1566   __ get_method(rcx); // rcx holds method
  1567   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
  1568                                      // holds bumped taken count
  1570   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() +
  1571                              InvocationCounter::counter_offset();
  1572   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() +
  1573                               InvocationCounter::counter_offset();
  1574   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1576   // Load up edx with the branch displacement
  1577   __ movl(rdx, at_bcp(1));
  1578   __ bswapl(rdx);
  1580   if (!is_wide) {
  1581     __ sarl(rdx, 16);
  1583   __ movl2ptr(rdx, rdx);
  1585   // Handle all the JSR stuff here, then exit.
  1586   // It's much shorter and cleaner than intermingling with the non-JSR
  1587   // normal-branch stuff occurring below.
  1588   if (is_jsr) {
  1589     // Pre-load the next target bytecode into rbx
  1590     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
  1592     // compute return address as bci in rax
  1593     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
  1594                         in_bytes(constMethodOopDesc::codes_offset())));
  1595     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
  1596     // Adjust the bcp in r13 by the displacement in rdx
  1597     __ addptr(r13, rdx);
  1598     // jsr returns atos that is not an oop
  1599     __ push_i(rax);
  1600     __ dispatch_only(vtos);
  1601     return;
  1604   // Normal (non-jsr) branch handling
  1606   // Adjust the bcp in r13 by the displacement in rdx
  1607   __ addptr(r13, rdx);
  1609   assert(UseLoopCounter || !UseOnStackReplacement,
  1610          "on-stack-replacement requires loop counters");
  1611   Label backedge_counter_overflow;
  1612   Label profile_method;
  1613   Label dispatch;
  1614   if (UseLoopCounter) {
  1615     // increment backedge counter for backward branches
  1616     // rax: MDO
  1617     // ebx: MDO bumped taken-count
  1618     // rcx: method
  1619     // rdx: target offset
  1620     // r13: target bcp
  1621     // r14: locals pointer
  1622     __ testl(rdx, rdx);             // check if forward or backward branch
  1623     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1624     if (TieredCompilation) {
  1625       Label no_mdo;
  1626       int increment = InvocationCounter::count_increment;
  1627       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1628       if (ProfileInterpreter) {
  1629         // Are we profiling?
  1630         __ movptr(rbx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
  1631         __ testptr(rbx, rbx);
  1632         __ jccb(Assembler::zero, no_mdo);
  1633         // Increment the MDO backedge counter
  1634         const Address mdo_backedge_counter(rbx, in_bytes(methodDataOopDesc::backedge_counter_offset()) +
  1635                                            in_bytes(InvocationCounter::counter_offset()));
  1636         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
  1637                                    rax, false, Assembler::zero, &backedge_counter_overflow);
  1638         __ jmp(dispatch);
  1640       __ bind(no_mdo);
  1641       // Increment backedge counter in methodOop
  1642       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
  1643                                  rax, false, Assembler::zero, &backedge_counter_overflow);
  1644     } else {
  1645       // increment counter
  1646       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1647       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
  1648       __ movl(Address(rcx, be_offset), rax);        // store counter
  1650       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1651       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
  1652       __ addl(rax, Address(rcx, be_offset));        // add both counters
  1654       if (ProfileInterpreter) {
  1655         // Test to see if we should create a method data oop
  1656         __ cmp32(rax,
  1657                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1658         __ jcc(Assembler::less, dispatch);
  1660         // if no method data exists, go to profile method
  1661         __ test_method_data_pointer(rax, profile_method);
  1663         if (UseOnStackReplacement) {
  1664           // check for overflow against ebx which is the MDO taken count
  1665           __ cmp32(rbx,
  1666                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1667           __ jcc(Assembler::below, dispatch);
  1669           // When ProfileInterpreter is on, the backedge_count comes
  1670           // from the methodDataOop, which value does not get reset on
  1671           // the call to frequency_counter_overflow().  To avoid
  1672           // excessive calls to the overflow routine while the method is
  1673           // being compiled, add a second test to make sure the overflow
  1674           // function is called only once every overflow_frequency.
  1675           const int overflow_frequency = 1024;
  1676           __ andl(rbx, overflow_frequency - 1);
  1677           __ jcc(Assembler::zero, backedge_counter_overflow);
  1680       } else {
  1681         if (UseOnStackReplacement) {
  1682           // check for overflow against eax, which is the sum of the
  1683           // counters
  1684           __ cmp32(rax,
  1685                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1686           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1691     __ bind(dispatch);
  1694   // Pre-load the next target bytecode into rbx
  1695   __ load_unsigned_byte(rbx, Address(r13, 0));
  1697   // continue with the bytecode @ target
  1698   // eax: return bci for jsr's, unused otherwise
  1699   // ebx: target bytecode
  1700   // r13: target bcp
  1701   __ dispatch_only(vtos);
  1703   if (UseLoopCounter) {
  1704     if (ProfileInterpreter) {
  1705       // Out-of-line code to allocate method data oop.
  1706       __ bind(profile_method);
  1707       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1708       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1709       __ set_method_data_pointer_for_bcp();
  1710       __ jmp(dispatch);
  1713     if (UseOnStackReplacement) {
  1714       // invocation counter overflow
  1715       __ bind(backedge_counter_overflow);
  1716       __ negptr(rdx);
  1717       __ addptr(rdx, r13); // branch bcp
  1718       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
  1719       __ call_VM(noreg,
  1720                  CAST_FROM_FN_PTR(address,
  1721                                   InterpreterRuntime::frequency_counter_overflow),
  1722                  rdx);
  1723       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1725       // rax: osr nmethod (osr ok) or NULL (osr not possible)
  1726       // ebx: target bytecode
  1727       // rdx: scratch
  1728       // r14: locals pointer
  1729       // r13: bcp
  1730       __ testptr(rax, rax);                        // test result
  1731       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1732       // nmethod may have been invalidated (VM may block upon call_VM return)
  1733       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1734       __ cmpl(rcx, InvalidOSREntryBci);
  1735       __ jcc(Assembler::equal, dispatch);
  1737       // We have the address of an on stack replacement routine in eax
  1738       // We need to prepare to execute the OSR method. First we must
  1739       // migrate the locals and monitors off of the stack.
  1741       __ mov(r13, rax);                             // save the nmethod
  1743       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1745       // eax is OSR buffer, move it to expected parameter location
  1746       __ mov(j_rarg0, rax);
  1748       // We use j_rarg definitions here so that registers don't conflict as parameter
  1749       // registers change across platforms as we are in the midst of a calling
  1750       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
  1752       const Register retaddr = j_rarg2;
  1753       const Register sender_sp = j_rarg1;
  1755       // pop the interpreter frame
  1756       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1757       __ leave();                                // remove frame anchor
  1758       __ pop(retaddr);                           // get return address
  1759       __ mov(rsp, sender_sp);                   // set sp to sender sp
  1760       // Ensure compiled code always sees stack at proper alignment
  1761       __ andptr(rsp, -(StackAlignmentInBytes));
  1763       // unlike x86 we need no specialized return from compiled code
  1764       // to the interpreter or the call stub.
  1766       // push the return address
  1767       __ push(retaddr);
  1769       // and begin the OSR nmethod
  1770       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
  1776 void TemplateTable::if_0cmp(Condition cc) {
  1777   transition(itos, vtos);
  1778   // assume branch is more often taken than not (loops use backward branches)
  1779   Label not_taken;
  1780   __ testl(rax, rax);
  1781   __ jcc(j_not(cc), not_taken);
  1782   branch(false, false);
  1783   __ bind(not_taken);
  1784   __ profile_not_taken_branch(rax);
  1787 void TemplateTable::if_icmp(Condition cc) {
  1788   transition(itos, vtos);
  1789   // assume branch is more often taken than not (loops use backward branches)
  1790   Label not_taken;
  1791   __ pop_i(rdx);
  1792   __ cmpl(rdx, rax);
  1793   __ jcc(j_not(cc), not_taken);
  1794   branch(false, false);
  1795   __ bind(not_taken);
  1796   __ profile_not_taken_branch(rax);
  1799 void TemplateTable::if_nullcmp(Condition cc) {
  1800   transition(atos, vtos);
  1801   // assume branch is more often taken than not (loops use backward branches)
  1802   Label not_taken;
  1803   __ testptr(rax, rax);
  1804   __ jcc(j_not(cc), not_taken);
  1805   branch(false, false);
  1806   __ bind(not_taken);
  1807   __ profile_not_taken_branch(rax);
  1810 void TemplateTable::if_acmp(Condition cc) {
  1811   transition(atos, vtos);
  1812   // assume branch is more often taken than not (loops use backward branches)
  1813   Label not_taken;
  1814   __ pop_ptr(rdx);
  1815   __ cmpptr(rdx, rax);
  1816   __ jcc(j_not(cc), not_taken);
  1817   branch(false, false);
  1818   __ bind(not_taken);
  1819   __ profile_not_taken_branch(rax);
  1822 void TemplateTable::ret() {
  1823   transition(vtos, vtos);
  1824   locals_index(rbx);
  1825   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
  1826   __ profile_ret(rbx, rcx);
  1827   __ get_method(rax);
  1828   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
  1829   __ lea(r13, Address(r13, rbx, Address::times_1,
  1830                       constMethodOopDesc::codes_offset()));
  1831   __ dispatch_next(vtos);
  1834 void TemplateTable::wide_ret() {
  1835   transition(vtos, vtos);
  1836   locals_index_wide(rbx);
  1837   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
  1838   __ profile_ret(rbx, rcx);
  1839   __ get_method(rax);
  1840   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
  1841   __ lea(r13, Address(r13, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
  1842   __ dispatch_next(vtos);
  1845 void TemplateTable::tableswitch() {
  1846   Label default_case, continue_execution;
  1847   transition(itos, vtos);
  1848   // align r13
  1849   __ lea(rbx, at_bcp(BytesPerInt));
  1850   __ andptr(rbx, -BytesPerInt);
  1851   // load lo & hi
  1852   __ movl(rcx, Address(rbx, BytesPerInt));
  1853   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
  1854   __ bswapl(rcx);
  1855   __ bswapl(rdx);
  1856   // check against lo & hi
  1857   __ cmpl(rax, rcx);
  1858   __ jcc(Assembler::less, default_case);
  1859   __ cmpl(rax, rdx);
  1860   __ jcc(Assembler::greater, default_case);
  1861   // lookup dispatch offset
  1862   __ subl(rax, rcx);
  1863   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1864   __ profile_switch_case(rax, rbx, rcx);
  1865   // continue execution
  1866   __ bind(continue_execution);
  1867   __ bswapl(rdx);
  1868   __ movl2ptr(rdx, rdx);
  1869   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1870   __ addptr(r13, rdx);
  1871   __ dispatch_only(vtos);
  1872   // handle default
  1873   __ bind(default_case);
  1874   __ profile_switch_default(rax);
  1875   __ movl(rdx, Address(rbx, 0));
  1876   __ jmp(continue_execution);
  1879 void TemplateTable::lookupswitch() {
  1880   transition(itos, itos);
  1881   __ stop("lookupswitch bytecode should have been rewritten");
  1884 void TemplateTable::fast_linearswitch() {
  1885   transition(itos, vtos);
  1886   Label loop_entry, loop, found, continue_execution;
  1887   // bswap rax so we can avoid bswapping the table entries
  1888   __ bswapl(rax);
  1889   // align r13
  1890   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
  1891                                     // this instruction (change offsets
  1892                                     // below)
  1893   __ andptr(rbx, -BytesPerInt);
  1894   // set counter
  1895   __ movl(rcx, Address(rbx, BytesPerInt));
  1896   __ bswapl(rcx);
  1897   __ jmpb(loop_entry);
  1898   // table search
  1899   __ bind(loop);
  1900   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
  1901   __ jcc(Assembler::equal, found);
  1902   __ bind(loop_entry);
  1903   __ decrementl(rcx);
  1904   __ jcc(Assembler::greaterEqual, loop);
  1905   // default case
  1906   __ profile_switch_default(rax);
  1907   __ movl(rdx, Address(rbx, 0));
  1908   __ jmp(continue_execution);
  1909   // entry found -> get offset
  1910   __ bind(found);
  1911   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
  1912   __ profile_switch_case(rcx, rax, rbx);
  1913   // continue execution
  1914   __ bind(continue_execution);
  1915   __ bswapl(rdx);
  1916   __ movl2ptr(rdx, rdx);
  1917   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1918   __ addptr(r13, rdx);
  1919   __ dispatch_only(vtos);
  1922 void TemplateTable::fast_binaryswitch() {
  1923   transition(itos, vtos);
  1924   // Implementation using the following core algorithm:
  1925   //
  1926   // int binary_search(int key, LookupswitchPair* array, int n) {
  1927   //   // Binary search according to "Methodik des Programmierens" by
  1928   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1929   //   int i = 0;
  1930   //   int j = n;
  1931   //   while (i+1 < j) {
  1932   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1933   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1934   //     // where a stands for the array and assuming that the (inexisting)
  1935   //     // element a[n] is infinitely big.
  1936   //     int h = (i + j) >> 1;
  1937   //     // i < h < j
  1938   //     if (key < array[h].fast_match()) {
  1939   //       j = h;
  1940   //     } else {
  1941   //       i = h;
  1942   //     }
  1943   //   }
  1944   //   // R: a[i] <= key < a[i+1] or Q
  1945   //   // (i.e., if key is within array, i is the correct index)
  1946   //   return i;
  1947   // }
  1949   // Register allocation
  1950   const Register key   = rax; // already set (tosca)
  1951   const Register array = rbx;
  1952   const Register i     = rcx;
  1953   const Register j     = rdx;
  1954   const Register h     = rdi;
  1955   const Register temp  = rsi;
  1957   // Find array start
  1958   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
  1959                                           // get rid of this
  1960                                           // instruction (change
  1961                                           // offsets below)
  1962   __ andptr(array, -BytesPerInt);
  1964   // Initialize i & j
  1965   __ xorl(i, i);                            // i = 0;
  1966   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
  1968   // Convert j into native byteordering
  1969   __ bswapl(j);
  1971   // And start
  1972   Label entry;
  1973   __ jmp(entry);
  1975   // binary search loop
  1977     Label loop;
  1978     __ bind(loop);
  1979     // int h = (i + j) >> 1;
  1980     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1981     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1982     // if (key < array[h].fast_match()) {
  1983     //   j = h;
  1984     // } else {
  1985     //   i = h;
  1986     // }
  1987     // Convert array[h].match to native byte-ordering before compare
  1988     __ movl(temp, Address(array, h, Address::times_8));
  1989     __ bswapl(temp);
  1990     __ cmpl(key, temp);
  1991     // j = h if (key <  array[h].fast_match())
  1992     __ cmovl(Assembler::less, j, h);
  1993     // i = h if (key >= array[h].fast_match())
  1994     __ cmovl(Assembler::greaterEqual, i, h);
  1995     // while (i+1 < j)
  1996     __ bind(entry);
  1997     __ leal(h, Address(i, 1)); // i+1
  1998     __ cmpl(h, j);             // i+1 < j
  1999     __ jcc(Assembler::less, loop);
  2002   // end of binary search, result index is i (must check again!)
  2003   Label default_case;
  2004   // Convert array[i].match to native byte-ordering before compare
  2005   __ movl(temp, Address(array, i, Address::times_8));
  2006   __ bswapl(temp);
  2007   __ cmpl(key, temp);
  2008   __ jcc(Assembler::notEqual, default_case);
  2010   // entry found -> j = offset
  2011   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
  2012   __ profile_switch_case(i, key, array);
  2013   __ bswapl(j);
  2014   __ movl2ptr(j, j);
  2015   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  2016   __ addptr(r13, j);
  2017   __ dispatch_only(vtos);
  2019   // default case -> j = default offset
  2020   __ bind(default_case);
  2021   __ profile_switch_default(i);
  2022   __ movl(j, Address(array, -2 * BytesPerInt));
  2023   __ bswapl(j);
  2024   __ movl2ptr(j, j);
  2025   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  2026   __ addptr(r13, j);
  2027   __ dispatch_only(vtos);
  2031 void TemplateTable::_return(TosState state) {
  2032   transition(state, state);
  2033   assert(_desc->calls_vm(),
  2034          "inconsistent calls_vm information"); // call in remove_activation
  2036   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2037     assert(state == vtos, "only valid state");
  2038     __ movptr(c_rarg1, aaddress(0));
  2039     __ load_klass(rdi, c_rarg1);
  2040     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  2041     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2042     Label skip_register_finalizer;
  2043     __ jcc(Assembler::zero, skip_register_finalizer);
  2045     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
  2047     __ bind(skip_register_finalizer);
  2050   __ remove_activation(state, r13);
  2051   __ jmp(r13);
  2054 // ----------------------------------------------------------------------------
  2055 // Volatile variables demand their effects be made known to all CPU's
  2056 // in order.  Store buffers on most chips allow reads & writes to
  2057 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
  2058 // without some kind of memory barrier (i.e., it's not sufficient that
  2059 // the interpreter does not reorder volatile references, the hardware
  2060 // also must not reorder them).
  2061 //
  2062 // According to the new Java Memory Model (JMM):
  2063 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
  2064 //     writes act as aquire & release, so:
  2065 // (2) A read cannot let unrelated NON-volatile memory refs that
  2066 //     happen after the read float up to before the read.  It's OK for
  2067 //     non-volatile memory refs that happen before the volatile read to
  2068 //     float down below it.
  2069 // (3) Similar a volatile write cannot let unrelated NON-volatile
  2070 //     memory refs that happen BEFORE the write float down to after the
  2071 //     write.  It's OK for non-volatile memory refs that happen after the
  2072 //     volatile write to float up before it.
  2073 //
  2074 // We only put in barriers around volatile refs (they are expensive),
  2075 // not _between_ memory refs (that would require us to track the
  2076 // flavor of the previous memory refs).  Requirements (2) and (3)
  2077 // require some barriers before volatile stores and after volatile
  2078 // loads.  These nearly cover requirement (1) but miss the
  2079 // volatile-store-volatile-load case.  This final case is placed after
  2080 // volatile-stores although it could just as well go before
  2081 // volatile-loads.
  2082 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
  2083                                      order_constraint) {
  2084   // Helper function to insert a is-volatile test and memory barrier
  2085   if (os::is_MP()) { // Not needed on single CPU
  2086     __ membar(order_constraint);
  2090 void TemplateTable::resolve_cache_and_index(int byte_no,
  2091                                             Register result,
  2092                                             Register Rcache,
  2093                                             Register index,
  2094                                             size_t index_size) {
  2095   const Register temp = rbx;
  2096   assert_different_registers(result, Rcache, index, temp);
  2098   Label resolved;
  2099   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2100   if (byte_no == f1_oop) {
  2101     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
  2102     // This kind of CP cache entry does not need to match the flags byte, because
  2103     // there is a 1-1 relation between bytecode type and CP entry type.
  2104     assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD)
  2105     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2106     __ testptr(result, result);
  2107     __ jcc(Assembler::notEqual, resolved);
  2108   } else {
  2109     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2110     assert(result == noreg, "");  //else change code for setting result
  2111     const int shift_count = (1 + byte_no) * BitsPerByte;
  2112     __ movl(temp, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
  2113     __ shrl(temp, shift_count);
  2114     // have we resolved this bytecode?
  2115     __ andl(temp, 0xFF);
  2116     __ cmpl(temp, (int) bytecode());
  2117     __ jcc(Assembler::equal, resolved);
  2120   // resolve first time through
  2121   address entry;
  2122   switch (bytecode()) {
  2123   case Bytecodes::_getstatic:
  2124   case Bytecodes::_putstatic:
  2125   case Bytecodes::_getfield:
  2126   case Bytecodes::_putfield:
  2127     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
  2128     break;
  2129   case Bytecodes::_invokevirtual:
  2130   case Bytecodes::_invokespecial:
  2131   case Bytecodes::_invokestatic:
  2132   case Bytecodes::_invokeinterface:
  2133     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
  2134     break;
  2135   case Bytecodes::_invokedynamic:
  2136     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
  2137     break;
  2138   case Bytecodes::_fast_aldc:
  2139     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
  2140     break;
  2141   case Bytecodes::_fast_aldc_w:
  2142     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
  2143     break;
  2144   default:
  2145     ShouldNotReachHere();
  2146     break;
  2148   __ movl(temp, (int) bytecode());
  2149   __ call_VM(noreg, entry, temp);
  2151   // Update registers with resolved info
  2152   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2153   if (result != noreg)
  2154     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2155   __ bind(resolved);
  2158 // The Rcache and index registers must be set before call
  2159 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2160                                               Register cache,
  2161                                               Register index,
  2162                                               Register off,
  2163                                               Register flags,
  2164                                               bool is_static = false) {
  2165   assert_different_registers(cache, index, flags, off);
  2167   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2168   // Field offset
  2169   __ movptr(off, Address(cache, index, Address::times_8,
  2170                          in_bytes(cp_base_offset +
  2171                                   ConstantPoolCacheEntry::f2_offset())));
  2172   // Flags
  2173   __ movl(flags, Address(cache, index, Address::times_8,
  2174                          in_bytes(cp_base_offset +
  2175                                   ConstantPoolCacheEntry::flags_offset())));
  2177   // klass overwrite register
  2178   if (is_static) {
  2179     __ movptr(obj, Address(cache, index, Address::times_8,
  2180                            in_bytes(cp_base_offset +
  2181                                     ConstantPoolCacheEntry::f1_offset())));
  2185 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2186                                                Register method,
  2187                                                Register itable_index,
  2188                                                Register flags,
  2189                                                bool is_invokevirtual,
  2190                                                bool is_invokevfinal, /*unused*/
  2191                                                bool is_invokedynamic) {
  2192   // setup registers
  2193   const Register cache = rcx;
  2194   const Register index = rdx;
  2195   assert_different_registers(method, flags);
  2196   assert_different_registers(method, cache, index);
  2197   assert_different_registers(itable_index, flags);
  2198   assert_different_registers(itable_index, cache, index);
  2199   // determine constant pool cache field offsets
  2200   const int method_offset = in_bytes(
  2201     constantPoolCacheOopDesc::base_offset() +
  2202       (is_invokevirtual
  2203        ? ConstantPoolCacheEntry::f2_offset()
  2204        : ConstantPoolCacheEntry::f1_offset()));
  2205   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2206                                     ConstantPoolCacheEntry::flags_offset());
  2207   // access constant pool cache fields
  2208   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2209                                     ConstantPoolCacheEntry::f2_offset());
  2211   if (byte_no == f1_oop) {
  2212     // Resolved f1_oop goes directly into 'method' register.
  2213     assert(is_invokedynamic, "");
  2214     resolve_cache_and_index(byte_no, method, cache, index, sizeof(u4));
  2215   } else {
  2216     resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2217     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2219   if (itable_index != noreg) {
  2220     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2222   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
  2226 // The registers cache and index expected to be set before call.
  2227 // Correct values of the cache and index registers are preserved.
  2228 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
  2229                                             bool is_static, bool has_tos) {
  2230   // do the JVMTI work here to avoid disturbing the register state below
  2231   // We use c_rarg registers here because we want to use the register used in
  2232   // the call to the VM
  2233   if (JvmtiExport::can_post_field_access()) {
  2234     // Check to see if a field access watch has been set before we
  2235     // take the time to call into the VM.
  2236     Label L1;
  2237     assert_different_registers(cache, index, rax);
  2238     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2239     __ testl(rax, rax);
  2240     __ jcc(Assembler::zero, L1);
  2242     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
  2244     // cache entry pointer
  2245     __ addptr(c_rarg2, in_bytes(constantPoolCacheOopDesc::base_offset()));
  2246     __ shll(c_rarg3, LogBytesPerWord);
  2247     __ addptr(c_rarg2, c_rarg3);
  2248     if (is_static) {
  2249       __ xorl(c_rarg1, c_rarg1); // NULL object reference
  2250     } else {
  2251       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
  2252       __ verify_oop(c_rarg1);
  2254     // c_rarg1: object pointer or NULL
  2255     // c_rarg2: cache entry pointer
  2256     // c_rarg3: jvalue object on the stack
  2257     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  2258                                        InterpreterRuntime::post_field_access),
  2259                c_rarg1, c_rarg2, c_rarg3);
  2260     __ get_cache_and_index_at_bcp(cache, index, 1);
  2261     __ bind(L1);
  2265 void TemplateTable::pop_and_check_object(Register r) {
  2266   __ pop_ptr(r);
  2267   __ null_check(r);  // for field access must check obj.
  2268   __ verify_oop(r);
  2271 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2272   transition(vtos, vtos);
  2274   const Register cache = rcx;
  2275   const Register index = rdx;
  2276   const Register obj   = c_rarg3;
  2277   const Register off   = rbx;
  2278   const Register flags = rax;
  2279   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
  2281   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2282   jvmti_post_field_access(cache, index, is_static, false);
  2283   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2285   if (!is_static) {
  2286     // obj is on the stack
  2287     pop_and_check_object(obj);
  2290   const Address field(obj, off, Address::times_1);
  2292   Label Done, notByte, notInt, notShort, notChar,
  2293               notLong, notFloat, notObj, notDouble;
  2295   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2296   assert(btos == 0, "change code, btos != 0");
  2298   __ andl(flags, 0x0F);
  2299   __ jcc(Assembler::notZero, notByte);
  2300   // btos
  2301   __ load_signed_byte(rax, field);
  2302   __ push(btos);
  2303   // Rewrite bytecode to be faster
  2304   if (!is_static) {
  2305     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
  2307   __ jmp(Done);
  2309   __ bind(notByte);
  2310   __ cmpl(flags, atos);
  2311   __ jcc(Assembler::notEqual, notObj);
  2312   // atos
  2313   __ load_heap_oop(rax, field);
  2314   __ push(atos);
  2315   if (!is_static) {
  2316     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
  2318   __ jmp(Done);
  2320   __ bind(notObj);
  2321   __ cmpl(flags, itos);
  2322   __ jcc(Assembler::notEqual, notInt);
  2323   // itos
  2324   __ movl(rax, field);
  2325   __ push(itos);
  2326   // Rewrite bytecode to be faster
  2327   if (!is_static) {
  2328     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
  2330   __ jmp(Done);
  2332   __ bind(notInt);
  2333   __ cmpl(flags, ctos);
  2334   __ jcc(Assembler::notEqual, notChar);
  2335   // ctos
  2336   __ load_unsigned_short(rax, field);
  2337   __ push(ctos);
  2338   // Rewrite bytecode to be faster
  2339   if (!is_static) {
  2340     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
  2342   __ jmp(Done);
  2344   __ bind(notChar);
  2345   __ cmpl(flags, stos);
  2346   __ jcc(Assembler::notEqual, notShort);
  2347   // stos
  2348   __ load_signed_short(rax, field);
  2349   __ push(stos);
  2350   // Rewrite bytecode to be faster
  2351   if (!is_static) {
  2352     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
  2354   __ jmp(Done);
  2356   __ bind(notShort);
  2357   __ cmpl(flags, ltos);
  2358   __ jcc(Assembler::notEqual, notLong);
  2359   // ltos
  2360   __ movq(rax, field);
  2361   __ push(ltos);
  2362   // Rewrite bytecode to be faster
  2363   if (!is_static) {
  2364     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
  2366   __ jmp(Done);
  2368   __ bind(notLong);
  2369   __ cmpl(flags, ftos);
  2370   __ jcc(Assembler::notEqual, notFloat);
  2371   // ftos
  2372   __ movflt(xmm0, field);
  2373   __ push(ftos);
  2374   // Rewrite bytecode to be faster
  2375   if (!is_static) {
  2376     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
  2378   __ jmp(Done);
  2380   __ bind(notFloat);
  2381 #ifdef ASSERT
  2382   __ cmpl(flags, dtos);
  2383   __ jcc(Assembler::notEqual, notDouble);
  2384 #endif
  2385   // dtos
  2386   __ movdbl(xmm0, field);
  2387   __ push(dtos);
  2388   // Rewrite bytecode to be faster
  2389   if (!is_static) {
  2390     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
  2392 #ifdef ASSERT
  2393   __ jmp(Done);
  2395   __ bind(notDouble);
  2396   __ stop("Bad state");
  2397 #endif
  2399   __ bind(Done);
  2400   // [jk] not needed currently
  2401   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
  2402   //                                              Assembler::LoadStore));
  2406 void TemplateTable::getfield(int byte_no) {
  2407   getfield_or_static(byte_no, false);
  2410 void TemplateTable::getstatic(int byte_no) {
  2411   getfield_or_static(byte_no, true);
  2414 // The registers cache and index expected to be set before call.
  2415 // The function may destroy various registers, just not the cache and index registers.
  2416 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2417   transition(vtos, vtos);
  2419   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2421   if (JvmtiExport::can_post_field_modification()) {
  2422     // Check to see if a field modification watch has been set before
  2423     // we take the time to call into the VM.
  2424     Label L1;
  2425     assert_different_registers(cache, index, rax);
  2426     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2427     __ testl(rax, rax);
  2428     __ jcc(Assembler::zero, L1);
  2430     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
  2432     if (is_static) {
  2433       // Life is simple.  Null out the object pointer.
  2434       __ xorl(c_rarg1, c_rarg1);
  2435     } else {
  2436       // Life is harder. The stack holds the value on top, followed by
  2437       // the object.  We don't know the size of the value, though; it
  2438       // could be one or two words depending on its type. As a result,
  2439       // we must find the type to determine where the object is.
  2440       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
  2441                            Address::times_8,
  2442                            in_bytes(cp_base_offset +
  2443                                      ConstantPoolCacheEntry::flags_offset())));
  2444       __ shrl(c_rarg3, ConstantPoolCacheEntry::tosBits);
  2445       // Make sure we don't need to mask rcx for tosBits after the
  2446       // above shift
  2447       ConstantPoolCacheEntry::verify_tosBits();
  2448       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
  2449       __ cmpl(c_rarg3, ltos);
  2450       __ cmovptr(Assembler::equal,
  2451                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
  2452       __ cmpl(c_rarg3, dtos);
  2453       __ cmovptr(Assembler::equal,
  2454                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
  2456     // cache entry pointer
  2457     __ addptr(c_rarg2, in_bytes(cp_base_offset));
  2458     __ shll(rscratch1, LogBytesPerWord);
  2459     __ addptr(c_rarg2, rscratch1);
  2460     // object (tos)
  2461     __ mov(c_rarg3, rsp);
  2462     // c_rarg1: object pointer set up above (NULL if static)
  2463     // c_rarg2: cache entry pointer
  2464     // c_rarg3: jvalue object on the stack
  2465     __ call_VM(noreg,
  2466                CAST_FROM_FN_PTR(address,
  2467                                 InterpreterRuntime::post_field_modification),
  2468                c_rarg1, c_rarg2, c_rarg3);
  2469     __ get_cache_and_index_at_bcp(cache, index, 1);
  2470     __ bind(L1);
  2474 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2475   transition(vtos, vtos);
  2477   const Register cache = rcx;
  2478   const Register index = rdx;
  2479   const Register obj   = rcx;
  2480   const Register off   = rbx;
  2481   const Register flags = rax;
  2482   const Register bc    = c_rarg3;
  2484   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2485   jvmti_post_field_mod(cache, index, is_static);
  2486   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2488   // [jk] not needed currently
  2489   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2490   //                                              Assembler::StoreStore));
  2492   Label notVolatile, Done;
  2493   __ movl(rdx, flags);
  2494   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2495   __ andl(rdx, 0x1);
  2497   // field address
  2498   const Address field(obj, off, Address::times_1);
  2500   Label notByte, notInt, notShort, notChar,
  2501         notLong, notFloat, notObj, notDouble;
  2503   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2505   assert(btos == 0, "change code, btos != 0");
  2506   __ andl(flags, 0x0f);
  2507   __ jcc(Assembler::notZero, notByte);
  2508   // btos
  2509   __ pop(btos);
  2510   if (!is_static) pop_and_check_object(obj);
  2511   __ movb(field, rax);
  2512   if (!is_static) {
  2513     patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx);
  2515   __ jmp(Done);
  2517   __ bind(notByte);
  2518   __ cmpl(flags, atos);
  2519   __ jcc(Assembler::notEqual, notObj);
  2520   // atos
  2521   __ pop(atos);
  2522   if (!is_static) pop_and_check_object(obj);
  2524   // Store into the field
  2525   do_oop_store(_masm, field, rax, _bs->kind(), false);
  2527   if (!is_static) {
  2528     patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx);
  2530   __ jmp(Done);
  2532   __ bind(notObj);
  2533   __ cmpl(flags, itos);
  2534   __ jcc(Assembler::notEqual, notInt);
  2535   // itos
  2536   __ pop(itos);
  2537   if (!is_static) pop_and_check_object(obj);
  2538   __ movl(field, rax);
  2539   if (!is_static) {
  2540     patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx);
  2542   __ jmp(Done);
  2544   __ bind(notInt);
  2545   __ cmpl(flags, ctos);
  2546   __ jcc(Assembler::notEqual, notChar);
  2547   // ctos
  2548   __ pop(ctos);
  2549   if (!is_static) pop_and_check_object(obj);
  2550   __ movw(field, rax);
  2551   if (!is_static) {
  2552     patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx);
  2554   __ jmp(Done);
  2556   __ bind(notChar);
  2557   __ cmpl(flags, stos);
  2558   __ jcc(Assembler::notEqual, notShort);
  2559   // stos
  2560   __ pop(stos);
  2561   if (!is_static) pop_and_check_object(obj);
  2562   __ movw(field, rax);
  2563   if (!is_static) {
  2564     patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx);
  2566   __ jmp(Done);
  2568   __ bind(notShort);
  2569   __ cmpl(flags, ltos);
  2570   __ jcc(Assembler::notEqual, notLong);
  2571   // ltos
  2572   __ pop(ltos);
  2573   if (!is_static) pop_and_check_object(obj);
  2574   __ movq(field, rax);
  2575   if (!is_static) {
  2576     patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx);
  2578   __ jmp(Done);
  2580   __ bind(notLong);
  2581   __ cmpl(flags, ftos);
  2582   __ jcc(Assembler::notEqual, notFloat);
  2583   // ftos
  2584   __ pop(ftos);
  2585   if (!is_static) pop_and_check_object(obj);
  2586   __ movflt(field, xmm0);
  2587   if (!is_static) {
  2588     patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx);
  2590   __ jmp(Done);
  2592   __ bind(notFloat);
  2593 #ifdef ASSERT
  2594   __ cmpl(flags, dtos);
  2595   __ jcc(Assembler::notEqual, notDouble);
  2596 #endif
  2597   // dtos
  2598   __ pop(dtos);
  2599   if (!is_static) pop_and_check_object(obj);
  2600   __ movdbl(field, xmm0);
  2601   if (!is_static) {
  2602     patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx);
  2605 #ifdef ASSERT
  2606   __ jmp(Done);
  2608   __ bind(notDouble);
  2609   __ stop("Bad state");
  2610 #endif
  2612   __ bind(Done);
  2613   // Check for volatile store
  2614   __ testl(rdx, rdx);
  2615   __ jcc(Assembler::zero, notVolatile);
  2616   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2617                                                Assembler::StoreStore));
  2619   __ bind(notVolatile);
  2622 void TemplateTable::putfield(int byte_no) {
  2623   putfield_or_static(byte_no, false);
  2626 void TemplateTable::putstatic(int byte_no) {
  2627   putfield_or_static(byte_no, true);
  2630 void TemplateTable::jvmti_post_fast_field_mod() {
  2631   if (JvmtiExport::can_post_field_modification()) {
  2632     // Check to see if a field modification watch has been set before
  2633     // we take the time to call into the VM.
  2634     Label L2;
  2635     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2636     __ testl(c_rarg3, c_rarg3);
  2637     __ jcc(Assembler::zero, L2);
  2638     __ pop_ptr(rbx);                  // copy the object pointer from tos
  2639     __ verify_oop(rbx);
  2640     __ push_ptr(rbx);                 // put the object pointer back on tos
  2641     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
  2642     __ mov(c_rarg3, rsp);
  2643     const Address field(c_rarg3, 0);
  2645     switch (bytecode()) {          // load values into the jvalue object
  2646     case Bytecodes::_fast_aputfield: __ movq(field, rax); break;
  2647     case Bytecodes::_fast_lputfield: __ movq(field, rax); break;
  2648     case Bytecodes::_fast_iputfield: __ movl(field, rax); break;
  2649     case Bytecodes::_fast_bputfield: __ movb(field, rax); break;
  2650     case Bytecodes::_fast_sputfield: // fall through
  2651     case Bytecodes::_fast_cputfield: __ movw(field, rax); break;
  2652     case Bytecodes::_fast_fputfield: __ movflt(field, xmm0); break;
  2653     case Bytecodes::_fast_dputfield: __ movdbl(field, xmm0); break;
  2654     default:
  2655       ShouldNotReachHere();
  2658     // Save rax because call_VM() will clobber it, then use it for
  2659     // JVMTI purposes
  2660     __ push(rax);
  2661     // access constant pool cache entry
  2662     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
  2663     __ verify_oop(rbx);
  2664     // rbx: object pointer copied above
  2665     // c_rarg2: cache entry pointer
  2666     // c_rarg3: jvalue object on the stack
  2667     __ call_VM(noreg,
  2668                CAST_FROM_FN_PTR(address,
  2669                                 InterpreterRuntime::post_field_modification),
  2670                rbx, c_rarg2, c_rarg3);
  2671     __ pop(rax);     // restore lower value
  2672     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
  2673     __ bind(L2);
  2677 void TemplateTable::fast_storefield(TosState state) {
  2678   transition(state, vtos);
  2680   ByteSize base = constantPoolCacheOopDesc::base_offset();
  2682   jvmti_post_fast_field_mod();
  2684   // access constant pool cache
  2685   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2687   // test for volatile with rdx
  2688   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2689                        in_bytes(base +
  2690                                 ConstantPoolCacheEntry::flags_offset())));
  2692   // replace index with field offset from cache entry
  2693   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2694                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2696   // [jk] not needed currently
  2697   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2698   //                                              Assembler::StoreStore));
  2700   Label notVolatile;
  2701   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2702   __ andl(rdx, 0x1);
  2704   // Get object from stack
  2705   pop_and_check_object(rcx);
  2707   // field address
  2708   const Address field(rcx, rbx, Address::times_1);
  2710   // access field
  2711   switch (bytecode()) {
  2712   case Bytecodes::_fast_aputfield:
  2713     do_oop_store(_masm, field, rax, _bs->kind(), false);
  2714     break;
  2715   case Bytecodes::_fast_lputfield:
  2716     __ movq(field, rax);
  2717     break;
  2718   case Bytecodes::_fast_iputfield:
  2719     __ movl(field, rax);
  2720     break;
  2721   case Bytecodes::_fast_bputfield:
  2722     __ movb(field, rax);
  2723     break;
  2724   case Bytecodes::_fast_sputfield:
  2725     // fall through
  2726   case Bytecodes::_fast_cputfield:
  2727     __ movw(field, rax);
  2728     break;
  2729   case Bytecodes::_fast_fputfield:
  2730     __ movflt(field, xmm0);
  2731     break;
  2732   case Bytecodes::_fast_dputfield:
  2733     __ movdbl(field, xmm0);
  2734     break;
  2735   default:
  2736     ShouldNotReachHere();
  2739   // Check for volatile store
  2740   __ testl(rdx, rdx);
  2741   __ jcc(Assembler::zero, notVolatile);
  2742   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2743                                                Assembler::StoreStore));
  2744   __ bind(notVolatile);
  2748 void TemplateTable::fast_accessfield(TosState state) {
  2749   transition(atos, state);
  2751   // Do the JVMTI work here to avoid disturbing the register state below
  2752   if (JvmtiExport::can_post_field_access()) {
  2753     // Check to see if a field access watch has been set before we
  2754     // take the time to call into the VM.
  2755     Label L1;
  2756     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2757     __ testl(rcx, rcx);
  2758     __ jcc(Assembler::zero, L1);
  2759     // access constant pool cache entry
  2760     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
  2761     __ verify_oop(rax);
  2762     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2763     __ mov(c_rarg1, rax);
  2764     // c_rarg1: object pointer copied above
  2765     // c_rarg2: cache entry pointer
  2766     __ call_VM(noreg,
  2767                CAST_FROM_FN_PTR(address,
  2768                                 InterpreterRuntime::post_field_access),
  2769                c_rarg1, c_rarg2);
  2770     __ pop_ptr(rax); // restore object pointer
  2771     __ bind(L1);
  2774   // access constant pool cache
  2775   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2776   // replace index with field offset from cache entry
  2777   // [jk] not needed currently
  2778   // if (os::is_MP()) {
  2779   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2780   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2781   //                                 ConstantPoolCacheEntry::flags_offset())));
  2782   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2783   //   __ andl(rdx, 0x1);
  2784   // }
  2785   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2786                          in_bytes(constantPoolCacheOopDesc::base_offset() +
  2787                                   ConstantPoolCacheEntry::f2_offset())));
  2789   // rax: object
  2790   __ verify_oop(rax);
  2791   __ null_check(rax);
  2792   Address field(rax, rbx, Address::times_1);
  2794   // access field
  2795   switch (bytecode()) {
  2796   case Bytecodes::_fast_agetfield:
  2797     __ load_heap_oop(rax, field);
  2798     __ verify_oop(rax);
  2799     break;
  2800   case Bytecodes::_fast_lgetfield:
  2801     __ movq(rax, field);
  2802     break;
  2803   case Bytecodes::_fast_igetfield:
  2804     __ movl(rax, field);
  2805     break;
  2806   case Bytecodes::_fast_bgetfield:
  2807     __ movsbl(rax, field);
  2808     break;
  2809   case Bytecodes::_fast_sgetfield:
  2810     __ load_signed_short(rax, field);
  2811     break;
  2812   case Bytecodes::_fast_cgetfield:
  2813     __ load_unsigned_short(rax, field);
  2814     break;
  2815   case Bytecodes::_fast_fgetfield:
  2816     __ movflt(xmm0, field);
  2817     break;
  2818   case Bytecodes::_fast_dgetfield:
  2819     __ movdbl(xmm0, field);
  2820     break;
  2821   default:
  2822     ShouldNotReachHere();
  2824   // [jk] not needed currently
  2825   // if (os::is_MP()) {
  2826   //   Label notVolatile;
  2827   //   __ testl(rdx, rdx);
  2828   //   __ jcc(Assembler::zero, notVolatile);
  2829   //   __ membar(Assembler::LoadLoad);
  2830   //   __ bind(notVolatile);
  2831   //};
  2834 void TemplateTable::fast_xaccess(TosState state) {
  2835   transition(vtos, state);
  2837   // get receiver
  2838   __ movptr(rax, aaddress(0));
  2839   // access constant pool cache
  2840   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2841   __ movptr(rbx,
  2842             Address(rcx, rdx, Address::times_8,
  2843                     in_bytes(constantPoolCacheOopDesc::base_offset() +
  2844                              ConstantPoolCacheEntry::f2_offset())));
  2845   // make sure exception is reported in correct bcp range (getfield is
  2846   // next instruction)
  2847   __ increment(r13);
  2848   __ null_check(rax);
  2849   switch (state) {
  2850   case itos:
  2851     __ movl(rax, Address(rax, rbx, Address::times_1));
  2852     break;
  2853   case atos:
  2854     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
  2855     __ verify_oop(rax);
  2856     break;
  2857   case ftos:
  2858     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
  2859     break;
  2860   default:
  2861     ShouldNotReachHere();
  2864   // [jk] not needed currently
  2865   // if (os::is_MP()) {
  2866   //   Label notVolatile;
  2867   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
  2868   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2869   //                                 ConstantPoolCacheEntry::flags_offset())));
  2870   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2871   //   __ testl(rdx, 0x1);
  2872   //   __ jcc(Assembler::zero, notVolatile);
  2873   //   __ membar(Assembler::LoadLoad);
  2874   //   __ bind(notVolatile);
  2875   // }
  2877   __ decrement(r13);
  2882 //-----------------------------------------------------------------------------
  2883 // Calls
  2885 void TemplateTable::count_calls(Register method, Register temp) {
  2886   // implemented elsewhere
  2887   ShouldNotReachHere();
  2890 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) {
  2891   // determine flags
  2892   Bytecodes::Code code = bytecode();
  2893   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2894   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2895   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2896   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2897   const bool load_receiver      = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic);
  2898   const bool receiver_null_check = is_invokespecial;
  2899   const bool save_flags = is_invokeinterface || is_invokevirtual;
  2900   // setup registers & access constant pool cache
  2901   const Register recv   = rcx;
  2902   const Register flags  = rdx;
  2903   assert_different_registers(method, index, recv, flags);
  2905   // save 'interpreter return address'
  2906   __ save_bcp();
  2908   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2910   // load receiver if needed (note: no return address pushed yet)
  2911   if (load_receiver) {
  2912     assert(!is_invokedynamic, "");
  2913     __ movl(recv, flags);
  2914     __ andl(recv, 0xFF);
  2915     Address recv_addr(rsp, recv, Address::times_8, -Interpreter::expr_offset_in_bytes(1));
  2916     __ movptr(recv, recv_addr);
  2917     __ verify_oop(recv);
  2920   // do null check if needed
  2921   if (receiver_null_check) {
  2922     __ null_check(recv);
  2925   if (save_flags) {
  2926     __ movl(r13, flags);
  2929   // compute return type
  2930   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2931   // Make sure we don't need to mask flags for tosBits after the above shift
  2932   ConstantPoolCacheEntry::verify_tosBits();
  2933   // load return address
  2935     address table_addr;
  2936     if (is_invokeinterface || is_invokedynamic)
  2937       table_addr = (address)Interpreter::return_5_addrs_by_index_table();
  2938     else
  2939       table_addr = (address)Interpreter::return_3_addrs_by_index_table();
  2940     ExternalAddress table(table_addr);
  2941     __ lea(rscratch1, table);
  2942     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
  2945   // push return address
  2946   __ push(flags);
  2948   // Restore flag field from the constant pool cache, and restore esi
  2949   // for later null checks.  r13 is the bytecode pointer
  2950   if (save_flags) {
  2951     __ movl(flags, r13);
  2952     __ restore_bcp();
  2957 void TemplateTable::invokevirtual_helper(Register index,
  2958                                          Register recv,
  2959                                          Register flags) {
  2960   // Uses temporary registers rax, rdx
  2961   assert_different_registers(index, recv, rax, rdx);
  2963   // Test for an invoke of a final method
  2964   Label notFinal;
  2965   __ movl(rax, flags);
  2966   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
  2967   __ jcc(Assembler::zero, notFinal);
  2969   const Register method = index;  // method must be rbx
  2970   assert(method == rbx,
  2971          "methodOop must be rbx for interpreter calling convention");
  2973   // do the call - the index is actually the method to call
  2974   __ verify_oop(method);
  2976   // It's final, need a null check here!
  2977   __ null_check(recv);
  2979   // profile this call
  2980   __ profile_final_call(rax);
  2982   __ jump_from_interpreted(method, rax);
  2984   __ bind(notFinal);
  2986   // get receiver klass
  2987   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  2988   __ load_klass(rax, recv);
  2990   __ verify_oop(rax);
  2992   // profile this call
  2993   __ profile_virtual_call(rax, r14, rdx);
  2995   // get target methodOop & entry point
  2996   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2997   assert(vtableEntry::size() * wordSize == 8,
  2998          "adjust the scaling in the code below");
  2999   __ movptr(method, Address(rax, index,
  3000                                  Address::times_8,
  3001                                  base + vtableEntry::method_offset_in_bytes()));
  3002   __ movptr(rdx, Address(method, methodOopDesc::interpreter_entry_offset()));
  3003   __ jump_from_interpreted(method, rdx);
  3007 void TemplateTable::invokevirtual(int byte_no) {
  3008   transition(vtos, vtos);
  3009   assert(byte_no == f2_byte, "use this argument");
  3010   prepare_invoke(rbx, noreg, byte_no);
  3012   // rbx: index
  3013   // rcx: receiver
  3014   // rdx: flags
  3016   invokevirtual_helper(rbx, rcx, rdx);
  3020 void TemplateTable::invokespecial(int byte_no) {
  3021   transition(vtos, vtos);
  3022   assert(byte_no == f1_byte, "use this argument");
  3023   prepare_invoke(rbx, noreg, byte_no);
  3024   // do the call
  3025   __ verify_oop(rbx);
  3026   __ profile_call(rax);
  3027   __ jump_from_interpreted(rbx, rax);
  3031 void TemplateTable::invokestatic(int byte_no) {
  3032   transition(vtos, vtos);
  3033   assert(byte_no == f1_byte, "use this argument");
  3034   prepare_invoke(rbx, noreg, byte_no);
  3035   // do the call
  3036   __ verify_oop(rbx);
  3037   __ profile_call(rax);
  3038   __ jump_from_interpreted(rbx, rax);
  3041 void TemplateTable::fast_invokevfinal(int byte_no) {
  3042   transition(vtos, vtos);
  3043   assert(byte_no == f2_byte, "use this argument");
  3044   __ stop("fast_invokevfinal not used on amd64");
  3047 void TemplateTable::invokeinterface(int byte_no) {
  3048   transition(vtos, vtos);
  3049   assert(byte_no == f1_byte, "use this argument");
  3050   prepare_invoke(rax, rbx, byte_no);
  3052   // rax: Interface
  3053   // rbx: index
  3054   // rcx: receiver
  3055   // rdx: flags
  3057   // Special case of invokeinterface called for virtual method of
  3058   // java.lang.Object.  See cpCacheOop.cpp for details.
  3059   // This code isn't produced by javac, but could be produced by
  3060   // another compliant java compiler.
  3061   Label notMethod;
  3062   __ movl(r14, rdx);
  3063   __ andl(r14, (1 << ConstantPoolCacheEntry::methodInterface));
  3064   __ jcc(Assembler::zero, notMethod);
  3066   invokevirtual_helper(rbx, rcx, rdx);
  3067   __ bind(notMethod);
  3069   // Get receiver klass into rdx - also a null check
  3070   __ restore_locals(); // restore r14
  3071   __ load_klass(rdx, rcx);
  3072   __ verify_oop(rdx);
  3074   // profile this call
  3075   __ profile_virtual_call(rdx, r13, r14);
  3077   Label no_such_interface, no_such_method;
  3079   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3080                              rdx, rax, rbx,
  3081                              // outputs: method, scan temp. reg
  3082                              rbx, r13,
  3083                              no_such_interface);
  3085   // rbx,: methodOop to call
  3086   // rcx: receiver
  3087   // Check for abstract method error
  3088   // Note: This should be done more efficiently via a throw_abstract_method_error
  3089   //       interpreter entry point and a conditional jump to it in case of a null
  3090   //       method.
  3091   __ testptr(rbx, rbx);
  3092   __ jcc(Assembler::zero, no_such_method);
  3094   // do the call
  3095   // rcx: receiver
  3096   // rbx,: methodOop
  3097   __ jump_from_interpreted(rbx, rdx);
  3098   __ should_not_reach_here();
  3100   // exception handling code follows...
  3101   // note: must restore interpreter registers to canonical
  3102   //       state for exception handling to work correctly!
  3104   __ bind(no_such_method);
  3105   // throw exception
  3106   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3107   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3108   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3109   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3110   // the call_VM checks for exception, so we should never return here.
  3111   __ should_not_reach_here();
  3113   __ bind(no_such_interface);
  3114   // throw exception
  3115   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3116   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3117   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3118   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3119                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3120   // the call_VM checks for exception, so we should never return here.
  3121   __ should_not_reach_here();
  3122   return;
  3125 void TemplateTable::invokedynamic(int byte_no) {
  3126   transition(vtos, vtos);
  3127   assert(byte_no == f1_oop, "use this argument");
  3129   if (!EnableInvokeDynamic) {
  3130     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3131     // The verifier will stop it.  However, if we get past the verifier,
  3132     // this will stop the thread in a reasonable way, without crashing the JVM.
  3133     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3134                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3135     // the call_VM checks for exception, so we should never return here.
  3136     __ should_not_reach_here();
  3137     return;
  3140   prepare_invoke(rax, rbx, byte_no);
  3142   // rax: CallSite object (f1)
  3143   // rbx: unused (f2)
  3144   // rcx: receiver address
  3145   // rdx: flags (unused)
  3147   Register rax_callsite      = rax;
  3148   Register rcx_method_handle = rcx;
  3150   // %%% should make a type profile for any invokedynamic that takes a ref argument
  3151   // profile this call
  3152   __ profile_call(r13);
  3154   __ verify_oop(rax_callsite);
  3155   __ load_heap_oop(rcx_method_handle, Address(rax_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, rdx)));
  3156   __ null_check(rcx_method_handle);
  3157   __ verify_oop(rcx_method_handle);
  3158   __ prepare_to_jump_from_interpreted();
  3159   __ jump_to_method_handle_entry(rcx_method_handle, rdx);
  3163 //-----------------------------------------------------------------------------
  3164 // Allocation
  3166 void TemplateTable::_new() {
  3167   transition(vtos, atos);
  3168   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3169   Label slow_case;
  3170   Label done;
  3171   Label initialize_header;
  3172   Label initialize_object; // including clearing the fields
  3173   Label allocate_shared;
  3175   __ get_cpool_and_tags(rsi, rax);
  3176   // Make sure the class we're about to instantiate has been resolved.
  3177   // This is done before loading instanceKlass to be consistent with the order
  3178   // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
  3179   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
  3180   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
  3181           JVM_CONSTANT_Class);
  3182   __ jcc(Assembler::notEqual, slow_case);
  3184   // get instanceKlass
  3185   __ movptr(rsi, Address(rsi, rdx,
  3186             Address::times_8, sizeof(constantPoolOopDesc)));
  3188   // make sure klass is initialized & doesn't have finalizer
  3189   // make sure klass is fully initialized
  3190   __ cmpl(Address(rsi,
  3191                   instanceKlass::init_state_offset_in_bytes() +
  3192                   sizeof(oopDesc)),
  3193           instanceKlass::fully_initialized);
  3194   __ jcc(Assembler::notEqual, slow_case);
  3196   // get instance_size in instanceKlass (scaled to a count of bytes)
  3197   __ movl(rdx,
  3198           Address(rsi,
  3199                   Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  3200   // test to see if it has a finalizer or is malformed in some way
  3201   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3202   __ jcc(Assembler::notZero, slow_case);
  3204   // Allocate the instance
  3205   // 1) Try to allocate in the TLAB
  3206   // 2) if fail and the object is large allocate in the shared Eden
  3207   // 3) if the above fails (or is not applicable), go to a slow case
  3208   // (creates a new TLAB, etc.)
  3210   const bool allow_shared_alloc =
  3211     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3213   if (UseTLAB) {
  3214     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
  3215     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3216     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
  3217     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3218     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3219     if (ZeroTLAB) {
  3220       // the fields have been already cleared
  3221       __ jmp(initialize_header);
  3222     } else {
  3223       // initialize both the header and fields
  3224       __ jmp(initialize_object);
  3228   // Allocation in the shared Eden, if allowed.
  3229   //
  3230   // rdx: instance size in bytes
  3231   if (allow_shared_alloc) {
  3232     __ bind(allocate_shared);
  3234     ExternalAddress top((address)Universe::heap()->top_addr());
  3235     ExternalAddress end((address)Universe::heap()->end_addr());
  3237     const Register RtopAddr = rscratch1;
  3238     const Register RendAddr = rscratch2;
  3240     __ lea(RtopAddr, top);
  3241     __ lea(RendAddr, end);
  3242     __ movptr(rax, Address(RtopAddr, 0));
  3244     // For retries rax gets set by cmpxchgq
  3245     Label retry;
  3246     __ bind(retry);
  3247     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3248     __ cmpptr(rbx, Address(RendAddr, 0));
  3249     __ jcc(Assembler::above, slow_case);
  3251     // Compare rax with the top addr, and if still equal, store the new
  3252     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
  3253     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3254     //
  3255     // rax: object begin
  3256     // rbx: object end
  3257     // rdx: instance size in bytes
  3258     if (os::is_MP()) {
  3259       __ lock();
  3261     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
  3263     // if someone beat us on the allocation, try again, otherwise continue
  3264     __ jcc(Assembler::notEqual, retry);
  3266     __ incr_allocated_bytes(r15_thread, rdx, 0);
  3269   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3270     // The object is initialized before the header.  If the object size is
  3271     // zero, go directly to the header initialization.
  3272     __ bind(initialize_object);
  3273     __ decrementl(rdx, sizeof(oopDesc));
  3274     __ jcc(Assembler::zero, initialize_header);
  3276     // Initialize object fields
  3277     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3278     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
  3280       Label loop;
  3281       __ bind(loop);
  3282       __ movq(Address(rax, rdx, Address::times_8,
  3283                       sizeof(oopDesc) - oopSize),
  3284               rcx);
  3285       __ decrementl(rdx);
  3286       __ jcc(Assembler::notZero, loop);
  3289     // initialize object header only.
  3290     __ bind(initialize_header);
  3291     if (UseBiasedLocking) {
  3292       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  3293       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
  3294     } else {
  3295       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
  3296                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
  3298     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3299     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
  3300     __ store_klass(rax, rsi);      // store klass last
  3303       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
  3304       // Trigger dtrace event for fastpath
  3305       __ push(atos); // save the return value
  3306       __ call_VM_leaf(
  3307            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3308       __ pop(atos); // restore the return value
  3311     __ jmp(done);
  3315   // slow case
  3316   __ bind(slow_case);
  3317   __ get_constant_pool(c_rarg1);
  3318   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3319   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
  3320   __ verify_oop(rax);
  3322   // continue
  3323   __ bind(done);
  3326 void TemplateTable::newarray() {
  3327   transition(itos, atos);
  3328   __ load_unsigned_byte(c_rarg1, at_bcp(1));
  3329   __ movl(c_rarg2, rax);
  3330   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
  3331           c_rarg1, c_rarg2);
  3334 void TemplateTable::anewarray() {
  3335   transition(itos, atos);
  3336   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3337   __ get_constant_pool(c_rarg1);
  3338   __ movl(c_rarg3, rax);
  3339   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
  3340           c_rarg1, c_rarg2, c_rarg3);
  3343 void TemplateTable::arraylength() {
  3344   transition(atos, itos);
  3345   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3346   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3349 void TemplateTable::checkcast() {
  3350   transition(atos, atos);
  3351   Label done, is_null, ok_is_subtype, quicked, resolved;
  3352   __ testptr(rax, rax); // object is in rax
  3353   __ jcc(Assembler::zero, is_null);
  3355   // Get cpool & tags index
  3356   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3357   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3358   // See if bytecode has already been quicked
  3359   __ cmpb(Address(rdx, rbx,
  3360                   Address::times_1,
  3361                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3362           JVM_CONSTANT_Class);
  3363   __ jcc(Assembler::equal, quicked);
  3364   __ push(atos); // save receiver for result, and for GC
  3365   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3366   __ pop_ptr(rdx); // restore receiver
  3367   __ jmpb(resolved);
  3369   // Get superklass in rax and subklass in rbx
  3370   __ bind(quicked);
  3371   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
  3372   __ movptr(rax, Address(rcx, rbx,
  3373                        Address::times_8, sizeof(constantPoolOopDesc)));
  3375   __ bind(resolved);
  3376   __ load_klass(rbx, rdx);
  3378   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
  3379   // Superklass in rax.  Subklass in rbx.
  3380   __ gen_subtype_check(rbx, ok_is_subtype);
  3382   // Come here on failure
  3383   __ push_ptr(rdx);
  3384   // object is at TOS
  3385   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3387   // Come here on success
  3388   __ bind(ok_is_subtype);
  3389   __ mov(rax, rdx); // Restore object in rdx
  3391   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3392   if (ProfileInterpreter) {
  3393     __ jmp(done);
  3394     __ bind(is_null);
  3395     __ profile_null_seen(rcx);
  3396   } else {
  3397     __ bind(is_null);   // same as 'done'
  3399   __ bind(done);
  3402 void TemplateTable::instanceof() {
  3403   transition(atos, itos);
  3404   Label done, is_null, ok_is_subtype, quicked, resolved;
  3405   __ testptr(rax, rax);
  3406   __ jcc(Assembler::zero, is_null);
  3408   // Get cpool & tags index
  3409   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3410   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3411   // See if bytecode has already been quicked
  3412   __ cmpb(Address(rdx, rbx,
  3413                   Address::times_1,
  3414                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3415           JVM_CONSTANT_Class);
  3416   __ jcc(Assembler::equal, quicked);
  3418   __ push(atos); // save receiver for result, and for GC
  3419   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3420   __ pop_ptr(rdx); // restore receiver
  3421   __ verify_oop(rdx);
  3422   __ load_klass(rdx, rdx);
  3423   __ jmpb(resolved);
  3425   // Get superklass in rax and subklass in rdx
  3426   __ bind(quicked);
  3427   __ load_klass(rdx, rax);
  3428   __ movptr(rax, Address(rcx, rbx,
  3429                          Address::times_8, sizeof(constantPoolOopDesc)));
  3431   __ bind(resolved);
  3433   // Generate subtype check.  Blows rcx, rdi
  3434   // Superklass in rax.  Subklass in rdx.
  3435   __ gen_subtype_check(rdx, ok_is_subtype);
  3437   // Come here on failure
  3438   __ xorl(rax, rax);
  3439   __ jmpb(done);
  3440   // Come here on success
  3441   __ bind(ok_is_subtype);
  3442   __ movl(rax, 1);
  3444   // Collect counts on whether this test sees NULLs a lot or not.
  3445   if (ProfileInterpreter) {
  3446     __ jmp(done);
  3447     __ bind(is_null);
  3448     __ profile_null_seen(rcx);
  3449   } else {
  3450     __ bind(is_null);   // same as 'done'
  3452   __ bind(done);
  3453   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
  3454   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
  3457 //-----------------------------------------------------------------------------
  3458 // Breakpoints
  3459 void TemplateTable::_breakpoint() {
  3460   // Note: We get here even if we are single stepping..
  3461   // jbug inists on setting breakpoints at every bytecode
  3462   // even if we are in single step mode.
  3464   transition(vtos, vtos);
  3466   // get the unpatched byte code
  3467   __ get_method(c_rarg1);
  3468   __ call_VM(noreg,
  3469              CAST_FROM_FN_PTR(address,
  3470                               InterpreterRuntime::get_original_bytecode_at),
  3471              c_rarg1, r13);
  3472   __ mov(rbx, rax);
  3474   // post the breakpoint event
  3475   __ get_method(c_rarg1);
  3476   __ call_VM(noreg,
  3477              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
  3478              c_rarg1, r13);
  3480   // complete the execution of original bytecode
  3481   __ dispatch_only_normal(vtos);
  3484 //-----------------------------------------------------------------------------
  3485 // Exceptions
  3487 void TemplateTable::athrow() {
  3488   transition(atos, vtos);
  3489   __ null_check(rax);
  3490   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3493 //-----------------------------------------------------------------------------
  3494 // Synchronization
  3495 //
  3496 // Note: monitorenter & exit are symmetric routines; which is reflected
  3497 //       in the assembly code structure as well
  3498 //
  3499 // Stack layout:
  3500 //
  3501 // [expressions  ] <--- rsp               = expression stack top
  3502 // ..
  3503 // [expressions  ]
  3504 // [monitor entry] <--- monitor block top = expression stack bot
  3505 // ..
  3506 // [monitor entry]
  3507 // [frame data   ] <--- monitor block bot
  3508 // ...
  3509 // [saved rbp    ] <--- rbp
  3510 void TemplateTable::monitorenter() {
  3511   transition(atos, vtos);
  3513   // check for NULL object
  3514   __ null_check(rax);
  3516   const Address monitor_block_top(
  3517         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3518   const Address monitor_block_bot(
  3519         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3520   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3522   Label allocated;
  3524   // initialize entry pointer
  3525   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
  3527   // find a free slot in the monitor block (result in c_rarg1)
  3529     Label entry, loop, exit;
  3530     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
  3531                                      // starting with top-most entry
  3532     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3533                                      // of monitor block
  3534     __ jmpb(entry);
  3536     __ bind(loop);
  3537     // check if current entry is used
  3538     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
  3539     // if not used then remember entry in c_rarg1
  3540     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
  3541     // check if current entry is for same object
  3542     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
  3543     // if same object then stop searching
  3544     __ jccb(Assembler::equal, exit);
  3545     // otherwise advance to next entry
  3546     __ addptr(c_rarg3, entry_size);
  3547     __ bind(entry);
  3548     // check if bottom reached
  3549     __ cmpptr(c_rarg3, c_rarg2);
  3550     // if not at bottom then check this entry
  3551     __ jcc(Assembler::notEqual, loop);
  3552     __ bind(exit);
  3555   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
  3556   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
  3558   // allocate one if there's no free slot
  3560     Label entry, loop;
  3561     // 1. compute new pointers             // rsp: old expression stack top
  3562     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
  3563     __ subptr(rsp, entry_size);            // move expression stack top
  3564     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
  3565     __ mov(c_rarg3, rsp);                  // set start value for copy loop
  3566     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
  3567     __ jmp(entry);
  3568     // 2. move expression stack contents
  3569     __ bind(loop);
  3570     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
  3571                                                       // word from old location
  3572     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
  3573     __ addptr(c_rarg3, wordSize);                     // advance to next word
  3574     __ bind(entry);
  3575     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
  3576     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
  3577                                             // copy next word
  3580   // call run-time routine
  3581   // c_rarg1: points to monitor entry
  3582   __ bind(allocated);
  3584   // Increment bcp to point to the next bytecode, so exception
  3585   // handling for async. exceptions work correctly.
  3586   // The object has already been poped from the stack, so the
  3587   // expression stack looks correct.
  3588   __ increment(r13);
  3590   // store object
  3591   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
  3592   __ lock_object(c_rarg1);
  3594   // check to make sure this monitor doesn't cause stack overflow after locking
  3595   __ save_bcp();  // in case of exception
  3596   __ generate_stack_overflow_check(0);
  3598   // The bcp has already been incremented. Just need to dispatch to
  3599   // next instruction.
  3600   __ dispatch_next(vtos);
  3604 void TemplateTable::monitorexit() {
  3605   transition(atos, vtos);
  3607   // check for NULL object
  3608   __ null_check(rax);
  3610   const Address monitor_block_top(
  3611         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3612   const Address monitor_block_bot(
  3613         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3614   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3616   Label found;
  3618   // find matching slot
  3620     Label entry, loop;
  3621     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
  3622                                      // starting with top-most entry
  3623     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3624                                      // of monitor block
  3625     __ jmpb(entry);
  3627     __ bind(loop);
  3628     // check if current entry is for same object
  3629     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  3630     // if same object then stop searching
  3631     __ jcc(Assembler::equal, found);
  3632     // otherwise advance to next entry
  3633     __ addptr(c_rarg1, entry_size);
  3634     __ bind(entry);
  3635     // check if bottom reached
  3636     __ cmpptr(c_rarg1, c_rarg2);
  3637     // if not at bottom then check this entry
  3638     __ jcc(Assembler::notEqual, loop);
  3641   // error handling. Unlocking was not block-structured
  3642   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3643                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  3644   __ should_not_reach_here();
  3646   // call run-time routine
  3647   // rsi: points to monitor entry
  3648   __ bind(found);
  3649   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
  3650   __ unlock_object(c_rarg1);
  3651   __ pop_ptr(rax); // discard object
  3655 // Wide instructions
  3656 void TemplateTable::wide() {
  3657   transition(vtos, vtos);
  3658   __ load_unsigned_byte(rbx, at_bcp(1));
  3659   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
  3660   __ jmp(Address(rscratch1, rbx, Address::times_8));
  3661   // Note: the r13 increment step is part of the individual wide
  3662   // bytecode implementations
  3666 // Multi arrays
  3667 void TemplateTable::multianewarray() {
  3668   transition(vtos, atos);
  3669   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3670   // last dim is on top of stack; we want address of first one:
  3671   // first_addr = last_addr + (ndims - 1) * wordSize
  3672   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
  3673   call_VM(rax,
  3674           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
  3675           c_rarg1);
  3676   __ load_unsigned_byte(rbx, at_bcp(3));
  3677   __ lea(rsp, Address(rsp, rbx, Address::times_8));
  3679 #endif // !CC_INTERP

mercurial