src/cpu/x86/vm/templateInterpreter_x86_64.cpp

Tue, 21 Jun 2011 09:04:55 -0700

author
never
date
Tue, 21 Jun 2011 09:04:55 -0700
changeset 2980
de6a837d75cf
parent 2978
d83ac25d0304
child 3238
b20d64f83668
permissions
-rw-r--r--

7056380: VM crashes with SIGSEGV in compiled code
Summary: code was using andq reg, imm instead of addq addr, imm
Reviewed-by: kvn, jrose, twisti

     1 /*
     2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "interpreter/interpreterGenerator.hpp"
    30 #include "interpreter/interpreterRuntime.hpp"
    31 #include "interpreter/templateTable.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodDataOop.hpp"
    34 #include "oops/methodOop.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "runtime/synchronizer.hpp"
    44 #include "runtime/timer.hpp"
    45 #include "runtime/vframeArray.hpp"
    46 #include "utilities/debug.hpp"
    48 #define __ _masm->
    50 #ifndef CC_INTERP
    52 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
    53 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
    54 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
    56 //-----------------------------------------------------------------------------
    58 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
    59   address entry = __ pc();
    61 #ifdef ASSERT
    62   {
    63     Label L;
    64     __ lea(rax, Address(rbp,
    65                         frame::interpreter_frame_monitor_block_top_offset *
    66                         wordSize));
    67     __ cmpptr(rax, rsp); // rax = maximal rsp for current rbp (stack
    68                          // grows negative)
    69     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
    70     __ stop ("interpreter frame not set up");
    71     __ bind(L);
    72   }
    73 #endif // ASSERT
    74   // Restore bcp under the assumption that the current frame is still
    75   // interpreted
    76   __ restore_bcp();
    78   // expression stack must be empty before entering the VM if an
    79   // exception happened
    80   __ empty_expression_stack();
    81   // throw exception
    82   __ call_VM(noreg,
    83              CAST_FROM_FN_PTR(address,
    84                               InterpreterRuntime::throw_StackOverflowError));
    85   return entry;
    86 }
    88 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(
    89         const char* name) {
    90   address entry = __ pc();
    91   // expression stack must be empty before entering the VM if an
    92   // exception happened
    93   __ empty_expression_stack();
    94   // setup parameters
    95   // ??? convention: expect aberrant index in register ebx
    96   __ lea(c_rarg1, ExternalAddress((address)name));
    97   __ call_VM(noreg,
    98              CAST_FROM_FN_PTR(address,
    99                               InterpreterRuntime::
   100                               throw_ArrayIndexOutOfBoundsException),
   101              c_rarg1, rbx);
   102   return entry;
   103 }
   105 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
   106   address entry = __ pc();
   108   // object is at TOS
   109   __ pop(c_rarg1);
   111   // expression stack must be empty before entering the VM if an
   112   // exception happened
   113   __ empty_expression_stack();
   115   __ call_VM(noreg,
   116              CAST_FROM_FN_PTR(address,
   117                               InterpreterRuntime::
   118                               throw_ClassCastException),
   119              c_rarg1);
   120   return entry;
   121 }
   123 address TemplateInterpreterGenerator::generate_exception_handler_common(
   124         const char* name, const char* message, bool pass_oop) {
   125   assert(!pass_oop || message == NULL, "either oop or message but not both");
   126   address entry = __ pc();
   127   if (pass_oop) {
   128     // object is at TOS
   129     __ pop(c_rarg2);
   130   }
   131   // expression stack must be empty before entering the VM if an
   132   // exception happened
   133   __ empty_expression_stack();
   134   // setup parameters
   135   __ lea(c_rarg1, ExternalAddress((address)name));
   136   if (pass_oop) {
   137     __ call_VM(rax, CAST_FROM_FN_PTR(address,
   138                                      InterpreterRuntime::
   139                                      create_klass_exception),
   140                c_rarg1, c_rarg2);
   141   } else {
   142     // kind of lame ExternalAddress can't take NULL because
   143     // external_word_Relocation will assert.
   144     if (message != NULL) {
   145       __ lea(c_rarg2, ExternalAddress((address)message));
   146     } else {
   147       __ movptr(c_rarg2, NULL_WORD);
   148     }
   149     __ call_VM(rax,
   150                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
   151                c_rarg1, c_rarg2);
   152   }
   153   // throw exception
   154   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   155   return entry;
   156 }
   159 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   160   address entry = __ pc();
   161   // NULL last_sp until next java call
   162   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   163   __ dispatch_next(state);
   164   return entry;
   165 }
   168 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
   169   address entry = __ pc();
   171   // Restore stack bottom in case i2c adjusted stack
   172   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
   173   // and NULL it as marker that esp is now tos until next java call
   174   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   176   __ restore_bcp();
   177   __ restore_locals();
   179   Label L_got_cache, L_giant_index;
   180   if (EnableInvokeDynamic) {
   181     __ cmpb(Address(r13, 0), Bytecodes::_invokedynamic);
   182     __ jcc(Assembler::equal, L_giant_index);
   183   }
   184   __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u2));
   185   __ bind(L_got_cache);
   186   __ movl(rbx, Address(rbx, rcx,
   187                        Address::times_ptr,
   188                        in_bytes(constantPoolCacheOopDesc::base_offset()) +
   189                        3 * wordSize));
   190   __ andl(rbx, 0xFF);
   191   __ lea(rsp, Address(rsp, rbx, Address::times_8));
   192   __ dispatch_next(state, step);
   194   // out of the main line of code...
   195   if (EnableInvokeDynamic) {
   196     __ bind(L_giant_index);
   197     __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u4));
   198     __ jmp(L_got_cache);
   199   }
   201   return entry;
   202 }
   205 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
   206                                                                int step) {
   207   address entry = __ pc();
   208   // NULL last_sp until next java call
   209   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   210   __ restore_bcp();
   211   __ restore_locals();
   212   // handle exceptions
   213   {
   214     Label L;
   215     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
   216     __ jcc(Assembler::zero, L);
   217     __ call_VM(noreg,
   218                CAST_FROM_FN_PTR(address,
   219                                 InterpreterRuntime::throw_pending_exception));
   220     __ should_not_reach_here();
   221     __ bind(L);
   222   }
   223   __ dispatch_next(state, step);
   224   return entry;
   225 }
   227 int AbstractInterpreter::BasicType_as_index(BasicType type) {
   228   int i = 0;
   229   switch (type) {
   230     case T_BOOLEAN: i = 0; break;
   231     case T_CHAR   : i = 1; break;
   232     case T_BYTE   : i = 2; break;
   233     case T_SHORT  : i = 3; break;
   234     case T_INT    : i = 4; break;
   235     case T_LONG   : i = 5; break;
   236     case T_VOID   : i = 6; break;
   237     case T_FLOAT  : i = 7; break;
   238     case T_DOUBLE : i = 8; break;
   239     case T_OBJECT : i = 9; break;
   240     case T_ARRAY  : i = 9; break;
   241     default       : ShouldNotReachHere();
   242   }
   243   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers,
   244          "index out of bounds");
   245   return i;
   246 }
   249 address TemplateInterpreterGenerator::generate_result_handler_for(
   250         BasicType type) {
   251   address entry = __ pc();
   252   switch (type) {
   253   case T_BOOLEAN: __ c2bool(rax);            break;
   254   case T_CHAR   : __ movzwl(rax, rax);       break;
   255   case T_BYTE   : __ sign_extend_byte(rax);  break;
   256   case T_SHORT  : __ sign_extend_short(rax); break;
   257   case T_INT    : /* nothing to do */        break;
   258   case T_LONG   : /* nothing to do */        break;
   259   case T_VOID   : /* nothing to do */        break;
   260   case T_FLOAT  : /* nothing to do */        break;
   261   case T_DOUBLE : /* nothing to do */        break;
   262   case T_OBJECT :
   263     // retrieve result from frame
   264     __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
   265     // and verify it
   266     __ verify_oop(rax);
   267     break;
   268   default       : ShouldNotReachHere();
   269   }
   270   __ ret(0);                                   // return from result handler
   271   return entry;
   272 }
   274 address TemplateInterpreterGenerator::generate_safept_entry_for(
   275         TosState state,
   276         address runtime_entry) {
   277   address entry = __ pc();
   278   __ push(state);
   279   __ call_VM(noreg, runtime_entry);
   280   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
   281   return entry;
   282 }
   286 // Helpers for commoning out cases in the various type of method entries.
   287 //
   290 // increment invocation count & check for overflow
   291 //
   292 // Note: checking for negative value instead of overflow
   293 //       so we have a 'sticky' overflow test
   294 //
   295 // rbx: method
   296 // ecx: invocation counter
   297 //
   298 void InterpreterGenerator::generate_counter_incr(
   299         Label* overflow,
   300         Label* profile_method,
   301         Label* profile_method_continue) {
   302   const Address invocation_counter(rbx, in_bytes(methodOopDesc::invocation_counter_offset()) +
   303                                         in_bytes(InvocationCounter::counter_offset()));
   304   // Note: In tiered we increment either counters in methodOop or in MDO depending if we're profiling or not.
   305   if (TieredCompilation) {
   306     int increment = InvocationCounter::count_increment;
   307     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
   308     Label no_mdo, done;
   309     if (ProfileInterpreter) {
   310       // Are we profiling?
   311       __ movptr(rax, Address(rbx, methodOopDesc::method_data_offset()));
   312       __ testptr(rax, rax);
   313       __ jccb(Assembler::zero, no_mdo);
   314       // Increment counter in the MDO
   315       const Address mdo_invocation_counter(rax, in_bytes(methodDataOopDesc::invocation_counter_offset()) +
   316                                                 in_bytes(InvocationCounter::counter_offset()));
   317       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
   318       __ jmpb(done);
   319     }
   320     __ bind(no_mdo);
   321     // Increment counter in methodOop (we don't need to load it, it's in ecx).
   322     __ increment_mask_and_jump(invocation_counter, increment, mask, rcx, true, Assembler::zero, overflow);
   323     __ bind(done);
   324   } else {
   325     const Address backedge_counter(rbx,
   326                                    methodOopDesc::backedge_counter_offset() +
   327                                    InvocationCounter::counter_offset());
   329     if (ProfileInterpreter) { // %%% Merge this into methodDataOop
   330       __ incrementl(Address(rbx,
   331                             methodOopDesc::interpreter_invocation_counter_offset()));
   332     }
   333     // Update standard invocation counters
   334     __ movl(rax, backedge_counter);   // load backedge counter
   336     __ incrementl(rcx, InvocationCounter::count_increment);
   337     __ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits
   339     __ movl(invocation_counter, rcx); // save invocation count
   340     __ addl(rcx, rax);                // add both counters
   342     // profile_method is non-null only for interpreted method so
   343     // profile_method != NULL == !native_call
   345     if (ProfileInterpreter && profile_method != NULL) {
   346       // Test to see if we should create a method data oop
   347       __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
   348       __ jcc(Assembler::less, *profile_method_continue);
   350       // if no method data exists, go to profile_method
   351       __ test_method_data_pointer(rax, *profile_method);
   352     }
   354     __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
   355     __ jcc(Assembler::aboveEqual, *overflow);
   356   }
   357 }
   359 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   361   // Asm interpreter on entry
   362   // r14 - locals
   363   // r13 - bcp
   364   // rbx - method
   365   // edx - cpool --- DOES NOT APPEAR TO BE TRUE
   366   // rbp - interpreter frame
   368   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
   369   // Everything as it was on entry
   370   // rdx is not restored. Doesn't appear to really be set.
   372   const Address size_of_parameters(rbx,
   373                                    methodOopDesc::size_of_parameters_offset());
   375   // InterpreterRuntime::frequency_counter_overflow takes two
   376   // arguments, the first (thread) is passed by call_VM, the second
   377   // indicates if the counter overflow occurs at a backwards branch
   378   // (NULL bcp).  We pass zero for it.  The call returns the address
   379   // of the verified entry point for the method or NULL if the
   380   // compilation did not complete (either went background or bailed
   381   // out).
   382   __ movl(c_rarg1, 0);
   383   __ call_VM(noreg,
   384              CAST_FROM_FN_PTR(address,
   385                               InterpreterRuntime::frequency_counter_overflow),
   386              c_rarg1);
   388   __ movptr(rbx, Address(rbp, method_offset));   // restore methodOop
   389   // Preserve invariant that r13/r14 contain bcp/locals of sender frame
   390   // and jump to the interpreted entry.
   391   __ jmp(*do_continue, relocInfo::none);
   392 }
   394 // See if we've got enough room on the stack for locals plus overhead.
   395 // The expression stack grows down incrementally, so the normal guard
   396 // page mechanism will work for that.
   397 //
   398 // NOTE: Since the additional locals are also always pushed (wasn't
   399 // obvious in generate_method_entry) so the guard should work for them
   400 // too.
   401 //
   402 // Args:
   403 //      rdx: number of additional locals this frame needs (what we must check)
   404 //      rbx: methodOop
   405 //
   406 // Kills:
   407 //      rax
   408 void InterpreterGenerator::generate_stack_overflow_check(void) {
   410   // monitor entry size: see picture of stack set
   411   // (generate_method_entry) and frame_amd64.hpp
   412   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   414   // total overhead size: entry_size + (saved rbp through expr stack
   415   // bottom).  be sure to change this if you add/subtract anything
   416   // to/from the overhead area
   417   const int overhead_size =
   418     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
   420   const int page_size = os::vm_page_size();
   422   Label after_frame_check;
   424   // see if the frame is greater than one page in size. If so,
   425   // then we need to verify there is enough stack space remaining
   426   // for the additional locals.
   427   __ cmpl(rdx, (page_size - overhead_size) / Interpreter::stackElementSize);
   428   __ jcc(Assembler::belowEqual, after_frame_check);
   430   // compute rsp as if this were going to be the last frame on
   431   // the stack before the red zone
   433   const Address stack_base(r15_thread, Thread::stack_base_offset());
   434   const Address stack_size(r15_thread, Thread::stack_size_offset());
   436   // locals + overhead, in bytes
   437   __ mov(rax, rdx);
   438   __ shlptr(rax, Interpreter::logStackElementSize);  // 2 slots per parameter.
   439   __ addptr(rax, overhead_size);
   441 #ifdef ASSERT
   442   Label stack_base_okay, stack_size_okay;
   443   // verify that thread stack base is non-zero
   444   __ cmpptr(stack_base, (int32_t)NULL_WORD);
   445   __ jcc(Assembler::notEqual, stack_base_okay);
   446   __ stop("stack base is zero");
   447   __ bind(stack_base_okay);
   448   // verify that thread stack size is non-zero
   449   __ cmpptr(stack_size, 0);
   450   __ jcc(Assembler::notEqual, stack_size_okay);
   451   __ stop("stack size is zero");
   452   __ bind(stack_size_okay);
   453 #endif
   455   // Add stack base to locals and subtract stack size
   456   __ addptr(rax, stack_base);
   457   __ subptr(rax, stack_size);
   459   // Use the maximum number of pages we might bang.
   460   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
   461                                                                               (StackRedPages+StackYellowPages);
   463   // add in the red and yellow zone sizes
   464   __ addptr(rax, max_pages * page_size);
   466   // check against the current stack bottom
   467   __ cmpptr(rsp, rax);
   468   __ jcc(Assembler::above, after_frame_check);
   470   __ pop(rax); // get return address
   471   __ jump(ExternalAddress(Interpreter::throw_StackOverflowError_entry()));
   473   // all done with frame size check
   474   __ bind(after_frame_check);
   475 }
   477 // Allocate monitor and lock method (asm interpreter)
   478 //
   479 // Args:
   480 //      rbx: methodOop
   481 //      r14: locals
   482 //
   483 // Kills:
   484 //      rax
   485 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
   486 //      rscratch1, rscratch2 (scratch regs)
   487 void InterpreterGenerator::lock_method(void) {
   488   // synchronize method
   489   const Address access_flags(rbx, methodOopDesc::access_flags_offset());
   490   const Address monitor_block_top(
   491         rbp,
   492         frame::interpreter_frame_monitor_block_top_offset * wordSize);
   493   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   495 #ifdef ASSERT
   496   {
   497     Label L;
   498     __ movl(rax, access_flags);
   499     __ testl(rax, JVM_ACC_SYNCHRONIZED);
   500     __ jcc(Assembler::notZero, L);
   501     __ stop("method doesn't need synchronization");
   502     __ bind(L);
   503   }
   504 #endif // ASSERT
   506   // get synchronization object
   507   {
   508     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() +
   509                               Klass::java_mirror_offset_in_bytes();
   510     Label done;
   511     __ movl(rax, access_flags);
   512     __ testl(rax, JVM_ACC_STATIC);
   513     // get receiver (assume this is frequent case)
   514     __ movptr(rax, Address(r14, Interpreter::local_offset_in_bytes(0)));
   515     __ jcc(Assembler::zero, done);
   516     __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
   517     __ movptr(rax, Address(rax,
   518                            constantPoolOopDesc::pool_holder_offset_in_bytes()));
   519     __ movptr(rax, Address(rax, mirror_offset));
   521 #ifdef ASSERT
   522     {
   523       Label L;
   524       __ testptr(rax, rax);
   525       __ jcc(Assembler::notZero, L);
   526       __ stop("synchronization object is NULL");
   527       __ bind(L);
   528     }
   529 #endif // ASSERT
   531     __ bind(done);
   532   }
   534   // add space for monitor & lock
   535   __ subptr(rsp, entry_size); // add space for a monitor entry
   536   __ movptr(monitor_block_top, rsp);  // set new monitor block top
   537   // store object
   538   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax);
   539   __ movptr(c_rarg1, rsp); // object address
   540   __ lock_object(c_rarg1);
   541 }
   543 // Generate a fixed interpreter frame. This is identical setup for
   544 // interpreted methods and for native methods hence the shared code.
   545 //
   546 // Args:
   547 //      rax: return address
   548 //      rbx: methodOop
   549 //      r14: pointer to locals
   550 //      r13: sender sp
   551 //      rdx: cp cache
   552 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   553   // initialize fixed part of activation frame
   554   __ push(rax);        // save return address
   555   __ enter();          // save old & set new rbp
   556   __ push(r13);        // set sender sp
   557   __ push((int)NULL_WORD); // leave last_sp as null
   558   __ movptr(r13, Address(rbx, methodOopDesc::const_offset()));      // get constMethodOop
   559   __ lea(r13, Address(r13, constMethodOopDesc::codes_offset())); // get codebase
   560   __ push(rbx);        // save methodOop
   561   if (ProfileInterpreter) {
   562     Label method_data_continue;
   563     __ movptr(rdx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
   564     __ testptr(rdx, rdx);
   565     __ jcc(Assembler::zero, method_data_continue);
   566     __ addptr(rdx, in_bytes(methodDataOopDesc::data_offset()));
   567     __ bind(method_data_continue);
   568     __ push(rdx);      // set the mdp (method data pointer)
   569   } else {
   570     __ push(0);
   571   }
   573   __ movptr(rdx, Address(rbx, methodOopDesc::constants_offset()));
   574   __ movptr(rdx, Address(rdx, constantPoolOopDesc::cache_offset_in_bytes()));
   575   __ push(rdx); // set constant pool cache
   576   __ push(r14); // set locals pointer
   577   if (native_call) {
   578     __ push(0); // no bcp
   579   } else {
   580     __ push(r13); // set bcp
   581   }
   582   __ push(0); // reserve word for pointer to expression stack bottom
   583   __ movptr(Address(rsp, 0), rsp); // set expression stack bottom
   584 }
   586 // End of helpers
   588 // Various method entries
   589 //------------------------------------------------------------------------------------------------------------------------
   590 //
   591 //
   593 // Call an accessor method (assuming it is resolved, otherwise drop
   594 // into vanilla (slow path) entry
   595 address InterpreterGenerator::generate_accessor_entry(void) {
   596   // rbx: methodOop
   598   // r13: senderSP must preserver for slow path, set SP to it on fast path
   600   address entry_point = __ pc();
   601   Label xreturn_path;
   603   // do fastpath for resolved accessor methods
   604   if (UseFastAccessorMethods) {
   605     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites
   606     //       thereof; parameter size = 1
   607     // Note: We can only use this code if the getfield has been resolved
   608     //       and if we don't have a null-pointer exception => check for
   609     //       these conditions first and use slow path if necessary.
   610     Label slow_path;
   611     // If we need a safepoint check, generate full interpreter entry.
   612     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   613              SafepointSynchronize::_not_synchronized);
   615     __ jcc(Assembler::notEqual, slow_path);
   616     // rbx: method
   617     __ movptr(rax, Address(rsp, wordSize));
   619     // check if local 0 != NULL and read field
   620     __ testptr(rax, rax);
   621     __ jcc(Assembler::zero, slow_path);
   623     __ movptr(rdi, Address(rbx, methodOopDesc::constants_offset()));
   624     // read first instruction word and extract bytecode @ 1 and index @ 2
   625     __ movptr(rdx, Address(rbx, methodOopDesc::const_offset()));
   626     __ movl(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
   627     // Shift codes right to get the index on the right.
   628     // The bytecode fetched looks like <index><0xb4><0x2a>
   629     __ shrl(rdx, 2 * BitsPerByte);
   630     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   631     __ movptr(rdi, Address(rdi, constantPoolOopDesc::cache_offset_in_bytes()));
   633     // rax: local 0
   634     // rbx: method
   635     // rdx: constant pool cache index
   636     // rdi: constant pool cache
   638     // check if getfield has been resolved and read constant pool cache entry
   639     // check the validity of the cache entry by testing whether _indices field
   640     // contains Bytecode::_getfield in b1 byte.
   641     assert(in_words(ConstantPoolCacheEntry::size()) == 4,
   642            "adjust shift below");
   643     __ movl(rcx,
   644             Address(rdi,
   645                     rdx,
   646                     Address::times_8,
   647                     constantPoolCacheOopDesc::base_offset() +
   648                     ConstantPoolCacheEntry::indices_offset()));
   649     __ shrl(rcx, 2 * BitsPerByte);
   650     __ andl(rcx, 0xFF);
   651     __ cmpl(rcx, Bytecodes::_getfield);
   652     __ jcc(Assembler::notEqual, slow_path);
   654     // Note: constant pool entry is not valid before bytecode is resolved
   655     __ movptr(rcx,
   656               Address(rdi,
   657                       rdx,
   658                       Address::times_8,
   659                       constantPoolCacheOopDesc::base_offset() +
   660                       ConstantPoolCacheEntry::f2_offset()));
   661     // edx: flags
   662     __ movl(rdx,
   663             Address(rdi,
   664                     rdx,
   665                     Address::times_8,
   666                     constantPoolCacheOopDesc::base_offset() +
   667                     ConstantPoolCacheEntry::flags_offset()));
   669     Label notObj, notInt, notByte, notShort;
   670     const Address field_address(rax, rcx, Address::times_1);
   672     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   673     // because they are different sizes.
   674     // Use the type from the constant pool cache
   675     __ shrl(rdx, ConstantPoolCacheEntry::tosBits);
   676     // Make sure we don't need to mask edx for tosBits after the above shift
   677     ConstantPoolCacheEntry::verify_tosBits();
   679     __ cmpl(rdx, atos);
   680     __ jcc(Assembler::notEqual, notObj);
   681     // atos
   682     __ load_heap_oop(rax, field_address);
   683     __ jmp(xreturn_path);
   685     __ bind(notObj);
   686     __ cmpl(rdx, itos);
   687     __ jcc(Assembler::notEqual, notInt);
   688     // itos
   689     __ movl(rax, field_address);
   690     __ jmp(xreturn_path);
   692     __ bind(notInt);
   693     __ cmpl(rdx, btos);
   694     __ jcc(Assembler::notEqual, notByte);
   695     // btos
   696     __ load_signed_byte(rax, field_address);
   697     __ jmp(xreturn_path);
   699     __ bind(notByte);
   700     __ cmpl(rdx, stos);
   701     __ jcc(Assembler::notEqual, notShort);
   702     // stos
   703     __ load_signed_short(rax, field_address);
   704     __ jmp(xreturn_path);
   706     __ bind(notShort);
   707 #ifdef ASSERT
   708     Label okay;
   709     __ cmpl(rdx, ctos);
   710     __ jcc(Assembler::equal, okay);
   711     __ stop("what type is this?");
   712     __ bind(okay);
   713 #endif
   714     // ctos
   715     __ load_unsigned_short(rax, field_address);
   717     __ bind(xreturn_path);
   719     // _ireturn/_areturn
   720     __ pop(rdi);
   721     __ mov(rsp, r13);
   722     __ jmp(rdi);
   723     __ ret(0);
   725     // generate a vanilla interpreter entry as the slow path
   726     __ bind(slow_path);
   727     (void) generate_normal_entry(false);
   728   } else {
   729     (void) generate_normal_entry(false);
   730   }
   732   return entry_point;
   733 }
   735 // Method entry for java.lang.ref.Reference.get.
   736 address InterpreterGenerator::generate_Reference_get_entry(void) {
   737 #ifndef SERIALGC
   738   // Code: _aload_0, _getfield, _areturn
   739   // parameter size = 1
   740   //
   741   // The code that gets generated by this routine is split into 2 parts:
   742   //    1. The "intrinsified" code for G1 (or any SATB based GC),
   743   //    2. The slow path - which is an expansion of the regular method entry.
   744   //
   745   // Notes:-
   746   // * In the G1 code we do not check whether we need to block for
   747   //   a safepoint. If G1 is enabled then we must execute the specialized
   748   //   code for Reference.get (except when the Reference object is null)
   749   //   so that we can log the value in the referent field with an SATB
   750   //   update buffer.
   751   //   If the code for the getfield template is modified so that the
   752   //   G1 pre-barrier code is executed when the current method is
   753   //   Reference.get() then going through the normal method entry
   754   //   will be fine.
   755   // * The G1 code can, however, check the receiver object (the instance
   756   //   of java.lang.Reference) and jump to the slow path if null. If the
   757   //   Reference object is null then we obviously cannot fetch the referent
   758   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
   759   //   regular method entry code to generate the NPE.
   760   //
   761   // This code is based on generate_accessor_enty.
   762   //
   763   // rbx: methodOop
   765   // r13: senderSP must preserve for slow path, set SP to it on fast path
   767   address entry = __ pc();
   769   const int referent_offset = java_lang_ref_Reference::referent_offset;
   770   guarantee(referent_offset > 0, "referent offset not initialized");
   772   if (UseG1GC) {
   773     Label slow_path;
   774     // rbx: method
   776     // Check if local 0 != NULL
   777     // If the receiver is null then it is OK to jump to the slow path.
   778     __ movptr(rax, Address(rsp, wordSize));
   780     __ testptr(rax, rax);
   781     __ jcc(Assembler::zero, slow_path);
   783     // rax: local 0
   784     // rbx: method (but can be used as scratch now)
   785     // rdx: scratch
   786     // rdi: scratch
   788     // Generate the G1 pre-barrier code to log the value of
   789     // the referent field in an SATB buffer.
   791     // Load the value of the referent field.
   792     const Address field_address(rax, referent_offset);
   793     __ load_heap_oop(rax, field_address);
   795     // Generate the G1 pre-barrier code to log the value of
   796     // the referent field in an SATB buffer.
   797     __ g1_write_barrier_pre(noreg /* obj */,
   798                             rax /* pre_val */,
   799                             r15_thread /* thread */,
   800                             rbx /* tmp */,
   801                             true /* tosca_live */,
   802                             true /* expand_call */);
   804     // _areturn
   805     __ pop(rdi);                // get return address
   806     __ mov(rsp, r13);           // set sp to sender sp
   807     __ jmp(rdi);
   808     __ ret(0);
   810     // generate a vanilla interpreter entry as the slow path
   811     __ bind(slow_path);
   812     (void) generate_normal_entry(false);
   814     return entry;
   815   }
   816 #endif // SERIALGC
   818   // If G1 is not enabled then attempt to go through the accessor entry point
   819   // Reference.get is an accessor
   820   return generate_accessor_entry();
   821 }
   824 // Interpreter stub for calling a native method. (asm interpreter)
   825 // This sets up a somewhat different looking stack for calling the
   826 // native method than the typical interpreter frame setup.
   827 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   828   // determine code generation flags
   829   bool inc_counter  = UseCompiler || CountCompiledCalls;
   831   // rbx: methodOop
   832   // r13: sender sp
   834   address entry_point = __ pc();
   836   const Address size_of_parameters(rbx, methodOopDesc::
   837                                         size_of_parameters_offset());
   838   const Address invocation_counter(rbx, methodOopDesc::
   839                                         invocation_counter_offset() +
   840                                         InvocationCounter::counter_offset());
   841   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
   843   // get parameter size (always needed)
   844   __ load_unsigned_short(rcx, size_of_parameters);
   846   // native calls don't need the stack size check since they have no
   847   // expression stack and the arguments are already on the stack and
   848   // we only add a handful of words to the stack
   850   // rbx: methodOop
   851   // rcx: size of parameters
   852   // r13: sender sp
   853   __ pop(rax);                                       // get return address
   855   // for natives the size of locals is zero
   857   // compute beginning of parameters (r14)
   858   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
   860   // add 2 zero-initialized slots for native calls
   861   // initialize result_handler slot
   862   __ push((int) NULL_WORD);
   863   // slot for oop temp
   864   // (static native method holder mirror/jni oop result)
   865   __ push((int) NULL_WORD);
   867   if (inc_counter) {
   868     __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
   869   }
   871   // initialize fixed part of activation frame
   872   generate_fixed_frame(true);
   874   // make sure method is native & not abstract
   875 #ifdef ASSERT
   876   __ movl(rax, access_flags);
   877   {
   878     Label L;
   879     __ testl(rax, JVM_ACC_NATIVE);
   880     __ jcc(Assembler::notZero, L);
   881     __ stop("tried to execute non-native method as native");
   882     __ bind(L);
   883   }
   884   {
   885     Label L;
   886     __ testl(rax, JVM_ACC_ABSTRACT);
   887     __ jcc(Assembler::zero, L);
   888     __ stop("tried to execute abstract method in interpreter");
   889     __ bind(L);
   890   }
   891 #endif
   893   // Since at this point in the method invocation the exception handler
   894   // would try to exit the monitor of synchronized methods which hasn't
   895   // been entered yet, we set the thread local variable
   896   // _do_not_unlock_if_synchronized to true. The remove_activation will
   897   // check this flag.
   899   const Address do_not_unlock_if_synchronized(r15_thread,
   900         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   901   __ movbool(do_not_unlock_if_synchronized, true);
   903   // increment invocation count & check for overflow
   904   Label invocation_counter_overflow;
   905   if (inc_counter) {
   906     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   907   }
   909   Label continue_after_compile;
   910   __ bind(continue_after_compile);
   912   bang_stack_shadow_pages(true);
   914   // reset the _do_not_unlock_if_synchronized flag
   915   __ movbool(do_not_unlock_if_synchronized, false);
   917   // check for synchronized methods
   918   // Must happen AFTER invocation_counter check and stack overflow check,
   919   // so method is not locked if overflows.
   920   if (synchronized) {
   921     lock_method();
   922   } else {
   923     // no synchronization necessary
   924 #ifdef ASSERT
   925     {
   926       Label L;
   927       __ movl(rax, access_flags);
   928       __ testl(rax, JVM_ACC_SYNCHRONIZED);
   929       __ jcc(Assembler::zero, L);
   930       __ stop("method needs synchronization");
   931       __ bind(L);
   932     }
   933 #endif
   934   }
   936   // start execution
   937 #ifdef ASSERT
   938   {
   939     Label L;
   940     const Address monitor_block_top(rbp,
   941                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
   942     __ movptr(rax, monitor_block_top);
   943     __ cmpptr(rax, rsp);
   944     __ jcc(Assembler::equal, L);
   945     __ stop("broken stack frame setup in interpreter");
   946     __ bind(L);
   947   }
   948 #endif
   950   // jvmti support
   951   __ notify_method_entry();
   953   // work registers
   954   const Register method = rbx;
   955   const Register t      = r11;
   957   // allocate space for parameters
   958   __ get_method(method);
   959   __ verify_oop(method);
   960   __ load_unsigned_short(t,
   961                          Address(method,
   962                                  methodOopDesc::size_of_parameters_offset()));
   963   __ shll(t, Interpreter::logStackElementSize);
   965   __ subptr(rsp, t);
   966   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
   967   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
   969   // get signature handler
   970   {
   971     Label L;
   972     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
   973     __ testptr(t, t);
   974     __ jcc(Assembler::notZero, L);
   975     __ call_VM(noreg,
   976                CAST_FROM_FN_PTR(address,
   977                                 InterpreterRuntime::prepare_native_call),
   978                method);
   979     __ get_method(method);
   980     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
   981     __ bind(L);
   982   }
   984   // call signature handler
   985   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == r14,
   986          "adjust this code");
   987   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == rsp,
   988          "adjust this code");
   989   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
   990           "adjust this code");
   992   // The generated handlers do not touch RBX (the method oop).
   993   // However, large signatures cannot be cached and are generated
   994   // each time here.  The slow-path generator can do a GC on return,
   995   // so we must reload it after the call.
   996   __ call(t);
   997   __ get_method(method);        // slow path can do a GC, reload RBX
  1000   // result handler is in rax
  1001   // set result handler
  1002   __ movptr(Address(rbp,
  1003                     (frame::interpreter_frame_result_handler_offset) * wordSize),
  1004             rax);
  1006   // pass mirror handle if static call
  1008     Label L;
  1009     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() +
  1010                               Klass::java_mirror_offset_in_bytes();
  1011     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
  1012     __ testl(t, JVM_ACC_STATIC);
  1013     __ jcc(Assembler::zero, L);
  1014     // get mirror
  1015     __ movptr(t, Address(method, methodOopDesc::constants_offset()));
  1016     __ movptr(t, Address(t, constantPoolOopDesc::pool_holder_offset_in_bytes()));
  1017     __ movptr(t, Address(t, mirror_offset));
  1018     // copy mirror into activation frame
  1019     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize),
  1020             t);
  1021     // pass handle to mirror
  1022     __ lea(c_rarg1,
  1023            Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
  1024     __ bind(L);
  1027   // get native function entry point
  1029     Label L;
  1030     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
  1031     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
  1032     __ movptr(rscratch2, unsatisfied.addr());
  1033     __ cmpptr(rax, rscratch2);
  1034     __ jcc(Assembler::notEqual, L);
  1035     __ call_VM(noreg,
  1036                CAST_FROM_FN_PTR(address,
  1037                                 InterpreterRuntime::prepare_native_call),
  1038                method);
  1039     __ get_method(method);
  1040     __ verify_oop(method);
  1041     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
  1042     __ bind(L);
  1045   // pass JNIEnv
  1046   __ lea(c_rarg0, Address(r15_thread, JavaThread::jni_environment_offset()));
  1048   // It is enough that the pc() points into the right code
  1049   // segment. It does not have to be the correct return pc.
  1050   __ set_last_Java_frame(rsp, rbp, (address) __ pc());
  1052   // change thread state
  1053 #ifdef ASSERT
  1055     Label L;
  1056     __ movl(t, Address(r15_thread, JavaThread::thread_state_offset()));
  1057     __ cmpl(t, _thread_in_Java);
  1058     __ jcc(Assembler::equal, L);
  1059     __ stop("Wrong thread state in native stub");
  1060     __ bind(L);
  1062 #endif
  1064   // Change state to native
  1066   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
  1067           _thread_in_native);
  1069   // Call the native method.
  1070   __ call(rax);
  1071   // result potentially in rax or xmm0
  1073   // Depending on runtime options, either restore the MXCSR
  1074   // register after returning from the JNI Call or verify that
  1075   // it wasn't changed during -Xcheck:jni.
  1076   if (RestoreMXCSROnJNICalls) {
  1077     __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
  1079   else if (CheckJNICalls) {
  1080     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::verify_mxcsr_entry())));
  1083   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
  1084   // in order to extract the result of a method call. If the order of these
  1085   // pushes change or anything else is added to the stack then the code in
  1086   // interpreter_frame_result must also change.
  1088   __ push(dtos);
  1089   __ push(ltos);
  1091   // change thread state
  1092   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
  1093           _thread_in_native_trans);
  1095   if (os::is_MP()) {
  1096     if (UseMembar) {
  1097       // Force this write out before the read below
  1098       __ membar(Assembler::Membar_mask_bits(
  1099            Assembler::LoadLoad | Assembler::LoadStore |
  1100            Assembler::StoreLoad | Assembler::StoreStore));
  1101     } else {
  1102       // Write serialization page so VM thread can do a pseudo remote membar.
  1103       // We use the current thread pointer to calculate a thread specific
  1104       // offset to write to within the page. This minimizes bus traffic
  1105       // due to cache line collision.
  1106       __ serialize_memory(r15_thread, rscratch2);
  1110   // check for safepoint operation in progress and/or pending suspend requests
  1112     Label Continue;
  1113     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
  1114              SafepointSynchronize::_not_synchronized);
  1116     Label L;
  1117     __ jcc(Assembler::notEqual, L);
  1118     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
  1119     __ jcc(Assembler::equal, Continue);
  1120     __ bind(L);
  1122     // Don't use call_VM as it will see a possible pending exception
  1123     // and forward it and never return here preventing us from
  1124     // clearing _last_native_pc down below.  Also can't use
  1125     // call_VM_leaf either as it will check to see if r13 & r14 are
  1126     // preserved and correspond to the bcp/locals pointers. So we do a
  1127     // runtime call by hand.
  1128     //
  1129     __ mov(c_rarg0, r15_thread);
  1130     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
  1131     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1132     __ andptr(rsp, -16); // align stack as required by ABI
  1133     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
  1134     __ mov(rsp, r12); // restore sp
  1135     __ reinit_heapbase();
  1136     __ bind(Continue);
  1139   // change thread state
  1140   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1142   // reset_last_Java_frame
  1143   __ reset_last_Java_frame(true, true);
  1145   // reset handle block
  1146   __ movptr(t, Address(r15_thread, JavaThread::active_handles_offset()));
  1147   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
  1149   // If result is an oop unbox and store it in frame where gc will see it
  1150   // and result handler will pick it up
  1153     Label no_oop, store_result;
  1154     __ lea(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
  1155     __ cmpptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
  1156     __ jcc(Assembler::notEqual, no_oop);
  1157     // retrieve result
  1158     __ pop(ltos);
  1159     __ testptr(rax, rax);
  1160     __ jcc(Assembler::zero, store_result);
  1161     __ movptr(rax, Address(rax, 0));
  1162     __ bind(store_result);
  1163     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize), rax);
  1164     // keep stack depth as expected by pushing oop which will eventually be discarde
  1165     __ push(ltos);
  1166     __ bind(no_oop);
  1171     Label no_reguard;
  1172     __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()),
  1173             JavaThread::stack_guard_yellow_disabled);
  1174     __ jcc(Assembler::notEqual, no_reguard);
  1176     __ pusha(); // XXX only save smashed registers
  1177     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
  1178     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1179     __ andptr(rsp, -16); // align stack as required by ABI
  1180     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1181     __ mov(rsp, r12); // restore sp
  1182     __ popa(); // XXX only restore smashed registers
  1183     __ reinit_heapbase();
  1185     __ bind(no_reguard);
  1189   // The method register is junk from after the thread_in_native transition
  1190   // until here.  Also can't call_VM until the bcp has been
  1191   // restored.  Need bcp for throwing exception below so get it now.
  1192   __ get_method(method);
  1193   __ verify_oop(method);
  1195   // restore r13 to have legal interpreter frame, i.e., bci == 0 <=>
  1196   // r13 == code_base()
  1197   __ movptr(r13, Address(method, methodOopDesc::const_offset()));   // get constMethodOop
  1198   __ lea(r13, Address(r13, constMethodOopDesc::codes_offset()));    // get codebase
  1199   // handle exceptions (exception handling will handle unlocking!)
  1201     Label L;
  1202     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  1203     __ jcc(Assembler::zero, L);
  1204     // Note: At some point we may want to unify this with the code
  1205     // used in call_VM_base(); i.e., we should use the
  1206     // StubRoutines::forward_exception code. For now this doesn't work
  1207     // here because the rsp is not correctly set at this point.
  1208     __ MacroAssembler::call_VM(noreg,
  1209                                CAST_FROM_FN_PTR(address,
  1210                                InterpreterRuntime::throw_pending_exception));
  1211     __ should_not_reach_here();
  1212     __ bind(L);
  1215   // do unlocking if necessary
  1217     Label L;
  1218     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
  1219     __ testl(t, JVM_ACC_SYNCHRONIZED);
  1220     __ jcc(Assembler::zero, L);
  1221     // the code below should be shared with interpreter macro
  1222     // assembler implementation
  1224       Label unlock;
  1225       // BasicObjectLock will be first in list, since this is a
  1226       // synchronized method. However, need to check that the object
  1227       // has not been unlocked by an explicit monitorexit bytecode.
  1228       const Address monitor(rbp,
  1229                             (intptr_t)(frame::interpreter_frame_initial_sp_offset *
  1230                                        wordSize - sizeof(BasicObjectLock)));
  1232       // monitor expect in c_rarg1 for slow unlock path
  1233       __ lea(c_rarg1, monitor); // address of first monitor
  1235       __ movptr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  1236       __ testptr(t, t);
  1237       __ jcc(Assembler::notZero, unlock);
  1239       // Entry already unlocked, need to throw exception
  1240       __ MacroAssembler::call_VM(noreg,
  1241                                  CAST_FROM_FN_PTR(address,
  1242                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  1243       __ should_not_reach_here();
  1245       __ bind(unlock);
  1246       __ unlock_object(c_rarg1);
  1248     __ bind(L);
  1251   // jvmti support
  1252   // Note: This must happen _after_ handling/throwing any exceptions since
  1253   //       the exception handler code notifies the runtime of method exits
  1254   //       too. If this happens before, method entry/exit notifications are
  1255   //       not properly paired (was bug - gri 11/22/99).
  1256   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
  1258   // restore potential result in edx:eax, call result handler to
  1259   // restore potential result in ST0 & handle result
  1261   __ pop(ltos);
  1262   __ pop(dtos);
  1264   __ movptr(t, Address(rbp,
  1265                        (frame::interpreter_frame_result_handler_offset) * wordSize));
  1266   __ call(t);
  1268   // remove activation
  1269   __ movptr(t, Address(rbp,
  1270                        frame::interpreter_frame_sender_sp_offset *
  1271                        wordSize)); // get sender sp
  1272   __ leave();                                // remove frame anchor
  1273   __ pop(rdi);                               // get return address
  1274   __ mov(rsp, t);                            // set sp to sender sp
  1275   __ jmp(rdi);
  1277   if (inc_counter) {
  1278     // Handle overflow of counter and compile method
  1279     __ bind(invocation_counter_overflow);
  1280     generate_counter_overflow(&continue_after_compile);
  1283   return entry_point;
  1286 //
  1287 // Generic interpreted method entry to (asm) interpreter
  1288 //
  1289 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1290   // determine code generation flags
  1291   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1293   // ebx: methodOop
  1294   // r13: sender sp
  1295   address entry_point = __ pc();
  1297   const Address size_of_parameters(rbx,
  1298                                    methodOopDesc::size_of_parameters_offset());
  1299   const Address size_of_locals(rbx, methodOopDesc::size_of_locals_offset());
  1300   const Address invocation_counter(rbx,
  1301                                    methodOopDesc::invocation_counter_offset() +
  1302                                    InvocationCounter::counter_offset());
  1303   const Address access_flags(rbx, methodOopDesc::access_flags_offset());
  1305   // get parameter size (always needed)
  1306   __ load_unsigned_short(rcx, size_of_parameters);
  1308   // rbx: methodOop
  1309   // rcx: size of parameters
  1310   // r13: sender_sp (could differ from sp+wordSize if we were called via c2i )
  1312   __ load_unsigned_short(rdx, size_of_locals); // get size of locals in words
  1313   __ subl(rdx, rcx); // rdx = no. of additional locals
  1315   // YYY
  1316 //   __ incrementl(rdx);
  1317 //   __ andl(rdx, -2);
  1319   // see if we've got enough room on the stack for locals plus overhead.
  1320   generate_stack_overflow_check();
  1322   // get return address
  1323   __ pop(rax);
  1325   // compute beginning of parameters (r14)
  1326   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
  1328   // rdx - # of additional locals
  1329   // allocate space for locals
  1330   // explicitly initialize locals
  1332     Label exit, loop;
  1333     __ testl(rdx, rdx);
  1334     __ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0
  1335     __ bind(loop);
  1336     __ push((int) NULL_WORD); // initialize local variables
  1337     __ decrementl(rdx); // until everything initialized
  1338     __ jcc(Assembler::greater, loop);
  1339     __ bind(exit);
  1342   // (pre-)fetch invocation count
  1343   if (inc_counter) {
  1344     __ movl(rcx, invocation_counter);
  1346   // initialize fixed part of activation frame
  1347   generate_fixed_frame(false);
  1349   // make sure method is not native & not abstract
  1350 #ifdef ASSERT
  1351   __ movl(rax, access_flags);
  1353     Label L;
  1354     __ testl(rax, JVM_ACC_NATIVE);
  1355     __ jcc(Assembler::zero, L);
  1356     __ stop("tried to execute native method as non-native");
  1357     __ bind(L);
  1360     Label L;
  1361     __ testl(rax, JVM_ACC_ABSTRACT);
  1362     __ jcc(Assembler::zero, L);
  1363     __ stop("tried to execute abstract method in interpreter");
  1364     __ bind(L);
  1366 #endif
  1368   // Since at this point in the method invocation the exception
  1369   // handler would try to exit the monitor of synchronized methods
  1370   // which hasn't been entered yet, we set the thread local variable
  1371   // _do_not_unlock_if_synchronized to true. The remove_activation
  1372   // will check this flag.
  1374   const Address do_not_unlock_if_synchronized(r15_thread,
  1375         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1376   __ movbool(do_not_unlock_if_synchronized, true);
  1378   // increment invocation count & check for overflow
  1379   Label invocation_counter_overflow;
  1380   Label profile_method;
  1381   Label profile_method_continue;
  1382   if (inc_counter) {
  1383     generate_counter_incr(&invocation_counter_overflow,
  1384                           &profile_method,
  1385                           &profile_method_continue);
  1386     if (ProfileInterpreter) {
  1387       __ bind(profile_method_continue);
  1391   Label continue_after_compile;
  1392   __ bind(continue_after_compile);
  1394   // check for synchronized interpreted methods
  1395   bang_stack_shadow_pages(false);
  1397   // reset the _do_not_unlock_if_synchronized flag
  1398   __ movbool(do_not_unlock_if_synchronized, false);
  1400   // check for synchronized methods
  1401   // Must happen AFTER invocation_counter check and stack overflow check,
  1402   // so method is not locked if overflows.
  1403   if (synchronized) {
  1404     // Allocate monitor and lock method
  1405     lock_method();
  1406   } else {
  1407     // no synchronization necessary
  1408 #ifdef ASSERT
  1410       Label L;
  1411       __ movl(rax, access_flags);
  1412       __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1413       __ jcc(Assembler::zero, L);
  1414       __ stop("method needs synchronization");
  1415       __ bind(L);
  1417 #endif
  1420   // start execution
  1421 #ifdef ASSERT
  1423     Label L;
  1424      const Address monitor_block_top (rbp,
  1425                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1426     __ movptr(rax, monitor_block_top);
  1427     __ cmpptr(rax, rsp);
  1428     __ jcc(Assembler::equal, L);
  1429     __ stop("broken stack frame setup in interpreter");
  1430     __ bind(L);
  1432 #endif
  1434   // jvmti support
  1435   __ notify_method_entry();
  1437   __ dispatch_next(vtos);
  1439   // invocation counter overflow
  1440   if (inc_counter) {
  1441     if (ProfileInterpreter) {
  1442       // We have decided to profile this method in the interpreter
  1443       __ bind(profile_method);
  1444       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1445       __ set_method_data_pointer_for_bcp();
  1446       __ get_method(rbx);
  1447       __ jmp(profile_method_continue);
  1449     // Handle overflow of counter and compile method
  1450     __ bind(invocation_counter_overflow);
  1451     generate_counter_overflow(&continue_after_compile);
  1454   return entry_point;
  1457 // Entry points
  1458 //
  1459 // Here we generate the various kind of entries into the interpreter.
  1460 // The two main entry type are generic bytecode methods and native
  1461 // call method.  These both come in synchronized and non-synchronized
  1462 // versions but the frame layout they create is very similar. The
  1463 // other method entry types are really just special purpose entries
  1464 // that are really entry and interpretation all in one. These are for
  1465 // trivial methods like accessor, empty, or special math methods.
  1466 //
  1467 // When control flow reaches any of the entry types for the interpreter
  1468 // the following holds ->
  1469 //
  1470 // Arguments:
  1471 //
  1472 // rbx: methodOop
  1473 //
  1474 // Stack layout immediately at entry
  1475 //
  1476 // [ return address     ] <--- rsp
  1477 // [ parameter n        ]
  1478 //   ...
  1479 // [ parameter 1        ]
  1480 // [ expression stack   ] (caller's java expression stack)
  1482 // Assuming that we don't go to one of the trivial specialized entries
  1483 // the stack will look like below when we are ready to execute the
  1484 // first bytecode (or call the native routine). The register usage
  1485 // will be as the template based interpreter expects (see
  1486 // interpreter_amd64.hpp).
  1487 //
  1488 // local variables follow incoming parameters immediately; i.e.
  1489 // the return address is moved to the end of the locals).
  1490 //
  1491 // [ monitor entry      ] <--- rsp
  1492 //   ...
  1493 // [ monitor entry      ]
  1494 // [ expr. stack bottom ]
  1495 // [ saved r13          ]
  1496 // [ current r14        ]
  1497 // [ methodOop          ]
  1498 // [ saved ebp          ] <--- rbp
  1499 // [ return address     ]
  1500 // [ local variable m   ]
  1501 //   ...
  1502 // [ local variable 1   ]
  1503 // [ parameter n        ]
  1504 //   ...
  1505 // [ parameter 1        ] <--- r14
  1507 address AbstractInterpreterGenerator::generate_method_entry(
  1508                                         AbstractInterpreter::MethodKind kind) {
  1509   // determine code generation flags
  1510   bool synchronized = false;
  1511   address entry_point = NULL;
  1513   switch (kind) {
  1514   case Interpreter::zerolocals             :                                                                             break;
  1515   case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
  1516   case Interpreter::native                 : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(false); break;
  1517   case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(true);  break;
  1518   case Interpreter::empty                  : entry_point = ((InterpreterGenerator*) this)->generate_empty_entry();       break;
  1519   case Interpreter::accessor               : entry_point = ((InterpreterGenerator*) this)->generate_accessor_entry();    break;
  1520   case Interpreter::abstract               : entry_point = ((InterpreterGenerator*) this)->generate_abstract_entry();    break;
  1521   case Interpreter::method_handle          : entry_point = ((InterpreterGenerator*) this)->generate_method_handle_entry();break;
  1523   case Interpreter::java_lang_math_sin     : // fall thru
  1524   case Interpreter::java_lang_math_cos     : // fall thru
  1525   case Interpreter::java_lang_math_tan     : // fall thru
  1526   case Interpreter::java_lang_math_abs     : // fall thru
  1527   case Interpreter::java_lang_math_log     : // fall thru
  1528   case Interpreter::java_lang_math_log10   : // fall thru
  1529   case Interpreter::java_lang_math_sqrt    : entry_point = ((InterpreterGenerator*) this)->generate_math_entry(kind);    break;
  1530   case Interpreter::java_lang_ref_reference_get
  1531                                            : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
  1532   default                                  : ShouldNotReachHere();                                                       break;
  1535   if (entry_point) {
  1536     return entry_point;
  1539   return ((InterpreterGenerator*) this)->
  1540                                 generate_normal_entry(synchronized);
  1543 // These should never be compiled since the interpreter will prefer
  1544 // the compiled version to the intrinsic version.
  1545 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  1546   switch (method_kind(m)) {
  1547     case Interpreter::java_lang_math_sin     : // fall thru
  1548     case Interpreter::java_lang_math_cos     : // fall thru
  1549     case Interpreter::java_lang_math_tan     : // fall thru
  1550     case Interpreter::java_lang_math_abs     : // fall thru
  1551     case Interpreter::java_lang_math_log     : // fall thru
  1552     case Interpreter::java_lang_math_log10   : // fall thru
  1553     case Interpreter::java_lang_math_sqrt    :
  1554       return false;
  1555     default:
  1556       return true;
  1560 // How much stack a method activation needs in words.
  1561 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
  1562   const int entry_size = frame::interpreter_frame_monitor_size();
  1564   // total overhead size: entry_size + (saved rbp thru expr stack
  1565   // bottom).  be sure to change this if you add/subtract anything
  1566   // to/from the overhead area
  1567   const int overhead_size =
  1568     -(frame::interpreter_frame_initial_sp_offset) + entry_size;
  1570   const int stub_code = frame::entry_frame_after_call_words;
  1571   const int extra_stack = methodOopDesc::extra_stack_entries();
  1572   const int method_stack = (method->max_locals() + method->max_stack() + extra_stack) *
  1573                            Interpreter::stackElementWords;
  1574   return (overhead_size + method_stack + stub_code);
  1577 int AbstractInterpreter::layout_activation(methodOop method,
  1578                                            int tempcount,
  1579                                            int popframe_extra_args,
  1580                                            int moncount,
  1581                                            int caller_actual_parameters,
  1582                                            int callee_param_count,
  1583                                            int callee_locals,
  1584                                            frame* caller,
  1585                                            frame* interpreter_frame,
  1586                                            bool is_top_frame) {
  1587   // Note: This calculation must exactly parallel the frame setup
  1588   // in AbstractInterpreterGenerator::generate_method_entry.
  1589   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  1590   // The frame interpreter_frame, if not NULL, is guaranteed to be the
  1591   // right size, as determined by a previous call to this method.
  1592   // It is also guaranteed to be walkable even though it is in a skeletal state
  1594   // fixed size of an interpreter frame:
  1595   int max_locals = method->max_locals() * Interpreter::stackElementWords;
  1596   int extra_locals = (method->max_locals() - method->size_of_parameters()) *
  1597                      Interpreter::stackElementWords;
  1599   int overhead = frame::sender_sp_offset -
  1600                  frame::interpreter_frame_initial_sp_offset;
  1601   // Our locals were accounted for by the caller (or last_frame_adjust
  1602   // on the transistion) Since the callee parameters already account
  1603   // for the callee's params we only need to account for the extra
  1604   // locals.
  1605   int size = overhead +
  1606          (callee_locals - callee_param_count)*Interpreter::stackElementWords +
  1607          moncount * frame::interpreter_frame_monitor_size() +
  1608          tempcount* Interpreter::stackElementWords + popframe_extra_args;
  1609   if (interpreter_frame != NULL) {
  1610 #ifdef ASSERT
  1611     if (!EnableInvokeDynamic)
  1612       // @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences?
  1613       // Probably, since deoptimization doesn't work yet.
  1614       assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
  1615     assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)");
  1616 #endif
  1618     interpreter_frame->interpreter_frame_set_method(method);
  1619     // NOTE the difference in using sender_sp and
  1620     // interpreter_frame_sender_sp interpreter_frame_sender_sp is
  1621     // the original sp of the caller (the unextended_sp) and
  1622     // sender_sp is fp+16 XXX
  1623     intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
  1625     interpreter_frame->interpreter_frame_set_locals(locals);
  1626     BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
  1627     BasicObjectLock* monbot = montop - moncount;
  1628     interpreter_frame->interpreter_frame_set_monitor_end(monbot);
  1630     // Set last_sp
  1631     intptr_t*  esp = (intptr_t*) monbot -
  1632                      tempcount*Interpreter::stackElementWords -
  1633                      popframe_extra_args;
  1634     interpreter_frame->interpreter_frame_set_last_sp(esp);
  1636     // All frames but the initial (oldest) interpreter frame we fill in have
  1637     // a value for sender_sp that allows walking the stack but isn't
  1638     // truly correct. Correct the value here.
  1639     if (extra_locals != 0 &&
  1640         interpreter_frame->sender_sp() ==
  1641         interpreter_frame->interpreter_frame_sender_sp()) {
  1642       interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() +
  1643                                                          extra_locals);
  1645     *interpreter_frame->interpreter_frame_cache_addr() =
  1646       method->constants()->cache();
  1648   return size;
  1651 //-----------------------------------------------------------------------------
  1652 // Exceptions
  1654 void TemplateInterpreterGenerator::generate_throw_exception() {
  1655   // Entry point in previous activation (i.e., if the caller was
  1656   // interpreted)
  1657   Interpreter::_rethrow_exception_entry = __ pc();
  1658   // Restore sp to interpreter_frame_last_sp even though we are going
  1659   // to empty the expression stack for the exception processing.
  1660   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  1661   // rax: exception
  1662   // rdx: return address/pc that threw exception
  1663   __ restore_bcp();    // r13 points to call/send
  1664   __ restore_locals();
  1665   __ reinit_heapbase();  // restore r12 as heapbase.
  1666   // Entry point for exceptions thrown within interpreter code
  1667   Interpreter::_throw_exception_entry = __ pc();
  1668   // expression stack is undefined here
  1669   // rax: exception
  1670   // r13: exception bcp
  1671   __ verify_oop(rax);
  1672   __ mov(c_rarg1, rax);
  1674   // expression stack must be empty before entering the VM in case of
  1675   // an exception
  1676   __ empty_expression_stack();
  1677   // find exception handler address and preserve exception oop
  1678   __ call_VM(rdx,
  1679              CAST_FROM_FN_PTR(address,
  1680                           InterpreterRuntime::exception_handler_for_exception),
  1681              c_rarg1);
  1682   // rax: exception handler entry point
  1683   // rdx: preserved exception oop
  1684   // r13: bcp for exception handler
  1685   __ push_ptr(rdx); // push exception which is now the only value on the stack
  1686   __ jmp(rax); // jump to exception handler (may be _remove_activation_entry!)
  1688   // If the exception is not handled in the current frame the frame is
  1689   // removed and the exception is rethrown (i.e. exception
  1690   // continuation is _rethrow_exception).
  1691   //
  1692   // Note: At this point the bci is still the bxi for the instruction
  1693   // which caused the exception and the expression stack is
  1694   // empty. Thus, for any VM calls at this point, GC will find a legal
  1695   // oop map (with empty expression stack).
  1697   // In current activation
  1698   // tos: exception
  1699   // esi: exception bcp
  1701   //
  1702   // JVMTI PopFrame support
  1703   //
  1705   Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1706   __ empty_expression_stack();
  1707   // Set the popframe_processing bit in pending_popframe_condition
  1708   // indicating that we are currently handling popframe, so that
  1709   // call_VMs that may happen later do not trigger new popframe
  1710   // handling cycles.
  1711   __ movl(rdx, Address(r15_thread, JavaThread::popframe_condition_offset()));
  1712   __ orl(rdx, JavaThread::popframe_processing_bit);
  1713   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()), rdx);
  1716     // Check to see whether we are returning to a deoptimized frame.
  1717     // (The PopFrame call ensures that the caller of the popped frame is
  1718     // either interpreted or compiled and deoptimizes it if compiled.)
  1719     // In this case, we can't call dispatch_next() after the frame is
  1720     // popped, but instead must save the incoming arguments and restore
  1721     // them after deoptimization has occurred.
  1722     //
  1723     // Note that we don't compare the return PC against the
  1724     // deoptimization blob's unpack entry because of the presence of
  1725     // adapter frames in C2.
  1726     Label caller_not_deoptimized;
  1727     __ movptr(c_rarg1, Address(rbp, frame::return_addr_offset * wordSize));
  1728     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1729                                InterpreterRuntime::interpreter_contains), c_rarg1);
  1730     __ testl(rax, rax);
  1731     __ jcc(Assembler::notZero, caller_not_deoptimized);
  1733     // Compute size of arguments for saving when returning to
  1734     // deoptimized caller
  1735     __ get_method(rax);
  1736     __ load_unsigned_short(rax, Address(rax, in_bytes(methodOopDesc::
  1737                                                 size_of_parameters_offset())));
  1738     __ shll(rax, Interpreter::logStackElementSize);
  1739     __ restore_locals(); // XXX do we need this?
  1740     __ subptr(r14, rax);
  1741     __ addptr(r14, wordSize);
  1742     // Save these arguments
  1743     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1744                                            Deoptimization::
  1745                                            popframe_preserve_args),
  1746                           r15_thread, rax, r14);
  1748     __ remove_activation(vtos, rdx,
  1749                          /* throw_monitor_exception */ false,
  1750                          /* install_monitor_exception */ false,
  1751                          /* notify_jvmdi */ false);
  1753     // Inform deoptimization that it is responsible for restoring
  1754     // these arguments
  1755     __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
  1756             JavaThread::popframe_force_deopt_reexecution_bit);
  1758     // Continue in deoptimization handler
  1759     __ jmp(rdx);
  1761     __ bind(caller_not_deoptimized);
  1764   __ remove_activation(vtos, rdx, /* rdx result (retaddr) is not used */
  1765                        /* throw_monitor_exception */ false,
  1766                        /* install_monitor_exception */ false,
  1767                        /* notify_jvmdi */ false);
  1769   // Finish with popframe handling
  1770   // A previous I2C followed by a deoptimization might have moved the
  1771   // outgoing arguments further up the stack. PopFrame expects the
  1772   // mutations to those outgoing arguments to be preserved and other
  1773   // constraints basically require this frame to look exactly as
  1774   // though it had previously invoked an interpreted activation with
  1775   // no space between the top of the expression stack (current
  1776   // last_sp) and the top of stack. Rather than force deopt to
  1777   // maintain this kind of invariant all the time we call a small
  1778   // fixup routine to move the mutated arguments onto the top of our
  1779   // expression stack if necessary.
  1780   __ mov(c_rarg1, rsp);
  1781   __ movptr(c_rarg2, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1782   // PC must point into interpreter here
  1783   __ set_last_Java_frame(noreg, rbp, __ pc());
  1784   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), r15_thread, c_rarg1, c_rarg2);
  1785   __ reset_last_Java_frame(true, true);
  1786   // Restore the last_sp and null it out
  1787   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1788   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  1790   __ restore_bcp();  // XXX do we need this?
  1791   __ restore_locals(); // XXX do we need this?
  1792   // The method data pointer was incremented already during
  1793   // call profiling. We have to restore the mdp for the current bcp.
  1794   if (ProfileInterpreter) {
  1795     __ set_method_data_pointer_for_bcp();
  1798   // Clear the popframe condition flag
  1799   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
  1800           JavaThread::popframe_inactive);
  1802   __ dispatch_next(vtos);
  1803   // end of PopFrame support
  1805   Interpreter::_remove_activation_entry = __ pc();
  1807   // preserve exception over this code sequence
  1808   __ pop_ptr(rax);
  1809   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), rax);
  1810   // remove the activation (without doing throws on illegalMonitorExceptions)
  1811   __ remove_activation(vtos, rdx, false, true, false);
  1812   // restore exception
  1813   __ movptr(rax, Address(r15_thread, JavaThread::vm_result_offset()));
  1814   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int32_t)NULL_WORD);
  1815   __ verify_oop(rax);
  1817   // In between activations - previous activation type unknown yet
  1818   // compute continuation point - the continuation point expects the
  1819   // following registers set up:
  1820   //
  1821   // rax: exception
  1822   // rdx: return address/pc that threw exception
  1823   // rsp: expression stack of caller
  1824   // rbp: ebp of caller
  1825   __ push(rax);                                  // save exception
  1826   __ push(rdx);                                  // save return address
  1827   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1828                           SharedRuntime::exception_handler_for_return_address),
  1829                         r15_thread, rdx);
  1830   __ mov(rbx, rax);                              // save exception handler
  1831   __ pop(rdx);                                   // restore return address
  1832   __ pop(rax);                                   // restore exception
  1833   // Note that an "issuing PC" is actually the next PC after the call
  1834   __ jmp(rbx);                                   // jump to exception
  1835                                                  // handler of caller
  1839 //
  1840 // JVMTI ForceEarlyReturn support
  1841 //
  1842 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1843   address entry = __ pc();
  1845   __ restore_bcp();
  1846   __ restore_locals();
  1847   __ empty_expression_stack();
  1848   __ load_earlyret_value(state);
  1850   __ movptr(rdx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
  1851   Address cond_addr(rdx, JvmtiThreadState::earlyret_state_offset());
  1853   // Clear the earlyret state
  1854   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
  1856   __ remove_activation(state, rsi,
  1857                        false, /* throw_monitor_exception */
  1858                        false, /* install_monitor_exception */
  1859                        true); /* notify_jvmdi */
  1860   __ jmp(rsi);
  1862   return entry;
  1863 } // end of ForceEarlyReturn support
  1866 //-----------------------------------------------------------------------------
  1867 // Helper for vtos entry point generation
  1869 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
  1870                                                          address& bep,
  1871                                                          address& cep,
  1872                                                          address& sep,
  1873                                                          address& aep,
  1874                                                          address& iep,
  1875                                                          address& lep,
  1876                                                          address& fep,
  1877                                                          address& dep,
  1878                                                          address& vep) {
  1879   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  1880   Label L;
  1881   aep = __ pc();  __ push_ptr();  __ jmp(L);
  1882   fep = __ pc();  __ push_f();    __ jmp(L);
  1883   dep = __ pc();  __ push_d();    __ jmp(L);
  1884   lep = __ pc();  __ push_l();    __ jmp(L);
  1885   bep = cep = sep =
  1886   iep = __ pc();  __ push_i();
  1887   vep = __ pc();
  1888   __ bind(L);
  1889   generate_and_dispatch(t);
  1893 //-----------------------------------------------------------------------------
  1894 // Generation of individual instructions
  1896 // helpers for generate_and_dispatch
  1899 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  1900   : TemplateInterpreterGenerator(code) {
  1901    generate_all(); // down here so it can be "virtual"
  1904 //-----------------------------------------------------------------------------
  1906 // Non-product code
  1907 #ifndef PRODUCT
  1908 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  1909   address entry = __ pc();
  1911   __ push(state);
  1912   __ push(c_rarg0);
  1913   __ push(c_rarg1);
  1914   __ push(c_rarg2);
  1915   __ push(c_rarg3);
  1916   __ mov(c_rarg2, rax);  // Pass itos
  1917 #ifdef _WIN64
  1918   __ movflt(xmm3, xmm0); // Pass ftos
  1919 #endif
  1920   __ call_VM(noreg,
  1921              CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode),
  1922              c_rarg1, c_rarg2, c_rarg3);
  1923   __ pop(c_rarg3);
  1924   __ pop(c_rarg2);
  1925   __ pop(c_rarg1);
  1926   __ pop(c_rarg0);
  1927   __ pop(state);
  1928   __ ret(0);                                   // return from result handler
  1930   return entry;
  1933 void TemplateInterpreterGenerator::count_bytecode() {
  1934   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
  1937 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  1938   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
  1941 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  1942   __ mov32(rbx, ExternalAddress((address) &BytecodePairHistogram::_index));
  1943   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
  1944   __ orl(rbx,
  1945          ((int) t->bytecode()) <<
  1946          BytecodePairHistogram::log2_number_of_codes);
  1947   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
  1948   __ lea(rscratch1, ExternalAddress((address) BytecodePairHistogram::_counters));
  1949   __ incrementl(Address(rscratch1, rbx, Address::times_4));
  1953 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  1954   // Call a little run-time stub to avoid blow-up for each bytecode.
  1955   // The run-time runtime saves the right registers, depending on
  1956   // the tosca in-state for the given template.
  1958   assert(Interpreter::trace_code(t->tos_in()) != NULL,
  1959          "entry must have been generated");
  1960   __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
  1961   __ andptr(rsp, -16); // align stack as required by ABI
  1962   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
  1963   __ mov(rsp, r12); // restore sp
  1964   __ reinit_heapbase();
  1968 void TemplateInterpreterGenerator::stop_interpreter_at() {
  1969   Label L;
  1970   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
  1971            StopInterpreterAt);
  1972   __ jcc(Assembler::notEqual, L);
  1973   __ int3();
  1974   __ bind(L);
  1976 #endif // !PRODUCT
  1977 #endif // ! CC_INTERP

mercurial