src/cpu/x86/vm/interp_masm_x86_32.cpp

Tue, 21 Jun 2011 09:04:55 -0700

author
never
date
Tue, 21 Jun 2011 09:04:55 -0700
changeset 2980
de6a837d75cf
parent 2868
2e038ad0c1d0
child 3005
341a57af9b0a
permissions
-rw-r--r--

7056380: VM crashes with SIGSEGV in compiled code
Summary: code was using andq reg, imm instead of addq addr, imm
Reviewed-by: kvn, jrose, twisti

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interp_masm_x86_32.hpp"
    27 #include "interpreter/interpreter.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "oops/arrayOop.hpp"
    30 #include "oops/markOop.hpp"
    31 #include "oops/methodDataOop.hpp"
    32 #include "oops/methodOop.hpp"
    33 #include "prims/jvmtiExport.hpp"
    34 #include "prims/jvmtiRedefineClassesTrace.hpp"
    35 #include "prims/jvmtiThreadState.hpp"
    36 #include "runtime/basicLock.hpp"
    37 #include "runtime/biasedLocking.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    39 #ifdef TARGET_OS_FAMILY_linux
    40 # include "thread_linux.inline.hpp"
    41 #endif
    42 #ifdef TARGET_OS_FAMILY_solaris
    43 # include "thread_solaris.inline.hpp"
    44 #endif
    45 #ifdef TARGET_OS_FAMILY_windows
    46 # include "thread_windows.inline.hpp"
    47 #endif
    50 // Implementation of InterpreterMacroAssembler
    51 #ifdef CC_INTERP
    52 void InterpreterMacroAssembler::get_method(Register reg) {
    53   movptr(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize)));
    54   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
    55 }
    56 #endif // CC_INTERP
    59 #ifndef CC_INTERP
    60 void InterpreterMacroAssembler::call_VM_leaf_base(
    61   address entry_point,
    62   int     number_of_arguments
    63 ) {
    64   // interpreter specific
    65   //
    66   // Note: No need to save/restore bcp & locals (rsi & rdi) pointer
    67   //       since these are callee saved registers and no blocking/
    68   //       GC can happen in leaf calls.
    69   // Further Note: DO NOT save/restore bcp/locals. If a caller has
    70   // already saved them so that it can use rsi/rdi as temporaries
    71   // then a save/restore here will DESTROY the copy the caller
    72   // saved! There used to be a save_bcp() that only happened in
    73   // the ASSERT path (no restore_bcp). Which caused bizarre failures
    74   // when jvm built with ASSERTs.
    75 #ifdef ASSERT
    76   { Label L;
    77     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
    78     jcc(Assembler::equal, L);
    79     stop("InterpreterMacroAssembler::call_VM_leaf_base: last_sp != NULL");
    80     bind(L);
    81   }
    82 #endif
    83   // super call
    84   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
    85   // interpreter specific
    87   // Used to ASSERT that rsi/rdi were equal to frame's bcp/locals
    88   // but since they may not have been saved (and we don't want to
    89   // save them here (see note above) the assert is invalid.
    90 }
    93 void InterpreterMacroAssembler::call_VM_base(
    94   Register oop_result,
    95   Register java_thread,
    96   Register last_java_sp,
    97   address  entry_point,
    98   int      number_of_arguments,
    99   bool     check_exceptions
   100 ) {
   101 #ifdef ASSERT
   102   { Label L;
   103     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   104     jcc(Assembler::equal, L);
   105     stop("InterpreterMacroAssembler::call_VM_base: last_sp != NULL");
   106     bind(L);
   107   }
   108 #endif /* ASSERT */
   109   // interpreter specific
   110   //
   111   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
   112   //       really make a difference for these runtime calls, since they are
   113   //       slow anyway. Btw., bcp must be saved/restored since it may change
   114   //       due to GC.
   115   assert(java_thread == noreg , "not expecting a precomputed java thread");
   116   save_bcp();
   117   // super call
   118   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
   119   // interpreter specific
   120   restore_bcp();
   121   restore_locals();
   122 }
   125 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
   126   if (JvmtiExport::can_pop_frame()) {
   127     Label L;
   128     // Initiate popframe handling only if it is not already being processed.  If the flag
   129     // has the popframe_processing bit set, it means that this code is called *during* popframe
   130     // handling - we don't want to reenter.
   131     Register pop_cond = java_thread;  // Not clear if any other register is available...
   132     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
   133     testl(pop_cond, JavaThread::popframe_pending_bit);
   134     jcc(Assembler::zero, L);
   135     testl(pop_cond, JavaThread::popframe_processing_bit);
   136     jcc(Assembler::notZero, L);
   137     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   138     // address of the same-named entrypoint in the generated interpreter code.
   139     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   140     jmp(rax);
   141     bind(L);
   142     get_thread(java_thread);
   143   }
   144 }
   147 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   148   get_thread(rcx);
   149   movl(rcx, Address(rcx, JavaThread::jvmti_thread_state_offset()));
   150   const Address tos_addr (rcx, JvmtiThreadState::earlyret_tos_offset());
   151   const Address oop_addr (rcx, JvmtiThreadState::earlyret_oop_offset());
   152   const Address val_addr (rcx, JvmtiThreadState::earlyret_value_offset());
   153   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
   154                              + in_ByteSize(wordSize));
   155   switch (state) {
   156     case atos: movptr(rax, oop_addr);
   157                movptr(oop_addr, NULL_WORD);
   158                verify_oop(rax, state);                break;
   159     case ltos:
   160                movl(rdx, val_addr1);               // fall through
   161     case btos:                                     // fall through
   162     case ctos:                                     // fall through
   163     case stos:                                     // fall through
   164     case itos: movl(rax, val_addr);                   break;
   165     case ftos: fld_s(val_addr);                       break;
   166     case dtos: fld_d(val_addr);                       break;
   167     case vtos: /* nothing to do */                    break;
   168     default  : ShouldNotReachHere();
   169   }
   170   // Clean up tos value in the thread object
   171   movl(tos_addr,  (int32_t) ilgl);
   172   movptr(val_addr,  NULL_WORD);
   173   NOT_LP64(movptr(val_addr1, NULL_WORD));
   174 }
   177 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
   178   if (JvmtiExport::can_force_early_return()) {
   179     Label L;
   180     Register tmp = java_thread;
   181     movptr(tmp, Address(tmp, JavaThread::jvmti_thread_state_offset()));
   182     testptr(tmp, tmp);
   183     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
   185     // Initiate earlyret handling only if it is not already being processed.
   186     // If the flag has the earlyret_processing bit set, it means that this code
   187     // is called *during* earlyret handling - we don't want to reenter.
   188     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
   189     cmpl(tmp, JvmtiThreadState::earlyret_pending);
   190     jcc(Assembler::notEqual, L);
   192     // Call Interpreter::remove_activation_early_entry() to get the address of the
   193     // same-named entrypoint in the generated interpreter code.
   194     get_thread(java_thread);
   195     movptr(tmp, Address(java_thread, JavaThread::jvmti_thread_state_offset()));
   196     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
   197     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
   198     jmp(rax);
   199     bind(L);
   200     get_thread(java_thread);
   201   }
   202 }
   205 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
   206   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
   207   movl(reg, Address(rsi, bcp_offset));
   208   bswapl(reg);
   209   shrl(reg, 16);
   210 }
   213 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register reg, int bcp_offset, size_t index_size) {
   214   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   215   if (index_size == sizeof(u2)) {
   216     load_unsigned_short(reg, Address(rsi, bcp_offset));
   217   } else if (index_size == sizeof(u4)) {
   218     assert(EnableInvokeDynamic, "giant index used only for JSR 292");
   219     movl(reg, Address(rsi, bcp_offset));
   220     // Check if the secondary index definition is still ~x, otherwise
   221     // we have to change the following assembler code to calculate the
   222     // plain index.
   223     assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
   224     notl(reg);  // convert to plain index
   225   } else if (index_size == sizeof(u1)) {
   226     assert(EnableInvokeDynamic, "tiny index used only for JSR 292");
   227     load_unsigned_byte(reg, Address(rsi, bcp_offset));
   228   } else {
   229     ShouldNotReachHere();
   230   }
   231 }
   234 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index,
   235                                                            int bcp_offset, size_t index_size) {
   236   assert(cache != index, "must use different registers");
   237   get_cache_index_at_bcp(index, bcp_offset, index_size);
   238   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   239   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
   240   shlptr(index, 2); // convert from field index to ConstantPoolCacheEntry index
   241 }
   244 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
   245                                                                int bcp_offset, size_t index_size) {
   246   assert(cache != tmp, "must use different register");
   247   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
   248   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
   249                                // convert from field index to ConstantPoolCacheEntry index
   250                                // and from word offset to byte offset
   251   shll(tmp, 2 + LogBytesPerWord);
   252   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   253                                // skip past the header
   254   addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
   255   addptr(cache, tmp);            // construct pointer to cache entry
   256 }
   259   // Generate a subtype check: branch to ok_is_subtype if sub_klass is
   260   // a subtype of super_klass.  EAX holds the super_klass.  Blows ECX.
   261   // Resets EDI to locals.  Register sub_klass cannot be any of the above.
   262 void InterpreterMacroAssembler::gen_subtype_check( Register Rsub_klass, Label &ok_is_subtype ) {
   263   assert( Rsub_klass != rax, "rax, holds superklass" );
   264   assert( Rsub_klass != rcx, "used as a temp" );
   265   assert( Rsub_klass != rdi, "used as a temp, restored from locals" );
   267   // Profile the not-null value's klass.
   268   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
   270   // Do the check.
   271   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
   273   // Profile the failure of the check.
   274   profile_typecheck_failed(rcx); // blows rcx
   275 }
   277 void InterpreterMacroAssembler::f2ieee() {
   278   if (IEEEPrecision) {
   279     fstp_s(Address(rsp, 0));
   280     fld_s(Address(rsp, 0));
   281   }
   282 }
   285 void InterpreterMacroAssembler::d2ieee() {
   286   if (IEEEPrecision) {
   287     fstp_d(Address(rsp, 0));
   288     fld_d(Address(rsp, 0));
   289   }
   290 }
   292 // Java Expression Stack
   294 void InterpreterMacroAssembler::pop_ptr(Register r) {
   295   pop(r);
   296 }
   298 void InterpreterMacroAssembler::pop_i(Register r) {
   299   pop(r);
   300 }
   302 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
   303   pop(lo);
   304   pop(hi);
   305 }
   307 void InterpreterMacroAssembler::pop_f() {
   308   fld_s(Address(rsp, 0));
   309   addptr(rsp, 1 * wordSize);
   310 }
   312 void InterpreterMacroAssembler::pop_d() {
   313   fld_d(Address(rsp, 0));
   314   addptr(rsp, 2 * wordSize);
   315 }
   318 void InterpreterMacroAssembler::pop(TosState state) {
   319   switch (state) {
   320     case atos: pop_ptr(rax);                                 break;
   321     case btos:                                               // fall through
   322     case ctos:                                               // fall through
   323     case stos:                                               // fall through
   324     case itos: pop_i(rax);                                   break;
   325     case ltos: pop_l(rax, rdx);                              break;
   326     case ftos: pop_f();                                      break;
   327     case dtos: pop_d();                                      break;
   328     case vtos: /* nothing to do */                           break;
   329     default  : ShouldNotReachHere();
   330   }
   331   verify_oop(rax, state);
   332 }
   334 void InterpreterMacroAssembler::push_ptr(Register r) {
   335   push(r);
   336 }
   338 void InterpreterMacroAssembler::push_i(Register r) {
   339   push(r);
   340 }
   342 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
   343   push(hi);
   344   push(lo);
   345 }
   347 void InterpreterMacroAssembler::push_f() {
   348   // Do not schedule for no AGI! Never write beyond rsp!
   349   subptr(rsp, 1 * wordSize);
   350   fstp_s(Address(rsp, 0));
   351 }
   353 void InterpreterMacroAssembler::push_d(Register r) {
   354   // Do not schedule for no AGI! Never write beyond rsp!
   355   subptr(rsp, 2 * wordSize);
   356   fstp_d(Address(rsp, 0));
   357 }
   360 void InterpreterMacroAssembler::push(TosState state) {
   361   verify_oop(rax, state);
   362   switch (state) {
   363     case atos: push_ptr(rax); break;
   364     case btos:                                               // fall through
   365     case ctos:                                               // fall through
   366     case stos:                                               // fall through
   367     case itos: push_i(rax);                                    break;
   368     case ltos: push_l(rax, rdx);                               break;
   369     case ftos: push_f();                                       break;
   370     case dtos: push_d(rax);                                    break;
   371     case vtos: /* nothing to do */                             break;
   372     default  : ShouldNotReachHere();
   373   }
   374 }
   377 // Helpers for swap and dup
   378 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
   379   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
   380 }
   382 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
   383   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
   384 }
   386 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
   387   // set sender sp
   388   lea(rsi, Address(rsp, wordSize));
   389   // record last_sp
   390   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rsi);
   391 }
   394 // Jump to from_interpreted entry of a call unless single stepping is possible
   395 // in this thread in which case we must call the i2i entry
   396 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
   397   prepare_to_jump_from_interpreted();
   399   if (JvmtiExport::can_post_interpreter_events()) {
   400     Label run_compiled_code;
   401     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   402     // compiled code in threads for which the event is enabled.  Check here for
   403     // interp_only_mode if these events CAN be enabled.
   404     get_thread(temp);
   405     // interp_only is an int, on little endian it is sufficient to test the byte only
   406     // Is a cmpl faster (ce
   407     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
   408     jcc(Assembler::zero, run_compiled_code);
   409     jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
   410     bind(run_compiled_code);
   411   }
   413   jmp(Address(method, methodOopDesc::from_interpreted_offset()));
   415 }
   418 // The following two routines provide a hook so that an implementation
   419 // can schedule the dispatch in two parts.  Intel does not do this.
   420 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
   421   // Nothing Intel-specific to be done here.
   422 }
   424 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
   425   dispatch_next(state, step);
   426 }
   428 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table,
   429                                               bool verifyoop) {
   430   verify_FPU(1, state);
   431   if (VerifyActivationFrameSize) {
   432     Label L;
   433     mov(rcx, rbp);
   434     subptr(rcx, rsp);
   435     int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
   436     cmpptr(rcx, min_frame_size);
   437     jcc(Assembler::greaterEqual, L);
   438     stop("broken stack frame");
   439     bind(L);
   440   }
   441   if (verifyoop) verify_oop(rax, state);
   442   Address index(noreg, rbx, Address::times_ptr);
   443   ExternalAddress tbl((address)table);
   444   ArrayAddress dispatch(tbl, index);
   445   jump(dispatch);
   446 }
   449 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   450   dispatch_base(state, Interpreter::dispatch_table(state));
   451 }
   454 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
   455   dispatch_base(state, Interpreter::normal_table(state));
   456 }
   458 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
   459   dispatch_base(state, Interpreter::normal_table(state), false);
   460 }
   463 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
   464   // load next bytecode (load before advancing rsi to prevent AGI)
   465   load_unsigned_byte(rbx, Address(rsi, step));
   466   // advance rsi
   467   increment(rsi, step);
   468   dispatch_base(state, Interpreter::dispatch_table(state));
   469 }
   472 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   473   // load current bytecode
   474   load_unsigned_byte(rbx, Address(rsi, 0));
   475   dispatch_base(state, table);
   476 }
   478 // remove activation
   479 //
   480 // Unlock the receiver if this is a synchronized method.
   481 // Unlock any Java monitors from syncronized blocks.
   482 // Remove the activation from the stack.
   483 //
   484 // If there are locked Java monitors
   485 //    If throw_monitor_exception
   486 //       throws IllegalMonitorStateException
   487 //    Else if install_monitor_exception
   488 //       installs IllegalMonitorStateException
   489 //    Else
   490 //       no error processing
   491 void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
   492                                                   bool throw_monitor_exception,
   493                                                   bool install_monitor_exception,
   494                                                   bool notify_jvmdi) {
   495   // Note: Registers rax, rdx and FPU ST(0) may be in use for the result
   496   // check if synchronized method
   497   Label unlocked, unlock, no_unlock;
   499   get_thread(rcx);
   500   const Address do_not_unlock_if_synchronized(rcx,
   501     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   503   movbool(rbx, do_not_unlock_if_synchronized);
   504   mov(rdi,rbx);
   505   movbool(do_not_unlock_if_synchronized, false); // reset the flag
   507   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); // get method access flags
   508   movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
   510   testl(rcx, JVM_ACC_SYNCHRONIZED);
   511   jcc(Assembler::zero, unlocked);
   513   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
   514   // is set.
   515   mov(rcx,rdi);
   516   testbool(rcx);
   517   jcc(Assembler::notZero, no_unlock);
   519   // unlock monitor
   520   push(state);                                   // save result
   522   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
   523   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
   524   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
   525   lea   (rdx, monitor);                          // address of first monitor
   527   movptr (rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
   528   testptr(rax, rax);
   529   jcc    (Assembler::notZero, unlock);
   531   pop(state);
   532   if (throw_monitor_exception) {
   533     empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   535     // Entry already unlocked, need to throw exception
   536     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   537     should_not_reach_here();
   538   } else {
   539     // Monitor already unlocked during a stack unroll.
   540     // If requested, install an illegal_monitor_state_exception.
   541     // Continue with stack unrolling.
   542     if (install_monitor_exception) {
   543       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   544       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
   545     }
   546     jmp(unlocked);
   547   }
   549   bind(unlock);
   550   unlock_object(rdx);
   551   pop(state);
   553   // Check that for block-structured locking (i.e., that all locked objects has been unlocked)
   554   bind(unlocked);
   556   // rax, rdx: Might contain return value
   558   // Check that all monitors are unlocked
   559   {
   560     Label loop, exception, entry, restart;
   561     const int entry_size               = frame::interpreter_frame_monitor_size()           * wordSize;
   562     const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   563     const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
   565     bind(restart);
   566     movptr(rcx, monitor_block_top);           // points to current entry, starting with top-most entry
   567     lea(rbx, monitor_block_bot);              // points to word before bottom of monitor block
   568     jmp(entry);
   570     // Entry already locked, need to throw exception
   571     bind(exception);
   573     if (throw_monitor_exception) {
   574       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   576       // Throw exception
   577       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   578       should_not_reach_here();
   579     } else {
   580       // Stack unrolling. Unlock object and install illegal_monitor_exception
   581       // Unlock does not block, so don't have to worry about the frame
   583       push(state);
   584       mov(rdx, rcx);
   585       unlock_object(rdx);
   586       pop(state);
   588       if (install_monitor_exception) {
   589         empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   590         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
   591       }
   593       jmp(restart);
   594     }
   596     bind(loop);
   597     cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
   598     jcc(Assembler::notEqual, exception);
   600     addptr(rcx, entry_size);                     // otherwise advance to next entry
   601     bind(entry);
   602     cmpptr(rcx, rbx);                            // check if bottom reached
   603     jcc(Assembler::notEqual, loop);              // if not at bottom then check this entry
   604   }
   606   bind(no_unlock);
   608   // jvmti support
   609   if (notify_jvmdi) {
   610     notify_method_exit(state, NotifyJVMTI);     // preserve TOSCA
   611   } else {
   612     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
   613   }
   615   // remove activation
   616   movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
   617   leave();                                     // remove frame anchor
   618   pop(ret_addr);                               // get return address
   619   mov(rsp, rbx);                               // set sp to sender sp
   620   if (UseSSE) {
   621     // float and double are returned in xmm register in SSE-mode
   622     if (state == ftos && UseSSE >= 1) {
   623       subptr(rsp, wordSize);
   624       fstp_s(Address(rsp, 0));
   625       movflt(xmm0, Address(rsp, 0));
   626       addptr(rsp, wordSize);
   627     } else if (state == dtos && UseSSE >= 2) {
   628       subptr(rsp, 2*wordSize);
   629       fstp_d(Address(rsp, 0));
   630       movdbl(xmm0, Address(rsp, 0));
   631       addptr(rsp, 2*wordSize);
   632     }
   633   }
   634 }
   636 #endif /* !CC_INTERP */
   639 // Lock object
   640 //
   641 // Argument: rdx : Points to BasicObjectLock to be used for locking. Must
   642 // be initialized with object to lock
   643 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
   644   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
   646   if (UseHeavyMonitors) {
   647     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
   648   } else {
   650     Label done;
   652     const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
   653     const Register obj_reg  = rcx;  // Will contain the oop
   655     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
   656     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
   657     const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
   659     Label slow_case;
   661     // Load object pointer into obj_reg %rcx
   662     movptr(obj_reg, Address(lock_reg, obj_offset));
   664     if (UseBiasedLocking) {
   665       // Note: we use noreg for the temporary register since it's hard
   666       // to come up with a free register on all incoming code paths
   667       biased_locking_enter(lock_reg, obj_reg, swap_reg, noreg, false, done, &slow_case);
   668     }
   670     // Load immediate 1 into swap_reg %rax,
   671     movptr(swap_reg, (int32_t)1);
   673     // Load (object->mark() | 1) into swap_reg %rax,
   674     orptr(swap_reg, Address(obj_reg, 0));
   676     // Save (object->mark() | 1) into BasicLock's displaced header
   677     movptr(Address(lock_reg, mark_offset), swap_reg);
   679     assert(lock_offset == 0, "displached header must be first word in BasicObjectLock");
   680     if (os::is_MP()) {
   681       lock();
   682     }
   683     cmpxchgptr(lock_reg, Address(obj_reg, 0));
   684     if (PrintBiasedLockingStatistics) {
   685       cond_inc32(Assembler::zero,
   686                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   687     }
   688     jcc(Assembler::zero, done);
   690     // Test if the oopMark is an obvious stack pointer, i.e.,
   691     //  1) (mark & 3) == 0, and
   692     //  2) rsp <= mark < mark + os::pagesize()
   693     //
   694     // These 3 tests can be done by evaluating the following
   695     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
   696     // assuming both stack pointer and pagesize have their
   697     // least significant 2 bits clear.
   698     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
   699     subptr(swap_reg, rsp);
   700     andptr(swap_reg, 3 - os::vm_page_size());
   702     // Save the test result, for recursive case, the result is zero
   703     movptr(Address(lock_reg, mark_offset), swap_reg);
   705     if (PrintBiasedLockingStatistics) {
   706       cond_inc32(Assembler::zero,
   707                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   708     }
   709     jcc(Assembler::zero, done);
   711     bind(slow_case);
   713     // Call the runtime routine for slow case
   714     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
   716     bind(done);
   717   }
   718 }
   721 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
   722 //
   723 // Argument: rdx : Points to BasicObjectLock structure for lock
   724 // Throw an IllegalMonitorException if object is not locked by current thread
   725 //
   726 // Uses: rax, rbx, rcx, rdx
   727 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
   728   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
   730   if (UseHeavyMonitors) {
   731     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
   732   } else {
   733     Label done;
   735     const Register swap_reg   = rax;  // Must use rax, for cmpxchg instruction
   736     const Register header_reg = rbx;  // Will contain the old oopMark
   737     const Register obj_reg    = rcx;  // Will contain the oop
   739     save_bcp(); // Save in case of exception
   741     // Convert from BasicObjectLock structure to object and BasicLock structure
   742     // Store the BasicLock address into %rax,
   743     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
   745     // Load oop into obj_reg(%rcx)
   746     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes ()));
   748     // Free entry
   749     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
   751     if (UseBiasedLocking) {
   752       biased_locking_exit(obj_reg, header_reg, done);
   753     }
   755     // Load the old header from BasicLock structure
   756     movptr(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes()));
   758     // Test for recursion
   759     testptr(header_reg, header_reg);
   761     // zero for recursive case
   762     jcc(Assembler::zero, done);
   764     // Atomic swap back the old header
   765     if (os::is_MP()) lock();
   766     cmpxchgptr(header_reg, Address(obj_reg, 0));
   768     // zero for recursive case
   769     jcc(Assembler::zero, done);
   771     // Call the runtime routine for slow case.
   772     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj
   773     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
   775     bind(done);
   777     restore_bcp();
   778   }
   779 }
   782 #ifndef CC_INTERP
   784 // Test ImethodDataPtr.  If it is null, continue at the specified label
   785 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
   786   assert(ProfileInterpreter, "must be profiling interpreter");
   787   movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
   788   testptr(mdp, mdp);
   789   jcc(Assembler::zero, zero_continue);
   790 }
   793 // Set the method data pointer for the current bcp.
   794 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
   795   assert(ProfileInterpreter, "must be profiling interpreter");
   796   Label set_mdp;
   797   push(rax);
   798   push(rbx);
   800   get_method(rbx);
   801   // Test MDO to avoid the call if it is NULL.
   802   movptr(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
   803   testptr(rax, rax);
   804   jcc(Assembler::zero, set_mdp);
   805   // rbx,: method
   806   // rsi: bcp
   807   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, rsi);
   808   // rax,: mdi
   809   // mdo is guaranteed to be non-zero here, we checked for it before the call.
   810   movptr(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
   811   addptr(rbx, in_bytes(methodDataOopDesc::data_offset()));
   812   addptr(rax, rbx);
   813   bind(set_mdp);
   814   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rax);
   815   pop(rbx);
   816   pop(rax);
   817 }
   819 void InterpreterMacroAssembler::verify_method_data_pointer() {
   820   assert(ProfileInterpreter, "must be profiling interpreter");
   821 #ifdef ASSERT
   822   Label verify_continue;
   823   push(rax);
   824   push(rbx);
   825   push(rcx);
   826   push(rdx);
   827   test_method_data_pointer(rcx, verify_continue); // If mdp is zero, continue
   828   get_method(rbx);
   830   // If the mdp is valid, it will point to a DataLayout header which is
   831   // consistent with the bcp.  The converse is highly probable also.
   832   load_unsigned_short(rdx, Address(rcx, in_bytes(DataLayout::bci_offset())));
   833   addptr(rdx, Address(rbx, methodOopDesc::const_offset()));
   834   lea(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
   835   cmpptr(rdx, rsi);
   836   jcc(Assembler::equal, verify_continue);
   837   // rbx,: method
   838   // rsi: bcp
   839   // rcx: mdp
   840   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), rbx, rsi, rcx);
   841   bind(verify_continue);
   842   pop(rdx);
   843   pop(rcx);
   844   pop(rbx);
   845   pop(rax);
   846 #endif // ASSERT
   847 }
   850 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
   851   // %%% this seems to be used to store counter data which is surely 32bits
   852   // however 64bit side stores 64 bits which seems wrong
   853   assert(ProfileInterpreter, "must be profiling interpreter");
   854   Address data(mdp_in, constant);
   855   movptr(data, value);
   856 }
   859 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
   860                                                       int constant,
   861                                                       bool decrement) {
   862   // Counter address
   863   Address data(mdp_in, constant);
   865   increment_mdp_data_at(data, decrement);
   866 }
   869 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
   870                                                       bool decrement) {
   872   assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
   873   assert(ProfileInterpreter, "must be profiling interpreter");
   875   // %%% 64bit treats this as 64 bit which seems unlikely
   876   if (decrement) {
   877     // Decrement the register.  Set condition codes.
   878     addl(data, -DataLayout::counter_increment);
   879     // If the decrement causes the counter to overflow, stay negative
   880     Label L;
   881     jcc(Assembler::negative, L);
   882     addl(data, DataLayout::counter_increment);
   883     bind(L);
   884   } else {
   885     assert(DataLayout::counter_increment == 1,
   886            "flow-free idiom only works with 1");
   887     // Increment the register.  Set carry flag.
   888     addl(data, DataLayout::counter_increment);
   889     // If the increment causes the counter to overflow, pull back by 1.
   890     sbbl(data, 0);
   891   }
   892 }
   895 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
   896                                                       Register reg,
   897                                                       int constant,
   898                                                       bool decrement) {
   899   Address data(mdp_in, reg, Address::times_1, constant);
   901   increment_mdp_data_at(data, decrement);
   902 }
   905 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
   906   assert(ProfileInterpreter, "must be profiling interpreter");
   907   int header_offset = in_bytes(DataLayout::header_offset());
   908   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
   909   // Set the flag
   910   orl(Address(mdp_in, header_offset), header_bits);
   911 }
   915 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
   916                                                  int offset,
   917                                                  Register value,
   918                                                  Register test_value_out,
   919                                                  Label& not_equal_continue) {
   920   assert(ProfileInterpreter, "must be profiling interpreter");
   921   if (test_value_out == noreg) {
   922     cmpptr(value, Address(mdp_in, offset));
   923   } else {
   924     // Put the test value into a register, so caller can use it:
   925     movptr(test_value_out, Address(mdp_in, offset));
   926     cmpptr(test_value_out, value);
   927   }
   928   jcc(Assembler::notEqual, not_equal_continue);
   929 }
   932 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
   933   assert(ProfileInterpreter, "must be profiling interpreter");
   934   Address disp_address(mdp_in, offset_of_disp);
   935   addptr(mdp_in,disp_address);
   936   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
   937 }
   940 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) {
   941   assert(ProfileInterpreter, "must be profiling interpreter");
   942   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
   943   addptr(mdp_in, disp_address);
   944   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
   945 }
   948 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
   949   assert(ProfileInterpreter, "must be profiling interpreter");
   950   addptr(mdp_in, constant);
   951   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
   952 }
   955 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
   956   assert(ProfileInterpreter, "must be profiling interpreter");
   957   push(return_bci);             // save/restore across call_VM
   958   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
   959   pop(return_bci);
   960 }
   963 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
   964   if (ProfileInterpreter) {
   965     Label profile_continue;
   967     // If no method data exists, go to profile_continue.
   968     // Otherwise, assign to mdp
   969     test_method_data_pointer(mdp, profile_continue);
   971     // We are taking a branch.  Increment the taken count.
   972     // We inline increment_mdp_data_at to return bumped_count in a register
   973     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
   974     Address data(mdp, in_bytes(JumpData::taken_offset()));
   976     // %%% 64bit treats these cells as 64 bit but they seem to be 32 bit
   977     movl(bumped_count,data);
   978     assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
   979     addl(bumped_count, DataLayout::counter_increment);
   980     sbbl(bumped_count, 0);
   981     movl(data,bumped_count);    // Store back out
   983     // The method data pointer needs to be updated to reflect the new target.
   984     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
   985     bind (profile_continue);
   986   }
   987 }
   990 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
   991   if (ProfileInterpreter) {
   992     Label profile_continue;
   994     // If no method data exists, go to profile_continue.
   995     test_method_data_pointer(mdp, profile_continue);
   997     // We are taking a branch.  Increment the not taken count.
   998     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
  1000     // The method data pointer needs to be updated to correspond to the next bytecode
  1001     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
  1002     bind (profile_continue);
  1007 void InterpreterMacroAssembler::profile_call(Register mdp) {
  1008   if (ProfileInterpreter) {
  1009     Label profile_continue;
  1011     // If no method data exists, go to profile_continue.
  1012     test_method_data_pointer(mdp, profile_continue);
  1014     // We are making a call.  Increment the count.
  1015     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1017     // The method data pointer needs to be updated to reflect the new target.
  1018     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
  1019     bind (profile_continue);
  1024 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
  1025   if (ProfileInterpreter) {
  1026     Label profile_continue;
  1028     // If no method data exists, go to profile_continue.
  1029     test_method_data_pointer(mdp, profile_continue);
  1031     // We are making a call.  Increment the count.
  1032     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1034     // The method data pointer needs to be updated to reflect the new target.
  1035     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
  1036     bind (profile_continue);
  1041 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp,
  1042                                                      Register reg2,
  1043                                                      bool receiver_can_be_null) {
  1044   if (ProfileInterpreter) {
  1045     Label profile_continue;
  1047     // If no method data exists, go to profile_continue.
  1048     test_method_data_pointer(mdp, profile_continue);
  1050     Label skip_receiver_profile;
  1051     if (receiver_can_be_null) {
  1052       Label not_null;
  1053       testptr(receiver, receiver);
  1054       jccb(Assembler::notZero, not_null);
  1055       // We are making a call.  Increment the count for null receiver.
  1056       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1057       jmp(skip_receiver_profile);
  1058       bind(not_null);
  1061     // Record the receiver type.
  1062     record_klass_in_profile(receiver, mdp, reg2, true);
  1063     bind(skip_receiver_profile);
  1065     // The method data pointer needs to be updated to reflect the new target.
  1066     update_mdp_by_constant(mdp,
  1067                            in_bytes(VirtualCallData::
  1068                                     virtual_call_data_size()));
  1069     bind(profile_continue);
  1074 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1075                                         Register receiver, Register mdp,
  1076                                         Register reg2, int start_row,
  1077                                         Label& done, bool is_virtual_call) {
  1078   if (TypeProfileWidth == 0) {
  1079     if (is_virtual_call) {
  1080       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1082     return;
  1085   int last_row = VirtualCallData::row_limit() - 1;
  1086   assert(start_row <= last_row, "must be work left to do");
  1087   // Test this row for both the receiver and for null.
  1088   // Take any of three different outcomes:
  1089   //   1. found receiver => increment count and goto done
  1090   //   2. found null => keep looking for case 1, maybe allocate this cell
  1091   //   3. found something else => keep looking for cases 1 and 2
  1092   // Case 3 is handled by a recursive call.
  1093   for (int row = start_row; row <= last_row; row++) {
  1094     Label next_test;
  1095     bool test_for_null_also = (row == start_row);
  1097     // See if the receiver is receiver[n].
  1098     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1099     test_mdp_data_at(mdp, recvr_offset, receiver,
  1100                      (test_for_null_also ? reg2 : noreg),
  1101                      next_test);
  1102     // (Reg2 now contains the receiver from the CallData.)
  1104     // The receiver is receiver[n].  Increment count[n].
  1105     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1106     increment_mdp_data_at(mdp, count_offset);
  1107     jmp(done);
  1108     bind(next_test);
  1110     if (row == start_row) {
  1111       Label found_null;
  1112       // Failed the equality check on receiver[n]...  Test for null.
  1113       testptr(reg2, reg2);
  1114       if (start_row == last_row) {
  1115         // The only thing left to do is handle the null case.
  1116         if (is_virtual_call) {
  1117           jccb(Assembler::zero, found_null);
  1118           // Receiver did not match any saved receiver and there is no empty row for it.
  1119           // Increment total counter to indicate polymorphic case.
  1120           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1121           jmp(done);
  1122           bind(found_null);
  1123         } else {
  1124           jcc(Assembler::notZero, done);
  1126         break;
  1128       // Since null is rare, make it be the branch-taken case.
  1129       jcc(Assembler::zero, found_null);
  1131       // Put all the "Case 3" tests here.
  1132       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
  1134       // Found a null.  Keep searching for a matching receiver,
  1135       // but remember that this is an empty (unused) slot.
  1136       bind(found_null);
  1140   // In the fall-through case, we found no matching receiver, but we
  1141   // observed the receiver[start_row] is NULL.
  1143   // Fill in the receiver field and increment the count.
  1144   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1145   set_mdp_data_at(mdp, recvr_offset, receiver);
  1146   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1147   movptr(reg2, (int32_t)DataLayout::counter_increment);
  1148   set_mdp_data_at(mdp, count_offset, reg2);
  1149   if (start_row > 0) {
  1150     jmp(done);
  1154 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1155                                                         Register mdp, Register reg2,
  1156                                                         bool is_virtual_call) {
  1157   assert(ProfileInterpreter, "must be profiling");
  1158   Label done;
  1160   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
  1162   bind (done);
  1165 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
  1166   if (ProfileInterpreter) {
  1167     Label profile_continue;
  1168     uint row;
  1170     // If no method data exists, go to profile_continue.
  1171     test_method_data_pointer(mdp, profile_continue);
  1173     // Update the total ret count.
  1174     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1176     for (row = 0; row < RetData::row_limit(); row++) {
  1177       Label next_test;
  1179       // See if return_bci is equal to bci[n]:
  1180       test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
  1181                        noreg, next_test);
  1183       // return_bci is equal to bci[n].  Increment the count.
  1184       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
  1186       // The method data pointer needs to be updated to reflect the new target.
  1187       update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
  1188       jmp(profile_continue);
  1189       bind(next_test);
  1192     update_mdp_for_ret(return_bci);
  1194     bind (profile_continue);
  1199 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
  1200   if (ProfileInterpreter) {
  1201     Label profile_continue;
  1203     // If no method data exists, go to profile_continue.
  1204     test_method_data_pointer(mdp, profile_continue);
  1206     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
  1208     // The method data pointer needs to be updated.
  1209     int mdp_delta = in_bytes(BitData::bit_data_size());
  1210     if (TypeProfileCasts) {
  1211       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1213     update_mdp_by_constant(mdp, mdp_delta);
  1215     bind (profile_continue);
  1220 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
  1221   if (ProfileInterpreter && TypeProfileCasts) {
  1222     Label profile_continue;
  1224     // If no method data exists, go to profile_continue.
  1225     test_method_data_pointer(mdp, profile_continue);
  1227     int count_offset = in_bytes(CounterData::count_offset());
  1228     // Back up the address, since we have already bumped the mdp.
  1229     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1231     // *Decrement* the counter.  We expect to see zero or small negatives.
  1232     increment_mdp_data_at(mdp, count_offset, true);
  1234     bind (profile_continue);
  1239 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2)
  1241   if (ProfileInterpreter) {
  1242     Label profile_continue;
  1244     // If no method data exists, go to profile_continue.
  1245     test_method_data_pointer(mdp, profile_continue);
  1247     // The method data pointer needs to be updated.
  1248     int mdp_delta = in_bytes(BitData::bit_data_size());
  1249     if (TypeProfileCasts) {
  1250       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1252       // Record the object type.
  1253       record_klass_in_profile(klass, mdp, reg2, false);
  1254       assert(reg2 == rdi, "we know how to fix this blown reg");
  1255       restore_locals();         // Restore EDI
  1257     update_mdp_by_constant(mdp, mdp_delta);
  1259     bind(profile_continue);
  1264 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
  1265   if (ProfileInterpreter) {
  1266     Label profile_continue;
  1268     // If no method data exists, go to profile_continue.
  1269     test_method_data_pointer(mdp, profile_continue);
  1271     // Update the default case count
  1272     increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
  1274     // The method data pointer needs to be updated.
  1275     update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
  1277     bind (profile_continue);
  1282 void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) {
  1283   if (ProfileInterpreter) {
  1284     Label profile_continue;
  1286     // If no method data exists, go to profile_continue.
  1287     test_method_data_pointer(mdp, profile_continue);
  1289     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
  1290     movptr(reg2, (int32_t)in_bytes(MultiBranchData::per_case_size()));
  1291     // index is positive and so should have correct value if this code were
  1292     // used on 64bits
  1293     imulptr(index, reg2);
  1294     addptr(index, in_bytes(MultiBranchData::case_array_offset()));
  1296     // Update the case count
  1297     increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset()));
  1299     // The method data pointer needs to be updated.
  1300     update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData::relative_displacement_offset()));
  1302     bind (profile_continue);
  1306 #endif // !CC_INTERP
  1310 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
  1311   if (state == atos) MacroAssembler::verify_oop(reg);
  1315 #ifndef CC_INTERP
  1316 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  1317   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
  1320 #endif /* CC_INTERP */
  1323 void InterpreterMacroAssembler::notify_method_entry() {
  1324   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1325   // track stack depth.  If it is possible to enter interp_only_mode we add
  1326   // the code to check if the event should be sent.
  1327   if (JvmtiExport::can_post_interpreter_events()) {
  1328     Label L;
  1329     get_thread(rcx);
  1330     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
  1331     testl(rcx,rcx);
  1332     jcc(Assembler::zero, L);
  1333     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
  1334     bind(L);
  1338     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
  1339     get_thread(rcx);
  1340     get_method(rbx);
  1341     call_VM_leaf(
  1342       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), rcx, rbx);
  1345   // RedefineClasses() tracing support for obsolete method entry
  1346   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  1347     get_thread(rcx);
  1348     get_method(rbx);
  1349     call_VM_leaf(
  1350       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  1351       rcx, rbx);
  1356 void InterpreterMacroAssembler::notify_method_exit(
  1357     TosState state, NotifyMethodExitMode mode) {
  1358   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1359   // track stack depth.  If it is possible to enter interp_only_mode we add
  1360   // the code to check if the event should be sent.
  1361   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  1362     Label L;
  1363     // Note: frame::interpreter_frame_result has a dependency on how the
  1364     // method result is saved across the call to post_method_exit. If this
  1365     // is changed then the interpreter_frame_result implementation will
  1366     // need to be updated too.
  1368     // For c++ interpreter the result is always stored at a known location in the frame
  1369     // template interpreter will leave it on the top of the stack.
  1370     NOT_CC_INTERP(push(state);)
  1371     get_thread(rcx);
  1372     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
  1373     testl(rcx,rcx);
  1374     jcc(Assembler::zero, L);
  1375     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  1376     bind(L);
  1377     NOT_CC_INTERP(pop(state);)
  1381     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
  1382     NOT_CC_INTERP(push(state));
  1383     get_thread(rbx);
  1384     get_method(rcx);
  1385     call_VM_leaf(
  1386       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1387       rbx, rcx);
  1388     NOT_CC_INTERP(pop(state));
  1392 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
  1393 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
  1394                                                         int increment, int mask,
  1395                                                         Register scratch, bool preloaded,
  1396                                                         Condition cond, Label* where) {
  1397   if (!preloaded) {
  1398     movl(scratch, counter_addr);
  1400   incrementl(scratch, increment);
  1401   movl(counter_addr, scratch);
  1402   andl(scratch, mask);
  1403   jcc(cond, *where);

mercurial