src/cpu/x86/vm/cppInterpreter_x86.cpp

Tue, 21 Jun 2011 09:04:55 -0700

author
never
date
Tue, 21 Jun 2011 09:04:55 -0700
changeset 2980
de6a837d75cf
parent 2901
3d2ab563047a
child 3391
069ab3f976d3
permissions
-rw-r--r--

7056380: VM crashes with SIGSEGV in compiled code
Summary: code was using andq reg, imm instead of addq addr, imm
Reviewed-by: kvn, jrose, twisti

     1 /*
     2  * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/cppInterpreter.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "interpreter/interpreterGenerator.hpp"
    31 #include "interpreter/interpreterRuntime.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodDataOop.hpp"
    34 #include "oops/methodOop.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/interfaceSupport.hpp"
    42 #include "runtime/sharedRuntime.hpp"
    43 #include "runtime/stubRoutines.hpp"
    44 #include "runtime/synchronizer.hpp"
    45 #include "runtime/timer.hpp"
    46 #include "runtime/vframeArray.hpp"
    47 #include "utilities/debug.hpp"
    48 #ifdef SHARK
    49 #include "shark/shark_globals.hpp"
    50 #endif
    52 #ifdef CC_INTERP
    54 // Routine exists to make tracebacks look decent in debugger
    55 // while we are recursed in the frame manager/c++ interpreter.
    56 // We could use an address in the frame manager but having
    57 // frames look natural in the debugger is a plus.
    58 extern "C" void RecursiveInterpreterActivation(interpreterState istate )
    59 {
    60   //
    61   ShouldNotReachHere();
    62 }
    65 #define __ _masm->
    66 #define STATE(field_name) (Address(state, byte_offset_of(BytecodeInterpreter, field_name)))
    68 Label fast_accessor_slow_entry_path;  // fast accessor methods need to be able to jmp to unsynchronized
    69                                       // c++ interpreter entry point this holds that entry point label.
    71 // default registers for state and sender_sp
    72 // state and sender_sp are the same on 32bit because we have no choice.
    73 // state could be rsi on 64bit but it is an arg reg and not callee save
    74 // so r13 is better choice.
    76 const Register state = NOT_LP64(rsi) LP64_ONLY(r13);
    77 const Register sender_sp_on_entry = NOT_LP64(rsi) LP64_ONLY(r13);
    79 // NEEDED for JVMTI?
    80 // address AbstractInterpreter::_remove_activation_preserving_args_entry;
    82 static address unctrap_frame_manager_entry  = NULL;
    84 static address deopt_frame_manager_return_atos  = NULL;
    85 static address deopt_frame_manager_return_btos  = NULL;
    86 static address deopt_frame_manager_return_itos  = NULL;
    87 static address deopt_frame_manager_return_ltos  = NULL;
    88 static address deopt_frame_manager_return_ftos  = NULL;
    89 static address deopt_frame_manager_return_dtos  = NULL;
    90 static address deopt_frame_manager_return_vtos  = NULL;
    92 int AbstractInterpreter::BasicType_as_index(BasicType type) {
    93   int i = 0;
    94   switch (type) {
    95     case T_BOOLEAN: i = 0; break;
    96     case T_CHAR   : i = 1; break;
    97     case T_BYTE   : i = 2; break;
    98     case T_SHORT  : i = 3; break;
    99     case T_INT    : i = 4; break;
   100     case T_VOID   : i = 5; break;
   101     case T_FLOAT  : i = 8; break;
   102     case T_LONG   : i = 9; break;
   103     case T_DOUBLE : i = 6; break;
   104     case T_OBJECT : // fall through
   105     case T_ARRAY  : i = 7; break;
   106     default       : ShouldNotReachHere();
   107   }
   108   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
   109   return i;
   110 }
   112 // Is this pc anywhere within code owned by the interpreter?
   113 // This only works for pc that might possibly be exposed to frame
   114 // walkers. It clearly misses all of the actual c++ interpreter
   115 // implementation
   116 bool CppInterpreter::contains(address pc)            {
   117     return (_code->contains(pc) ||
   118             pc == CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
   119 }
   122 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
   123   address entry = __ pc();
   124   switch (type) {
   125     case T_BOOLEAN: __ c2bool(rax);            break;
   126     case T_CHAR   : __ andl(rax, 0xFFFF);      break;
   127     case T_BYTE   : __ sign_extend_byte (rax); break;
   128     case T_SHORT  : __ sign_extend_short(rax); break;
   129     case T_VOID   : // fall thru
   130     case T_LONG   : // fall thru
   131     case T_INT    : /* nothing to do */        break;
   133     case T_DOUBLE :
   134     case T_FLOAT  :
   135       {
   136         const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   137         __ pop(t);                            // remove return address first
   138         // Must return a result for interpreter or compiler. In SSE
   139         // mode, results are returned in xmm0 and the FPU stack must
   140         // be empty.
   141         if (type == T_FLOAT && UseSSE >= 1) {
   142 #ifndef _LP64
   143           // Load ST0
   144           __ fld_d(Address(rsp, 0));
   145           // Store as float and empty fpu stack
   146           __ fstp_s(Address(rsp, 0));
   147 #endif // !_LP64
   148           // and reload
   149           __ movflt(xmm0, Address(rsp, 0));
   150         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
   151           __ movdbl(xmm0, Address(rsp, 0));
   152         } else {
   153           // restore ST0
   154           __ fld_d(Address(rsp, 0));
   155         }
   156         // and pop the temp
   157         __ addptr(rsp, 2 * wordSize);
   158         __ push(t);                            // restore return address
   159       }
   160       break;
   161     case T_OBJECT :
   162       // retrieve result from frame
   163       __ movptr(rax, STATE(_oop_temp));
   164       // and verify it
   165       __ verify_oop(rax);
   166       break;
   167     default       : ShouldNotReachHere();
   168   }
   169   __ ret(0);                                   // return from result handler
   170   return entry;
   171 }
   173 // tosca based result to c++ interpreter stack based result.
   174 // Result goes to top of native stack.
   176 #undef EXTEND  // SHOULD NOT BE NEEDED
   177 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
   178   // A result is in the tosca (abi result) from either a native method call or compiled
   179   // code. Place this result on the java expression stack so C++ interpreter can use it.
   180   address entry = __ pc();
   182   const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   183   __ pop(t);                            // remove return address first
   184   switch (type) {
   185     case T_VOID:
   186        break;
   187     case T_BOOLEAN:
   188 #ifdef EXTEND
   189       __ c2bool(rax);
   190 #endif
   191       __ push(rax);
   192       break;
   193     case T_CHAR   :
   194 #ifdef EXTEND
   195       __ andl(rax, 0xFFFF);
   196 #endif
   197       __ push(rax);
   198       break;
   199     case T_BYTE   :
   200 #ifdef EXTEND
   201       __ sign_extend_byte (rax);
   202 #endif
   203       __ push(rax);
   204       break;
   205     case T_SHORT  :
   206 #ifdef EXTEND
   207       __ sign_extend_short(rax);
   208 #endif
   209       __ push(rax);
   210       break;
   211     case T_LONG    :
   212       __ push(rdx);                             // pushes useless junk on 64bit
   213       __ push(rax);
   214       break;
   215     case T_INT    :
   216       __ push(rax);
   217       break;
   218     case T_FLOAT  :
   219       // Result is in ST(0)/xmm0
   220       __ subptr(rsp, wordSize);
   221       if ( UseSSE < 1) {
   222         __ fstp_s(Address(rsp, 0));
   223       } else {
   224         __ movflt(Address(rsp, 0), xmm0);
   225       }
   226       break;
   227     case T_DOUBLE  :
   228       __ subptr(rsp, 2*wordSize);
   229       if ( UseSSE < 2 ) {
   230         __ fstp_d(Address(rsp, 0));
   231       } else {
   232         __ movdbl(Address(rsp, 0), xmm0);
   233       }
   234       break;
   235     case T_OBJECT :
   236       __ verify_oop(rax);                      // verify it
   237       __ push(rax);
   238       break;
   239     default       : ShouldNotReachHere();
   240   }
   241   __ jmp(t);                                   // return from result handler
   242   return entry;
   243 }
   245 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
   246   // A result is in the java expression stack of the interpreted method that has just
   247   // returned. Place this result on the java expression stack of the caller.
   248   //
   249   // The current interpreter activation in rsi/r13 is for the method just returning its
   250   // result. So we know that the result of this method is on the top of the current
   251   // execution stack (which is pre-pushed) and will be return to the top of the caller
   252   // stack. The top of the callers stack is the bottom of the locals of the current
   253   // activation.
   254   // Because of the way activation are managed by the frame manager the value of rsp is
   255   // below both the stack top of the current activation and naturally the stack top
   256   // of the calling activation. This enable this routine to leave the return address
   257   // to the frame manager on the stack and do a vanilla return.
   258   //
   259   // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
   260   // On Return: rsi/r13 - unchanged
   261   //            rax - new stack top for caller activation (i.e. activation in _prev_link)
   262   //
   263   // Can destroy rdx, rcx.
   264   //
   266   address entry = __ pc();
   267   const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   268   switch (type) {
   269     case T_VOID:
   270       __ movptr(rax, STATE(_locals));                                   // pop parameters get new stack value
   271       __ addptr(rax, wordSize);                                         // account for prepush before we return
   272       break;
   273     case T_FLOAT  :
   274     case T_BOOLEAN:
   275     case T_CHAR   :
   276     case T_BYTE   :
   277     case T_SHORT  :
   278     case T_INT    :
   279       // 1 word result
   280       __ movptr(rdx, STATE(_stack));
   281       __ movptr(rax, STATE(_locals));                                   // address for result
   282       __ movl(rdx, Address(rdx, wordSize));                             // get result
   283       __ movptr(Address(rax, 0), rdx);                                  // and store it
   284       break;
   285     case T_LONG    :
   286     case T_DOUBLE  :
   287       // return top two words on current expression stack to caller's expression stack
   288       // The caller's expression stack is adjacent to the current frame manager's intepretState
   289       // except we allocated one extra word for this intepretState so we won't overwrite it
   290       // when we return a two word result.
   292       __ movptr(rax, STATE(_locals));                                   // address for result
   293       __ movptr(rcx, STATE(_stack));
   294       __ subptr(rax, wordSize);                                         // need addition word besides locals[0]
   295       __ movptr(rdx, Address(rcx, 2*wordSize));                         // get result word (junk in 64bit)
   296       __ movptr(Address(rax, wordSize), rdx);                           // and store it
   297       __ movptr(rdx, Address(rcx, wordSize));                           // get result word
   298       __ movptr(Address(rax, 0), rdx);                                  // and store it
   299       break;
   300     case T_OBJECT :
   301       __ movptr(rdx, STATE(_stack));
   302       __ movptr(rax, STATE(_locals));                                   // address for result
   303       __ movptr(rdx, Address(rdx, wordSize));                           // get result
   304       __ verify_oop(rdx);                                               // verify it
   305       __ movptr(Address(rax, 0), rdx);                                  // and store it
   306       break;
   307     default       : ShouldNotReachHere();
   308   }
   309   __ ret(0);
   310   return entry;
   311 }
   313 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
   314   // A result is in the java expression stack of the interpreted method that has just
   315   // returned. Place this result in the native abi that the caller expects.
   316   //
   317   // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
   318   // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
   319   // and so rather than return result onto caller's java expression stack we return the
   320   // result in the expected location based on the native abi.
   321   // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
   322   // On Return: rsi/r13 - unchanged
   323   // Other registers changed [rax/rdx/ST(0) as needed for the result returned]
   325   address entry = __ pc();
   326   switch (type) {
   327     case T_VOID:
   328        break;
   329     case T_BOOLEAN:
   330     case T_CHAR   :
   331     case T_BYTE   :
   332     case T_SHORT  :
   333     case T_INT    :
   334       __ movptr(rdx, STATE(_stack));                                    // get top of stack
   335       __ movl(rax, Address(rdx, wordSize));                             // get result word 1
   336       break;
   337     case T_LONG    :
   338       __ movptr(rdx, STATE(_stack));                                    // get top of stack
   339       __ movptr(rax, Address(rdx, wordSize));                           // get result low word
   340       NOT_LP64(__ movl(rdx, Address(rdx, 2*wordSize));)                 // get result high word
   341       break;
   342     case T_FLOAT  :
   343       __ movptr(rdx, STATE(_stack));                                    // get top of stack
   344       if ( UseSSE >= 1) {
   345         __ movflt(xmm0, Address(rdx, wordSize));
   346       } else {
   347         __ fld_s(Address(rdx, wordSize));                               // pushd float result
   348       }
   349       break;
   350     case T_DOUBLE  :
   351       __ movptr(rdx, STATE(_stack));                                    // get top of stack
   352       if ( UseSSE > 1) {
   353         __ movdbl(xmm0, Address(rdx, wordSize));
   354       } else {
   355         __ fld_d(Address(rdx, wordSize));                               // push double result
   356       }
   357       break;
   358     case T_OBJECT :
   359       __ movptr(rdx, STATE(_stack));                                    // get top of stack
   360       __ movptr(rax, Address(rdx, wordSize));                           // get result word 1
   361       __ verify_oop(rax);                                               // verify it
   362       break;
   363     default       : ShouldNotReachHere();
   364   }
   365   __ ret(0);
   366   return entry;
   367 }
   369 address CppInterpreter::return_entry(TosState state, int length) {
   370   // make it look good in the debugger
   371   return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation);
   372 }
   374 address CppInterpreter::deopt_entry(TosState state, int length) {
   375   address ret = NULL;
   376   if (length != 0) {
   377     switch (state) {
   378       case atos: ret = deopt_frame_manager_return_atos; break;
   379       case btos: ret = deopt_frame_manager_return_btos; break;
   380       case ctos:
   381       case stos:
   382       case itos: ret = deopt_frame_manager_return_itos; break;
   383       case ltos: ret = deopt_frame_manager_return_ltos; break;
   384       case ftos: ret = deopt_frame_manager_return_ftos; break;
   385       case dtos: ret = deopt_frame_manager_return_dtos; break;
   386       case vtos: ret = deopt_frame_manager_return_vtos; break;
   387     }
   388   } else {
   389     ret = unctrap_frame_manager_entry;  // re-execute the bytecode ( e.g. uncommon trap)
   390   }
   391   assert(ret != NULL, "Not initialized");
   392   return ret;
   393 }
   395 // C++ Interpreter
   396 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
   397                                                                  const Register locals,
   398                                                                  const Register sender_sp,
   399                                                                  bool native) {
   401   // On entry the "locals" argument points to locals[0] (or where it would be in case no locals in
   402   // a static method). "state" contains any previous frame manager state which we must save a link
   403   // to in the newly generated state object. On return "state" is a pointer to the newly allocated
   404   // state object. We must allocate and initialize a new interpretState object and the method
   405   // expression stack. Because the returned result (if any) of the method will be placed on the caller's
   406   // expression stack and this will overlap with locals[0] (and locals[1] if double/long) we must
   407   // be sure to leave space on the caller's stack so that this result will not overwrite values when
   408   // locals[0] and locals[1] do not exist (and in fact are return address and saved rbp). So when
   409   // we are non-native we in essence ensure that locals[0-1] exist. We play an extra trick in
   410   // non-product builds and initialize this last local with the previous interpreterState as
   411   // this makes things look real nice in the debugger.
   413   // State on entry
   414   // Assumes locals == &locals[0]
   415   // Assumes state == any previous frame manager state (assuming call path from c++ interpreter)
   416   // Assumes rax = return address
   417   // rcx == senders_sp
   418   // rbx == method
   419   // Modifies rcx, rdx, rax
   420   // Returns:
   421   // state == address of new interpreterState
   422   // rsp == bottom of method's expression stack.
   424   const Address const_offset      (rbx, methodOopDesc::const_offset());
   427   // On entry sp is the sender's sp. This includes the space for the arguments
   428   // that the sender pushed. If the sender pushed no args (a static) and the
   429   // caller returns a long then we need two words on the sender's stack which
   430   // are not present (although when we return a restore full size stack the
   431   // space will be present). If we didn't allocate two words here then when
   432   // we "push" the result of the caller's stack we would overwrite the return
   433   // address and the saved rbp. Not good. So simply allocate 2 words now
   434   // just to be safe. This is the "static long no_params() method" issue.
   435   // See Lo.java for a testcase.
   436   // We don't need this for native calls because they return result in
   437   // register and the stack is expanded in the caller before we store
   438   // the results on the stack.
   440   if (!native) {
   441 #ifdef PRODUCT
   442     __ subptr(rsp, 2*wordSize);
   443 #else /* PRODUCT */
   444     __ push((int32_t)NULL_WORD);
   445     __ push(state);                         // make it look like a real argument
   446 #endif /* PRODUCT */
   447   }
   449   // Now that we are assure of space for stack result, setup typical linkage
   451   __ push(rax);
   452   __ enter();
   454   __ mov(rax, state);                                  // save current state
   456   __ lea(rsp, Address(rsp, -(int)sizeof(BytecodeInterpreter)));
   457   __ mov(state, rsp);
   459   // rsi/r13 == state/locals rax == prevstate
   461   // initialize the "shadow" frame so that use since C++ interpreter not directly
   462   // recursive. Simpler to recurse but we can't trim expression stack as we call
   463   // new methods.
   464   __ movptr(STATE(_locals), locals);                    // state->_locals = locals()
   465   __ movptr(STATE(_self_link), state);                  // point to self
   466   __ movptr(STATE(_prev_link), rax);                    // state->_link = state on entry (NULL or previous state)
   467   __ movptr(STATE(_sender_sp), sender_sp);              // state->_sender_sp = sender_sp
   468 #ifdef _LP64
   469   __ movptr(STATE(_thread), r15_thread);                // state->_bcp = codes()
   470 #else
   471   __ get_thread(rax);                                   // get vm's javathread*
   472   __ movptr(STATE(_thread), rax);                       // state->_bcp = codes()
   473 #endif // _LP64
   474   __ movptr(rdx, Address(rbx, methodOopDesc::const_offset())); // get constantMethodOop
   475   __ lea(rdx, Address(rdx, constMethodOopDesc::codes_offset())); // get code base
   476   if (native) {
   477     __ movptr(STATE(_bcp), (int32_t)NULL_WORD);         // state->_bcp = NULL
   478   } else {
   479     __ movptr(STATE(_bcp), rdx);                        // state->_bcp = codes()
   480   }
   481   __ xorptr(rdx, rdx);
   482   __ movptr(STATE(_oop_temp), rdx);                     // state->_oop_temp = NULL (only really needed for native)
   483   __ movptr(STATE(_mdx), rdx);                          // state->_mdx = NULL
   484   __ movptr(rdx, Address(rbx, methodOopDesc::constants_offset()));
   485   __ movptr(rdx, Address(rdx, constantPoolOopDesc::cache_offset_in_bytes()));
   486   __ movptr(STATE(_constants), rdx);                    // state->_constants = constants()
   488   __ movptr(STATE(_method), rbx);                       // state->_method = method()
   489   __ movl(STATE(_msg), (int32_t) BytecodeInterpreter::method_entry);   // state->_msg = initial method entry
   490   __ movptr(STATE(_result._to_call._callee), (int32_t) NULL_WORD); // state->_result._to_call._callee_callee = NULL
   493   __ movptr(STATE(_monitor_base), rsp);                 // set monitor block bottom (grows down) this would point to entry [0]
   494                                                         // entries run from -1..x where &monitor[x] ==
   496   {
   497     // Must not attempt to lock method until we enter interpreter as gc won't be able to find the
   498     // initial frame. However we allocate a free monitor so we don't have to shuffle the expression stack
   499     // immediately.
   501     // synchronize method
   502     const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
   503     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   504     Label not_synced;
   506     __ movl(rax, access_flags);
   507     __ testl(rax, JVM_ACC_SYNCHRONIZED);
   508     __ jcc(Assembler::zero, not_synced);
   510     // Allocate initial monitor and pre initialize it
   511     // get synchronization object
   513     Label done;
   514     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   515     __ movl(rax, access_flags);
   516     __ testl(rax, JVM_ACC_STATIC);
   517     __ movptr(rax, Address(locals, 0));                   // get receiver (assume this is frequent case)
   518     __ jcc(Assembler::zero, done);
   519     __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
   520     __ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
   521     __ movptr(rax, Address(rax, mirror_offset));
   522     __ bind(done);
   523     // add space for monitor & lock
   524     __ subptr(rsp, entry_size);                                           // add space for a monitor entry
   525     __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
   526     __ bind(not_synced);
   527   }
   529   __ movptr(STATE(_stack_base), rsp);                                     // set expression stack base ( == &monitors[-count])
   530   if (native) {
   531     __ movptr(STATE(_stack), rsp);                                        // set current expression stack tos
   532     __ movptr(STATE(_stack_limit), rsp);
   533   } else {
   534     __ subptr(rsp, wordSize);                                             // pre-push stack
   535     __ movptr(STATE(_stack), rsp);                                        // set current expression stack tos
   537     // compute full expression stack limit
   539     const Address size_of_stack    (rbx, methodOopDesc::max_stack_offset());
   540     const int extra_stack = 0; //6815692//methodOopDesc::extra_stack_words();
   541     __ load_unsigned_short(rdx, size_of_stack);                           // get size of expression stack in words
   542     __ negptr(rdx);                                                       // so we can subtract in next step
   543     // Allocate expression stack
   544     __ lea(rsp, Address(rsp, rdx, Address::times_ptr, -extra_stack));
   545     __ movptr(STATE(_stack_limit), rsp);
   546   }
   548 #ifdef _LP64
   549   // Make sure stack is properly aligned and sized for the abi
   550   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
   551   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
   552 #endif // _LP64
   556 }
   558 // Helpers for commoning out cases in the various type of method entries.
   559 //
   561 // increment invocation count & check for overflow
   562 //
   563 // Note: checking for negative value instead of overflow
   564 //       so we have a 'sticky' overflow test
   565 //
   566 // rbx,: method
   567 // rcx: invocation counter
   568 //
   569 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   571   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
   572   const Address backedge_counter  (rbx, methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset());
   574   if (ProfileInterpreter) { // %%% Merge this into methodDataOop
   575     __ incrementl(Address(rbx,methodOopDesc::interpreter_invocation_counter_offset()));
   576   }
   577   // Update standard invocation counters
   578   __ movl(rax, backedge_counter);               // load backedge counter
   580   __ increment(rcx, InvocationCounter::count_increment);
   581   __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
   583   __ movl(invocation_counter, rcx);             // save invocation count
   584   __ addl(rcx, rax);                            // add both counters
   586   // profile_method is non-null only for interpreted method so
   587   // profile_method != NULL == !native_call
   588   // BytecodeInterpreter only calls for native so code is elided.
   590   __ cmp32(rcx,
   591            ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
   592   __ jcc(Assembler::aboveEqual, *overflow);
   594 }
   596 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   598   // C++ interpreter on entry
   599   // rsi/r13 - new interpreter state pointer
   600   // rbp - interpreter frame pointer
   601   // rbx - method
   603   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
   604   // rbx, - method
   605   // rcx - rcvr (assuming there is one)
   606   // top of stack return address of interpreter caller
   607   // rsp - sender_sp
   609   // C++ interpreter only
   610   // rsi/r13 - previous interpreter state pointer
   612   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
   614   // InterpreterRuntime::frequency_counter_overflow takes one argument
   615   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
   616   // The call returns the address of the verified entry point for the method or NULL
   617   // if the compilation did not complete (either went background or bailed out).
   618   __ movptr(rax, (int32_t)false);
   619   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
   621   // for c++ interpreter can rsi really be munged?
   622   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));                               // restore state
   623   __ movptr(rbx, Address(state, byte_offset_of(BytecodeInterpreter, _method)));            // restore method
   624   __ movptr(rdi, Address(state, byte_offset_of(BytecodeInterpreter, _locals)));            // get locals pointer
   626   __ jmp(*do_continue, relocInfo::none);
   628 }
   630 void InterpreterGenerator::generate_stack_overflow_check(void) {
   631   // see if we've got enough room on the stack for locals plus overhead.
   632   // the expression stack grows down incrementally, so the normal guard
   633   // page mechanism will work for that.
   634   //
   635   // Registers live on entry:
   636   //
   637   // Asm interpreter
   638   // rdx: number of additional locals this frame needs (what we must check)
   639   // rbx,: methodOop
   641   // C++ Interpreter
   642   // rsi/r13: previous interpreter frame state object
   643   // rdi: &locals[0]
   644   // rcx: # of locals
   645   // rdx: number of additional locals this frame needs (what we must check)
   646   // rbx: methodOop
   648   // destroyed on exit
   649   // rax,
   651   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
   652   // generate_method_entry) so the guard should work for them too.
   653   //
   655   // monitor entry size: see picture of stack set (generate_method_entry) and frame_i486.hpp
   656   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
   658   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
   659   // be sure to change this if you add/subtract anything to/from the overhead area
   660   const int overhead_size = (int)sizeof(BytecodeInterpreter);
   662   const int page_size = os::vm_page_size();
   664   Label after_frame_check;
   666   // compute rsp as if this were going to be the last frame on
   667   // the stack before the red zone
   669   Label after_frame_check_pop;
   671   // save rsi == caller's bytecode ptr (c++ previous interp. state)
   672   // QQQ problem here?? rsi overload????
   673   __ push(state);
   675   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rsi);
   677   NOT_LP64(__ get_thread(thread));
   679   const Address stack_base(thread, Thread::stack_base_offset());
   680   const Address stack_size(thread, Thread::stack_size_offset());
   682   // locals + overhead, in bytes
   683     const Address size_of_stack    (rbx, methodOopDesc::max_stack_offset());
   684     // Always give one monitor to allow us to start interp if sync method.
   685     // Any additional monitors need a check when moving the expression stack
   686     const int one_monitor = frame::interpreter_frame_monitor_size() * wordSize;
   687     const int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
   688   __ load_unsigned_short(rax, size_of_stack);                           // get size of expression stack in words
   689   __ lea(rax, Address(noreg, rax, Interpreter::stackElementScale(), extra_stack + one_monitor));
   690   __ lea(rax, Address(rax, rdx, Interpreter::stackElementScale(), overhead_size));
   692 #ifdef ASSERT
   693   Label stack_base_okay, stack_size_okay;
   694   // verify that thread stack base is non-zero
   695   __ cmpptr(stack_base, (int32_t)0);
   696   __ jcc(Assembler::notEqual, stack_base_okay);
   697   __ stop("stack base is zero");
   698   __ bind(stack_base_okay);
   699   // verify that thread stack size is non-zero
   700   __ cmpptr(stack_size, (int32_t)0);
   701   __ jcc(Assembler::notEqual, stack_size_okay);
   702   __ stop("stack size is zero");
   703   __ bind(stack_size_okay);
   704 #endif
   706   // Add stack base to locals and subtract stack size
   707   __ addptr(rax, stack_base);
   708   __ subptr(rax, stack_size);
   710   // We should have a magic number here for the size of the c++ interpreter frame.
   711   // We can't actually tell this ahead of time. The debug version size is around 3k
   712   // product is 1k and fastdebug is 4k
   713   const int slop = 6 * K;
   715   // Use the maximum number of pages we might bang.
   716   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
   717                                                                               (StackRedPages+StackYellowPages);
   718   // Only need this if we are stack banging which is temporary while
   719   // we're debugging.
   720   __ addptr(rax, slop + 2*max_pages * page_size);
   722   // check against the current stack bottom
   723   __ cmpptr(rsp, rax);
   724   __ jcc(Assembler::above, after_frame_check_pop);
   726   __ pop(state);  //  get c++ prev state.
   728      // throw exception return address becomes throwing pc
   729   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
   731   // all done with frame size check
   732   __ bind(after_frame_check_pop);
   733   __ pop(state);
   735   __ bind(after_frame_check);
   736 }
   738 // Find preallocated  monitor and lock method (C++ interpreter)
   739 // rbx - methodOop
   740 //
   741 void InterpreterGenerator::lock_method(void) {
   742   // assumes state == rsi/r13 == pointer to current interpreterState
   743   // minimally destroys rax, rdx|c_rarg1, rdi
   744   //
   745   // synchronize method
   746   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   747   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
   749   const Register monitor  = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
   751   // find initial monitor i.e. monitors[-1]
   752   __ movptr(monitor, STATE(_monitor_base));                                   // get monitor bottom limit
   753   __ subptr(monitor, entry_size);                                             // point to initial monitor
   755 #ifdef ASSERT
   756   { Label L;
   757     __ movl(rax, access_flags);
   758     __ testl(rax, JVM_ACC_SYNCHRONIZED);
   759     __ jcc(Assembler::notZero, L);
   760     __ stop("method doesn't need synchronization");
   761     __ bind(L);
   762   }
   763 #endif // ASSERT
   764   // get synchronization object
   765   { Label done;
   766     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   767     __ movl(rax, access_flags);
   768     __ movptr(rdi, STATE(_locals));                                     // prepare to get receiver (assume common case)
   769     __ testl(rax, JVM_ACC_STATIC);
   770     __ movptr(rax, Address(rdi, 0));                                    // get receiver (assume this is frequent case)
   771     __ jcc(Assembler::zero, done);
   772     __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
   773     __ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
   774     __ movptr(rax, Address(rax, mirror_offset));
   775     __ bind(done);
   776   }
   777 #ifdef ASSERT
   778   { Label L;
   779     __ cmpptr(rax, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));   // correct object?
   780     __ jcc(Assembler::equal, L);
   781     __ stop("wrong synchronization lobject");
   782     __ bind(L);
   783   }
   784 #endif // ASSERT
   785   // can destroy rax, rdx|c_rarg1, rcx, and (via call_VM) rdi!
   786   __ lock_object(monitor);
   787 }
   789 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
   791 address InterpreterGenerator::generate_accessor_entry(void) {
   793   // rbx: methodOop
   795   // rsi/r13: senderSP must preserved for slow path, set SP to it on fast path
   797   Label xreturn_path;
   799   // do fastpath for resolved accessor methods
   800   if (UseFastAccessorMethods) {
   802     address entry_point = __ pc();
   804     Label slow_path;
   805     // If we need a safepoint check, generate full interpreter entry.
   806     ExternalAddress state(SafepointSynchronize::address_of_state());
   807     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   808              SafepointSynchronize::_not_synchronized);
   810     __ jcc(Assembler::notEqual, slow_path);
   811     // ASM/C++ Interpreter
   812     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
   813     // Note: We can only use this code if the getfield has been resolved
   814     //       and if we don't have a null-pointer exception => check for
   815     //       these conditions first and use slow path if necessary.
   816     // rbx,: method
   817     // rcx: receiver
   818     __ movptr(rax, Address(rsp, wordSize));
   820     // check if local 0 != NULL and read field
   821     __ testptr(rax, rax);
   822     __ jcc(Assembler::zero, slow_path);
   824     __ movptr(rdi, Address(rbx, methodOopDesc::constants_offset()));
   825     // read first instruction word and extract bytecode @ 1 and index @ 2
   826     __ movptr(rdx, Address(rbx, methodOopDesc::const_offset()));
   827     __ movl(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
   828     // Shift codes right to get the index on the right.
   829     // The bytecode fetched looks like <index><0xb4><0x2a>
   830     __ shrl(rdx, 2*BitsPerByte);
   831     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   832     __ movptr(rdi, Address(rdi, constantPoolOopDesc::cache_offset_in_bytes()));
   834     // rax,: local 0
   835     // rbx,: method
   836     // rcx: receiver - do not destroy since it is needed for slow path!
   837     // rcx: scratch
   838     // rdx: constant pool cache index
   839     // rdi: constant pool cache
   840     // rsi/r13: sender sp
   842     // check if getfield has been resolved and read constant pool cache entry
   843     // check the validity of the cache entry by testing whether _indices field
   844     // contains Bytecode::_getfield in b1 byte.
   845     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
   846     __ movl(rcx,
   847             Address(rdi,
   848                     rdx,
   849                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
   850     __ shrl(rcx, 2*BitsPerByte);
   851     __ andl(rcx, 0xFF);
   852     __ cmpl(rcx, Bytecodes::_getfield);
   853     __ jcc(Assembler::notEqual, slow_path);
   855     // Note: constant pool entry is not valid before bytecode is resolved
   856     __ movptr(rcx,
   857             Address(rdi,
   858                     rdx,
   859                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset()));
   860     __ movl(rdx,
   861             Address(rdi,
   862                     rdx,
   863                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset()));
   865     Label notByte, notShort, notChar;
   866     const Address field_address (rax, rcx, Address::times_1);
   868     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   869     // because they are different sizes.
   870     // Use the type from the constant pool cache
   871     __ shrl(rdx, ConstantPoolCacheEntry::tosBits);
   872     // Make sure we don't need to mask rdx for tosBits after the above shift
   873     ConstantPoolCacheEntry::verify_tosBits();
   874 #ifdef _LP64
   875     Label notObj;
   876     __ cmpl(rdx, atos);
   877     __ jcc(Assembler::notEqual, notObj);
   878     // atos
   879     __ movptr(rax, field_address);
   880     __ jmp(xreturn_path);
   882     __ bind(notObj);
   883 #endif // _LP64
   884     __ cmpl(rdx, btos);
   885     __ jcc(Assembler::notEqual, notByte);
   886     __ load_signed_byte(rax, field_address);
   887     __ jmp(xreturn_path);
   889     __ bind(notByte);
   890     __ cmpl(rdx, stos);
   891     __ jcc(Assembler::notEqual, notShort);
   892     __ load_signed_short(rax, field_address);
   893     __ jmp(xreturn_path);
   895     __ bind(notShort);
   896     __ cmpl(rdx, ctos);
   897     __ jcc(Assembler::notEqual, notChar);
   898     __ load_unsigned_short(rax, field_address);
   899     __ jmp(xreturn_path);
   901     __ bind(notChar);
   902 #ifdef ASSERT
   903     Label okay;
   904 #ifndef _LP64
   905     __ cmpl(rdx, atos);
   906     __ jcc(Assembler::equal, okay);
   907 #endif // _LP64
   908     __ cmpl(rdx, itos);
   909     __ jcc(Assembler::equal, okay);
   910     __ stop("what type is this?");
   911     __ bind(okay);
   912 #endif // ASSERT
   913     // All the rest are a 32 bit wordsize
   914     __ movl(rax, field_address);
   916     __ bind(xreturn_path);
   918     // _ireturn/_areturn
   919     __ pop(rdi);                               // get return address
   920     __ mov(rsp, sender_sp_on_entry);           // set sp to sender sp
   921     __ jmp(rdi);
   923     // generate a vanilla interpreter entry as the slow path
   924     __ bind(slow_path);
   925     // We will enter c++ interpreter looking like it was
   926     // called by the call_stub this will cause it to return
   927     // a tosca result to the invoker which might have been
   928     // the c++ interpreter itself.
   930     __ jmp(fast_accessor_slow_entry_path);
   931     return entry_point;
   933   } else {
   934     return NULL;
   935   }
   937 }
   939 address InterpreterGenerator::generate_Reference_get_entry(void) {
   940 #ifndef SERIALGC
   941   if (UseG1GC) {
   942     // We need to generate have a routine that generates code to:
   943     //   * load the value in the referent field
   944     //   * passes that value to the pre-barrier.
   945     //
   946     // In the case of G1 this will record the value of the
   947     // referent in an SATB buffer if marking is active.
   948     // This will cause concurrent marking to mark the referent
   949     // field as live.
   950     Unimplemented();
   951   }
   952 #endif // SERIALGC
   954   // If G1 is not enabled then attempt to go through the accessor entry point
   955   // Reference.get is an accessor
   956   return generate_accessor_entry();
   957 }
   959 //
   960 // C++ Interpreter stub for calling a native method.
   961 // This sets up a somewhat different looking stack for calling the native method
   962 // than the typical interpreter frame setup but still has the pointer to
   963 // an interpreter state.
   964 //
   966 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   967   // determine code generation flags
   968   bool inc_counter  = UseCompiler || CountCompiledCalls;
   970   // rbx: methodOop
   971   // rcx: receiver (unused)
   972   // rsi/r13: previous interpreter state (if called from C++ interpreter) must preserve
   973   //      in any case. If called via c1/c2/call_stub rsi/r13 is junk (to use) but harmless
   974   //      to save/restore.
   975   address entry_point = __ pc();
   977   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
   978   const Address size_of_locals    (rbx, methodOopDesc::size_of_locals_offset());
   979   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
   980   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
   982   // rsi/r13 == state/locals rdi == prevstate
   983   const Register locals = rdi;
   985   // get parameter size (always needed)
   986   __ load_unsigned_short(rcx, size_of_parameters);
   988   // rbx: methodOop
   989   // rcx: size of parameters
   990   __ pop(rax);                                       // get return address
   991   // for natives the size of locals is zero
   993   // compute beginning of parameters /locals
   994   __ lea(locals, Address(rsp, rcx, Address::times_ptr, -wordSize));
   996   // initialize fixed part of activation frame
   998   // Assumes rax = return address
  1000   // allocate and initialize new interpreterState and method expression stack
  1001   // IN(locals) ->  locals
  1002   // IN(state) -> previous frame manager state (NULL from stub/c1/c2)
  1003   // destroys rax, rcx, rdx
  1004   // OUT (state) -> new interpreterState
  1005   // OUT(rsp) -> bottom of methods expression stack
  1007   // save sender_sp
  1008   __ mov(rcx, sender_sp_on_entry);
  1009   // start with NULL previous state
  1010   __ movptr(state, (int32_t)NULL_WORD);
  1011   generate_compute_interpreter_state(state, locals, rcx, true);
  1013 #ifdef ASSERT
  1014   { Label L;
  1015     __ movptr(rax, STATE(_stack_base));
  1016 #ifdef _LP64
  1017     // duplicate the alignment rsp got after setting stack_base
  1018     __ subptr(rax, frame::arg_reg_save_area_bytes); // windows
  1019     __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
  1020 #endif // _LP64
  1021     __ cmpptr(rax, rsp);
  1022     __ jcc(Assembler::equal, L);
  1023     __ stop("broken stack frame setup in interpreter");
  1024     __ bind(L);
  1026 #endif
  1028   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
  1030   const Register unlock_thread = LP64_ONLY(r15_thread) NOT_LP64(rax);
  1031   NOT_LP64(__ movptr(unlock_thread, STATE(_thread));) // get thread
  1032   // Since at this point in the method invocation the exception handler
  1033   // would try to exit the monitor of synchronized methods which hasn't
  1034   // been entered yet, we set the thread local variable
  1035   // _do_not_unlock_if_synchronized to true. The remove_activation will
  1036   // check this flag.
  1038   const Address do_not_unlock_if_synchronized(unlock_thread,
  1039         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1040   __ movbool(do_not_unlock_if_synchronized, true);
  1042   // make sure method is native & not abstract
  1043 #ifdef ASSERT
  1044   __ movl(rax, access_flags);
  1046     Label L;
  1047     __ testl(rax, JVM_ACC_NATIVE);
  1048     __ jcc(Assembler::notZero, L);
  1049     __ stop("tried to execute non-native method as native");
  1050     __ bind(L);
  1052   { Label L;
  1053     __ testl(rax, JVM_ACC_ABSTRACT);
  1054     __ jcc(Assembler::zero, L);
  1055     __ stop("tried to execute abstract method in interpreter");
  1056     __ bind(L);
  1058 #endif
  1061   // increment invocation count & check for overflow
  1062   Label invocation_counter_overflow;
  1063   if (inc_counter) {
  1064     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
  1067   Label continue_after_compile;
  1069   __ bind(continue_after_compile);
  1071   bang_stack_shadow_pages(true);
  1073   // reset the _do_not_unlock_if_synchronized flag
  1074   NOT_LP64(__ movl(rax, STATE(_thread));)                       // get thread
  1075   __ movbool(do_not_unlock_if_synchronized, false);
  1078   // check for synchronized native methods
  1079   //
  1080   // Note: This must happen *after* invocation counter check, since
  1081   //       when overflow happens, the method should not be locked.
  1082   if (synchronized) {
  1083     // potentially kills rax, rcx, rdx, rdi
  1084     lock_method();
  1085   } else {
  1086     // no synchronization necessary
  1087 #ifdef ASSERT
  1088       { Label L;
  1089         __ movl(rax, access_flags);
  1090         __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1091         __ jcc(Assembler::zero, L);
  1092         __ stop("method needs synchronization");
  1093         __ bind(L);
  1095 #endif
  1098   // start execution
  1100   // jvmti support
  1101   __ notify_method_entry();
  1103   // work registers
  1104   const Register method = rbx;
  1105   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rdi);
  1106   const Register t      = InterpreterRuntime::SignatureHandlerGenerator::temp();    // rcx|rscratch1
  1108   // allocate space for parameters
  1109   __ movptr(method, STATE(_method));
  1110   __ verify_oop(method);
  1111   __ load_unsigned_short(t, Address(method, methodOopDesc::size_of_parameters_offset()));
  1112   __ shll(t, 2);
  1113 #ifdef _LP64
  1114   __ subptr(rsp, t);
  1115   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1116   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
  1117 #else
  1118   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
  1119   __ subptr(rsp, t);
  1120   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
  1121 #endif // _LP64
  1123   // get signature handler
  1124     Label pending_exception_present;
  1126   { Label L;
  1127     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
  1128     __ testptr(t, t);
  1129     __ jcc(Assembler::notZero, L);
  1130     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method, false);
  1131     __ movptr(method, STATE(_method));
  1132     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1133     __ jcc(Assembler::notEqual, pending_exception_present);
  1134     __ verify_oop(method);
  1135     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
  1136     __ bind(L);
  1138 #ifdef ASSERT
  1140     Label L;
  1141     __ push(t);
  1142     __ get_thread(t);                                   // get vm's javathread*
  1143     __ cmpptr(t, STATE(_thread));
  1144     __ jcc(Assembler::equal, L);
  1145     __ int3();
  1146     __ bind(L);
  1147     __ pop(t);
  1149 #endif //
  1151   const Register from_ptr = InterpreterRuntime::SignatureHandlerGenerator::from();
  1152   // call signature handler
  1153   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
  1155   // The generated handlers do not touch RBX (the method oop).
  1156   // However, large signatures cannot be cached and are generated
  1157   // each time here.  The slow-path generator will blow RBX
  1158   // sometime, so we must reload it after the call.
  1159   __ movptr(from_ptr, STATE(_locals));  // get the from pointer
  1160   __ call(t);
  1161   __ movptr(method, STATE(_method));
  1162   __ verify_oop(method);
  1164   // result handler is in rax
  1165   // set result handler
  1166   __ movptr(STATE(_result_handler), rax);
  1169   // get native function entry point
  1170   { Label L;
  1171     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
  1172     __ testptr(rax, rax);
  1173     __ jcc(Assembler::notZero, L);
  1174     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
  1175     __ movptr(method, STATE(_method));
  1176     __ verify_oop(method);
  1177     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
  1178     __ bind(L);
  1181   // pass mirror handle if static call
  1182   { Label L;
  1183     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
  1184     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
  1185     __ testl(t, JVM_ACC_STATIC);
  1186     __ jcc(Assembler::zero, L);
  1187     // get mirror
  1188     __ movptr(t, Address(method, methodOopDesc:: constants_offset()));
  1189     __ movptr(t, Address(t, constantPoolOopDesc::pool_holder_offset_in_bytes()));
  1190     __ movptr(t, Address(t, mirror_offset));
  1191     // copy mirror into activation object
  1192     __ movptr(STATE(_oop_temp), t);
  1193     // pass handle to mirror
  1194 #ifdef _LP64
  1195     __ lea(c_rarg1, STATE(_oop_temp));
  1196 #else
  1197     __ lea(t, STATE(_oop_temp));
  1198     __ movptr(Address(rsp, wordSize), t);
  1199 #endif // _LP64
  1200     __ bind(L);
  1202 #ifdef ASSERT
  1204     Label L;
  1205     __ push(t);
  1206     __ get_thread(t);                                   // get vm's javathread*
  1207     __ cmpptr(t, STATE(_thread));
  1208     __ jcc(Assembler::equal, L);
  1209     __ int3();
  1210     __ bind(L);
  1211     __ pop(t);
  1213 #endif //
  1215   // pass JNIEnv
  1216 #ifdef _LP64
  1217   __ lea(c_rarg0, Address(thread, JavaThread::jni_environment_offset()));
  1218 #else
  1219   __ movptr(thread, STATE(_thread));          // get thread
  1220   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
  1222   __ movptr(Address(rsp, 0), t);
  1223 #endif // _LP64
  1225 #ifdef ASSERT
  1227     Label L;
  1228     __ push(t);
  1229     __ get_thread(t);                                   // get vm's javathread*
  1230     __ cmpptr(t, STATE(_thread));
  1231     __ jcc(Assembler::equal, L);
  1232     __ int3();
  1233     __ bind(L);
  1234     __ pop(t);
  1236 #endif //
  1238 #ifdef ASSERT
  1239   { Label L;
  1240     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
  1241     __ cmpl(t, _thread_in_Java);
  1242     __ jcc(Assembler::equal, L);
  1243     __ stop("Wrong thread state in native stub");
  1244     __ bind(L);
  1246 #endif
  1248   // Change state to native (we save the return address in the thread, since it might not
  1249   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  1250   // points into the right code segment. It does not have to be the correct return pc.
  1252   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
  1254   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
  1256   __ call(rax);
  1258   // result potentially in rdx:rax or ST0
  1259   __ movptr(method, STATE(_method));
  1260   NOT_LP64(__ movptr(thread, STATE(_thread));)                  // get thread
  1262   // The potential result is in ST(0) & rdx:rax
  1263   // With C++ interpreter we leave any possible result in ST(0) until we are in result handler and then
  1264   // we do the appropriate stuff for returning the result. rdx:rax must always be saved because just about
  1265   // anything we do here will destroy it, st(0) is only saved if we re-enter the vm where it would
  1266   // be destroyed.
  1267   // It is safe to do these pushes because state is _thread_in_native and return address will be found
  1268   // via _last_native_pc and not via _last_jave_sp
  1270     // Must save the value of ST(0)/xmm0 since it could be destroyed before we get to result handler
  1271     { Label Lpush, Lskip;
  1272       ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
  1273       ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
  1274       __ cmpptr(STATE(_result_handler), float_handler.addr());
  1275       __ jcc(Assembler::equal, Lpush);
  1276       __ cmpptr(STATE(_result_handler), double_handler.addr());
  1277       __ jcc(Assembler::notEqual, Lskip);
  1278       __ bind(Lpush);
  1279       __ subptr(rsp, 2*wordSize);
  1280       if ( UseSSE < 2 ) {
  1281         __ fstp_d(Address(rsp, 0));
  1282       } else {
  1283         __ movdbl(Address(rsp, 0), xmm0);
  1285       __ bind(Lskip);
  1288   // save rax:rdx for potential use by result handler.
  1289   __ push(rax);
  1290 #ifndef _LP64
  1291   __ push(rdx);
  1292 #endif // _LP64
  1294   // Either restore the MXCSR register after returning from the JNI Call
  1295   // or verify that it wasn't changed.
  1296   if (VM_Version::supports_sse()) {
  1297     if (RestoreMXCSROnJNICalls) {
  1298       __ ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
  1300     else if (CheckJNICalls ) {
  1301       __ call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
  1305 #ifndef _LP64
  1306   // Either restore the x87 floating pointer control word after returning
  1307   // from the JNI call or verify that it wasn't changed.
  1308   if (CheckJNICalls) {
  1309     __ call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
  1311 #endif // _LP64
  1314   // change thread state
  1315   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1316   if(os::is_MP()) {
  1317     // Write serialization page so VM thread can do a pseudo remote membar.
  1318     // We use the current thread pointer to calculate a thread specific
  1319     // offset to write to within the page. This minimizes bus traffic
  1320     // due to cache line collision.
  1321     __ serialize_memory(thread, rcx);
  1324   // check for safepoint operation in progress and/or pending suspend requests
  1325   { Label Continue;
  1327     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
  1328              SafepointSynchronize::_not_synchronized);
  1330     // threads running native code and they are expected to self-suspend
  1331     // when leaving the _thread_in_native state. We need to check for
  1332     // pending suspend requests here.
  1333     Label L;
  1334     __ jcc(Assembler::notEqual, L);
  1335     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  1336     __ jcc(Assembler::equal, Continue);
  1337     __ bind(L);
  1339     // Don't use call_VM as it will see a possible pending exception and forward it
  1340     // and never return here preventing us from clearing _last_native_pc down below.
  1341     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1342     // preserved and correspond to the bcp/locals pointers.
  1343     //
  1345     ((MacroAssembler*)_masm)->call_VM_leaf(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  1346                           thread);
  1347     __ increment(rsp, wordSize);
  1349     __ movptr(method, STATE(_method));
  1350     __ verify_oop(method);
  1351     __ movptr(thread, STATE(_thread));                       // get thread
  1353     __ bind(Continue);
  1356   // change thread state
  1357   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1359   __ reset_last_Java_frame(thread, true, true);
  1361   // reset handle block
  1362   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
  1363   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
  1365   // If result was an oop then unbox and save it in the frame
  1366   { Label L;
  1367     Label no_oop, store_result;
  1368       ExternalAddress oop_handler(AbstractInterpreter::result_handler(T_OBJECT));
  1369     __ cmpptr(STATE(_result_handler), oop_handler.addr());
  1370     __ jcc(Assembler::notEqual, no_oop);
  1371 #ifndef _LP64
  1372     __ pop(rdx);
  1373 #endif // _LP64
  1374     __ pop(rax);
  1375     __ testptr(rax, rax);
  1376     __ jcc(Assembler::zero, store_result);
  1377     // unbox
  1378     __ movptr(rax, Address(rax, 0));
  1379     __ bind(store_result);
  1380     __ movptr(STATE(_oop_temp), rax);
  1381     // keep stack depth as expected by pushing oop which will eventually be discarded
  1382     __ push(rax);
  1383 #ifndef _LP64
  1384     __ push(rdx);
  1385 #endif // _LP64
  1386     __ bind(no_oop);
  1390      Label no_reguard;
  1391      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1392      __ jcc(Assembler::notEqual, no_reguard);
  1394      __ pusha();
  1395      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1396      __ popa();
  1398      __ bind(no_reguard);
  1402   // QQQ Seems like for native methods we simply return and the caller will see the pending
  1403   // exception and do the right thing. Certainly the interpreter will, don't know about
  1404   // compiled methods.
  1405   // Seems that the answer to above is no this is wrong. The old code would see the exception
  1406   // and forward it before doing the unlocking and notifying jvmdi that method has exited.
  1407   // This seems wrong need to investigate the spec.
  1409   // handle exceptions (exception handling will handle unlocking!)
  1410   { Label L;
  1411     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1412     __ jcc(Assembler::zero, L);
  1413     __ bind(pending_exception_present);
  1415     // There are potential results on the stack (rax/rdx, ST(0)) we ignore these and simply
  1416     // return and let caller deal with exception. This skips the unlocking here which
  1417     // seems wrong but seems to be what asm interpreter did. Can't find this in the spec.
  1418     // Note: must preverve method in rbx
  1419     //
  1421     // remove activation
  1423     __ movptr(t, STATE(_sender_sp));
  1424     __ leave();                                  // remove frame anchor
  1425     __ pop(rdi);                                 // get return address
  1426     __ movptr(state, STATE(_prev_link));         // get previous state for return
  1427     __ mov(rsp, t);                              // set sp to sender sp
  1428     __ push(rdi);                                // push throwing pc
  1429     // The skips unlocking!! This seems to be what asm interpreter does but seems
  1430     // very wrong. Not clear if this violates the spec.
  1431     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1432     __ bind(L);
  1435   // do unlocking if necessary
  1436   { Label L;
  1437     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
  1438     __ testl(t, JVM_ACC_SYNCHRONIZED);
  1439     __ jcc(Assembler::zero, L);
  1440     // the code below should be shared with interpreter macro assembler implementation
  1441     { Label unlock;
  1442     const Register monitor = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
  1443       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
  1444       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
  1445       __ movptr(monitor, STATE(_monitor_base));
  1446       __ subptr(monitor, frame::interpreter_frame_monitor_size() * wordSize);  // address of initial monitor
  1448       __ movptr(t, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));
  1449       __ testptr(t, t);
  1450       __ jcc(Assembler::notZero, unlock);
  1452       // Entry already unlocked, need to throw exception
  1453       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1454       __ should_not_reach_here();
  1456       __ bind(unlock);
  1457       __ unlock_object(monitor);
  1458       // unlock can blow rbx so restore it for path that needs it below
  1459       __ movptr(method, STATE(_method));
  1461     __ bind(L);
  1464   // jvmti support
  1465   // Note: This must happen _after_ handling/throwing any exceptions since
  1466   //       the exception handler code notifies the runtime of method exits
  1467   //       too. If this happens before, method entry/exit notifications are
  1468   //       not properly paired (was bug - gri 11/22/99).
  1469   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
  1471   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
  1472 #ifndef _LP64
  1473   __ pop(rdx);
  1474 #endif // _LP64
  1475   __ pop(rax);
  1476   __ movptr(t, STATE(_result_handler));       // get result handler
  1477   __ call(t);                                 // call result handler to convert to tosca form
  1479   // remove activation
  1481   __ movptr(t, STATE(_sender_sp));
  1483   __ leave();                                  // remove frame anchor
  1484   __ pop(rdi);                                 // get return address
  1485   __ movptr(state, STATE(_prev_link));         // get previous state for return (if c++ interpreter was caller)
  1486   __ mov(rsp, t);                              // set sp to sender sp
  1487   __ jmp(rdi);
  1489   // invocation counter overflow
  1490   if (inc_counter) {
  1491     // Handle overflow of counter and compile method
  1492     __ bind(invocation_counter_overflow);
  1493     generate_counter_overflow(&continue_after_compile);
  1496   return entry_point;
  1499 // Generate entries that will put a result type index into rcx
  1500 void CppInterpreterGenerator::generate_deopt_handling() {
  1502   Label return_from_deopt_common;
  1504   // Generate entries that will put a result type index into rcx
  1505   // deopt needs to jump to here to enter the interpreter (return a result)
  1506   deopt_frame_manager_return_atos  = __ pc();
  1508   // rax is live here
  1509   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_OBJECT));    // Result stub address array index
  1510   __ jmp(return_from_deopt_common);
  1513   // deopt needs to jump to here to enter the interpreter (return a result)
  1514   deopt_frame_manager_return_btos  = __ pc();
  1516   // rax is live here
  1517   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_BOOLEAN));    // Result stub address array index
  1518   __ jmp(return_from_deopt_common);
  1520   // deopt needs to jump to here to enter the interpreter (return a result)
  1521   deopt_frame_manager_return_itos  = __ pc();
  1523   // rax is live here
  1524   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_INT));    // Result stub address array index
  1525   __ jmp(return_from_deopt_common);
  1527   // deopt needs to jump to here to enter the interpreter (return a result)
  1529   deopt_frame_manager_return_ltos  = __ pc();
  1530   // rax,rdx are live here
  1531   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_LONG));    // Result stub address array index
  1532   __ jmp(return_from_deopt_common);
  1534   // deopt needs to jump to here to enter the interpreter (return a result)
  1536   deopt_frame_manager_return_ftos  = __ pc();
  1537   // st(0) is live here
  1538   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT));    // Result stub address array index
  1539   __ jmp(return_from_deopt_common);
  1541   // deopt needs to jump to here to enter the interpreter (return a result)
  1542   deopt_frame_manager_return_dtos  = __ pc();
  1544   // st(0) is live here
  1545   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE));    // Result stub address array index
  1546   __ jmp(return_from_deopt_common);
  1548   // deopt needs to jump to here to enter the interpreter (return a result)
  1549   deopt_frame_manager_return_vtos  = __ pc();
  1551   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_VOID));
  1553   // Deopt return common
  1554   // an index is present in rcx that lets us move any possible result being
  1555   // return to the interpreter's stack
  1556   //
  1557   // Because we have a full sized interpreter frame on the youngest
  1558   // activation the stack is pushed too deep to share the tosca to
  1559   // stack converters directly. We shrink the stack to the desired
  1560   // amount and then push result and then re-extend the stack.
  1561   // We could have the code in size_activation layout a short
  1562   // frame for the top activation but that would look different
  1563   // than say sparc (which needs a full size activation because
  1564   // the windows are in the way. Really it could be short? QQQ
  1565   //
  1566   __ bind(return_from_deopt_common);
  1568   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
  1570   // setup rsp so we can push the "result" as needed.
  1571   __ movptr(rsp, STATE(_stack));                                   // trim stack (is prepushed)
  1572   __ addptr(rsp, wordSize);                                        // undo prepush
  1574   ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
  1575   // Address index(noreg, rcx, Address::times_ptr);
  1576   __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
  1577   // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
  1578   __ call(rcx);                                                   // call result converter
  1580   __ movl(STATE(_msg), (int)BytecodeInterpreter::deopt_resume);
  1581   __ lea(rsp, Address(rsp, -wordSize));                            // prepush stack (result if any already present)
  1582   __ movptr(STATE(_stack), rsp);                                   // inform interpreter of new stack depth (parameters removed,
  1583                                                                    // result if any on stack already )
  1584   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
  1587 // Generate the code to handle a more_monitors message from the c++ interpreter
  1588 void CppInterpreterGenerator::generate_more_monitors() {
  1591   Label entry, loop;
  1592   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  1593   // 1. compute new pointers                     // rsp: old expression stack top
  1594   __ movptr(rdx, STATE(_stack_base));            // rdx: old expression stack bottom
  1595   __ subptr(rsp, entry_size);                    // move expression stack top limit
  1596   __ subptr(STATE(_stack), entry_size);          // update interpreter stack top
  1597   __ subptr(STATE(_stack_limit), entry_size);    // inform interpreter
  1598   __ subptr(rdx, entry_size);                    // move expression stack bottom
  1599   __ movptr(STATE(_stack_base), rdx);            // inform interpreter
  1600   __ movptr(rcx, STATE(_stack));                 // set start value for copy loop
  1601   __ jmp(entry);
  1602   // 2. move expression stack contents
  1603   __ bind(loop);
  1604   __ movptr(rbx, Address(rcx, entry_size));      // load expression stack word from old location
  1605   __ movptr(Address(rcx, 0), rbx);               // and store it at new location
  1606   __ addptr(rcx, wordSize);                      // advance to next word
  1607   __ bind(entry);
  1608   __ cmpptr(rcx, rdx);                           // check if bottom reached
  1609   __ jcc(Assembler::notEqual, loop);             // if not at bottom then copy next word
  1610   // now zero the slot so we can find it.
  1611   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
  1612   __ movl(STATE(_msg), (int)BytecodeInterpreter::got_monitors);
  1616 // Initial entry to C++ interpreter from the call_stub.
  1617 // This entry point is called the frame manager since it handles the generation
  1618 // of interpreter activation frames via requests directly from the vm (via call_stub)
  1619 // and via requests from the interpreter. The requests from the call_stub happen
  1620 // directly thru the entry point. Requests from the interpreter happen via returning
  1621 // from the interpreter and examining the message the interpreter has returned to
  1622 // the frame manager. The frame manager can take the following requests:
  1624 // NO_REQUEST - error, should never happen.
  1625 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
  1626 //                 allocate a new monitor.
  1627 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
  1628 //               happens during entry during the entry via the call stub.
  1629 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
  1630 //
  1631 // Arguments:
  1632 //
  1633 // rbx: methodOop
  1634 // rcx: receiver - unused (retrieved from stack as needed)
  1635 // rsi/r13: previous frame manager state (NULL from the call_stub/c1/c2)
  1636 //
  1637 //
  1638 // Stack layout at entry
  1639 //
  1640 // [ return address     ] <--- rsp
  1641 // [ parameter n        ]
  1642 //   ...
  1643 // [ parameter 1        ]
  1644 // [ expression stack   ]
  1645 //
  1646 //
  1647 // We are free to blow any registers we like because the call_stub which brought us here
  1648 // initially has preserved the callee save registers already.
  1649 //
  1650 //
  1652 static address interpreter_frame_manager = NULL;
  1654 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1656   // rbx: methodOop
  1657   // rsi/r13: sender sp
  1659   // Because we redispatch "recursive" interpreter entries thru this same entry point
  1660   // the "input" register usage is a little strange and not what you expect coming
  1661   // from the call_stub. From the call stub rsi/rdi (current/previous) interpreter
  1662   // state are NULL but on "recursive" dispatches they are what you'd expect.
  1663   // rsi: current interpreter state (C++ interpreter) must preserve (null from call_stub/c1/c2)
  1666   // A single frame manager is plenty as we don't specialize for synchronized. We could and
  1667   // the code is pretty much ready. Would need to change the test below and for good measure
  1668   // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
  1669   // routines. Not clear this is worth it yet.
  1671   if (interpreter_frame_manager) return interpreter_frame_manager;
  1673   address entry_point = __ pc();
  1675   // Fast accessor methods share this entry point.
  1676   // This works because frame manager is in the same codelet
  1677   if (UseFastAccessorMethods && !synchronized) __ bind(fast_accessor_slow_entry_path);
  1679   Label dispatch_entry_2;
  1680   __ movptr(rcx, sender_sp_on_entry);
  1681   __ movptr(state, (int32_t)NULL_WORD);                              // no current activation
  1683   __ jmp(dispatch_entry_2);
  1685   const Register locals  = rdi;
  1687   Label re_dispatch;
  1689   __ bind(re_dispatch);
  1691   // save sender sp (doesn't include return address
  1692   __ lea(rcx, Address(rsp, wordSize));
  1694   __ bind(dispatch_entry_2);
  1696   // save sender sp
  1697   __ push(rcx);
  1699   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
  1700   const Address size_of_locals    (rbx, methodOopDesc::size_of_locals_offset());
  1701   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
  1703   // const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1704   // const Address monitor_block_bot (rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  1705   // const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
  1707   // get parameter size (always needed)
  1708   __ load_unsigned_short(rcx, size_of_parameters);
  1710   // rbx: methodOop
  1711   // rcx: size of parameters
  1712   __ load_unsigned_short(rdx, size_of_locals);                     // get size of locals in words
  1714   __ subptr(rdx, rcx);                                             // rdx = no. of additional locals
  1716   // see if we've got enough room on the stack for locals plus overhead.
  1717   generate_stack_overflow_check();                                 // C++
  1719   // c++ interpreter does not use stack banging or any implicit exceptions
  1720   // leave for now to verify that check is proper.
  1721   bang_stack_shadow_pages(false);
  1725   // compute beginning of parameters (rdi)
  1726   __ lea(locals, Address(rsp, rcx, Address::times_ptr, wordSize));
  1728   // save sender's sp
  1729   // __ movl(rcx, rsp);
  1731   // get sender's sp
  1732   __ pop(rcx);
  1734   // get return address
  1735   __ pop(rax);
  1737   // rdx - # of additional locals
  1738   // allocate space for locals
  1739   // explicitly initialize locals
  1741     Label exit, loop;
  1742     __ testl(rdx, rdx);                               // (32bit ok)
  1743     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
  1744     __ bind(loop);
  1745     __ push((int32_t)NULL_WORD);                      // initialize local variables
  1746     __ decrement(rdx);                                // until everything initialized
  1747     __ jcc(Assembler::greater, loop);
  1748     __ bind(exit);
  1752   // Assumes rax = return address
  1754   // allocate and initialize new interpreterState and method expression stack
  1755   // IN(locals) ->  locals
  1756   // IN(state) -> any current interpreter activation
  1757   // destroys rax, rcx, rdx, rdi
  1758   // OUT (state) -> new interpreterState
  1759   // OUT(rsp) -> bottom of methods expression stack
  1761   generate_compute_interpreter_state(state, locals, rcx, false);
  1763   // Call interpreter
  1765   Label call_interpreter;
  1766   __ bind(call_interpreter);
  1768   // c++ interpreter does not use stack banging or any implicit exceptions
  1769   // leave for now to verify that check is proper.
  1770   bang_stack_shadow_pages(false);
  1773   // Call interpreter enter here if message is
  1774   // set and we know stack size is valid
  1776   Label call_interpreter_2;
  1778   __ bind(call_interpreter_2);
  1781     const Register thread  = NOT_LP64(rcx) LP64_ONLY(r15_thread);
  1783 #ifdef _LP64
  1784     __ mov(c_rarg0, state);
  1785 #else
  1786     __ push(state);                                                 // push arg to interpreter
  1787     __ movptr(thread, STATE(_thread));
  1788 #endif // _LP64
  1790     // We can setup the frame anchor with everything we want at this point
  1791     // as we are thread_in_Java and no safepoints can occur until we go to
  1792     // vm mode. We do have to clear flags on return from vm but that is it
  1793     //
  1794     __ movptr(Address(thread, JavaThread::last_Java_fp_offset()), rbp);
  1795     __ movptr(Address(thread, JavaThread::last_Java_sp_offset()), rsp);
  1797     // Call the interpreter
  1799     RuntimeAddress normal(CAST_FROM_FN_PTR(address, BytecodeInterpreter::run));
  1800     RuntimeAddress checking(CAST_FROM_FN_PTR(address, BytecodeInterpreter::runWithChecks));
  1802     __ call(JvmtiExport::can_post_interpreter_events() ? checking : normal);
  1803     NOT_LP64(__ pop(rax);)                                          // discard parameter to run
  1804     //
  1805     // state is preserved since it is callee saved
  1806     //
  1808     // reset_last_Java_frame
  1810     NOT_LP64(__ movl(thread, STATE(_thread));)
  1811     __ reset_last_Java_frame(thread, true, true);
  1814   // examine msg from interpreter to determine next action
  1816   __ movl(rdx, STATE(_msg));                                       // Get new message
  1818   Label call_method;
  1819   Label return_from_interpreted_method;
  1820   Label throw_exception;
  1821   Label bad_msg;
  1822   Label do_OSR;
  1824   __ cmpl(rdx, (int32_t)BytecodeInterpreter::call_method);
  1825   __ jcc(Assembler::equal, call_method);
  1826   __ cmpl(rdx, (int32_t)BytecodeInterpreter::return_from_method);
  1827   __ jcc(Assembler::equal, return_from_interpreted_method);
  1828   __ cmpl(rdx, (int32_t)BytecodeInterpreter::do_osr);
  1829   __ jcc(Assembler::equal, do_OSR);
  1830   __ cmpl(rdx, (int32_t)BytecodeInterpreter::throwing_exception);
  1831   __ jcc(Assembler::equal, throw_exception);
  1832   __ cmpl(rdx, (int32_t)BytecodeInterpreter::more_monitors);
  1833   __ jcc(Assembler::notEqual, bad_msg);
  1835   // Allocate more monitor space, shuffle expression stack....
  1837   generate_more_monitors();
  1839   __ jmp(call_interpreter);
  1841   // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
  1842   unctrap_frame_manager_entry  = __ pc();
  1843   //
  1844   // Load the registers we need.
  1845   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
  1846   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
  1847   __ jmp(call_interpreter_2);
  1851   //=============================================================================
  1852   // Returning from a compiled method into a deopted method. The bytecode at the
  1853   // bcp has completed. The result of the bytecode is in the native abi (the tosca
  1854   // for the template based interpreter). Any stack space that was used by the
  1855   // bytecode that has completed has been removed (e.g. parameters for an invoke)
  1856   // so all that we have to do is place any pending result on the expression stack
  1857   // and resume execution on the next bytecode.
  1860   generate_deopt_handling();
  1861   __ jmp(call_interpreter);
  1864   // Current frame has caught an exception we need to dispatch to the
  1865   // handler. We can get here because a native interpreter frame caught
  1866   // an exception in which case there is no handler and we must rethrow
  1867   // If it is a vanilla interpreted frame the we simply drop into the
  1868   // interpreter and let it do the lookup.
  1870   Interpreter::_rethrow_exception_entry = __ pc();
  1871   // rax: exception
  1872   // rdx: return address/pc that threw exception
  1874   Label return_with_exception;
  1875   Label unwind_and_forward;
  1877   // restore state pointer.
  1878   __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
  1880   __ movptr(rbx, STATE(_method));                       // get method
  1881 #ifdef _LP64
  1882   __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
  1883 #else
  1884   __ movl(rcx, STATE(_thread));                       // get thread
  1886   // Store exception with interpreter will expect it
  1887   __ movptr(Address(rcx, Thread::pending_exception_offset()), rax);
  1888 #endif // _LP64
  1890   // is current frame vanilla or native?
  1892   __ movl(rdx, access_flags);
  1893   __ testl(rdx, JVM_ACC_NATIVE);
  1894   __ jcc(Assembler::zero, return_with_exception);     // vanilla interpreted frame, handle directly
  1896   // We drop thru to unwind a native interpreted frame with a pending exception
  1897   // We jump here for the initial interpreter frame with exception pending
  1898   // We unwind the current acivation and forward it to our caller.
  1900   __ bind(unwind_and_forward);
  1902   // unwind rbp, return stack to unextended value and re-push return address
  1904   __ movptr(rcx, STATE(_sender_sp));
  1905   __ leave();
  1906   __ pop(rdx);
  1907   __ mov(rsp, rcx);
  1908   __ push(rdx);
  1909   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1911   // Return point from a call which returns a result in the native abi
  1912   // (c1/c2/jni-native). This result must be processed onto the java
  1913   // expression stack.
  1914   //
  1915   // A pending exception may be present in which case there is no result present
  1917   Label resume_interpreter;
  1918   Label do_float;
  1919   Label do_double;
  1920   Label done_conv;
  1922   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
  1923   if (UseSSE < 2) {
  1924     __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
  1925     __ movptr(rbx, STATE(_result._to_call._callee));                   // get method just executed
  1926     __ movl(rcx, Address(rbx, methodOopDesc::result_index_offset()));
  1927     __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT));    // Result stub address array index
  1928     __ jcc(Assembler::equal, do_float);
  1929     __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE));    // Result stub address array index
  1930     __ jcc(Assembler::equal, do_double);
  1931 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  1932     __ empty_FPU_stack();
  1933 #endif // COMPILER2
  1934     __ jmp(done_conv);
  1936     __ bind(do_float);
  1937 #ifdef COMPILER2
  1938     for (int i = 1; i < 8; i++) {
  1939       __ ffree(i);
  1941 #endif // COMPILER2
  1942     __ jmp(done_conv);
  1943     __ bind(do_double);
  1944 #ifdef COMPILER2
  1945     for (int i = 1; i < 8; i++) {
  1946       __ ffree(i);
  1948 #endif // COMPILER2
  1949     __ jmp(done_conv);
  1950   } else {
  1951     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
  1952     __ jmp(done_conv);
  1955   // Return point to interpreter from compiled/native method
  1956   InternalAddress return_from_native_method(__ pc());
  1958   __ bind(done_conv);
  1961   // Result if any is in tosca. The java expression stack is in the state that the
  1962   // calling convention left it (i.e. params may or may not be present)
  1963   // Copy the result from tosca and place it on java expression stack.
  1965   // Restore rsi/r13 as compiled code may not preserve it
  1967   __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
  1969   // restore stack to what we had when we left (in case i2c extended it)
  1971   __ movptr(rsp, STATE(_stack));
  1972   __ lea(rsp, Address(rsp, wordSize));
  1974   // If there is a pending exception then we don't really have a result to process
  1976 #ifdef _LP64
  1977   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1978 #else
  1979   __ movptr(rcx, STATE(_thread));                       // get thread
  1980   __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1981 #endif // _LP64
  1982   __ jcc(Assembler::notZero, return_with_exception);
  1984   // get method just executed
  1985   __ movptr(rbx, STATE(_result._to_call._callee));
  1987   // callee left args on top of expression stack, remove them
  1988   __ load_unsigned_short(rcx, Address(rbx, methodOopDesc::size_of_parameters_offset()));
  1989   __ lea(rsp, Address(rsp, rcx, Address::times_ptr));
  1991   __ movl(rcx, Address(rbx, methodOopDesc::result_index_offset()));
  1992   ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
  1993   // Address index(noreg, rax, Address::times_ptr);
  1994   __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
  1995   // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
  1996   __ call(rcx);                                               // call result converter
  1997   __ jmp(resume_interpreter);
  1999   // An exception is being caught on return to a vanilla interpreter frame.
  2000   // Empty the stack and resume interpreter
  2002   __ bind(return_with_exception);
  2004   // Exception present, empty stack
  2005   __ movptr(rsp, STATE(_stack_base));
  2006   __ jmp(resume_interpreter);
  2008   // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
  2009   // interpreter call, or native) and unwind this interpreter activation.
  2010   // All monitors should be unlocked.
  2012   __ bind(return_from_interpreted_method);
  2014   Label return_to_initial_caller;
  2016   __ movptr(rbx, STATE(_method));                                   // get method just executed
  2017   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);                 // returning from "recursive" interpreter call?
  2018   __ movl(rax, Address(rbx, methodOopDesc::result_index_offset())); // get result type index
  2019   __ jcc(Assembler::equal, return_to_initial_caller);               // back to native code (call_stub/c1/c2)
  2021   // Copy result to callers java stack
  2022   ExternalAddress stack_to_stack((address)CppInterpreter::_stack_to_stack);
  2023   // Address index(noreg, rax, Address::times_ptr);
  2025   __ movptr(rax, ArrayAddress(stack_to_stack, Address(noreg, rax, Address::times_ptr)));
  2026   // __ movl(rax, Address(noreg, rax, Address::times_ptr, int(AbstractInterpreter::_stack_to_stack)));
  2027   __ call(rax);                                                     // call result converter
  2029   Label unwind_recursive_activation;
  2030   __ bind(unwind_recursive_activation);
  2032   // returning to interpreter method from "recursive" interpreter call
  2033   // result converter left rax pointing to top of the java stack for method we are returning
  2034   // to. Now all we must do is unwind the state from the completed call
  2036   __ movptr(state, STATE(_prev_link));                              // unwind state
  2037   __ leave();                                                       // pop the frame
  2038   __ mov(rsp, rax);                                                 // unwind stack to remove args
  2040   // Resume the interpreter. The current frame contains the current interpreter
  2041   // state object.
  2042   //
  2044   __ bind(resume_interpreter);
  2046   // state == interpreterState object for method we are resuming
  2048   __ movl(STATE(_msg), (int)BytecodeInterpreter::method_resume);
  2049   __ lea(rsp, Address(rsp, -wordSize));                            // prepush stack (result if any already present)
  2050   __ movptr(STATE(_stack), rsp);                                   // inform interpreter of new stack depth (parameters removed,
  2051                                                                    // result if any on stack already )
  2052   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
  2053   __ jmp(call_interpreter_2);                                      // No need to bang
  2055   // interpreter returning to native code (call_stub/c1/c2)
  2056   // convert result and unwind initial activation
  2057   // rax - result index
  2059   __ bind(return_to_initial_caller);
  2060   ExternalAddress stack_to_native((address)CppInterpreter::_stack_to_native_abi);
  2061   // Address index(noreg, rax, Address::times_ptr);
  2063   __ movptr(rax, ArrayAddress(stack_to_native, Address(noreg, rax, Address::times_ptr)));
  2064   __ call(rax);                                                    // call result converter
  2066   Label unwind_initial_activation;
  2067   __ bind(unwind_initial_activation);
  2069   // RETURN TO CALL_STUB/C1/C2 code (result if any in rax/rdx ST(0))
  2071   /* Current stack picture
  2073         [ incoming parameters ]
  2074         [ extra locals ]
  2075         [ return address to CALL_STUB/C1/C2]
  2076   fp -> [ CALL_STUB/C1/C2 fp ]
  2077         BytecodeInterpreter object
  2078         expression stack
  2079   sp ->
  2081   */
  2083   // return restoring the stack to the original sender_sp value
  2085   __ movptr(rcx, STATE(_sender_sp));
  2086   __ leave();
  2087   __ pop(rdi);                                                        // get return address
  2088   // set stack to sender's sp
  2089   __ mov(rsp, rcx);
  2090   __ jmp(rdi);                                                        // return to call_stub
  2092   // OSR request, adjust return address to make current frame into adapter frame
  2093   // and enter OSR nmethod
  2095   __ bind(do_OSR);
  2097   Label remove_initial_frame;
  2099   // We are going to pop this frame. Is there another interpreter frame underneath
  2100   // it or is it callstub/compiled?
  2102   // Move buffer to the expected parameter location
  2103   __ movptr(rcx, STATE(_result._osr._osr_buf));
  2105   __ movptr(rax, STATE(_result._osr._osr_entry));
  2107   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);            // returning from "recursive" interpreter call?
  2108   __ jcc(Assembler::equal, remove_initial_frame);              // back to native code (call_stub/c1/c2)
  2110   __ movptr(sender_sp_on_entry, STATE(_sender_sp));            // get sender's sp in expected register
  2111   __ leave();                                                  // pop the frame
  2112   __ mov(rsp, sender_sp_on_entry);                             // trim any stack expansion
  2115   // We know we are calling compiled so push specialized return
  2116   // method uses specialized entry, push a return so we look like call stub setup
  2117   // this path will handle fact that result is returned in registers and not
  2118   // on the java stack.
  2120   __ pushptr(return_from_native_method.addr());
  2122   __ jmp(rax);
  2124   __ bind(remove_initial_frame);
  2126   __ movptr(rdx, STATE(_sender_sp));
  2127   __ leave();
  2128   // get real return
  2129   __ pop(rsi);
  2130   // set stack to sender's sp
  2131   __ mov(rsp, rdx);
  2132   // repush real return
  2133   __ push(rsi);
  2134   // Enter OSR nmethod
  2135   __ jmp(rax);
  2140   // Call a new method. All we do is (temporarily) trim the expression stack
  2141   // push a return address to bring us back to here and leap to the new entry.
  2143   __ bind(call_method);
  2145   // stack points to next free location and not top element on expression stack
  2146   // method expects sp to be pointing to topmost element
  2148   __ movptr(rsp, STATE(_stack));                                     // pop args to c++ interpreter, set sp to java stack top
  2149   __ lea(rsp, Address(rsp, wordSize));
  2151   __ movptr(rbx, STATE(_result._to_call._callee));                   // get method to execute
  2153   // don't need a return address if reinvoking interpreter
  2155   // Make it look like call_stub calling conventions
  2157   // Get (potential) receiver
  2158   __ load_unsigned_short(rcx, size_of_parameters);                   // get size of parameters in words
  2160   ExternalAddress recursive(CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
  2161   __ pushptr(recursive.addr());                                      // make it look good in the debugger
  2163   InternalAddress entry(entry_point);
  2164   __ cmpptr(STATE(_result._to_call._callee_entry_point), entry.addr()); // returning to interpreter?
  2165   __ jcc(Assembler::equal, re_dispatch);                             // yes
  2167   __ pop(rax);                                                       // pop dummy address
  2170   // get specialized entry
  2171   __ movptr(rax, STATE(_result._to_call._callee_entry_point));
  2172   // set sender SP
  2173   __ mov(sender_sp_on_entry, rsp);
  2175   // method uses specialized entry, push a return so we look like call stub setup
  2176   // this path will handle fact that result is returned in registers and not
  2177   // on the java stack.
  2179   __ pushptr(return_from_native_method.addr());
  2181   __ jmp(rax);
  2183   __ bind(bad_msg);
  2184   __ stop("Bad message from interpreter");
  2186   // Interpreted method "returned" with an exception pass it on...
  2187   // Pass result, unwind activation and continue/return to interpreter/call_stub
  2188   // We handle result (if any) differently based on return to interpreter or call_stub
  2190   Label unwind_initial_with_pending_exception;
  2192   __ bind(throw_exception);
  2193   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);                 // returning from recursive interpreter call?
  2194   __ jcc(Assembler::equal, unwind_initial_with_pending_exception);  // no, back to native code (call_stub/c1/c2)
  2195   __ movptr(rax, STATE(_locals));                                   // pop parameters get new stack value
  2196   __ addptr(rax, wordSize);                                         // account for prepush before we return
  2197   __ jmp(unwind_recursive_activation);
  2199   __ bind(unwind_initial_with_pending_exception);
  2201   // We will unwind the current (initial) interpreter frame and forward
  2202   // the exception to the caller. We must put the exception in the
  2203   // expected register and clear pending exception and then forward.
  2205   __ jmp(unwind_and_forward);
  2207   interpreter_frame_manager = entry_point;
  2208   return entry_point;
  2211 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
  2212   // determine code generation flags
  2213   bool synchronized = false;
  2214   address entry_point = NULL;
  2216   switch (kind) {
  2217     case Interpreter::zerolocals             :                                                                             break;
  2218     case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
  2219     case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);  break;
  2220     case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);   break;
  2221     case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();        break;
  2222     case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();     break;
  2223     case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();     break;
  2224     case Interpreter::method_handle          : entry_point = ((InterpreterGenerator*)this)->generate_method_handle_entry(); break;
  2226     case Interpreter::java_lang_math_sin     : // fall thru
  2227     case Interpreter::java_lang_math_cos     : // fall thru
  2228     case Interpreter::java_lang_math_tan     : // fall thru
  2229     case Interpreter::java_lang_math_abs     : // fall thru
  2230     case Interpreter::java_lang_math_log     : // fall thru
  2231     case Interpreter::java_lang_math_log10   : // fall thru
  2232     case Interpreter::java_lang_math_sqrt    : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);     break;
  2233     case Interpreter::java_lang_ref_reference_get
  2234                                              : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
  2235     default                                  : ShouldNotReachHere();                                                       break;
  2238   if (entry_point) return entry_point;
  2240   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
  2244 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  2245  : CppInterpreterGenerator(code) {
  2246    generate_all(); // down here so it can be "virtual"
  2249 // Deoptimization helpers for C++ interpreter
  2251 // How much stack a method activation needs in words.
  2252 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
  2254   const int stub_code = 4;  // see generate_call_stub
  2255   // Save space for one monitor to get into the interpreted method in case
  2256   // the method is synchronized
  2257   int monitor_size    = method->is_synchronized() ?
  2258                                 1*frame::interpreter_frame_monitor_size() : 0;
  2260   // total static overhead size. Account for interpreter state object, return
  2261   // address, saved rbp and 2 words for a "static long no_params() method" issue.
  2263   const int overhead_size = sizeof(BytecodeInterpreter)/wordSize +
  2264     ( frame::sender_sp_offset - frame::link_offset) + 2;
  2266   const int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
  2267   const int method_stack = (method->max_locals() + method->max_stack() + extra_stack) *
  2268                            Interpreter::stackElementWords();
  2269   return overhead_size + method_stack + stub_code;
  2272 // returns the activation size.
  2273 static int size_activation_helper(int extra_locals_size, int monitor_size) {
  2274   return (extra_locals_size +                  // the addition space for locals
  2275           2*BytesPerWord +                     // return address and saved rbp
  2276           2*BytesPerWord +                     // "static long no_params() method" issue
  2277           sizeof(BytecodeInterpreter) +               // interpreterState
  2278           monitor_size);                       // monitors
  2281 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
  2282                                            frame* caller,
  2283                                            frame* current,
  2284                                            methodOop method,
  2285                                            intptr_t* locals,
  2286                                            intptr_t* stack,
  2287                                            intptr_t* stack_base,
  2288                                            intptr_t* monitor_base,
  2289                                            intptr_t* frame_bottom,
  2290                                            bool is_top_frame
  2293   // What about any vtable?
  2294   //
  2295   to_fill->_thread = JavaThread::current();
  2296   // This gets filled in later but make it something recognizable for now
  2297   to_fill->_bcp = method->code_base();
  2298   to_fill->_locals = locals;
  2299   to_fill->_constants = method->constants()->cache();
  2300   to_fill->_method = method;
  2301   to_fill->_mdx = NULL;
  2302   to_fill->_stack = stack;
  2303   if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
  2304     to_fill->_msg = deopt_resume2;
  2305   } else {
  2306     to_fill->_msg = method_resume;
  2308   to_fill->_result._to_call._bcp_advance = 0;
  2309   to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
  2310   to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
  2311   to_fill->_prev_link = NULL;
  2313   to_fill->_sender_sp = caller->unextended_sp();
  2315   if (caller->is_interpreted_frame()) {
  2316     interpreterState prev  = caller->get_interpreterState();
  2317     to_fill->_prev_link = prev;
  2318     // *current->register_addr(GR_Iprev_state) = (intptr_t) prev;
  2319     // Make the prev callee look proper
  2320     prev->_result._to_call._callee = method;
  2321     if (*prev->_bcp == Bytecodes::_invokeinterface) {
  2322       prev->_result._to_call._bcp_advance = 5;
  2323     } else {
  2324       prev->_result._to_call._bcp_advance = 3;
  2327   to_fill->_oop_temp = NULL;
  2328   to_fill->_stack_base = stack_base;
  2329   // Need +1 here because stack_base points to the word just above the first expr stack entry
  2330   // and stack_limit is supposed to point to the word just below the last expr stack entry.
  2331   // See generate_compute_interpreter_state.
  2332   int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
  2333   to_fill->_stack_limit = stack_base - (method->max_stack() + extra_stack + 1);
  2334   to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
  2336   to_fill->_self_link = to_fill;
  2337   assert(stack >= to_fill->_stack_limit && stack < to_fill->_stack_base,
  2338          "Stack top out of range");
  2341 int AbstractInterpreter::layout_activation(methodOop method,
  2342                                            int tempcount,  //
  2343                                            int popframe_extra_args,
  2344                                            int moncount,
  2345                                            int caller_actual_parameters,
  2346                                            int callee_param_count,
  2347                                            int callee_locals,
  2348                                            frame* caller,
  2349                                            frame* interpreter_frame,
  2350                                            bool is_top_frame) {
  2352   assert(popframe_extra_args == 0, "FIX ME");
  2353   // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
  2354   // does as far as allocating an interpreter frame.
  2355   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  2356   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
  2357   // as determined by a previous call to this method.
  2358   // It is also guaranteed to be walkable even though it is in a skeletal state
  2359   // NOTE: return size is in words not bytes
  2360   // NOTE: tempcount is the current size of the java expression stack. For top most
  2361   //       frames we will allocate a full sized expression stack and not the curback
  2362   //       version that non-top frames have.
  2364   // Calculate the amount our frame will be adjust by the callee. For top frame
  2365   // this is zero.
  2367   // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
  2368   // calculates the extra locals based on itself. Not what the callee does
  2369   // to it. So it ignores last_frame_adjust value. Seems suspicious as far
  2370   // as getting sender_sp correct.
  2372   int extra_locals_size = (callee_locals - callee_param_count) * BytesPerWord;
  2373   int monitor_size = sizeof(BasicObjectLock) * moncount;
  2375   // First calculate the frame size without any java expression stack
  2376   int short_frame_size = size_activation_helper(extra_locals_size,
  2377                                                 monitor_size);
  2379   // Now with full size expression stack
  2380   int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
  2381   int full_frame_size = short_frame_size + (method->max_stack() + extra_stack) * BytesPerWord;
  2383   // and now with only live portion of the expression stack
  2384   short_frame_size = short_frame_size + tempcount * BytesPerWord;
  2386   // the size the activation is right now. Only top frame is full size
  2387   int frame_size = (is_top_frame ? full_frame_size : short_frame_size);
  2389   if (interpreter_frame != NULL) {
  2390 #ifdef ASSERT
  2391     assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
  2392 #endif
  2394     // MUCHO HACK
  2396     intptr_t* frame_bottom = (intptr_t*) ((intptr_t)interpreter_frame->sp() - (full_frame_size - frame_size));
  2398     /* Now fillin the interpreterState object */
  2400     // The state object is the first thing on the frame and easily located
  2402     interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() - sizeof(BytecodeInterpreter));
  2405     // Find the locals pointer. This is rather simple on x86 because there is no
  2406     // confusing rounding at the callee to account for. We can trivially locate
  2407     // our locals based on the current fp().
  2408     // Note: the + 2 is for handling the "static long no_params() method" issue.
  2409     // (too bad I don't really remember that issue well...)
  2411     intptr_t* locals;
  2412     // If the caller is interpreted we need to make sure that locals points to the first
  2413     // argument that the caller passed and not in an area where the stack might have been extended.
  2414     // because the stack to stack to converter needs a proper locals value in order to remove the
  2415     // arguments from the caller and place the result in the proper location. Hmm maybe it'd be
  2416     // simpler if we simply stored the result in the BytecodeInterpreter object and let the c++ code
  2417     // adjust the stack?? HMMM QQQ
  2418     //
  2419     if (caller->is_interpreted_frame()) {
  2420       // locals must agree with the caller because it will be used to set the
  2421       // caller's tos when we return.
  2422       interpreterState prev  = caller->get_interpreterState();
  2423       // stack() is prepushed.
  2424       locals = prev->stack() + method->size_of_parameters();
  2425       // locals = caller->unextended_sp() + (method->size_of_parameters() - 1);
  2426       if (locals != interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2) {
  2427         // os::breakpoint();
  2429     } else {
  2430       // this is where a c2i would have placed locals (except for the +2)
  2431       locals = interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2;
  2434     intptr_t* monitor_base = (intptr_t*) cur_state;
  2435     intptr_t* stack_base = (intptr_t*) ((intptr_t) monitor_base - monitor_size);
  2436     /* +1 because stack is always prepushed */
  2437     intptr_t* stack = (intptr_t*) ((intptr_t) stack_base - (tempcount + 1) * BytesPerWord);
  2440     BytecodeInterpreter::layout_interpreterState(cur_state,
  2441                                           caller,
  2442                                           interpreter_frame,
  2443                                           method,
  2444                                           locals,
  2445                                           stack,
  2446                                           stack_base,
  2447                                           monitor_base,
  2448                                           frame_bottom,
  2449                                           is_top_frame);
  2451     // BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
  2453   return frame_size/BytesPerWord;
  2456 #endif // CC_INTERP (all)

mercurial