src/share/vm/c1/c1_LIRGenerator.cpp

Tue, 24 Feb 2015 15:04:52 -0500

author
dlong
date
Tue, 24 Feb 2015 15:04:52 -0500
changeset 7598
ddce0b7cee93
parent 7585
134cdf5e0b8a
child 7854
e8260b6328fb
child 7944
8dddcd728302
permissions
-rw-r--r--

8072383: resolve conflicts between open and closed ports
Summary: refactor close to remove references to closed ports
Reviewed-by: kvn, simonis, sgehwolf, dholmes

     1 /*
     2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Defs.hpp"
    27 #include "c1/c1_Compilation.hpp"
    28 #include "c1/c1_FrameMap.hpp"
    29 #include "c1/c1_Instruction.hpp"
    30 #include "c1/c1_LIRAssembler.hpp"
    31 #include "c1/c1_LIRGenerator.hpp"
    32 #include "c1/c1_ValueStack.hpp"
    33 #include "ci/ciArrayKlass.hpp"
    34 #include "ci/ciInstance.hpp"
    35 #include "ci/ciObjArray.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #include "utilities/bitMap.inline.hpp"
    39 #include "utilities/macros.hpp"
    40 #if INCLUDE_ALL_GCS
    41 #include "gc_implementation/g1/heapRegion.hpp"
    42 #endif // INCLUDE_ALL_GCS
    44 #ifdef ASSERT
    45 #define __ gen()->lir(__FILE__, __LINE__)->
    46 #else
    47 #define __ gen()->lir()->
    48 #endif
    50 #ifndef PATCHED_ADDR
    51 #define PATCHED_ADDR  (max_jint)
    52 #endif
    54 void PhiResolverState::reset(int max_vregs) {
    55   // Initialize array sizes
    56   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    57   _virtual_operands.trunc_to(0);
    58   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    59   _other_operands.trunc_to(0);
    60   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
    61   _vreg_table.trunc_to(0);
    62 }
    66 //--------------------------------------------------------------
    67 // PhiResolver
    69 // Resolves cycles:
    70 //
    71 //  r1 := r2  becomes  temp := r1
    72 //  r2 := r1           r1 := r2
    73 //                     r2 := temp
    74 // and orders moves:
    75 //
    76 //  r2 := r3  becomes  r1 := r2
    77 //  r1 := r2           r2 := r3
    79 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
    80  : _gen(gen)
    81  , _state(gen->resolver_state())
    82  , _temp(LIR_OprFact::illegalOpr)
    83 {
    84   // reinitialize the shared state arrays
    85   _state.reset(max_vregs);
    86 }
    89 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
    90   assert(src->is_valid(), "");
    91   assert(dest->is_valid(), "");
    92   __ move(src, dest);
    93 }
    96 void PhiResolver::move_temp_to(LIR_Opr dest) {
    97   assert(_temp->is_valid(), "");
    98   emit_move(_temp, dest);
    99   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
   100 }
   103 void PhiResolver::move_to_temp(LIR_Opr src) {
   104   assert(_temp->is_illegal(), "");
   105   _temp = _gen->new_register(src->type());
   106   emit_move(src, _temp);
   107 }
   110 // Traverse assignment graph in depth first order and generate moves in post order
   111 // ie. two assignments: b := c, a := b start with node c:
   112 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
   113 // Generates moves in this order: move b to a and move c to b
   114 // ie. cycle a := b, b := a start with node a
   115 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
   116 // Generates moves in this order: move b to temp, move a to b, move temp to a
   117 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
   118   if (!dest->visited()) {
   119     dest->set_visited();
   120     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
   121       move(dest, dest->destination_at(i));
   122     }
   123   } else if (!dest->start_node()) {
   124     // cylce in graph detected
   125     assert(_loop == NULL, "only one loop valid!");
   126     _loop = dest;
   127     move_to_temp(src->operand());
   128     return;
   129   } // else dest is a start node
   131   if (!dest->assigned()) {
   132     if (_loop == dest) {
   133       move_temp_to(dest->operand());
   134       dest->set_assigned();
   135     } else if (src != NULL) {
   136       emit_move(src->operand(), dest->operand());
   137       dest->set_assigned();
   138     }
   139   }
   140 }
   143 PhiResolver::~PhiResolver() {
   144   int i;
   145   // resolve any cycles in moves from and to virtual registers
   146   for (i = virtual_operands().length() - 1; i >= 0; i --) {
   147     ResolveNode* node = virtual_operands()[i];
   148     if (!node->visited()) {
   149       _loop = NULL;
   150       move(NULL, node);
   151       node->set_start_node();
   152       assert(_temp->is_illegal(), "move_temp_to() call missing");
   153     }
   154   }
   156   // generate move for move from non virtual register to abitrary destination
   157   for (i = other_operands().length() - 1; i >= 0; i --) {
   158     ResolveNode* node = other_operands()[i];
   159     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
   160       emit_move(node->operand(), node->destination_at(j)->operand());
   161     }
   162   }
   163 }
   166 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
   167   ResolveNode* node;
   168   if (opr->is_virtual()) {
   169     int vreg_num = opr->vreg_number();
   170     node = vreg_table().at_grow(vreg_num, NULL);
   171     assert(node == NULL || node->operand() == opr, "");
   172     if (node == NULL) {
   173       node = new ResolveNode(opr);
   174       vreg_table()[vreg_num] = node;
   175     }
   176     // Make sure that all virtual operands show up in the list when
   177     // they are used as the source of a move.
   178     if (source && !virtual_operands().contains(node)) {
   179       virtual_operands().append(node);
   180     }
   181   } else {
   182     assert(source, "");
   183     node = new ResolveNode(opr);
   184     other_operands().append(node);
   185   }
   186   return node;
   187 }
   190 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
   191   assert(dest->is_virtual(), "");
   192   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
   193   assert(src->is_valid(), "");
   194   assert(dest->is_valid(), "");
   195   ResolveNode* source = source_node(src);
   196   source->append(destination_node(dest));
   197 }
   200 //--------------------------------------------------------------
   201 // LIRItem
   203 void LIRItem::set_result(LIR_Opr opr) {
   204   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
   205   value()->set_operand(opr);
   207   if (opr->is_virtual()) {
   208     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
   209   }
   211   _result = opr;
   212 }
   214 void LIRItem::load_item() {
   215   if (result()->is_illegal()) {
   216     // update the items result
   217     _result = value()->operand();
   218   }
   219   if (!result()->is_register()) {
   220     LIR_Opr reg = _gen->new_register(value()->type());
   221     __ move(result(), reg);
   222     if (result()->is_constant()) {
   223       _result = reg;
   224     } else {
   225       set_result(reg);
   226     }
   227   }
   228 }
   231 void LIRItem::load_for_store(BasicType type) {
   232   if (_gen->can_store_as_constant(value(), type)) {
   233     _result = value()->operand();
   234     if (!_result->is_constant()) {
   235       _result = LIR_OprFact::value_type(value()->type());
   236     }
   237   } else if (type == T_BYTE || type == T_BOOLEAN) {
   238     load_byte_item();
   239   } else {
   240     load_item();
   241   }
   242 }
   244 void LIRItem::load_item_force(LIR_Opr reg) {
   245   LIR_Opr r = result();
   246   if (r != reg) {
   247 #if !defined(ARM) && !defined(E500V2)
   248     if (r->type() != reg->type()) {
   249       // moves between different types need an intervening spill slot
   250       r = _gen->force_to_spill(r, reg->type());
   251     }
   252 #endif
   253     __ move(r, reg);
   254     _result = reg;
   255   }
   256 }
   258 ciObject* LIRItem::get_jobject_constant() const {
   259   ObjectType* oc = type()->as_ObjectType();
   260   if (oc) {
   261     return oc->constant_value();
   262   }
   263   return NULL;
   264 }
   267 jint LIRItem::get_jint_constant() const {
   268   assert(is_constant() && value() != NULL, "");
   269   assert(type()->as_IntConstant() != NULL, "type check");
   270   return type()->as_IntConstant()->value();
   271 }
   274 jint LIRItem::get_address_constant() const {
   275   assert(is_constant() && value() != NULL, "");
   276   assert(type()->as_AddressConstant() != NULL, "type check");
   277   return type()->as_AddressConstant()->value();
   278 }
   281 jfloat LIRItem::get_jfloat_constant() const {
   282   assert(is_constant() && value() != NULL, "");
   283   assert(type()->as_FloatConstant() != NULL, "type check");
   284   return type()->as_FloatConstant()->value();
   285 }
   288 jdouble LIRItem::get_jdouble_constant() const {
   289   assert(is_constant() && value() != NULL, "");
   290   assert(type()->as_DoubleConstant() != NULL, "type check");
   291   return type()->as_DoubleConstant()->value();
   292 }
   295 jlong LIRItem::get_jlong_constant() const {
   296   assert(is_constant() && value() != NULL, "");
   297   assert(type()->as_LongConstant() != NULL, "type check");
   298   return type()->as_LongConstant()->value();
   299 }
   303 //--------------------------------------------------------------
   306 void LIRGenerator::init() {
   307   _bs = Universe::heap()->barrier_set();
   308 }
   311 void LIRGenerator::block_do_prolog(BlockBegin* block) {
   312 #ifndef PRODUCT
   313   if (PrintIRWithLIR) {
   314     block->print();
   315   }
   316 #endif
   318   // set up the list of LIR instructions
   319   assert(block->lir() == NULL, "LIR list already computed for this block");
   320   _lir = new LIR_List(compilation(), block);
   321   block->set_lir(_lir);
   323   __ branch_destination(block->label());
   325   if (LIRTraceExecution &&
   326       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
   327       !block->is_set(BlockBegin::exception_entry_flag)) {
   328     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
   329     trace_block_entry(block);
   330   }
   331 }
   334 void LIRGenerator::block_do_epilog(BlockBegin* block) {
   335 #ifndef PRODUCT
   336   if (PrintIRWithLIR) {
   337     tty->cr();
   338   }
   339 #endif
   341   // LIR_Opr for unpinned constants shouldn't be referenced by other
   342   // blocks so clear them out after processing the block.
   343   for (int i = 0; i < _unpinned_constants.length(); i++) {
   344     _unpinned_constants.at(i)->clear_operand();
   345   }
   346   _unpinned_constants.trunc_to(0);
   348   // clear our any registers for other local constants
   349   _constants.trunc_to(0);
   350   _reg_for_constants.trunc_to(0);
   351 }
   354 void LIRGenerator::block_do(BlockBegin* block) {
   355   CHECK_BAILOUT();
   357   block_do_prolog(block);
   358   set_block(block);
   360   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
   361     if (instr->is_pinned()) do_root(instr);
   362   }
   364   set_block(NULL);
   365   block_do_epilog(block);
   366 }
   369 //-------------------------LIRGenerator-----------------------------
   371 // This is where the tree-walk starts; instr must be root;
   372 void LIRGenerator::do_root(Value instr) {
   373   CHECK_BAILOUT();
   375   InstructionMark im(compilation(), instr);
   377   assert(instr->is_pinned(), "use only with roots");
   378   assert(instr->subst() == instr, "shouldn't have missed substitution");
   380   instr->visit(this);
   382   assert(!instr->has_uses() || instr->operand()->is_valid() ||
   383          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
   384 }
   387 // This is called for each node in tree; the walk stops if a root is reached
   388 void LIRGenerator::walk(Value instr) {
   389   InstructionMark im(compilation(), instr);
   390   //stop walk when encounter a root
   391   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
   392     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
   393   } else {
   394     assert(instr->subst() == instr, "shouldn't have missed substitution");
   395     instr->visit(this);
   396     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
   397   }
   398 }
   401 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
   402   assert(state != NULL, "state must be defined");
   404 #ifndef PRODUCT
   405   state->verify();
   406 #endif
   408   ValueStack* s = state;
   409   for_each_state(s) {
   410     if (s->kind() == ValueStack::EmptyExceptionState) {
   411       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
   412       continue;
   413     }
   415     int index;
   416     Value value;
   417     for_each_stack_value(s, index, value) {
   418       assert(value->subst() == value, "missed substitution");
   419       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   420         walk(value);
   421         assert(value->operand()->is_valid(), "must be evaluated now");
   422       }
   423     }
   425     int bci = s->bci();
   426     IRScope* scope = s->scope();
   427     ciMethod* method = scope->method();
   429     MethodLivenessResult liveness = method->liveness_at_bci(bci);
   430     if (bci == SynchronizationEntryBCI) {
   431       if (x->as_ExceptionObject() || x->as_Throw()) {
   432         // all locals are dead on exit from the synthetic unlocker
   433         liveness.clear();
   434       } else {
   435         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
   436       }
   437     }
   438     if (!liveness.is_valid()) {
   439       // Degenerate or breakpointed method.
   440       bailout("Degenerate or breakpointed method");
   441     } else {
   442       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
   443       for_each_local_value(s, index, value) {
   444         assert(value->subst() == value, "missed substition");
   445         if (liveness.at(index) && !value->type()->is_illegal()) {
   446           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   447             walk(value);
   448             assert(value->operand()->is_valid(), "must be evaluated now");
   449           }
   450         } else {
   451           // NULL out this local so that linear scan can assume that all non-NULL values are live.
   452           s->invalidate_local(index);
   453         }
   454       }
   455     }
   456   }
   458   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
   459 }
   462 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
   463   return state_for(x, x->exception_state());
   464 }
   467 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
   468   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
   469    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
   470    * the class. */
   471   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
   472     assert(info != NULL, "info must be set if class is not loaded");
   473     __ klass2reg_patch(NULL, r, info);
   474   } else {
   475     // no patching needed
   476     __ metadata2reg(obj->constant_encoding(), r);
   477   }
   478 }
   481 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
   482                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
   483   CodeStub* stub = new RangeCheckStub(range_check_info, index);
   484   if (index->is_constant()) {
   485     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
   486                 index->as_jint(), null_check_info);
   487     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   488   } else {
   489     cmp_reg_mem(lir_cond_aboveEqual, index, array,
   490                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
   491     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   492   }
   493 }
   496 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
   497   CodeStub* stub = new RangeCheckStub(info, index, true);
   498   if (index->is_constant()) {
   499     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
   500     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   501   } else {
   502     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
   503                 java_nio_Buffer::limit_offset(), T_INT, info);
   504     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   505   }
   506   __ move(index, result);
   507 }
   511 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
   512   LIR_Opr result_op = result;
   513   LIR_Opr left_op   = left;
   514   LIR_Opr right_op  = right;
   516   if (TwoOperandLIRForm && left_op != result_op) {
   517     assert(right_op != result_op, "malformed");
   518     __ move(left_op, result_op);
   519     left_op = result_op;
   520   }
   522   switch(code) {
   523     case Bytecodes::_dadd:
   524     case Bytecodes::_fadd:
   525     case Bytecodes::_ladd:
   526     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
   527     case Bytecodes::_fmul:
   528     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
   530     case Bytecodes::_dmul:
   531       {
   532         if (is_strictfp) {
   533           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
   534         } else {
   535           __ mul(left_op, right_op, result_op); break;
   536         }
   537       }
   538       break;
   540     case Bytecodes::_imul:
   541       {
   542         bool    did_strength_reduce = false;
   544         if (right->is_constant()) {
   545           int c = right->as_jint();
   546           if (is_power_of_2(c)) {
   547             // do not need tmp here
   548             __ shift_left(left_op, exact_log2(c), result_op);
   549             did_strength_reduce = true;
   550           } else {
   551             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
   552           }
   553         }
   554         // we couldn't strength reduce so just emit the multiply
   555         if (!did_strength_reduce) {
   556           __ mul(left_op, right_op, result_op);
   557         }
   558       }
   559       break;
   561     case Bytecodes::_dsub:
   562     case Bytecodes::_fsub:
   563     case Bytecodes::_lsub:
   564     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
   566     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
   567     // ldiv and lrem are implemented with a direct runtime call
   569     case Bytecodes::_ddiv:
   570       {
   571         if (is_strictfp) {
   572           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
   573         } else {
   574           __ div (left_op, right_op, result_op); break;
   575         }
   576       }
   577       break;
   579     case Bytecodes::_drem:
   580     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
   582     default: ShouldNotReachHere();
   583   }
   584 }
   587 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
   588   arithmetic_op(code, result, left, right, false, tmp);
   589 }
   592 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
   593   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
   594 }
   597 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
   598   arithmetic_op(code, result, left, right, is_strictfp, tmp);
   599 }
   602 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
   603   if (TwoOperandLIRForm && value != result_op) {
   604     assert(count != result_op, "malformed");
   605     __ move(value, result_op);
   606     value = result_op;
   607   }
   609   assert(count->is_constant() || count->is_register(), "must be");
   610   switch(code) {
   611   case Bytecodes::_ishl:
   612   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
   613   case Bytecodes::_ishr:
   614   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
   615   case Bytecodes::_iushr:
   616   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
   617   default: ShouldNotReachHere();
   618   }
   619 }
   622 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
   623   if (TwoOperandLIRForm && left_op != result_op) {
   624     assert(right_op != result_op, "malformed");
   625     __ move(left_op, result_op);
   626     left_op = result_op;
   627   }
   629   switch(code) {
   630     case Bytecodes::_iand:
   631     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
   633     case Bytecodes::_ior:
   634     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
   636     case Bytecodes::_ixor:
   637     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
   639     default: ShouldNotReachHere();
   640   }
   641 }
   644 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
   645   if (!GenerateSynchronizationCode) return;
   646   // for slow path, use debug info for state after successful locking
   647   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
   648   __ load_stack_address_monitor(monitor_no, lock);
   649   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
   650   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
   651 }
   654 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
   655   if (!GenerateSynchronizationCode) return;
   656   // setup registers
   657   LIR_Opr hdr = lock;
   658   lock = new_hdr;
   659   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
   660   __ load_stack_address_monitor(monitor_no, lock);
   661   __ unlock_object(hdr, object, lock, scratch, slow_path);
   662 }
   664 #ifndef PRODUCT
   665 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
   666   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
   667     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
   668   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
   669     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
   670   }
   671 }
   672 #endif
   674 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
   675   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
   676   // If klass is not loaded we do not know if the klass has finalizers:
   677   if (UseFastNewInstance && klass->is_loaded()
   678       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
   680     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
   682     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
   684     assert(klass->is_loaded(), "must be loaded");
   685     // allocate space for instance
   686     assert(klass->size_helper() >= 0, "illegal instance size");
   687     const int instance_size = align_object_size(klass->size_helper());
   688     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
   689                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
   690   } else {
   691     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
   692     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
   693     __ branch_destination(slow_path->continuation());
   694   }
   695 }
   698 static bool is_constant_zero(Instruction* inst) {
   699   IntConstant* c = inst->type()->as_IntConstant();
   700   if (c) {
   701     return (c->value() == 0);
   702   }
   703   return false;
   704 }
   707 static bool positive_constant(Instruction* inst) {
   708   IntConstant* c = inst->type()->as_IntConstant();
   709   if (c) {
   710     return (c->value() >= 0);
   711   }
   712   return false;
   713 }
   716 static ciArrayKlass* as_array_klass(ciType* type) {
   717   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
   718     return (ciArrayKlass*)type;
   719   } else {
   720     return NULL;
   721   }
   722 }
   724 static ciType* phi_declared_type(Phi* phi) {
   725   ciType* t = phi->operand_at(0)->declared_type();
   726   if (t == NULL) {
   727     return NULL;
   728   }
   729   for(int i = 1; i < phi->operand_count(); i++) {
   730     if (t != phi->operand_at(i)->declared_type()) {
   731       return NULL;
   732     }
   733   }
   734   return t;
   735 }
   737 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
   738   Instruction* src     = x->argument_at(0);
   739   Instruction* src_pos = x->argument_at(1);
   740   Instruction* dst     = x->argument_at(2);
   741   Instruction* dst_pos = x->argument_at(3);
   742   Instruction* length  = x->argument_at(4);
   744   // first try to identify the likely type of the arrays involved
   745   ciArrayKlass* expected_type = NULL;
   746   bool is_exact = false, src_objarray = false, dst_objarray = false;
   747   {
   748     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
   749     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
   750     Phi* phi;
   751     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
   752       src_declared_type = as_array_klass(phi_declared_type(phi));
   753     }
   754     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
   755     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
   756     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
   757       dst_declared_type = as_array_klass(phi_declared_type(phi));
   758     }
   760     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
   761       // the types exactly match so the type is fully known
   762       is_exact = true;
   763       expected_type = src_exact_type;
   764     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
   765       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
   766       ciArrayKlass* src_type = NULL;
   767       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
   768         src_type = (ciArrayKlass*) src_exact_type;
   769       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
   770         src_type = (ciArrayKlass*) src_declared_type;
   771       }
   772       if (src_type != NULL) {
   773         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
   774           is_exact = true;
   775           expected_type = dst_type;
   776         }
   777       }
   778     }
   779     // at least pass along a good guess
   780     if (expected_type == NULL) expected_type = dst_exact_type;
   781     if (expected_type == NULL) expected_type = src_declared_type;
   782     if (expected_type == NULL) expected_type = dst_declared_type;
   784     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
   785     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
   786   }
   788   // if a probable array type has been identified, figure out if any
   789   // of the required checks for a fast case can be elided.
   790   int flags = LIR_OpArrayCopy::all_flags;
   792   if (!src_objarray)
   793     flags &= ~LIR_OpArrayCopy::src_objarray;
   794   if (!dst_objarray)
   795     flags &= ~LIR_OpArrayCopy::dst_objarray;
   797   if (!x->arg_needs_null_check(0))
   798     flags &= ~LIR_OpArrayCopy::src_null_check;
   799   if (!x->arg_needs_null_check(2))
   800     flags &= ~LIR_OpArrayCopy::dst_null_check;
   803   if (expected_type != NULL) {
   804     Value length_limit = NULL;
   806     IfOp* ifop = length->as_IfOp();
   807     if (ifop != NULL) {
   808       // look for expressions like min(v, a.length) which ends up as
   809       //   x > y ? y : x  or  x >= y ? y : x
   810       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
   811           ifop->x() == ifop->fval() &&
   812           ifop->y() == ifop->tval()) {
   813         length_limit = ifop->y();
   814       }
   815     }
   817     // try to skip null checks and range checks
   818     NewArray* src_array = src->as_NewArray();
   819     if (src_array != NULL) {
   820       flags &= ~LIR_OpArrayCopy::src_null_check;
   821       if (length_limit != NULL &&
   822           src_array->length() == length_limit &&
   823           is_constant_zero(src_pos)) {
   824         flags &= ~LIR_OpArrayCopy::src_range_check;
   825       }
   826     }
   828     NewArray* dst_array = dst->as_NewArray();
   829     if (dst_array != NULL) {
   830       flags &= ~LIR_OpArrayCopy::dst_null_check;
   831       if (length_limit != NULL &&
   832           dst_array->length() == length_limit &&
   833           is_constant_zero(dst_pos)) {
   834         flags &= ~LIR_OpArrayCopy::dst_range_check;
   835       }
   836     }
   838     // check from incoming constant values
   839     if (positive_constant(src_pos))
   840       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
   841     if (positive_constant(dst_pos))
   842       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
   843     if (positive_constant(length))
   844       flags &= ~LIR_OpArrayCopy::length_positive_check;
   846     // see if the range check can be elided, which might also imply
   847     // that src or dst is non-null.
   848     ArrayLength* al = length->as_ArrayLength();
   849     if (al != NULL) {
   850       if (al->array() == src) {
   851         // it's the length of the source array
   852         flags &= ~LIR_OpArrayCopy::length_positive_check;
   853         flags &= ~LIR_OpArrayCopy::src_null_check;
   854         if (is_constant_zero(src_pos))
   855           flags &= ~LIR_OpArrayCopy::src_range_check;
   856       }
   857       if (al->array() == dst) {
   858         // it's the length of the destination array
   859         flags &= ~LIR_OpArrayCopy::length_positive_check;
   860         flags &= ~LIR_OpArrayCopy::dst_null_check;
   861         if (is_constant_zero(dst_pos))
   862           flags &= ~LIR_OpArrayCopy::dst_range_check;
   863       }
   864     }
   865     if (is_exact) {
   866       flags &= ~LIR_OpArrayCopy::type_check;
   867     }
   868   }
   870   IntConstant* src_int = src_pos->type()->as_IntConstant();
   871   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
   872   if (src_int && dst_int) {
   873     int s_offs = src_int->value();
   874     int d_offs = dst_int->value();
   875     if (src_int->value() >= dst_int->value()) {
   876       flags &= ~LIR_OpArrayCopy::overlapping;
   877     }
   878     if (expected_type != NULL) {
   879       BasicType t = expected_type->element_type()->basic_type();
   880       int element_size = type2aelembytes(t);
   881       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
   882           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
   883         flags &= ~LIR_OpArrayCopy::unaligned;
   884       }
   885     }
   886   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
   887     // src and dest positions are the same, or dst is zero so assume
   888     // nonoverlapping copy.
   889     flags &= ~LIR_OpArrayCopy::overlapping;
   890   }
   892   if (src == dst) {
   893     // moving within a single array so no type checks are needed
   894     if (flags & LIR_OpArrayCopy::type_check) {
   895       flags &= ~LIR_OpArrayCopy::type_check;
   896     }
   897   }
   898   *flagsp = flags;
   899   *expected_typep = (ciArrayKlass*)expected_type;
   900 }
   903 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
   904   assert(opr->is_register(), "why spill if item is not register?");
   906   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
   907     LIR_Opr result = new_register(T_FLOAT);
   908     set_vreg_flag(result, must_start_in_memory);
   909     assert(opr->is_register(), "only a register can be spilled");
   910     assert(opr->value_type()->is_float(), "rounding only for floats available");
   911     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
   912     return result;
   913   }
   914   return opr;
   915 }
   918 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
   919   assert(type2size[t] == type2size[value->type()],
   920          err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
   921   if (!value->is_register()) {
   922     // force into a register
   923     LIR_Opr r = new_register(value->type());
   924     __ move(value, r);
   925     value = r;
   926   }
   928   // create a spill location
   929   LIR_Opr tmp = new_register(t);
   930   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
   932   // move from register to spill
   933   __ move(value, tmp);
   934   return tmp;
   935 }
   937 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
   938   if (if_instr->should_profile()) {
   939     ciMethod* method = if_instr->profiled_method();
   940     assert(method != NULL, "method should be set if branch is profiled");
   941     ciMethodData* md = method->method_data_or_null();
   942     assert(md != NULL, "Sanity");
   943     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
   944     assert(data != NULL, "must have profiling data");
   945     assert(data->is_BranchData(), "need BranchData for two-way branches");
   946     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
   947     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
   948     if (if_instr->is_swapped()) {
   949       int t = taken_count_offset;
   950       taken_count_offset = not_taken_count_offset;
   951       not_taken_count_offset = t;
   952     }
   954     LIR_Opr md_reg = new_register(T_METADATA);
   955     __ metadata2reg(md->constant_encoding(), md_reg);
   957     LIR_Opr data_offset_reg = new_pointer_register();
   958     __ cmove(lir_cond(cond),
   959              LIR_OprFact::intptrConst(taken_count_offset),
   960              LIR_OprFact::intptrConst(not_taken_count_offset),
   961              data_offset_reg, as_BasicType(if_instr->x()->type()));
   963     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
   964     LIR_Opr data_reg = new_pointer_register();
   965     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
   966     __ move(data_addr, data_reg);
   967     // Use leal instead of add to avoid destroying condition codes on x86
   968     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
   969     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
   970     __ move(data_reg, data_addr);
   971   }
   972 }
   974 // Phi technique:
   975 // This is about passing live values from one basic block to the other.
   976 // In code generated with Java it is rather rare that more than one
   977 // value is on the stack from one basic block to the other.
   978 // We optimize our technique for efficient passing of one value
   979 // (of type long, int, double..) but it can be extended.
   980 // When entering or leaving a basic block, all registers and all spill
   981 // slots are release and empty. We use the released registers
   982 // and spill slots to pass the live values from one block
   983 // to the other. The topmost value, i.e., the value on TOS of expression
   984 // stack is passed in registers. All other values are stored in spilling
   985 // area. Every Phi has an index which designates its spill slot
   986 // At exit of a basic block, we fill the register(s) and spill slots.
   987 // At entry of a basic block, the block_prolog sets up the content of phi nodes
   988 // and locks necessary registers and spilling slots.
   991 // move current value to referenced phi function
   992 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
   993   Phi* phi = sux_val->as_Phi();
   994   // cur_val can be null without phi being null in conjunction with inlining
   995   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
   996     LIR_Opr operand = cur_val->operand();
   997     if (cur_val->operand()->is_illegal()) {
   998       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
   999              "these can be produced lazily");
  1000       operand = operand_for_instruction(cur_val);
  1002     resolver->move(operand, operand_for_instruction(phi));
  1007 // Moves all stack values into their PHI position
  1008 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
  1009   BlockBegin* bb = block();
  1010   if (bb->number_of_sux() == 1) {
  1011     BlockBegin* sux = bb->sux_at(0);
  1012     assert(sux->number_of_preds() > 0, "invalid CFG");
  1014     // a block with only one predecessor never has phi functions
  1015     if (sux->number_of_preds() > 1) {
  1016       int max_phis = cur_state->stack_size() + cur_state->locals_size();
  1017       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
  1019       ValueStack* sux_state = sux->state();
  1020       Value sux_value;
  1021       int index;
  1023       assert(cur_state->scope() == sux_state->scope(), "not matching");
  1024       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
  1025       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
  1027       for_each_stack_value(sux_state, index, sux_value) {
  1028         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
  1031       for_each_local_value(sux_state, index, sux_value) {
  1032         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
  1035       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
  1041 LIR_Opr LIRGenerator::new_register(BasicType type) {
  1042   int vreg = _virtual_register_number;
  1043   // add a little fudge factor for the bailout, since the bailout is
  1044   // only checked periodically.  This gives a few extra registers to
  1045   // hand out before we really run out, which helps us keep from
  1046   // tripping over assertions.
  1047   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
  1048     bailout("out of virtual registers");
  1049     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
  1050       // wrap it around
  1051       _virtual_register_number = LIR_OprDesc::vreg_base;
  1054   _virtual_register_number += 1;
  1055   return LIR_OprFact::virtual_register(vreg, type);
  1059 // Try to lock using register in hint
  1060 LIR_Opr LIRGenerator::rlock(Value instr) {
  1061   return new_register(instr->type());
  1065 // does an rlock and sets result
  1066 LIR_Opr LIRGenerator::rlock_result(Value x) {
  1067   LIR_Opr reg = rlock(x);
  1068   set_result(x, reg);
  1069   return reg;
  1073 // does an rlock and sets result
  1074 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
  1075   LIR_Opr reg;
  1076   switch (type) {
  1077   case T_BYTE:
  1078   case T_BOOLEAN:
  1079     reg = rlock_byte(type);
  1080     break;
  1081   default:
  1082     reg = rlock(x);
  1083     break;
  1086   set_result(x, reg);
  1087   return reg;
  1091 //---------------------------------------------------------------------
  1092 ciObject* LIRGenerator::get_jobject_constant(Value value) {
  1093   ObjectType* oc = value->type()->as_ObjectType();
  1094   if (oc) {
  1095     return oc->constant_value();
  1097   return NULL;
  1101 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
  1102   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
  1103   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
  1105   // no moves are created for phi functions at the begin of exception
  1106   // handlers, so assign operands manually here
  1107   for_each_phi_fun(block(), phi,
  1108                    operand_for_instruction(phi));
  1110   LIR_Opr thread_reg = getThreadPointer();
  1111   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
  1112                exceptionOopOpr());
  1113   __ move_wide(LIR_OprFact::oopConst(NULL),
  1114                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
  1115   __ move_wide(LIR_OprFact::oopConst(NULL),
  1116                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
  1118   LIR_Opr result = new_register(T_OBJECT);
  1119   __ move(exceptionOopOpr(), result);
  1120   set_result(x, result);
  1124 //----------------------------------------------------------------------
  1125 //----------------------------------------------------------------------
  1126 //----------------------------------------------------------------------
  1127 //----------------------------------------------------------------------
  1128 //                        visitor functions
  1129 //----------------------------------------------------------------------
  1130 //----------------------------------------------------------------------
  1131 //----------------------------------------------------------------------
  1132 //----------------------------------------------------------------------
  1134 void LIRGenerator::do_Phi(Phi* x) {
  1135   // phi functions are never visited directly
  1136   ShouldNotReachHere();
  1140 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
  1141 void LIRGenerator::do_Constant(Constant* x) {
  1142   if (x->state_before() != NULL) {
  1143     // Any constant with a ValueStack requires patching so emit the patch here
  1144     LIR_Opr reg = rlock_result(x);
  1145     CodeEmitInfo* info = state_for(x, x->state_before());
  1146     __ oop2reg_patch(NULL, reg, info);
  1147   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
  1148     if (!x->is_pinned()) {
  1149       // unpinned constants are handled specially so that they can be
  1150       // put into registers when they are used multiple times within a
  1151       // block.  After the block completes their operand will be
  1152       // cleared so that other blocks can't refer to that register.
  1153       set_result(x, load_constant(x));
  1154     } else {
  1155       LIR_Opr res = x->operand();
  1156       if (!res->is_valid()) {
  1157         res = LIR_OprFact::value_type(x->type());
  1159       if (res->is_constant()) {
  1160         LIR_Opr reg = rlock_result(x);
  1161         __ move(res, reg);
  1162       } else {
  1163         set_result(x, res);
  1166   } else {
  1167     set_result(x, LIR_OprFact::value_type(x->type()));
  1172 void LIRGenerator::do_Local(Local* x) {
  1173   // operand_for_instruction has the side effect of setting the result
  1174   // so there's no need to do it here.
  1175   operand_for_instruction(x);
  1179 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
  1180   Unimplemented();
  1184 void LIRGenerator::do_Return(Return* x) {
  1185   if (compilation()->env()->dtrace_method_probes()) {
  1186     BasicTypeList signature;
  1187     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  1188     signature.append(T_METADATA); // Method*
  1189     LIR_OprList* args = new LIR_OprList();
  1190     args->append(getThreadPointer());
  1191     LIR_Opr meth = new_register(T_METADATA);
  1192     __ metadata2reg(method()->constant_encoding(), meth);
  1193     args->append(meth);
  1194     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
  1197   if (x->type()->is_void()) {
  1198     __ return_op(LIR_OprFact::illegalOpr);
  1199   } else {
  1200     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
  1201     LIRItem result(x->result(), this);
  1203     result.load_item_force(reg);
  1204     __ return_op(result.result());
  1206   set_no_result(x);
  1209 // Examble: ref.get()
  1210 // Combination of LoadField and g1 pre-write barrier
  1211 void LIRGenerator::do_Reference_get(Intrinsic* x) {
  1213   const int referent_offset = java_lang_ref_Reference::referent_offset;
  1214   guarantee(referent_offset > 0, "referent offset not initialized");
  1216   assert(x->number_of_arguments() == 1, "wrong type");
  1218   LIRItem reference(x->argument_at(0), this);
  1219   reference.load_item();
  1221   // need to perform the null check on the reference objecy
  1222   CodeEmitInfo* info = NULL;
  1223   if (x->needs_null_check()) {
  1224     info = state_for(x);
  1227   LIR_Address* referent_field_adr =
  1228     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
  1230   LIR_Opr result = rlock_result(x);
  1232   __ load(referent_field_adr, result, info);
  1234   // Register the value in the referent field with the pre-barrier
  1235   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
  1236               result /* pre_val */,
  1237               false  /* do_load */,
  1238               false  /* patch */,
  1239               NULL   /* info */);
  1242 // Example: clazz.isInstance(object)
  1243 void LIRGenerator::do_isInstance(Intrinsic* x) {
  1244   assert(x->number_of_arguments() == 2, "wrong type");
  1246   // TODO could try to substitute this node with an equivalent InstanceOf
  1247   // if clazz is known to be a constant Class. This will pick up newly found
  1248   // constants after HIR construction. I'll leave this to a future change.
  1250   // as a first cut, make a simple leaf call to runtime to stay platform independent.
  1251   // could follow the aastore example in a future change.
  1253   LIRItem clazz(x->argument_at(0), this);
  1254   LIRItem object(x->argument_at(1), this);
  1255   clazz.load_item();
  1256   object.load_item();
  1257   LIR_Opr result = rlock_result(x);
  1259   // need to perform null check on clazz
  1260   if (x->needs_null_check()) {
  1261     CodeEmitInfo* info = state_for(x);
  1262     __ null_check(clazz.result(), info);
  1265   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
  1266                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
  1267                                      x->type(),
  1268                                      NULL); // NULL CodeEmitInfo results in a leaf call
  1269   __ move(call_result, result);
  1272 // Example: object.getClass ()
  1273 void LIRGenerator::do_getClass(Intrinsic* x) {
  1274   assert(x->number_of_arguments() == 1, "wrong type");
  1276   LIRItem rcvr(x->argument_at(0), this);
  1277   rcvr.load_item();
  1278   LIR_Opr temp = new_register(T_METADATA);
  1279   LIR_Opr result = rlock_result(x);
  1281   // need to perform the null check on the rcvr
  1282   CodeEmitInfo* info = NULL;
  1283   if (x->needs_null_check()) {
  1284     info = state_for(x);
  1287   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
  1288   // meaning of these two is mixed up (see JDK-8026837).
  1289   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
  1290   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
  1294 // Example: Thread.currentThread()
  1295 void LIRGenerator::do_currentThread(Intrinsic* x) {
  1296   assert(x->number_of_arguments() == 0, "wrong type");
  1297   LIR_Opr reg = rlock_result(x);
  1298   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
  1302 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
  1303   assert(x->number_of_arguments() == 1, "wrong type");
  1304   LIRItem receiver(x->argument_at(0), this);
  1306   receiver.load_item();
  1307   BasicTypeList signature;
  1308   signature.append(T_OBJECT); // receiver
  1309   LIR_OprList* args = new LIR_OprList();
  1310   args->append(receiver.result());
  1311   CodeEmitInfo* info = state_for(x, x->state());
  1312   call_runtime(&signature, args,
  1313                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
  1314                voidType, info);
  1316   set_no_result(x);
  1320 //------------------------local access--------------------------------------
  1322 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
  1323   if (x->operand()->is_illegal()) {
  1324     Constant* c = x->as_Constant();
  1325     if (c != NULL) {
  1326       x->set_operand(LIR_OprFact::value_type(c->type()));
  1327     } else {
  1328       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
  1329       // allocate a virtual register for this local or phi
  1330       x->set_operand(rlock(x));
  1331       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
  1334   return x->operand();
  1338 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
  1339   if (opr->is_virtual()) {
  1340     return instruction_for_vreg(opr->vreg_number());
  1342   return NULL;
  1346 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
  1347   if (reg_num < _instruction_for_operand.length()) {
  1348     return _instruction_for_operand.at(reg_num);
  1350   return NULL;
  1354 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
  1355   if (_vreg_flags.size_in_bits() == 0) {
  1356     BitMap2D temp(100, num_vreg_flags);
  1357     temp.clear();
  1358     _vreg_flags = temp;
  1360   _vreg_flags.at_put_grow(vreg_num, f, true);
  1363 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
  1364   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
  1365     return false;
  1367   return _vreg_flags.at(vreg_num, f);
  1371 // Block local constant handling.  This code is useful for keeping
  1372 // unpinned constants and constants which aren't exposed in the IR in
  1373 // registers.  Unpinned Constant instructions have their operands
  1374 // cleared when the block is finished so that other blocks can't end
  1375 // up referring to their registers.
  1377 LIR_Opr LIRGenerator::load_constant(Constant* x) {
  1378   assert(!x->is_pinned(), "only for unpinned constants");
  1379   _unpinned_constants.append(x);
  1380   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
  1384 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
  1385   BasicType t = c->type();
  1386   for (int i = 0; i < _constants.length(); i++) {
  1387     LIR_Const* other = _constants.at(i);
  1388     if (t == other->type()) {
  1389       switch (t) {
  1390       case T_INT:
  1391       case T_FLOAT:
  1392         if (c->as_jint_bits() != other->as_jint_bits()) continue;
  1393         break;
  1394       case T_LONG:
  1395       case T_DOUBLE:
  1396         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
  1397         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
  1398         break;
  1399       case T_OBJECT:
  1400         if (c->as_jobject() != other->as_jobject()) continue;
  1401         break;
  1403       return _reg_for_constants.at(i);
  1407   LIR_Opr result = new_register(t);
  1408   __ move((LIR_Opr)c, result);
  1409   _constants.append(c);
  1410   _reg_for_constants.append(result);
  1411   return result;
  1414 // Various barriers
  1416 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
  1417                                bool do_load, bool patch, CodeEmitInfo* info) {
  1418   // Do the pre-write barrier, if any.
  1419   switch (_bs->kind()) {
  1420 #if INCLUDE_ALL_GCS
  1421     case BarrierSet::G1SATBCT:
  1422     case BarrierSet::G1SATBCTLogging:
  1423       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
  1424       break;
  1425 #endif // INCLUDE_ALL_GCS
  1426     case BarrierSet::CardTableModRef:
  1427     case BarrierSet::CardTableExtension:
  1428       // No pre barriers
  1429       break;
  1430     case BarrierSet::ModRef:
  1431     case BarrierSet::Other:
  1432       // No pre barriers
  1433       break;
  1434     default      :
  1435       ShouldNotReachHere();
  1440 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1441   switch (_bs->kind()) {
  1442 #if INCLUDE_ALL_GCS
  1443     case BarrierSet::G1SATBCT:
  1444     case BarrierSet::G1SATBCTLogging:
  1445       G1SATBCardTableModRef_post_barrier(addr,  new_val);
  1446       break;
  1447 #endif // INCLUDE_ALL_GCS
  1448     case BarrierSet::CardTableModRef:
  1449     case BarrierSet::CardTableExtension:
  1450       CardTableModRef_post_barrier(addr,  new_val);
  1451       break;
  1452     case BarrierSet::ModRef:
  1453     case BarrierSet::Other:
  1454       // No post barriers
  1455       break;
  1456     default      :
  1457       ShouldNotReachHere();
  1461 ////////////////////////////////////////////////////////////////////////
  1462 #if INCLUDE_ALL_GCS
  1464 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
  1465                                                      bool do_load, bool patch, CodeEmitInfo* info) {
  1466   // First we test whether marking is in progress.
  1467   BasicType flag_type;
  1468   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  1469     flag_type = T_INT;
  1470   } else {
  1471     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  1472               "Assumption");
  1473     flag_type = T_BYTE;
  1475   LIR_Opr thrd = getThreadPointer();
  1476   LIR_Address* mark_active_flag_addr =
  1477     new LIR_Address(thrd,
  1478                     in_bytes(JavaThread::satb_mark_queue_offset() +
  1479                              PtrQueue::byte_offset_of_active()),
  1480                     flag_type);
  1481   // Read the marking-in-progress flag.
  1482   LIR_Opr flag_val = new_register(T_INT);
  1483   __ load(mark_active_flag_addr, flag_val);
  1484   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
  1486   LIR_PatchCode pre_val_patch_code = lir_patch_none;
  1488   CodeStub* slow;
  1490   if (do_load) {
  1491     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
  1492     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
  1494     if (patch)
  1495       pre_val_patch_code = lir_patch_normal;
  1497     pre_val = new_register(T_OBJECT);
  1499     if (!addr_opr->is_address()) {
  1500       assert(addr_opr->is_register(), "must be");
  1501       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
  1503     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
  1504   } else {
  1505     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
  1506     assert(pre_val->is_register(), "must be");
  1507     assert(pre_val->type() == T_OBJECT, "must be an object");
  1508     assert(info == NULL, "sanity");
  1510     slow = new G1PreBarrierStub(pre_val);
  1513   __ branch(lir_cond_notEqual, T_INT, slow);
  1514   __ branch_destination(slow->continuation());
  1517 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1518   // If the "new_val" is a constant NULL, no barrier is necessary.
  1519   if (new_val->is_constant() &&
  1520       new_val->as_constant_ptr()->as_jobject() == NULL) return;
  1522   if (!new_val->is_register()) {
  1523     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1524     if (new_val->is_constant()) {
  1525       __ move(new_val, new_val_reg);
  1526     } else {
  1527       __ leal(new_val, new_val_reg);
  1529     new_val = new_val_reg;
  1531   assert(new_val->is_register(), "must be a register at this point");
  1533   if (addr->is_address()) {
  1534     LIR_Address* address = addr->as_address_ptr();
  1535     LIR_Opr ptr = new_pointer_register();
  1536     if (!address->index()->is_valid() && address->disp() == 0) {
  1537       __ move(address->base(), ptr);
  1538     } else {
  1539       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1540       __ leal(addr, ptr);
  1542     addr = ptr;
  1544   assert(addr->is_register(), "must be a register at this point");
  1546   LIR_Opr xor_res = new_pointer_register();
  1547   LIR_Opr xor_shift_res = new_pointer_register();
  1548   if (TwoOperandLIRForm ) {
  1549     __ move(addr, xor_res);
  1550     __ logical_xor(xor_res, new_val, xor_res);
  1551     __ move(xor_res, xor_shift_res);
  1552     __ unsigned_shift_right(xor_shift_res,
  1553                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1554                             xor_shift_res,
  1555                             LIR_OprDesc::illegalOpr());
  1556   } else {
  1557     __ logical_xor(addr, new_val, xor_res);
  1558     __ unsigned_shift_right(xor_res,
  1559                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1560                             xor_shift_res,
  1561                             LIR_OprDesc::illegalOpr());
  1564   if (!new_val->is_register()) {
  1565     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1566     __ leal(new_val, new_val_reg);
  1567     new_val = new_val_reg;
  1569   assert(new_val->is_register(), "must be a register at this point");
  1571   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
  1573   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
  1574   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
  1575   __ branch_destination(slow->continuation());
  1578 #endif // INCLUDE_ALL_GCS
  1579 ////////////////////////////////////////////////////////////////////////
  1581 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1583   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
  1584   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
  1585   if (addr->is_address()) {
  1586     LIR_Address* address = addr->as_address_ptr();
  1587     // ptr cannot be an object because we use this barrier for array card marks
  1588     // and addr can point in the middle of an array.
  1589     LIR_Opr ptr = new_pointer_register();
  1590     if (!address->index()->is_valid() && address->disp() == 0) {
  1591       __ move(address->base(), ptr);
  1592     } else {
  1593       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1594       __ leal(addr, ptr);
  1596     addr = ptr;
  1598   assert(addr->is_register(), "must be a register at this point");
  1600 #ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
  1601   CardTableModRef_post_barrier_helper(addr, card_table_base);
  1602 #else
  1603   LIR_Opr tmp = new_pointer_register();
  1604   if (TwoOperandLIRForm) {
  1605     __ move(addr, tmp);
  1606     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
  1607   } else {
  1608     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
  1610   if (can_inline_as_constant(card_table_base)) {
  1611     __ move(LIR_OprFact::intConst(0),
  1612               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
  1613   } else {
  1614     __ move(LIR_OprFact::intConst(0),
  1615               new LIR_Address(tmp, load_constant(card_table_base),
  1616                               T_BYTE));
  1618 #endif
  1622 //------------------------field access--------------------------------------
  1624 // Comment copied form templateTable_i486.cpp
  1625 // ----------------------------------------------------------------------------
  1626 // Volatile variables demand their effects be made known to all CPU's in
  1627 // order.  Store buffers on most chips allow reads & writes to reorder; the
  1628 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  1629 // memory barrier (i.e., it's not sufficient that the interpreter does not
  1630 // reorder volatile references, the hardware also must not reorder them).
  1631 //
  1632 // According to the new Java Memory Model (JMM):
  1633 // (1) All volatiles are serialized wrt to each other.
  1634 // ALSO reads & writes act as aquire & release, so:
  1635 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  1636 // the read float up to before the read.  It's OK for non-volatile memory refs
  1637 // that happen before the volatile read to float down below it.
  1638 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  1639 // that happen BEFORE the write float down to after the write.  It's OK for
  1640 // non-volatile memory refs that happen after the volatile write to float up
  1641 // before it.
  1642 //
  1643 // We only put in barriers around volatile refs (they are expensive), not
  1644 // _between_ memory refs (that would require us to track the flavor of the
  1645 // previous memory refs).  Requirements (2) and (3) require some barriers
  1646 // before volatile stores and after volatile loads.  These nearly cover
  1647 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  1648 // case is placed after volatile-stores although it could just as well go
  1649 // before volatile-loads.
  1652 void LIRGenerator::do_StoreField(StoreField* x) {
  1653   bool needs_patching = x->needs_patching();
  1654   bool is_volatile = x->field()->is_volatile();
  1655   BasicType field_type = x->field_type();
  1656   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
  1658   CodeEmitInfo* info = NULL;
  1659   if (needs_patching) {
  1660     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1661     info = state_for(x, x->state_before());
  1662   } else if (x->needs_null_check()) {
  1663     NullCheck* nc = x->explicit_null_check();
  1664     if (nc == NULL) {
  1665       info = state_for(x);
  1666     } else {
  1667       info = state_for(nc);
  1672   LIRItem object(x->obj(), this);
  1673   LIRItem value(x->value(),  this);
  1675   object.load_item();
  1677   if (is_volatile || needs_patching) {
  1678     // load item if field is volatile (fewer special cases for volatiles)
  1679     // load item if field not initialized
  1680     // load item if field not constant
  1681     // because of code patching we cannot inline constants
  1682     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
  1683       value.load_byte_item();
  1684     } else  {
  1685       value.load_item();
  1687   } else {
  1688     value.load_for_store(field_type);
  1691   set_no_result(x);
  1693 #ifndef PRODUCT
  1694   if (PrintNotLoaded && needs_patching) {
  1695     tty->print_cr("   ###class not loaded at store_%s bci %d",
  1696                   x->is_static() ?  "static" : "field", x->printable_bci());
  1698 #endif
  1700   if (x->needs_null_check() &&
  1701       (needs_patching ||
  1702        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1703     // emit an explicit null check because the offset is too large
  1704     __ null_check(object.result(), new CodeEmitInfo(info));
  1707   LIR_Address* address;
  1708   if (needs_patching) {
  1709     // we need to patch the offset in the instruction so don't allow
  1710     // generate_address to try to be smart about emitting the -1.
  1711     // Otherwise the patching code won't know how to find the
  1712     // instruction to patch.
  1713     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1714   } else {
  1715     address = generate_address(object.result(), x->offset(), field_type);
  1718   if (is_volatile && os::is_MP()) {
  1719     __ membar_release();
  1722   if (is_oop) {
  1723     // Do the pre-write barrier, if any.
  1724     pre_barrier(LIR_OprFact::address(address),
  1725                 LIR_OprFact::illegalOpr /* pre_val */,
  1726                 true /* do_load*/,
  1727                 needs_patching,
  1728                 (info ? new CodeEmitInfo(info) : NULL));
  1731   if (is_volatile && !needs_patching) {
  1732     volatile_field_store(value.result(), address, info);
  1733   } else {
  1734     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1735     __ store(value.result(), address, info, patch_code);
  1738   if (is_oop) {
  1739     // Store to object so mark the card of the header
  1740     post_barrier(object.result(), value.result());
  1743   if (is_volatile && os::is_MP()) {
  1744     __ membar();
  1749 void LIRGenerator::do_LoadField(LoadField* x) {
  1750   bool needs_patching = x->needs_patching();
  1751   bool is_volatile = x->field()->is_volatile();
  1752   BasicType field_type = x->field_type();
  1754   CodeEmitInfo* info = NULL;
  1755   if (needs_patching) {
  1756     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1757     info = state_for(x, x->state_before());
  1758   } else if (x->needs_null_check()) {
  1759     NullCheck* nc = x->explicit_null_check();
  1760     if (nc == NULL) {
  1761       info = state_for(x);
  1762     } else {
  1763       info = state_for(nc);
  1767   LIRItem object(x->obj(), this);
  1769   object.load_item();
  1771 #ifndef PRODUCT
  1772   if (PrintNotLoaded && needs_patching) {
  1773     tty->print_cr("   ###class not loaded at load_%s bci %d",
  1774                   x->is_static() ?  "static" : "field", x->printable_bci());
  1776 #endif
  1778   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
  1779   if (x->needs_null_check() &&
  1780       (needs_patching ||
  1781        MacroAssembler::needs_explicit_null_check(x->offset()) ||
  1782        stress_deopt)) {
  1783     LIR_Opr obj = object.result();
  1784     if (stress_deopt) {
  1785       obj = new_register(T_OBJECT);
  1786       __ move(LIR_OprFact::oopConst(NULL), obj);
  1788     // emit an explicit null check because the offset is too large
  1789     __ null_check(obj, new CodeEmitInfo(info));
  1792   LIR_Opr reg = rlock_result(x, field_type);
  1793   LIR_Address* address;
  1794   if (needs_patching) {
  1795     // we need to patch the offset in the instruction so don't allow
  1796     // generate_address to try to be smart about emitting the -1.
  1797     // Otherwise the patching code won't know how to find the
  1798     // instruction to patch.
  1799     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1800   } else {
  1801     address = generate_address(object.result(), x->offset(), field_type);
  1804   if (is_volatile && !needs_patching) {
  1805     volatile_field_load(address, reg, info);
  1806   } else {
  1807     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1808     __ load(address, reg, info, patch_code);
  1811   if (is_volatile && os::is_MP()) {
  1812     __ membar_acquire();
  1817 //------------------------java.nio.Buffer.checkIndex------------------------
  1819 // int java.nio.Buffer.checkIndex(int)
  1820 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
  1821   // NOTE: by the time we are in checkIndex() we are guaranteed that
  1822   // the buffer is non-null (because checkIndex is package-private and
  1823   // only called from within other methods in the buffer).
  1824   assert(x->number_of_arguments() == 2, "wrong type");
  1825   LIRItem buf  (x->argument_at(0), this);
  1826   LIRItem index(x->argument_at(1), this);
  1827   buf.load_item();
  1828   index.load_item();
  1830   LIR_Opr result = rlock_result(x);
  1831   if (GenerateRangeChecks) {
  1832     CodeEmitInfo* info = state_for(x);
  1833     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
  1834     if (index.result()->is_constant()) {
  1835       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
  1836       __ branch(lir_cond_belowEqual, T_INT, stub);
  1837     } else {
  1838       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
  1839                   java_nio_Buffer::limit_offset(), T_INT, info);
  1840       __ branch(lir_cond_aboveEqual, T_INT, stub);
  1842     __ move(index.result(), result);
  1843   } else {
  1844     // Just load the index into the result register
  1845     __ move(index.result(), result);
  1850 //------------------------array access--------------------------------------
  1853 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
  1854   LIRItem array(x->array(), this);
  1855   array.load_item();
  1856   LIR_Opr reg = rlock_result(x);
  1858   CodeEmitInfo* info = NULL;
  1859   if (x->needs_null_check()) {
  1860     NullCheck* nc = x->explicit_null_check();
  1861     if (nc == NULL) {
  1862       info = state_for(x);
  1863     } else {
  1864       info = state_for(nc);
  1866     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
  1867       LIR_Opr obj = new_register(T_OBJECT);
  1868       __ move(LIR_OprFact::oopConst(NULL), obj);
  1869       __ null_check(obj, new CodeEmitInfo(info));
  1872   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
  1876 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
  1877   bool use_length = x->length() != NULL;
  1878   LIRItem array(x->array(), this);
  1879   LIRItem index(x->index(), this);
  1880   LIRItem length(this);
  1881   bool needs_range_check = x->compute_needs_range_check();
  1883   if (use_length && needs_range_check) {
  1884     length.set_instruction(x->length());
  1885     length.load_item();
  1888   array.load_item();
  1889   if (index.is_constant() && can_inline_as_constant(x->index())) {
  1890     // let it be a constant
  1891     index.dont_load_item();
  1892   } else {
  1893     index.load_item();
  1896   CodeEmitInfo* range_check_info = state_for(x);
  1897   CodeEmitInfo* null_check_info = NULL;
  1898   if (x->needs_null_check()) {
  1899     NullCheck* nc = x->explicit_null_check();
  1900     if (nc != NULL) {
  1901       null_check_info = state_for(nc);
  1902     } else {
  1903       null_check_info = range_check_info;
  1905     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
  1906       LIR_Opr obj = new_register(T_OBJECT);
  1907       __ move(LIR_OprFact::oopConst(NULL), obj);
  1908       __ null_check(obj, new CodeEmitInfo(null_check_info));
  1912   // emit array address setup early so it schedules better
  1913   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
  1915   if (GenerateRangeChecks && needs_range_check) {
  1916     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
  1917       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
  1918     } else if (use_length) {
  1919       // TODO: use a (modified) version of array_range_check that does not require a
  1920       //       constant length to be loaded to a register
  1921       __ cmp(lir_cond_belowEqual, length.result(), index.result());
  1922       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
  1923     } else {
  1924       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
  1925       // The range check performs the null check, so clear it out for the load
  1926       null_check_info = NULL;
  1930   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
  1934 void LIRGenerator::do_NullCheck(NullCheck* x) {
  1935   if (x->can_trap()) {
  1936     LIRItem value(x->obj(), this);
  1937     value.load_item();
  1938     CodeEmitInfo* info = state_for(x);
  1939     __ null_check(value.result(), info);
  1944 void LIRGenerator::do_TypeCast(TypeCast* x) {
  1945   LIRItem value(x->obj(), this);
  1946   value.load_item();
  1947   // the result is the same as from the node we are casting
  1948   set_result(x, value.result());
  1952 void LIRGenerator::do_Throw(Throw* x) {
  1953   LIRItem exception(x->exception(), this);
  1954   exception.load_item();
  1955   set_no_result(x);
  1956   LIR_Opr exception_opr = exception.result();
  1957   CodeEmitInfo* info = state_for(x, x->state());
  1959 #ifndef PRODUCT
  1960   if (PrintC1Statistics) {
  1961     increment_counter(Runtime1::throw_count_address(), T_INT);
  1963 #endif
  1965   // check if the instruction has an xhandler in any of the nested scopes
  1966   bool unwind = false;
  1967   if (info->exception_handlers()->length() == 0) {
  1968     // this throw is not inside an xhandler
  1969     unwind = true;
  1970   } else {
  1971     // get some idea of the throw type
  1972     bool type_is_exact = true;
  1973     ciType* throw_type = x->exception()->exact_type();
  1974     if (throw_type == NULL) {
  1975       type_is_exact = false;
  1976       throw_type = x->exception()->declared_type();
  1978     if (throw_type != NULL && throw_type->is_instance_klass()) {
  1979       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
  1980       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
  1984   // do null check before moving exception oop into fixed register
  1985   // to avoid a fixed interval with an oop during the null check.
  1986   // Use a copy of the CodeEmitInfo because debug information is
  1987   // different for null_check and throw.
  1988   if (GenerateCompilerNullChecks &&
  1989       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
  1990     // if the exception object wasn't created using new then it might be null.
  1991     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
  1994   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
  1995     // we need to go through the exception lookup path to get JVMTI
  1996     // notification done
  1997     unwind = false;
  2000   // move exception oop into fixed register
  2001   __ move(exception_opr, exceptionOopOpr());
  2003   if (unwind) {
  2004     __ unwind_exception(exceptionOopOpr());
  2005   } else {
  2006     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
  2011 void LIRGenerator::do_RoundFP(RoundFP* x) {
  2012   LIRItem input(x->input(), this);
  2013   input.load_item();
  2014   LIR_Opr input_opr = input.result();
  2015   assert(input_opr->is_register(), "why round if value is not in a register?");
  2016   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
  2017   if (input_opr->is_single_fpu()) {
  2018     set_result(x, round_item(input_opr)); // This code path not currently taken
  2019   } else {
  2020     LIR_Opr result = new_register(T_DOUBLE);
  2021     set_vreg_flag(result, must_start_in_memory);
  2022     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
  2023     set_result(x, result);
  2027 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
  2028 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
  2029 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
  2030   LIRItem base(x->base(), this);
  2031   LIRItem idx(this);
  2033   base.load_item();
  2034   if (x->has_index()) {
  2035     idx.set_instruction(x->index());
  2036     idx.load_nonconstant();
  2039   LIR_Opr reg = rlock_result(x, x->basic_type());
  2041   int   log2_scale = 0;
  2042   if (x->has_index()) {
  2043     log2_scale = x->log2_scale();
  2046   assert(!x->has_index() || idx.value() == x->index(), "should match");
  2048   LIR_Opr base_op = base.result();
  2049   LIR_Opr index_op = idx.result();
  2050 #ifndef _LP64
  2051   if (base_op->type() == T_LONG) {
  2052     base_op = new_register(T_INT);
  2053     __ convert(Bytecodes::_l2i, base.result(), base_op);
  2055   if (x->has_index()) {
  2056     if (index_op->type() == T_LONG) {
  2057       LIR_Opr long_index_op = index_op;
  2058       if (index_op->is_constant()) {
  2059         long_index_op = new_register(T_LONG);
  2060         __ move(index_op, long_index_op);
  2062       index_op = new_register(T_INT);
  2063       __ convert(Bytecodes::_l2i, long_index_op, index_op);
  2064     } else {
  2065       assert(x->index()->type()->tag() == intTag, "must be");
  2068   // At this point base and index should be all ints.
  2069   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
  2070   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
  2071 #else
  2072   if (x->has_index()) {
  2073     if (index_op->type() == T_INT) {
  2074       if (!index_op->is_constant()) {
  2075         index_op = new_register(T_LONG);
  2076         __ convert(Bytecodes::_i2l, idx.result(), index_op);
  2078     } else {
  2079       assert(index_op->type() == T_LONG, "must be");
  2080       if (index_op->is_constant()) {
  2081         index_op = new_register(T_LONG);
  2082         __ move(idx.result(), index_op);
  2086   // At this point base is a long non-constant
  2087   // Index is a long register or a int constant.
  2088   // We allow the constant to stay an int because that would allow us a more compact encoding by
  2089   // embedding an immediate offset in the address expression. If we have a long constant, we have to
  2090   // move it into a register first.
  2091   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
  2092   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
  2093                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
  2094 #endif
  2096   BasicType dst_type = x->basic_type();
  2098   LIR_Address* addr;
  2099   if (index_op->is_constant()) {
  2100     assert(log2_scale == 0, "must not have a scale");
  2101     assert(index_op->type() == T_INT, "only int constants supported");
  2102     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
  2103   } else {
  2104 #ifdef X86
  2105     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
  2106 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
  2107     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
  2108 #else
  2109     if (index_op->is_illegal() || log2_scale == 0) {
  2110       addr = new LIR_Address(base_op, index_op, dst_type);
  2111     } else {
  2112       LIR_Opr tmp = new_pointer_register();
  2113       __ shift_left(index_op, log2_scale, tmp);
  2114       addr = new LIR_Address(base_op, tmp, dst_type);
  2116 #endif
  2119   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
  2120     __ unaligned_move(addr, reg);
  2121   } else {
  2122     if (dst_type == T_OBJECT && x->is_wide()) {
  2123       __ move_wide(addr, reg);
  2124     } else {
  2125       __ move(addr, reg);
  2131 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
  2132   int  log2_scale = 0;
  2133   BasicType type = x->basic_type();
  2135   if (x->has_index()) {
  2136     log2_scale = x->log2_scale();
  2139   LIRItem base(x->base(), this);
  2140   LIRItem value(x->value(), this);
  2141   LIRItem idx(this);
  2143   base.load_item();
  2144   if (x->has_index()) {
  2145     idx.set_instruction(x->index());
  2146     idx.load_item();
  2149   if (type == T_BYTE || type == T_BOOLEAN) {
  2150     value.load_byte_item();
  2151   } else {
  2152     value.load_item();
  2155   set_no_result(x);
  2157   LIR_Opr base_op = base.result();
  2158   LIR_Opr index_op = idx.result();
  2160 #ifdef GENERATE_ADDRESS_IS_PREFERRED
  2161   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
  2162 #else
  2163 #ifndef _LP64
  2164   if (base_op->type() == T_LONG) {
  2165     base_op = new_register(T_INT);
  2166     __ convert(Bytecodes::_l2i, base.result(), base_op);
  2168   if (x->has_index()) {
  2169     if (index_op->type() == T_LONG) {
  2170       index_op = new_register(T_INT);
  2171       __ convert(Bytecodes::_l2i, idx.result(), index_op);
  2174   // At this point base and index should be all ints and not constants
  2175   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
  2176   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
  2177 #else
  2178   if (x->has_index()) {
  2179     if (index_op->type() == T_INT) {
  2180       index_op = new_register(T_LONG);
  2181       __ convert(Bytecodes::_i2l, idx.result(), index_op);
  2184   // At this point base and index are long and non-constant
  2185   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
  2186   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
  2187 #endif
  2189   if (log2_scale != 0) {
  2190     // temporary fix (platform dependent code without shift on Intel would be better)
  2191     // TODO: ARM also allows embedded shift in the address
  2192     __ shift_left(index_op, log2_scale, index_op);
  2195   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
  2196 #endif // !GENERATE_ADDRESS_IS_PREFERRED
  2197   __ move(value.result(), addr);
  2201 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
  2202   BasicType type = x->basic_type();
  2203   LIRItem src(x->object(), this);
  2204   LIRItem off(x->offset(), this);
  2206   off.load_item();
  2207   src.load_item();
  2209   LIR_Opr value = rlock_result(x, x->basic_type());
  2211   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
  2213 #if INCLUDE_ALL_GCS
  2214   // We might be reading the value of the referent field of a
  2215   // Reference object in order to attach it back to the live
  2216   // object graph. If G1 is enabled then we need to record
  2217   // the value that is being returned in an SATB log buffer.
  2218   //
  2219   // We need to generate code similar to the following...
  2220   //
  2221   // if (offset == java_lang_ref_Reference::referent_offset) {
  2222   //   if (src != NULL) {
  2223   //     if (klass(src)->reference_type() != REF_NONE) {
  2224   //       pre_barrier(..., value, ...);
  2225   //     }
  2226   //   }
  2227   // }
  2229   if (UseG1GC && type == T_OBJECT) {
  2230     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
  2231     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
  2232     bool gen_source_check = true;    // Assume we need to check the src object for null.
  2233     bool gen_type_check = true;      // Assume we need to check the reference_type.
  2235     if (off.is_constant()) {
  2236       jlong off_con = (off.type()->is_int() ?
  2237                         (jlong) off.get_jint_constant() :
  2238                         off.get_jlong_constant());
  2241       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
  2242         // The constant offset is something other than referent_offset.
  2243         // We can skip generating/checking the remaining guards and
  2244         // skip generation of the code stub.
  2245         gen_pre_barrier = false;
  2246       } else {
  2247         // The constant offset is the same as referent_offset -
  2248         // we do not need to generate a runtime offset check.
  2249         gen_offset_check = false;
  2253     // We don't need to generate stub if the source object is an array
  2254     if (gen_pre_barrier && src.type()->is_array()) {
  2255       gen_pre_barrier = false;
  2258     if (gen_pre_barrier) {
  2259       // We still need to continue with the checks.
  2260       if (src.is_constant()) {
  2261         ciObject* src_con = src.get_jobject_constant();
  2262         guarantee(src_con != NULL, "no source constant");
  2264         if (src_con->is_null_object()) {
  2265           // The constant src object is null - We can skip
  2266           // generating the code stub.
  2267           gen_pre_barrier = false;
  2268         } else {
  2269           // Non-null constant source object. We still have to generate
  2270           // the slow stub - but we don't need to generate the runtime
  2271           // null object check.
  2272           gen_source_check = false;
  2276     if (gen_pre_barrier && !PatchALot) {
  2277       // Can the klass of object be statically determined to be
  2278       // a sub-class of Reference?
  2279       ciType* type = src.value()->declared_type();
  2280       if ((type != NULL) && type->is_loaded()) {
  2281         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
  2282           gen_type_check = false;
  2283         } else if (type->is_klass() &&
  2284                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
  2285           // Not Reference and not Object klass.
  2286           gen_pre_barrier = false;
  2291     if (gen_pre_barrier) {
  2292       LabelObj* Lcont = new LabelObj();
  2294       // We can have generate one runtime check here. Let's start with
  2295       // the offset check.
  2296       if (gen_offset_check) {
  2297         // if (offset != referent_offset) -> continue
  2298         // If offset is an int then we can do the comparison with the
  2299         // referent_offset constant; otherwise we need to move
  2300         // referent_offset into a temporary register and generate
  2301         // a reg-reg compare.
  2303         LIR_Opr referent_off;
  2305         if (off.type()->is_int()) {
  2306           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
  2307         } else {
  2308           assert(off.type()->is_long(), "what else?");
  2309           referent_off = new_register(T_LONG);
  2310           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
  2312         __ cmp(lir_cond_notEqual, off.result(), referent_off);
  2313         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
  2315       if (gen_source_check) {
  2316         // offset is a const and equals referent offset
  2317         // if (source == null) -> continue
  2318         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
  2319         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
  2321       LIR_Opr src_klass = new_register(T_OBJECT);
  2322       if (gen_type_check) {
  2323         // We have determined that offset == referent_offset && src != null.
  2324         // if (src->_klass->_reference_type == REF_NONE) -> continue
  2325         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
  2326         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
  2327         LIR_Opr reference_type = new_register(T_INT);
  2328         __ move(reference_type_addr, reference_type);
  2329         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
  2330         __ branch(lir_cond_equal, T_INT, Lcont->label());
  2333         // We have determined that src->_klass->_reference_type != REF_NONE
  2334         // so register the value in the referent field with the pre-barrier.
  2335         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
  2336                     value  /* pre_val */,
  2337                     false  /* do_load */,
  2338                     false  /* patch */,
  2339                     NULL   /* info */);
  2341       __ branch_destination(Lcont->label());
  2344 #endif // INCLUDE_ALL_GCS
  2346   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
  2350 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
  2351   BasicType type = x->basic_type();
  2352   LIRItem src(x->object(), this);
  2353   LIRItem off(x->offset(), this);
  2354   LIRItem data(x->value(), this);
  2356   src.load_item();
  2357   if (type == T_BOOLEAN || type == T_BYTE) {
  2358     data.load_byte_item();
  2359   } else {
  2360     data.load_item();
  2362   off.load_item();
  2364   set_no_result(x);
  2366   if (x->is_volatile() && os::is_MP()) __ membar_release();
  2367   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
  2368   if (x->is_volatile() && os::is_MP()) __ membar();
  2372 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
  2373   LIRItem src(x->object(), this);
  2374   LIRItem off(x->offset(), this);
  2376   src.load_item();
  2377   if (off.is_constant() && can_inline_as_constant(x->offset())) {
  2378     // let it be a constant
  2379     off.dont_load_item();
  2380   } else {
  2381     off.load_item();
  2384   set_no_result(x);
  2386   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
  2387   __ prefetch(addr, is_store);
  2391 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
  2392   do_UnsafePrefetch(x, false);
  2396 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
  2397   do_UnsafePrefetch(x, true);
  2401 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
  2402   int lng = x->length();
  2404   for (int i = 0; i < lng; i++) {
  2405     SwitchRange* one_range = x->at(i);
  2406     int low_key = one_range->low_key();
  2407     int high_key = one_range->high_key();
  2408     BlockBegin* dest = one_range->sux();
  2409     if (low_key == high_key) {
  2410       __ cmp(lir_cond_equal, value, low_key);
  2411       __ branch(lir_cond_equal, T_INT, dest);
  2412     } else if (high_key - low_key == 1) {
  2413       __ cmp(lir_cond_equal, value, low_key);
  2414       __ branch(lir_cond_equal, T_INT, dest);
  2415       __ cmp(lir_cond_equal, value, high_key);
  2416       __ branch(lir_cond_equal, T_INT, dest);
  2417     } else {
  2418       LabelObj* L = new LabelObj();
  2419       __ cmp(lir_cond_less, value, low_key);
  2420       __ branch(lir_cond_less, T_INT, L->label());
  2421       __ cmp(lir_cond_lessEqual, value, high_key);
  2422       __ branch(lir_cond_lessEqual, T_INT, dest);
  2423       __ branch_destination(L->label());
  2426   __ jump(default_sux);
  2430 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
  2431   SwitchRangeList* res = new SwitchRangeList();
  2432   int len = x->length();
  2433   if (len > 0) {
  2434     BlockBegin* sux = x->sux_at(0);
  2435     int key = x->lo_key();
  2436     BlockBegin* default_sux = x->default_sux();
  2437     SwitchRange* range = new SwitchRange(key, sux);
  2438     for (int i = 0; i < len; i++, key++) {
  2439       BlockBegin* new_sux = x->sux_at(i);
  2440       if (sux == new_sux) {
  2441         // still in same range
  2442         range->set_high_key(key);
  2443       } else {
  2444         // skip tests which explicitly dispatch to the default
  2445         if (sux != default_sux) {
  2446           res->append(range);
  2448         range = new SwitchRange(key, new_sux);
  2450       sux = new_sux;
  2452     if (res->length() == 0 || res->last() != range)  res->append(range);
  2454   return res;
  2458 // we expect the keys to be sorted by increasing value
  2459 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
  2460   SwitchRangeList* res = new SwitchRangeList();
  2461   int len = x->length();
  2462   if (len > 0) {
  2463     BlockBegin* default_sux = x->default_sux();
  2464     int key = x->key_at(0);
  2465     BlockBegin* sux = x->sux_at(0);
  2466     SwitchRange* range = new SwitchRange(key, sux);
  2467     for (int i = 1; i < len; i++) {
  2468       int new_key = x->key_at(i);
  2469       BlockBegin* new_sux = x->sux_at(i);
  2470       if (key+1 == new_key && sux == new_sux) {
  2471         // still in same range
  2472         range->set_high_key(new_key);
  2473       } else {
  2474         // skip tests which explicitly dispatch to the default
  2475         if (range->sux() != default_sux) {
  2476           res->append(range);
  2478         range = new SwitchRange(new_key, new_sux);
  2480       key = new_key;
  2481       sux = new_sux;
  2483     if (res->length() == 0 || res->last() != range)  res->append(range);
  2485   return res;
  2489 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
  2490   LIRItem tag(x->tag(), this);
  2491   tag.load_item();
  2492   set_no_result(x);
  2494   if (x->is_safepoint()) {
  2495     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2498   // move values into phi locations
  2499   move_to_phi(x->state());
  2501   int lo_key = x->lo_key();
  2502   int hi_key = x->hi_key();
  2503   int len = x->length();
  2504   LIR_Opr value = tag.result();
  2505   if (UseTableRanges) {
  2506     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2507   } else {
  2508     for (int i = 0; i < len; i++) {
  2509       __ cmp(lir_cond_equal, value, i + lo_key);
  2510       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2512     __ jump(x->default_sux());
  2517 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
  2518   LIRItem tag(x->tag(), this);
  2519   tag.load_item();
  2520   set_no_result(x);
  2522   if (x->is_safepoint()) {
  2523     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2526   // move values into phi locations
  2527   move_to_phi(x->state());
  2529   LIR_Opr value = tag.result();
  2530   if (UseTableRanges) {
  2531     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2532   } else {
  2533     int len = x->length();
  2534     for (int i = 0; i < len; i++) {
  2535       __ cmp(lir_cond_equal, value, x->key_at(i));
  2536       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2538     __ jump(x->default_sux());
  2543 void LIRGenerator::do_Goto(Goto* x) {
  2544   set_no_result(x);
  2546   if (block()->next()->as_OsrEntry()) {
  2547     // need to free up storage used for OSR entry point
  2548     LIR_Opr osrBuffer = block()->next()->operand();
  2549     BasicTypeList signature;
  2550     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
  2551     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
  2552     __ move(osrBuffer, cc->args()->at(0));
  2553     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
  2554                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
  2557   if (x->is_safepoint()) {
  2558     ValueStack* state = x->state_before() ? x->state_before() : x->state();
  2560     // increment backedge counter if needed
  2561     CodeEmitInfo* info = state_for(x, state);
  2562     increment_backedge_counter(info, x->profiled_bci());
  2563     CodeEmitInfo* safepoint_info = state_for(x, state);
  2564     __ safepoint(safepoint_poll_register(), safepoint_info);
  2567   // Gotos can be folded Ifs, handle this case.
  2568   if (x->should_profile()) {
  2569     ciMethod* method = x->profiled_method();
  2570     assert(method != NULL, "method should be set if branch is profiled");
  2571     ciMethodData* md = method->method_data_or_null();
  2572     assert(md != NULL, "Sanity");
  2573     ciProfileData* data = md->bci_to_data(x->profiled_bci());
  2574     assert(data != NULL, "must have profiling data");
  2575     int offset;
  2576     if (x->direction() == Goto::taken) {
  2577       assert(data->is_BranchData(), "need BranchData for two-way branches");
  2578       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
  2579     } else if (x->direction() == Goto::not_taken) {
  2580       assert(data->is_BranchData(), "need BranchData for two-way branches");
  2581       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
  2582     } else {
  2583       assert(data->is_JumpData(), "need JumpData for branches");
  2584       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
  2586     LIR_Opr md_reg = new_register(T_METADATA);
  2587     __ metadata2reg(md->constant_encoding(), md_reg);
  2589     increment_counter(new LIR_Address(md_reg, offset,
  2590                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
  2593   // emit phi-instruction move after safepoint since this simplifies
  2594   // describing the state as the safepoint.
  2595   move_to_phi(x->state());
  2597   __ jump(x->default_sux());
  2600 /**
  2601  * Emit profiling code if needed for arguments, parameters, return value types
  2603  * @param md                    MDO the code will update at runtime
  2604  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
  2605  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
  2606  * @param profiled_k            current profile
  2607  * @param obj                   IR node for the object to be profiled
  2608  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
  2609  *                              Set once we find an update to make and use for next ones.
  2610  * @param not_null              true if we know obj cannot be null
  2611  * @param signature_at_call_k   signature at call for obj
  2612  * @param callee_signature_k    signature of callee for obj
  2613  *                              at call and callee signatures differ at method handle call
  2614  * @return                      the only klass we know will ever be seen at this profile point
  2615  */
  2616 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
  2617                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
  2618                                     ciKlass* callee_signature_k) {
  2619   ciKlass* result = NULL;
  2620   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
  2621   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
  2622   // known not to be null or null bit already set and already set to
  2623   // unknown: nothing we can do to improve profiling
  2624   if (!do_null && !do_update) {
  2625     return result;
  2628   ciKlass* exact_klass = NULL;
  2629   Compilation* comp = Compilation::current();
  2630   if (do_update) {
  2631     // try to find exact type, using CHA if possible, so that loading
  2632     // the klass from the object can be avoided
  2633     ciType* type = obj->exact_type();
  2634     if (type == NULL) {
  2635       type = obj->declared_type();
  2636       type = comp->cha_exact_type(type);
  2638     assert(type == NULL || type->is_klass(), "type should be class");
  2639     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
  2641     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
  2644   if (!do_null && !do_update) {
  2645     return result;
  2648   ciKlass* exact_signature_k = NULL;
  2649   if (do_update) {
  2650     // Is the type from the signature exact (the only one possible)?
  2651     exact_signature_k = signature_at_call_k->exact_klass();
  2652     if (exact_signature_k == NULL) {
  2653       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
  2654     } else {
  2655       result = exact_signature_k;
  2656       // Known statically. No need to emit any code: prevent
  2657       // LIR_Assembler::emit_profile_type() from emitting useless code
  2658       profiled_k = ciTypeEntries::with_status(result, profiled_k);
  2660     // exact_klass and exact_signature_k can be both non NULL but
  2661     // different if exact_klass is loaded after the ciObject for
  2662     // exact_signature_k is created.
  2663     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
  2664       // sometimes the type of the signature is better than the best type
  2665       // the compiler has
  2666       exact_klass = exact_signature_k;
  2668     if (callee_signature_k != NULL &&
  2669         callee_signature_k != signature_at_call_k) {
  2670       ciKlass* improved_klass = callee_signature_k->exact_klass();
  2671       if (improved_klass == NULL) {
  2672         improved_klass = comp->cha_exact_type(callee_signature_k);
  2674       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
  2675         exact_klass = exact_signature_k;
  2678     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
  2681   if (!do_null && !do_update) {
  2682     return result;
  2685   if (mdp == LIR_OprFact::illegalOpr) {
  2686     mdp = new_register(T_METADATA);
  2687     __ metadata2reg(md->constant_encoding(), mdp);
  2688     if (md_base_offset != 0) {
  2689       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
  2690       mdp = new_pointer_register();
  2691       __ leal(LIR_OprFact::address(base_type_address), mdp);
  2694   LIRItem value(obj, this);
  2695   value.load_item();
  2696   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
  2697                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
  2698   return result;
  2701 // profile parameters on entry to the root of the compilation
  2702 void LIRGenerator::profile_parameters(Base* x) {
  2703   if (compilation()->profile_parameters()) {
  2704     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  2705     ciMethodData* md = scope()->method()->method_data_or_null();
  2706     assert(md != NULL, "Sanity");
  2708     if (md->parameters_type_data() != NULL) {
  2709       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
  2710       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
  2711       LIR_Opr mdp = LIR_OprFact::illegalOpr;
  2712       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
  2713         LIR_Opr src = args->at(i);
  2714         assert(!src->is_illegal(), "check");
  2715         BasicType t = src->type();
  2716         if (t == T_OBJECT || t == T_ARRAY) {
  2717           intptr_t profiled_k = parameters->type(j);
  2718           Local* local = x->state()->local_at(java_index)->as_Local();
  2719           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
  2720                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
  2721                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
  2722           // If the profile is known statically set it once for all and do not emit any code
  2723           if (exact != NULL) {
  2724             md->set_parameter_type(j, exact);
  2726           j++;
  2728         java_index += type2size[t];
  2734 void LIRGenerator::do_Base(Base* x) {
  2735   __ std_entry(LIR_OprFact::illegalOpr);
  2736   // Emit moves from physical registers / stack slots to virtual registers
  2737   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  2738   IRScope* irScope = compilation()->hir()->top_scope();
  2739   int java_index = 0;
  2740   for (int i = 0; i < args->length(); i++) {
  2741     LIR_Opr src = args->at(i);
  2742     assert(!src->is_illegal(), "check");
  2743     BasicType t = src->type();
  2745     // Types which are smaller than int are passed as int, so
  2746     // correct the type which passed.
  2747     switch (t) {
  2748     case T_BYTE:
  2749     case T_BOOLEAN:
  2750     case T_SHORT:
  2751     case T_CHAR:
  2752       t = T_INT;
  2753       break;
  2756     LIR_Opr dest = new_register(t);
  2757     __ move(src, dest);
  2759     // Assign new location to Local instruction for this local
  2760     Local* local = x->state()->local_at(java_index)->as_Local();
  2761     assert(local != NULL, "Locals for incoming arguments must have been created");
  2762 #ifndef __SOFTFP__
  2763     // The java calling convention passes double as long and float as int.
  2764     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
  2765 #endif // __SOFTFP__
  2766     local->set_operand(dest);
  2767     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
  2768     java_index += type2size[t];
  2771   if (compilation()->env()->dtrace_method_probes()) {
  2772     BasicTypeList signature;
  2773     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  2774     signature.append(T_METADATA); // Method*
  2775     LIR_OprList* args = new LIR_OprList();
  2776     args->append(getThreadPointer());
  2777     LIR_Opr meth = new_register(T_METADATA);
  2778     __ metadata2reg(method()->constant_encoding(), meth);
  2779     args->append(meth);
  2780     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
  2783   if (method()->is_synchronized()) {
  2784     LIR_Opr obj;
  2785     if (method()->is_static()) {
  2786       obj = new_register(T_OBJECT);
  2787       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
  2788     } else {
  2789       Local* receiver = x->state()->local_at(0)->as_Local();
  2790       assert(receiver != NULL, "must already exist");
  2791       obj = receiver->operand();
  2793     assert(obj->is_valid(), "must be valid");
  2795     if (method()->is_synchronized() && GenerateSynchronizationCode) {
  2796       LIR_Opr lock = new_register(T_INT);
  2797       __ load_stack_address_monitor(0, lock);
  2799       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
  2800       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
  2802       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
  2803       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
  2807   // increment invocation counters if needed
  2808   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
  2809     profile_parameters(x);
  2810     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
  2811     increment_invocation_counter(info);
  2814   // all blocks with a successor must end with an unconditional jump
  2815   // to the successor even if they are consecutive
  2816   __ jump(x->default_sux());
  2820 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
  2821   // construct our frame and model the production of incoming pointer
  2822   // to the OSR buffer.
  2823   __ osr_entry(LIR_Assembler::osrBufferPointer());
  2824   LIR_Opr result = rlock_result(x);
  2825   __ move(LIR_Assembler::osrBufferPointer(), result);
  2829 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
  2830   assert(args->length() == arg_list->length(),
  2831          err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
  2832   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
  2833     LIRItem* param = args->at(i);
  2834     LIR_Opr loc = arg_list->at(i);
  2835     if (loc->is_register()) {
  2836       param->load_item_force(loc);
  2837     } else {
  2838       LIR_Address* addr = loc->as_address_ptr();
  2839       param->load_for_store(addr->type());
  2840       if (addr->type() == T_OBJECT) {
  2841         __ move_wide(param->result(), addr);
  2842       } else
  2843         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  2844           __ unaligned_move(param->result(), addr);
  2845         } else {
  2846           __ move(param->result(), addr);
  2851   if (x->has_receiver()) {
  2852     LIRItem* receiver = args->at(0);
  2853     LIR_Opr loc = arg_list->at(0);
  2854     if (loc->is_register()) {
  2855       receiver->load_item_force(loc);
  2856     } else {
  2857       assert(loc->is_address(), "just checking");
  2858       receiver->load_for_store(T_OBJECT);
  2859       __ move_wide(receiver->result(), loc->as_address_ptr());
  2865 // Visits all arguments, returns appropriate items without loading them
  2866 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
  2867   LIRItemList* argument_items = new LIRItemList();
  2868   if (x->has_receiver()) {
  2869     LIRItem* receiver = new LIRItem(x->receiver(), this);
  2870     argument_items->append(receiver);
  2872   for (int i = 0; i < x->number_of_arguments(); i++) {
  2873     LIRItem* param = new LIRItem(x->argument_at(i), this);
  2874     argument_items->append(param);
  2876   return argument_items;
  2880 // The invoke with receiver has following phases:
  2881 //   a) traverse and load/lock receiver;
  2882 //   b) traverse all arguments -> item-array (invoke_visit_argument)
  2883 //   c) push receiver on stack
  2884 //   d) load each of the items and push on stack
  2885 //   e) unlock receiver
  2886 //   f) move receiver into receiver-register %o0
  2887 //   g) lock result registers and emit call operation
  2888 //
  2889 // Before issuing a call, we must spill-save all values on stack
  2890 // that are in caller-save register. "spill-save" moves thos registers
  2891 // either in a free callee-save register or spills them if no free
  2892 // callee save register is available.
  2893 //
  2894 // The problem is where to invoke spill-save.
  2895 // - if invoked between e) and f), we may lock callee save
  2896 //   register in "spill-save" that destroys the receiver register
  2897 //   before f) is executed
  2898 // - if we rearange the f) to be earlier, by loading %o0, it
  2899 //   may destroy a value on the stack that is currently in %o0
  2900 //   and is waiting to be spilled
  2901 // - if we keep the receiver locked while doing spill-save,
  2902 //   we cannot spill it as it is spill-locked
  2903 //
  2904 void LIRGenerator::do_Invoke(Invoke* x) {
  2905   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
  2907   LIR_OprList* arg_list = cc->args();
  2908   LIRItemList* args = invoke_visit_arguments(x);
  2909   LIR_Opr receiver = LIR_OprFact::illegalOpr;
  2911   // setup result register
  2912   LIR_Opr result_register = LIR_OprFact::illegalOpr;
  2913   if (x->type() != voidType) {
  2914     result_register = result_register_for(x->type());
  2917   CodeEmitInfo* info = state_for(x, x->state());
  2919   invoke_load_arguments(x, args, arg_list);
  2921   if (x->has_receiver()) {
  2922     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
  2923     receiver = args->at(0)->result();
  2926   // emit invoke code
  2927   bool optimized = x->target_is_loaded() && x->target_is_final();
  2928   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
  2930   // JSR 292
  2931   // Preserve the SP over MethodHandle call sites.
  2932   ciMethod* target = x->target();
  2933   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
  2934                                   target->is_method_handle_intrinsic() ||
  2935                                   target->is_compiled_lambda_form());
  2936   if (is_method_handle_invoke) {
  2937     info->set_is_method_handle_invoke(true);
  2938     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
  2941   switch (x->code()) {
  2942     case Bytecodes::_invokestatic:
  2943       __ call_static(target, result_register,
  2944                      SharedRuntime::get_resolve_static_call_stub(),
  2945                      arg_list, info);
  2946       break;
  2947     case Bytecodes::_invokespecial:
  2948     case Bytecodes::_invokevirtual:
  2949     case Bytecodes::_invokeinterface:
  2950       // for final target we still produce an inline cache, in order
  2951       // to be able to call mixed mode
  2952       if (x->code() == Bytecodes::_invokespecial || optimized) {
  2953         __ call_opt_virtual(target, receiver, result_register,
  2954                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
  2955                             arg_list, info);
  2956       } else if (x->vtable_index() < 0) {
  2957         __ call_icvirtual(target, receiver, result_register,
  2958                           SharedRuntime::get_resolve_virtual_call_stub(),
  2959                           arg_list, info);
  2960       } else {
  2961         int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
  2962         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
  2963         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
  2965       break;
  2966     case Bytecodes::_invokedynamic: {
  2967       __ call_dynamic(target, receiver, result_register,
  2968                       SharedRuntime::get_resolve_static_call_stub(),
  2969                       arg_list, info);
  2970       break;
  2972     default:
  2973       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
  2974       break;
  2977   // JSR 292
  2978   // Restore the SP after MethodHandle call sites.
  2979   if (is_method_handle_invoke) {
  2980     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
  2983   if (x->type()->is_float() || x->type()->is_double()) {
  2984     // Force rounding of results from non-strictfp when in strictfp
  2985     // scope (or when we don't know the strictness of the callee, to
  2986     // be safe.)
  2987     if (method()->is_strict()) {
  2988       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
  2989         result_register = round_item(result_register);
  2994   if (result_register->is_valid()) {
  2995     LIR_Opr result = rlock_result(x);
  2996     __ move(result_register, result);
  3001 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
  3002   assert(x->number_of_arguments() == 1, "wrong type");
  3003   LIRItem value       (x->argument_at(0), this);
  3004   LIR_Opr reg = rlock_result(x);
  3005   value.load_item();
  3006   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
  3007   __ move(tmp, reg);
  3012 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
  3013 void LIRGenerator::do_IfOp(IfOp* x) {
  3014 #ifdef ASSERT
  3016     ValueTag xtag = x->x()->type()->tag();
  3017     ValueTag ttag = x->tval()->type()->tag();
  3018     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
  3019     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
  3020     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
  3022 #endif
  3024   LIRItem left(x->x(), this);
  3025   LIRItem right(x->y(), this);
  3026   left.load_item();
  3027   if (can_inline_as_constant(right.value())) {
  3028     right.dont_load_item();
  3029   } else {
  3030     right.load_item();
  3033   LIRItem t_val(x->tval(), this);
  3034   LIRItem f_val(x->fval(), this);
  3035   t_val.dont_load_item();
  3036   f_val.dont_load_item();
  3037   LIR_Opr reg = rlock_result(x);
  3039   __ cmp(lir_cond(x->cond()), left.result(), right.result());
  3040   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
  3043 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
  3044     assert(x->number_of_arguments() == expected_arguments, "wrong type");
  3045     LIR_Opr reg = result_register_for(x->type());
  3046     __ call_runtime_leaf(routine, getThreadTemp(),
  3047                          reg, new LIR_OprList());
  3048     LIR_Opr result = rlock_result(x);
  3049     __ move(reg, result);
  3052 #ifdef TRACE_HAVE_INTRINSICS
  3053 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
  3054     LIR_Opr thread = getThreadPointer();
  3055     LIR_Opr osthread = new_pointer_register();
  3056     __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
  3057     size_t thread_id_size = OSThread::thread_id_size();
  3058     if (thread_id_size == (size_t) BytesPerLong) {
  3059       LIR_Opr id = new_register(T_LONG);
  3060       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
  3061       __ convert(Bytecodes::_l2i, id, rlock_result(x));
  3062     } else if (thread_id_size == (size_t) BytesPerInt) {
  3063       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
  3064     } else {
  3065       ShouldNotReachHere();
  3069 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
  3070     CodeEmitInfo* info = state_for(x);
  3071     CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
  3072     BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
  3073     assert(info != NULL, "must have info");
  3074     LIRItem arg(x->argument_at(1), this);
  3075     arg.load_item();
  3076     LIR_Opr klass = new_pointer_register();
  3077     __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
  3078     LIR_Opr id = new_register(T_LONG);
  3079     ByteSize offset = TRACE_ID_OFFSET;
  3080     LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
  3081     __ move(trace_id_addr, id);
  3082     __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
  3083     __ store(id, trace_id_addr);
  3084     __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
  3085     __ move(id, rlock_result(x));
  3087 #endif
  3089 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
  3090   switch (x->id()) {
  3091   case vmIntrinsics::_intBitsToFloat      :
  3092   case vmIntrinsics::_doubleToRawLongBits :
  3093   case vmIntrinsics::_longBitsToDouble    :
  3094   case vmIntrinsics::_floatToRawIntBits   : {
  3095     do_FPIntrinsics(x);
  3096     break;
  3099 #ifdef TRACE_HAVE_INTRINSICS
  3100   case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
  3101   case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
  3102   case vmIntrinsics::_counterTime:
  3103     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
  3104     break;
  3105 #endif
  3107   case vmIntrinsics::_currentTimeMillis:
  3108     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
  3109     break;
  3111   case vmIntrinsics::_nanoTime:
  3112     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
  3113     break;
  3115   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
  3116   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
  3117   case vmIntrinsics::_getClass:       do_getClass(x);      break;
  3118   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
  3120   case vmIntrinsics::_dlog:           // fall through
  3121   case vmIntrinsics::_dlog10:         // fall through
  3122   case vmIntrinsics::_dabs:           // fall through
  3123   case vmIntrinsics::_dsqrt:          // fall through
  3124   case vmIntrinsics::_dtan:           // fall through
  3125   case vmIntrinsics::_dsin :          // fall through
  3126   case vmIntrinsics::_dcos :          // fall through
  3127   case vmIntrinsics::_dexp :          // fall through
  3128   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
  3129   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
  3131   // java.nio.Buffer.checkIndex
  3132   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
  3134   case vmIntrinsics::_compareAndSwapObject:
  3135     do_CompareAndSwap(x, objectType);
  3136     break;
  3137   case vmIntrinsics::_compareAndSwapInt:
  3138     do_CompareAndSwap(x, intType);
  3139     break;
  3140   case vmIntrinsics::_compareAndSwapLong:
  3141     do_CompareAndSwap(x, longType);
  3142     break;
  3144   case vmIntrinsics::_loadFence :
  3145     if (os::is_MP()) __ membar_acquire();
  3146     break;
  3147   case vmIntrinsics::_storeFence:
  3148     if (os::is_MP()) __ membar_release();
  3149     break;
  3150   case vmIntrinsics::_fullFence :
  3151     if (os::is_MP()) __ membar();
  3152     break;
  3154   case vmIntrinsics::_Reference_get:
  3155     do_Reference_get(x);
  3156     break;
  3158   case vmIntrinsics::_updateCRC32:
  3159   case vmIntrinsics::_updateBytesCRC32:
  3160   case vmIntrinsics::_updateByteBufferCRC32:
  3161     do_update_CRC32(x);
  3162     break;
  3164   default: ShouldNotReachHere(); break;
  3168 void LIRGenerator::profile_arguments(ProfileCall* x) {
  3169   if (compilation()->profile_arguments()) {
  3170     int bci = x->bci_of_invoke();
  3171     ciMethodData* md = x->method()->method_data_or_null();
  3172     ciProfileData* data = md->bci_to_data(bci);
  3173     if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
  3174         (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
  3175       ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
  3176       int base_offset = md->byte_offset_of_slot(data, extra);
  3177       LIR_Opr mdp = LIR_OprFact::illegalOpr;
  3178       ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
  3180       Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
  3181       int start = 0;
  3182       int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
  3183       if (x->inlined() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
  3184         // first argument is not profiled at call (method handle invoke)
  3185         assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
  3186         start = 1;
  3188       ciSignature* callee_signature = x->callee()->signature();
  3189       // method handle call to virtual method
  3190       bool has_receiver = x->inlined() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
  3191       ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
  3193       bool ignored_will_link;
  3194       ciSignature* signature_at_call = NULL;
  3195       x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
  3196       ciSignatureStream signature_at_call_stream(signature_at_call);
  3198       // if called through method handle invoke, some arguments may have been popped
  3199       for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
  3200         int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
  3201         ciKlass* exact = profile_type(md, base_offset, off,
  3202                                       args->type(i), x->profiled_arg_at(i+start), mdp,
  3203                                       !x->arg_needs_null_check(i+start),
  3204                                       signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
  3205         if (exact != NULL) {
  3206           md->set_argument_type(bci, i, exact);
  3209     } else {
  3210 #ifdef ASSERT
  3211       Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
  3212       int n = x->nb_profiled_args();
  3213       assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
  3214                                                   (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
  3215              "only at JSR292 bytecodes");
  3216 #endif
  3221 // profile parameters on entry to an inlined method
  3222 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
  3223   if (compilation()->profile_parameters() && x->inlined()) {
  3224     ciMethodData* md = x->callee()->method_data_or_null();
  3225     if (md != NULL) {
  3226       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
  3227       if (parameters_type_data != NULL) {
  3228         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
  3229         LIR_Opr mdp = LIR_OprFact::illegalOpr;
  3230         bool has_receiver = !x->callee()->is_static();
  3231         ciSignature* sig = x->callee()->signature();
  3232         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
  3233         int i = 0; // to iterate on the Instructions
  3234         Value arg = x->recv();
  3235         bool not_null = false;
  3236         int bci = x->bci_of_invoke();
  3237         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
  3238         // The first parameter is the receiver so that's what we start
  3239         // with if it exists. One exception is method handle call to
  3240         // virtual method: the receiver is in the args list
  3241         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
  3242           i = 1;
  3243           arg = x->profiled_arg_at(0);
  3244           not_null = !x->arg_needs_null_check(0);
  3246         int k = 0; // to iterate on the profile data
  3247         for (;;) {
  3248           intptr_t profiled_k = parameters->type(k);
  3249           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
  3250                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
  3251                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
  3252           // If the profile is known statically set it once for all and do not emit any code
  3253           if (exact != NULL) {
  3254             md->set_parameter_type(k, exact);
  3256           k++;
  3257           if (k >= parameters_type_data->number_of_parameters()) {
  3258 #ifdef ASSERT
  3259             int extra = 0;
  3260             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
  3261                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
  3262                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
  3263               extra += 1;
  3265             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
  3266 #endif
  3267             break;
  3269           arg = x->profiled_arg_at(i);
  3270           not_null = !x->arg_needs_null_check(i);
  3271           i++;
  3278 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
  3279   // Need recv in a temporary register so it interferes with the other temporaries
  3280   LIR_Opr recv = LIR_OprFact::illegalOpr;
  3281   LIR_Opr mdo = new_register(T_OBJECT);
  3282   // tmp is used to hold the counters on SPARC
  3283   LIR_Opr tmp = new_pointer_register();
  3285   if (x->nb_profiled_args() > 0) {
  3286     profile_arguments(x);
  3289   // profile parameters on inlined method entry including receiver
  3290   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
  3291     profile_parameters_at_call(x);
  3294   if (x->recv() != NULL) {
  3295     LIRItem value(x->recv(), this);
  3296     value.load_item();
  3297     recv = new_register(T_OBJECT);
  3298     __ move(value.result(), recv);
  3300   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
  3303 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
  3304   int bci = x->bci_of_invoke();
  3305   ciMethodData* md = x->method()->method_data_or_null();
  3306   ciProfileData* data = md->bci_to_data(bci);
  3307   assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
  3308   ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
  3309   LIR_Opr mdp = LIR_OprFact::illegalOpr;
  3311   bool ignored_will_link;
  3312   ciSignature* signature_at_call = NULL;
  3313   x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
  3315   // The offset within the MDO of the entry to update may be too large
  3316   // to be used in load/store instructions on some platforms. So have
  3317   // profile_type() compute the address of the profile in a register.
  3318   ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
  3319                                 ret->type(), x->ret(), mdp,
  3320                                 !x->needs_null_check(),
  3321                                 signature_at_call->return_type()->as_klass(),
  3322                                 x->callee()->signature()->return_type()->as_klass());
  3323   if (exact != NULL) {
  3324     md->set_return_type(bci, exact);
  3328 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
  3329   // We can safely ignore accessors here, since c2 will inline them anyway,
  3330   // accessors are also always mature.
  3331   if (!x->inlinee()->is_accessor()) {
  3332     CodeEmitInfo* info = state_for(x, x->state(), true);
  3333     // Notify the runtime very infrequently only to take care of counter overflows
  3334     increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
  3338 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
  3339   int freq_log;
  3340   int level = compilation()->env()->comp_level();
  3341   if (level == CompLevel_limited_profile) {
  3342     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
  3343   } else if (level == CompLevel_full_profile) {
  3344     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
  3345   } else {
  3346     ShouldNotReachHere();
  3348   // Increment the appropriate invocation/backedge counter and notify the runtime.
  3349   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
  3352 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
  3353                                                 ciMethod *method, int frequency,
  3354                                                 int bci, bool backedge, bool notify) {
  3355   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
  3356   int level = _compilation->env()->comp_level();
  3357   assert(level > CompLevel_simple, "Shouldn't be here");
  3359   int offset = -1;
  3360   LIR_Opr counter_holder;
  3361   if (level == CompLevel_limited_profile) {
  3362     MethodCounters* counters_adr = method->ensure_method_counters();
  3363     if (counters_adr == NULL) {
  3364       bailout("method counters allocation failed");
  3365       return;
  3367     counter_holder = new_pointer_register();
  3368     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
  3369     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
  3370                                  MethodCounters::invocation_counter_offset());
  3371   } else if (level == CompLevel_full_profile) {
  3372     counter_holder = new_register(T_METADATA);
  3373     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
  3374                                  MethodData::invocation_counter_offset());
  3375     ciMethodData* md = method->method_data_or_null();
  3376     assert(md != NULL, "Sanity");
  3377     __ metadata2reg(md->constant_encoding(), counter_holder);
  3378   } else {
  3379     ShouldNotReachHere();
  3381   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
  3382   LIR_Opr result = new_register(T_INT);
  3383   __ load(counter, result);
  3384   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
  3385   __ store(result, counter);
  3386   if (notify) {
  3387     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
  3388     LIR_Opr meth = new_register(T_METADATA);
  3389     __ metadata2reg(method->constant_encoding(), meth);
  3390     __ logical_and(result, mask, result);
  3391     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
  3392     // The bci for info can point to cmp for if's we want the if bci
  3393     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
  3394     __ branch(lir_cond_equal, T_INT, overflow);
  3395     __ branch_destination(overflow->continuation());
  3399 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
  3400   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
  3401   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
  3403   if (x->pass_thread()) {
  3404     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  3405     args->append(getThreadPointer());
  3408   for (int i = 0; i < x->number_of_arguments(); i++) {
  3409     Value a = x->argument_at(i);
  3410     LIRItem* item = new LIRItem(a, this);
  3411     item->load_item();
  3412     args->append(item->result());
  3413     signature->append(as_BasicType(a->type()));
  3416   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
  3417   if (x->type() == voidType) {
  3418     set_no_result(x);
  3419   } else {
  3420     __ move(result, rlock_result(x));
  3424 #ifdef ASSERT
  3425 void LIRGenerator::do_Assert(Assert *x) {
  3426   ValueTag tag = x->x()->type()->tag();
  3427   If::Condition cond = x->cond();
  3429   LIRItem xitem(x->x(), this);
  3430   LIRItem yitem(x->y(), this);
  3431   LIRItem* xin = &xitem;
  3432   LIRItem* yin = &yitem;
  3434   assert(tag == intTag, "Only integer assertions are valid!");
  3436   xin->load_item();
  3437   yin->dont_load_item();
  3439   set_no_result(x);
  3441   LIR_Opr left = xin->result();
  3442   LIR_Opr right = yin->result();
  3444   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
  3446 #endif
  3448 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
  3451   Instruction *a = x->x();
  3452   Instruction *b = x->y();
  3453   if (!a || StressRangeCheckElimination) {
  3454     assert(!b || StressRangeCheckElimination, "B must also be null");
  3456     CodeEmitInfo *info = state_for(x, x->state());
  3457     CodeStub* stub = new PredicateFailedStub(info);
  3459     __ jump(stub);
  3460   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
  3461     int a_int = a->type()->as_IntConstant()->value();
  3462     int b_int = b->type()->as_IntConstant()->value();
  3464     bool ok = false;
  3466     switch(x->cond()) {
  3467       case Instruction::eql: ok = (a_int == b_int); break;
  3468       case Instruction::neq: ok = (a_int != b_int); break;
  3469       case Instruction::lss: ok = (a_int < b_int); break;
  3470       case Instruction::leq: ok = (a_int <= b_int); break;
  3471       case Instruction::gtr: ok = (a_int > b_int); break;
  3472       case Instruction::geq: ok = (a_int >= b_int); break;
  3473       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
  3474       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
  3475       default: ShouldNotReachHere();
  3478     if (ok) {
  3480       CodeEmitInfo *info = state_for(x, x->state());
  3481       CodeStub* stub = new PredicateFailedStub(info);
  3483       __ jump(stub);
  3485   } else {
  3487     ValueTag tag = x->x()->type()->tag();
  3488     If::Condition cond = x->cond();
  3489     LIRItem xitem(x->x(), this);
  3490     LIRItem yitem(x->y(), this);
  3491     LIRItem* xin = &xitem;
  3492     LIRItem* yin = &yitem;
  3494     assert(tag == intTag, "Only integer deoptimizations are valid!");
  3496     xin->load_item();
  3497     yin->dont_load_item();
  3498     set_no_result(x);
  3500     LIR_Opr left = xin->result();
  3501     LIR_Opr right = yin->result();
  3503     CodeEmitInfo *info = state_for(x, x->state());
  3504     CodeStub* stub = new PredicateFailedStub(info);
  3506     __ cmp(lir_cond(cond), left, right);
  3507     __ branch(lir_cond(cond), right->type(), stub);
  3512 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
  3513   LIRItemList args(1);
  3514   LIRItem value(arg1, this);
  3515   args.append(&value);
  3516   BasicTypeList signature;
  3517   signature.append(as_BasicType(arg1->type()));
  3519   return call_runtime(&signature, &args, entry, result_type, info);
  3523 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
  3524   LIRItemList args(2);
  3525   LIRItem value1(arg1, this);
  3526   LIRItem value2(arg2, this);
  3527   args.append(&value1);
  3528   args.append(&value2);
  3529   BasicTypeList signature;
  3530   signature.append(as_BasicType(arg1->type()));
  3531   signature.append(as_BasicType(arg2->type()));
  3533   return call_runtime(&signature, &args, entry, result_type, info);
  3537 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
  3538                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  3539   // get a result register
  3540   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  3541   LIR_Opr result = LIR_OprFact::illegalOpr;
  3542   if (result_type->tag() != voidTag) {
  3543     result = new_register(result_type);
  3544     phys_reg = result_register_for(result_type);
  3547   // move the arguments into the correct location
  3548   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  3549   assert(cc->length() == args->length(), "argument mismatch");
  3550   for (int i = 0; i < args->length(); i++) {
  3551     LIR_Opr arg = args->at(i);
  3552     LIR_Opr loc = cc->at(i);
  3553     if (loc->is_register()) {
  3554       __ move(arg, loc);
  3555     } else {
  3556       LIR_Address* addr = loc->as_address_ptr();
  3557 //           if (!can_store_as_constant(arg)) {
  3558 //             LIR_Opr tmp = new_register(arg->type());
  3559 //             __ move(arg, tmp);
  3560 //             arg = tmp;
  3561 //           }
  3562       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  3563         __ unaligned_move(arg, addr);
  3564       } else {
  3565         __ move(arg, addr);
  3570   if (info) {
  3571     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  3572   } else {
  3573     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  3575   if (result->is_valid()) {
  3576     __ move(phys_reg, result);
  3578   return result;
  3582 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
  3583                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  3584   // get a result register
  3585   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  3586   LIR_Opr result = LIR_OprFact::illegalOpr;
  3587   if (result_type->tag() != voidTag) {
  3588     result = new_register(result_type);
  3589     phys_reg = result_register_for(result_type);
  3592   // move the arguments into the correct location
  3593   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  3595   assert(cc->length() == args->length(), "argument mismatch");
  3596   for (int i = 0; i < args->length(); i++) {
  3597     LIRItem* arg = args->at(i);
  3598     LIR_Opr loc = cc->at(i);
  3599     if (loc->is_register()) {
  3600       arg->load_item_force(loc);
  3601     } else {
  3602       LIR_Address* addr = loc->as_address_ptr();
  3603       arg->load_for_store(addr->type());
  3604       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  3605         __ unaligned_move(arg->result(), addr);
  3606       } else {
  3607         __ move(arg->result(), addr);
  3612   if (info) {
  3613     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  3614   } else {
  3615     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  3617   if (result->is_valid()) {
  3618     __ move(phys_reg, result);
  3620   return result;
  3623 void LIRGenerator::do_MemBar(MemBar* x) {
  3624   if (os::is_MP()) {
  3625     LIR_Code code = x->code();
  3626     switch(code) {
  3627       case lir_membar_acquire   : __ membar_acquire(); break;
  3628       case lir_membar_release   : __ membar_release(); break;
  3629       case lir_membar           : __ membar(); break;
  3630       case lir_membar_loadload  : __ membar_loadload(); break;
  3631       case lir_membar_storestore: __ membar_storestore(); break;
  3632       case lir_membar_loadstore : __ membar_loadstore(); break;
  3633       case lir_membar_storeload : __ membar_storeload(); break;
  3634       default                   : ShouldNotReachHere(); break;

mercurial