src/os/linux/vm/os_linux.cpp

Tue, 24 Feb 2015 15:04:52 -0500

author
dlong
date
Tue, 24 Feb 2015 15:04:52 -0500
changeset 7598
ddce0b7cee93
parent 7089
6e0cb14ce59b
child 7633
8461d0b03127
permissions
-rw-r--r--

8072383: resolve conflicts between open and closed ports
Summary: refactor close to remove references to closed ports
Reviewed-by: kvn, simonis, sgehwolf, dholmes

     1 /*
     2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_linux.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_linux.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_linux.hpp"
    40 #include "prims/jniFastGetField.hpp"
    41 #include "prims/jvm.h"
    42 #include "prims/jvm_misc.hpp"
    43 #include "runtime/arguments.hpp"
    44 #include "runtime/extendedPC.hpp"
    45 #include "runtime/globals.hpp"
    46 #include "runtime/interfaceSupport.hpp"
    47 #include "runtime/init.hpp"
    48 #include "runtime/java.hpp"
    49 #include "runtime/javaCalls.hpp"
    50 #include "runtime/mutexLocker.hpp"
    51 #include "runtime/objectMonitor.hpp"
    52 #include "runtime/orderAccess.inline.hpp"
    53 #include "runtime/osThread.hpp"
    54 #include "runtime/perfMemory.hpp"
    55 #include "runtime/sharedRuntime.hpp"
    56 #include "runtime/statSampler.hpp"
    57 #include "runtime/stubRoutines.hpp"
    58 #include "runtime/thread.inline.hpp"
    59 #include "runtime/threadCritical.hpp"
    60 #include "runtime/timer.hpp"
    61 #include "services/attachListener.hpp"
    62 #include "services/memTracker.hpp"
    63 #include "services/runtimeService.hpp"
    64 #include "utilities/decoder.hpp"
    65 #include "utilities/defaultStream.hpp"
    66 #include "utilities/events.hpp"
    67 #include "utilities/elfFile.hpp"
    68 #include "utilities/growableArray.hpp"
    69 #include "utilities/vmError.hpp"
    71 // put OS-includes here
    72 # include <sys/types.h>
    73 # include <sys/mman.h>
    74 # include <sys/stat.h>
    75 # include <sys/select.h>
    76 # include <pthread.h>
    77 # include <signal.h>
    78 # include <errno.h>
    79 # include <dlfcn.h>
    80 # include <stdio.h>
    81 # include <unistd.h>
    82 # include <sys/resource.h>
    83 # include <pthread.h>
    84 # include <sys/stat.h>
    85 # include <sys/time.h>
    86 # include <sys/times.h>
    87 # include <sys/utsname.h>
    88 # include <sys/socket.h>
    89 # include <sys/wait.h>
    90 # include <pwd.h>
    91 # include <poll.h>
    92 # include <semaphore.h>
    93 # include <fcntl.h>
    94 # include <string.h>
    95 # include <syscall.h>
    96 # include <sys/sysinfo.h>
    97 # include <gnu/libc-version.h>
    98 # include <sys/ipc.h>
    99 # include <sys/shm.h>
   100 # include <link.h>
   101 # include <stdint.h>
   102 # include <inttypes.h>
   103 # include <sys/ioctl.h>
   105 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
   107 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
   108 // getrusage() is prepared to handle the associated failure.
   109 #ifndef RUSAGE_THREAD
   110 #define RUSAGE_THREAD   (1)               /* only the calling thread */
   111 #endif
   113 #define MAX_PATH    (2 * K)
   115 #define MAX_SECS 100000000
   117 // for timer info max values which include all bits
   118 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   120 #define LARGEPAGES_BIT (1 << 6)
   121 ////////////////////////////////////////////////////////////////////////////////
   122 // global variables
   123 julong os::Linux::_physical_memory = 0;
   125 address   os::Linux::_initial_thread_stack_bottom = NULL;
   126 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   128 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   129 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   130 Mutex* os::Linux::_createThread_lock = NULL;
   131 pthread_t os::Linux::_main_thread;
   132 int os::Linux::_page_size = -1;
   133 const int os::Linux::_vm_default_page_size = (8 * K);
   134 bool os::Linux::_is_floating_stack = false;
   135 bool os::Linux::_is_NPTL = false;
   136 bool os::Linux::_supports_fast_thread_cpu_time = false;
   137 const char * os::Linux::_glibc_version = NULL;
   138 const char * os::Linux::_libpthread_version = NULL;
   139 pthread_condattr_t os::Linux::_condattr[1];
   141 static jlong initial_time_count=0;
   143 static int clock_tics_per_sec = 100;
   145 // For diagnostics to print a message once. see run_periodic_checks
   146 static sigset_t check_signal_done;
   147 static bool check_signals = true;
   149 static pid_t _initial_pid = 0;
   151 /* Signal number used to suspend/resume a thread */
   153 /* do not use any signal number less than SIGSEGV, see 4355769 */
   154 static int SR_signum = SIGUSR2;
   155 sigset_t SR_sigset;
   157 /* Used to protect dlsym() calls */
   158 static pthread_mutex_t dl_mutex;
   160 // Declarations
   161 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
   163 #ifdef JAVASE_EMBEDDED
   164 class MemNotifyThread: public Thread {
   165   friend class VMStructs;
   166  public:
   167   virtual void run();
   169  private:
   170   static MemNotifyThread* _memnotify_thread;
   171   int _fd;
   173  public:
   175   // Constructor
   176   MemNotifyThread(int fd);
   178   // Tester
   179   bool is_memnotify_thread() const { return true; }
   181   // Printing
   182   char* name() const { return (char*)"Linux MemNotify Thread"; }
   184   // Returns the single instance of the MemNotifyThread
   185   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
   187   // Create and start the single instance of MemNotifyThread
   188   static void start();
   189 };
   190 #endif // JAVASE_EMBEDDED
   192 // utility functions
   194 static int SR_initialize();
   196 julong os::available_memory() {
   197   return Linux::available_memory();
   198 }
   200 julong os::Linux::available_memory() {
   201   // values in struct sysinfo are "unsigned long"
   202   struct sysinfo si;
   203   sysinfo(&si);
   205   return (julong)si.freeram * si.mem_unit;
   206 }
   208 julong os::physical_memory() {
   209   return Linux::physical_memory();
   210 }
   212 ////////////////////////////////////////////////////////////////////////////////
   213 // environment support
   215 bool os::getenv(const char* name, char* buf, int len) {
   216   const char* val = ::getenv(name);
   217   if (val != NULL && strlen(val) < (size_t)len) {
   218     strcpy(buf, val);
   219     return true;
   220   }
   221   if (len > 0) buf[0] = 0;  // return a null string
   222   return false;
   223 }
   226 // Return true if user is running as root.
   228 bool os::have_special_privileges() {
   229   static bool init = false;
   230   static bool privileges = false;
   231   if (!init) {
   232     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   233     init = true;
   234   }
   235   return privileges;
   236 }
   239 #ifndef SYS_gettid
   240 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   241 #ifdef __ia64__
   242 #define SYS_gettid 1105
   243 #elif __i386__
   244 #define SYS_gettid 224
   245 #elif __amd64__
   246 #define SYS_gettid 186
   247 #elif __sparc__
   248 #define SYS_gettid 143
   249 #else
   250 #error define gettid for the arch
   251 #endif
   252 #endif
   254 // Cpu architecture string
   255 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
   257 // pid_t gettid()
   258 //
   259 // Returns the kernel thread id of the currently running thread. Kernel
   260 // thread id is used to access /proc.
   261 //
   262 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   263 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   264 //
   265 pid_t os::Linux::gettid() {
   266   int rslt = syscall(SYS_gettid);
   267   if (rslt == -1) {
   268      // old kernel, no NPTL support
   269      return getpid();
   270   } else {
   271      return (pid_t)rslt;
   272   }
   273 }
   275 // Most versions of linux have a bug where the number of processors are
   276 // determined by looking at the /proc file system.  In a chroot environment,
   277 // the system call returns 1.  This causes the VM to act as if it is
   278 // a single processor and elide locking (see is_MP() call).
   279 static bool unsafe_chroot_detected = false;
   280 static const char *unstable_chroot_error = "/proc file system not found.\n"
   281                      "Java may be unstable running multithreaded in a chroot "
   282                      "environment on Linux when /proc filesystem is not mounted.";
   284 void os::Linux::initialize_system_info() {
   285   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   286   if (processor_count() == 1) {
   287     pid_t pid = os::Linux::gettid();
   288     char fname[32];
   289     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   290     FILE *fp = fopen(fname, "r");
   291     if (fp == NULL) {
   292       unsafe_chroot_detected = true;
   293     } else {
   294       fclose(fp);
   295     }
   296   }
   297   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   298   assert(processor_count() > 0, "linux error");
   299 }
   301 void os::init_system_properties_values() {
   302   // The next steps are taken in the product version:
   303   //
   304   // Obtain the JAVA_HOME value from the location of libjvm.so.
   305   // This library should be located at:
   306   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   307   //
   308   // If "/jre/lib/" appears at the right place in the path, then we
   309   // assume libjvm.so is installed in a JDK and we use this path.
   310   //
   311   // Otherwise exit with message: "Could not create the Java virtual machine."
   312   //
   313   // The following extra steps are taken in the debugging version:
   314   //
   315   // If "/jre/lib/" does NOT appear at the right place in the path
   316   // instead of exit check for $JAVA_HOME environment variable.
   317   //
   318   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   319   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   320   // it looks like libjvm.so is installed there
   321   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   322   //
   323   // Otherwise exit.
   324   //
   325   // Important note: if the location of libjvm.so changes this
   326   // code needs to be changed accordingly.
   328 // See ld(1):
   329 //      The linker uses the following search paths to locate required
   330 //      shared libraries:
   331 //        1: ...
   332 //        ...
   333 //        7: The default directories, normally /lib and /usr/lib.
   334 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   335 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   336 #else
   337 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   338 #endif
   340 // Base path of extensions installed on the system.
   341 #define SYS_EXT_DIR     "/usr/java/packages"
   342 #define EXTENSIONS_DIR  "/lib/ext"
   343 #define ENDORSED_DIR    "/lib/endorsed"
   345   // Buffer that fits several sprintfs.
   346   // Note that the space for the colon and the trailing null are provided
   347   // by the nulls included by the sizeof operator.
   348   const size_t bufsize =
   349     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
   350          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
   351          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
   352   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
   354   // sysclasspath, java_home, dll_dir
   355   {
   356     char *pslash;
   357     os::jvm_path(buf, bufsize);
   359     // Found the full path to libjvm.so.
   360     // Now cut the path to <java_home>/jre if we can.
   361     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
   362     pslash = strrchr(buf, '/');
   363     if (pslash != NULL) {
   364       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
   365     }
   366     Arguments::set_dll_dir(buf);
   368     if (pslash != NULL) {
   369       pslash = strrchr(buf, '/');
   370       if (pslash != NULL) {
   371         *pslash = '\0';          // Get rid of /<arch>.
   372         pslash = strrchr(buf, '/');
   373         if (pslash != NULL) {
   374           *pslash = '\0';        // Get rid of /lib.
   375         }
   376       }
   377     }
   378     Arguments::set_java_home(buf);
   379     set_boot_path('/', ':');
   380   }
   382   // Where to look for native libraries.
   383   //
   384   // Note: Due to a legacy implementation, most of the library path
   385   // is set in the launcher. This was to accomodate linking restrictions
   386   // on legacy Linux implementations (which are no longer supported).
   387   // Eventually, all the library path setting will be done here.
   388   //
   389   // However, to prevent the proliferation of improperly built native
   390   // libraries, the new path component /usr/java/packages is added here.
   391   // Eventually, all the library path setting will be done here.
   392   {
   393     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
   394     // should always exist (until the legacy problem cited above is
   395     // addressed).
   396     const char *v = ::getenv("LD_LIBRARY_PATH");
   397     const char *v_colon = ":";
   398     if (v == NULL) { v = ""; v_colon = ""; }
   399     // That's +1 for the colon and +1 for the trailing '\0'.
   400     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
   401                                                      strlen(v) + 1 +
   402                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
   403                                                      mtInternal);
   404     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
   405     Arguments::set_library_path(ld_library_path);
   406     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
   407   }
   409   // Extensions directories.
   410   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
   411   Arguments::set_ext_dirs(buf);
   413   // Endorsed standards default directory.
   414   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   415   Arguments::set_endorsed_dirs(buf);
   417   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
   419 #undef DEFAULT_LIBPATH
   420 #undef SYS_EXT_DIR
   421 #undef EXTENSIONS_DIR
   422 #undef ENDORSED_DIR
   423 }
   425 ////////////////////////////////////////////////////////////////////////////////
   426 // breakpoint support
   428 void os::breakpoint() {
   429   BREAKPOINT;
   430 }
   432 extern "C" void breakpoint() {
   433   // use debugger to set breakpoint here
   434 }
   436 ////////////////////////////////////////////////////////////////////////////////
   437 // signal support
   439 debug_only(static bool signal_sets_initialized = false);
   440 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   442 bool os::Linux::is_sig_ignored(int sig) {
   443       struct sigaction oact;
   444       sigaction(sig, (struct sigaction*)NULL, &oact);
   445       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   446                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   447       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   448            return true;
   449       else
   450            return false;
   451 }
   453 void os::Linux::signal_sets_init() {
   454   // Should also have an assertion stating we are still single-threaded.
   455   assert(!signal_sets_initialized, "Already initialized");
   456   // Fill in signals that are necessarily unblocked for all threads in
   457   // the VM. Currently, we unblock the following signals:
   458   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   459   //                         by -Xrs (=ReduceSignalUsage));
   460   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   461   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   462   // the dispositions or masks wrt these signals.
   463   // Programs embedding the VM that want to use the above signals for their
   464   // own purposes must, at this time, use the "-Xrs" option to prevent
   465   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   466   // (See bug 4345157, and other related bugs).
   467   // In reality, though, unblocking these signals is really a nop, since
   468   // these signals are not blocked by default.
   469   sigemptyset(&unblocked_sigs);
   470   sigemptyset(&allowdebug_blocked_sigs);
   471   sigaddset(&unblocked_sigs, SIGILL);
   472   sigaddset(&unblocked_sigs, SIGSEGV);
   473   sigaddset(&unblocked_sigs, SIGBUS);
   474   sigaddset(&unblocked_sigs, SIGFPE);
   475 #if defined(PPC64)
   476   sigaddset(&unblocked_sigs, SIGTRAP);
   477 #endif
   478   sigaddset(&unblocked_sigs, SR_signum);
   480   if (!ReduceSignalUsage) {
   481    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   482       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   483       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   484    }
   485    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   486       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   487       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   488    }
   489    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   490       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   491       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   492    }
   493   }
   494   // Fill in signals that are blocked by all but the VM thread.
   495   sigemptyset(&vm_sigs);
   496   if (!ReduceSignalUsage)
   497     sigaddset(&vm_sigs, BREAK_SIGNAL);
   498   debug_only(signal_sets_initialized = true);
   500 }
   502 // These are signals that are unblocked while a thread is running Java.
   503 // (For some reason, they get blocked by default.)
   504 sigset_t* os::Linux::unblocked_signals() {
   505   assert(signal_sets_initialized, "Not initialized");
   506   return &unblocked_sigs;
   507 }
   509 // These are the signals that are blocked while a (non-VM) thread is
   510 // running Java. Only the VM thread handles these signals.
   511 sigset_t* os::Linux::vm_signals() {
   512   assert(signal_sets_initialized, "Not initialized");
   513   return &vm_sigs;
   514 }
   516 // These are signals that are blocked during cond_wait to allow debugger in
   517 sigset_t* os::Linux::allowdebug_blocked_signals() {
   518   assert(signal_sets_initialized, "Not initialized");
   519   return &allowdebug_blocked_sigs;
   520 }
   522 void os::Linux::hotspot_sigmask(Thread* thread) {
   524   //Save caller's signal mask before setting VM signal mask
   525   sigset_t caller_sigmask;
   526   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   528   OSThread* osthread = thread->osthread();
   529   osthread->set_caller_sigmask(caller_sigmask);
   531   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   533   if (!ReduceSignalUsage) {
   534     if (thread->is_VM_thread()) {
   535       // Only the VM thread handles BREAK_SIGNAL ...
   536       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   537     } else {
   538       // ... all other threads block BREAK_SIGNAL
   539       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   540     }
   541   }
   542 }
   544 //////////////////////////////////////////////////////////////////////////////
   545 // detecting pthread library
   547 void os::Linux::libpthread_init() {
   548   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   549   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   550   // generic name for earlier versions.
   551   // Define macros here so we can build HotSpot on old systems.
   552 # ifndef _CS_GNU_LIBC_VERSION
   553 # define _CS_GNU_LIBC_VERSION 2
   554 # endif
   555 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   556 # define _CS_GNU_LIBPTHREAD_VERSION 3
   557 # endif
   559   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   560   if (n > 0) {
   561      char *str = (char *)malloc(n, mtInternal);
   562      confstr(_CS_GNU_LIBC_VERSION, str, n);
   563      os::Linux::set_glibc_version(str);
   564   } else {
   565      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   566      static char _gnu_libc_version[32];
   567      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   568               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   569      os::Linux::set_glibc_version(_gnu_libc_version);
   570   }
   572   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   573   if (n > 0) {
   574      char *str = (char *)malloc(n, mtInternal);
   575      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   576      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   577      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   578      // is the case. LinuxThreads has a hard limit on max number of threads.
   579      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   580      // On the other hand, NPTL does not have such a limit, sysconf()
   581      // will return -1 and errno is not changed. Check if it is really NPTL.
   582      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   583          strstr(str, "NPTL") &&
   584          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   585        free(str);
   586        os::Linux::set_libpthread_version("linuxthreads");
   587      } else {
   588        os::Linux::set_libpthread_version(str);
   589      }
   590   } else {
   591     // glibc before 2.3.2 only has LinuxThreads.
   592     os::Linux::set_libpthread_version("linuxthreads");
   593   }
   595   if (strstr(libpthread_version(), "NPTL")) {
   596      os::Linux::set_is_NPTL();
   597   } else {
   598      os::Linux::set_is_LinuxThreads();
   599   }
   601   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   602   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   603   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   604      os::Linux::set_is_floating_stack();
   605   }
   606 }
   608 /////////////////////////////////////////////////////////////////////////////
   609 // thread stack
   611 // Force Linux kernel to expand current thread stack. If "bottom" is close
   612 // to the stack guard, caller should block all signals.
   613 //
   614 // MAP_GROWSDOWN:
   615 //   A special mmap() flag that is used to implement thread stacks. It tells
   616 //   kernel that the memory region should extend downwards when needed. This
   617 //   allows early versions of LinuxThreads to only mmap the first few pages
   618 //   when creating a new thread. Linux kernel will automatically expand thread
   619 //   stack as needed (on page faults).
   620 //
   621 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   622 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   623 //   region, it's hard to tell if the fault is due to a legitimate stack
   624 //   access or because of reading/writing non-exist memory (e.g. buffer
   625 //   overrun). As a rule, if the fault happens below current stack pointer,
   626 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   627 //   application (see Linux kernel fault.c).
   628 //
   629 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   630 //   stack overflow detection.
   631 //
   632 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   633 //   not use this flag. However, the stack of initial thread is not created
   634 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   635 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   636 //   and then attach the thread to JVM.
   637 //
   638 // To get around the problem and allow stack banging on Linux, we need to
   639 // manually expand thread stack after receiving the SIGSEGV.
   640 //
   641 // There are two ways to expand thread stack to address "bottom", we used
   642 // both of them in JVM before 1.5:
   643 //   1. adjust stack pointer first so that it is below "bottom", and then
   644 //      touch "bottom"
   645 //   2. mmap() the page in question
   646 //
   647 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   648 // if current sp is already near the lower end of page 101, and we need to
   649 // call mmap() to map page 100, it is possible that part of the mmap() frame
   650 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   651 // That will destroy the mmap() frame and cause VM to crash.
   652 //
   653 // The following code works by adjusting sp first, then accessing the "bottom"
   654 // page to force a page fault. Linux kernel will then automatically expand the
   655 // stack mapping.
   656 //
   657 // _expand_stack_to() assumes its frame size is less than page size, which
   658 // should always be true if the function is not inlined.
   660 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   661 #define NOINLINE
   662 #else
   663 #define NOINLINE __attribute__ ((noinline))
   664 #endif
   666 static void _expand_stack_to(address bottom) NOINLINE;
   668 static void _expand_stack_to(address bottom) {
   669   address sp;
   670   size_t size;
   671   volatile char *p;
   673   // Adjust bottom to point to the largest address within the same page, it
   674   // gives us a one-page buffer if alloca() allocates slightly more memory.
   675   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   676   bottom += os::Linux::page_size() - 1;
   678   // sp might be slightly above current stack pointer; if that's the case, we
   679   // will alloca() a little more space than necessary, which is OK. Don't use
   680   // os::current_stack_pointer(), as its result can be slightly below current
   681   // stack pointer, causing us to not alloca enough to reach "bottom".
   682   sp = (address)&sp;
   684   if (sp > bottom) {
   685     size = sp - bottom;
   686     p = (volatile char *)alloca(size);
   687     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   688     p[0] = '\0';
   689   }
   690 }
   692 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   693   assert(t!=NULL, "just checking");
   694   assert(t->osthread()->expanding_stack(), "expand should be set");
   695   assert(t->stack_base() != NULL, "stack_base was not initialized");
   697   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   698     sigset_t mask_all, old_sigset;
   699     sigfillset(&mask_all);
   700     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   701     _expand_stack_to(addr);
   702     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   703     return true;
   704   }
   705   return false;
   706 }
   708 //////////////////////////////////////////////////////////////////////////////
   709 // create new thread
   711 static address highest_vm_reserved_address();
   713 // check if it's safe to start a new thread
   714 static bool _thread_safety_check(Thread* thread) {
   715   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   716     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   717     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   718     //   allocated (MAP_FIXED) from high address space. Every thread stack
   719     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   720     //   it to other values if they rebuild LinuxThreads).
   721     //
   722     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   723     // the memory region has already been mmap'ed. That means if we have too
   724     // many threads and/or very large heap, eventually thread stack will
   725     // collide with heap.
   726     //
   727     // Here we try to prevent heap/stack collision by comparing current
   728     // stack bottom with the highest address that has been mmap'ed by JVM
   729     // plus a safety margin for memory maps created by native code.
   730     //
   731     // This feature can be disabled by setting ThreadSafetyMargin to 0
   732     //
   733     if (ThreadSafetyMargin > 0) {
   734       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   736       // not safe if our stack extends below the safety margin
   737       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   738     } else {
   739       return true;
   740     }
   741   } else {
   742     // Floating stack LinuxThreads or NPTL:
   743     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   744     //   there's not enough space left, pthread_create() will fail. If we come
   745     //   here, that means enough space has been reserved for stack.
   746     return true;
   747   }
   748 }
   750 // Thread start routine for all newly created threads
   751 static void *java_start(Thread *thread) {
   752   // Try to randomize the cache line index of hot stack frames.
   753   // This helps when threads of the same stack traces evict each other's
   754   // cache lines. The threads can be either from the same JVM instance, or
   755   // from different JVM instances. The benefit is especially true for
   756   // processors with hyperthreading technology.
   757   static int counter = 0;
   758   int pid = os::current_process_id();
   759   alloca(((pid ^ counter++) & 7) * 128);
   761   ThreadLocalStorage::set_thread(thread);
   763   OSThread* osthread = thread->osthread();
   764   Monitor* sync = osthread->startThread_lock();
   766   // non floating stack LinuxThreads needs extra check, see above
   767   if (!_thread_safety_check(thread)) {
   768     // notify parent thread
   769     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   770     osthread->set_state(ZOMBIE);
   771     sync->notify_all();
   772     return NULL;
   773   }
   775   // thread_id is kernel thread id (similar to Solaris LWP id)
   776   osthread->set_thread_id(os::Linux::gettid());
   778   if (UseNUMA) {
   779     int lgrp_id = os::numa_get_group_id();
   780     if (lgrp_id != -1) {
   781       thread->set_lgrp_id(lgrp_id);
   782     }
   783   }
   784   // initialize signal mask for this thread
   785   os::Linux::hotspot_sigmask(thread);
   787   // initialize floating point control register
   788   os::Linux::init_thread_fpu_state();
   790   // handshaking with parent thread
   791   {
   792     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   794     // notify parent thread
   795     osthread->set_state(INITIALIZED);
   796     sync->notify_all();
   798     // wait until os::start_thread()
   799     while (osthread->get_state() == INITIALIZED) {
   800       sync->wait(Mutex::_no_safepoint_check_flag);
   801     }
   802   }
   804   // call one more level start routine
   805   thread->run();
   807   return 0;
   808 }
   810 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   811   assert(thread->osthread() == NULL, "caller responsible");
   813   // Allocate the OSThread object
   814   OSThread* osthread = new OSThread(NULL, NULL);
   815   if (osthread == NULL) {
   816     return false;
   817   }
   819   // set the correct thread state
   820   osthread->set_thread_type(thr_type);
   822   // Initial state is ALLOCATED but not INITIALIZED
   823   osthread->set_state(ALLOCATED);
   825   thread->set_osthread(osthread);
   827   // init thread attributes
   828   pthread_attr_t attr;
   829   pthread_attr_init(&attr);
   830   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   832   // stack size
   833   if (os::Linux::supports_variable_stack_size()) {
   834     // calculate stack size if it's not specified by caller
   835     if (stack_size == 0) {
   836       stack_size = os::Linux::default_stack_size(thr_type);
   838       switch (thr_type) {
   839       case os::java_thread:
   840         // Java threads use ThreadStackSize which default value can be
   841         // changed with the flag -Xss
   842         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   843         stack_size = JavaThread::stack_size_at_create();
   844         break;
   845       case os::compiler_thread:
   846         if (CompilerThreadStackSize > 0) {
   847           stack_size = (size_t)(CompilerThreadStackSize * K);
   848           break;
   849         } // else fall through:
   850           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   851       case os::vm_thread:
   852       case os::pgc_thread:
   853       case os::cgc_thread:
   854       case os::watcher_thread:
   855         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   856         break;
   857       }
   858     }
   860     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   861     pthread_attr_setstacksize(&attr, stack_size);
   862   } else {
   863     // let pthread_create() pick the default value.
   864   }
   866   // glibc guard page
   867   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   869   ThreadState state;
   871   {
   872     // Serialize thread creation if we are running with fixed stack LinuxThreads
   873     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   874     if (lock) {
   875       os::Linux::createThread_lock()->lock_without_safepoint_check();
   876     }
   878     pthread_t tid;
   879     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   881     pthread_attr_destroy(&attr);
   883     if (ret != 0) {
   884       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   885         perror("pthread_create()");
   886       }
   887       // Need to clean up stuff we've allocated so far
   888       thread->set_osthread(NULL);
   889       delete osthread;
   890       if (lock) os::Linux::createThread_lock()->unlock();
   891       return false;
   892     }
   894     // Store pthread info into the OSThread
   895     osthread->set_pthread_id(tid);
   897     // Wait until child thread is either initialized or aborted
   898     {
   899       Monitor* sync_with_child = osthread->startThread_lock();
   900       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   901       while ((state = osthread->get_state()) == ALLOCATED) {
   902         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   903       }
   904     }
   906     if (lock) {
   907       os::Linux::createThread_lock()->unlock();
   908     }
   909   }
   911   // Aborted due to thread limit being reached
   912   if (state == ZOMBIE) {
   913       thread->set_osthread(NULL);
   914       delete osthread;
   915       return false;
   916   }
   918   // The thread is returned suspended (in state INITIALIZED),
   919   // and is started higher up in the call chain
   920   assert(state == INITIALIZED, "race condition");
   921   return true;
   922 }
   924 /////////////////////////////////////////////////////////////////////////////
   925 // attach existing thread
   927 // bootstrap the main thread
   928 bool os::create_main_thread(JavaThread* thread) {
   929   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   930   return create_attached_thread(thread);
   931 }
   933 bool os::create_attached_thread(JavaThread* thread) {
   934 #ifdef ASSERT
   935     thread->verify_not_published();
   936 #endif
   938   // Allocate the OSThread object
   939   OSThread* osthread = new OSThread(NULL, NULL);
   941   if (osthread == NULL) {
   942     return false;
   943   }
   945   // Store pthread info into the OSThread
   946   osthread->set_thread_id(os::Linux::gettid());
   947   osthread->set_pthread_id(::pthread_self());
   949   // initialize floating point control register
   950   os::Linux::init_thread_fpu_state();
   952   // Initial thread state is RUNNABLE
   953   osthread->set_state(RUNNABLE);
   955   thread->set_osthread(osthread);
   957   if (UseNUMA) {
   958     int lgrp_id = os::numa_get_group_id();
   959     if (lgrp_id != -1) {
   960       thread->set_lgrp_id(lgrp_id);
   961     }
   962   }
   964   if (os::Linux::is_initial_thread()) {
   965     // If current thread is initial thread, its stack is mapped on demand,
   966     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
   967     // the entire stack region to avoid SEGV in stack banging.
   968     // It is also useful to get around the heap-stack-gap problem on SuSE
   969     // kernel (see 4821821 for details). We first expand stack to the top
   970     // of yellow zone, then enable stack yellow zone (order is significant,
   971     // enabling yellow zone first will crash JVM on SuSE Linux), so there
   972     // is no gap between the last two virtual memory regions.
   974     JavaThread *jt = (JavaThread *)thread;
   975     address addr = jt->stack_yellow_zone_base();
   976     assert(addr != NULL, "initialization problem?");
   977     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
   979     osthread->set_expanding_stack();
   980     os::Linux::manually_expand_stack(jt, addr);
   981     osthread->clear_expanding_stack();
   982   }
   984   // initialize signal mask for this thread
   985   // and save the caller's signal mask
   986   os::Linux::hotspot_sigmask(thread);
   988   return true;
   989 }
   991 void os::pd_start_thread(Thread* thread) {
   992   OSThread * osthread = thread->osthread();
   993   assert(osthread->get_state() != INITIALIZED, "just checking");
   994   Monitor* sync_with_child = osthread->startThread_lock();
   995   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   996   sync_with_child->notify();
   997 }
   999 // Free Linux resources related to the OSThread
  1000 void os::free_thread(OSThread* osthread) {
  1001   assert(osthread != NULL, "osthread not set");
  1003   if (Thread::current()->osthread() == osthread) {
  1004     // Restore caller's signal mask
  1005     sigset_t sigmask = osthread->caller_sigmask();
  1006     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
  1009   delete osthread;
  1012 //////////////////////////////////////////////////////////////////////////////
  1013 // thread local storage
  1015 // Restore the thread pointer if the destructor is called. This is in case
  1016 // someone from JNI code sets up a destructor with pthread_key_create to run
  1017 // detachCurrentThread on thread death. Unless we restore the thread pointer we
  1018 // will hang or crash. When detachCurrentThread is called the key will be set
  1019 // to null and we will not be called again. If detachCurrentThread is never
  1020 // called we could loop forever depending on the pthread implementation.
  1021 static void restore_thread_pointer(void* p) {
  1022   Thread* thread = (Thread*) p;
  1023   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
  1026 int os::allocate_thread_local_storage() {
  1027   pthread_key_t key;
  1028   int rslt = pthread_key_create(&key, restore_thread_pointer);
  1029   assert(rslt == 0, "cannot allocate thread local storage");
  1030   return (int)key;
  1033 // Note: This is currently not used by VM, as we don't destroy TLS key
  1034 // on VM exit.
  1035 void os::free_thread_local_storage(int index) {
  1036   int rslt = pthread_key_delete((pthread_key_t)index);
  1037   assert(rslt == 0, "invalid index");
  1040 void os::thread_local_storage_at_put(int index, void* value) {
  1041   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1042   assert(rslt == 0, "pthread_setspecific failed");
  1045 extern "C" Thread* get_thread() {
  1046   return ThreadLocalStorage::thread();
  1049 //////////////////////////////////////////////////////////////////////////////
  1050 // initial thread
  1052 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1053 bool os::Linux::is_initial_thread(void) {
  1054   char dummy;
  1055   // If called before init complete, thread stack bottom will be null.
  1056   // Can be called if fatal error occurs before initialization.
  1057   if (initial_thread_stack_bottom() == NULL) return false;
  1058   assert(initial_thread_stack_bottom() != NULL &&
  1059          initial_thread_stack_size()   != 0,
  1060          "os::init did not locate initial thread's stack region");
  1061   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1062       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1063        return true;
  1064   else return false;
  1067 // Find the virtual memory area that contains addr
  1068 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1069   FILE *fp = fopen("/proc/self/maps", "r");
  1070   if (fp) {
  1071     address low, high;
  1072     while (!feof(fp)) {
  1073       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1074         if (low <= addr && addr < high) {
  1075            if (vma_low)  *vma_low  = low;
  1076            if (vma_high) *vma_high = high;
  1077            fclose (fp);
  1078            return true;
  1081       for (;;) {
  1082         int ch = fgetc(fp);
  1083         if (ch == EOF || ch == (int)'\n') break;
  1086     fclose(fp);
  1088   return false;
  1091 // Locate initial thread stack. This special handling of initial thread stack
  1092 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1093 // bogus value for initial thread.
  1094 void os::Linux::capture_initial_stack(size_t max_size) {
  1095   // stack size is the easy part, get it from RLIMIT_STACK
  1096   size_t stack_size;
  1097   struct rlimit rlim;
  1098   getrlimit(RLIMIT_STACK, &rlim);
  1099   stack_size = rlim.rlim_cur;
  1101   // 6308388: a bug in ld.so will relocate its own .data section to the
  1102   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1103   //   so we won't install guard page on ld.so's data section.
  1104   stack_size -= 2 * page_size();
  1106   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
  1107   //   7.1, in both cases we will get 2G in return value.
  1108   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
  1109   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
  1110   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
  1111   //   in case other parts in glibc still assumes 2M max stack size.
  1112   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
  1113   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
  1114   if (stack_size > 2 * K * K IA64_ONLY(*2))
  1115       stack_size = 2 * K * K IA64_ONLY(*2);
  1116   // Try to figure out where the stack base (top) is. This is harder.
  1117   //
  1118   // When an application is started, glibc saves the initial stack pointer in
  1119   // a global variable "__libc_stack_end", which is then used by system
  1120   // libraries. __libc_stack_end should be pretty close to stack top. The
  1121   // variable is available since the very early days. However, because it is
  1122   // a private interface, it could disappear in the future.
  1123   //
  1124   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1125   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1126   // stack top. Note that /proc may not exist if VM is running as a chroot
  1127   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1128   // /proc/<pid>/stat could change in the future (though unlikely).
  1129   //
  1130   // We try __libc_stack_end first. If that doesn't work, look for
  1131   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1132   // as a hint, which should work well in most cases.
  1134   uintptr_t stack_start;
  1136   // try __libc_stack_end first
  1137   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1138   if (p && *p) {
  1139     stack_start = *p;
  1140   } else {
  1141     // see if we can get the start_stack field from /proc/self/stat
  1142     FILE *fp;
  1143     int pid;
  1144     char state;
  1145     int ppid;
  1146     int pgrp;
  1147     int session;
  1148     int nr;
  1149     int tpgrp;
  1150     unsigned long flags;
  1151     unsigned long minflt;
  1152     unsigned long cminflt;
  1153     unsigned long majflt;
  1154     unsigned long cmajflt;
  1155     unsigned long utime;
  1156     unsigned long stime;
  1157     long cutime;
  1158     long cstime;
  1159     long prio;
  1160     long nice;
  1161     long junk;
  1162     long it_real;
  1163     uintptr_t start;
  1164     uintptr_t vsize;
  1165     intptr_t rss;
  1166     uintptr_t rsslim;
  1167     uintptr_t scodes;
  1168     uintptr_t ecode;
  1169     int i;
  1171     // Figure what the primordial thread stack base is. Code is inspired
  1172     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1173     // followed by command name surrounded by parentheses, state, etc.
  1174     char stat[2048];
  1175     int statlen;
  1177     fp = fopen("/proc/self/stat", "r");
  1178     if (fp) {
  1179       statlen = fread(stat, 1, 2047, fp);
  1180       stat[statlen] = '\0';
  1181       fclose(fp);
  1183       // Skip pid and the command string. Note that we could be dealing with
  1184       // weird command names, e.g. user could decide to rename java launcher
  1185       // to "java 1.4.2 :)", then the stat file would look like
  1186       //                1234 (java 1.4.2 :)) R ... ...
  1187       // We don't really need to know the command string, just find the last
  1188       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1189       char * s = strrchr(stat, ')');
  1191       i = 0;
  1192       if (s) {
  1193         // Skip blank chars
  1194         do s++; while (isspace(*s));
  1196 #define _UFM UINTX_FORMAT
  1197 #define _DFM INTX_FORMAT
  1199         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1200         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1201         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1202              &state,          /* 3  %c  */
  1203              &ppid,           /* 4  %d  */
  1204              &pgrp,           /* 5  %d  */
  1205              &session,        /* 6  %d  */
  1206              &nr,             /* 7  %d  */
  1207              &tpgrp,          /* 8  %d  */
  1208              &flags,          /* 9  %lu  */
  1209              &minflt,         /* 10 %lu  */
  1210              &cminflt,        /* 11 %lu  */
  1211              &majflt,         /* 12 %lu  */
  1212              &cmajflt,        /* 13 %lu  */
  1213              &utime,          /* 14 %lu  */
  1214              &stime,          /* 15 %lu  */
  1215              &cutime,         /* 16 %ld  */
  1216              &cstime,         /* 17 %ld  */
  1217              &prio,           /* 18 %ld  */
  1218              &nice,           /* 19 %ld  */
  1219              &junk,           /* 20 %ld  */
  1220              &it_real,        /* 21 %ld  */
  1221              &start,          /* 22 UINTX_FORMAT */
  1222              &vsize,          /* 23 UINTX_FORMAT */
  1223              &rss,            /* 24 INTX_FORMAT  */
  1224              &rsslim,         /* 25 UINTX_FORMAT */
  1225              &scodes,         /* 26 UINTX_FORMAT */
  1226              &ecode,          /* 27 UINTX_FORMAT */
  1227              &stack_start);   /* 28 UINTX_FORMAT */
  1230 #undef _UFM
  1231 #undef _DFM
  1233       if (i != 28 - 2) {
  1234          assert(false, "Bad conversion from /proc/self/stat");
  1235          // product mode - assume we are the initial thread, good luck in the
  1236          // embedded case.
  1237          warning("Can't detect initial thread stack location - bad conversion");
  1238          stack_start = (uintptr_t) &rlim;
  1240     } else {
  1241       // For some reason we can't open /proc/self/stat (for example, running on
  1242       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1243       // most cases, so don't abort:
  1244       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1245       stack_start = (uintptr_t) &rlim;
  1249   // Now we have a pointer (stack_start) very close to the stack top, the
  1250   // next thing to do is to figure out the exact location of stack top. We
  1251   // can find out the virtual memory area that contains stack_start by
  1252   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1253   // and its upper limit is the real stack top. (again, this would fail if
  1254   // running inside chroot, because /proc may not exist.)
  1256   uintptr_t stack_top;
  1257   address low, high;
  1258   if (find_vma((address)stack_start, &low, &high)) {
  1259     // success, "high" is the true stack top. (ignore "low", because initial
  1260     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1261     stack_top = (uintptr_t)high;
  1262   } else {
  1263     // failed, likely because /proc/self/maps does not exist
  1264     warning("Can't detect initial thread stack location - find_vma failed");
  1265     // best effort: stack_start is normally within a few pages below the real
  1266     // stack top, use it as stack top, and reduce stack size so we won't put
  1267     // guard page outside stack.
  1268     stack_top = stack_start;
  1269     stack_size -= 16 * page_size();
  1272   // stack_top could be partially down the page so align it
  1273   stack_top = align_size_up(stack_top, page_size());
  1275   if (max_size && stack_size > max_size) {
  1276      _initial_thread_stack_size = max_size;
  1277   } else {
  1278      _initial_thread_stack_size = stack_size;
  1281   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1282   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1285 ////////////////////////////////////////////////////////////////////////////////
  1286 // time support
  1288 // Time since start-up in seconds to a fine granularity.
  1289 // Used by VMSelfDestructTimer and the MemProfiler.
  1290 double os::elapsedTime() {
  1292   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
  1295 jlong os::elapsed_counter() {
  1296   return javaTimeNanos() - initial_time_count;
  1299 jlong os::elapsed_frequency() {
  1300   return NANOSECS_PER_SEC; // nanosecond resolution
  1303 bool os::supports_vtime() { return true; }
  1304 bool os::enable_vtime()   { return false; }
  1305 bool os::vtime_enabled()  { return false; }
  1307 double os::elapsedVTime() {
  1308   struct rusage usage;
  1309   int retval = getrusage(RUSAGE_THREAD, &usage);
  1310   if (retval == 0) {
  1311     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
  1312   } else {
  1313     // better than nothing, but not much
  1314     return elapsedTime();
  1318 jlong os::javaTimeMillis() {
  1319   timeval time;
  1320   int status = gettimeofday(&time, NULL);
  1321   assert(status != -1, "linux error");
  1322   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1325 #ifndef CLOCK_MONOTONIC
  1326 #define CLOCK_MONOTONIC (1)
  1327 #endif
  1329 void os::Linux::clock_init() {
  1330   // we do dlopen's in this particular order due to bug in linux
  1331   // dynamical loader (see 6348968) leading to crash on exit
  1332   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1333   if (handle == NULL) {
  1334     handle = dlopen("librt.so", RTLD_LAZY);
  1337   if (handle) {
  1338     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1339            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1340     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1341            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1342     if (clock_getres_func && clock_gettime_func) {
  1343       // See if monotonic clock is supported by the kernel. Note that some
  1344       // early implementations simply return kernel jiffies (updated every
  1345       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1346       // for nano time (though the monotonic property is still nice to have).
  1347       // It's fixed in newer kernels, however clock_getres() still returns
  1348       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1349       // resolution for now. Hopefully as people move to new kernels, this
  1350       // won't be a problem.
  1351       struct timespec res;
  1352       struct timespec tp;
  1353       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1354           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1355         // yes, monotonic clock is supported
  1356         _clock_gettime = clock_gettime_func;
  1357         return;
  1358       } else {
  1359         // close librt if there is no monotonic clock
  1360         dlclose(handle);
  1364   warning("No monotonic clock was available - timed services may " \
  1365           "be adversely affected if the time-of-day clock changes");
  1368 #ifndef SYS_clock_getres
  1370 #if defined(IA32) || defined(AMD64)
  1371 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1372 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1373 #else
  1374 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1375 #define sys_clock_getres(x,y)  -1
  1376 #endif
  1378 #else
  1379 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1380 #endif
  1382 void os::Linux::fast_thread_clock_init() {
  1383   if (!UseLinuxPosixThreadCPUClocks) {
  1384     return;
  1386   clockid_t clockid;
  1387   struct timespec tp;
  1388   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1389       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1391   // Switch to using fast clocks for thread cpu time if
  1392   // the sys_clock_getres() returns 0 error code.
  1393   // Note, that some kernels may support the current thread
  1394   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1395   // returned by the pthread_getcpuclockid().
  1396   // If the fast Posix clocks are supported then the sys_clock_getres()
  1397   // must return at least tp.tv_sec == 0 which means a resolution
  1398   // better than 1 sec. This is extra check for reliability.
  1400   if(pthread_getcpuclockid_func &&
  1401      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1402      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1404     _supports_fast_thread_cpu_time = true;
  1405     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1409 jlong os::javaTimeNanos() {
  1410   if (Linux::supports_monotonic_clock()) {
  1411     struct timespec tp;
  1412     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1413     assert(status == 0, "gettime error");
  1414     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1415     return result;
  1416   } else {
  1417     timeval time;
  1418     int status = gettimeofday(&time, NULL);
  1419     assert(status != -1, "linux error");
  1420     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1421     return 1000 * usecs;
  1425 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1426   if (Linux::supports_monotonic_clock()) {
  1427     info_ptr->max_value = ALL_64_BITS;
  1429     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1430     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1431     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1432   } else {
  1433     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1434     info_ptr->max_value = ALL_64_BITS;
  1436     // gettimeofday is a real time clock so it skips
  1437     info_ptr->may_skip_backward = true;
  1438     info_ptr->may_skip_forward = true;
  1441   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1444 // Return the real, user, and system times in seconds from an
  1445 // arbitrary fixed point in the past.
  1446 bool os::getTimesSecs(double* process_real_time,
  1447                       double* process_user_time,
  1448                       double* process_system_time) {
  1449   struct tms ticks;
  1450   clock_t real_ticks = times(&ticks);
  1452   if (real_ticks == (clock_t) (-1)) {
  1453     return false;
  1454   } else {
  1455     double ticks_per_second = (double) clock_tics_per_sec;
  1456     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1457     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1458     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1460     return true;
  1465 char * os::local_time_string(char *buf, size_t buflen) {
  1466   struct tm t;
  1467   time_t long_time;
  1468   time(&long_time);
  1469   localtime_r(&long_time, &t);
  1470   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1471                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1472                t.tm_hour, t.tm_min, t.tm_sec);
  1473   return buf;
  1476 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1477   return localtime_r(clock, res);
  1480 ////////////////////////////////////////////////////////////////////////////////
  1481 // runtime exit support
  1483 // Note: os::shutdown() might be called very early during initialization, or
  1484 // called from signal handler. Before adding something to os::shutdown(), make
  1485 // sure it is async-safe and can handle partially initialized VM.
  1486 void os::shutdown() {
  1488   // allow PerfMemory to attempt cleanup of any persistent resources
  1489   perfMemory_exit();
  1491   // needs to remove object in file system
  1492   AttachListener::abort();
  1494   // flush buffered output, finish log files
  1495   ostream_abort();
  1497   // Check for abort hook
  1498   abort_hook_t abort_hook = Arguments::abort_hook();
  1499   if (abort_hook != NULL) {
  1500     abort_hook();
  1505 // Note: os::abort() might be called very early during initialization, or
  1506 // called from signal handler. Before adding something to os::abort(), make
  1507 // sure it is async-safe and can handle partially initialized VM.
  1508 void os::abort(bool dump_core) {
  1509   os::shutdown();
  1510   if (dump_core) {
  1511 #ifndef PRODUCT
  1512     fdStream out(defaultStream::output_fd());
  1513     out.print_raw("Current thread is ");
  1514     char buf[16];
  1515     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1516     out.print_raw_cr(buf);
  1517     out.print_raw_cr("Dumping core ...");
  1518 #endif
  1519     ::abort(); // dump core
  1522   ::exit(1);
  1525 // Die immediately, no exit hook, no abort hook, no cleanup.
  1526 void os::die() {
  1527   // _exit() on LinuxThreads only kills current thread
  1528   ::abort();
  1532 // This method is a copy of JDK's sysGetLastErrorString
  1533 // from src/solaris/hpi/src/system_md.c
  1535 size_t os::lasterror(char *buf, size_t len) {
  1537   if (errno == 0)  return 0;
  1539   const char *s = ::strerror(errno);
  1540   size_t n = ::strlen(s);
  1541   if (n >= len) {
  1542     n = len - 1;
  1544   ::strncpy(buf, s, n);
  1545   buf[n] = '\0';
  1546   return n;
  1549 intx os::current_thread_id() { return (intx)pthread_self(); }
  1550 int os::current_process_id() {
  1552   // Under the old linux thread library, linux gives each thread
  1553   // its own process id. Because of this each thread will return
  1554   // a different pid if this method were to return the result
  1555   // of getpid(2). Linux provides no api that returns the pid
  1556   // of the launcher thread for the vm. This implementation
  1557   // returns a unique pid, the pid of the launcher thread
  1558   // that starts the vm 'process'.
  1560   // Under the NPTL, getpid() returns the same pid as the
  1561   // launcher thread rather than a unique pid per thread.
  1562   // Use gettid() if you want the old pre NPTL behaviour.
  1564   // if you are looking for the result of a call to getpid() that
  1565   // returns a unique pid for the calling thread, then look at the
  1566   // OSThread::thread_id() method in osThread_linux.hpp file
  1568   return (int)(_initial_pid ? _initial_pid : getpid());
  1571 // DLL functions
  1573 const char* os::dll_file_extension() { return ".so"; }
  1575 // This must be hard coded because it's the system's temporary
  1576 // directory not the java application's temp directory, ala java.io.tmpdir.
  1577 const char* os::get_temp_directory() { return "/tmp"; }
  1579 static bool file_exists(const char* filename) {
  1580   struct stat statbuf;
  1581   if (filename == NULL || strlen(filename) == 0) {
  1582     return false;
  1584   return os::stat(filename, &statbuf) == 0;
  1587 bool os::dll_build_name(char* buffer, size_t buflen,
  1588                         const char* pname, const char* fname) {
  1589   bool retval = false;
  1590   // Copied from libhpi
  1591   const size_t pnamelen = pname ? strlen(pname) : 0;
  1593   // Return error on buffer overflow.
  1594   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1595     return retval;
  1598   if (pnamelen == 0) {
  1599     snprintf(buffer, buflen, "lib%s.so", fname);
  1600     retval = true;
  1601   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1602     int n;
  1603     char** pelements = split_path(pname, &n);
  1604     if (pelements == NULL) {
  1605       return false;
  1607     for (int i = 0 ; i < n ; i++) {
  1608       // Really shouldn't be NULL, but check can't hurt
  1609       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1610         continue; // skip the empty path values
  1612       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1613       if (file_exists(buffer)) {
  1614         retval = true;
  1615         break;
  1618     // release the storage
  1619     for (int i = 0 ; i < n ; i++) {
  1620       if (pelements[i] != NULL) {
  1621         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1624     if (pelements != NULL) {
  1625       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1627   } else {
  1628     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1629     retval = true;
  1631   return retval;
  1634 // check if addr is inside libjvm.so
  1635 bool os::address_is_in_vm(address addr) {
  1636   static address libjvm_base_addr;
  1637   Dl_info dlinfo;
  1639   if (libjvm_base_addr == NULL) {
  1640     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
  1641       libjvm_base_addr = (address)dlinfo.dli_fbase;
  1643     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1646   if (dladdr((void *)addr, &dlinfo) != 0) {
  1647     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1650   return false;
  1653 bool os::dll_address_to_function_name(address addr, char *buf,
  1654                                       int buflen, int *offset) {
  1655   // buf is not optional, but offset is optional
  1656   assert(buf != NULL, "sanity check");
  1658   Dl_info dlinfo;
  1660   if (dladdr((void*)addr, &dlinfo) != 0) {
  1661     // see if we have a matching symbol
  1662     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
  1663       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1664         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1666       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1667       return true;
  1669     // no matching symbol so try for just file info
  1670     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
  1671       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1672                           buf, buflen, offset, dlinfo.dli_fname)) {
  1673         return true;
  1678   buf[0] = '\0';
  1679   if (offset != NULL) *offset = -1;
  1680   return false;
  1683 struct _address_to_library_name {
  1684   address addr;          // input : memory address
  1685   size_t  buflen;        //         size of fname
  1686   char*   fname;         // output: library name
  1687   address base;          //         library base addr
  1688 };
  1690 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1691                                             size_t size, void *data) {
  1692   int i;
  1693   bool found = false;
  1694   address libbase = NULL;
  1695   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1697   // iterate through all loadable segments
  1698   for (i = 0; i < info->dlpi_phnum; i++) {
  1699     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1700     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1701       // base address of a library is the lowest address of its loaded
  1702       // segments.
  1703       if (libbase == NULL || libbase > segbase) {
  1704         libbase = segbase;
  1706       // see if 'addr' is within current segment
  1707       if (segbase <= d->addr &&
  1708           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1709         found = true;
  1714   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1715   // so dll_address_to_library_name() can fall through to use dladdr() which
  1716   // can figure out executable name from argv[0].
  1717   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1718     d->base = libbase;
  1719     if (d->fname) {
  1720       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1722     return 1;
  1724   return 0;
  1727 bool os::dll_address_to_library_name(address addr, char* buf,
  1728                                      int buflen, int* offset) {
  1729   // buf is not optional, but offset is optional
  1730   assert(buf != NULL, "sanity check");
  1732   Dl_info dlinfo;
  1733   struct _address_to_library_name data;
  1735   // There is a bug in old glibc dladdr() implementation that it could resolve
  1736   // to wrong library name if the .so file has a base address != NULL. Here
  1737   // we iterate through the program headers of all loaded libraries to find
  1738   // out which library 'addr' really belongs to. This workaround can be
  1739   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1740   data.addr = addr;
  1741   data.fname = buf;
  1742   data.buflen = buflen;
  1743   data.base = NULL;
  1744   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1746   if (rslt) {
  1747      // buf already contains library name
  1748      if (offset) *offset = addr - data.base;
  1749      return true;
  1751   if (dladdr((void*)addr, &dlinfo) != 0) {
  1752     if (dlinfo.dli_fname != NULL) {
  1753       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1755     if (dlinfo.dli_fbase != NULL && offset != NULL) {
  1756       *offset = addr - (address)dlinfo.dli_fbase;
  1758     return true;
  1761   buf[0] = '\0';
  1762   if (offset) *offset = -1;
  1763   return false;
  1766   // Loads .dll/.so and
  1767   // in case of error it checks if .dll/.so was built for the
  1768   // same architecture as Hotspot is running on
  1771 // Remember the stack's state. The Linux dynamic linker will change
  1772 // the stack to 'executable' at most once, so we must safepoint only once.
  1773 bool os::Linux::_stack_is_executable = false;
  1775 // VM operation that loads a library.  This is necessary if stack protection
  1776 // of the Java stacks can be lost during loading the library.  If we
  1777 // do not stop the Java threads, they can stack overflow before the stacks
  1778 // are protected again.
  1779 class VM_LinuxDllLoad: public VM_Operation {
  1780  private:
  1781   const char *_filename;
  1782   char *_ebuf;
  1783   int _ebuflen;
  1784   void *_lib;
  1785  public:
  1786   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
  1787     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
  1788   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
  1789   void doit() {
  1790     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
  1791     os::Linux::_stack_is_executable = true;
  1793   void* loaded_library() { return _lib; }
  1794 };
  1796 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1798   void * result = NULL;
  1799   bool load_attempted = false;
  1801   // Check whether the library to load might change execution rights
  1802   // of the stack. If they are changed, the protection of the stack
  1803   // guard pages will be lost. We need a safepoint to fix this.
  1804   //
  1805   // See Linux man page execstack(8) for more info.
  1806   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
  1807     ElfFile ef(filename);
  1808     if (!ef.specifies_noexecstack()) {
  1809       if (!is_init_completed()) {
  1810         os::Linux::_stack_is_executable = true;
  1811         // This is OK - No Java threads have been created yet, and hence no
  1812         // stack guard pages to fix.
  1813         //
  1814         // This should happen only when you are building JDK7 using a very
  1815         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
  1816         //
  1817         // Dynamic loader will make all stacks executable after
  1818         // this function returns, and will not do that again.
  1819         assert(Threads::first() == NULL, "no Java threads should exist yet.");
  1820       } else {
  1821         warning("You have loaded library %s which might have disabled stack guard. "
  1822                 "The VM will try to fix the stack guard now.\n"
  1823                 "It's highly recommended that you fix the library with "
  1824                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
  1825                 filename);
  1827         assert(Thread::current()->is_Java_thread(), "must be Java thread");
  1828         JavaThread *jt = JavaThread::current();
  1829         if (jt->thread_state() != _thread_in_native) {
  1830           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
  1831           // that requires ExecStack. Cannot enter safe point. Let's give up.
  1832           warning("Unable to fix stack guard. Giving up.");
  1833         } else {
  1834           if (!LoadExecStackDllInVMThread) {
  1835             // This is for the case where the DLL has an static
  1836             // constructor function that executes JNI code. We cannot
  1837             // load such DLLs in the VMThread.
  1838             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1841           ThreadInVMfromNative tiv(jt);
  1842           debug_only(VMNativeEntryWrapper vew;)
  1844           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
  1845           VMThread::execute(&op);
  1846           if (LoadExecStackDllInVMThread) {
  1847             result = op.loaded_library();
  1849           load_attempted = true;
  1855   if (!load_attempted) {
  1856     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1859   if (result != NULL) {
  1860     // Successful loading
  1861     return result;
  1864   Elf32_Ehdr elf_head;
  1865   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1866   char* diag_msg_buf=ebuf+strlen(ebuf);
  1868   if (diag_msg_max_length==0) {
  1869     // No more space in ebuf for additional diagnostics message
  1870     return NULL;
  1874   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1876   if (file_descriptor < 0) {
  1877     // Can't open library, report dlerror() message
  1878     return NULL;
  1881   bool failed_to_read_elf_head=
  1882     (sizeof(elf_head)!=
  1883         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1885   ::close(file_descriptor);
  1886   if (failed_to_read_elf_head) {
  1887     // file i/o error - report dlerror() msg
  1888     return NULL;
  1891   typedef struct {
  1892     Elf32_Half  code;         // Actual value as defined in elf.h
  1893     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1894     char        elf_class;    // 32 or 64 bit
  1895     char        endianess;    // MSB or LSB
  1896     char*       name;         // String representation
  1897   } arch_t;
  1899   #ifndef EM_486
  1900   #define EM_486          6               /* Intel 80486 */
  1901   #endif
  1903   static const arch_t arch_array[]={
  1904     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1905     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1906     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1907     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1908     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1909     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1910     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1911     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1912 #if defined(VM_LITTLE_ENDIAN)
  1913     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
  1914 #else
  1915     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1916 #endif
  1917     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1918     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1919     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1920     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1921     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1922     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1923     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1924   };
  1926   #if  (defined IA32)
  1927     static  Elf32_Half running_arch_code=EM_386;
  1928   #elif   (defined AMD64)
  1929     static  Elf32_Half running_arch_code=EM_X86_64;
  1930   #elif  (defined IA64)
  1931     static  Elf32_Half running_arch_code=EM_IA_64;
  1932   #elif  (defined __sparc) && (defined _LP64)
  1933     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1934   #elif  (defined __sparc) && (!defined _LP64)
  1935     static  Elf32_Half running_arch_code=EM_SPARC;
  1936   #elif  (defined __powerpc64__)
  1937     static  Elf32_Half running_arch_code=EM_PPC64;
  1938   #elif  (defined __powerpc__)
  1939     static  Elf32_Half running_arch_code=EM_PPC;
  1940   #elif  (defined ARM)
  1941     static  Elf32_Half running_arch_code=EM_ARM;
  1942   #elif  (defined S390)
  1943     static  Elf32_Half running_arch_code=EM_S390;
  1944   #elif  (defined ALPHA)
  1945     static  Elf32_Half running_arch_code=EM_ALPHA;
  1946   #elif  (defined MIPSEL)
  1947     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1948   #elif  (defined PARISC)
  1949     static  Elf32_Half running_arch_code=EM_PARISC;
  1950   #elif  (defined MIPS)
  1951     static  Elf32_Half running_arch_code=EM_MIPS;
  1952   #elif  (defined M68K)
  1953     static  Elf32_Half running_arch_code=EM_68K;
  1954   #else
  1955     #error Method os::dll_load requires that one of following is defined:\
  1956          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1957   #endif
  1959   // Identify compatability class for VM's architecture and library's architecture
  1960   // Obtain string descriptions for architectures
  1962   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  1963   int running_arch_index=-1;
  1965   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  1966     if (running_arch_code == arch_array[i].code) {
  1967       running_arch_index    = i;
  1969     if (lib_arch.code == arch_array[i].code) {
  1970       lib_arch.compat_class = arch_array[i].compat_class;
  1971       lib_arch.name         = arch_array[i].name;
  1975   assert(running_arch_index != -1,
  1976     "Didn't find running architecture code (running_arch_code) in arch_array");
  1977   if (running_arch_index == -1) {
  1978     // Even though running architecture detection failed
  1979     // we may still continue with reporting dlerror() message
  1980     return NULL;
  1983   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  1984     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  1985     return NULL;
  1988 #ifndef S390
  1989   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  1990     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  1991     return NULL;
  1993 #endif // !S390
  1995   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  1996     if ( lib_arch.name!=NULL ) {
  1997       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1998         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  1999         lib_arch.name, arch_array[running_arch_index].name);
  2000     } else {
  2001       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2002       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  2003         lib_arch.code,
  2004         arch_array[running_arch_index].name);
  2008   return NULL;
  2011 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
  2012   void * result = ::dlopen(filename, RTLD_LAZY);
  2013   if (result == NULL) {
  2014     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
  2015     ebuf[ebuflen-1] = '\0';
  2017   return result;
  2020 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
  2021   void * result = NULL;
  2022   if (LoadExecStackDllInVMThread) {
  2023     result = dlopen_helper(filename, ebuf, ebuflen);
  2026   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
  2027   // library that requires an executable stack, or which does not have this
  2028   // stack attribute set, dlopen changes the stack attribute to executable. The
  2029   // read protection of the guard pages gets lost.
  2030   //
  2031   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
  2032   // may have been queued at the same time.
  2034   if (!_stack_is_executable) {
  2035     JavaThread *jt = Threads::first();
  2037     while (jt) {
  2038       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
  2039           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
  2040         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
  2041                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
  2042           warning("Attempt to reguard stack yellow zone failed.");
  2045       jt = jt->next();
  2049   return result;
  2052 /*
  2053  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  2054  * chances are you might want to run the generated bits against glibc-2.0
  2055  * libdl.so, so always use locking for any version of glibc.
  2056  */
  2057 void* os::dll_lookup(void* handle, const char* name) {
  2058   pthread_mutex_lock(&dl_mutex);
  2059   void* res = dlsym(handle, name);
  2060   pthread_mutex_unlock(&dl_mutex);
  2061   return res;
  2064 void* os::get_default_process_handle() {
  2065   return (void*)::dlopen(NULL, RTLD_LAZY);
  2068 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2069   int fd = ::open(filename, O_RDONLY);
  2070   if (fd == -1) {
  2071      return false;
  2074   char buf[32];
  2075   int bytes;
  2076   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2077     st->print_raw(buf, bytes);
  2080   ::close(fd);
  2082   return true;
  2085 void os::print_dll_info(outputStream *st) {
  2086    st->print_cr("Dynamic libraries:");
  2088    char fname[32];
  2089    pid_t pid = os::Linux::gettid();
  2091    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  2093    if (!_print_ascii_file(fname, st)) {
  2094      st->print("Can not get library information for pid = %d\n", pid);
  2098 void os::print_os_info_brief(outputStream* st) {
  2099   os::Linux::print_distro_info(st);
  2101   os::Posix::print_uname_info(st);
  2103   os::Linux::print_libversion_info(st);
  2107 void os::print_os_info(outputStream* st) {
  2108   st->print("OS:");
  2110   os::Linux::print_distro_info(st);
  2112   os::Posix::print_uname_info(st);
  2114   // Print warning if unsafe chroot environment detected
  2115   if (unsafe_chroot_detected) {
  2116     st->print("WARNING!! ");
  2117     st->print_cr("%s", unstable_chroot_error);
  2120   os::Linux::print_libversion_info(st);
  2122   os::Posix::print_rlimit_info(st);
  2124   os::Posix::print_load_average(st);
  2126   os::Linux::print_full_memory_info(st);
  2129 // Try to identify popular distros.
  2130 // Most Linux distributions have a /etc/XXX-release file, which contains
  2131 // the OS version string. Newer Linux distributions have a /etc/lsb-release
  2132 // file that also contains the OS version string. Some have more than one
  2133 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
  2134 // /etc/redhat-release.), so the order is important.
  2135 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
  2136 // their own specific XXX-release file as well as a redhat-release file.
  2137 // Because of this the XXX-release file needs to be searched for before the
  2138 // redhat-release file.
  2139 // Since Red Hat has a lsb-release file that is not very descriptive the
  2140 // search for redhat-release needs to be before lsb-release.
  2141 // Since the lsb-release file is the new standard it needs to be searched
  2142 // before the older style release files.
  2143 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
  2144 // next to last resort.  The os-release file is a new standard that contains
  2145 // distribution information and the system-release file seems to be an old
  2146 // standard that has been replaced by the lsb-release and os-release files.
  2147 // Searching for the debian_version file is the last resort.  It contains
  2148 // an informative string like "6.0.6" or "wheezy/sid". Because of this
  2149 // "Debian " is printed before the contents of the debian_version file.
  2150 void os::Linux::print_distro_info(outputStream* st) {
  2151    if (!_print_ascii_file("/etc/oracle-release", st) &&
  2152        !_print_ascii_file("/etc/mandriva-release", st) &&
  2153        !_print_ascii_file("/etc/mandrake-release", st) &&
  2154        !_print_ascii_file("/etc/sun-release", st) &&
  2155        !_print_ascii_file("/etc/redhat-release", st) &&
  2156        !_print_ascii_file("/etc/lsb-release", st) &&
  2157        !_print_ascii_file("/etc/SuSE-release", st) &&
  2158        !_print_ascii_file("/etc/turbolinux-release", st) &&
  2159        !_print_ascii_file("/etc/gentoo-release", st) &&
  2160        !_print_ascii_file("/etc/ltib-release", st) &&
  2161        !_print_ascii_file("/etc/angstrom-version", st) &&
  2162        !_print_ascii_file("/etc/system-release", st) &&
  2163        !_print_ascii_file("/etc/os-release", st)) {
  2165        if (file_exists("/etc/debian_version")) {
  2166          st->print("Debian ");
  2167          _print_ascii_file("/etc/debian_version", st);
  2168        } else {
  2169          st->print("Linux");
  2172    st->cr();
  2175 void os::Linux::print_libversion_info(outputStream* st) {
  2176   // libc, pthread
  2177   st->print("libc:");
  2178   st->print("%s ", os::Linux::glibc_version());
  2179   st->print("%s ", os::Linux::libpthread_version());
  2180   if (os::Linux::is_LinuxThreads()) {
  2181      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2183   st->cr();
  2186 void os::Linux::print_full_memory_info(outputStream* st) {
  2187    st->print("\n/proc/meminfo:\n");
  2188    _print_ascii_file("/proc/meminfo", st);
  2189    st->cr();
  2192 void os::print_memory_info(outputStream* st) {
  2194   st->print("Memory:");
  2195   st->print(" %dk page", os::vm_page_size()>>10);
  2197   // values in struct sysinfo are "unsigned long"
  2198   struct sysinfo si;
  2199   sysinfo(&si);
  2201   st->print(", physical " UINT64_FORMAT "k",
  2202             os::physical_memory() >> 10);
  2203   st->print("(" UINT64_FORMAT "k free)",
  2204             os::available_memory() >> 10);
  2205   st->print(", swap " UINT64_FORMAT "k",
  2206             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2207   st->print("(" UINT64_FORMAT "k free)",
  2208             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2209   st->cr();
  2212 void os::pd_print_cpu_info(outputStream* st) {
  2213   st->print("\n/proc/cpuinfo:\n");
  2214   if (!_print_ascii_file("/proc/cpuinfo", st)) {
  2215     st->print("  <Not Available>");
  2217   st->cr();
  2220 void os::print_siginfo(outputStream* st, void* siginfo) {
  2221   const siginfo_t* si = (const siginfo_t*)siginfo;
  2223   os::Posix::print_siginfo_brief(st, si);
  2224 #if INCLUDE_CDS
  2225   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2226       UseSharedSpaces) {
  2227     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2228     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2229       st->print("\n\nError accessing class data sharing archive."   \
  2230                 " Mapped file inaccessible during execution, "      \
  2231                 " possible disk/network problem.");
  2234 #endif
  2235   st->cr();
  2239 static void print_signal_handler(outputStream* st, int sig,
  2240                                  char* buf, size_t buflen);
  2242 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2243   st->print_cr("Signal Handlers:");
  2244   print_signal_handler(st, SIGSEGV, buf, buflen);
  2245   print_signal_handler(st, SIGBUS , buf, buflen);
  2246   print_signal_handler(st, SIGFPE , buf, buflen);
  2247   print_signal_handler(st, SIGPIPE, buf, buflen);
  2248   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2249   print_signal_handler(st, SIGILL , buf, buflen);
  2250   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2251   print_signal_handler(st, SR_signum, buf, buflen);
  2252   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2253   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2254   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2255   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2256 #if defined(PPC64)
  2257   print_signal_handler(st, SIGTRAP, buf, buflen);
  2258 #endif
  2261 static char saved_jvm_path[MAXPATHLEN] = {0};
  2263 // Find the full path to the current module, libjvm.so
  2264 void os::jvm_path(char *buf, jint buflen) {
  2265   // Error checking.
  2266   if (buflen < MAXPATHLEN) {
  2267     assert(false, "must use a large-enough buffer");
  2268     buf[0] = '\0';
  2269     return;
  2271   // Lazy resolve the path to current module.
  2272   if (saved_jvm_path[0] != 0) {
  2273     strcpy(buf, saved_jvm_path);
  2274     return;
  2277   char dli_fname[MAXPATHLEN];
  2278   bool ret = dll_address_to_library_name(
  2279                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2280                 dli_fname, sizeof(dli_fname), NULL);
  2281   assert(ret, "cannot locate libjvm");
  2282   char *rp = NULL;
  2283   if (ret && dli_fname[0] != '\0') {
  2284     rp = realpath(dli_fname, buf);
  2286   if (rp == NULL)
  2287     return;
  2289   if (Arguments::created_by_gamma_launcher()) {
  2290     // Support for the gamma launcher.  Typical value for buf is
  2291     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2292     // the right place in the string, then assume we are installed in a JDK and
  2293     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2294     // up the path so it looks like libjvm.so is installed there (append a
  2295     // fake suffix hotspot/libjvm.so).
  2296     const char *p = buf + strlen(buf) - 1;
  2297     for (int count = 0; p > buf && count < 5; ++count) {
  2298       for (--p; p > buf && *p != '/'; --p)
  2299         /* empty */ ;
  2302     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2303       // Look for JAVA_HOME in the environment.
  2304       char* java_home_var = ::getenv("JAVA_HOME");
  2305       if (java_home_var != NULL && java_home_var[0] != 0) {
  2306         char* jrelib_p;
  2307         int len;
  2309         // Check the current module name "libjvm.so".
  2310         p = strrchr(buf, '/');
  2311         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2313         rp = realpath(java_home_var, buf);
  2314         if (rp == NULL)
  2315           return;
  2317         // determine if this is a legacy image or modules image
  2318         // modules image doesn't have "jre" subdirectory
  2319         len = strlen(buf);
  2320         assert(len < buflen, "Ran out of buffer room");
  2321         jrelib_p = buf + len;
  2322         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2323         if (0 != access(buf, F_OK)) {
  2324           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2327         if (0 == access(buf, F_OK)) {
  2328           // Use current module name "libjvm.so"
  2329           len = strlen(buf);
  2330           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
  2331         } else {
  2332           // Go back to path of .so
  2333           rp = realpath(dli_fname, buf);
  2334           if (rp == NULL)
  2335             return;
  2341   strncpy(saved_jvm_path, buf, MAXPATHLEN);
  2344 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2345   // no prefix required, not even "_"
  2348 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2349   // no suffix required
  2352 ////////////////////////////////////////////////////////////////////////////////
  2353 // sun.misc.Signal support
  2355 static volatile jint sigint_count = 0;
  2357 static void
  2358 UserHandler(int sig, void *siginfo, void *context) {
  2359   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2360   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2361   // don't want to flood the manager thread with sem_post requests.
  2362   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2363       return;
  2365   // Ctrl-C is pressed during error reporting, likely because the error
  2366   // handler fails to abort. Let VM die immediately.
  2367   if (sig == SIGINT && is_error_reported()) {
  2368      os::die();
  2371   os::signal_notify(sig);
  2374 void* os::user_handler() {
  2375   return CAST_FROM_FN_PTR(void*, UserHandler);
  2378 class Semaphore : public StackObj {
  2379   public:
  2380     Semaphore();
  2381     ~Semaphore();
  2382     void signal();
  2383     void wait();
  2384     bool trywait();
  2385     bool timedwait(unsigned int sec, int nsec);
  2386   private:
  2387     sem_t _semaphore;
  2388 };
  2390 Semaphore::Semaphore() {
  2391   sem_init(&_semaphore, 0, 0);
  2394 Semaphore::~Semaphore() {
  2395   sem_destroy(&_semaphore);
  2398 void Semaphore::signal() {
  2399   sem_post(&_semaphore);
  2402 void Semaphore::wait() {
  2403   sem_wait(&_semaphore);
  2406 bool Semaphore::trywait() {
  2407   return sem_trywait(&_semaphore) == 0;
  2410 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  2412   struct timespec ts;
  2413   // Semaphore's are always associated with CLOCK_REALTIME
  2414   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
  2415   // see unpackTime for discussion on overflow checking
  2416   if (sec >= MAX_SECS) {
  2417     ts.tv_sec += MAX_SECS;
  2418     ts.tv_nsec = 0;
  2419   } else {
  2420     ts.tv_sec += sec;
  2421     ts.tv_nsec += nsec;
  2422     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
  2423       ts.tv_nsec -= NANOSECS_PER_SEC;
  2424       ++ts.tv_sec; // note: this must be <= max_secs
  2428   while (1) {
  2429     int result = sem_timedwait(&_semaphore, &ts);
  2430     if (result == 0) {
  2431       return true;
  2432     } else if (errno == EINTR) {
  2433       continue;
  2434     } else if (errno == ETIMEDOUT) {
  2435       return false;
  2436     } else {
  2437       return false;
  2442 extern "C" {
  2443   typedef void (*sa_handler_t)(int);
  2444   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2447 void* os::signal(int signal_number, void* handler) {
  2448   struct sigaction sigAct, oldSigAct;
  2450   sigfillset(&(sigAct.sa_mask));
  2451   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2452   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2454   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2455     // -1 means registration failed
  2456     return (void *)-1;
  2459   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2462 void os::signal_raise(int signal_number) {
  2463   ::raise(signal_number);
  2466 /*
  2467  * The following code is moved from os.cpp for making this
  2468  * code platform specific, which it is by its very nature.
  2469  */
  2471 // Will be modified when max signal is changed to be dynamic
  2472 int os::sigexitnum_pd() {
  2473   return NSIG;
  2476 // a counter for each possible signal value
  2477 static volatile jint pending_signals[NSIG+1] = { 0 };
  2479 // Linux(POSIX) specific hand shaking semaphore.
  2480 static sem_t sig_sem;
  2481 static Semaphore sr_semaphore;
  2483 void os::signal_init_pd() {
  2484   // Initialize signal structures
  2485   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2487   // Initialize signal semaphore
  2488   ::sem_init(&sig_sem, 0, 0);
  2491 void os::signal_notify(int sig) {
  2492   Atomic::inc(&pending_signals[sig]);
  2493   ::sem_post(&sig_sem);
  2496 static int check_pending_signals(bool wait) {
  2497   Atomic::store(0, &sigint_count);
  2498   for (;;) {
  2499     for (int i = 0; i < NSIG + 1; i++) {
  2500       jint n = pending_signals[i];
  2501       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2502         return i;
  2505     if (!wait) {
  2506       return -1;
  2508     JavaThread *thread = JavaThread::current();
  2509     ThreadBlockInVM tbivm(thread);
  2511     bool threadIsSuspended;
  2512     do {
  2513       thread->set_suspend_equivalent();
  2514       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2515       ::sem_wait(&sig_sem);
  2517       // were we externally suspended while we were waiting?
  2518       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2519       if (threadIsSuspended) {
  2520         //
  2521         // The semaphore has been incremented, but while we were waiting
  2522         // another thread suspended us. We don't want to continue running
  2523         // while suspended because that would surprise the thread that
  2524         // suspended us.
  2525         //
  2526         ::sem_post(&sig_sem);
  2528         thread->java_suspend_self();
  2530     } while (threadIsSuspended);
  2534 int os::signal_lookup() {
  2535   return check_pending_signals(false);
  2538 int os::signal_wait() {
  2539   return check_pending_signals(true);
  2542 ////////////////////////////////////////////////////////////////////////////////
  2543 // Virtual Memory
  2545 int os::vm_page_size() {
  2546   // Seems redundant as all get out
  2547   assert(os::Linux::page_size() != -1, "must call os::init");
  2548   return os::Linux::page_size();
  2551 // Solaris allocates memory by pages.
  2552 int os::vm_allocation_granularity() {
  2553   assert(os::Linux::page_size() != -1, "must call os::init");
  2554   return os::Linux::page_size();
  2557 // Rationale behind this function:
  2558 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2559 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2560 //  samples for JITted code. Here we create private executable mapping over the code cache
  2561 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2562 //  info for the reporting script by storing timestamp and location of symbol
  2563 void linux_wrap_code(char* base, size_t size) {
  2564   static volatile jint cnt = 0;
  2566   if (!UseOprofile) {
  2567     return;
  2570   char buf[PATH_MAX+1];
  2571   int num = Atomic::add(1, &cnt);
  2573   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2574            os::get_temp_directory(), os::current_process_id(), num);
  2575   unlink(buf);
  2577   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2579   if (fd != -1) {
  2580     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2581     if (rv != (off_t)-1) {
  2582       if (::write(fd, "", 1) == 1) {
  2583         mmap(base, size,
  2584              PROT_READ|PROT_WRITE|PROT_EXEC,
  2585              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2588     ::close(fd);
  2589     unlink(buf);
  2593 static bool recoverable_mmap_error(int err) {
  2594   // See if the error is one we can let the caller handle. This
  2595   // list of errno values comes from JBS-6843484. I can't find a
  2596   // Linux man page that documents this specific set of errno
  2597   // values so while this list currently matches Solaris, it may
  2598   // change as we gain experience with this failure mode.
  2599   switch (err) {
  2600   case EBADF:
  2601   case EINVAL:
  2602   case ENOTSUP:
  2603     // let the caller deal with these errors
  2604     return true;
  2606   default:
  2607     // Any remaining errors on this OS can cause our reserved mapping
  2608     // to be lost. That can cause confusion where different data
  2609     // structures think they have the same memory mapped. The worst
  2610     // scenario is if both the VM and a library think they have the
  2611     // same memory mapped.
  2612     return false;
  2616 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
  2617                                     int err) {
  2618   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2619           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
  2620           strerror(err), err);
  2623 static void warn_fail_commit_memory(char* addr, size_t size,
  2624                                     size_t alignment_hint, bool exec,
  2625                                     int err) {
  2626   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2627           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
  2628           alignment_hint, exec, strerror(err), err);
  2631 // NOTE: Linux kernel does not really reserve the pages for us.
  2632 //       All it does is to check if there are enough free pages
  2633 //       left at the time of mmap(). This could be a potential
  2634 //       problem.
  2635 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
  2636   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2637   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2638                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2639   if (res != (uintptr_t) MAP_FAILED) {
  2640     if (UseNUMAInterleaving) {
  2641       numa_make_global(addr, size);
  2643     return 0;
  2646   int err = errno;  // save errno from mmap() call above
  2648   if (!recoverable_mmap_error(err)) {
  2649     warn_fail_commit_memory(addr, size, exec, err);
  2650     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
  2653   return err;
  2656 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2657   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
  2660 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  2661                                   const char* mesg) {
  2662   assert(mesg != NULL, "mesg must be specified");
  2663   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2664   if (err != 0) {
  2665     // the caller wants all commit errors to exit with the specified mesg:
  2666     warn_fail_commit_memory(addr, size, exec, err);
  2667     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2671 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2672 #ifndef MAP_HUGETLB
  2673 #define MAP_HUGETLB 0x40000
  2674 #endif
  2676 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2677 #ifndef MADV_HUGEPAGE
  2678 #define MADV_HUGEPAGE 14
  2679 #endif
  2681 int os::Linux::commit_memory_impl(char* addr, size_t size,
  2682                                   size_t alignment_hint, bool exec) {
  2683   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2684   if (err == 0) {
  2685     realign_memory(addr, size, alignment_hint);
  2687   return err;
  2690 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2691                           bool exec) {
  2692   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
  2695 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  2696                                   size_t alignment_hint, bool exec,
  2697                                   const char* mesg) {
  2698   assert(mesg != NULL, "mesg must be specified");
  2699   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
  2700   if (err != 0) {
  2701     // the caller wants all commit errors to exit with the specified mesg:
  2702     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
  2703     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2707 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2708   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
  2709     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2710     // be supported or the memory may already be backed by huge pages.
  2711     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2715 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2716   // This method works by doing an mmap over an existing mmaping and effectively discarding
  2717   // the existing pages. However it won't work for SHM-based large pages that cannot be
  2718   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
  2719   // small pages on top of the SHM segment. This method always works for small pages, so we
  2720   // allow that in any case.
  2721   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
  2722     commit_memory(addr, bytes, alignment_hint, !ExecMem);
  2726 void os::numa_make_global(char *addr, size_t bytes) {
  2727   Linux::numa_interleave_memory(addr, bytes);
  2730 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
  2731 // bind policy to MPOL_PREFERRED for the current thread.
  2732 #define USE_MPOL_PREFERRED 0
  2734 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2735   // To make NUMA and large pages more robust when both enabled, we need to ease
  2736   // the requirements on where the memory should be allocated. MPOL_BIND is the
  2737   // default policy and it will force memory to be allocated on the specified
  2738   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
  2739   // the specified node, but will not force it. Using this policy will prevent
  2740   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
  2741   // free large pages.
  2742   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
  2743   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2746 bool os::numa_topology_changed()   { return false; }
  2748 size_t os::numa_get_groups_num() {
  2749   int max_node = Linux::numa_max_node();
  2750   return max_node > 0 ? max_node + 1 : 1;
  2753 int os::numa_get_group_id() {
  2754   int cpu_id = Linux::sched_getcpu();
  2755   if (cpu_id != -1) {
  2756     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2757     if (lgrp_id != -1) {
  2758       return lgrp_id;
  2761   return 0;
  2764 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2765   for (size_t i = 0; i < size; i++) {
  2766     ids[i] = i;
  2768   return size;
  2771 bool os::get_page_info(char *start, page_info* info) {
  2772   return false;
  2775 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2776   return end;
  2780 int os::Linux::sched_getcpu_syscall(void) {
  2781   unsigned int cpu;
  2782   int retval = -1;
  2784 #if defined(IA32)
  2785 # ifndef SYS_getcpu
  2786 # define SYS_getcpu 318
  2787 # endif
  2788   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
  2789 #elif defined(AMD64)
  2790 // Unfortunately we have to bring all these macros here from vsyscall.h
  2791 // to be able to compile on old linuxes.
  2792 # define __NR_vgetcpu 2
  2793 # define VSYSCALL_START (-10UL << 20)
  2794 # define VSYSCALL_SIZE 1024
  2795 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  2796   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  2797   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  2798   retval = vgetcpu(&cpu, NULL, NULL);
  2799 #endif
  2801   return (retval == -1) ? retval : cpu;
  2804 // Something to do with the numa-aware allocator needs these symbols
  2805 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2806 extern "C" JNIEXPORT void numa_error(char *where) { }
  2807 extern "C" JNIEXPORT int fork1() { return fork(); }
  2810 // If we are running with libnuma version > 2, then we should
  2811 // be trying to use symbols with versions 1.1
  2812 // If we are running with earlier version, which did not have symbol versions,
  2813 // we should use the base version.
  2814 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2815   void *f = dlvsym(handle, name, "libnuma_1.1");
  2816   if (f == NULL) {
  2817     f = dlsym(handle, name);
  2819   return f;
  2822 bool os::Linux::libnuma_init() {
  2823   // sched_getcpu() should be in libc.
  2824   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2825                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2827   // If it's not, try a direct syscall.
  2828   if (sched_getcpu() == -1)
  2829     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
  2831   if (sched_getcpu() != -1) { // Does it work?
  2832     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2833     if (handle != NULL) {
  2834       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2835                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2836       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2837                                        libnuma_dlsym(handle, "numa_max_node")));
  2838       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2839                                         libnuma_dlsym(handle, "numa_available")));
  2840       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2841                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2842       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2843                                             libnuma_dlsym(handle, "numa_interleave_memory")));
  2844       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
  2845                                             libnuma_dlsym(handle, "numa_set_bind_policy")));
  2848       if (numa_available() != -1) {
  2849         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2850         // Create a cpu -> node mapping
  2851         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  2852         rebuild_cpu_to_node_map();
  2853         return true;
  2857   return false;
  2860 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2861 // The table is later used in get_node_by_cpu().
  2862 void os::Linux::rebuild_cpu_to_node_map() {
  2863   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2864                               // in libnuma (possible values are starting from 16,
  2865                               // and continuing up with every other power of 2, but less
  2866                               // than the maximum number of CPUs supported by kernel), and
  2867                               // is a subject to change (in libnuma version 2 the requirements
  2868                               // are more reasonable) we'll just hardcode the number they use
  2869                               // in the library.
  2870   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2872   size_t cpu_num = os::active_processor_count();
  2873   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2874   size_t cpu_map_valid_size =
  2875     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2877   cpu_to_node()->clear();
  2878   cpu_to_node()->at_grow(cpu_num - 1);
  2879   size_t node_num = numa_get_groups_num();
  2881   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
  2882   for (size_t i = 0; i < node_num; i++) {
  2883     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2884       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2885         if (cpu_map[j] != 0) {
  2886           for (size_t k = 0; k < BitsPerCLong; k++) {
  2887             if (cpu_map[j] & (1UL << k)) {
  2888               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
  2895   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
  2898 int os::Linux::get_node_by_cpu(int cpu_id) {
  2899   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2900     return cpu_to_node()->at(cpu_id);
  2902   return -1;
  2905 GrowableArray<int>* os::Linux::_cpu_to_node;
  2906 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2907 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2908 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2909 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2910 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2911 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2912 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
  2913 unsigned long* os::Linux::_numa_all_nodes;
  2915 bool os::pd_uncommit_memory(char* addr, size_t size) {
  2916   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2917                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  2918   return res  != (uintptr_t) MAP_FAILED;
  2921 static
  2922 address get_stack_commited_bottom(address bottom, size_t size) {
  2923   address nbot = bottom;
  2924   address ntop = bottom + size;
  2926   size_t page_sz = os::vm_page_size();
  2927   unsigned pages = size / page_sz;
  2929   unsigned char vec[1];
  2930   unsigned imin = 1, imax = pages + 1, imid;
  2931   int mincore_return_value = 0;
  2933   assert(imin <= imax, "Unexpected page size");
  2935   while (imin < imax) {
  2936     imid = (imax + imin) / 2;
  2937     nbot = ntop - (imid * page_sz);
  2939     // Use a trick with mincore to check whether the page is mapped or not.
  2940     // mincore sets vec to 1 if page resides in memory and to 0 if page
  2941     // is swapped output but if page we are asking for is unmapped
  2942     // it returns -1,ENOMEM
  2943     mincore_return_value = mincore(nbot, page_sz, vec);
  2945     if (mincore_return_value == -1) {
  2946       // Page is not mapped go up
  2947       // to find first mapped page
  2948       if (errno != EAGAIN) {
  2949         assert(errno == ENOMEM, "Unexpected mincore errno");
  2950         imax = imid;
  2952     } else {
  2953       // Page is mapped go down
  2954       // to find first not mapped page
  2955       imin = imid + 1;
  2959   nbot = nbot + page_sz;
  2961   // Adjust stack bottom one page up if last checked page is not mapped
  2962   if (mincore_return_value == -1) {
  2963     nbot = nbot + page_sz;
  2966   return nbot;
  2970 // Linux uses a growable mapping for the stack, and if the mapping for
  2971 // the stack guard pages is not removed when we detach a thread the
  2972 // stack cannot grow beyond the pages where the stack guard was
  2973 // mapped.  If at some point later in the process the stack expands to
  2974 // that point, the Linux kernel cannot expand the stack any further
  2975 // because the guard pages are in the way, and a segfault occurs.
  2976 //
  2977 // However, it's essential not to split the stack region by unmapping
  2978 // a region (leaving a hole) that's already part of the stack mapping,
  2979 // so if the stack mapping has already grown beyond the guard pages at
  2980 // the time we create them, we have to truncate the stack mapping.
  2981 // So, we need to know the extent of the stack mapping when
  2982 // create_stack_guard_pages() is called.
  2984 // We only need this for stacks that are growable: at the time of
  2985 // writing thread stacks don't use growable mappings (i.e. those
  2986 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  2987 // only applies to the main thread.
  2989 // If the (growable) stack mapping already extends beyond the point
  2990 // where we're going to put our guard pages, truncate the mapping at
  2991 // that point by munmap()ping it.  This ensures that when we later
  2992 // munmap() the guard pages we don't leave a hole in the stack
  2993 // mapping. This only affects the main/initial thread
  2995 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  2997   if (os::Linux::is_initial_thread()) {
  2998     // As we manually grow stack up to bottom inside create_attached_thread(),
  2999     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
  3000     // we don't need to do anything special.
  3001     // Check it first, before calling heavy function.
  3002     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
  3003     unsigned char vec[1];
  3005     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
  3006       // Fallback to slow path on all errors, including EAGAIN
  3007       stack_extent = (uintptr_t) get_stack_commited_bottom(
  3008                                     os::Linux::initial_thread_stack_bottom(),
  3009                                     (size_t)addr - stack_extent);
  3012     if (stack_extent < (uintptr_t)addr) {
  3013       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
  3017   return os::commit_memory(addr, size, !ExecMem);
  3020 // If this is a growable mapping, remove the guard pages entirely by
  3021 // munmap()ping them.  If not, just call uncommit_memory(). This only
  3022 // affects the main/initial thread, but guard against future OS changes
  3023 // It's safe to always unmap guard pages for initial thread because we
  3024 // always place it right after end of the mapped region
  3026 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3027   uintptr_t stack_extent, stack_base;
  3029   if (os::Linux::is_initial_thread()) {
  3030     return ::munmap(addr, size) == 0;
  3033   return os::uncommit_memory(addr, size);
  3036 static address _highest_vm_reserved_address = NULL;
  3038 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  3039 // at 'requested_addr'. If there are existing memory mappings at the same
  3040 // location, however, they will be overwritten. If 'fixed' is false,
  3041 // 'requested_addr' is only treated as a hint, the return value may or
  3042 // may not start from the requested address. Unlike Linux mmap(), this
  3043 // function returns NULL to indicate failure.
  3044 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  3045   char * addr;
  3046   int flags;
  3048   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  3049   if (fixed) {
  3050     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  3051     flags |= MAP_FIXED;
  3054   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
  3055   // touch an uncommitted page. Otherwise, the read/write might
  3056   // succeed if we have enough swap space to back the physical page.
  3057   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
  3058                        flags, -1, 0);
  3060   if (addr != MAP_FAILED) {
  3061     // anon_mmap() should only get called during VM initialization,
  3062     // don't need lock (actually we can skip locking even it can be called
  3063     // from multiple threads, because _highest_vm_reserved_address is just a
  3064     // hint about the upper limit of non-stack memory regions.)
  3065     if ((address)addr + bytes > _highest_vm_reserved_address) {
  3066       _highest_vm_reserved_address = (address)addr + bytes;
  3070   return addr == MAP_FAILED ? NULL : addr;
  3073 // Don't update _highest_vm_reserved_address, because there might be memory
  3074 // regions above addr + size. If so, releasing a memory region only creates
  3075 // a hole in the address space, it doesn't help prevent heap-stack collision.
  3076 //
  3077 static int anon_munmap(char * addr, size_t size) {
  3078   return ::munmap(addr, size) == 0;
  3081 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  3082                          size_t alignment_hint) {
  3083   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  3086 bool os::pd_release_memory(char* addr, size_t size) {
  3087   return anon_munmap(addr, size);
  3090 static address highest_vm_reserved_address() {
  3091   return _highest_vm_reserved_address;
  3094 static bool linux_mprotect(char* addr, size_t size, int prot) {
  3095   // Linux wants the mprotect address argument to be page aligned.
  3096   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  3098   // According to SUSv3, mprotect() should only be used with mappings
  3099   // established by mmap(), and mmap() always maps whole pages. Unaligned
  3100   // 'addr' likely indicates problem in the VM (e.g. trying to change
  3101   // protection of malloc'ed or statically allocated memory). Check the
  3102   // caller if you hit this assert.
  3103   assert(addr == bottom, "sanity check");
  3105   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  3106   return ::mprotect(bottom, size, prot) == 0;
  3109 // Set protections specified
  3110 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3111                         bool is_committed) {
  3112   unsigned int p = 0;
  3113   switch (prot) {
  3114   case MEM_PROT_NONE: p = PROT_NONE; break;
  3115   case MEM_PROT_READ: p = PROT_READ; break;
  3116   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3117   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3118   default:
  3119     ShouldNotReachHere();
  3121   // is_committed is unused.
  3122   return linux_mprotect(addr, bytes, p);
  3125 bool os::guard_memory(char* addr, size_t size) {
  3126   return linux_mprotect(addr, size, PROT_NONE);
  3129 bool os::unguard_memory(char* addr, size_t size) {
  3130   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  3133 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
  3134   bool result = false;
  3135   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
  3136                  MAP_ANONYMOUS|MAP_PRIVATE,
  3137                  -1, 0);
  3138   if (p != MAP_FAILED) {
  3139     void *aligned_p = align_ptr_up(p, page_size);
  3141     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
  3143     munmap(p, page_size * 2);
  3146   if (warn && !result) {
  3147     warning("TransparentHugePages is not supported by the operating system.");
  3150   return result;
  3153 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  3154   bool result = false;
  3155   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
  3156                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  3157                  -1, 0);
  3159   if (p != MAP_FAILED) {
  3160     // We don't know if this really is a huge page or not.
  3161     FILE *fp = fopen("/proc/self/maps", "r");
  3162     if (fp) {
  3163       while (!feof(fp)) {
  3164         char chars[257];
  3165         long x = 0;
  3166         if (fgets(chars, sizeof(chars), fp)) {
  3167           if (sscanf(chars, "%lx-%*x", &x) == 1
  3168               && x == (long)p) {
  3169             if (strstr (chars, "hugepage")) {
  3170               result = true;
  3171               break;
  3176       fclose(fp);
  3178     munmap(p, page_size);
  3181   if (warn && !result) {
  3182     warning("HugeTLBFS is not supported by the operating system.");
  3185   return result;
  3188 /*
  3189 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  3191 * From the coredump_filter documentation:
  3193 * - (bit 0) anonymous private memory
  3194 * - (bit 1) anonymous shared memory
  3195 * - (bit 2) file-backed private memory
  3196 * - (bit 3) file-backed shared memory
  3197 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  3198 *           effective only if the bit 2 is cleared)
  3199 * - (bit 5) hugetlb private memory
  3200 * - (bit 6) hugetlb shared memory
  3201 */
  3202 static void set_coredump_filter(void) {
  3203   FILE *f;
  3204   long cdm;
  3206   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  3207     return;
  3210   if (fscanf(f, "%lx", &cdm) != 1) {
  3211     fclose(f);
  3212     return;
  3215   rewind(f);
  3217   if ((cdm & LARGEPAGES_BIT) == 0) {
  3218     cdm |= LARGEPAGES_BIT;
  3219     fprintf(f, "%#lx", cdm);
  3222   fclose(f);
  3225 // Large page support
  3227 static size_t _large_page_size = 0;
  3229 size_t os::Linux::find_large_page_size() {
  3230   size_t large_page_size = 0;
  3232   // large_page_size on Linux is used to round up heap size. x86 uses either
  3233   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  3234   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  3235   // page as large as 256M.
  3236   //
  3237   // Here we try to figure out page size by parsing /proc/meminfo and looking
  3238   // for a line with the following format:
  3239   //    Hugepagesize:     2048 kB
  3240   //
  3241   // If we can't determine the value (e.g. /proc is not mounted, or the text
  3242   // format has been changed), we'll use the largest page size supported by
  3243   // the processor.
  3245 #ifndef ZERO
  3246   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  3247                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  3248 #endif // ZERO
  3250   FILE *fp = fopen("/proc/meminfo", "r");
  3251   if (fp) {
  3252     while (!feof(fp)) {
  3253       int x = 0;
  3254       char buf[16];
  3255       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3256         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3257           large_page_size = x * K;
  3258           break;
  3260       } else {
  3261         // skip to next line
  3262         for (;;) {
  3263           int ch = fgetc(fp);
  3264           if (ch == EOF || ch == (int)'\n') break;
  3268     fclose(fp);
  3271   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
  3272     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
  3273         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
  3274         proper_unit_for_byte_size(large_page_size));
  3277   return large_page_size;
  3280 size_t os::Linux::setup_large_page_size() {
  3281   _large_page_size = Linux::find_large_page_size();
  3282   const size_t default_page_size = (size_t)Linux::page_size();
  3283   if (_large_page_size > default_page_size) {
  3284     _page_sizes[0] = _large_page_size;
  3285     _page_sizes[1] = default_page_size;
  3286     _page_sizes[2] = 0;
  3289   return _large_page_size;
  3292 bool os::Linux::setup_large_page_type(size_t page_size) {
  3293   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
  3294       FLAG_IS_DEFAULT(UseSHM) &&
  3295       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
  3297     // The type of large pages has not been specified by the user.
  3299     // Try UseHugeTLBFS and then UseSHM.
  3300     UseHugeTLBFS = UseSHM = true;
  3302     // Don't try UseTransparentHugePages since there are known
  3303     // performance issues with it turned on. This might change in the future.
  3304     UseTransparentHugePages = false;
  3307   if (UseTransparentHugePages) {
  3308     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
  3309     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
  3310       UseHugeTLBFS = false;
  3311       UseSHM = false;
  3312       return true;
  3314     UseTransparentHugePages = false;
  3317   if (UseHugeTLBFS) {
  3318     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3319     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
  3320       UseSHM = false;
  3321       return true;
  3323     UseHugeTLBFS = false;
  3326   return UseSHM;
  3329 void os::large_page_init() {
  3330   if (!UseLargePages &&
  3331       !UseTransparentHugePages &&
  3332       !UseHugeTLBFS &&
  3333       !UseSHM) {
  3334     // Not using large pages.
  3335     return;
  3338   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
  3339     // The user explicitly turned off large pages.
  3340     // Ignore the rest of the large pages flags.
  3341     UseTransparentHugePages = false;
  3342     UseHugeTLBFS = false;
  3343     UseSHM = false;
  3344     return;
  3347   size_t large_page_size = Linux::setup_large_page_size();
  3348   UseLargePages          = Linux::setup_large_page_type(large_page_size);
  3350   set_coredump_filter();
  3353 #ifndef SHM_HUGETLB
  3354 #define SHM_HUGETLB 04000
  3355 #endif
  3357 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3358   // "exec" is passed in but not used.  Creating the shared image for
  3359   // the code cache doesn't have an SHM_X executable permission to check.
  3360   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3361   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3363   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
  3364     return NULL; // Fallback to small pages.
  3367   key_t key = IPC_PRIVATE;
  3368   char *addr;
  3370   bool warn_on_failure = UseLargePages &&
  3371                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  3372                          !FLAG_IS_DEFAULT(UseSHM) ||
  3373                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  3374                         );
  3375   char msg[128];
  3377   // Create a large shared memory region to attach to based on size.
  3378   // Currently, size is the total size of the heap
  3379   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3380   if (shmid == -1) {
  3381      // Possible reasons for shmget failure:
  3382      // 1. shmmax is too small for Java heap.
  3383      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3384      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3385      // 2. not enough large page memory.
  3386      //    > check available large pages: cat /proc/meminfo
  3387      //    > increase amount of large pages:
  3388      //          echo new_value > /proc/sys/vm/nr_hugepages
  3389      //      Note 1: different Linux may use different name for this property,
  3390      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3391      //      Note 2: it's possible there's enough physical memory available but
  3392      //            they are so fragmented after a long run that they can't
  3393      //            coalesce into large pages. Try to reserve large pages when
  3394      //            the system is still "fresh".
  3395      if (warn_on_failure) {
  3396        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  3397        warning("%s", msg);
  3399      return NULL;
  3402   // attach to the region
  3403   addr = (char*)shmat(shmid, req_addr, 0);
  3404   int err = errno;
  3406   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3407   // will be deleted when it's detached by shmdt() or when the process
  3408   // terminates. If shmat() is not successful this will remove the shared
  3409   // segment immediately.
  3410   shmctl(shmid, IPC_RMID, NULL);
  3412   if ((intptr_t)addr == -1) {
  3413      if (warn_on_failure) {
  3414        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  3415        warning("%s", msg);
  3417      return NULL;
  3420   return addr;
  3423 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
  3424   assert(error == ENOMEM, "Only expect to fail if no memory is available");
  3426   bool warn_on_failure = UseLargePages &&
  3427       (!FLAG_IS_DEFAULT(UseLargePages) ||
  3428        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
  3429        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
  3431   if (warn_on_failure) {
  3432     char msg[128];
  3433     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
  3434         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
  3435     warning("%s", msg);
  3439 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
  3440   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3441   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
  3442   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3444   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3445   char* addr = (char*)::mmap(req_addr, bytes, prot,
  3446                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
  3447                              -1, 0);
  3449   if (addr == MAP_FAILED) {
  3450     warn_on_large_pages_failure(req_addr, bytes, errno);
  3451     return NULL;
  3454   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
  3456   return addr;
  3459 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3460   size_t large_page_size = os::large_page_size();
  3462   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
  3464   // Allocate small pages.
  3466   char* start;
  3467   if (req_addr != NULL) {
  3468     assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3469     assert(is_size_aligned(bytes, alignment), "Must be");
  3470     start = os::reserve_memory(bytes, req_addr);
  3471     assert(start == NULL || start == req_addr, "Must be");
  3472   } else {
  3473     start = os::reserve_memory_aligned(bytes, alignment);
  3476   if (start == NULL) {
  3477     return NULL;
  3480   assert(is_ptr_aligned(start, alignment), "Must be");
  3482   if (MemTracker::tracking_level() > NMT_minimal) {
  3483     // os::reserve_memory_special will record this memory area.
  3484     // Need to release it here to prevent overlapping reservations.
  3485     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  3486     tkr.record((address)start, bytes);
  3489   char* end = start + bytes;
  3491   // Find the regions of the allocated chunk that can be promoted to large pages.
  3492   char* lp_start = (char*)align_ptr_up(start, large_page_size);
  3493   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
  3495   size_t lp_bytes = lp_end - lp_start;
  3497   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
  3499   if (lp_bytes == 0) {
  3500     // The mapped region doesn't even span the start and the end of a large page.
  3501     // Fall back to allocate a non-special area.
  3502     ::munmap(start, end - start);
  3503     return NULL;
  3506   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3509   void* result;
  3511   if (start != lp_start) {
  3512     result = ::mmap(start, lp_start - start, prot,
  3513                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3514                     -1, 0);
  3515     if (result == MAP_FAILED) {
  3516       ::munmap(lp_start, end - lp_start);
  3517       return NULL;
  3521   result = ::mmap(lp_start, lp_bytes, prot,
  3522                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
  3523                   -1, 0);
  3524   if (result == MAP_FAILED) {
  3525     warn_on_large_pages_failure(req_addr, bytes, errno);
  3526     // If the mmap above fails, the large pages region will be unmapped and we
  3527     // have regions before and after with small pages. Release these regions.
  3528     //
  3529     // |  mapped  |  unmapped  |  mapped  |
  3530     // ^          ^            ^          ^
  3531     // start      lp_start     lp_end     end
  3532     //
  3533     ::munmap(start, lp_start - start);
  3534     ::munmap(lp_end, end - lp_end);
  3535     return NULL;
  3538   if (lp_end != end) {
  3539       result = ::mmap(lp_end, end - lp_end, prot,
  3540                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3541                       -1, 0);
  3542     if (result == MAP_FAILED) {
  3543       ::munmap(start, lp_end - start);
  3544       return NULL;
  3548   return start;
  3551 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3552   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3553   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3554   assert(is_power_of_2(alignment), "Must be");
  3555   assert(is_power_of_2(os::large_page_size()), "Must be");
  3556   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
  3558   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
  3559     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
  3560   } else {
  3561     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
  3565 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3566   assert(UseLargePages, "only for large pages");
  3568   char* addr;
  3569   if (UseSHM) {
  3570     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
  3571   } else {
  3572     assert(UseHugeTLBFS, "must be");
  3573     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
  3576   if (addr != NULL) {
  3577     if (UseNUMAInterleaving) {
  3578       numa_make_global(addr, bytes);
  3581     // The memory is committed
  3582     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
  3585   return addr;
  3588 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
  3589   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
  3590   return shmdt(base) == 0;
  3593 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
  3594   return pd_release_memory(base, bytes);
  3597 bool os::release_memory_special(char* base, size_t bytes) {
  3598   bool res;
  3599   if (MemTracker::tracking_level() > NMT_minimal) {
  3600     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  3601     res = os::Linux::release_memory_special_impl(base, bytes);
  3602     if (res) {
  3603       tkr.record((address)base, bytes);
  3606   } else {
  3607     res = os::Linux::release_memory_special_impl(base, bytes);
  3609   return res;
  3612 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
  3613   assert(UseLargePages, "only for large pages");
  3614   bool res;
  3616   if (UseSHM) {
  3617     res = os::Linux::release_memory_special_shm(base, bytes);
  3618   } else {
  3619     assert(UseHugeTLBFS, "must be");
  3620     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
  3622   return res;
  3625 size_t os::large_page_size() {
  3626   return _large_page_size;
  3629 // With SysV SHM the entire memory region must be allocated as shared
  3630 // memory.
  3631 // HugeTLBFS allows application to commit large page memory on demand.
  3632 // However, when committing memory with HugeTLBFS fails, the region
  3633 // that was supposed to be committed will lose the old reservation
  3634 // and allow other threads to steal that memory region. Because of this
  3635 // behavior we can't commit HugeTLBFS memory.
  3636 bool os::can_commit_large_page_memory() {
  3637   return UseTransparentHugePages;
  3640 bool os::can_execute_large_page_memory() {
  3641   return UseTransparentHugePages || UseHugeTLBFS;
  3644 // Reserve memory at an arbitrary address, only if that area is
  3645 // available (and not reserved for something else).
  3647 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3648   const int max_tries = 10;
  3649   char* base[max_tries];
  3650   size_t size[max_tries];
  3651   const size_t gap = 0x000000;
  3653   // Assert only that the size is a multiple of the page size, since
  3654   // that's all that mmap requires, and since that's all we really know
  3655   // about at this low abstraction level.  If we need higher alignment,
  3656   // we can either pass an alignment to this method or verify alignment
  3657   // in one of the methods further up the call chain.  See bug 5044738.
  3658   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3660   // Repeatedly allocate blocks until the block is allocated at the
  3661   // right spot. Give up after max_tries. Note that reserve_memory() will
  3662   // automatically update _highest_vm_reserved_address if the call is
  3663   // successful. The variable tracks the highest memory address every reserved
  3664   // by JVM. It is used to detect heap-stack collision if running with
  3665   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  3666   // space than needed, it could confuse the collision detecting code. To
  3667   // solve the problem, save current _highest_vm_reserved_address and
  3668   // calculate the correct value before return.
  3669   address old_highest = _highest_vm_reserved_address;
  3671   // Linux mmap allows caller to pass an address as hint; give it a try first,
  3672   // if kernel honors the hint then we can return immediately.
  3673   char * addr = anon_mmap(requested_addr, bytes, false);
  3674   if (addr == requested_addr) {
  3675      return requested_addr;
  3678   if (addr != NULL) {
  3679      // mmap() is successful but it fails to reserve at the requested address
  3680      anon_munmap(addr, bytes);
  3683   int i;
  3684   for (i = 0; i < max_tries; ++i) {
  3685     base[i] = reserve_memory(bytes);
  3687     if (base[i] != NULL) {
  3688       // Is this the block we wanted?
  3689       if (base[i] == requested_addr) {
  3690         size[i] = bytes;
  3691         break;
  3694       // Does this overlap the block we wanted? Give back the overlapped
  3695       // parts and try again.
  3697       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3698       if (top_overlap >= 0 && top_overlap < bytes) {
  3699         unmap_memory(base[i], top_overlap);
  3700         base[i] += top_overlap;
  3701         size[i] = bytes - top_overlap;
  3702       } else {
  3703         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3704         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3705           unmap_memory(requested_addr, bottom_overlap);
  3706           size[i] = bytes - bottom_overlap;
  3707         } else {
  3708           size[i] = bytes;
  3714   // Give back the unused reserved pieces.
  3716   for (int j = 0; j < i; ++j) {
  3717     if (base[j] != NULL) {
  3718       unmap_memory(base[j], size[j]);
  3722   if (i < max_tries) {
  3723     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  3724     return requested_addr;
  3725   } else {
  3726     _highest_vm_reserved_address = old_highest;
  3727     return NULL;
  3731 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3732   return ::read(fd, buf, nBytes);
  3735 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  3736 // Solaris uses poll(), linux uses park().
  3737 // Poll() is likely a better choice, assuming that Thread.interrupt()
  3738 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  3739 // SIGSEGV, see 4355769.
  3741 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3742   assert(thread == Thread::current(),  "thread consistency check");
  3744   ParkEvent * const slp = thread->_SleepEvent ;
  3745   slp->reset() ;
  3746   OrderAccess::fence() ;
  3748   if (interruptible) {
  3749     jlong prevtime = javaTimeNanos();
  3751     for (;;) {
  3752       if (os::is_interrupted(thread, true)) {
  3753         return OS_INTRPT;
  3756       jlong newtime = javaTimeNanos();
  3758       if (newtime - prevtime < 0) {
  3759         // time moving backwards, should only happen if no monotonic clock
  3760         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3761         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3762       } else {
  3763         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3766       if(millis <= 0) {
  3767         return OS_OK;
  3770       prevtime = newtime;
  3773         assert(thread->is_Java_thread(), "sanity check");
  3774         JavaThread *jt = (JavaThread *) thread;
  3775         ThreadBlockInVM tbivm(jt);
  3776         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3778         jt->set_suspend_equivalent();
  3779         // cleared by handle_special_suspend_equivalent_condition() or
  3780         // java_suspend_self() via check_and_wait_while_suspended()
  3782         slp->park(millis);
  3784         // were we externally suspended while we were waiting?
  3785         jt->check_and_wait_while_suspended();
  3788   } else {
  3789     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3790     jlong prevtime = javaTimeNanos();
  3792     for (;;) {
  3793       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  3794       // the 1st iteration ...
  3795       jlong newtime = javaTimeNanos();
  3797       if (newtime - prevtime < 0) {
  3798         // time moving backwards, should only happen if no monotonic clock
  3799         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3800         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3801       } else {
  3802         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3805       if(millis <= 0) break ;
  3807       prevtime = newtime;
  3808       slp->park(millis);
  3810     return OS_OK ;
  3814 //
  3815 // Short sleep, direct OS call.
  3816 //
  3817 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
  3818 // sched_yield(2) will actually give up the CPU:
  3819 //
  3820 //   * Alone on this pariticular CPU, keeps running.
  3821 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
  3822 //     (pre 2.6.39).
  3823 //
  3824 // So calling this with 0 is an alternative.
  3825 //
  3826 void os::naked_short_sleep(jlong ms) {
  3827   struct timespec req;
  3829   assert(ms < 1000, "Un-interruptable sleep, short time use only");
  3830   req.tv_sec = 0;
  3831   if (ms > 0) {
  3832     req.tv_nsec = (ms % 1000) * 1000000;
  3834   else {
  3835     req.tv_nsec = 1;
  3838   nanosleep(&req, NULL);
  3840   return;
  3843 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3844 void os::infinite_sleep() {
  3845   while (true) {    // sleep forever ...
  3846     ::sleep(100);   // ... 100 seconds at a time
  3850 // Used to convert frequent JVM_Yield() to nops
  3851 bool os::dont_yield() {
  3852   return DontYieldALot;
  3855 void os::yield() {
  3856   sched_yield();
  3859 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  3861 void os::yield_all(int attempts) {
  3862   // Yields to all threads, including threads with lower priorities
  3863   // Threads on Linux are all with same priority. The Solaris style
  3864   // os::yield_all() with nanosleep(1ms) is not necessary.
  3865   sched_yield();
  3868 // Called from the tight loops to possibly influence time-sharing heuristics
  3869 void os::loop_breaker(int attempts) {
  3870   os::yield_all(attempts);
  3873 ////////////////////////////////////////////////////////////////////////////////
  3874 // thread priority support
  3876 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  3877 // only supports dynamic priority, static priority must be zero. For real-time
  3878 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  3879 // However, for large multi-threaded applications, SCHED_RR is not only slower
  3880 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  3881 // of 5 runs - Sep 2005).
  3882 //
  3883 // The following code actually changes the niceness of kernel-thread/LWP. It
  3884 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  3885 // not the entire user process, and user level threads are 1:1 mapped to kernel
  3886 // threads. It has always been the case, but could change in the future. For
  3887 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  3888 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  3890 int os::java_to_os_priority[CriticalPriority + 1] = {
  3891   19,              // 0 Entry should never be used
  3893    4,              // 1 MinPriority
  3894    3,              // 2
  3895    2,              // 3
  3897    1,              // 4
  3898    0,              // 5 NormPriority
  3899   -1,              // 6
  3901   -2,              // 7
  3902   -3,              // 8
  3903   -4,              // 9 NearMaxPriority
  3905   -5,              // 10 MaxPriority
  3907   -5               // 11 CriticalPriority
  3908 };
  3910 static int prio_init() {
  3911   if (ThreadPriorityPolicy == 1) {
  3912     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  3913     // if effective uid is not root. Perhaps, a more elegant way of doing
  3914     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  3915     if (geteuid() != 0) {
  3916       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  3917         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  3919       ThreadPriorityPolicy = 0;
  3922   if (UseCriticalJavaThreadPriority) {
  3923     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  3925   return 0;
  3928 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  3929   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  3931   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  3932   return (ret == 0) ? OS_OK : OS_ERR;
  3935 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  3936   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  3937     *priority_ptr = java_to_os_priority[NormPriority];
  3938     return OS_OK;
  3941   errno = 0;
  3942   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  3943   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  3946 // Hint to the underlying OS that a task switch would not be good.
  3947 // Void return because it's a hint and can fail.
  3948 void os::hint_no_preempt() {}
  3950 ////////////////////////////////////////////////////////////////////////////////
  3951 // suspend/resume support
  3953 //  the low-level signal-based suspend/resume support is a remnant from the
  3954 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  3955 //  within hotspot. Now there is a single use-case for this:
  3956 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  3957 //      that runs in the watcher thread.
  3958 //  The remaining code is greatly simplified from the more general suspension
  3959 //  code that used to be used.
  3960 //
  3961 //  The protocol is quite simple:
  3962 //  - suspend:
  3963 //      - sends a signal to the target thread
  3964 //      - polls the suspend state of the osthread using a yield loop
  3965 //      - target thread signal handler (SR_handler) sets suspend state
  3966 //        and blocks in sigsuspend until continued
  3967 //  - resume:
  3968 //      - sets target osthread state to continue
  3969 //      - sends signal to end the sigsuspend loop in the SR_handler
  3970 //
  3971 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  3972 //
  3974 static void resume_clear_context(OSThread *osthread) {
  3975   osthread->set_ucontext(NULL);
  3976   osthread->set_siginfo(NULL);
  3979 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  3980   osthread->set_ucontext(context);
  3981   osthread->set_siginfo(siginfo);
  3984 //
  3985 // Handler function invoked when a thread's execution is suspended or
  3986 // resumed. We have to be careful that only async-safe functions are
  3987 // called here (Note: most pthread functions are not async safe and
  3988 // should be avoided.)
  3989 //
  3990 // Note: sigwait() is a more natural fit than sigsuspend() from an
  3991 // interface point of view, but sigwait() prevents the signal hander
  3992 // from being run. libpthread would get very confused by not having
  3993 // its signal handlers run and prevents sigwait()'s use with the
  3994 // mutex granting granting signal.
  3995 //
  3996 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
  3997 //
  3998 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  3999   // Save and restore errno to avoid confusing native code with EINTR
  4000   // after sigsuspend.
  4001   int old_errno = errno;
  4003   Thread* thread = Thread::current();
  4004   OSThread* osthread = thread->osthread();
  4005   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
  4007   os::SuspendResume::State current = osthread->sr.state();
  4008   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
  4009     suspend_save_context(osthread, siginfo, context);
  4011     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
  4012     os::SuspendResume::State state = osthread->sr.suspended();
  4013     if (state == os::SuspendResume::SR_SUSPENDED) {
  4014       sigset_t suspend_set;  // signals for sigsuspend()
  4016       // get current set of blocked signals and unblock resume signal
  4017       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  4018       sigdelset(&suspend_set, SR_signum);
  4020       sr_semaphore.signal();
  4021       // wait here until we are resumed
  4022       while (1) {
  4023         sigsuspend(&suspend_set);
  4025         os::SuspendResume::State result = osthread->sr.running();
  4026         if (result == os::SuspendResume::SR_RUNNING) {
  4027           sr_semaphore.signal();
  4028           break;
  4032     } else if (state == os::SuspendResume::SR_RUNNING) {
  4033       // request was cancelled, continue
  4034     } else {
  4035       ShouldNotReachHere();
  4038     resume_clear_context(osthread);
  4039   } else if (current == os::SuspendResume::SR_RUNNING) {
  4040     // request was cancelled, continue
  4041   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
  4042     // ignore
  4043   } else {
  4044     // ignore
  4047   errno = old_errno;
  4051 static int SR_initialize() {
  4052   struct sigaction act;
  4053   char *s;
  4054   /* Get signal number to use for suspend/resume */
  4055   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  4056     int sig = ::strtol(s, 0, 10);
  4057     if (sig > 0 || sig < _NSIG) {
  4058         SR_signum = sig;
  4062   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  4063         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  4065   sigemptyset(&SR_sigset);
  4066   sigaddset(&SR_sigset, SR_signum);
  4068   /* Set up signal handler for suspend/resume */
  4069   act.sa_flags = SA_RESTART|SA_SIGINFO;
  4070   act.sa_handler = (void (*)(int)) SR_handler;
  4072   // SR_signum is blocked by default.
  4073   // 4528190 - We also need to block pthread restart signal (32 on all
  4074   // supported Linux platforms). Note that LinuxThreads need to block
  4075   // this signal for all threads to work properly. So we don't have
  4076   // to use hard-coded signal number when setting up the mask.
  4077   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  4079   if (sigaction(SR_signum, &act, 0) == -1) {
  4080     return -1;
  4083   // Save signal flag
  4084   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  4085   return 0;
  4088 static int sr_notify(OSThread* osthread) {
  4089   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  4090   assert_status(status == 0, status, "pthread_kill");
  4091   return status;
  4094 // "Randomly" selected value for how long we want to spin
  4095 // before bailing out on suspending a thread, also how often
  4096 // we send a signal to a thread we want to resume
  4097 static const int RANDOMLY_LARGE_INTEGER = 1000000;
  4098 static const int RANDOMLY_LARGE_INTEGER2 = 100;
  4100 // returns true on success and false on error - really an error is fatal
  4101 // but this seems the normal response to library errors
  4102 static bool do_suspend(OSThread* osthread) {
  4103   assert(osthread->sr.is_running(), "thread should be running");
  4104   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
  4106   // mark as suspended and send signal
  4107   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
  4108     // failed to switch, state wasn't running?
  4109     ShouldNotReachHere();
  4110     return false;
  4113   if (sr_notify(osthread) != 0) {
  4114     ShouldNotReachHere();
  4117   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
  4118   while (true) {
  4119     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4120       break;
  4121     } else {
  4122       // timeout
  4123       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
  4124       if (cancelled == os::SuspendResume::SR_RUNNING) {
  4125         return false;
  4126       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
  4127         // make sure that we consume the signal on the semaphore as well
  4128         sr_semaphore.wait();
  4129         break;
  4130       } else {
  4131         ShouldNotReachHere();
  4132         return false;
  4137   guarantee(osthread->sr.is_suspended(), "Must be suspended");
  4138   return true;
  4141 static void do_resume(OSThread* osthread) {
  4142   assert(osthread->sr.is_suspended(), "thread should be suspended");
  4143   assert(!sr_semaphore.trywait(), "invalid semaphore state");
  4145   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
  4146     // failed to switch to WAKEUP_REQUEST
  4147     ShouldNotReachHere();
  4148     return;
  4151   while (true) {
  4152     if (sr_notify(osthread) == 0) {
  4153       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4154         if (osthread->sr.is_running()) {
  4155           return;
  4158     } else {
  4159       ShouldNotReachHere();
  4163   guarantee(osthread->sr.is_running(), "Must be running!");
  4166 ////////////////////////////////////////////////////////////////////////////////
  4167 // interrupt support
  4169 void os::interrupt(Thread* thread) {
  4170   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4171     "possibility of dangling Thread pointer");
  4173   OSThread* osthread = thread->osthread();
  4175   if (!osthread->interrupted()) {
  4176     osthread->set_interrupted(true);
  4177     // More than one thread can get here with the same value of osthread,
  4178     // resulting in multiple notifications.  We do, however, want the store
  4179     // to interrupted() to be visible to other threads before we execute unpark().
  4180     OrderAccess::fence();
  4181     ParkEvent * const slp = thread->_SleepEvent ;
  4182     if (slp != NULL) slp->unpark() ;
  4185   // For JSR166. Unpark even if interrupt status already was set
  4186   if (thread->is_Java_thread())
  4187     ((JavaThread*)thread)->parker()->unpark();
  4189   ParkEvent * ev = thread->_ParkEvent ;
  4190   if (ev != NULL) ev->unpark() ;
  4194 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4195   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4196     "possibility of dangling Thread pointer");
  4198   OSThread* osthread = thread->osthread();
  4200   bool interrupted = osthread->interrupted();
  4202   if (interrupted && clear_interrupted) {
  4203     osthread->set_interrupted(false);
  4204     // consider thread->_SleepEvent->reset() ... optional optimization
  4207   return interrupted;
  4210 ///////////////////////////////////////////////////////////////////////////////////
  4211 // signal handling (except suspend/resume)
  4213 // This routine may be used by user applications as a "hook" to catch signals.
  4214 // The user-defined signal handler must pass unrecognized signals to this
  4215 // routine, and if it returns true (non-zero), then the signal handler must
  4216 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4217 // routine will never retun false (zero), but instead will execute a VM panic
  4218 // routine kill the process.
  4219 //
  4220 // If this routine returns false, it is OK to call it again.  This allows
  4221 // the user-defined signal handler to perform checks either before or after
  4222 // the VM performs its own checks.  Naturally, the user code would be making
  4223 // a serious error if it tried to handle an exception (such as a null check
  4224 // or breakpoint) that the VM was generating for its own correct operation.
  4225 //
  4226 // This routine may recognize any of the following kinds of signals:
  4227 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  4228 // It should be consulted by handlers for any of those signals.
  4229 //
  4230 // The caller of this routine must pass in the three arguments supplied
  4231 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4232 // field of the structure passed to sigaction().  This routine assumes that
  4233 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4234 //
  4235 // Note that the VM will print warnings if it detects conflicting signal
  4236 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4237 //
  4238 extern "C" JNIEXPORT int
  4239 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  4240                         void* ucontext, int abort_if_unrecognized);
  4242 void signalHandler(int sig, siginfo_t* info, void* uc) {
  4243   assert(info != NULL && uc != NULL, "it must be old kernel");
  4244   int orig_errno = errno;  // Preserve errno value over signal handler.
  4245   JVM_handle_linux_signal(sig, info, uc, true);
  4246   errno = orig_errno;
  4250 // This boolean allows users to forward their own non-matching signals
  4251 // to JVM_handle_linux_signal, harmlessly.
  4252 bool os::Linux::signal_handlers_are_installed = false;
  4254 // For signal-chaining
  4255 struct sigaction os::Linux::sigact[MAXSIGNUM];
  4256 unsigned int os::Linux::sigs = 0;
  4257 bool os::Linux::libjsig_is_loaded = false;
  4258 typedef struct sigaction *(*get_signal_t)(int);
  4259 get_signal_t os::Linux::get_signal_action = NULL;
  4261 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  4262   struct sigaction *actp = NULL;
  4264   if (libjsig_is_loaded) {
  4265     // Retrieve the old signal handler from libjsig
  4266     actp = (*get_signal_action)(sig);
  4268   if (actp == NULL) {
  4269     // Retrieve the preinstalled signal handler from jvm
  4270     actp = get_preinstalled_handler(sig);
  4273   return actp;
  4276 static bool call_chained_handler(struct sigaction *actp, int sig,
  4277                                  siginfo_t *siginfo, void *context) {
  4278   // Call the old signal handler
  4279   if (actp->sa_handler == SIG_DFL) {
  4280     // It's more reasonable to let jvm treat it as an unexpected exception
  4281     // instead of taking the default action.
  4282     return false;
  4283   } else if (actp->sa_handler != SIG_IGN) {
  4284     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4285       // automaticlly block the signal
  4286       sigaddset(&(actp->sa_mask), sig);
  4289     sa_handler_t hand;
  4290     sa_sigaction_t sa;
  4291     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4292     // retrieve the chained handler
  4293     if (siginfo_flag_set) {
  4294       sa = actp->sa_sigaction;
  4295     } else {
  4296       hand = actp->sa_handler;
  4299     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4300       actp->sa_handler = SIG_DFL;
  4303     // try to honor the signal mask
  4304     sigset_t oset;
  4305     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4307     // call into the chained handler
  4308     if (siginfo_flag_set) {
  4309       (*sa)(sig, siginfo, context);
  4310     } else {
  4311       (*hand)(sig);
  4314     // restore the signal mask
  4315     pthread_sigmask(SIG_SETMASK, &oset, 0);
  4317   // Tell jvm's signal handler the signal is taken care of.
  4318   return true;
  4321 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4322   bool chained = false;
  4323   // signal-chaining
  4324   if (UseSignalChaining) {
  4325     struct sigaction *actp = get_chained_signal_action(sig);
  4326     if (actp != NULL) {
  4327       chained = call_chained_handler(actp, sig, siginfo, context);
  4330   return chained;
  4333 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  4334   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  4335     return &sigact[sig];
  4337   return NULL;
  4340 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4341   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4342   sigact[sig] = oldAct;
  4343   sigs |= (unsigned int)1 << sig;
  4346 // for diagnostic
  4347 int os::Linux::sigflags[MAXSIGNUM];
  4349 int os::Linux::get_our_sigflags(int sig) {
  4350   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4351   return sigflags[sig];
  4354 void os::Linux::set_our_sigflags(int sig, int flags) {
  4355   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4356   sigflags[sig] = flags;
  4359 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  4360   // Check for overwrite.
  4361   struct sigaction oldAct;
  4362   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4364   void* oldhand = oldAct.sa_sigaction
  4365                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4366                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4367   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4368       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4369       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  4370     if (AllowUserSignalHandlers || !set_installed) {
  4371       // Do not overwrite; user takes responsibility to forward to us.
  4372       return;
  4373     } else if (UseSignalChaining) {
  4374       // save the old handler in jvm
  4375       save_preinstalled_handler(sig, oldAct);
  4376       // libjsig also interposes the sigaction() call below and saves the
  4377       // old sigaction on it own.
  4378     } else {
  4379       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4380                     "%#lx for signal %d.", (long)oldhand, sig));
  4384   struct sigaction sigAct;
  4385   sigfillset(&(sigAct.sa_mask));
  4386   sigAct.sa_handler = SIG_DFL;
  4387   if (!set_installed) {
  4388     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4389   } else {
  4390     sigAct.sa_sigaction = signalHandler;
  4391     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4393   // Save flags, which are set by ours
  4394   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4395   sigflags[sig] = sigAct.sa_flags;
  4397   int ret = sigaction(sig, &sigAct, &oldAct);
  4398   assert(ret == 0, "check");
  4400   void* oldhand2  = oldAct.sa_sigaction
  4401                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4402                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4403   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4406 // install signal handlers for signals that HotSpot needs to
  4407 // handle in order to support Java-level exception handling.
  4409 void os::Linux::install_signal_handlers() {
  4410   if (!signal_handlers_are_installed) {
  4411     signal_handlers_are_installed = true;
  4413     // signal-chaining
  4414     typedef void (*signal_setting_t)();
  4415     signal_setting_t begin_signal_setting = NULL;
  4416     signal_setting_t end_signal_setting = NULL;
  4417     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4418                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4419     if (begin_signal_setting != NULL) {
  4420       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4421                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4422       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4423                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4424       libjsig_is_loaded = true;
  4425       assert(UseSignalChaining, "should enable signal-chaining");
  4427     if (libjsig_is_loaded) {
  4428       // Tell libjsig jvm is setting signal handlers
  4429       (*begin_signal_setting)();
  4432     set_signal_handler(SIGSEGV, true);
  4433     set_signal_handler(SIGPIPE, true);
  4434     set_signal_handler(SIGBUS, true);
  4435     set_signal_handler(SIGILL, true);
  4436     set_signal_handler(SIGFPE, true);
  4437 #if defined(PPC64)
  4438     set_signal_handler(SIGTRAP, true);
  4439 #endif
  4440     set_signal_handler(SIGXFSZ, true);
  4442     if (libjsig_is_loaded) {
  4443       // Tell libjsig jvm finishes setting signal handlers
  4444       (*end_signal_setting)();
  4447     // We don't activate signal checker if libjsig is in place, we trust ourselves
  4448     // and if UserSignalHandler is installed all bets are off.
  4449     // Log that signal checking is off only if -verbose:jni is specified.
  4450     if (CheckJNICalls) {
  4451       if (libjsig_is_loaded) {
  4452         if (PrintJNIResolving) {
  4453           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4455         check_signals = false;
  4457       if (AllowUserSignalHandlers) {
  4458         if (PrintJNIResolving) {
  4459           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4461         check_signals = false;
  4467 // This is the fastest way to get thread cpu time on Linux.
  4468 // Returns cpu time (user+sys) for any thread, not only for current.
  4469 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  4470 // It might work on 2.6.10+ with a special kernel/glibc patch.
  4471 // For reference, please, see IEEE Std 1003.1-2004:
  4472 //   http://www.unix.org/single_unix_specification
  4474 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  4475   struct timespec tp;
  4476   int rc = os::Linux::clock_gettime(clockid, &tp);
  4477   assert(rc == 0, "clock_gettime is expected to return 0 code");
  4479   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
  4482 /////
  4483 // glibc on Linux platform uses non-documented flag
  4484 // to indicate, that some special sort of signal
  4485 // trampoline is used.
  4486 // We will never set this flag, and we should
  4487 // ignore this flag in our diagnostic
  4488 #ifdef SIGNIFICANT_SIGNAL_MASK
  4489 #undef SIGNIFICANT_SIGNAL_MASK
  4490 #endif
  4491 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  4493 static const char* get_signal_handler_name(address handler,
  4494                                            char* buf, int buflen) {
  4495   int offset;
  4496   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  4497   if (found) {
  4498     // skip directory names
  4499     const char *p1, *p2;
  4500     p1 = buf;
  4501     size_t len = strlen(os::file_separator());
  4502     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  4503     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  4504   } else {
  4505     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  4507   return buf;
  4510 static void print_signal_handler(outputStream* st, int sig,
  4511                                  char* buf, size_t buflen) {
  4512   struct sigaction sa;
  4514   sigaction(sig, NULL, &sa);
  4516   // See comment for SIGNIFICANT_SIGNAL_MASK define
  4517   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4519   st->print("%s: ", os::exception_name(sig, buf, buflen));
  4521   address handler = (sa.sa_flags & SA_SIGINFO)
  4522     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  4523     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  4525   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  4526     st->print("SIG_DFL");
  4527   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  4528     st->print("SIG_IGN");
  4529   } else {
  4530     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  4533   st->print(", sa_mask[0]=");
  4534   os::Posix::print_signal_set_short(st, &sa.sa_mask);
  4536   address rh = VMError::get_resetted_sighandler(sig);
  4537   // May be, handler was resetted by VMError?
  4538   if(rh != NULL) {
  4539     handler = rh;
  4540     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  4543   st->print(", sa_flags=");
  4544   os::Posix::print_sa_flags(st, sa.sa_flags);
  4546   // Check: is it our handler?
  4547   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  4548      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  4549     // It is our signal handler
  4550     // check for flags, reset system-used one!
  4551     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4552       st->print(
  4553                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  4554                 os::Linux::get_our_sigflags(sig));
  4557   st->cr();
  4561 #define DO_SIGNAL_CHECK(sig) \
  4562   if (!sigismember(&check_signal_done, sig)) \
  4563     os::Linux::check_signal_handler(sig)
  4565 // This method is a periodic task to check for misbehaving JNI applications
  4566 // under CheckJNI, we can add any periodic checks here
  4568 void os::run_periodic_checks() {
  4570   if (check_signals == false) return;
  4572   // SEGV and BUS if overridden could potentially prevent
  4573   // generation of hs*.log in the event of a crash, debugging
  4574   // such a case can be very challenging, so we absolutely
  4575   // check the following for a good measure:
  4576   DO_SIGNAL_CHECK(SIGSEGV);
  4577   DO_SIGNAL_CHECK(SIGILL);
  4578   DO_SIGNAL_CHECK(SIGFPE);
  4579   DO_SIGNAL_CHECK(SIGBUS);
  4580   DO_SIGNAL_CHECK(SIGPIPE);
  4581   DO_SIGNAL_CHECK(SIGXFSZ);
  4582 #if defined(PPC64)
  4583   DO_SIGNAL_CHECK(SIGTRAP);
  4584 #endif
  4586   // ReduceSignalUsage allows the user to override these handlers
  4587   // see comments at the very top and jvm_solaris.h
  4588   if (!ReduceSignalUsage) {
  4589     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4590     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4591     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4592     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4595   DO_SIGNAL_CHECK(SR_signum);
  4596   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4599 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4601 static os_sigaction_t os_sigaction = NULL;
  4603 void os::Linux::check_signal_handler(int sig) {
  4604   char buf[O_BUFLEN];
  4605   address jvmHandler = NULL;
  4608   struct sigaction act;
  4609   if (os_sigaction == NULL) {
  4610     // only trust the default sigaction, in case it has been interposed
  4611     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4612     if (os_sigaction == NULL) return;
  4615   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4618   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4620   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4621     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4622     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4625   switch(sig) {
  4626   case SIGSEGV:
  4627   case SIGBUS:
  4628   case SIGFPE:
  4629   case SIGPIPE:
  4630   case SIGILL:
  4631   case SIGXFSZ:
  4632     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4633     break;
  4635   case SHUTDOWN1_SIGNAL:
  4636   case SHUTDOWN2_SIGNAL:
  4637   case SHUTDOWN3_SIGNAL:
  4638   case BREAK_SIGNAL:
  4639     jvmHandler = (address)user_handler();
  4640     break;
  4642   case INTERRUPT_SIGNAL:
  4643     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4644     break;
  4646   default:
  4647     if (sig == SR_signum) {
  4648       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4649     } else {
  4650       return;
  4652     break;
  4655   if (thisHandler != jvmHandler) {
  4656     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4657     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4658     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4659     // No need to check this sig any longer
  4660     sigaddset(&check_signal_done, sig);
  4661   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4662     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4663     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  4664     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4665     // No need to check this sig any longer
  4666     sigaddset(&check_signal_done, sig);
  4669   // Dump all the signal
  4670   if (sigismember(&check_signal_done, sig)) {
  4671     print_signal_handlers(tty, buf, O_BUFLEN);
  4675 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4677 extern bool signal_name(int signo, char* buf, size_t len);
  4679 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4680   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4681     // signal
  4682     if (!signal_name(exception_code, buf, size)) {
  4683       jio_snprintf(buf, size, "SIG%d", exception_code);
  4685     return buf;
  4686   } else {
  4687     return NULL;
  4691 // this is called _before_ the most of global arguments have been parsed
  4692 void os::init(void) {
  4693   char dummy;   /* used to get a guess on initial stack address */
  4694 //  first_hrtime = gethrtime();
  4696   // With LinuxThreads the JavaMain thread pid (primordial thread)
  4697   // is different than the pid of the java launcher thread.
  4698   // So, on Linux, the launcher thread pid is passed to the VM
  4699   // via the sun.java.launcher.pid property.
  4700   // Use this property instead of getpid() if it was correctly passed.
  4701   // See bug 6351349.
  4702   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  4704   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  4706   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  4708   init_random(1234567);
  4710   ThreadCritical::initialize();
  4712   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  4713   if (Linux::page_size() == -1) {
  4714     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  4715                   strerror(errno)));
  4717   init_page_sizes((size_t) Linux::page_size());
  4719   Linux::initialize_system_info();
  4721   // main_thread points to the aboriginal thread
  4722   Linux::_main_thread = pthread_self();
  4724   Linux::clock_init();
  4725   initial_time_count = javaTimeNanos();
  4727   // pthread_condattr initialization for monotonic clock
  4728   int status;
  4729   pthread_condattr_t* _condattr = os::Linux::condAttr();
  4730   if ((status = pthread_condattr_init(_condattr)) != 0) {
  4731     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
  4733   // Only set the clock if CLOCK_MONOTONIC is available
  4734   if (Linux::supports_monotonic_clock()) {
  4735     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
  4736       if (status == EINVAL) {
  4737         warning("Unable to use monotonic clock with relative timed-waits" \
  4738                 " - changes to the time-of-day clock may have adverse affects");
  4739       } else {
  4740         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
  4744   // else it defaults to CLOCK_REALTIME
  4746   pthread_mutex_init(&dl_mutex, NULL);
  4748   // If the pagesize of the VM is greater than 8K determine the appropriate
  4749   // number of initial guard pages.  The user can change this with the
  4750   // command line arguments, if needed.
  4751   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
  4752     StackYellowPages = 1;
  4753     StackRedPages = 1;
  4754     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
  4758 // To install functions for atexit system call
  4759 extern "C" {
  4760   static void perfMemory_exit_helper() {
  4761     perfMemory_exit();
  4765 // this is called _after_ the global arguments have been parsed
  4766 jint os::init_2(void)
  4768   Linux::fast_thread_clock_init();
  4770   // Allocate a single page and mark it as readable for safepoint polling
  4771   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4772   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  4774   os::set_polling_page( polling_page );
  4776 #ifndef PRODUCT
  4777   if(Verbose && PrintMiscellaneous)
  4778     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4779 #endif
  4781   if (!UseMembar) {
  4782     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4783     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
  4784     os::set_memory_serialize_page( mem_serialize_page );
  4786 #ifndef PRODUCT
  4787     if(Verbose && PrintMiscellaneous)
  4788       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4789 #endif
  4792   // initialize suspend/resume support - must do this before signal_sets_init()
  4793   if (SR_initialize() != 0) {
  4794     perror("SR_initialize failed");
  4795     return JNI_ERR;
  4798   Linux::signal_sets_init();
  4799   Linux::install_signal_handlers();
  4801   // Check minimum allowable stack size for thread creation and to initialize
  4802   // the java system classes, including StackOverflowError - depends on page
  4803   // size.  Add a page for compiler2 recursion in main thread.
  4804   // Add in 2*BytesPerWord times page size to account for VM stack during
  4805   // class initialization depending on 32 or 64 bit VM.
  4806   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  4807             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
  4808                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
  4810   size_t threadStackSizeInBytes = ThreadStackSize * K;
  4811   if (threadStackSizeInBytes != 0 &&
  4812       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
  4813         tty->print_cr("\nThe stack size specified is too small, "
  4814                       "Specify at least %dk",
  4815                       os::Linux::min_stack_allowed/ K);
  4816         return JNI_ERR;
  4819   // Make the stack size a multiple of the page size so that
  4820   // the yellow/red zones can be guarded.
  4821   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  4822         vm_page_size()));
  4824   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  4826 #if defined(IA32)
  4827   workaround_expand_exec_shield_cs_limit();
  4828 #endif
  4830   Linux::libpthread_init();
  4831   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  4832      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  4833           Linux::glibc_version(), Linux::libpthread_version(),
  4834           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  4837   if (UseNUMA) {
  4838     if (!Linux::libnuma_init()) {
  4839       UseNUMA = false;
  4840     } else {
  4841       if ((Linux::numa_max_node() < 1)) {
  4842         // There's only one node(they start from 0), disable NUMA.
  4843         UseNUMA = false;
  4846     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
  4847     // we can make the adaptive lgrp chunk resizing work. If the user specified
  4848     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
  4849     // disable adaptive resizing.
  4850     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
  4851       if (FLAG_IS_DEFAULT(UseNUMA)) {
  4852         UseNUMA = false;
  4853       } else {
  4854         if (FLAG_IS_DEFAULT(UseLargePages) &&
  4855             FLAG_IS_DEFAULT(UseSHM) &&
  4856             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
  4857           UseLargePages = false;
  4858         } else {
  4859           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
  4860           UseAdaptiveSizePolicy = false;
  4861           UseAdaptiveNUMAChunkSizing = false;
  4865     if (!UseNUMA && ForceNUMA) {
  4866       UseNUMA = true;
  4870   if (MaxFDLimit) {
  4871     // set the number of file descriptors to max. print out error
  4872     // if getrlimit/setrlimit fails but continue regardless.
  4873     struct rlimit nbr_files;
  4874     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  4875     if (status != 0) {
  4876       if (PrintMiscellaneous && (Verbose || WizardMode))
  4877         perror("os::init_2 getrlimit failed");
  4878     } else {
  4879       nbr_files.rlim_cur = nbr_files.rlim_max;
  4880       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  4881       if (status != 0) {
  4882         if (PrintMiscellaneous && (Verbose || WizardMode))
  4883           perror("os::init_2 setrlimit failed");
  4888   // Initialize lock used to serialize thread creation (see os::create_thread)
  4889   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  4891   // at-exit methods are called in the reverse order of their registration.
  4892   // atexit functions are called on return from main or as a result of a
  4893   // call to exit(3C). There can be only 32 of these functions registered
  4894   // and atexit() does not set errno.
  4896   if (PerfAllowAtExitRegistration) {
  4897     // only register atexit functions if PerfAllowAtExitRegistration is set.
  4898     // atexit functions can be delayed until process exit time, which
  4899     // can be problematic for embedded VM situations. Embedded VMs should
  4900     // call DestroyJavaVM() to assure that VM resources are released.
  4902     // note: perfMemory_exit_helper atexit function may be removed in
  4903     // the future if the appropriate cleanup code can be added to the
  4904     // VM_Exit VMOperation's doit method.
  4905     if (atexit(perfMemory_exit_helper) != 0) {
  4906       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  4910   // initialize thread priority policy
  4911   prio_init();
  4913   return JNI_OK;
  4916 // this is called at the end of vm_initialization
  4917 void os::init_3(void) {
  4918 #ifdef JAVASE_EMBEDDED
  4919   // Start the MemNotifyThread
  4920   if (LowMemoryProtection) {
  4921     MemNotifyThread::start();
  4923   return;
  4924 #endif
  4927 // Mark the polling page as unreadable
  4928 void os::make_polling_page_unreadable(void) {
  4929   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  4930     fatal("Could not disable polling page");
  4931 };
  4933 // Mark the polling page as readable
  4934 void os::make_polling_page_readable(void) {
  4935   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  4936     fatal("Could not enable polling page");
  4938 };
  4940 int os::active_processor_count() {
  4941   // Linux doesn't yet have a (official) notion of processor sets,
  4942   // so just return the number of online processors.
  4943   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  4944   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  4945   return online_cpus;
  4948 void os::set_native_thread_name(const char *name) {
  4949   // Not yet implemented.
  4950   return;
  4953 bool os::distribute_processes(uint length, uint* distribution) {
  4954   // Not yet implemented.
  4955   return false;
  4958 bool os::bind_to_processor(uint processor_id) {
  4959   // Not yet implemented.
  4960   return false;
  4963 ///
  4965 void os::SuspendedThreadTask::internal_do_task() {
  4966   if (do_suspend(_thread->osthread())) {
  4967     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
  4968     do_task(context);
  4969     do_resume(_thread->osthread());
  4973 class PcFetcher : public os::SuspendedThreadTask {
  4974 public:
  4975   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
  4976   ExtendedPC result();
  4977 protected:
  4978   void do_task(const os::SuspendedThreadTaskContext& context);
  4979 private:
  4980   ExtendedPC _epc;
  4981 };
  4983 ExtendedPC PcFetcher::result() {
  4984   guarantee(is_done(), "task is not done yet.");
  4985   return _epc;
  4988 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
  4989   Thread* thread = context.thread();
  4990   OSThread* osthread = thread->osthread();
  4991   if (osthread->ucontext() != NULL) {
  4992     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
  4993   } else {
  4994     // NULL context is unexpected, double-check this is the VMThread
  4995     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  4999 // Suspends the target using the signal mechanism and then grabs the PC before
  5000 // resuming the target. Used by the flat-profiler only
  5001 ExtendedPC os::get_thread_pc(Thread* thread) {
  5002   // Make sure that it is called by the watcher for the VMThread
  5003   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  5004   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  5006   PcFetcher fetcher(thread);
  5007   fetcher.run();
  5008   return fetcher.result();
  5011 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  5013    if (is_NPTL()) {
  5014       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  5015    } else {
  5016       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  5017       // word back to default 64bit precision if condvar is signaled. Java
  5018       // wants 53bit precision.  Save and restore current value.
  5019       int fpu = get_fpu_control_word();
  5020       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  5021       set_fpu_control_word(fpu);
  5022       return status;
  5026 ////////////////////////////////////////////////////////////////////////////////
  5027 // debug support
  5029 bool os::find(address addr, outputStream* st) {
  5030   Dl_info dlinfo;
  5031   memset(&dlinfo, 0, sizeof(dlinfo));
  5032   if (dladdr(addr, &dlinfo) != 0) {
  5033     st->print(PTR_FORMAT ": ", addr);
  5034     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
  5035       st->print("%s+%#x", dlinfo.dli_sname,
  5036                  addr - (intptr_t)dlinfo.dli_saddr);
  5037     } else if (dlinfo.dli_fbase != NULL) {
  5038       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  5039     } else {
  5040       st->print("<absolute address>");
  5042     if (dlinfo.dli_fname != NULL) {
  5043       st->print(" in %s", dlinfo.dli_fname);
  5045     if (dlinfo.dli_fbase != NULL) {
  5046       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  5048     st->cr();
  5050     if (Verbose) {
  5051       // decode some bytes around the PC
  5052       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  5053       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  5054       address       lowest = (address) dlinfo.dli_sname;
  5055       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5056       if (begin < lowest)  begin = lowest;
  5057       Dl_info dlinfo2;
  5058       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5059           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5060         end = (address) dlinfo2.dli_saddr;
  5061       Disassembler::decode(begin, end, st);
  5063     return true;
  5065   return false;
  5068 ////////////////////////////////////////////////////////////////////////////////
  5069 // misc
  5071 // This does not do anything on Linux. This is basically a hook for being
  5072 // able to use structured exception handling (thread-local exception filters)
  5073 // on, e.g., Win32.
  5074 void
  5075 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  5076                          JavaCallArguments* args, Thread* thread) {
  5077   f(value, method, args, thread);
  5080 void os::print_statistics() {
  5083 int os::message_box(const char* title, const char* message) {
  5084   int i;
  5085   fdStream err(defaultStream::error_fd());
  5086   for (i = 0; i < 78; i++) err.print_raw("=");
  5087   err.cr();
  5088   err.print_raw_cr(title);
  5089   for (i = 0; i < 78; i++) err.print_raw("-");
  5090   err.cr();
  5091   err.print_raw_cr(message);
  5092   for (i = 0; i < 78; i++) err.print_raw("=");
  5093   err.cr();
  5095   char buf[16];
  5096   // Prevent process from exiting upon "read error" without consuming all CPU
  5097   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  5099   return buf[0] == 'y' || buf[0] == 'Y';
  5102 int os::stat(const char *path, struct stat *sbuf) {
  5103   char pathbuf[MAX_PATH];
  5104   if (strlen(path) > MAX_PATH - 1) {
  5105     errno = ENAMETOOLONG;
  5106     return -1;
  5108   os::native_path(strcpy(pathbuf, path));
  5109   return ::stat(pathbuf, sbuf);
  5112 bool os::check_heap(bool force) {
  5113   return true;
  5116 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  5117   return ::vsnprintf(buf, count, format, args);
  5120 // Is a (classpath) directory empty?
  5121 bool os::dir_is_empty(const char* path) {
  5122   DIR *dir = NULL;
  5123   struct dirent *ptr;
  5125   dir = opendir(path);
  5126   if (dir == NULL) return true;
  5128   /* Scan the directory */
  5129   bool result = true;
  5130   char buf[sizeof(struct dirent) + MAX_PATH];
  5131   while (result && (ptr = ::readdir(dir)) != NULL) {
  5132     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5133       result = false;
  5136   closedir(dir);
  5137   return result;
  5140 // This code originates from JDK's sysOpen and open64_w
  5141 // from src/solaris/hpi/src/system_md.c
  5143 #ifndef O_DELETE
  5144 #define O_DELETE 0x10000
  5145 #endif
  5147 // Open a file. Unlink the file immediately after open returns
  5148 // if the specified oflag has the O_DELETE flag set.
  5149 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5151 int os::open(const char *path, int oflag, int mode) {
  5153   if (strlen(path) > MAX_PATH - 1) {
  5154     errno = ENAMETOOLONG;
  5155     return -1;
  5157   int fd;
  5158   int o_delete = (oflag & O_DELETE);
  5159   oflag = oflag & ~O_DELETE;
  5161   fd = ::open64(path, oflag, mode);
  5162   if (fd == -1) return -1;
  5164   //If the open succeeded, the file might still be a directory
  5166     struct stat64 buf64;
  5167     int ret = ::fstat64(fd, &buf64);
  5168     int st_mode = buf64.st_mode;
  5170     if (ret != -1) {
  5171       if ((st_mode & S_IFMT) == S_IFDIR) {
  5172         errno = EISDIR;
  5173         ::close(fd);
  5174         return -1;
  5176     } else {
  5177       ::close(fd);
  5178       return -1;
  5182     /*
  5183      * All file descriptors that are opened in the JVM and not
  5184      * specifically destined for a subprocess should have the
  5185      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5186      * party native code might fork and exec without closing all
  5187      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5188      * UNIXProcess.c), and this in turn might:
  5190      * - cause end-of-file to fail to be detected on some file
  5191      *   descriptors, resulting in mysterious hangs, or
  5193      * - might cause an fopen in the subprocess to fail on a system
  5194      *   suffering from bug 1085341.
  5196      * (Yes, the default setting of the close-on-exec flag is a Unix
  5197      * design flaw)
  5199      * See:
  5200      * 1085341: 32-bit stdio routines should support file descriptors >255
  5201      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5202      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5203      */
  5204 #ifdef FD_CLOEXEC
  5206         int flags = ::fcntl(fd, F_GETFD);
  5207         if (flags != -1)
  5208             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5210 #endif
  5212   if (o_delete != 0) {
  5213     ::unlink(path);
  5215   return fd;
  5219 // create binary file, rewriting existing file if required
  5220 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5221   int oflags = O_WRONLY | O_CREAT;
  5222   if (!rewrite_existing) {
  5223     oflags |= O_EXCL;
  5225   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5228 // return current position of file pointer
  5229 jlong os::current_file_offset(int fd) {
  5230   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5233 // move file pointer to the specified offset
  5234 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5235   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5238 // This code originates from JDK's sysAvailable
  5239 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  5241 int os::available(int fd, jlong *bytes) {
  5242   jlong cur, end;
  5243   int mode;
  5244   struct stat64 buf64;
  5246   if (::fstat64(fd, &buf64) >= 0) {
  5247     mode = buf64.st_mode;
  5248     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5249       /*
  5250       * XXX: is the following call interruptible? If so, this might
  5251       * need to go through the INTERRUPT_IO() wrapper as for other
  5252       * blocking, interruptible calls in this file.
  5253       */
  5254       int n;
  5255       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  5256         *bytes = n;
  5257         return 1;
  5261   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5262     return 0;
  5263   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5264     return 0;
  5265   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5266     return 0;
  5268   *bytes = end - cur;
  5269   return 1;
  5272 int os::socket_available(int fd, jint *pbytes) {
  5273   // Linux doc says EINTR not returned, unlike Solaris
  5274   int ret = ::ioctl(fd, FIONREAD, pbytes);
  5276   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  5277   // is expected to return 0 on failure and 1 on success to the jdk.
  5278   return (ret < 0) ? 0 : 1;
  5281 // Map a block of memory.
  5282 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  5283                      char *addr, size_t bytes, bool read_only,
  5284                      bool allow_exec) {
  5285   int prot;
  5286   int flags = MAP_PRIVATE;
  5288   if (read_only) {
  5289     prot = PROT_READ;
  5290   } else {
  5291     prot = PROT_READ | PROT_WRITE;
  5294   if (allow_exec) {
  5295     prot |= PROT_EXEC;
  5298   if (addr != NULL) {
  5299     flags |= MAP_FIXED;
  5302   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5303                                      fd, file_offset);
  5304   if (mapped_address == MAP_FAILED) {
  5305     return NULL;
  5307   return mapped_address;
  5311 // Remap a block of memory.
  5312 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  5313                        char *addr, size_t bytes, bool read_only,
  5314                        bool allow_exec) {
  5315   // same as map_memory() on this OS
  5316   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5317                         allow_exec);
  5321 // Unmap a block of memory.
  5322 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  5323   return munmap(addr, bytes) == 0;
  5326 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  5328 static clockid_t thread_cpu_clockid(Thread* thread) {
  5329   pthread_t tid = thread->osthread()->pthread_id();
  5330   clockid_t clockid;
  5332   // Get thread clockid
  5333   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  5334   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  5335   return clockid;
  5338 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5339 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5340 // of a thread.
  5341 //
  5342 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  5343 // the fast estimate available on the platform.
  5345 jlong os::current_thread_cpu_time() {
  5346   if (os::Linux::supports_fast_thread_cpu_time()) {
  5347     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5348   } else {
  5349     // return user + sys since the cost is the same
  5350     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  5354 jlong os::thread_cpu_time(Thread* thread) {
  5355   // consistent with what current_thread_cpu_time() returns
  5356   if (os::Linux::supports_fast_thread_cpu_time()) {
  5357     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5358   } else {
  5359     return slow_thread_cpu_time(thread, true /* user + sys */);
  5363 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5364   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5365     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5366   } else {
  5367     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5371 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5372   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5373     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5374   } else {
  5375     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  5379 //
  5380 //  -1 on error.
  5381 //
  5383 PRAGMA_DIAG_PUSH
  5384 PRAGMA_FORMAT_NONLITERAL_IGNORED
  5385 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5386   static bool proc_task_unchecked = true;
  5387   static const char *proc_stat_path = "/proc/%d/stat";
  5388   pid_t  tid = thread->osthread()->thread_id();
  5389   char *s;
  5390   char stat[2048];
  5391   int statlen;
  5392   char proc_name[64];
  5393   int count;
  5394   long sys_time, user_time;
  5395   char cdummy;
  5396   int idummy;
  5397   long ldummy;
  5398   FILE *fp;
  5400   // The /proc/<tid>/stat aggregates per-process usage on
  5401   // new Linux kernels 2.6+ where NPTL is supported.
  5402   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  5403   // See bug 6328462.
  5404   // There possibly can be cases where there is no directory
  5405   // /proc/self/task, so we check its availability.
  5406   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  5407     // This is executed only once
  5408     proc_task_unchecked = false;
  5409     fp = fopen("/proc/self/task", "r");
  5410     if (fp != NULL) {
  5411       proc_stat_path = "/proc/self/task/%d/stat";
  5412       fclose(fp);
  5416   sprintf(proc_name, proc_stat_path, tid);
  5417   fp = fopen(proc_name, "r");
  5418   if ( fp == NULL ) return -1;
  5419   statlen = fread(stat, 1, 2047, fp);
  5420   stat[statlen] = '\0';
  5421   fclose(fp);
  5423   // Skip pid and the command string. Note that we could be dealing with
  5424   // weird command names, e.g. user could decide to rename java launcher
  5425   // to "java 1.4.2 :)", then the stat file would look like
  5426   //                1234 (java 1.4.2 :)) R ... ...
  5427   // We don't really need to know the command string, just find the last
  5428   // occurrence of ")" and then start parsing from there. See bug 4726580.
  5429   s = strrchr(stat, ')');
  5430   if (s == NULL ) return -1;
  5432   // Skip blank chars
  5433   do s++; while (isspace(*s));
  5435   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  5436                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  5437                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  5438                  &user_time, &sys_time);
  5439   if ( count != 13 ) return -1;
  5440   if (user_sys_cpu_time) {
  5441     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  5442   } else {
  5443     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  5446 PRAGMA_DIAG_POP
  5448 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5449   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5450   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5451   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5452   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5455 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5456   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5457   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5458   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5459   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5462 bool os::is_thread_cpu_time_supported() {
  5463   return true;
  5466 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5467 // Linux doesn't yet have a (official) notion of processor sets,
  5468 // so just return the system wide load average.
  5469 int os::loadavg(double loadavg[], int nelem) {
  5470   return ::getloadavg(loadavg, nelem);
  5473 void os::pause() {
  5474   char filename[MAX_PATH];
  5475   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5476     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5477   } else {
  5478     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5481   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5482   if (fd != -1) {
  5483     struct stat buf;
  5484     ::close(fd);
  5485     while (::stat(filename, &buf) == 0) {
  5486       (void)::poll(NULL, 0, 100);
  5488   } else {
  5489     jio_fprintf(stderr,
  5490       "Could not open pause file '%s', continuing immediately.\n", filename);
  5495 // Refer to the comments in os_solaris.cpp park-unpark.
  5496 //
  5497 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  5498 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  5499 // For specifics regarding the bug see GLIBC BUGID 261237 :
  5500 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  5501 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  5502 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  5503 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  5504 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  5505 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  5506 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  5507 // of libpthread avoids the problem, but isn't practical.
  5508 //
  5509 // Possible remedies:
  5510 //
  5511 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  5512 //      This is palliative and probabilistic, however.  If the thread is preempted
  5513 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  5514 //      than the minimum period may have passed, and the abstime may be stale (in the
  5515 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  5516 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  5517 //
  5518 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  5519 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  5520 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  5521 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  5522 //      thread.
  5523 //
  5524 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  5525 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  5526 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  5527 //      This also works well.  In fact it avoids kernel-level scalability impediments
  5528 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  5529 //      timers in a graceful fashion.
  5530 //
  5531 // 4.   When the abstime value is in the past it appears that control returns
  5532 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  5533 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  5534 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  5535 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  5536 //      It may be possible to avoid reinitialization by checking the return
  5537 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  5538 //      condvar we must establish the invariant that cond_signal() is only called
  5539 //      within critical sections protected by the adjunct mutex.  This prevents
  5540 //      cond_signal() from "seeing" a condvar that's in the midst of being
  5541 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  5542 //      desirable signal-after-unlock optimization that avoids futile context switching.
  5543 //
  5544 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  5545 //      structure when a condvar is used or initialized.  cond_destroy()  would
  5546 //      release the helper structure.  Our reinitialize-after-timedwait fix
  5547 //      put excessive stress on malloc/free and locks protecting the c-heap.
  5548 //
  5549 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  5550 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  5551 // and only enabling the work-around for vulnerable environments.
  5553 // utility to compute the abstime argument to timedwait:
  5554 // millis is the relative timeout time
  5555 // abstime will be the absolute timeout time
  5556 // TODO: replace compute_abstime() with unpackTime()
  5558 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  5559   if (millis < 0)  millis = 0;
  5561   jlong seconds = millis / 1000;
  5562   millis %= 1000;
  5563   if (seconds > 50000000) { // see man cond_timedwait(3T)
  5564     seconds = 50000000;
  5567   if (os::Linux::supports_monotonic_clock()) {
  5568     struct timespec now;
  5569     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  5570     assert_status(status == 0, status, "clock_gettime");
  5571     abstime->tv_sec = now.tv_sec  + seconds;
  5572     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
  5573     if (nanos >= NANOSECS_PER_SEC) {
  5574       abstime->tv_sec += 1;
  5575       nanos -= NANOSECS_PER_SEC;
  5577     abstime->tv_nsec = nanos;
  5578   } else {
  5579     struct timeval now;
  5580     int status = gettimeofday(&now, NULL);
  5581     assert(status == 0, "gettimeofday");
  5582     abstime->tv_sec = now.tv_sec  + seconds;
  5583     long usec = now.tv_usec + millis * 1000;
  5584     if (usec >= 1000000) {
  5585       abstime->tv_sec += 1;
  5586       usec -= 1000000;
  5588     abstime->tv_nsec = usec * 1000;
  5590   return abstime;
  5594 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5595 // Conceptually TryPark() should be equivalent to park(0).
  5597 int os::PlatformEvent::TryPark() {
  5598   for (;;) {
  5599     const int v = _Event ;
  5600     guarantee ((v == 0) || (v == 1), "invariant") ;
  5601     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5605 void os::PlatformEvent::park() {       // AKA "down()"
  5606   // Invariant: Only the thread associated with the Event/PlatformEvent
  5607   // may call park().
  5608   // TODO: assert that _Assoc != NULL or _Assoc == Self
  5609   int v ;
  5610   for (;;) {
  5611       v = _Event ;
  5612       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5614   guarantee (v >= 0, "invariant") ;
  5615   if (v == 0) {
  5616      // Do this the hard way by blocking ...
  5617      int status = pthread_mutex_lock(_mutex);
  5618      assert_status(status == 0, status, "mutex_lock");
  5619      guarantee (_nParked == 0, "invariant") ;
  5620      ++ _nParked ;
  5621      while (_Event < 0) {
  5622         status = pthread_cond_wait(_cond, _mutex);
  5623         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5624         // Treat this the same as if the wait was interrupted
  5625         if (status == ETIME) { status = EINTR; }
  5626         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5628      -- _nParked ;
  5630     _Event = 0 ;
  5631      status = pthread_mutex_unlock(_mutex);
  5632      assert_status(status == 0, status, "mutex_unlock");
  5633     // Paranoia to ensure our locked and lock-free paths interact
  5634     // correctly with each other.
  5635     OrderAccess::fence();
  5637   guarantee (_Event >= 0, "invariant") ;
  5640 int os::PlatformEvent::park(jlong millis) {
  5641   guarantee (_nParked == 0, "invariant") ;
  5643   int v ;
  5644   for (;;) {
  5645       v = _Event ;
  5646       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5648   guarantee (v >= 0, "invariant") ;
  5649   if (v != 0) return OS_OK ;
  5651   // We do this the hard way, by blocking the thread.
  5652   // Consider enforcing a minimum timeout value.
  5653   struct timespec abst;
  5654   compute_abstime(&abst, millis);
  5656   int ret = OS_TIMEOUT;
  5657   int status = pthread_mutex_lock(_mutex);
  5658   assert_status(status == 0, status, "mutex_lock");
  5659   guarantee (_nParked == 0, "invariant") ;
  5660   ++_nParked ;
  5662   // Object.wait(timo) will return because of
  5663   // (a) notification
  5664   // (b) timeout
  5665   // (c) thread.interrupt
  5666   //
  5667   // Thread.interrupt and object.notify{All} both call Event::set.
  5668   // That is, we treat thread.interrupt as a special case of notification.
  5669   // The underlying Solaris implementation, cond_timedwait, admits
  5670   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  5671   // JVM from making those visible to Java code.  As such, we must
  5672   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  5673   //
  5674   // TODO: properly differentiate simultaneous notify+interrupt.
  5675   // In that case, we should propagate the notify to another waiter.
  5677   while (_Event < 0) {
  5678     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  5679     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5680       pthread_cond_destroy (_cond);
  5681       pthread_cond_init (_cond, os::Linux::condAttr()) ;
  5683     assert_status(status == 0 || status == EINTR ||
  5684                   status == ETIME || status == ETIMEDOUT,
  5685                   status, "cond_timedwait");
  5686     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  5687     if (status == ETIME || status == ETIMEDOUT) break ;
  5688     // We consume and ignore EINTR and spurious wakeups.
  5690   --_nParked ;
  5691   if (_Event >= 0) {
  5692      ret = OS_OK;
  5694   _Event = 0 ;
  5695   status = pthread_mutex_unlock(_mutex);
  5696   assert_status(status == 0, status, "mutex_unlock");
  5697   assert (_nParked == 0, "invariant") ;
  5698   // Paranoia to ensure our locked and lock-free paths interact
  5699   // correctly with each other.
  5700   OrderAccess::fence();
  5701   return ret;
  5704 void os::PlatformEvent::unpark() {
  5705   // Transitions for _Event:
  5706   //    0 :=> 1
  5707   //    1 :=> 1
  5708   //   -1 :=> either 0 or 1; must signal target thread
  5709   //          That is, we can safely transition _Event from -1 to either
  5710   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  5711   //          unpark() calls.
  5712   // See also: "Semaphores in Plan 9" by Mullender & Cox
  5713   //
  5714   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  5715   // that it will take two back-to-back park() calls for the owning
  5716   // thread to block. This has the benefit of forcing a spurious return
  5717   // from the first park() call after an unpark() call which will help
  5718   // shake out uses of park() and unpark() without condition variables.
  5720   if (Atomic::xchg(1, &_Event) >= 0) return;
  5722   // Wait for the thread associated with the event to vacate
  5723   int status = pthread_mutex_lock(_mutex);
  5724   assert_status(status == 0, status, "mutex_lock");
  5725   int AnyWaiters = _nParked;
  5726   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  5727   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  5728     AnyWaiters = 0;
  5729     pthread_cond_signal(_cond);
  5731   status = pthread_mutex_unlock(_mutex);
  5732   assert_status(status == 0, status, "mutex_unlock");
  5733   if (AnyWaiters != 0) {
  5734     status = pthread_cond_signal(_cond);
  5735     assert_status(status == 0, status, "cond_signal");
  5738   // Note that we signal() _after dropping the lock for "immortal" Events.
  5739   // This is safe and avoids a common class of  futile wakeups.  In rare
  5740   // circumstances this can cause a thread to return prematurely from
  5741   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  5742   // simply re-test the condition and re-park itself.
  5746 // JSR166
  5747 // -------------------------------------------------------
  5749 /*
  5750  * The solaris and linux implementations of park/unpark are fairly
  5751  * conservative for now, but can be improved. They currently use a
  5752  * mutex/condvar pair, plus a a count.
  5753  * Park decrements count if > 0, else does a condvar wait.  Unpark
  5754  * sets count to 1 and signals condvar.  Only one thread ever waits
  5755  * on the condvar. Contention seen when trying to park implies that someone
  5756  * is unparking you, so don't wait. And spurious returns are fine, so there
  5757  * is no need to track notifications.
  5758  */
  5760 /*
  5761  * This code is common to linux and solaris and will be moved to a
  5762  * common place in dolphin.
  5764  * The passed in time value is either a relative time in nanoseconds
  5765  * or an absolute time in milliseconds. Either way it has to be unpacked
  5766  * into suitable seconds and nanoseconds components and stored in the
  5767  * given timespec structure.
  5768  * Given time is a 64-bit value and the time_t used in the timespec is only
  5769  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  5770  * overflow if times way in the future are given. Further on Solaris versions
  5771  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  5772  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  5773  * As it will be 28 years before "now + 100000000" will overflow we can
  5774  * ignore overflow and just impose a hard-limit on seconds using the value
  5775  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  5776  * years from "now".
  5777  */
  5779 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  5780   assert (time > 0, "convertTime");
  5781   time_t max_secs = 0;
  5783   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
  5784     struct timeval now;
  5785     int status = gettimeofday(&now, NULL);
  5786     assert(status == 0, "gettimeofday");
  5788     max_secs = now.tv_sec + MAX_SECS;
  5790     if (isAbsolute) {
  5791       jlong secs = time / 1000;
  5792       if (secs > max_secs) {
  5793         absTime->tv_sec = max_secs;
  5794       } else {
  5795         absTime->tv_sec = secs;
  5797       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  5798     } else {
  5799       jlong secs = time / NANOSECS_PER_SEC;
  5800       if (secs >= MAX_SECS) {
  5801         absTime->tv_sec = max_secs;
  5802         absTime->tv_nsec = 0;
  5803       } else {
  5804         absTime->tv_sec = now.tv_sec + secs;
  5805         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  5806         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5807           absTime->tv_nsec -= NANOSECS_PER_SEC;
  5808           ++absTime->tv_sec; // note: this must be <= max_secs
  5812   } else {
  5813     // must be relative using monotonic clock
  5814     struct timespec now;
  5815     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  5816     assert_status(status == 0, status, "clock_gettime");
  5817     max_secs = now.tv_sec + MAX_SECS;
  5818     jlong secs = time / NANOSECS_PER_SEC;
  5819     if (secs >= MAX_SECS) {
  5820       absTime->tv_sec = max_secs;
  5821       absTime->tv_nsec = 0;
  5822     } else {
  5823       absTime->tv_sec = now.tv_sec + secs;
  5824       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
  5825       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5826         absTime->tv_nsec -= NANOSECS_PER_SEC;
  5827         ++absTime->tv_sec; // note: this must be <= max_secs
  5831   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  5832   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  5833   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  5834   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  5837 void Parker::park(bool isAbsolute, jlong time) {
  5838   // Ideally we'd do something useful while spinning, such
  5839   // as calling unpackTime().
  5841   // Optional fast-path check:
  5842   // Return immediately if a permit is available.
  5843   // We depend on Atomic::xchg() having full barrier semantics
  5844   // since we are doing a lock-free update to _counter.
  5845   if (Atomic::xchg(0, &_counter) > 0) return;
  5847   Thread* thread = Thread::current();
  5848   assert(thread->is_Java_thread(), "Must be JavaThread");
  5849   JavaThread *jt = (JavaThread *)thread;
  5851   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  5852   // Check interrupt before trying to wait
  5853   if (Thread::is_interrupted(thread, false)) {
  5854     return;
  5857   // Next, demultiplex/decode time arguments
  5858   timespec absTime;
  5859   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  5860     return;
  5862   if (time > 0) {
  5863     unpackTime(&absTime, isAbsolute, time);
  5867   // Enter safepoint region
  5868   // Beware of deadlocks such as 6317397.
  5869   // The per-thread Parker:: mutex is a classic leaf-lock.
  5870   // In particular a thread must never block on the Threads_lock while
  5871   // holding the Parker:: mutex.  If safepoints are pending both the
  5872   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  5873   ThreadBlockInVM tbivm(jt);
  5875   // Don't wait if cannot get lock since interference arises from
  5876   // unblocking.  Also. check interrupt before trying wait
  5877   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  5878     return;
  5881   int status ;
  5882   if (_counter > 0)  { // no wait needed
  5883     _counter = 0;
  5884     status = pthread_mutex_unlock(_mutex);
  5885     assert (status == 0, "invariant") ;
  5886     // Paranoia to ensure our locked and lock-free paths interact
  5887     // correctly with each other and Java-level accesses.
  5888     OrderAccess::fence();
  5889     return;
  5892 #ifdef ASSERT
  5893   // Don't catch signals while blocked; let the running threads have the signals.
  5894   // (This allows a debugger to break into the running thread.)
  5895   sigset_t oldsigs;
  5896   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  5897   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  5898 #endif
  5900   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  5901   jt->set_suspend_equivalent();
  5902   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  5904   assert(_cur_index == -1, "invariant");
  5905   if (time == 0) {
  5906     _cur_index = REL_INDEX; // arbitrary choice when not timed
  5907     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
  5908   } else {
  5909     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
  5910     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
  5911     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5912       pthread_cond_destroy (&_cond[_cur_index]) ;
  5913       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
  5916   _cur_index = -1;
  5917   assert_status(status == 0 || status == EINTR ||
  5918                 status == ETIME || status == ETIMEDOUT,
  5919                 status, "cond_timedwait");
  5921 #ifdef ASSERT
  5922   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  5923 #endif
  5925   _counter = 0 ;
  5926   status = pthread_mutex_unlock(_mutex) ;
  5927   assert_status(status == 0, status, "invariant") ;
  5928   // Paranoia to ensure our locked and lock-free paths interact
  5929   // correctly with each other and Java-level accesses.
  5930   OrderAccess::fence();
  5932   // If externally suspended while waiting, re-suspend
  5933   if (jt->handle_special_suspend_equivalent_condition()) {
  5934     jt->java_suspend_self();
  5938 void Parker::unpark() {
  5939   int s, status ;
  5940   status = pthread_mutex_lock(_mutex);
  5941   assert (status == 0, "invariant") ;
  5942   s = _counter;
  5943   _counter = 1;
  5944   if (s < 1) {
  5945     // thread might be parked
  5946     if (_cur_index != -1) {
  5947       // thread is definitely parked
  5948       if (WorkAroundNPTLTimedWaitHang) {
  5949         status = pthread_cond_signal (&_cond[_cur_index]);
  5950         assert (status == 0, "invariant");
  5951         status = pthread_mutex_unlock(_mutex);
  5952         assert (status == 0, "invariant");
  5953       } else {
  5954         status = pthread_mutex_unlock(_mutex);
  5955         assert (status == 0, "invariant");
  5956         status = pthread_cond_signal (&_cond[_cur_index]);
  5957         assert (status == 0, "invariant");
  5959     } else {
  5960       pthread_mutex_unlock(_mutex);
  5961       assert (status == 0, "invariant") ;
  5963   } else {
  5964     pthread_mutex_unlock(_mutex);
  5965     assert (status == 0, "invariant") ;
  5970 extern char** environ;
  5972 #ifndef __NR_fork
  5973 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
  5974 #endif
  5976 #ifndef __NR_execve
  5977 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
  5978 #endif
  5980 // Run the specified command in a separate process. Return its exit value,
  5981 // or -1 on failure (e.g. can't fork a new process).
  5982 // Unlike system(), this function can be called from signal handler. It
  5983 // doesn't block SIGINT et al.
  5984 int os::fork_and_exec(char* cmd) {
  5985   const char * argv[4] = {"sh", "-c", cmd, NULL};
  5987   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
  5988   // pthread_atfork handlers and reset pthread library. All we need is a
  5989   // separate process to execve. Make a direct syscall to fork process.
  5990   // On IA64 there's no fork syscall, we have to use fork() and hope for
  5991   // the best...
  5992   pid_t pid = NOT_IA64(syscall(__NR_fork);)
  5993               IA64_ONLY(fork();)
  5995   if (pid < 0) {
  5996     // fork failed
  5997     return -1;
  5999   } else if (pid == 0) {
  6000     // child process
  6002     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
  6003     // first to kill every thread on the thread list. Because this list is
  6004     // not reset by fork() (see notes above), execve() will instead kill
  6005     // every thread in the parent process. We know this is the only thread
  6006     // in the new process, so make a system call directly.
  6007     // IA64 should use normal execve() from glibc to match the glibc fork()
  6008     // above.
  6009     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
  6010     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
  6012     // execve failed
  6013     _exit(-1);
  6015   } else  {
  6016     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  6017     // care about the actual exit code, for now.
  6019     int status;
  6021     // Wait for the child process to exit.  This returns immediately if
  6022     // the child has already exited. */
  6023     while (waitpid(pid, &status, 0) < 0) {
  6024         switch (errno) {
  6025         case ECHILD: return 0;
  6026         case EINTR: break;
  6027         default: return -1;
  6031     if (WIFEXITED(status)) {
  6032        // The child exited normally; get its exit code.
  6033        return WEXITSTATUS(status);
  6034     } else if (WIFSIGNALED(status)) {
  6035        // The child exited because of a signal
  6036        // The best value to return is 0x80 + signal number,
  6037        // because that is what all Unix shells do, and because
  6038        // it allows callers to distinguish between process exit and
  6039        // process death by signal.
  6040        return 0x80 + WTERMSIG(status);
  6041     } else {
  6042        // Unknown exit code; pass it through
  6043        return status;
  6048 // is_headless_jre()
  6049 //
  6050 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  6051 // in order to report if we are running in a headless jre
  6052 //
  6053 // Since JDK8 xawt/libmawt.so was moved into the same directory
  6054 // as libawt.so, and renamed libawt_xawt.so
  6055 //
  6056 bool os::is_headless_jre() {
  6057     struct stat statbuf;
  6058     char buf[MAXPATHLEN];
  6059     char libmawtpath[MAXPATHLEN];
  6060     const char *xawtstr  = "/xawt/libmawt.so";
  6061     const char *new_xawtstr = "/libawt_xawt.so";
  6062     char *p;
  6064     // Get path to libjvm.so
  6065     os::jvm_path(buf, sizeof(buf));
  6067     // Get rid of libjvm.so
  6068     p = strrchr(buf, '/');
  6069     if (p == NULL) return false;
  6070     else *p = '\0';
  6072     // Get rid of client or server
  6073     p = strrchr(buf, '/');
  6074     if (p == NULL) return false;
  6075     else *p = '\0';
  6077     // check xawt/libmawt.so
  6078     strcpy(libmawtpath, buf);
  6079     strcat(libmawtpath, xawtstr);
  6080     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6082     // check libawt_xawt.so
  6083     strcpy(libmawtpath, buf);
  6084     strcat(libmawtpath, new_xawtstr);
  6085     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6087     return true;
  6090 // Get the default path to the core file
  6091 // Returns the length of the string
  6092 int os::get_core_path(char* buffer, size_t bufferSize) {
  6093   const char* p = get_current_directory(buffer, bufferSize);
  6095   if (p == NULL) {
  6096     assert(p != NULL, "failed to get current directory");
  6097     return 0;
  6100   return strlen(buffer);
  6103 #ifdef JAVASE_EMBEDDED
  6104 //
  6105 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
  6106 //
  6107 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
  6109 // ctor
  6110 //
  6111 MemNotifyThread::MemNotifyThread(int fd): Thread() {
  6112   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
  6113   _fd = fd;
  6115   if (os::create_thread(this, os::os_thread)) {
  6116     _memnotify_thread = this;
  6117     os::set_priority(this, NearMaxPriority);
  6118     os::start_thread(this);
  6122 // Where all the work gets done
  6123 //
  6124 void MemNotifyThread::run() {
  6125   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
  6127   // Set up the select arguments
  6128   fd_set rfds;
  6129   if (_fd != -1) {
  6130     FD_ZERO(&rfds);
  6131     FD_SET(_fd, &rfds);
  6134   // Now wait for the mem_notify device to wake up
  6135   while (1) {
  6136     // Wait for the mem_notify device to signal us..
  6137     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
  6138     if (rc == -1) {
  6139       perror("select!\n");
  6140       break;
  6141     } else if (rc) {
  6142       //ssize_t free_before = os::available_memory();
  6143       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
  6145       // The kernel is telling us there is not much memory left...
  6146       // try to do something about that
  6148       // If we are not already in a GC, try one.
  6149       if (!Universe::heap()->is_gc_active()) {
  6150         Universe::heap()->collect(GCCause::_allocation_failure);
  6152         //ssize_t free_after = os::available_memory();
  6153         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
  6154         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
  6156       // We might want to do something like the following if we find the GC's are not helping...
  6157       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
  6162 //
  6163 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
  6164 //
  6165 void MemNotifyThread::start() {
  6166   int    fd;
  6167   fd = open ("/dev/mem_notify", O_RDONLY, 0);
  6168   if (fd < 0) {
  6169       return;
  6172   if (memnotify_thread() == NULL) {
  6173     new MemNotifyThread(fd);
  6177 #endif // JAVASE_EMBEDDED
  6180 /////////////// Unit tests ///////////////
  6182 #ifndef PRODUCT
  6184 #define test_log(...) \
  6185   do {\
  6186     if (VerboseInternalVMTests) { \
  6187       tty->print_cr(__VA_ARGS__); \
  6188       tty->flush(); \
  6189     }\
  6190   } while (false)
  6192 class TestReserveMemorySpecial : AllStatic {
  6193  public:
  6194   static void small_page_write(void* addr, size_t size) {
  6195     size_t page_size = os::vm_page_size();
  6197     char* end = (char*)addr + size;
  6198     for (char* p = (char*)addr; p < end; p += page_size) {
  6199       *p = 1;
  6203   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
  6204     if (!UseHugeTLBFS) {
  6205       return;
  6208     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
  6210     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
  6212     if (addr != NULL) {
  6213       small_page_write(addr, size);
  6215       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6219   static void test_reserve_memory_special_huge_tlbfs_only() {
  6220     if (!UseHugeTLBFS) {
  6221       return;
  6224     size_t lp = os::large_page_size();
  6226     for (size_t size = lp; size <= lp * 10; size += lp) {
  6227       test_reserve_memory_special_huge_tlbfs_only(size);
  6231   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
  6232     if (!UseHugeTLBFS) {
  6233         return;
  6236     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
  6237         size, alignment);
  6239     assert(size >= os::large_page_size(), "Incorrect input to test");
  6241     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
  6243     if (addr != NULL) {
  6244       small_page_write(addr, size);
  6246       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6250   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
  6251     size_t lp = os::large_page_size();
  6252     size_t ag = os::vm_allocation_granularity();
  6254     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6255       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
  6259   static void test_reserve_memory_special_huge_tlbfs_mixed() {
  6260     size_t lp = os::large_page_size();
  6261     size_t ag = os::vm_allocation_granularity();
  6263     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
  6264     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
  6265     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
  6266     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
  6267     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
  6268     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
  6269     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
  6270     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
  6271     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
  6274   static void test_reserve_memory_special_huge_tlbfs() {
  6275     if (!UseHugeTLBFS) {
  6276       return;
  6279     test_reserve_memory_special_huge_tlbfs_only();
  6280     test_reserve_memory_special_huge_tlbfs_mixed();
  6283   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
  6284     if (!UseSHM) {
  6285       return;
  6288     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
  6290     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
  6292     if (addr != NULL) {
  6293       assert(is_ptr_aligned(addr, alignment), "Check");
  6294       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
  6296       small_page_write(addr, size);
  6298       os::Linux::release_memory_special_shm(addr, size);
  6302   static void test_reserve_memory_special_shm() {
  6303     size_t lp = os::large_page_size();
  6304     size_t ag = os::vm_allocation_granularity();
  6306     for (size_t size = ag; size < lp * 3; size += ag) {
  6307       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6308         test_reserve_memory_special_shm(size, alignment);
  6313   static void test() {
  6314     test_reserve_memory_special_huge_tlbfs();
  6315     test_reserve_memory_special_shm();
  6317 };
  6319 void TestReserveMemorySpecial_test() {
  6320   TestReserveMemorySpecial::test();
  6323 #endif

mercurial