src/os/linux/vm/os_linux.cpp

Thu, 21 Aug 2014 13:57:51 -0700

author
iklam
date
Thu, 21 Aug 2014 13:57:51 -0700
changeset 7089
6e0cb14ce59b
parent 7074
833b0f92429a
child 7535
7ae4e26cb1e0
child 7598
ddce0b7cee93
permissions
-rw-r--r--

8046070: Class Data Sharing clean up and refactoring
Summary: Cleaned up CDS to be more configurable, maintainable and extensible
Reviewed-by: dholmes, coleenp, acorn, mchung

     1 /*
     2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_linux.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_linux.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_linux.hpp"
    40 #include "prims/jniFastGetField.hpp"
    41 #include "prims/jvm.h"
    42 #include "prims/jvm_misc.hpp"
    43 #include "runtime/arguments.hpp"
    44 #include "runtime/extendedPC.hpp"
    45 #include "runtime/globals.hpp"
    46 #include "runtime/interfaceSupport.hpp"
    47 #include "runtime/init.hpp"
    48 #include "runtime/java.hpp"
    49 #include "runtime/javaCalls.hpp"
    50 #include "runtime/mutexLocker.hpp"
    51 #include "runtime/objectMonitor.hpp"
    52 #include "runtime/orderAccess.inline.hpp"
    53 #include "runtime/osThread.hpp"
    54 #include "runtime/perfMemory.hpp"
    55 #include "runtime/sharedRuntime.hpp"
    56 #include "runtime/statSampler.hpp"
    57 #include "runtime/stubRoutines.hpp"
    58 #include "runtime/thread.inline.hpp"
    59 #include "runtime/threadCritical.hpp"
    60 #include "runtime/timer.hpp"
    61 #include "services/attachListener.hpp"
    62 #include "services/memTracker.hpp"
    63 #include "services/runtimeService.hpp"
    64 #include "utilities/decoder.hpp"
    65 #include "utilities/defaultStream.hpp"
    66 #include "utilities/events.hpp"
    67 #include "utilities/elfFile.hpp"
    68 #include "utilities/growableArray.hpp"
    69 #include "utilities/vmError.hpp"
    71 // put OS-includes here
    72 # include <sys/types.h>
    73 # include <sys/mman.h>
    74 # include <sys/stat.h>
    75 # include <sys/select.h>
    76 # include <pthread.h>
    77 # include <signal.h>
    78 # include <errno.h>
    79 # include <dlfcn.h>
    80 # include <stdio.h>
    81 # include <unistd.h>
    82 # include <sys/resource.h>
    83 # include <pthread.h>
    84 # include <sys/stat.h>
    85 # include <sys/time.h>
    86 # include <sys/times.h>
    87 # include <sys/utsname.h>
    88 # include <sys/socket.h>
    89 # include <sys/wait.h>
    90 # include <pwd.h>
    91 # include <poll.h>
    92 # include <semaphore.h>
    93 # include <fcntl.h>
    94 # include <string.h>
    95 # include <syscall.h>
    96 # include <sys/sysinfo.h>
    97 # include <gnu/libc-version.h>
    98 # include <sys/ipc.h>
    99 # include <sys/shm.h>
   100 # include <link.h>
   101 # include <stdint.h>
   102 # include <inttypes.h>
   103 # include <sys/ioctl.h>
   105 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
   107 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
   108 // getrusage() is prepared to handle the associated failure.
   109 #ifndef RUSAGE_THREAD
   110 #define RUSAGE_THREAD   (1)               /* only the calling thread */
   111 #endif
   113 #define MAX_PATH    (2 * K)
   115 #define MAX_SECS 100000000
   117 // for timer info max values which include all bits
   118 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   120 #define LARGEPAGES_BIT (1 << 6)
   121 ////////////////////////////////////////////////////////////////////////////////
   122 // global variables
   123 julong os::Linux::_physical_memory = 0;
   125 address   os::Linux::_initial_thread_stack_bottom = NULL;
   126 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   128 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   129 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   130 Mutex* os::Linux::_createThread_lock = NULL;
   131 pthread_t os::Linux::_main_thread;
   132 int os::Linux::_page_size = -1;
   133 const int os::Linux::_vm_default_page_size = (8 * K);
   134 bool os::Linux::_is_floating_stack = false;
   135 bool os::Linux::_is_NPTL = false;
   136 bool os::Linux::_supports_fast_thread_cpu_time = false;
   137 const char * os::Linux::_glibc_version = NULL;
   138 const char * os::Linux::_libpthread_version = NULL;
   139 pthread_condattr_t os::Linux::_condattr[1];
   141 static jlong initial_time_count=0;
   143 static int clock_tics_per_sec = 100;
   145 // For diagnostics to print a message once. see run_periodic_checks
   146 static sigset_t check_signal_done;
   147 static bool check_signals = true;
   149 static pid_t _initial_pid = 0;
   151 /* Signal number used to suspend/resume a thread */
   153 /* do not use any signal number less than SIGSEGV, see 4355769 */
   154 static int SR_signum = SIGUSR2;
   155 sigset_t SR_sigset;
   157 /* Used to protect dlsym() calls */
   158 static pthread_mutex_t dl_mutex;
   160 // Declarations
   161 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
   163 #ifdef JAVASE_EMBEDDED
   164 class MemNotifyThread: public Thread {
   165   friend class VMStructs;
   166  public:
   167   virtual void run();
   169  private:
   170   static MemNotifyThread* _memnotify_thread;
   171   int _fd;
   173  public:
   175   // Constructor
   176   MemNotifyThread(int fd);
   178   // Tester
   179   bool is_memnotify_thread() const { return true; }
   181   // Printing
   182   char* name() const { return (char*)"Linux MemNotify Thread"; }
   184   // Returns the single instance of the MemNotifyThread
   185   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
   187   // Create and start the single instance of MemNotifyThread
   188   static void start();
   189 };
   190 #endif // JAVASE_EMBEDDED
   192 // utility functions
   194 static int SR_initialize();
   196 julong os::available_memory() {
   197   return Linux::available_memory();
   198 }
   200 julong os::Linux::available_memory() {
   201   // values in struct sysinfo are "unsigned long"
   202   struct sysinfo si;
   203   sysinfo(&si);
   205   return (julong)si.freeram * si.mem_unit;
   206 }
   208 julong os::physical_memory() {
   209   return Linux::physical_memory();
   210 }
   212 ////////////////////////////////////////////////////////////////////////////////
   213 // environment support
   215 bool os::getenv(const char* name, char* buf, int len) {
   216   const char* val = ::getenv(name);
   217   if (val != NULL && strlen(val) < (size_t)len) {
   218     strcpy(buf, val);
   219     return true;
   220   }
   221   if (len > 0) buf[0] = 0;  // return a null string
   222   return false;
   223 }
   226 // Return true if user is running as root.
   228 bool os::have_special_privileges() {
   229   static bool init = false;
   230   static bool privileges = false;
   231   if (!init) {
   232     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   233     init = true;
   234   }
   235   return privileges;
   236 }
   239 #ifndef SYS_gettid
   240 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   241 #ifdef __ia64__
   242 #define SYS_gettid 1105
   243 #elif __i386__
   244 #define SYS_gettid 224
   245 #elif __amd64__
   246 #define SYS_gettid 186
   247 #elif __sparc__
   248 #define SYS_gettid 143
   249 #else
   250 #error define gettid for the arch
   251 #endif
   252 #endif
   254 // Cpu architecture string
   255 #if   defined(ZERO)
   256 static char cpu_arch[] = ZERO_LIBARCH;
   257 #elif defined(IA64)
   258 static char cpu_arch[] = "ia64";
   259 #elif defined(IA32)
   260 static char cpu_arch[] = "i386";
   261 #elif defined(AMD64)
   262 static char cpu_arch[] = "amd64";
   263 #elif defined(ARM)
   264 static char cpu_arch[] = "arm";
   265 #elif defined(PPC32)
   266 static char cpu_arch[] = "ppc";
   267 #elif defined(PPC64)
   268 static char cpu_arch[] = "ppc64";
   269 #elif defined(SPARC)
   270 #  ifdef _LP64
   271 static char cpu_arch[] = "sparcv9";
   272 #  else
   273 static char cpu_arch[] = "sparc";
   274 #  endif
   275 #else
   276 #error Add appropriate cpu_arch setting
   277 #endif
   280 // pid_t gettid()
   281 //
   282 // Returns the kernel thread id of the currently running thread. Kernel
   283 // thread id is used to access /proc.
   284 //
   285 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   286 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   287 //
   288 pid_t os::Linux::gettid() {
   289   int rslt = syscall(SYS_gettid);
   290   if (rslt == -1) {
   291      // old kernel, no NPTL support
   292      return getpid();
   293   } else {
   294      return (pid_t)rslt;
   295   }
   296 }
   298 // Most versions of linux have a bug where the number of processors are
   299 // determined by looking at the /proc file system.  In a chroot environment,
   300 // the system call returns 1.  This causes the VM to act as if it is
   301 // a single processor and elide locking (see is_MP() call).
   302 static bool unsafe_chroot_detected = false;
   303 static const char *unstable_chroot_error = "/proc file system not found.\n"
   304                      "Java may be unstable running multithreaded in a chroot "
   305                      "environment on Linux when /proc filesystem is not mounted.";
   307 void os::Linux::initialize_system_info() {
   308   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   309   if (processor_count() == 1) {
   310     pid_t pid = os::Linux::gettid();
   311     char fname[32];
   312     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   313     FILE *fp = fopen(fname, "r");
   314     if (fp == NULL) {
   315       unsafe_chroot_detected = true;
   316     } else {
   317       fclose(fp);
   318     }
   319   }
   320   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   321   assert(processor_count() > 0, "linux error");
   322 }
   324 void os::init_system_properties_values() {
   325   // The next steps are taken in the product version:
   326   //
   327   // Obtain the JAVA_HOME value from the location of libjvm.so.
   328   // This library should be located at:
   329   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   330   //
   331   // If "/jre/lib/" appears at the right place in the path, then we
   332   // assume libjvm.so is installed in a JDK and we use this path.
   333   //
   334   // Otherwise exit with message: "Could not create the Java virtual machine."
   335   //
   336   // The following extra steps are taken in the debugging version:
   337   //
   338   // If "/jre/lib/" does NOT appear at the right place in the path
   339   // instead of exit check for $JAVA_HOME environment variable.
   340   //
   341   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   342   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   343   // it looks like libjvm.so is installed there
   344   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   345   //
   346   // Otherwise exit.
   347   //
   348   // Important note: if the location of libjvm.so changes this
   349   // code needs to be changed accordingly.
   351 // See ld(1):
   352 //      The linker uses the following search paths to locate required
   353 //      shared libraries:
   354 //        1: ...
   355 //        ...
   356 //        7: The default directories, normally /lib and /usr/lib.
   357 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   358 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   359 #else
   360 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   361 #endif
   363 // Base path of extensions installed on the system.
   364 #define SYS_EXT_DIR     "/usr/java/packages"
   365 #define EXTENSIONS_DIR  "/lib/ext"
   366 #define ENDORSED_DIR    "/lib/endorsed"
   368   // Buffer that fits several sprintfs.
   369   // Note that the space for the colon and the trailing null are provided
   370   // by the nulls included by the sizeof operator.
   371   const size_t bufsize =
   372     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
   373          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
   374          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
   375   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
   377   // sysclasspath, java_home, dll_dir
   378   {
   379     char *pslash;
   380     os::jvm_path(buf, bufsize);
   382     // Found the full path to libjvm.so.
   383     // Now cut the path to <java_home>/jre if we can.
   384     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
   385     pslash = strrchr(buf, '/');
   386     if (pslash != NULL) {
   387       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
   388     }
   389     Arguments::set_dll_dir(buf);
   391     if (pslash != NULL) {
   392       pslash = strrchr(buf, '/');
   393       if (pslash != NULL) {
   394         *pslash = '\0';          // Get rid of /<arch>.
   395         pslash = strrchr(buf, '/');
   396         if (pslash != NULL) {
   397           *pslash = '\0';        // Get rid of /lib.
   398         }
   399       }
   400     }
   401     Arguments::set_java_home(buf);
   402     set_boot_path('/', ':');
   403   }
   405   // Where to look for native libraries.
   406   //
   407   // Note: Due to a legacy implementation, most of the library path
   408   // is set in the launcher. This was to accomodate linking restrictions
   409   // on legacy Linux implementations (which are no longer supported).
   410   // Eventually, all the library path setting will be done here.
   411   //
   412   // However, to prevent the proliferation of improperly built native
   413   // libraries, the new path component /usr/java/packages is added here.
   414   // Eventually, all the library path setting will be done here.
   415   {
   416     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
   417     // should always exist (until the legacy problem cited above is
   418     // addressed).
   419     const char *v = ::getenv("LD_LIBRARY_PATH");
   420     const char *v_colon = ":";
   421     if (v == NULL) { v = ""; v_colon = ""; }
   422     // That's +1 for the colon and +1 for the trailing '\0'.
   423     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
   424                                                      strlen(v) + 1 +
   425                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
   426                                                      mtInternal);
   427     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
   428     Arguments::set_library_path(ld_library_path);
   429     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
   430   }
   432   // Extensions directories.
   433   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
   434   Arguments::set_ext_dirs(buf);
   436   // Endorsed standards default directory.
   437   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   438   Arguments::set_endorsed_dirs(buf);
   440   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
   442 #undef DEFAULT_LIBPATH
   443 #undef SYS_EXT_DIR
   444 #undef EXTENSIONS_DIR
   445 #undef ENDORSED_DIR
   446 }
   448 ////////////////////////////////////////////////////////////////////////////////
   449 // breakpoint support
   451 void os::breakpoint() {
   452   BREAKPOINT;
   453 }
   455 extern "C" void breakpoint() {
   456   // use debugger to set breakpoint here
   457 }
   459 ////////////////////////////////////////////////////////////////////////////////
   460 // signal support
   462 debug_only(static bool signal_sets_initialized = false);
   463 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   465 bool os::Linux::is_sig_ignored(int sig) {
   466       struct sigaction oact;
   467       sigaction(sig, (struct sigaction*)NULL, &oact);
   468       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   469                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   470       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   471            return true;
   472       else
   473            return false;
   474 }
   476 void os::Linux::signal_sets_init() {
   477   // Should also have an assertion stating we are still single-threaded.
   478   assert(!signal_sets_initialized, "Already initialized");
   479   // Fill in signals that are necessarily unblocked for all threads in
   480   // the VM. Currently, we unblock the following signals:
   481   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   482   //                         by -Xrs (=ReduceSignalUsage));
   483   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   484   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   485   // the dispositions or masks wrt these signals.
   486   // Programs embedding the VM that want to use the above signals for their
   487   // own purposes must, at this time, use the "-Xrs" option to prevent
   488   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   489   // (See bug 4345157, and other related bugs).
   490   // In reality, though, unblocking these signals is really a nop, since
   491   // these signals are not blocked by default.
   492   sigemptyset(&unblocked_sigs);
   493   sigemptyset(&allowdebug_blocked_sigs);
   494   sigaddset(&unblocked_sigs, SIGILL);
   495   sigaddset(&unblocked_sigs, SIGSEGV);
   496   sigaddset(&unblocked_sigs, SIGBUS);
   497   sigaddset(&unblocked_sigs, SIGFPE);
   498 #if defined(PPC64)
   499   sigaddset(&unblocked_sigs, SIGTRAP);
   500 #endif
   501   sigaddset(&unblocked_sigs, SR_signum);
   503   if (!ReduceSignalUsage) {
   504    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   505       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   506       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   507    }
   508    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   509       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   510       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   511    }
   512    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   513       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   514       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   515    }
   516   }
   517   // Fill in signals that are blocked by all but the VM thread.
   518   sigemptyset(&vm_sigs);
   519   if (!ReduceSignalUsage)
   520     sigaddset(&vm_sigs, BREAK_SIGNAL);
   521   debug_only(signal_sets_initialized = true);
   523 }
   525 // These are signals that are unblocked while a thread is running Java.
   526 // (For some reason, they get blocked by default.)
   527 sigset_t* os::Linux::unblocked_signals() {
   528   assert(signal_sets_initialized, "Not initialized");
   529   return &unblocked_sigs;
   530 }
   532 // These are the signals that are blocked while a (non-VM) thread is
   533 // running Java. Only the VM thread handles these signals.
   534 sigset_t* os::Linux::vm_signals() {
   535   assert(signal_sets_initialized, "Not initialized");
   536   return &vm_sigs;
   537 }
   539 // These are signals that are blocked during cond_wait to allow debugger in
   540 sigset_t* os::Linux::allowdebug_blocked_signals() {
   541   assert(signal_sets_initialized, "Not initialized");
   542   return &allowdebug_blocked_sigs;
   543 }
   545 void os::Linux::hotspot_sigmask(Thread* thread) {
   547   //Save caller's signal mask before setting VM signal mask
   548   sigset_t caller_sigmask;
   549   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   551   OSThread* osthread = thread->osthread();
   552   osthread->set_caller_sigmask(caller_sigmask);
   554   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   556   if (!ReduceSignalUsage) {
   557     if (thread->is_VM_thread()) {
   558       // Only the VM thread handles BREAK_SIGNAL ...
   559       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   560     } else {
   561       // ... all other threads block BREAK_SIGNAL
   562       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   563     }
   564   }
   565 }
   567 //////////////////////////////////////////////////////////////////////////////
   568 // detecting pthread library
   570 void os::Linux::libpthread_init() {
   571   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   572   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   573   // generic name for earlier versions.
   574   // Define macros here so we can build HotSpot on old systems.
   575 # ifndef _CS_GNU_LIBC_VERSION
   576 # define _CS_GNU_LIBC_VERSION 2
   577 # endif
   578 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   579 # define _CS_GNU_LIBPTHREAD_VERSION 3
   580 # endif
   582   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   583   if (n > 0) {
   584      char *str = (char *)malloc(n, mtInternal);
   585      confstr(_CS_GNU_LIBC_VERSION, str, n);
   586      os::Linux::set_glibc_version(str);
   587   } else {
   588      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   589      static char _gnu_libc_version[32];
   590      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   591               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   592      os::Linux::set_glibc_version(_gnu_libc_version);
   593   }
   595   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   596   if (n > 0) {
   597      char *str = (char *)malloc(n, mtInternal);
   598      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   599      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   600      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   601      // is the case. LinuxThreads has a hard limit on max number of threads.
   602      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   603      // On the other hand, NPTL does not have such a limit, sysconf()
   604      // will return -1 and errno is not changed. Check if it is really NPTL.
   605      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   606          strstr(str, "NPTL") &&
   607          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   608        free(str);
   609        os::Linux::set_libpthread_version("linuxthreads");
   610      } else {
   611        os::Linux::set_libpthread_version(str);
   612      }
   613   } else {
   614     // glibc before 2.3.2 only has LinuxThreads.
   615     os::Linux::set_libpthread_version("linuxthreads");
   616   }
   618   if (strstr(libpthread_version(), "NPTL")) {
   619      os::Linux::set_is_NPTL();
   620   } else {
   621      os::Linux::set_is_LinuxThreads();
   622   }
   624   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   625   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   626   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   627      os::Linux::set_is_floating_stack();
   628   }
   629 }
   631 /////////////////////////////////////////////////////////////////////////////
   632 // thread stack
   634 // Force Linux kernel to expand current thread stack. If "bottom" is close
   635 // to the stack guard, caller should block all signals.
   636 //
   637 // MAP_GROWSDOWN:
   638 //   A special mmap() flag that is used to implement thread stacks. It tells
   639 //   kernel that the memory region should extend downwards when needed. This
   640 //   allows early versions of LinuxThreads to only mmap the first few pages
   641 //   when creating a new thread. Linux kernel will automatically expand thread
   642 //   stack as needed (on page faults).
   643 //
   644 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   645 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   646 //   region, it's hard to tell if the fault is due to a legitimate stack
   647 //   access or because of reading/writing non-exist memory (e.g. buffer
   648 //   overrun). As a rule, if the fault happens below current stack pointer,
   649 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   650 //   application (see Linux kernel fault.c).
   651 //
   652 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   653 //   stack overflow detection.
   654 //
   655 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   656 //   not use this flag. However, the stack of initial thread is not created
   657 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   658 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   659 //   and then attach the thread to JVM.
   660 //
   661 // To get around the problem and allow stack banging on Linux, we need to
   662 // manually expand thread stack after receiving the SIGSEGV.
   663 //
   664 // There are two ways to expand thread stack to address "bottom", we used
   665 // both of them in JVM before 1.5:
   666 //   1. adjust stack pointer first so that it is below "bottom", and then
   667 //      touch "bottom"
   668 //   2. mmap() the page in question
   669 //
   670 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   671 // if current sp is already near the lower end of page 101, and we need to
   672 // call mmap() to map page 100, it is possible that part of the mmap() frame
   673 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   674 // That will destroy the mmap() frame and cause VM to crash.
   675 //
   676 // The following code works by adjusting sp first, then accessing the "bottom"
   677 // page to force a page fault. Linux kernel will then automatically expand the
   678 // stack mapping.
   679 //
   680 // _expand_stack_to() assumes its frame size is less than page size, which
   681 // should always be true if the function is not inlined.
   683 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   684 #define NOINLINE
   685 #else
   686 #define NOINLINE __attribute__ ((noinline))
   687 #endif
   689 static void _expand_stack_to(address bottom) NOINLINE;
   691 static void _expand_stack_to(address bottom) {
   692   address sp;
   693   size_t size;
   694   volatile char *p;
   696   // Adjust bottom to point to the largest address within the same page, it
   697   // gives us a one-page buffer if alloca() allocates slightly more memory.
   698   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   699   bottom += os::Linux::page_size() - 1;
   701   // sp might be slightly above current stack pointer; if that's the case, we
   702   // will alloca() a little more space than necessary, which is OK. Don't use
   703   // os::current_stack_pointer(), as its result can be slightly below current
   704   // stack pointer, causing us to not alloca enough to reach "bottom".
   705   sp = (address)&sp;
   707   if (sp > bottom) {
   708     size = sp - bottom;
   709     p = (volatile char *)alloca(size);
   710     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   711     p[0] = '\0';
   712   }
   713 }
   715 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   716   assert(t!=NULL, "just checking");
   717   assert(t->osthread()->expanding_stack(), "expand should be set");
   718   assert(t->stack_base() != NULL, "stack_base was not initialized");
   720   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   721     sigset_t mask_all, old_sigset;
   722     sigfillset(&mask_all);
   723     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   724     _expand_stack_to(addr);
   725     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   726     return true;
   727   }
   728   return false;
   729 }
   731 //////////////////////////////////////////////////////////////////////////////
   732 // create new thread
   734 static address highest_vm_reserved_address();
   736 // check if it's safe to start a new thread
   737 static bool _thread_safety_check(Thread* thread) {
   738   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   739     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   740     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   741     //   allocated (MAP_FIXED) from high address space. Every thread stack
   742     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   743     //   it to other values if they rebuild LinuxThreads).
   744     //
   745     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   746     // the memory region has already been mmap'ed. That means if we have too
   747     // many threads and/or very large heap, eventually thread stack will
   748     // collide with heap.
   749     //
   750     // Here we try to prevent heap/stack collision by comparing current
   751     // stack bottom with the highest address that has been mmap'ed by JVM
   752     // plus a safety margin for memory maps created by native code.
   753     //
   754     // This feature can be disabled by setting ThreadSafetyMargin to 0
   755     //
   756     if (ThreadSafetyMargin > 0) {
   757       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   759       // not safe if our stack extends below the safety margin
   760       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   761     } else {
   762       return true;
   763     }
   764   } else {
   765     // Floating stack LinuxThreads or NPTL:
   766     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   767     //   there's not enough space left, pthread_create() will fail. If we come
   768     //   here, that means enough space has been reserved for stack.
   769     return true;
   770   }
   771 }
   773 // Thread start routine for all newly created threads
   774 static void *java_start(Thread *thread) {
   775   // Try to randomize the cache line index of hot stack frames.
   776   // This helps when threads of the same stack traces evict each other's
   777   // cache lines. The threads can be either from the same JVM instance, or
   778   // from different JVM instances. The benefit is especially true for
   779   // processors with hyperthreading technology.
   780   static int counter = 0;
   781   int pid = os::current_process_id();
   782   alloca(((pid ^ counter++) & 7) * 128);
   784   ThreadLocalStorage::set_thread(thread);
   786   OSThread* osthread = thread->osthread();
   787   Monitor* sync = osthread->startThread_lock();
   789   // non floating stack LinuxThreads needs extra check, see above
   790   if (!_thread_safety_check(thread)) {
   791     // notify parent thread
   792     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   793     osthread->set_state(ZOMBIE);
   794     sync->notify_all();
   795     return NULL;
   796   }
   798   // thread_id is kernel thread id (similar to Solaris LWP id)
   799   osthread->set_thread_id(os::Linux::gettid());
   801   if (UseNUMA) {
   802     int lgrp_id = os::numa_get_group_id();
   803     if (lgrp_id != -1) {
   804       thread->set_lgrp_id(lgrp_id);
   805     }
   806   }
   807   // initialize signal mask for this thread
   808   os::Linux::hotspot_sigmask(thread);
   810   // initialize floating point control register
   811   os::Linux::init_thread_fpu_state();
   813   // handshaking with parent thread
   814   {
   815     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   817     // notify parent thread
   818     osthread->set_state(INITIALIZED);
   819     sync->notify_all();
   821     // wait until os::start_thread()
   822     while (osthread->get_state() == INITIALIZED) {
   823       sync->wait(Mutex::_no_safepoint_check_flag);
   824     }
   825   }
   827   // call one more level start routine
   828   thread->run();
   830   return 0;
   831 }
   833 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   834   assert(thread->osthread() == NULL, "caller responsible");
   836   // Allocate the OSThread object
   837   OSThread* osthread = new OSThread(NULL, NULL);
   838   if (osthread == NULL) {
   839     return false;
   840   }
   842   // set the correct thread state
   843   osthread->set_thread_type(thr_type);
   845   // Initial state is ALLOCATED but not INITIALIZED
   846   osthread->set_state(ALLOCATED);
   848   thread->set_osthread(osthread);
   850   // init thread attributes
   851   pthread_attr_t attr;
   852   pthread_attr_init(&attr);
   853   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   855   // stack size
   856   if (os::Linux::supports_variable_stack_size()) {
   857     // calculate stack size if it's not specified by caller
   858     if (stack_size == 0) {
   859       stack_size = os::Linux::default_stack_size(thr_type);
   861       switch (thr_type) {
   862       case os::java_thread:
   863         // Java threads use ThreadStackSize which default value can be
   864         // changed with the flag -Xss
   865         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   866         stack_size = JavaThread::stack_size_at_create();
   867         break;
   868       case os::compiler_thread:
   869         if (CompilerThreadStackSize > 0) {
   870           stack_size = (size_t)(CompilerThreadStackSize * K);
   871           break;
   872         } // else fall through:
   873           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   874       case os::vm_thread:
   875       case os::pgc_thread:
   876       case os::cgc_thread:
   877       case os::watcher_thread:
   878         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   879         break;
   880       }
   881     }
   883     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   884     pthread_attr_setstacksize(&attr, stack_size);
   885   } else {
   886     // let pthread_create() pick the default value.
   887   }
   889   // glibc guard page
   890   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   892   ThreadState state;
   894   {
   895     // Serialize thread creation if we are running with fixed stack LinuxThreads
   896     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   897     if (lock) {
   898       os::Linux::createThread_lock()->lock_without_safepoint_check();
   899     }
   901     pthread_t tid;
   902     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   904     pthread_attr_destroy(&attr);
   906     if (ret != 0) {
   907       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   908         perror("pthread_create()");
   909       }
   910       // Need to clean up stuff we've allocated so far
   911       thread->set_osthread(NULL);
   912       delete osthread;
   913       if (lock) os::Linux::createThread_lock()->unlock();
   914       return false;
   915     }
   917     // Store pthread info into the OSThread
   918     osthread->set_pthread_id(tid);
   920     // Wait until child thread is either initialized or aborted
   921     {
   922       Monitor* sync_with_child = osthread->startThread_lock();
   923       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   924       while ((state = osthread->get_state()) == ALLOCATED) {
   925         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   926       }
   927     }
   929     if (lock) {
   930       os::Linux::createThread_lock()->unlock();
   931     }
   932   }
   934   // Aborted due to thread limit being reached
   935   if (state == ZOMBIE) {
   936       thread->set_osthread(NULL);
   937       delete osthread;
   938       return false;
   939   }
   941   // The thread is returned suspended (in state INITIALIZED),
   942   // and is started higher up in the call chain
   943   assert(state == INITIALIZED, "race condition");
   944   return true;
   945 }
   947 /////////////////////////////////////////////////////////////////////////////
   948 // attach existing thread
   950 // bootstrap the main thread
   951 bool os::create_main_thread(JavaThread* thread) {
   952   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   953   return create_attached_thread(thread);
   954 }
   956 bool os::create_attached_thread(JavaThread* thread) {
   957 #ifdef ASSERT
   958     thread->verify_not_published();
   959 #endif
   961   // Allocate the OSThread object
   962   OSThread* osthread = new OSThread(NULL, NULL);
   964   if (osthread == NULL) {
   965     return false;
   966   }
   968   // Store pthread info into the OSThread
   969   osthread->set_thread_id(os::Linux::gettid());
   970   osthread->set_pthread_id(::pthread_self());
   972   // initialize floating point control register
   973   os::Linux::init_thread_fpu_state();
   975   // Initial thread state is RUNNABLE
   976   osthread->set_state(RUNNABLE);
   978   thread->set_osthread(osthread);
   980   if (UseNUMA) {
   981     int lgrp_id = os::numa_get_group_id();
   982     if (lgrp_id != -1) {
   983       thread->set_lgrp_id(lgrp_id);
   984     }
   985   }
   987   if (os::Linux::is_initial_thread()) {
   988     // If current thread is initial thread, its stack is mapped on demand,
   989     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
   990     // the entire stack region to avoid SEGV in stack banging.
   991     // It is also useful to get around the heap-stack-gap problem on SuSE
   992     // kernel (see 4821821 for details). We first expand stack to the top
   993     // of yellow zone, then enable stack yellow zone (order is significant,
   994     // enabling yellow zone first will crash JVM on SuSE Linux), so there
   995     // is no gap between the last two virtual memory regions.
   997     JavaThread *jt = (JavaThread *)thread;
   998     address addr = jt->stack_yellow_zone_base();
   999     assert(addr != NULL, "initialization problem?");
  1000     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
  1002     osthread->set_expanding_stack();
  1003     os::Linux::manually_expand_stack(jt, addr);
  1004     osthread->clear_expanding_stack();
  1007   // initialize signal mask for this thread
  1008   // and save the caller's signal mask
  1009   os::Linux::hotspot_sigmask(thread);
  1011   return true;
  1014 void os::pd_start_thread(Thread* thread) {
  1015   OSThread * osthread = thread->osthread();
  1016   assert(osthread->get_state() != INITIALIZED, "just checking");
  1017   Monitor* sync_with_child = osthread->startThread_lock();
  1018   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
  1019   sync_with_child->notify();
  1022 // Free Linux resources related to the OSThread
  1023 void os::free_thread(OSThread* osthread) {
  1024   assert(osthread != NULL, "osthread not set");
  1026   if (Thread::current()->osthread() == osthread) {
  1027     // Restore caller's signal mask
  1028     sigset_t sigmask = osthread->caller_sigmask();
  1029     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
  1032   delete osthread;
  1035 //////////////////////////////////////////////////////////////////////////////
  1036 // thread local storage
  1038 // Restore the thread pointer if the destructor is called. This is in case
  1039 // someone from JNI code sets up a destructor with pthread_key_create to run
  1040 // detachCurrentThread on thread death. Unless we restore the thread pointer we
  1041 // will hang or crash. When detachCurrentThread is called the key will be set
  1042 // to null and we will not be called again. If detachCurrentThread is never
  1043 // called we could loop forever depending on the pthread implementation.
  1044 static void restore_thread_pointer(void* p) {
  1045   Thread* thread = (Thread*) p;
  1046   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
  1049 int os::allocate_thread_local_storage() {
  1050   pthread_key_t key;
  1051   int rslt = pthread_key_create(&key, restore_thread_pointer);
  1052   assert(rslt == 0, "cannot allocate thread local storage");
  1053   return (int)key;
  1056 // Note: This is currently not used by VM, as we don't destroy TLS key
  1057 // on VM exit.
  1058 void os::free_thread_local_storage(int index) {
  1059   int rslt = pthread_key_delete((pthread_key_t)index);
  1060   assert(rslt == 0, "invalid index");
  1063 void os::thread_local_storage_at_put(int index, void* value) {
  1064   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1065   assert(rslt == 0, "pthread_setspecific failed");
  1068 extern "C" Thread* get_thread() {
  1069   return ThreadLocalStorage::thread();
  1072 //////////////////////////////////////////////////////////////////////////////
  1073 // initial thread
  1075 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1076 bool os::Linux::is_initial_thread(void) {
  1077   char dummy;
  1078   // If called before init complete, thread stack bottom will be null.
  1079   // Can be called if fatal error occurs before initialization.
  1080   if (initial_thread_stack_bottom() == NULL) return false;
  1081   assert(initial_thread_stack_bottom() != NULL &&
  1082          initial_thread_stack_size()   != 0,
  1083          "os::init did not locate initial thread's stack region");
  1084   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1085       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1086        return true;
  1087   else return false;
  1090 // Find the virtual memory area that contains addr
  1091 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1092   FILE *fp = fopen("/proc/self/maps", "r");
  1093   if (fp) {
  1094     address low, high;
  1095     while (!feof(fp)) {
  1096       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1097         if (low <= addr && addr < high) {
  1098            if (vma_low)  *vma_low  = low;
  1099            if (vma_high) *vma_high = high;
  1100            fclose (fp);
  1101            return true;
  1104       for (;;) {
  1105         int ch = fgetc(fp);
  1106         if (ch == EOF || ch == (int)'\n') break;
  1109     fclose(fp);
  1111   return false;
  1114 // Locate initial thread stack. This special handling of initial thread stack
  1115 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1116 // bogus value for initial thread.
  1117 void os::Linux::capture_initial_stack(size_t max_size) {
  1118   // stack size is the easy part, get it from RLIMIT_STACK
  1119   size_t stack_size;
  1120   struct rlimit rlim;
  1121   getrlimit(RLIMIT_STACK, &rlim);
  1122   stack_size = rlim.rlim_cur;
  1124   // 6308388: a bug in ld.so will relocate its own .data section to the
  1125   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1126   //   so we won't install guard page on ld.so's data section.
  1127   stack_size -= 2 * page_size();
  1129   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
  1130   //   7.1, in both cases we will get 2G in return value.
  1131   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
  1132   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
  1133   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
  1134   //   in case other parts in glibc still assumes 2M max stack size.
  1135   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
  1136   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
  1137   if (stack_size > 2 * K * K IA64_ONLY(*2))
  1138       stack_size = 2 * K * K IA64_ONLY(*2);
  1139   // Try to figure out where the stack base (top) is. This is harder.
  1140   //
  1141   // When an application is started, glibc saves the initial stack pointer in
  1142   // a global variable "__libc_stack_end", which is then used by system
  1143   // libraries. __libc_stack_end should be pretty close to stack top. The
  1144   // variable is available since the very early days. However, because it is
  1145   // a private interface, it could disappear in the future.
  1146   //
  1147   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1148   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1149   // stack top. Note that /proc may not exist if VM is running as a chroot
  1150   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1151   // /proc/<pid>/stat could change in the future (though unlikely).
  1152   //
  1153   // We try __libc_stack_end first. If that doesn't work, look for
  1154   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1155   // as a hint, which should work well in most cases.
  1157   uintptr_t stack_start;
  1159   // try __libc_stack_end first
  1160   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1161   if (p && *p) {
  1162     stack_start = *p;
  1163   } else {
  1164     // see if we can get the start_stack field from /proc/self/stat
  1165     FILE *fp;
  1166     int pid;
  1167     char state;
  1168     int ppid;
  1169     int pgrp;
  1170     int session;
  1171     int nr;
  1172     int tpgrp;
  1173     unsigned long flags;
  1174     unsigned long minflt;
  1175     unsigned long cminflt;
  1176     unsigned long majflt;
  1177     unsigned long cmajflt;
  1178     unsigned long utime;
  1179     unsigned long stime;
  1180     long cutime;
  1181     long cstime;
  1182     long prio;
  1183     long nice;
  1184     long junk;
  1185     long it_real;
  1186     uintptr_t start;
  1187     uintptr_t vsize;
  1188     intptr_t rss;
  1189     uintptr_t rsslim;
  1190     uintptr_t scodes;
  1191     uintptr_t ecode;
  1192     int i;
  1194     // Figure what the primordial thread stack base is. Code is inspired
  1195     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1196     // followed by command name surrounded by parentheses, state, etc.
  1197     char stat[2048];
  1198     int statlen;
  1200     fp = fopen("/proc/self/stat", "r");
  1201     if (fp) {
  1202       statlen = fread(stat, 1, 2047, fp);
  1203       stat[statlen] = '\0';
  1204       fclose(fp);
  1206       // Skip pid and the command string. Note that we could be dealing with
  1207       // weird command names, e.g. user could decide to rename java launcher
  1208       // to "java 1.4.2 :)", then the stat file would look like
  1209       //                1234 (java 1.4.2 :)) R ... ...
  1210       // We don't really need to know the command string, just find the last
  1211       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1212       char * s = strrchr(stat, ')');
  1214       i = 0;
  1215       if (s) {
  1216         // Skip blank chars
  1217         do s++; while (isspace(*s));
  1219 #define _UFM UINTX_FORMAT
  1220 #define _DFM INTX_FORMAT
  1222         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1223         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1224         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1225              &state,          /* 3  %c  */
  1226              &ppid,           /* 4  %d  */
  1227              &pgrp,           /* 5  %d  */
  1228              &session,        /* 6  %d  */
  1229              &nr,             /* 7  %d  */
  1230              &tpgrp,          /* 8  %d  */
  1231              &flags,          /* 9  %lu  */
  1232              &minflt,         /* 10 %lu  */
  1233              &cminflt,        /* 11 %lu  */
  1234              &majflt,         /* 12 %lu  */
  1235              &cmajflt,        /* 13 %lu  */
  1236              &utime,          /* 14 %lu  */
  1237              &stime,          /* 15 %lu  */
  1238              &cutime,         /* 16 %ld  */
  1239              &cstime,         /* 17 %ld  */
  1240              &prio,           /* 18 %ld  */
  1241              &nice,           /* 19 %ld  */
  1242              &junk,           /* 20 %ld  */
  1243              &it_real,        /* 21 %ld  */
  1244              &start,          /* 22 UINTX_FORMAT */
  1245              &vsize,          /* 23 UINTX_FORMAT */
  1246              &rss,            /* 24 INTX_FORMAT  */
  1247              &rsslim,         /* 25 UINTX_FORMAT */
  1248              &scodes,         /* 26 UINTX_FORMAT */
  1249              &ecode,          /* 27 UINTX_FORMAT */
  1250              &stack_start);   /* 28 UINTX_FORMAT */
  1253 #undef _UFM
  1254 #undef _DFM
  1256       if (i != 28 - 2) {
  1257          assert(false, "Bad conversion from /proc/self/stat");
  1258          // product mode - assume we are the initial thread, good luck in the
  1259          // embedded case.
  1260          warning("Can't detect initial thread stack location - bad conversion");
  1261          stack_start = (uintptr_t) &rlim;
  1263     } else {
  1264       // For some reason we can't open /proc/self/stat (for example, running on
  1265       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1266       // most cases, so don't abort:
  1267       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1268       stack_start = (uintptr_t) &rlim;
  1272   // Now we have a pointer (stack_start) very close to the stack top, the
  1273   // next thing to do is to figure out the exact location of stack top. We
  1274   // can find out the virtual memory area that contains stack_start by
  1275   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1276   // and its upper limit is the real stack top. (again, this would fail if
  1277   // running inside chroot, because /proc may not exist.)
  1279   uintptr_t stack_top;
  1280   address low, high;
  1281   if (find_vma((address)stack_start, &low, &high)) {
  1282     // success, "high" is the true stack top. (ignore "low", because initial
  1283     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1284     stack_top = (uintptr_t)high;
  1285   } else {
  1286     // failed, likely because /proc/self/maps does not exist
  1287     warning("Can't detect initial thread stack location - find_vma failed");
  1288     // best effort: stack_start is normally within a few pages below the real
  1289     // stack top, use it as stack top, and reduce stack size so we won't put
  1290     // guard page outside stack.
  1291     stack_top = stack_start;
  1292     stack_size -= 16 * page_size();
  1295   // stack_top could be partially down the page so align it
  1296   stack_top = align_size_up(stack_top, page_size());
  1298   if (max_size && stack_size > max_size) {
  1299      _initial_thread_stack_size = max_size;
  1300   } else {
  1301      _initial_thread_stack_size = stack_size;
  1304   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1305   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1308 ////////////////////////////////////////////////////////////////////////////////
  1309 // time support
  1311 // Time since start-up in seconds to a fine granularity.
  1312 // Used by VMSelfDestructTimer and the MemProfiler.
  1313 double os::elapsedTime() {
  1315   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
  1318 jlong os::elapsed_counter() {
  1319   return javaTimeNanos() - initial_time_count;
  1322 jlong os::elapsed_frequency() {
  1323   return NANOSECS_PER_SEC; // nanosecond resolution
  1326 bool os::supports_vtime() { return true; }
  1327 bool os::enable_vtime()   { return false; }
  1328 bool os::vtime_enabled()  { return false; }
  1330 double os::elapsedVTime() {
  1331   struct rusage usage;
  1332   int retval = getrusage(RUSAGE_THREAD, &usage);
  1333   if (retval == 0) {
  1334     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
  1335   } else {
  1336     // better than nothing, but not much
  1337     return elapsedTime();
  1341 jlong os::javaTimeMillis() {
  1342   timeval time;
  1343   int status = gettimeofday(&time, NULL);
  1344   assert(status != -1, "linux error");
  1345   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1348 #ifndef CLOCK_MONOTONIC
  1349 #define CLOCK_MONOTONIC (1)
  1350 #endif
  1352 void os::Linux::clock_init() {
  1353   // we do dlopen's in this particular order due to bug in linux
  1354   // dynamical loader (see 6348968) leading to crash on exit
  1355   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1356   if (handle == NULL) {
  1357     handle = dlopen("librt.so", RTLD_LAZY);
  1360   if (handle) {
  1361     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1362            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1363     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1364            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1365     if (clock_getres_func && clock_gettime_func) {
  1366       // See if monotonic clock is supported by the kernel. Note that some
  1367       // early implementations simply return kernel jiffies (updated every
  1368       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1369       // for nano time (though the monotonic property is still nice to have).
  1370       // It's fixed in newer kernels, however clock_getres() still returns
  1371       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1372       // resolution for now. Hopefully as people move to new kernels, this
  1373       // won't be a problem.
  1374       struct timespec res;
  1375       struct timespec tp;
  1376       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1377           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1378         // yes, monotonic clock is supported
  1379         _clock_gettime = clock_gettime_func;
  1380         return;
  1381       } else {
  1382         // close librt if there is no monotonic clock
  1383         dlclose(handle);
  1387   warning("No monotonic clock was available - timed services may " \
  1388           "be adversely affected if the time-of-day clock changes");
  1391 #ifndef SYS_clock_getres
  1393 #if defined(IA32) || defined(AMD64)
  1394 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1395 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1396 #else
  1397 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1398 #define sys_clock_getres(x,y)  -1
  1399 #endif
  1401 #else
  1402 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1403 #endif
  1405 void os::Linux::fast_thread_clock_init() {
  1406   if (!UseLinuxPosixThreadCPUClocks) {
  1407     return;
  1409   clockid_t clockid;
  1410   struct timespec tp;
  1411   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1412       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1414   // Switch to using fast clocks for thread cpu time if
  1415   // the sys_clock_getres() returns 0 error code.
  1416   // Note, that some kernels may support the current thread
  1417   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1418   // returned by the pthread_getcpuclockid().
  1419   // If the fast Posix clocks are supported then the sys_clock_getres()
  1420   // must return at least tp.tv_sec == 0 which means a resolution
  1421   // better than 1 sec. This is extra check for reliability.
  1423   if(pthread_getcpuclockid_func &&
  1424      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1425      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1427     _supports_fast_thread_cpu_time = true;
  1428     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1432 jlong os::javaTimeNanos() {
  1433   if (Linux::supports_monotonic_clock()) {
  1434     struct timespec tp;
  1435     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1436     assert(status == 0, "gettime error");
  1437     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1438     return result;
  1439   } else {
  1440     timeval time;
  1441     int status = gettimeofday(&time, NULL);
  1442     assert(status != -1, "linux error");
  1443     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1444     return 1000 * usecs;
  1448 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1449   if (Linux::supports_monotonic_clock()) {
  1450     info_ptr->max_value = ALL_64_BITS;
  1452     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1453     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1454     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1455   } else {
  1456     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1457     info_ptr->max_value = ALL_64_BITS;
  1459     // gettimeofday is a real time clock so it skips
  1460     info_ptr->may_skip_backward = true;
  1461     info_ptr->may_skip_forward = true;
  1464   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1467 // Return the real, user, and system times in seconds from an
  1468 // arbitrary fixed point in the past.
  1469 bool os::getTimesSecs(double* process_real_time,
  1470                       double* process_user_time,
  1471                       double* process_system_time) {
  1472   struct tms ticks;
  1473   clock_t real_ticks = times(&ticks);
  1475   if (real_ticks == (clock_t) (-1)) {
  1476     return false;
  1477   } else {
  1478     double ticks_per_second = (double) clock_tics_per_sec;
  1479     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1480     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1481     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1483     return true;
  1488 char * os::local_time_string(char *buf, size_t buflen) {
  1489   struct tm t;
  1490   time_t long_time;
  1491   time(&long_time);
  1492   localtime_r(&long_time, &t);
  1493   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1494                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1495                t.tm_hour, t.tm_min, t.tm_sec);
  1496   return buf;
  1499 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1500   return localtime_r(clock, res);
  1503 ////////////////////////////////////////////////////////////////////////////////
  1504 // runtime exit support
  1506 // Note: os::shutdown() might be called very early during initialization, or
  1507 // called from signal handler. Before adding something to os::shutdown(), make
  1508 // sure it is async-safe and can handle partially initialized VM.
  1509 void os::shutdown() {
  1511   // allow PerfMemory to attempt cleanup of any persistent resources
  1512   perfMemory_exit();
  1514   // needs to remove object in file system
  1515   AttachListener::abort();
  1517   // flush buffered output, finish log files
  1518   ostream_abort();
  1520   // Check for abort hook
  1521   abort_hook_t abort_hook = Arguments::abort_hook();
  1522   if (abort_hook != NULL) {
  1523     abort_hook();
  1528 // Note: os::abort() might be called very early during initialization, or
  1529 // called from signal handler. Before adding something to os::abort(), make
  1530 // sure it is async-safe and can handle partially initialized VM.
  1531 void os::abort(bool dump_core) {
  1532   os::shutdown();
  1533   if (dump_core) {
  1534 #ifndef PRODUCT
  1535     fdStream out(defaultStream::output_fd());
  1536     out.print_raw("Current thread is ");
  1537     char buf[16];
  1538     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1539     out.print_raw_cr(buf);
  1540     out.print_raw_cr("Dumping core ...");
  1541 #endif
  1542     ::abort(); // dump core
  1545   ::exit(1);
  1548 // Die immediately, no exit hook, no abort hook, no cleanup.
  1549 void os::die() {
  1550   // _exit() on LinuxThreads only kills current thread
  1551   ::abort();
  1555 // This method is a copy of JDK's sysGetLastErrorString
  1556 // from src/solaris/hpi/src/system_md.c
  1558 size_t os::lasterror(char *buf, size_t len) {
  1560   if (errno == 0)  return 0;
  1562   const char *s = ::strerror(errno);
  1563   size_t n = ::strlen(s);
  1564   if (n >= len) {
  1565     n = len - 1;
  1567   ::strncpy(buf, s, n);
  1568   buf[n] = '\0';
  1569   return n;
  1572 intx os::current_thread_id() { return (intx)pthread_self(); }
  1573 int os::current_process_id() {
  1575   // Under the old linux thread library, linux gives each thread
  1576   // its own process id. Because of this each thread will return
  1577   // a different pid if this method were to return the result
  1578   // of getpid(2). Linux provides no api that returns the pid
  1579   // of the launcher thread for the vm. This implementation
  1580   // returns a unique pid, the pid of the launcher thread
  1581   // that starts the vm 'process'.
  1583   // Under the NPTL, getpid() returns the same pid as the
  1584   // launcher thread rather than a unique pid per thread.
  1585   // Use gettid() if you want the old pre NPTL behaviour.
  1587   // if you are looking for the result of a call to getpid() that
  1588   // returns a unique pid for the calling thread, then look at the
  1589   // OSThread::thread_id() method in osThread_linux.hpp file
  1591   return (int)(_initial_pid ? _initial_pid : getpid());
  1594 // DLL functions
  1596 const char* os::dll_file_extension() { return ".so"; }
  1598 // This must be hard coded because it's the system's temporary
  1599 // directory not the java application's temp directory, ala java.io.tmpdir.
  1600 const char* os::get_temp_directory() { return "/tmp"; }
  1602 static bool file_exists(const char* filename) {
  1603   struct stat statbuf;
  1604   if (filename == NULL || strlen(filename) == 0) {
  1605     return false;
  1607   return os::stat(filename, &statbuf) == 0;
  1610 bool os::dll_build_name(char* buffer, size_t buflen,
  1611                         const char* pname, const char* fname) {
  1612   bool retval = false;
  1613   // Copied from libhpi
  1614   const size_t pnamelen = pname ? strlen(pname) : 0;
  1616   // Return error on buffer overflow.
  1617   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1618     return retval;
  1621   if (pnamelen == 0) {
  1622     snprintf(buffer, buflen, "lib%s.so", fname);
  1623     retval = true;
  1624   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1625     int n;
  1626     char** pelements = split_path(pname, &n);
  1627     if (pelements == NULL) {
  1628       return false;
  1630     for (int i = 0 ; i < n ; i++) {
  1631       // Really shouldn't be NULL, but check can't hurt
  1632       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1633         continue; // skip the empty path values
  1635       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1636       if (file_exists(buffer)) {
  1637         retval = true;
  1638         break;
  1641     // release the storage
  1642     for (int i = 0 ; i < n ; i++) {
  1643       if (pelements[i] != NULL) {
  1644         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1647     if (pelements != NULL) {
  1648       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1650   } else {
  1651     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1652     retval = true;
  1654   return retval;
  1657 // check if addr is inside libjvm.so
  1658 bool os::address_is_in_vm(address addr) {
  1659   static address libjvm_base_addr;
  1660   Dl_info dlinfo;
  1662   if (libjvm_base_addr == NULL) {
  1663     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
  1664       libjvm_base_addr = (address)dlinfo.dli_fbase;
  1666     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1669   if (dladdr((void *)addr, &dlinfo) != 0) {
  1670     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1673   return false;
  1676 bool os::dll_address_to_function_name(address addr, char *buf,
  1677                                       int buflen, int *offset) {
  1678   // buf is not optional, but offset is optional
  1679   assert(buf != NULL, "sanity check");
  1681   Dl_info dlinfo;
  1683   if (dladdr((void*)addr, &dlinfo) != 0) {
  1684     // see if we have a matching symbol
  1685     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
  1686       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1687         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1689       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1690       return true;
  1692     // no matching symbol so try for just file info
  1693     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
  1694       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1695                           buf, buflen, offset, dlinfo.dli_fname)) {
  1696         return true;
  1701   buf[0] = '\0';
  1702   if (offset != NULL) *offset = -1;
  1703   return false;
  1706 struct _address_to_library_name {
  1707   address addr;          // input : memory address
  1708   size_t  buflen;        //         size of fname
  1709   char*   fname;         // output: library name
  1710   address base;          //         library base addr
  1711 };
  1713 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1714                                             size_t size, void *data) {
  1715   int i;
  1716   bool found = false;
  1717   address libbase = NULL;
  1718   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1720   // iterate through all loadable segments
  1721   for (i = 0; i < info->dlpi_phnum; i++) {
  1722     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1723     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1724       // base address of a library is the lowest address of its loaded
  1725       // segments.
  1726       if (libbase == NULL || libbase > segbase) {
  1727         libbase = segbase;
  1729       // see if 'addr' is within current segment
  1730       if (segbase <= d->addr &&
  1731           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1732         found = true;
  1737   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1738   // so dll_address_to_library_name() can fall through to use dladdr() which
  1739   // can figure out executable name from argv[0].
  1740   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1741     d->base = libbase;
  1742     if (d->fname) {
  1743       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1745     return 1;
  1747   return 0;
  1750 bool os::dll_address_to_library_name(address addr, char* buf,
  1751                                      int buflen, int* offset) {
  1752   // buf is not optional, but offset is optional
  1753   assert(buf != NULL, "sanity check");
  1755   Dl_info dlinfo;
  1756   struct _address_to_library_name data;
  1758   // There is a bug in old glibc dladdr() implementation that it could resolve
  1759   // to wrong library name if the .so file has a base address != NULL. Here
  1760   // we iterate through the program headers of all loaded libraries to find
  1761   // out which library 'addr' really belongs to. This workaround can be
  1762   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1763   data.addr = addr;
  1764   data.fname = buf;
  1765   data.buflen = buflen;
  1766   data.base = NULL;
  1767   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1769   if (rslt) {
  1770      // buf already contains library name
  1771      if (offset) *offset = addr - data.base;
  1772      return true;
  1774   if (dladdr((void*)addr, &dlinfo) != 0) {
  1775     if (dlinfo.dli_fname != NULL) {
  1776       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1778     if (dlinfo.dli_fbase != NULL && offset != NULL) {
  1779       *offset = addr - (address)dlinfo.dli_fbase;
  1781     return true;
  1784   buf[0] = '\0';
  1785   if (offset) *offset = -1;
  1786   return false;
  1789   // Loads .dll/.so and
  1790   // in case of error it checks if .dll/.so was built for the
  1791   // same architecture as Hotspot is running on
  1794 // Remember the stack's state. The Linux dynamic linker will change
  1795 // the stack to 'executable' at most once, so we must safepoint only once.
  1796 bool os::Linux::_stack_is_executable = false;
  1798 // VM operation that loads a library.  This is necessary if stack protection
  1799 // of the Java stacks can be lost during loading the library.  If we
  1800 // do not stop the Java threads, they can stack overflow before the stacks
  1801 // are protected again.
  1802 class VM_LinuxDllLoad: public VM_Operation {
  1803  private:
  1804   const char *_filename;
  1805   char *_ebuf;
  1806   int _ebuflen;
  1807   void *_lib;
  1808  public:
  1809   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
  1810     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
  1811   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
  1812   void doit() {
  1813     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
  1814     os::Linux::_stack_is_executable = true;
  1816   void* loaded_library() { return _lib; }
  1817 };
  1819 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1821   void * result = NULL;
  1822   bool load_attempted = false;
  1824   // Check whether the library to load might change execution rights
  1825   // of the stack. If they are changed, the protection of the stack
  1826   // guard pages will be lost. We need a safepoint to fix this.
  1827   //
  1828   // See Linux man page execstack(8) for more info.
  1829   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
  1830     ElfFile ef(filename);
  1831     if (!ef.specifies_noexecstack()) {
  1832       if (!is_init_completed()) {
  1833         os::Linux::_stack_is_executable = true;
  1834         // This is OK - No Java threads have been created yet, and hence no
  1835         // stack guard pages to fix.
  1836         //
  1837         // This should happen only when you are building JDK7 using a very
  1838         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
  1839         //
  1840         // Dynamic loader will make all stacks executable after
  1841         // this function returns, and will not do that again.
  1842         assert(Threads::first() == NULL, "no Java threads should exist yet.");
  1843       } else {
  1844         warning("You have loaded library %s which might have disabled stack guard. "
  1845                 "The VM will try to fix the stack guard now.\n"
  1846                 "It's highly recommended that you fix the library with "
  1847                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
  1848                 filename);
  1850         assert(Thread::current()->is_Java_thread(), "must be Java thread");
  1851         JavaThread *jt = JavaThread::current();
  1852         if (jt->thread_state() != _thread_in_native) {
  1853           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
  1854           // that requires ExecStack. Cannot enter safe point. Let's give up.
  1855           warning("Unable to fix stack guard. Giving up.");
  1856         } else {
  1857           if (!LoadExecStackDllInVMThread) {
  1858             // This is for the case where the DLL has an static
  1859             // constructor function that executes JNI code. We cannot
  1860             // load such DLLs in the VMThread.
  1861             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1864           ThreadInVMfromNative tiv(jt);
  1865           debug_only(VMNativeEntryWrapper vew;)
  1867           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
  1868           VMThread::execute(&op);
  1869           if (LoadExecStackDllInVMThread) {
  1870             result = op.loaded_library();
  1872           load_attempted = true;
  1878   if (!load_attempted) {
  1879     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1882   if (result != NULL) {
  1883     // Successful loading
  1884     return result;
  1887   Elf32_Ehdr elf_head;
  1888   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1889   char* diag_msg_buf=ebuf+strlen(ebuf);
  1891   if (diag_msg_max_length==0) {
  1892     // No more space in ebuf for additional diagnostics message
  1893     return NULL;
  1897   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1899   if (file_descriptor < 0) {
  1900     // Can't open library, report dlerror() message
  1901     return NULL;
  1904   bool failed_to_read_elf_head=
  1905     (sizeof(elf_head)!=
  1906         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1908   ::close(file_descriptor);
  1909   if (failed_to_read_elf_head) {
  1910     // file i/o error - report dlerror() msg
  1911     return NULL;
  1914   typedef struct {
  1915     Elf32_Half  code;         // Actual value as defined in elf.h
  1916     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1917     char        elf_class;    // 32 or 64 bit
  1918     char        endianess;    // MSB or LSB
  1919     char*       name;         // String representation
  1920   } arch_t;
  1922   #ifndef EM_486
  1923   #define EM_486          6               /* Intel 80486 */
  1924   #endif
  1926   static const arch_t arch_array[]={
  1927     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1928     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1929     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1930     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1931     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1932     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1933     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1934     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1935 #if defined(VM_LITTLE_ENDIAN)
  1936     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
  1937 #else
  1938     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1939 #endif
  1940     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1941     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1942     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1943     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1944     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1945     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1946     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1947   };
  1949   #if  (defined IA32)
  1950     static  Elf32_Half running_arch_code=EM_386;
  1951   #elif   (defined AMD64)
  1952     static  Elf32_Half running_arch_code=EM_X86_64;
  1953   #elif  (defined IA64)
  1954     static  Elf32_Half running_arch_code=EM_IA_64;
  1955   #elif  (defined __sparc) && (defined _LP64)
  1956     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1957   #elif  (defined __sparc) && (!defined _LP64)
  1958     static  Elf32_Half running_arch_code=EM_SPARC;
  1959   #elif  (defined __powerpc64__)
  1960     static  Elf32_Half running_arch_code=EM_PPC64;
  1961   #elif  (defined __powerpc__)
  1962     static  Elf32_Half running_arch_code=EM_PPC;
  1963   #elif  (defined ARM)
  1964     static  Elf32_Half running_arch_code=EM_ARM;
  1965   #elif  (defined S390)
  1966     static  Elf32_Half running_arch_code=EM_S390;
  1967   #elif  (defined ALPHA)
  1968     static  Elf32_Half running_arch_code=EM_ALPHA;
  1969   #elif  (defined MIPSEL)
  1970     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1971   #elif  (defined PARISC)
  1972     static  Elf32_Half running_arch_code=EM_PARISC;
  1973   #elif  (defined MIPS)
  1974     static  Elf32_Half running_arch_code=EM_MIPS;
  1975   #elif  (defined M68K)
  1976     static  Elf32_Half running_arch_code=EM_68K;
  1977   #else
  1978     #error Method os::dll_load requires that one of following is defined:\
  1979          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1980   #endif
  1982   // Identify compatability class for VM's architecture and library's architecture
  1983   // Obtain string descriptions for architectures
  1985   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  1986   int running_arch_index=-1;
  1988   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  1989     if (running_arch_code == arch_array[i].code) {
  1990       running_arch_index    = i;
  1992     if (lib_arch.code == arch_array[i].code) {
  1993       lib_arch.compat_class = arch_array[i].compat_class;
  1994       lib_arch.name         = arch_array[i].name;
  1998   assert(running_arch_index != -1,
  1999     "Didn't find running architecture code (running_arch_code) in arch_array");
  2000   if (running_arch_index == -1) {
  2001     // Even though running architecture detection failed
  2002     // we may still continue with reporting dlerror() message
  2003     return NULL;
  2006   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  2007     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  2008     return NULL;
  2011 #ifndef S390
  2012   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  2013     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  2014     return NULL;
  2016 #endif // !S390
  2018   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  2019     if ( lib_arch.name!=NULL ) {
  2020       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2021         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  2022         lib_arch.name, arch_array[running_arch_index].name);
  2023     } else {
  2024       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2025       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  2026         lib_arch.code,
  2027         arch_array[running_arch_index].name);
  2031   return NULL;
  2034 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
  2035   void * result = ::dlopen(filename, RTLD_LAZY);
  2036   if (result == NULL) {
  2037     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
  2038     ebuf[ebuflen-1] = '\0';
  2040   return result;
  2043 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
  2044   void * result = NULL;
  2045   if (LoadExecStackDllInVMThread) {
  2046     result = dlopen_helper(filename, ebuf, ebuflen);
  2049   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
  2050   // library that requires an executable stack, or which does not have this
  2051   // stack attribute set, dlopen changes the stack attribute to executable. The
  2052   // read protection of the guard pages gets lost.
  2053   //
  2054   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
  2055   // may have been queued at the same time.
  2057   if (!_stack_is_executable) {
  2058     JavaThread *jt = Threads::first();
  2060     while (jt) {
  2061       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
  2062           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
  2063         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
  2064                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
  2065           warning("Attempt to reguard stack yellow zone failed.");
  2068       jt = jt->next();
  2072   return result;
  2075 /*
  2076  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  2077  * chances are you might want to run the generated bits against glibc-2.0
  2078  * libdl.so, so always use locking for any version of glibc.
  2079  */
  2080 void* os::dll_lookup(void* handle, const char* name) {
  2081   pthread_mutex_lock(&dl_mutex);
  2082   void* res = dlsym(handle, name);
  2083   pthread_mutex_unlock(&dl_mutex);
  2084   return res;
  2087 void* os::get_default_process_handle() {
  2088   return (void*)::dlopen(NULL, RTLD_LAZY);
  2091 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2092   int fd = ::open(filename, O_RDONLY);
  2093   if (fd == -1) {
  2094      return false;
  2097   char buf[32];
  2098   int bytes;
  2099   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2100     st->print_raw(buf, bytes);
  2103   ::close(fd);
  2105   return true;
  2108 void os::print_dll_info(outputStream *st) {
  2109    st->print_cr("Dynamic libraries:");
  2111    char fname[32];
  2112    pid_t pid = os::Linux::gettid();
  2114    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  2116    if (!_print_ascii_file(fname, st)) {
  2117      st->print("Can not get library information for pid = %d\n", pid);
  2121 void os::print_os_info_brief(outputStream* st) {
  2122   os::Linux::print_distro_info(st);
  2124   os::Posix::print_uname_info(st);
  2126   os::Linux::print_libversion_info(st);
  2130 void os::print_os_info(outputStream* st) {
  2131   st->print("OS:");
  2133   os::Linux::print_distro_info(st);
  2135   os::Posix::print_uname_info(st);
  2137   // Print warning if unsafe chroot environment detected
  2138   if (unsafe_chroot_detected) {
  2139     st->print("WARNING!! ");
  2140     st->print_cr("%s", unstable_chroot_error);
  2143   os::Linux::print_libversion_info(st);
  2145   os::Posix::print_rlimit_info(st);
  2147   os::Posix::print_load_average(st);
  2149   os::Linux::print_full_memory_info(st);
  2152 // Try to identify popular distros.
  2153 // Most Linux distributions have a /etc/XXX-release file, which contains
  2154 // the OS version string. Newer Linux distributions have a /etc/lsb-release
  2155 // file that also contains the OS version string. Some have more than one
  2156 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
  2157 // /etc/redhat-release.), so the order is important.
  2158 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
  2159 // their own specific XXX-release file as well as a redhat-release file.
  2160 // Because of this the XXX-release file needs to be searched for before the
  2161 // redhat-release file.
  2162 // Since Red Hat has a lsb-release file that is not very descriptive the
  2163 // search for redhat-release needs to be before lsb-release.
  2164 // Since the lsb-release file is the new standard it needs to be searched
  2165 // before the older style release files.
  2166 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
  2167 // next to last resort.  The os-release file is a new standard that contains
  2168 // distribution information and the system-release file seems to be an old
  2169 // standard that has been replaced by the lsb-release and os-release files.
  2170 // Searching for the debian_version file is the last resort.  It contains
  2171 // an informative string like "6.0.6" or "wheezy/sid". Because of this
  2172 // "Debian " is printed before the contents of the debian_version file.
  2173 void os::Linux::print_distro_info(outputStream* st) {
  2174    if (!_print_ascii_file("/etc/oracle-release", st) &&
  2175        !_print_ascii_file("/etc/mandriva-release", st) &&
  2176        !_print_ascii_file("/etc/mandrake-release", st) &&
  2177        !_print_ascii_file("/etc/sun-release", st) &&
  2178        !_print_ascii_file("/etc/redhat-release", st) &&
  2179        !_print_ascii_file("/etc/lsb-release", st) &&
  2180        !_print_ascii_file("/etc/SuSE-release", st) &&
  2181        !_print_ascii_file("/etc/turbolinux-release", st) &&
  2182        !_print_ascii_file("/etc/gentoo-release", st) &&
  2183        !_print_ascii_file("/etc/ltib-release", st) &&
  2184        !_print_ascii_file("/etc/angstrom-version", st) &&
  2185        !_print_ascii_file("/etc/system-release", st) &&
  2186        !_print_ascii_file("/etc/os-release", st)) {
  2188        if (file_exists("/etc/debian_version")) {
  2189          st->print("Debian ");
  2190          _print_ascii_file("/etc/debian_version", st);
  2191        } else {
  2192          st->print("Linux");
  2195    st->cr();
  2198 void os::Linux::print_libversion_info(outputStream* st) {
  2199   // libc, pthread
  2200   st->print("libc:");
  2201   st->print("%s ", os::Linux::glibc_version());
  2202   st->print("%s ", os::Linux::libpthread_version());
  2203   if (os::Linux::is_LinuxThreads()) {
  2204      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2206   st->cr();
  2209 void os::Linux::print_full_memory_info(outputStream* st) {
  2210    st->print("\n/proc/meminfo:\n");
  2211    _print_ascii_file("/proc/meminfo", st);
  2212    st->cr();
  2215 void os::print_memory_info(outputStream* st) {
  2217   st->print("Memory:");
  2218   st->print(" %dk page", os::vm_page_size()>>10);
  2220   // values in struct sysinfo are "unsigned long"
  2221   struct sysinfo si;
  2222   sysinfo(&si);
  2224   st->print(", physical " UINT64_FORMAT "k",
  2225             os::physical_memory() >> 10);
  2226   st->print("(" UINT64_FORMAT "k free)",
  2227             os::available_memory() >> 10);
  2228   st->print(", swap " UINT64_FORMAT "k",
  2229             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2230   st->print("(" UINT64_FORMAT "k free)",
  2231             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2232   st->cr();
  2235 void os::pd_print_cpu_info(outputStream* st) {
  2236   st->print("\n/proc/cpuinfo:\n");
  2237   if (!_print_ascii_file("/proc/cpuinfo", st)) {
  2238     st->print("  <Not Available>");
  2240   st->cr();
  2243 void os::print_siginfo(outputStream* st, void* siginfo) {
  2244   const siginfo_t* si = (const siginfo_t*)siginfo;
  2246   os::Posix::print_siginfo_brief(st, si);
  2247 #if INCLUDE_CDS
  2248   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2249       UseSharedSpaces) {
  2250     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2251     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2252       st->print("\n\nError accessing class data sharing archive."   \
  2253                 " Mapped file inaccessible during execution, "      \
  2254                 " possible disk/network problem.");
  2257 #endif
  2258   st->cr();
  2262 static void print_signal_handler(outputStream* st, int sig,
  2263                                  char* buf, size_t buflen);
  2265 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2266   st->print_cr("Signal Handlers:");
  2267   print_signal_handler(st, SIGSEGV, buf, buflen);
  2268   print_signal_handler(st, SIGBUS , buf, buflen);
  2269   print_signal_handler(st, SIGFPE , buf, buflen);
  2270   print_signal_handler(st, SIGPIPE, buf, buflen);
  2271   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2272   print_signal_handler(st, SIGILL , buf, buflen);
  2273   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2274   print_signal_handler(st, SR_signum, buf, buflen);
  2275   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2276   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2277   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2278   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2279 #if defined(PPC64)
  2280   print_signal_handler(st, SIGTRAP, buf, buflen);
  2281 #endif
  2284 static char saved_jvm_path[MAXPATHLEN] = {0};
  2286 // Find the full path to the current module, libjvm.so
  2287 void os::jvm_path(char *buf, jint buflen) {
  2288   // Error checking.
  2289   if (buflen < MAXPATHLEN) {
  2290     assert(false, "must use a large-enough buffer");
  2291     buf[0] = '\0';
  2292     return;
  2294   // Lazy resolve the path to current module.
  2295   if (saved_jvm_path[0] != 0) {
  2296     strcpy(buf, saved_jvm_path);
  2297     return;
  2300   char dli_fname[MAXPATHLEN];
  2301   bool ret = dll_address_to_library_name(
  2302                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2303                 dli_fname, sizeof(dli_fname), NULL);
  2304   assert(ret, "cannot locate libjvm");
  2305   char *rp = NULL;
  2306   if (ret && dli_fname[0] != '\0') {
  2307     rp = realpath(dli_fname, buf);
  2309   if (rp == NULL)
  2310     return;
  2312   if (Arguments::created_by_gamma_launcher()) {
  2313     // Support for the gamma launcher.  Typical value for buf is
  2314     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2315     // the right place in the string, then assume we are installed in a JDK and
  2316     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2317     // up the path so it looks like libjvm.so is installed there (append a
  2318     // fake suffix hotspot/libjvm.so).
  2319     const char *p = buf + strlen(buf) - 1;
  2320     for (int count = 0; p > buf && count < 5; ++count) {
  2321       for (--p; p > buf && *p != '/'; --p)
  2322         /* empty */ ;
  2325     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2326       // Look for JAVA_HOME in the environment.
  2327       char* java_home_var = ::getenv("JAVA_HOME");
  2328       if (java_home_var != NULL && java_home_var[0] != 0) {
  2329         char* jrelib_p;
  2330         int len;
  2332         // Check the current module name "libjvm.so".
  2333         p = strrchr(buf, '/');
  2334         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2336         rp = realpath(java_home_var, buf);
  2337         if (rp == NULL)
  2338           return;
  2340         // determine if this is a legacy image or modules image
  2341         // modules image doesn't have "jre" subdirectory
  2342         len = strlen(buf);
  2343         assert(len < buflen, "Ran out of buffer room");
  2344         jrelib_p = buf + len;
  2345         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2346         if (0 != access(buf, F_OK)) {
  2347           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2350         if (0 == access(buf, F_OK)) {
  2351           // Use current module name "libjvm.so"
  2352           len = strlen(buf);
  2353           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
  2354         } else {
  2355           // Go back to path of .so
  2356           rp = realpath(dli_fname, buf);
  2357           if (rp == NULL)
  2358             return;
  2364   strncpy(saved_jvm_path, buf, MAXPATHLEN);
  2367 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2368   // no prefix required, not even "_"
  2371 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2372   // no suffix required
  2375 ////////////////////////////////////////////////////////////////////////////////
  2376 // sun.misc.Signal support
  2378 static volatile jint sigint_count = 0;
  2380 static void
  2381 UserHandler(int sig, void *siginfo, void *context) {
  2382   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2383   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2384   // don't want to flood the manager thread with sem_post requests.
  2385   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2386       return;
  2388   // Ctrl-C is pressed during error reporting, likely because the error
  2389   // handler fails to abort. Let VM die immediately.
  2390   if (sig == SIGINT && is_error_reported()) {
  2391      os::die();
  2394   os::signal_notify(sig);
  2397 void* os::user_handler() {
  2398   return CAST_FROM_FN_PTR(void*, UserHandler);
  2401 class Semaphore : public StackObj {
  2402   public:
  2403     Semaphore();
  2404     ~Semaphore();
  2405     void signal();
  2406     void wait();
  2407     bool trywait();
  2408     bool timedwait(unsigned int sec, int nsec);
  2409   private:
  2410     sem_t _semaphore;
  2411 };
  2413 Semaphore::Semaphore() {
  2414   sem_init(&_semaphore, 0, 0);
  2417 Semaphore::~Semaphore() {
  2418   sem_destroy(&_semaphore);
  2421 void Semaphore::signal() {
  2422   sem_post(&_semaphore);
  2425 void Semaphore::wait() {
  2426   sem_wait(&_semaphore);
  2429 bool Semaphore::trywait() {
  2430   return sem_trywait(&_semaphore) == 0;
  2433 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  2435   struct timespec ts;
  2436   // Semaphore's are always associated with CLOCK_REALTIME
  2437   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
  2438   // see unpackTime for discussion on overflow checking
  2439   if (sec >= MAX_SECS) {
  2440     ts.tv_sec += MAX_SECS;
  2441     ts.tv_nsec = 0;
  2442   } else {
  2443     ts.tv_sec += sec;
  2444     ts.tv_nsec += nsec;
  2445     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
  2446       ts.tv_nsec -= NANOSECS_PER_SEC;
  2447       ++ts.tv_sec; // note: this must be <= max_secs
  2451   while (1) {
  2452     int result = sem_timedwait(&_semaphore, &ts);
  2453     if (result == 0) {
  2454       return true;
  2455     } else if (errno == EINTR) {
  2456       continue;
  2457     } else if (errno == ETIMEDOUT) {
  2458       return false;
  2459     } else {
  2460       return false;
  2465 extern "C" {
  2466   typedef void (*sa_handler_t)(int);
  2467   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2470 void* os::signal(int signal_number, void* handler) {
  2471   struct sigaction sigAct, oldSigAct;
  2473   sigfillset(&(sigAct.sa_mask));
  2474   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2475   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2477   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2478     // -1 means registration failed
  2479     return (void *)-1;
  2482   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2485 void os::signal_raise(int signal_number) {
  2486   ::raise(signal_number);
  2489 /*
  2490  * The following code is moved from os.cpp for making this
  2491  * code platform specific, which it is by its very nature.
  2492  */
  2494 // Will be modified when max signal is changed to be dynamic
  2495 int os::sigexitnum_pd() {
  2496   return NSIG;
  2499 // a counter for each possible signal value
  2500 static volatile jint pending_signals[NSIG+1] = { 0 };
  2502 // Linux(POSIX) specific hand shaking semaphore.
  2503 static sem_t sig_sem;
  2504 static Semaphore sr_semaphore;
  2506 void os::signal_init_pd() {
  2507   // Initialize signal structures
  2508   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2510   // Initialize signal semaphore
  2511   ::sem_init(&sig_sem, 0, 0);
  2514 void os::signal_notify(int sig) {
  2515   Atomic::inc(&pending_signals[sig]);
  2516   ::sem_post(&sig_sem);
  2519 static int check_pending_signals(bool wait) {
  2520   Atomic::store(0, &sigint_count);
  2521   for (;;) {
  2522     for (int i = 0; i < NSIG + 1; i++) {
  2523       jint n = pending_signals[i];
  2524       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2525         return i;
  2528     if (!wait) {
  2529       return -1;
  2531     JavaThread *thread = JavaThread::current();
  2532     ThreadBlockInVM tbivm(thread);
  2534     bool threadIsSuspended;
  2535     do {
  2536       thread->set_suspend_equivalent();
  2537       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2538       ::sem_wait(&sig_sem);
  2540       // were we externally suspended while we were waiting?
  2541       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2542       if (threadIsSuspended) {
  2543         //
  2544         // The semaphore has been incremented, but while we were waiting
  2545         // another thread suspended us. We don't want to continue running
  2546         // while suspended because that would surprise the thread that
  2547         // suspended us.
  2548         //
  2549         ::sem_post(&sig_sem);
  2551         thread->java_suspend_self();
  2553     } while (threadIsSuspended);
  2557 int os::signal_lookup() {
  2558   return check_pending_signals(false);
  2561 int os::signal_wait() {
  2562   return check_pending_signals(true);
  2565 ////////////////////////////////////////////////////////////////////////////////
  2566 // Virtual Memory
  2568 int os::vm_page_size() {
  2569   // Seems redundant as all get out
  2570   assert(os::Linux::page_size() != -1, "must call os::init");
  2571   return os::Linux::page_size();
  2574 // Solaris allocates memory by pages.
  2575 int os::vm_allocation_granularity() {
  2576   assert(os::Linux::page_size() != -1, "must call os::init");
  2577   return os::Linux::page_size();
  2580 // Rationale behind this function:
  2581 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2582 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2583 //  samples for JITted code. Here we create private executable mapping over the code cache
  2584 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2585 //  info for the reporting script by storing timestamp and location of symbol
  2586 void linux_wrap_code(char* base, size_t size) {
  2587   static volatile jint cnt = 0;
  2589   if (!UseOprofile) {
  2590     return;
  2593   char buf[PATH_MAX+1];
  2594   int num = Atomic::add(1, &cnt);
  2596   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2597            os::get_temp_directory(), os::current_process_id(), num);
  2598   unlink(buf);
  2600   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2602   if (fd != -1) {
  2603     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2604     if (rv != (off_t)-1) {
  2605       if (::write(fd, "", 1) == 1) {
  2606         mmap(base, size,
  2607              PROT_READ|PROT_WRITE|PROT_EXEC,
  2608              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2611     ::close(fd);
  2612     unlink(buf);
  2616 static bool recoverable_mmap_error(int err) {
  2617   // See if the error is one we can let the caller handle. This
  2618   // list of errno values comes from JBS-6843484. I can't find a
  2619   // Linux man page that documents this specific set of errno
  2620   // values so while this list currently matches Solaris, it may
  2621   // change as we gain experience with this failure mode.
  2622   switch (err) {
  2623   case EBADF:
  2624   case EINVAL:
  2625   case ENOTSUP:
  2626     // let the caller deal with these errors
  2627     return true;
  2629   default:
  2630     // Any remaining errors on this OS can cause our reserved mapping
  2631     // to be lost. That can cause confusion where different data
  2632     // structures think they have the same memory mapped. The worst
  2633     // scenario is if both the VM and a library think they have the
  2634     // same memory mapped.
  2635     return false;
  2639 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
  2640                                     int err) {
  2641   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2642           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
  2643           strerror(err), err);
  2646 static void warn_fail_commit_memory(char* addr, size_t size,
  2647                                     size_t alignment_hint, bool exec,
  2648                                     int err) {
  2649   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2650           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
  2651           alignment_hint, exec, strerror(err), err);
  2654 // NOTE: Linux kernel does not really reserve the pages for us.
  2655 //       All it does is to check if there are enough free pages
  2656 //       left at the time of mmap(). This could be a potential
  2657 //       problem.
  2658 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
  2659   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2660   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2661                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2662   if (res != (uintptr_t) MAP_FAILED) {
  2663     if (UseNUMAInterleaving) {
  2664       numa_make_global(addr, size);
  2666     return 0;
  2669   int err = errno;  // save errno from mmap() call above
  2671   if (!recoverable_mmap_error(err)) {
  2672     warn_fail_commit_memory(addr, size, exec, err);
  2673     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
  2676   return err;
  2679 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2680   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
  2683 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  2684                                   const char* mesg) {
  2685   assert(mesg != NULL, "mesg must be specified");
  2686   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2687   if (err != 0) {
  2688     // the caller wants all commit errors to exit with the specified mesg:
  2689     warn_fail_commit_memory(addr, size, exec, err);
  2690     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2694 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2695 #ifndef MAP_HUGETLB
  2696 #define MAP_HUGETLB 0x40000
  2697 #endif
  2699 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2700 #ifndef MADV_HUGEPAGE
  2701 #define MADV_HUGEPAGE 14
  2702 #endif
  2704 int os::Linux::commit_memory_impl(char* addr, size_t size,
  2705                                   size_t alignment_hint, bool exec) {
  2706   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2707   if (err == 0) {
  2708     realign_memory(addr, size, alignment_hint);
  2710   return err;
  2713 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2714                           bool exec) {
  2715   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
  2718 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  2719                                   size_t alignment_hint, bool exec,
  2720                                   const char* mesg) {
  2721   assert(mesg != NULL, "mesg must be specified");
  2722   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
  2723   if (err != 0) {
  2724     // the caller wants all commit errors to exit with the specified mesg:
  2725     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
  2726     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2730 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2731   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
  2732     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2733     // be supported or the memory may already be backed by huge pages.
  2734     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2738 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2739   // This method works by doing an mmap over an existing mmaping and effectively discarding
  2740   // the existing pages. However it won't work for SHM-based large pages that cannot be
  2741   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
  2742   // small pages on top of the SHM segment. This method always works for small pages, so we
  2743   // allow that in any case.
  2744   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
  2745     commit_memory(addr, bytes, alignment_hint, !ExecMem);
  2749 void os::numa_make_global(char *addr, size_t bytes) {
  2750   Linux::numa_interleave_memory(addr, bytes);
  2753 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
  2754 // bind policy to MPOL_PREFERRED for the current thread.
  2755 #define USE_MPOL_PREFERRED 0
  2757 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2758   // To make NUMA and large pages more robust when both enabled, we need to ease
  2759   // the requirements on where the memory should be allocated. MPOL_BIND is the
  2760   // default policy and it will force memory to be allocated on the specified
  2761   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
  2762   // the specified node, but will not force it. Using this policy will prevent
  2763   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
  2764   // free large pages.
  2765   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
  2766   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2769 bool os::numa_topology_changed()   { return false; }
  2771 size_t os::numa_get_groups_num() {
  2772   int max_node = Linux::numa_max_node();
  2773   return max_node > 0 ? max_node + 1 : 1;
  2776 int os::numa_get_group_id() {
  2777   int cpu_id = Linux::sched_getcpu();
  2778   if (cpu_id != -1) {
  2779     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2780     if (lgrp_id != -1) {
  2781       return lgrp_id;
  2784   return 0;
  2787 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2788   for (size_t i = 0; i < size; i++) {
  2789     ids[i] = i;
  2791   return size;
  2794 bool os::get_page_info(char *start, page_info* info) {
  2795   return false;
  2798 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2799   return end;
  2803 int os::Linux::sched_getcpu_syscall(void) {
  2804   unsigned int cpu;
  2805   int retval = -1;
  2807 #if defined(IA32)
  2808 # ifndef SYS_getcpu
  2809 # define SYS_getcpu 318
  2810 # endif
  2811   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
  2812 #elif defined(AMD64)
  2813 // Unfortunately we have to bring all these macros here from vsyscall.h
  2814 // to be able to compile on old linuxes.
  2815 # define __NR_vgetcpu 2
  2816 # define VSYSCALL_START (-10UL << 20)
  2817 # define VSYSCALL_SIZE 1024
  2818 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  2819   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  2820   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  2821   retval = vgetcpu(&cpu, NULL, NULL);
  2822 #endif
  2824   return (retval == -1) ? retval : cpu;
  2827 // Something to do with the numa-aware allocator needs these symbols
  2828 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2829 extern "C" JNIEXPORT void numa_error(char *where) { }
  2830 extern "C" JNIEXPORT int fork1() { return fork(); }
  2833 // If we are running with libnuma version > 2, then we should
  2834 // be trying to use symbols with versions 1.1
  2835 // If we are running with earlier version, which did not have symbol versions,
  2836 // we should use the base version.
  2837 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2838   void *f = dlvsym(handle, name, "libnuma_1.1");
  2839   if (f == NULL) {
  2840     f = dlsym(handle, name);
  2842   return f;
  2845 bool os::Linux::libnuma_init() {
  2846   // sched_getcpu() should be in libc.
  2847   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2848                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2850   // If it's not, try a direct syscall.
  2851   if (sched_getcpu() == -1)
  2852     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
  2854   if (sched_getcpu() != -1) { // Does it work?
  2855     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2856     if (handle != NULL) {
  2857       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2858                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2859       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2860                                        libnuma_dlsym(handle, "numa_max_node")));
  2861       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2862                                         libnuma_dlsym(handle, "numa_available")));
  2863       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2864                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2865       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2866                                             libnuma_dlsym(handle, "numa_interleave_memory")));
  2867       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
  2868                                             libnuma_dlsym(handle, "numa_set_bind_policy")));
  2871       if (numa_available() != -1) {
  2872         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2873         // Create a cpu -> node mapping
  2874         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  2875         rebuild_cpu_to_node_map();
  2876         return true;
  2880   return false;
  2883 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2884 // The table is later used in get_node_by_cpu().
  2885 void os::Linux::rebuild_cpu_to_node_map() {
  2886   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2887                               // in libnuma (possible values are starting from 16,
  2888                               // and continuing up with every other power of 2, but less
  2889                               // than the maximum number of CPUs supported by kernel), and
  2890                               // is a subject to change (in libnuma version 2 the requirements
  2891                               // are more reasonable) we'll just hardcode the number they use
  2892                               // in the library.
  2893   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2895   size_t cpu_num = os::active_processor_count();
  2896   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2897   size_t cpu_map_valid_size =
  2898     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2900   cpu_to_node()->clear();
  2901   cpu_to_node()->at_grow(cpu_num - 1);
  2902   size_t node_num = numa_get_groups_num();
  2904   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
  2905   for (size_t i = 0; i < node_num; i++) {
  2906     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2907       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2908         if (cpu_map[j] != 0) {
  2909           for (size_t k = 0; k < BitsPerCLong; k++) {
  2910             if (cpu_map[j] & (1UL << k)) {
  2911               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
  2918   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
  2921 int os::Linux::get_node_by_cpu(int cpu_id) {
  2922   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2923     return cpu_to_node()->at(cpu_id);
  2925   return -1;
  2928 GrowableArray<int>* os::Linux::_cpu_to_node;
  2929 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2930 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2931 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2932 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2933 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2934 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2935 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
  2936 unsigned long* os::Linux::_numa_all_nodes;
  2938 bool os::pd_uncommit_memory(char* addr, size_t size) {
  2939   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2940                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  2941   return res  != (uintptr_t) MAP_FAILED;
  2944 static
  2945 address get_stack_commited_bottom(address bottom, size_t size) {
  2946   address nbot = bottom;
  2947   address ntop = bottom + size;
  2949   size_t page_sz = os::vm_page_size();
  2950   unsigned pages = size / page_sz;
  2952   unsigned char vec[1];
  2953   unsigned imin = 1, imax = pages + 1, imid;
  2954   int mincore_return_value = 0;
  2956   assert(imin <= imax, "Unexpected page size");
  2958   while (imin < imax) {
  2959     imid = (imax + imin) / 2;
  2960     nbot = ntop - (imid * page_sz);
  2962     // Use a trick with mincore to check whether the page is mapped or not.
  2963     // mincore sets vec to 1 if page resides in memory and to 0 if page
  2964     // is swapped output but if page we are asking for is unmapped
  2965     // it returns -1,ENOMEM
  2966     mincore_return_value = mincore(nbot, page_sz, vec);
  2968     if (mincore_return_value == -1) {
  2969       // Page is not mapped go up
  2970       // to find first mapped page
  2971       if (errno != EAGAIN) {
  2972         assert(errno == ENOMEM, "Unexpected mincore errno");
  2973         imax = imid;
  2975     } else {
  2976       // Page is mapped go down
  2977       // to find first not mapped page
  2978       imin = imid + 1;
  2982   nbot = nbot + page_sz;
  2984   // Adjust stack bottom one page up if last checked page is not mapped
  2985   if (mincore_return_value == -1) {
  2986     nbot = nbot + page_sz;
  2989   return nbot;
  2993 // Linux uses a growable mapping for the stack, and if the mapping for
  2994 // the stack guard pages is not removed when we detach a thread the
  2995 // stack cannot grow beyond the pages where the stack guard was
  2996 // mapped.  If at some point later in the process the stack expands to
  2997 // that point, the Linux kernel cannot expand the stack any further
  2998 // because the guard pages are in the way, and a segfault occurs.
  2999 //
  3000 // However, it's essential not to split the stack region by unmapping
  3001 // a region (leaving a hole) that's already part of the stack mapping,
  3002 // so if the stack mapping has already grown beyond the guard pages at
  3003 // the time we create them, we have to truncate the stack mapping.
  3004 // So, we need to know the extent of the stack mapping when
  3005 // create_stack_guard_pages() is called.
  3007 // We only need this for stacks that are growable: at the time of
  3008 // writing thread stacks don't use growable mappings (i.e. those
  3009 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  3010 // only applies to the main thread.
  3012 // If the (growable) stack mapping already extends beyond the point
  3013 // where we're going to put our guard pages, truncate the mapping at
  3014 // that point by munmap()ping it.  This ensures that when we later
  3015 // munmap() the guard pages we don't leave a hole in the stack
  3016 // mapping. This only affects the main/initial thread
  3018 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  3020   if (os::Linux::is_initial_thread()) {
  3021     // As we manually grow stack up to bottom inside create_attached_thread(),
  3022     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
  3023     // we don't need to do anything special.
  3024     // Check it first, before calling heavy function.
  3025     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
  3026     unsigned char vec[1];
  3028     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
  3029       // Fallback to slow path on all errors, including EAGAIN
  3030       stack_extent = (uintptr_t) get_stack_commited_bottom(
  3031                                     os::Linux::initial_thread_stack_bottom(),
  3032                                     (size_t)addr - stack_extent);
  3035     if (stack_extent < (uintptr_t)addr) {
  3036       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
  3040   return os::commit_memory(addr, size, !ExecMem);
  3043 // If this is a growable mapping, remove the guard pages entirely by
  3044 // munmap()ping them.  If not, just call uncommit_memory(). This only
  3045 // affects the main/initial thread, but guard against future OS changes
  3046 // It's safe to always unmap guard pages for initial thread because we
  3047 // always place it right after end of the mapped region
  3049 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3050   uintptr_t stack_extent, stack_base;
  3052   if (os::Linux::is_initial_thread()) {
  3053     return ::munmap(addr, size) == 0;
  3056   return os::uncommit_memory(addr, size);
  3059 static address _highest_vm_reserved_address = NULL;
  3061 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  3062 // at 'requested_addr'. If there are existing memory mappings at the same
  3063 // location, however, they will be overwritten. If 'fixed' is false,
  3064 // 'requested_addr' is only treated as a hint, the return value may or
  3065 // may not start from the requested address. Unlike Linux mmap(), this
  3066 // function returns NULL to indicate failure.
  3067 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  3068   char * addr;
  3069   int flags;
  3071   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  3072   if (fixed) {
  3073     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  3074     flags |= MAP_FIXED;
  3077   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
  3078   // touch an uncommitted page. Otherwise, the read/write might
  3079   // succeed if we have enough swap space to back the physical page.
  3080   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
  3081                        flags, -1, 0);
  3083   if (addr != MAP_FAILED) {
  3084     // anon_mmap() should only get called during VM initialization,
  3085     // don't need lock (actually we can skip locking even it can be called
  3086     // from multiple threads, because _highest_vm_reserved_address is just a
  3087     // hint about the upper limit of non-stack memory regions.)
  3088     if ((address)addr + bytes > _highest_vm_reserved_address) {
  3089       _highest_vm_reserved_address = (address)addr + bytes;
  3093   return addr == MAP_FAILED ? NULL : addr;
  3096 // Don't update _highest_vm_reserved_address, because there might be memory
  3097 // regions above addr + size. If so, releasing a memory region only creates
  3098 // a hole in the address space, it doesn't help prevent heap-stack collision.
  3099 //
  3100 static int anon_munmap(char * addr, size_t size) {
  3101   return ::munmap(addr, size) == 0;
  3104 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  3105                          size_t alignment_hint) {
  3106   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  3109 bool os::pd_release_memory(char* addr, size_t size) {
  3110   return anon_munmap(addr, size);
  3113 static address highest_vm_reserved_address() {
  3114   return _highest_vm_reserved_address;
  3117 static bool linux_mprotect(char* addr, size_t size, int prot) {
  3118   // Linux wants the mprotect address argument to be page aligned.
  3119   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  3121   // According to SUSv3, mprotect() should only be used with mappings
  3122   // established by mmap(), and mmap() always maps whole pages. Unaligned
  3123   // 'addr' likely indicates problem in the VM (e.g. trying to change
  3124   // protection of malloc'ed or statically allocated memory). Check the
  3125   // caller if you hit this assert.
  3126   assert(addr == bottom, "sanity check");
  3128   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  3129   return ::mprotect(bottom, size, prot) == 0;
  3132 // Set protections specified
  3133 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3134                         bool is_committed) {
  3135   unsigned int p = 0;
  3136   switch (prot) {
  3137   case MEM_PROT_NONE: p = PROT_NONE; break;
  3138   case MEM_PROT_READ: p = PROT_READ; break;
  3139   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3140   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3141   default:
  3142     ShouldNotReachHere();
  3144   // is_committed is unused.
  3145   return linux_mprotect(addr, bytes, p);
  3148 bool os::guard_memory(char* addr, size_t size) {
  3149   return linux_mprotect(addr, size, PROT_NONE);
  3152 bool os::unguard_memory(char* addr, size_t size) {
  3153   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  3156 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
  3157   bool result = false;
  3158   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
  3159                  MAP_ANONYMOUS|MAP_PRIVATE,
  3160                  -1, 0);
  3161   if (p != MAP_FAILED) {
  3162     void *aligned_p = align_ptr_up(p, page_size);
  3164     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
  3166     munmap(p, page_size * 2);
  3169   if (warn && !result) {
  3170     warning("TransparentHugePages is not supported by the operating system.");
  3173   return result;
  3176 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  3177   bool result = false;
  3178   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
  3179                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  3180                  -1, 0);
  3182   if (p != MAP_FAILED) {
  3183     // We don't know if this really is a huge page or not.
  3184     FILE *fp = fopen("/proc/self/maps", "r");
  3185     if (fp) {
  3186       while (!feof(fp)) {
  3187         char chars[257];
  3188         long x = 0;
  3189         if (fgets(chars, sizeof(chars), fp)) {
  3190           if (sscanf(chars, "%lx-%*x", &x) == 1
  3191               && x == (long)p) {
  3192             if (strstr (chars, "hugepage")) {
  3193               result = true;
  3194               break;
  3199       fclose(fp);
  3201     munmap(p, page_size);
  3204   if (warn && !result) {
  3205     warning("HugeTLBFS is not supported by the operating system.");
  3208   return result;
  3211 /*
  3212 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  3214 * From the coredump_filter documentation:
  3216 * - (bit 0) anonymous private memory
  3217 * - (bit 1) anonymous shared memory
  3218 * - (bit 2) file-backed private memory
  3219 * - (bit 3) file-backed shared memory
  3220 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  3221 *           effective only if the bit 2 is cleared)
  3222 * - (bit 5) hugetlb private memory
  3223 * - (bit 6) hugetlb shared memory
  3224 */
  3225 static void set_coredump_filter(void) {
  3226   FILE *f;
  3227   long cdm;
  3229   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  3230     return;
  3233   if (fscanf(f, "%lx", &cdm) != 1) {
  3234     fclose(f);
  3235     return;
  3238   rewind(f);
  3240   if ((cdm & LARGEPAGES_BIT) == 0) {
  3241     cdm |= LARGEPAGES_BIT;
  3242     fprintf(f, "%#lx", cdm);
  3245   fclose(f);
  3248 // Large page support
  3250 static size_t _large_page_size = 0;
  3252 size_t os::Linux::find_large_page_size() {
  3253   size_t large_page_size = 0;
  3255   // large_page_size on Linux is used to round up heap size. x86 uses either
  3256   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  3257   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  3258   // page as large as 256M.
  3259   //
  3260   // Here we try to figure out page size by parsing /proc/meminfo and looking
  3261   // for a line with the following format:
  3262   //    Hugepagesize:     2048 kB
  3263   //
  3264   // If we can't determine the value (e.g. /proc is not mounted, or the text
  3265   // format has been changed), we'll use the largest page size supported by
  3266   // the processor.
  3268 #ifndef ZERO
  3269   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  3270                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  3271 #endif // ZERO
  3273   FILE *fp = fopen("/proc/meminfo", "r");
  3274   if (fp) {
  3275     while (!feof(fp)) {
  3276       int x = 0;
  3277       char buf[16];
  3278       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3279         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3280           large_page_size = x * K;
  3281           break;
  3283       } else {
  3284         // skip to next line
  3285         for (;;) {
  3286           int ch = fgetc(fp);
  3287           if (ch == EOF || ch == (int)'\n') break;
  3291     fclose(fp);
  3294   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
  3295     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
  3296         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
  3297         proper_unit_for_byte_size(large_page_size));
  3300   return large_page_size;
  3303 size_t os::Linux::setup_large_page_size() {
  3304   _large_page_size = Linux::find_large_page_size();
  3305   const size_t default_page_size = (size_t)Linux::page_size();
  3306   if (_large_page_size > default_page_size) {
  3307     _page_sizes[0] = _large_page_size;
  3308     _page_sizes[1] = default_page_size;
  3309     _page_sizes[2] = 0;
  3312   return _large_page_size;
  3315 bool os::Linux::setup_large_page_type(size_t page_size) {
  3316   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
  3317       FLAG_IS_DEFAULT(UseSHM) &&
  3318       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
  3320     // The type of large pages has not been specified by the user.
  3322     // Try UseHugeTLBFS and then UseSHM.
  3323     UseHugeTLBFS = UseSHM = true;
  3325     // Don't try UseTransparentHugePages since there are known
  3326     // performance issues with it turned on. This might change in the future.
  3327     UseTransparentHugePages = false;
  3330   if (UseTransparentHugePages) {
  3331     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
  3332     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
  3333       UseHugeTLBFS = false;
  3334       UseSHM = false;
  3335       return true;
  3337     UseTransparentHugePages = false;
  3340   if (UseHugeTLBFS) {
  3341     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3342     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
  3343       UseSHM = false;
  3344       return true;
  3346     UseHugeTLBFS = false;
  3349   return UseSHM;
  3352 void os::large_page_init() {
  3353   if (!UseLargePages &&
  3354       !UseTransparentHugePages &&
  3355       !UseHugeTLBFS &&
  3356       !UseSHM) {
  3357     // Not using large pages.
  3358     return;
  3361   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
  3362     // The user explicitly turned off large pages.
  3363     // Ignore the rest of the large pages flags.
  3364     UseTransparentHugePages = false;
  3365     UseHugeTLBFS = false;
  3366     UseSHM = false;
  3367     return;
  3370   size_t large_page_size = Linux::setup_large_page_size();
  3371   UseLargePages          = Linux::setup_large_page_type(large_page_size);
  3373   set_coredump_filter();
  3376 #ifndef SHM_HUGETLB
  3377 #define SHM_HUGETLB 04000
  3378 #endif
  3380 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3381   // "exec" is passed in but not used.  Creating the shared image for
  3382   // the code cache doesn't have an SHM_X executable permission to check.
  3383   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3384   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3386   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
  3387     return NULL; // Fallback to small pages.
  3390   key_t key = IPC_PRIVATE;
  3391   char *addr;
  3393   bool warn_on_failure = UseLargePages &&
  3394                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  3395                          !FLAG_IS_DEFAULT(UseSHM) ||
  3396                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  3397                         );
  3398   char msg[128];
  3400   // Create a large shared memory region to attach to based on size.
  3401   // Currently, size is the total size of the heap
  3402   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3403   if (shmid == -1) {
  3404      // Possible reasons for shmget failure:
  3405      // 1. shmmax is too small for Java heap.
  3406      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3407      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3408      // 2. not enough large page memory.
  3409      //    > check available large pages: cat /proc/meminfo
  3410      //    > increase amount of large pages:
  3411      //          echo new_value > /proc/sys/vm/nr_hugepages
  3412      //      Note 1: different Linux may use different name for this property,
  3413      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3414      //      Note 2: it's possible there's enough physical memory available but
  3415      //            they are so fragmented after a long run that they can't
  3416      //            coalesce into large pages. Try to reserve large pages when
  3417      //            the system is still "fresh".
  3418      if (warn_on_failure) {
  3419        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  3420        warning("%s", msg);
  3422      return NULL;
  3425   // attach to the region
  3426   addr = (char*)shmat(shmid, req_addr, 0);
  3427   int err = errno;
  3429   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3430   // will be deleted when it's detached by shmdt() or when the process
  3431   // terminates. If shmat() is not successful this will remove the shared
  3432   // segment immediately.
  3433   shmctl(shmid, IPC_RMID, NULL);
  3435   if ((intptr_t)addr == -1) {
  3436      if (warn_on_failure) {
  3437        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  3438        warning("%s", msg);
  3440      return NULL;
  3443   return addr;
  3446 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
  3447   assert(error == ENOMEM, "Only expect to fail if no memory is available");
  3449   bool warn_on_failure = UseLargePages &&
  3450       (!FLAG_IS_DEFAULT(UseLargePages) ||
  3451        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
  3452        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
  3454   if (warn_on_failure) {
  3455     char msg[128];
  3456     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
  3457         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
  3458     warning("%s", msg);
  3462 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
  3463   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3464   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
  3465   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3467   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3468   char* addr = (char*)::mmap(req_addr, bytes, prot,
  3469                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
  3470                              -1, 0);
  3472   if (addr == MAP_FAILED) {
  3473     warn_on_large_pages_failure(req_addr, bytes, errno);
  3474     return NULL;
  3477   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
  3479   return addr;
  3482 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3483   size_t large_page_size = os::large_page_size();
  3485   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
  3487   // Allocate small pages.
  3489   char* start;
  3490   if (req_addr != NULL) {
  3491     assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3492     assert(is_size_aligned(bytes, alignment), "Must be");
  3493     start = os::reserve_memory(bytes, req_addr);
  3494     assert(start == NULL || start == req_addr, "Must be");
  3495   } else {
  3496     start = os::reserve_memory_aligned(bytes, alignment);
  3499   if (start == NULL) {
  3500     return NULL;
  3503   assert(is_ptr_aligned(start, alignment), "Must be");
  3505   if (MemTracker::tracking_level() > NMT_minimal) {
  3506     // os::reserve_memory_special will record this memory area.
  3507     // Need to release it here to prevent overlapping reservations.
  3508     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  3509     tkr.record((address)start, bytes);
  3512   char* end = start + bytes;
  3514   // Find the regions of the allocated chunk that can be promoted to large pages.
  3515   char* lp_start = (char*)align_ptr_up(start, large_page_size);
  3516   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
  3518   size_t lp_bytes = lp_end - lp_start;
  3520   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
  3522   if (lp_bytes == 0) {
  3523     // The mapped region doesn't even span the start and the end of a large page.
  3524     // Fall back to allocate a non-special area.
  3525     ::munmap(start, end - start);
  3526     return NULL;
  3529   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3532   void* result;
  3534   if (start != lp_start) {
  3535     result = ::mmap(start, lp_start - start, prot,
  3536                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3537                     -1, 0);
  3538     if (result == MAP_FAILED) {
  3539       ::munmap(lp_start, end - lp_start);
  3540       return NULL;
  3544   result = ::mmap(lp_start, lp_bytes, prot,
  3545                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
  3546                   -1, 0);
  3547   if (result == MAP_FAILED) {
  3548     warn_on_large_pages_failure(req_addr, bytes, errno);
  3549     // If the mmap above fails, the large pages region will be unmapped and we
  3550     // have regions before and after with small pages. Release these regions.
  3551     //
  3552     // |  mapped  |  unmapped  |  mapped  |
  3553     // ^          ^            ^          ^
  3554     // start      lp_start     lp_end     end
  3555     //
  3556     ::munmap(start, lp_start - start);
  3557     ::munmap(lp_end, end - lp_end);
  3558     return NULL;
  3561   if (lp_end != end) {
  3562       result = ::mmap(lp_end, end - lp_end, prot,
  3563                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3564                       -1, 0);
  3565     if (result == MAP_FAILED) {
  3566       ::munmap(start, lp_end - start);
  3567       return NULL;
  3571   return start;
  3574 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3575   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3576   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3577   assert(is_power_of_2(alignment), "Must be");
  3578   assert(is_power_of_2(os::large_page_size()), "Must be");
  3579   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
  3581   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
  3582     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
  3583   } else {
  3584     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
  3588 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3589   assert(UseLargePages, "only for large pages");
  3591   char* addr;
  3592   if (UseSHM) {
  3593     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
  3594   } else {
  3595     assert(UseHugeTLBFS, "must be");
  3596     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
  3599   if (addr != NULL) {
  3600     if (UseNUMAInterleaving) {
  3601       numa_make_global(addr, bytes);
  3604     // The memory is committed
  3605     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
  3608   return addr;
  3611 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
  3612   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
  3613   return shmdt(base) == 0;
  3616 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
  3617   return pd_release_memory(base, bytes);
  3620 bool os::release_memory_special(char* base, size_t bytes) {
  3621   bool res;
  3622   if (MemTracker::tracking_level() > NMT_minimal) {
  3623     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  3624     res = os::Linux::release_memory_special_impl(base, bytes);
  3625     if (res) {
  3626       tkr.record((address)base, bytes);
  3629   } else {
  3630     res = os::Linux::release_memory_special_impl(base, bytes);
  3632   return res;
  3635 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
  3636   assert(UseLargePages, "only for large pages");
  3637   bool res;
  3639   if (UseSHM) {
  3640     res = os::Linux::release_memory_special_shm(base, bytes);
  3641   } else {
  3642     assert(UseHugeTLBFS, "must be");
  3643     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
  3645   return res;
  3648 size_t os::large_page_size() {
  3649   return _large_page_size;
  3652 // With SysV SHM the entire memory region must be allocated as shared
  3653 // memory.
  3654 // HugeTLBFS allows application to commit large page memory on demand.
  3655 // However, when committing memory with HugeTLBFS fails, the region
  3656 // that was supposed to be committed will lose the old reservation
  3657 // and allow other threads to steal that memory region. Because of this
  3658 // behavior we can't commit HugeTLBFS memory.
  3659 bool os::can_commit_large_page_memory() {
  3660   return UseTransparentHugePages;
  3663 bool os::can_execute_large_page_memory() {
  3664   return UseTransparentHugePages || UseHugeTLBFS;
  3667 // Reserve memory at an arbitrary address, only if that area is
  3668 // available (and not reserved for something else).
  3670 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3671   const int max_tries = 10;
  3672   char* base[max_tries];
  3673   size_t size[max_tries];
  3674   const size_t gap = 0x000000;
  3676   // Assert only that the size is a multiple of the page size, since
  3677   // that's all that mmap requires, and since that's all we really know
  3678   // about at this low abstraction level.  If we need higher alignment,
  3679   // we can either pass an alignment to this method or verify alignment
  3680   // in one of the methods further up the call chain.  See bug 5044738.
  3681   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3683   // Repeatedly allocate blocks until the block is allocated at the
  3684   // right spot. Give up after max_tries. Note that reserve_memory() will
  3685   // automatically update _highest_vm_reserved_address if the call is
  3686   // successful. The variable tracks the highest memory address every reserved
  3687   // by JVM. It is used to detect heap-stack collision if running with
  3688   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  3689   // space than needed, it could confuse the collision detecting code. To
  3690   // solve the problem, save current _highest_vm_reserved_address and
  3691   // calculate the correct value before return.
  3692   address old_highest = _highest_vm_reserved_address;
  3694   // Linux mmap allows caller to pass an address as hint; give it a try first,
  3695   // if kernel honors the hint then we can return immediately.
  3696   char * addr = anon_mmap(requested_addr, bytes, false);
  3697   if (addr == requested_addr) {
  3698      return requested_addr;
  3701   if (addr != NULL) {
  3702      // mmap() is successful but it fails to reserve at the requested address
  3703      anon_munmap(addr, bytes);
  3706   int i;
  3707   for (i = 0; i < max_tries; ++i) {
  3708     base[i] = reserve_memory(bytes);
  3710     if (base[i] != NULL) {
  3711       // Is this the block we wanted?
  3712       if (base[i] == requested_addr) {
  3713         size[i] = bytes;
  3714         break;
  3717       // Does this overlap the block we wanted? Give back the overlapped
  3718       // parts and try again.
  3720       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3721       if (top_overlap >= 0 && top_overlap < bytes) {
  3722         unmap_memory(base[i], top_overlap);
  3723         base[i] += top_overlap;
  3724         size[i] = bytes - top_overlap;
  3725       } else {
  3726         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3727         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3728           unmap_memory(requested_addr, bottom_overlap);
  3729           size[i] = bytes - bottom_overlap;
  3730         } else {
  3731           size[i] = bytes;
  3737   // Give back the unused reserved pieces.
  3739   for (int j = 0; j < i; ++j) {
  3740     if (base[j] != NULL) {
  3741       unmap_memory(base[j], size[j]);
  3745   if (i < max_tries) {
  3746     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  3747     return requested_addr;
  3748   } else {
  3749     _highest_vm_reserved_address = old_highest;
  3750     return NULL;
  3754 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3755   return ::read(fd, buf, nBytes);
  3758 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  3759 // Solaris uses poll(), linux uses park().
  3760 // Poll() is likely a better choice, assuming that Thread.interrupt()
  3761 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  3762 // SIGSEGV, see 4355769.
  3764 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3765   assert(thread == Thread::current(),  "thread consistency check");
  3767   ParkEvent * const slp = thread->_SleepEvent ;
  3768   slp->reset() ;
  3769   OrderAccess::fence() ;
  3771   if (interruptible) {
  3772     jlong prevtime = javaTimeNanos();
  3774     for (;;) {
  3775       if (os::is_interrupted(thread, true)) {
  3776         return OS_INTRPT;
  3779       jlong newtime = javaTimeNanos();
  3781       if (newtime - prevtime < 0) {
  3782         // time moving backwards, should only happen if no monotonic clock
  3783         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3784         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3785       } else {
  3786         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3789       if(millis <= 0) {
  3790         return OS_OK;
  3793       prevtime = newtime;
  3796         assert(thread->is_Java_thread(), "sanity check");
  3797         JavaThread *jt = (JavaThread *) thread;
  3798         ThreadBlockInVM tbivm(jt);
  3799         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3801         jt->set_suspend_equivalent();
  3802         // cleared by handle_special_suspend_equivalent_condition() or
  3803         // java_suspend_self() via check_and_wait_while_suspended()
  3805         slp->park(millis);
  3807         // were we externally suspended while we were waiting?
  3808         jt->check_and_wait_while_suspended();
  3811   } else {
  3812     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3813     jlong prevtime = javaTimeNanos();
  3815     for (;;) {
  3816       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  3817       // the 1st iteration ...
  3818       jlong newtime = javaTimeNanos();
  3820       if (newtime - prevtime < 0) {
  3821         // time moving backwards, should only happen if no monotonic clock
  3822         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3823         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3824       } else {
  3825         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3828       if(millis <= 0) break ;
  3830       prevtime = newtime;
  3831       slp->park(millis);
  3833     return OS_OK ;
  3837 //
  3838 // Short sleep, direct OS call.
  3839 //
  3840 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
  3841 // sched_yield(2) will actually give up the CPU:
  3842 //
  3843 //   * Alone on this pariticular CPU, keeps running.
  3844 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
  3845 //     (pre 2.6.39).
  3846 //
  3847 // So calling this with 0 is an alternative.
  3848 //
  3849 void os::naked_short_sleep(jlong ms) {
  3850   struct timespec req;
  3852   assert(ms < 1000, "Un-interruptable sleep, short time use only");
  3853   req.tv_sec = 0;
  3854   if (ms > 0) {
  3855     req.tv_nsec = (ms % 1000) * 1000000;
  3857   else {
  3858     req.tv_nsec = 1;
  3861   nanosleep(&req, NULL);
  3863   return;
  3866 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3867 void os::infinite_sleep() {
  3868   while (true) {    // sleep forever ...
  3869     ::sleep(100);   // ... 100 seconds at a time
  3873 // Used to convert frequent JVM_Yield() to nops
  3874 bool os::dont_yield() {
  3875   return DontYieldALot;
  3878 void os::yield() {
  3879   sched_yield();
  3882 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  3884 void os::yield_all(int attempts) {
  3885   // Yields to all threads, including threads with lower priorities
  3886   // Threads on Linux are all with same priority. The Solaris style
  3887   // os::yield_all() with nanosleep(1ms) is not necessary.
  3888   sched_yield();
  3891 // Called from the tight loops to possibly influence time-sharing heuristics
  3892 void os::loop_breaker(int attempts) {
  3893   os::yield_all(attempts);
  3896 ////////////////////////////////////////////////////////////////////////////////
  3897 // thread priority support
  3899 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  3900 // only supports dynamic priority, static priority must be zero. For real-time
  3901 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  3902 // However, for large multi-threaded applications, SCHED_RR is not only slower
  3903 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  3904 // of 5 runs - Sep 2005).
  3905 //
  3906 // The following code actually changes the niceness of kernel-thread/LWP. It
  3907 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  3908 // not the entire user process, and user level threads are 1:1 mapped to kernel
  3909 // threads. It has always been the case, but could change in the future. For
  3910 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  3911 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  3913 int os::java_to_os_priority[CriticalPriority + 1] = {
  3914   19,              // 0 Entry should never be used
  3916    4,              // 1 MinPriority
  3917    3,              // 2
  3918    2,              // 3
  3920    1,              // 4
  3921    0,              // 5 NormPriority
  3922   -1,              // 6
  3924   -2,              // 7
  3925   -3,              // 8
  3926   -4,              // 9 NearMaxPriority
  3928   -5,              // 10 MaxPriority
  3930   -5               // 11 CriticalPriority
  3931 };
  3933 static int prio_init() {
  3934   if (ThreadPriorityPolicy == 1) {
  3935     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  3936     // if effective uid is not root. Perhaps, a more elegant way of doing
  3937     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  3938     if (geteuid() != 0) {
  3939       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  3940         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  3942       ThreadPriorityPolicy = 0;
  3945   if (UseCriticalJavaThreadPriority) {
  3946     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  3948   return 0;
  3951 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  3952   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  3954   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  3955   return (ret == 0) ? OS_OK : OS_ERR;
  3958 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  3959   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  3960     *priority_ptr = java_to_os_priority[NormPriority];
  3961     return OS_OK;
  3964   errno = 0;
  3965   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  3966   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  3969 // Hint to the underlying OS that a task switch would not be good.
  3970 // Void return because it's a hint and can fail.
  3971 void os::hint_no_preempt() {}
  3973 ////////////////////////////////////////////////////////////////////////////////
  3974 // suspend/resume support
  3976 //  the low-level signal-based suspend/resume support is a remnant from the
  3977 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  3978 //  within hotspot. Now there is a single use-case for this:
  3979 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  3980 //      that runs in the watcher thread.
  3981 //  The remaining code is greatly simplified from the more general suspension
  3982 //  code that used to be used.
  3983 //
  3984 //  The protocol is quite simple:
  3985 //  - suspend:
  3986 //      - sends a signal to the target thread
  3987 //      - polls the suspend state of the osthread using a yield loop
  3988 //      - target thread signal handler (SR_handler) sets suspend state
  3989 //        and blocks in sigsuspend until continued
  3990 //  - resume:
  3991 //      - sets target osthread state to continue
  3992 //      - sends signal to end the sigsuspend loop in the SR_handler
  3993 //
  3994 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  3995 //
  3997 static void resume_clear_context(OSThread *osthread) {
  3998   osthread->set_ucontext(NULL);
  3999   osthread->set_siginfo(NULL);
  4002 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  4003   osthread->set_ucontext(context);
  4004   osthread->set_siginfo(siginfo);
  4007 //
  4008 // Handler function invoked when a thread's execution is suspended or
  4009 // resumed. We have to be careful that only async-safe functions are
  4010 // called here (Note: most pthread functions are not async safe and
  4011 // should be avoided.)
  4012 //
  4013 // Note: sigwait() is a more natural fit than sigsuspend() from an
  4014 // interface point of view, but sigwait() prevents the signal hander
  4015 // from being run. libpthread would get very confused by not having
  4016 // its signal handlers run and prevents sigwait()'s use with the
  4017 // mutex granting granting signal.
  4018 //
  4019 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
  4020 //
  4021 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  4022   // Save and restore errno to avoid confusing native code with EINTR
  4023   // after sigsuspend.
  4024   int old_errno = errno;
  4026   Thread* thread = Thread::current();
  4027   OSThread* osthread = thread->osthread();
  4028   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
  4030   os::SuspendResume::State current = osthread->sr.state();
  4031   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
  4032     suspend_save_context(osthread, siginfo, context);
  4034     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
  4035     os::SuspendResume::State state = osthread->sr.suspended();
  4036     if (state == os::SuspendResume::SR_SUSPENDED) {
  4037       sigset_t suspend_set;  // signals for sigsuspend()
  4039       // get current set of blocked signals and unblock resume signal
  4040       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  4041       sigdelset(&suspend_set, SR_signum);
  4043       sr_semaphore.signal();
  4044       // wait here until we are resumed
  4045       while (1) {
  4046         sigsuspend(&suspend_set);
  4048         os::SuspendResume::State result = osthread->sr.running();
  4049         if (result == os::SuspendResume::SR_RUNNING) {
  4050           sr_semaphore.signal();
  4051           break;
  4055     } else if (state == os::SuspendResume::SR_RUNNING) {
  4056       // request was cancelled, continue
  4057     } else {
  4058       ShouldNotReachHere();
  4061     resume_clear_context(osthread);
  4062   } else if (current == os::SuspendResume::SR_RUNNING) {
  4063     // request was cancelled, continue
  4064   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
  4065     // ignore
  4066   } else {
  4067     // ignore
  4070   errno = old_errno;
  4074 static int SR_initialize() {
  4075   struct sigaction act;
  4076   char *s;
  4077   /* Get signal number to use for suspend/resume */
  4078   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  4079     int sig = ::strtol(s, 0, 10);
  4080     if (sig > 0 || sig < _NSIG) {
  4081         SR_signum = sig;
  4085   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  4086         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  4088   sigemptyset(&SR_sigset);
  4089   sigaddset(&SR_sigset, SR_signum);
  4091   /* Set up signal handler for suspend/resume */
  4092   act.sa_flags = SA_RESTART|SA_SIGINFO;
  4093   act.sa_handler = (void (*)(int)) SR_handler;
  4095   // SR_signum is blocked by default.
  4096   // 4528190 - We also need to block pthread restart signal (32 on all
  4097   // supported Linux platforms). Note that LinuxThreads need to block
  4098   // this signal for all threads to work properly. So we don't have
  4099   // to use hard-coded signal number when setting up the mask.
  4100   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  4102   if (sigaction(SR_signum, &act, 0) == -1) {
  4103     return -1;
  4106   // Save signal flag
  4107   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  4108   return 0;
  4111 static int sr_notify(OSThread* osthread) {
  4112   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  4113   assert_status(status == 0, status, "pthread_kill");
  4114   return status;
  4117 // "Randomly" selected value for how long we want to spin
  4118 // before bailing out on suspending a thread, also how often
  4119 // we send a signal to a thread we want to resume
  4120 static const int RANDOMLY_LARGE_INTEGER = 1000000;
  4121 static const int RANDOMLY_LARGE_INTEGER2 = 100;
  4123 // returns true on success and false on error - really an error is fatal
  4124 // but this seems the normal response to library errors
  4125 static bool do_suspend(OSThread* osthread) {
  4126   assert(osthread->sr.is_running(), "thread should be running");
  4127   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
  4129   // mark as suspended and send signal
  4130   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
  4131     // failed to switch, state wasn't running?
  4132     ShouldNotReachHere();
  4133     return false;
  4136   if (sr_notify(osthread) != 0) {
  4137     ShouldNotReachHere();
  4140   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
  4141   while (true) {
  4142     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4143       break;
  4144     } else {
  4145       // timeout
  4146       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
  4147       if (cancelled == os::SuspendResume::SR_RUNNING) {
  4148         return false;
  4149       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
  4150         // make sure that we consume the signal on the semaphore as well
  4151         sr_semaphore.wait();
  4152         break;
  4153       } else {
  4154         ShouldNotReachHere();
  4155         return false;
  4160   guarantee(osthread->sr.is_suspended(), "Must be suspended");
  4161   return true;
  4164 static void do_resume(OSThread* osthread) {
  4165   assert(osthread->sr.is_suspended(), "thread should be suspended");
  4166   assert(!sr_semaphore.trywait(), "invalid semaphore state");
  4168   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
  4169     // failed to switch to WAKEUP_REQUEST
  4170     ShouldNotReachHere();
  4171     return;
  4174   while (true) {
  4175     if (sr_notify(osthread) == 0) {
  4176       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4177         if (osthread->sr.is_running()) {
  4178           return;
  4181     } else {
  4182       ShouldNotReachHere();
  4186   guarantee(osthread->sr.is_running(), "Must be running!");
  4189 ////////////////////////////////////////////////////////////////////////////////
  4190 // interrupt support
  4192 void os::interrupt(Thread* thread) {
  4193   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4194     "possibility of dangling Thread pointer");
  4196   OSThread* osthread = thread->osthread();
  4198   if (!osthread->interrupted()) {
  4199     osthread->set_interrupted(true);
  4200     // More than one thread can get here with the same value of osthread,
  4201     // resulting in multiple notifications.  We do, however, want the store
  4202     // to interrupted() to be visible to other threads before we execute unpark().
  4203     OrderAccess::fence();
  4204     ParkEvent * const slp = thread->_SleepEvent ;
  4205     if (slp != NULL) slp->unpark() ;
  4208   // For JSR166. Unpark even if interrupt status already was set
  4209   if (thread->is_Java_thread())
  4210     ((JavaThread*)thread)->parker()->unpark();
  4212   ParkEvent * ev = thread->_ParkEvent ;
  4213   if (ev != NULL) ev->unpark() ;
  4217 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4218   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4219     "possibility of dangling Thread pointer");
  4221   OSThread* osthread = thread->osthread();
  4223   bool interrupted = osthread->interrupted();
  4225   if (interrupted && clear_interrupted) {
  4226     osthread->set_interrupted(false);
  4227     // consider thread->_SleepEvent->reset() ... optional optimization
  4230   return interrupted;
  4233 ///////////////////////////////////////////////////////////////////////////////////
  4234 // signal handling (except suspend/resume)
  4236 // This routine may be used by user applications as a "hook" to catch signals.
  4237 // The user-defined signal handler must pass unrecognized signals to this
  4238 // routine, and if it returns true (non-zero), then the signal handler must
  4239 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4240 // routine will never retun false (zero), but instead will execute a VM panic
  4241 // routine kill the process.
  4242 //
  4243 // If this routine returns false, it is OK to call it again.  This allows
  4244 // the user-defined signal handler to perform checks either before or after
  4245 // the VM performs its own checks.  Naturally, the user code would be making
  4246 // a serious error if it tried to handle an exception (such as a null check
  4247 // or breakpoint) that the VM was generating for its own correct operation.
  4248 //
  4249 // This routine may recognize any of the following kinds of signals:
  4250 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  4251 // It should be consulted by handlers for any of those signals.
  4252 //
  4253 // The caller of this routine must pass in the three arguments supplied
  4254 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4255 // field of the structure passed to sigaction().  This routine assumes that
  4256 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4257 //
  4258 // Note that the VM will print warnings if it detects conflicting signal
  4259 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4260 //
  4261 extern "C" JNIEXPORT int
  4262 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  4263                         void* ucontext, int abort_if_unrecognized);
  4265 void signalHandler(int sig, siginfo_t* info, void* uc) {
  4266   assert(info != NULL && uc != NULL, "it must be old kernel");
  4267   int orig_errno = errno;  // Preserve errno value over signal handler.
  4268   JVM_handle_linux_signal(sig, info, uc, true);
  4269   errno = orig_errno;
  4273 // This boolean allows users to forward their own non-matching signals
  4274 // to JVM_handle_linux_signal, harmlessly.
  4275 bool os::Linux::signal_handlers_are_installed = false;
  4277 // For signal-chaining
  4278 struct sigaction os::Linux::sigact[MAXSIGNUM];
  4279 unsigned int os::Linux::sigs = 0;
  4280 bool os::Linux::libjsig_is_loaded = false;
  4281 typedef struct sigaction *(*get_signal_t)(int);
  4282 get_signal_t os::Linux::get_signal_action = NULL;
  4284 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  4285   struct sigaction *actp = NULL;
  4287   if (libjsig_is_loaded) {
  4288     // Retrieve the old signal handler from libjsig
  4289     actp = (*get_signal_action)(sig);
  4291   if (actp == NULL) {
  4292     // Retrieve the preinstalled signal handler from jvm
  4293     actp = get_preinstalled_handler(sig);
  4296   return actp;
  4299 static bool call_chained_handler(struct sigaction *actp, int sig,
  4300                                  siginfo_t *siginfo, void *context) {
  4301   // Call the old signal handler
  4302   if (actp->sa_handler == SIG_DFL) {
  4303     // It's more reasonable to let jvm treat it as an unexpected exception
  4304     // instead of taking the default action.
  4305     return false;
  4306   } else if (actp->sa_handler != SIG_IGN) {
  4307     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4308       // automaticlly block the signal
  4309       sigaddset(&(actp->sa_mask), sig);
  4312     sa_handler_t hand;
  4313     sa_sigaction_t sa;
  4314     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4315     // retrieve the chained handler
  4316     if (siginfo_flag_set) {
  4317       sa = actp->sa_sigaction;
  4318     } else {
  4319       hand = actp->sa_handler;
  4322     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4323       actp->sa_handler = SIG_DFL;
  4326     // try to honor the signal mask
  4327     sigset_t oset;
  4328     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4330     // call into the chained handler
  4331     if (siginfo_flag_set) {
  4332       (*sa)(sig, siginfo, context);
  4333     } else {
  4334       (*hand)(sig);
  4337     // restore the signal mask
  4338     pthread_sigmask(SIG_SETMASK, &oset, 0);
  4340   // Tell jvm's signal handler the signal is taken care of.
  4341   return true;
  4344 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4345   bool chained = false;
  4346   // signal-chaining
  4347   if (UseSignalChaining) {
  4348     struct sigaction *actp = get_chained_signal_action(sig);
  4349     if (actp != NULL) {
  4350       chained = call_chained_handler(actp, sig, siginfo, context);
  4353   return chained;
  4356 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  4357   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  4358     return &sigact[sig];
  4360   return NULL;
  4363 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4364   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4365   sigact[sig] = oldAct;
  4366   sigs |= (unsigned int)1 << sig;
  4369 // for diagnostic
  4370 int os::Linux::sigflags[MAXSIGNUM];
  4372 int os::Linux::get_our_sigflags(int sig) {
  4373   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4374   return sigflags[sig];
  4377 void os::Linux::set_our_sigflags(int sig, int flags) {
  4378   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4379   sigflags[sig] = flags;
  4382 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  4383   // Check for overwrite.
  4384   struct sigaction oldAct;
  4385   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4387   void* oldhand = oldAct.sa_sigaction
  4388                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4389                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4390   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4391       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4392       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  4393     if (AllowUserSignalHandlers || !set_installed) {
  4394       // Do not overwrite; user takes responsibility to forward to us.
  4395       return;
  4396     } else if (UseSignalChaining) {
  4397       // save the old handler in jvm
  4398       save_preinstalled_handler(sig, oldAct);
  4399       // libjsig also interposes the sigaction() call below and saves the
  4400       // old sigaction on it own.
  4401     } else {
  4402       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4403                     "%#lx for signal %d.", (long)oldhand, sig));
  4407   struct sigaction sigAct;
  4408   sigfillset(&(sigAct.sa_mask));
  4409   sigAct.sa_handler = SIG_DFL;
  4410   if (!set_installed) {
  4411     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4412   } else {
  4413     sigAct.sa_sigaction = signalHandler;
  4414     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4416   // Save flags, which are set by ours
  4417   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4418   sigflags[sig] = sigAct.sa_flags;
  4420   int ret = sigaction(sig, &sigAct, &oldAct);
  4421   assert(ret == 0, "check");
  4423   void* oldhand2  = oldAct.sa_sigaction
  4424                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4425                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4426   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4429 // install signal handlers for signals that HotSpot needs to
  4430 // handle in order to support Java-level exception handling.
  4432 void os::Linux::install_signal_handlers() {
  4433   if (!signal_handlers_are_installed) {
  4434     signal_handlers_are_installed = true;
  4436     // signal-chaining
  4437     typedef void (*signal_setting_t)();
  4438     signal_setting_t begin_signal_setting = NULL;
  4439     signal_setting_t end_signal_setting = NULL;
  4440     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4441                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4442     if (begin_signal_setting != NULL) {
  4443       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4444                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4445       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4446                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4447       libjsig_is_loaded = true;
  4448       assert(UseSignalChaining, "should enable signal-chaining");
  4450     if (libjsig_is_loaded) {
  4451       // Tell libjsig jvm is setting signal handlers
  4452       (*begin_signal_setting)();
  4455     set_signal_handler(SIGSEGV, true);
  4456     set_signal_handler(SIGPIPE, true);
  4457     set_signal_handler(SIGBUS, true);
  4458     set_signal_handler(SIGILL, true);
  4459     set_signal_handler(SIGFPE, true);
  4460 #if defined(PPC64)
  4461     set_signal_handler(SIGTRAP, true);
  4462 #endif
  4463     set_signal_handler(SIGXFSZ, true);
  4465     if (libjsig_is_loaded) {
  4466       // Tell libjsig jvm finishes setting signal handlers
  4467       (*end_signal_setting)();
  4470     // We don't activate signal checker if libjsig is in place, we trust ourselves
  4471     // and if UserSignalHandler is installed all bets are off.
  4472     // Log that signal checking is off only if -verbose:jni is specified.
  4473     if (CheckJNICalls) {
  4474       if (libjsig_is_loaded) {
  4475         if (PrintJNIResolving) {
  4476           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4478         check_signals = false;
  4480       if (AllowUserSignalHandlers) {
  4481         if (PrintJNIResolving) {
  4482           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4484         check_signals = false;
  4490 // This is the fastest way to get thread cpu time on Linux.
  4491 // Returns cpu time (user+sys) for any thread, not only for current.
  4492 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  4493 // It might work on 2.6.10+ with a special kernel/glibc patch.
  4494 // For reference, please, see IEEE Std 1003.1-2004:
  4495 //   http://www.unix.org/single_unix_specification
  4497 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  4498   struct timespec tp;
  4499   int rc = os::Linux::clock_gettime(clockid, &tp);
  4500   assert(rc == 0, "clock_gettime is expected to return 0 code");
  4502   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
  4505 /////
  4506 // glibc on Linux platform uses non-documented flag
  4507 // to indicate, that some special sort of signal
  4508 // trampoline is used.
  4509 // We will never set this flag, and we should
  4510 // ignore this flag in our diagnostic
  4511 #ifdef SIGNIFICANT_SIGNAL_MASK
  4512 #undef SIGNIFICANT_SIGNAL_MASK
  4513 #endif
  4514 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  4516 static const char* get_signal_handler_name(address handler,
  4517                                            char* buf, int buflen) {
  4518   int offset;
  4519   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  4520   if (found) {
  4521     // skip directory names
  4522     const char *p1, *p2;
  4523     p1 = buf;
  4524     size_t len = strlen(os::file_separator());
  4525     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  4526     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  4527   } else {
  4528     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  4530   return buf;
  4533 static void print_signal_handler(outputStream* st, int sig,
  4534                                  char* buf, size_t buflen) {
  4535   struct sigaction sa;
  4537   sigaction(sig, NULL, &sa);
  4539   // See comment for SIGNIFICANT_SIGNAL_MASK define
  4540   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4542   st->print("%s: ", os::exception_name(sig, buf, buflen));
  4544   address handler = (sa.sa_flags & SA_SIGINFO)
  4545     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  4546     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  4548   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  4549     st->print("SIG_DFL");
  4550   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  4551     st->print("SIG_IGN");
  4552   } else {
  4553     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  4556   st->print(", sa_mask[0]=");
  4557   os::Posix::print_signal_set_short(st, &sa.sa_mask);
  4559   address rh = VMError::get_resetted_sighandler(sig);
  4560   // May be, handler was resetted by VMError?
  4561   if(rh != NULL) {
  4562     handler = rh;
  4563     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  4566   st->print(", sa_flags=");
  4567   os::Posix::print_sa_flags(st, sa.sa_flags);
  4569   // Check: is it our handler?
  4570   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  4571      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  4572     // It is our signal handler
  4573     // check for flags, reset system-used one!
  4574     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4575       st->print(
  4576                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  4577                 os::Linux::get_our_sigflags(sig));
  4580   st->cr();
  4584 #define DO_SIGNAL_CHECK(sig) \
  4585   if (!sigismember(&check_signal_done, sig)) \
  4586     os::Linux::check_signal_handler(sig)
  4588 // This method is a periodic task to check for misbehaving JNI applications
  4589 // under CheckJNI, we can add any periodic checks here
  4591 void os::run_periodic_checks() {
  4593   if (check_signals == false) return;
  4595   // SEGV and BUS if overridden could potentially prevent
  4596   // generation of hs*.log in the event of a crash, debugging
  4597   // such a case can be very challenging, so we absolutely
  4598   // check the following for a good measure:
  4599   DO_SIGNAL_CHECK(SIGSEGV);
  4600   DO_SIGNAL_CHECK(SIGILL);
  4601   DO_SIGNAL_CHECK(SIGFPE);
  4602   DO_SIGNAL_CHECK(SIGBUS);
  4603   DO_SIGNAL_CHECK(SIGPIPE);
  4604   DO_SIGNAL_CHECK(SIGXFSZ);
  4605 #if defined(PPC64)
  4606   DO_SIGNAL_CHECK(SIGTRAP);
  4607 #endif
  4609   // ReduceSignalUsage allows the user to override these handlers
  4610   // see comments at the very top and jvm_solaris.h
  4611   if (!ReduceSignalUsage) {
  4612     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4613     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4614     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4615     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4618   DO_SIGNAL_CHECK(SR_signum);
  4619   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4622 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4624 static os_sigaction_t os_sigaction = NULL;
  4626 void os::Linux::check_signal_handler(int sig) {
  4627   char buf[O_BUFLEN];
  4628   address jvmHandler = NULL;
  4631   struct sigaction act;
  4632   if (os_sigaction == NULL) {
  4633     // only trust the default sigaction, in case it has been interposed
  4634     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4635     if (os_sigaction == NULL) return;
  4638   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4641   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4643   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4644     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4645     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4648   switch(sig) {
  4649   case SIGSEGV:
  4650   case SIGBUS:
  4651   case SIGFPE:
  4652   case SIGPIPE:
  4653   case SIGILL:
  4654   case SIGXFSZ:
  4655     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4656     break;
  4658   case SHUTDOWN1_SIGNAL:
  4659   case SHUTDOWN2_SIGNAL:
  4660   case SHUTDOWN3_SIGNAL:
  4661   case BREAK_SIGNAL:
  4662     jvmHandler = (address)user_handler();
  4663     break;
  4665   case INTERRUPT_SIGNAL:
  4666     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4667     break;
  4669   default:
  4670     if (sig == SR_signum) {
  4671       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4672     } else {
  4673       return;
  4675     break;
  4678   if (thisHandler != jvmHandler) {
  4679     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4680     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4681     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4682     // No need to check this sig any longer
  4683     sigaddset(&check_signal_done, sig);
  4684   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4685     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4686     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  4687     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4688     // No need to check this sig any longer
  4689     sigaddset(&check_signal_done, sig);
  4692   // Dump all the signal
  4693   if (sigismember(&check_signal_done, sig)) {
  4694     print_signal_handlers(tty, buf, O_BUFLEN);
  4698 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4700 extern bool signal_name(int signo, char* buf, size_t len);
  4702 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4703   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4704     // signal
  4705     if (!signal_name(exception_code, buf, size)) {
  4706       jio_snprintf(buf, size, "SIG%d", exception_code);
  4708     return buf;
  4709   } else {
  4710     return NULL;
  4714 // this is called _before_ the most of global arguments have been parsed
  4715 void os::init(void) {
  4716   char dummy;   /* used to get a guess on initial stack address */
  4717 //  first_hrtime = gethrtime();
  4719   // With LinuxThreads the JavaMain thread pid (primordial thread)
  4720   // is different than the pid of the java launcher thread.
  4721   // So, on Linux, the launcher thread pid is passed to the VM
  4722   // via the sun.java.launcher.pid property.
  4723   // Use this property instead of getpid() if it was correctly passed.
  4724   // See bug 6351349.
  4725   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  4727   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  4729   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  4731   init_random(1234567);
  4733   ThreadCritical::initialize();
  4735   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  4736   if (Linux::page_size() == -1) {
  4737     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  4738                   strerror(errno)));
  4740   init_page_sizes((size_t) Linux::page_size());
  4742   Linux::initialize_system_info();
  4744   // main_thread points to the aboriginal thread
  4745   Linux::_main_thread = pthread_self();
  4747   Linux::clock_init();
  4748   initial_time_count = javaTimeNanos();
  4750   // pthread_condattr initialization for monotonic clock
  4751   int status;
  4752   pthread_condattr_t* _condattr = os::Linux::condAttr();
  4753   if ((status = pthread_condattr_init(_condattr)) != 0) {
  4754     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
  4756   // Only set the clock if CLOCK_MONOTONIC is available
  4757   if (Linux::supports_monotonic_clock()) {
  4758     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
  4759       if (status == EINVAL) {
  4760         warning("Unable to use monotonic clock with relative timed-waits" \
  4761                 " - changes to the time-of-day clock may have adverse affects");
  4762       } else {
  4763         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
  4767   // else it defaults to CLOCK_REALTIME
  4769   pthread_mutex_init(&dl_mutex, NULL);
  4771   // If the pagesize of the VM is greater than 8K determine the appropriate
  4772   // number of initial guard pages.  The user can change this with the
  4773   // command line arguments, if needed.
  4774   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
  4775     StackYellowPages = 1;
  4776     StackRedPages = 1;
  4777     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
  4781 // To install functions for atexit system call
  4782 extern "C" {
  4783   static void perfMemory_exit_helper() {
  4784     perfMemory_exit();
  4788 // this is called _after_ the global arguments have been parsed
  4789 jint os::init_2(void)
  4791   Linux::fast_thread_clock_init();
  4793   // Allocate a single page and mark it as readable for safepoint polling
  4794   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4795   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  4797   os::set_polling_page( polling_page );
  4799 #ifndef PRODUCT
  4800   if(Verbose && PrintMiscellaneous)
  4801     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4802 #endif
  4804   if (!UseMembar) {
  4805     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4806     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
  4807     os::set_memory_serialize_page( mem_serialize_page );
  4809 #ifndef PRODUCT
  4810     if(Verbose && PrintMiscellaneous)
  4811       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4812 #endif
  4815   // initialize suspend/resume support - must do this before signal_sets_init()
  4816   if (SR_initialize() != 0) {
  4817     perror("SR_initialize failed");
  4818     return JNI_ERR;
  4821   Linux::signal_sets_init();
  4822   Linux::install_signal_handlers();
  4824   // Check minimum allowable stack size for thread creation and to initialize
  4825   // the java system classes, including StackOverflowError - depends on page
  4826   // size.  Add a page for compiler2 recursion in main thread.
  4827   // Add in 2*BytesPerWord times page size to account for VM stack during
  4828   // class initialization depending on 32 or 64 bit VM.
  4829   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  4830             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
  4831                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
  4833   size_t threadStackSizeInBytes = ThreadStackSize * K;
  4834   if (threadStackSizeInBytes != 0 &&
  4835       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
  4836         tty->print_cr("\nThe stack size specified is too small, "
  4837                       "Specify at least %dk",
  4838                       os::Linux::min_stack_allowed/ K);
  4839         return JNI_ERR;
  4842   // Make the stack size a multiple of the page size so that
  4843   // the yellow/red zones can be guarded.
  4844   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  4845         vm_page_size()));
  4847   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  4849 #if defined(IA32)
  4850   workaround_expand_exec_shield_cs_limit();
  4851 #endif
  4853   Linux::libpthread_init();
  4854   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  4855      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  4856           Linux::glibc_version(), Linux::libpthread_version(),
  4857           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  4860   if (UseNUMA) {
  4861     if (!Linux::libnuma_init()) {
  4862       UseNUMA = false;
  4863     } else {
  4864       if ((Linux::numa_max_node() < 1)) {
  4865         // There's only one node(they start from 0), disable NUMA.
  4866         UseNUMA = false;
  4869     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
  4870     // we can make the adaptive lgrp chunk resizing work. If the user specified
  4871     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
  4872     // disable adaptive resizing.
  4873     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
  4874       if (FLAG_IS_DEFAULT(UseNUMA)) {
  4875         UseNUMA = false;
  4876       } else {
  4877         if (FLAG_IS_DEFAULT(UseLargePages) &&
  4878             FLAG_IS_DEFAULT(UseSHM) &&
  4879             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
  4880           UseLargePages = false;
  4881         } else {
  4882           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
  4883           UseAdaptiveSizePolicy = false;
  4884           UseAdaptiveNUMAChunkSizing = false;
  4888     if (!UseNUMA && ForceNUMA) {
  4889       UseNUMA = true;
  4893   if (MaxFDLimit) {
  4894     // set the number of file descriptors to max. print out error
  4895     // if getrlimit/setrlimit fails but continue regardless.
  4896     struct rlimit nbr_files;
  4897     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  4898     if (status != 0) {
  4899       if (PrintMiscellaneous && (Verbose || WizardMode))
  4900         perror("os::init_2 getrlimit failed");
  4901     } else {
  4902       nbr_files.rlim_cur = nbr_files.rlim_max;
  4903       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  4904       if (status != 0) {
  4905         if (PrintMiscellaneous && (Verbose || WizardMode))
  4906           perror("os::init_2 setrlimit failed");
  4911   // Initialize lock used to serialize thread creation (see os::create_thread)
  4912   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  4914   // at-exit methods are called in the reverse order of their registration.
  4915   // atexit functions are called on return from main or as a result of a
  4916   // call to exit(3C). There can be only 32 of these functions registered
  4917   // and atexit() does not set errno.
  4919   if (PerfAllowAtExitRegistration) {
  4920     // only register atexit functions if PerfAllowAtExitRegistration is set.
  4921     // atexit functions can be delayed until process exit time, which
  4922     // can be problematic for embedded VM situations. Embedded VMs should
  4923     // call DestroyJavaVM() to assure that VM resources are released.
  4925     // note: perfMemory_exit_helper atexit function may be removed in
  4926     // the future if the appropriate cleanup code can be added to the
  4927     // VM_Exit VMOperation's doit method.
  4928     if (atexit(perfMemory_exit_helper) != 0) {
  4929       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  4933   // initialize thread priority policy
  4934   prio_init();
  4936   return JNI_OK;
  4939 // this is called at the end of vm_initialization
  4940 void os::init_3(void) {
  4941 #ifdef JAVASE_EMBEDDED
  4942   // Start the MemNotifyThread
  4943   if (LowMemoryProtection) {
  4944     MemNotifyThread::start();
  4946   return;
  4947 #endif
  4950 // Mark the polling page as unreadable
  4951 void os::make_polling_page_unreadable(void) {
  4952   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  4953     fatal("Could not disable polling page");
  4954 };
  4956 // Mark the polling page as readable
  4957 void os::make_polling_page_readable(void) {
  4958   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  4959     fatal("Could not enable polling page");
  4961 };
  4963 int os::active_processor_count() {
  4964   // Linux doesn't yet have a (official) notion of processor sets,
  4965   // so just return the number of online processors.
  4966   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  4967   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  4968   return online_cpus;
  4971 void os::set_native_thread_name(const char *name) {
  4972   // Not yet implemented.
  4973   return;
  4976 bool os::distribute_processes(uint length, uint* distribution) {
  4977   // Not yet implemented.
  4978   return false;
  4981 bool os::bind_to_processor(uint processor_id) {
  4982   // Not yet implemented.
  4983   return false;
  4986 ///
  4988 void os::SuspendedThreadTask::internal_do_task() {
  4989   if (do_suspend(_thread->osthread())) {
  4990     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
  4991     do_task(context);
  4992     do_resume(_thread->osthread());
  4996 class PcFetcher : public os::SuspendedThreadTask {
  4997 public:
  4998   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
  4999   ExtendedPC result();
  5000 protected:
  5001   void do_task(const os::SuspendedThreadTaskContext& context);
  5002 private:
  5003   ExtendedPC _epc;
  5004 };
  5006 ExtendedPC PcFetcher::result() {
  5007   guarantee(is_done(), "task is not done yet.");
  5008   return _epc;
  5011 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
  5012   Thread* thread = context.thread();
  5013   OSThread* osthread = thread->osthread();
  5014   if (osthread->ucontext() != NULL) {
  5015     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
  5016   } else {
  5017     // NULL context is unexpected, double-check this is the VMThread
  5018     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  5022 // Suspends the target using the signal mechanism and then grabs the PC before
  5023 // resuming the target. Used by the flat-profiler only
  5024 ExtendedPC os::get_thread_pc(Thread* thread) {
  5025   // Make sure that it is called by the watcher for the VMThread
  5026   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  5027   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  5029   PcFetcher fetcher(thread);
  5030   fetcher.run();
  5031   return fetcher.result();
  5034 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  5036    if (is_NPTL()) {
  5037       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  5038    } else {
  5039       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  5040       // word back to default 64bit precision if condvar is signaled. Java
  5041       // wants 53bit precision.  Save and restore current value.
  5042       int fpu = get_fpu_control_word();
  5043       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  5044       set_fpu_control_word(fpu);
  5045       return status;
  5049 ////////////////////////////////////////////////////////////////////////////////
  5050 // debug support
  5052 bool os::find(address addr, outputStream* st) {
  5053   Dl_info dlinfo;
  5054   memset(&dlinfo, 0, sizeof(dlinfo));
  5055   if (dladdr(addr, &dlinfo) != 0) {
  5056     st->print(PTR_FORMAT ": ", addr);
  5057     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
  5058       st->print("%s+%#x", dlinfo.dli_sname,
  5059                  addr - (intptr_t)dlinfo.dli_saddr);
  5060     } else if (dlinfo.dli_fbase != NULL) {
  5061       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  5062     } else {
  5063       st->print("<absolute address>");
  5065     if (dlinfo.dli_fname != NULL) {
  5066       st->print(" in %s", dlinfo.dli_fname);
  5068     if (dlinfo.dli_fbase != NULL) {
  5069       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  5071     st->cr();
  5073     if (Verbose) {
  5074       // decode some bytes around the PC
  5075       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  5076       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  5077       address       lowest = (address) dlinfo.dli_sname;
  5078       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5079       if (begin < lowest)  begin = lowest;
  5080       Dl_info dlinfo2;
  5081       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5082           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5083         end = (address) dlinfo2.dli_saddr;
  5084       Disassembler::decode(begin, end, st);
  5086     return true;
  5088   return false;
  5091 ////////////////////////////////////////////////////////////////////////////////
  5092 // misc
  5094 // This does not do anything on Linux. This is basically a hook for being
  5095 // able to use structured exception handling (thread-local exception filters)
  5096 // on, e.g., Win32.
  5097 void
  5098 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  5099                          JavaCallArguments* args, Thread* thread) {
  5100   f(value, method, args, thread);
  5103 void os::print_statistics() {
  5106 int os::message_box(const char* title, const char* message) {
  5107   int i;
  5108   fdStream err(defaultStream::error_fd());
  5109   for (i = 0; i < 78; i++) err.print_raw("=");
  5110   err.cr();
  5111   err.print_raw_cr(title);
  5112   for (i = 0; i < 78; i++) err.print_raw("-");
  5113   err.cr();
  5114   err.print_raw_cr(message);
  5115   for (i = 0; i < 78; i++) err.print_raw("=");
  5116   err.cr();
  5118   char buf[16];
  5119   // Prevent process from exiting upon "read error" without consuming all CPU
  5120   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  5122   return buf[0] == 'y' || buf[0] == 'Y';
  5125 int os::stat(const char *path, struct stat *sbuf) {
  5126   char pathbuf[MAX_PATH];
  5127   if (strlen(path) > MAX_PATH - 1) {
  5128     errno = ENAMETOOLONG;
  5129     return -1;
  5131   os::native_path(strcpy(pathbuf, path));
  5132   return ::stat(pathbuf, sbuf);
  5135 bool os::check_heap(bool force) {
  5136   return true;
  5139 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  5140   return ::vsnprintf(buf, count, format, args);
  5143 // Is a (classpath) directory empty?
  5144 bool os::dir_is_empty(const char* path) {
  5145   DIR *dir = NULL;
  5146   struct dirent *ptr;
  5148   dir = opendir(path);
  5149   if (dir == NULL) return true;
  5151   /* Scan the directory */
  5152   bool result = true;
  5153   char buf[sizeof(struct dirent) + MAX_PATH];
  5154   while (result && (ptr = ::readdir(dir)) != NULL) {
  5155     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5156       result = false;
  5159   closedir(dir);
  5160   return result;
  5163 // This code originates from JDK's sysOpen and open64_w
  5164 // from src/solaris/hpi/src/system_md.c
  5166 #ifndef O_DELETE
  5167 #define O_DELETE 0x10000
  5168 #endif
  5170 // Open a file. Unlink the file immediately after open returns
  5171 // if the specified oflag has the O_DELETE flag set.
  5172 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5174 int os::open(const char *path, int oflag, int mode) {
  5176   if (strlen(path) > MAX_PATH - 1) {
  5177     errno = ENAMETOOLONG;
  5178     return -1;
  5180   int fd;
  5181   int o_delete = (oflag & O_DELETE);
  5182   oflag = oflag & ~O_DELETE;
  5184   fd = ::open64(path, oflag, mode);
  5185   if (fd == -1) return -1;
  5187   //If the open succeeded, the file might still be a directory
  5189     struct stat64 buf64;
  5190     int ret = ::fstat64(fd, &buf64);
  5191     int st_mode = buf64.st_mode;
  5193     if (ret != -1) {
  5194       if ((st_mode & S_IFMT) == S_IFDIR) {
  5195         errno = EISDIR;
  5196         ::close(fd);
  5197         return -1;
  5199     } else {
  5200       ::close(fd);
  5201       return -1;
  5205     /*
  5206      * All file descriptors that are opened in the JVM and not
  5207      * specifically destined for a subprocess should have the
  5208      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5209      * party native code might fork and exec without closing all
  5210      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5211      * UNIXProcess.c), and this in turn might:
  5213      * - cause end-of-file to fail to be detected on some file
  5214      *   descriptors, resulting in mysterious hangs, or
  5216      * - might cause an fopen in the subprocess to fail on a system
  5217      *   suffering from bug 1085341.
  5219      * (Yes, the default setting of the close-on-exec flag is a Unix
  5220      * design flaw)
  5222      * See:
  5223      * 1085341: 32-bit stdio routines should support file descriptors >255
  5224      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5225      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5226      */
  5227 #ifdef FD_CLOEXEC
  5229         int flags = ::fcntl(fd, F_GETFD);
  5230         if (flags != -1)
  5231             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5233 #endif
  5235   if (o_delete != 0) {
  5236     ::unlink(path);
  5238   return fd;
  5242 // create binary file, rewriting existing file if required
  5243 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5244   int oflags = O_WRONLY | O_CREAT;
  5245   if (!rewrite_existing) {
  5246     oflags |= O_EXCL;
  5248   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5251 // return current position of file pointer
  5252 jlong os::current_file_offset(int fd) {
  5253   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5256 // move file pointer to the specified offset
  5257 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5258   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5261 // This code originates from JDK's sysAvailable
  5262 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  5264 int os::available(int fd, jlong *bytes) {
  5265   jlong cur, end;
  5266   int mode;
  5267   struct stat64 buf64;
  5269   if (::fstat64(fd, &buf64) >= 0) {
  5270     mode = buf64.st_mode;
  5271     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5272       /*
  5273       * XXX: is the following call interruptible? If so, this might
  5274       * need to go through the INTERRUPT_IO() wrapper as for other
  5275       * blocking, interruptible calls in this file.
  5276       */
  5277       int n;
  5278       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  5279         *bytes = n;
  5280         return 1;
  5284   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5285     return 0;
  5286   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5287     return 0;
  5288   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5289     return 0;
  5291   *bytes = end - cur;
  5292   return 1;
  5295 int os::socket_available(int fd, jint *pbytes) {
  5296   // Linux doc says EINTR not returned, unlike Solaris
  5297   int ret = ::ioctl(fd, FIONREAD, pbytes);
  5299   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  5300   // is expected to return 0 on failure and 1 on success to the jdk.
  5301   return (ret < 0) ? 0 : 1;
  5304 // Map a block of memory.
  5305 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  5306                      char *addr, size_t bytes, bool read_only,
  5307                      bool allow_exec) {
  5308   int prot;
  5309   int flags = MAP_PRIVATE;
  5311   if (read_only) {
  5312     prot = PROT_READ;
  5313   } else {
  5314     prot = PROT_READ | PROT_WRITE;
  5317   if (allow_exec) {
  5318     prot |= PROT_EXEC;
  5321   if (addr != NULL) {
  5322     flags |= MAP_FIXED;
  5325   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5326                                      fd, file_offset);
  5327   if (mapped_address == MAP_FAILED) {
  5328     return NULL;
  5330   return mapped_address;
  5334 // Remap a block of memory.
  5335 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  5336                        char *addr, size_t bytes, bool read_only,
  5337                        bool allow_exec) {
  5338   // same as map_memory() on this OS
  5339   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5340                         allow_exec);
  5344 // Unmap a block of memory.
  5345 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  5346   return munmap(addr, bytes) == 0;
  5349 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  5351 static clockid_t thread_cpu_clockid(Thread* thread) {
  5352   pthread_t tid = thread->osthread()->pthread_id();
  5353   clockid_t clockid;
  5355   // Get thread clockid
  5356   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  5357   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  5358   return clockid;
  5361 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5362 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5363 // of a thread.
  5364 //
  5365 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  5366 // the fast estimate available on the platform.
  5368 jlong os::current_thread_cpu_time() {
  5369   if (os::Linux::supports_fast_thread_cpu_time()) {
  5370     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5371   } else {
  5372     // return user + sys since the cost is the same
  5373     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  5377 jlong os::thread_cpu_time(Thread* thread) {
  5378   // consistent with what current_thread_cpu_time() returns
  5379   if (os::Linux::supports_fast_thread_cpu_time()) {
  5380     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5381   } else {
  5382     return slow_thread_cpu_time(thread, true /* user + sys */);
  5386 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5387   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5388     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5389   } else {
  5390     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5394 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5395   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5396     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5397   } else {
  5398     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  5402 //
  5403 //  -1 on error.
  5404 //
  5406 PRAGMA_DIAG_PUSH
  5407 PRAGMA_FORMAT_NONLITERAL_IGNORED
  5408 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5409   static bool proc_task_unchecked = true;
  5410   static const char *proc_stat_path = "/proc/%d/stat";
  5411   pid_t  tid = thread->osthread()->thread_id();
  5412   char *s;
  5413   char stat[2048];
  5414   int statlen;
  5415   char proc_name[64];
  5416   int count;
  5417   long sys_time, user_time;
  5418   char cdummy;
  5419   int idummy;
  5420   long ldummy;
  5421   FILE *fp;
  5423   // The /proc/<tid>/stat aggregates per-process usage on
  5424   // new Linux kernels 2.6+ where NPTL is supported.
  5425   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  5426   // See bug 6328462.
  5427   // There possibly can be cases where there is no directory
  5428   // /proc/self/task, so we check its availability.
  5429   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  5430     // This is executed only once
  5431     proc_task_unchecked = false;
  5432     fp = fopen("/proc/self/task", "r");
  5433     if (fp != NULL) {
  5434       proc_stat_path = "/proc/self/task/%d/stat";
  5435       fclose(fp);
  5439   sprintf(proc_name, proc_stat_path, tid);
  5440   fp = fopen(proc_name, "r");
  5441   if ( fp == NULL ) return -1;
  5442   statlen = fread(stat, 1, 2047, fp);
  5443   stat[statlen] = '\0';
  5444   fclose(fp);
  5446   // Skip pid and the command string. Note that we could be dealing with
  5447   // weird command names, e.g. user could decide to rename java launcher
  5448   // to "java 1.4.2 :)", then the stat file would look like
  5449   //                1234 (java 1.4.2 :)) R ... ...
  5450   // We don't really need to know the command string, just find the last
  5451   // occurrence of ")" and then start parsing from there. See bug 4726580.
  5452   s = strrchr(stat, ')');
  5453   if (s == NULL ) return -1;
  5455   // Skip blank chars
  5456   do s++; while (isspace(*s));
  5458   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  5459                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  5460                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  5461                  &user_time, &sys_time);
  5462   if ( count != 13 ) return -1;
  5463   if (user_sys_cpu_time) {
  5464     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  5465   } else {
  5466     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  5469 PRAGMA_DIAG_POP
  5471 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5472   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5473   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5474   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5475   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5478 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5479   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5480   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5481   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5482   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5485 bool os::is_thread_cpu_time_supported() {
  5486   return true;
  5489 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5490 // Linux doesn't yet have a (official) notion of processor sets,
  5491 // so just return the system wide load average.
  5492 int os::loadavg(double loadavg[], int nelem) {
  5493   return ::getloadavg(loadavg, nelem);
  5496 void os::pause() {
  5497   char filename[MAX_PATH];
  5498   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5499     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5500   } else {
  5501     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5504   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5505   if (fd != -1) {
  5506     struct stat buf;
  5507     ::close(fd);
  5508     while (::stat(filename, &buf) == 0) {
  5509       (void)::poll(NULL, 0, 100);
  5511   } else {
  5512     jio_fprintf(stderr,
  5513       "Could not open pause file '%s', continuing immediately.\n", filename);
  5518 // Refer to the comments in os_solaris.cpp park-unpark.
  5519 //
  5520 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  5521 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  5522 // For specifics regarding the bug see GLIBC BUGID 261237 :
  5523 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  5524 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  5525 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  5526 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  5527 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  5528 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  5529 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  5530 // of libpthread avoids the problem, but isn't practical.
  5531 //
  5532 // Possible remedies:
  5533 //
  5534 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  5535 //      This is palliative and probabilistic, however.  If the thread is preempted
  5536 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  5537 //      than the minimum period may have passed, and the abstime may be stale (in the
  5538 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  5539 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  5540 //
  5541 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  5542 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  5543 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  5544 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  5545 //      thread.
  5546 //
  5547 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  5548 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  5549 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  5550 //      This also works well.  In fact it avoids kernel-level scalability impediments
  5551 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  5552 //      timers in a graceful fashion.
  5553 //
  5554 // 4.   When the abstime value is in the past it appears that control returns
  5555 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  5556 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  5557 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  5558 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  5559 //      It may be possible to avoid reinitialization by checking the return
  5560 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  5561 //      condvar we must establish the invariant that cond_signal() is only called
  5562 //      within critical sections protected by the adjunct mutex.  This prevents
  5563 //      cond_signal() from "seeing" a condvar that's in the midst of being
  5564 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  5565 //      desirable signal-after-unlock optimization that avoids futile context switching.
  5566 //
  5567 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  5568 //      structure when a condvar is used or initialized.  cond_destroy()  would
  5569 //      release the helper structure.  Our reinitialize-after-timedwait fix
  5570 //      put excessive stress on malloc/free and locks protecting the c-heap.
  5571 //
  5572 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  5573 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  5574 // and only enabling the work-around for vulnerable environments.
  5576 // utility to compute the abstime argument to timedwait:
  5577 // millis is the relative timeout time
  5578 // abstime will be the absolute timeout time
  5579 // TODO: replace compute_abstime() with unpackTime()
  5581 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  5582   if (millis < 0)  millis = 0;
  5584   jlong seconds = millis / 1000;
  5585   millis %= 1000;
  5586   if (seconds > 50000000) { // see man cond_timedwait(3T)
  5587     seconds = 50000000;
  5590   if (os::Linux::supports_monotonic_clock()) {
  5591     struct timespec now;
  5592     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  5593     assert_status(status == 0, status, "clock_gettime");
  5594     abstime->tv_sec = now.tv_sec  + seconds;
  5595     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
  5596     if (nanos >= NANOSECS_PER_SEC) {
  5597       abstime->tv_sec += 1;
  5598       nanos -= NANOSECS_PER_SEC;
  5600     abstime->tv_nsec = nanos;
  5601   } else {
  5602     struct timeval now;
  5603     int status = gettimeofday(&now, NULL);
  5604     assert(status == 0, "gettimeofday");
  5605     abstime->tv_sec = now.tv_sec  + seconds;
  5606     long usec = now.tv_usec + millis * 1000;
  5607     if (usec >= 1000000) {
  5608       abstime->tv_sec += 1;
  5609       usec -= 1000000;
  5611     abstime->tv_nsec = usec * 1000;
  5613   return abstime;
  5617 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5618 // Conceptually TryPark() should be equivalent to park(0).
  5620 int os::PlatformEvent::TryPark() {
  5621   for (;;) {
  5622     const int v = _Event ;
  5623     guarantee ((v == 0) || (v == 1), "invariant") ;
  5624     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5628 void os::PlatformEvent::park() {       // AKA "down()"
  5629   // Invariant: Only the thread associated with the Event/PlatformEvent
  5630   // may call park().
  5631   // TODO: assert that _Assoc != NULL or _Assoc == Self
  5632   int v ;
  5633   for (;;) {
  5634       v = _Event ;
  5635       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5637   guarantee (v >= 0, "invariant") ;
  5638   if (v == 0) {
  5639      // Do this the hard way by blocking ...
  5640      int status = pthread_mutex_lock(_mutex);
  5641      assert_status(status == 0, status, "mutex_lock");
  5642      guarantee (_nParked == 0, "invariant") ;
  5643      ++ _nParked ;
  5644      while (_Event < 0) {
  5645         status = pthread_cond_wait(_cond, _mutex);
  5646         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5647         // Treat this the same as if the wait was interrupted
  5648         if (status == ETIME) { status = EINTR; }
  5649         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5651      -- _nParked ;
  5653     _Event = 0 ;
  5654      status = pthread_mutex_unlock(_mutex);
  5655      assert_status(status == 0, status, "mutex_unlock");
  5656     // Paranoia to ensure our locked and lock-free paths interact
  5657     // correctly with each other.
  5658     OrderAccess::fence();
  5660   guarantee (_Event >= 0, "invariant") ;
  5663 int os::PlatformEvent::park(jlong millis) {
  5664   guarantee (_nParked == 0, "invariant") ;
  5666   int v ;
  5667   for (;;) {
  5668       v = _Event ;
  5669       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5671   guarantee (v >= 0, "invariant") ;
  5672   if (v != 0) return OS_OK ;
  5674   // We do this the hard way, by blocking the thread.
  5675   // Consider enforcing a minimum timeout value.
  5676   struct timespec abst;
  5677   compute_abstime(&abst, millis);
  5679   int ret = OS_TIMEOUT;
  5680   int status = pthread_mutex_lock(_mutex);
  5681   assert_status(status == 0, status, "mutex_lock");
  5682   guarantee (_nParked == 0, "invariant") ;
  5683   ++_nParked ;
  5685   // Object.wait(timo) will return because of
  5686   // (a) notification
  5687   // (b) timeout
  5688   // (c) thread.interrupt
  5689   //
  5690   // Thread.interrupt and object.notify{All} both call Event::set.
  5691   // That is, we treat thread.interrupt as a special case of notification.
  5692   // The underlying Solaris implementation, cond_timedwait, admits
  5693   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  5694   // JVM from making those visible to Java code.  As such, we must
  5695   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  5696   //
  5697   // TODO: properly differentiate simultaneous notify+interrupt.
  5698   // In that case, we should propagate the notify to another waiter.
  5700   while (_Event < 0) {
  5701     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  5702     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5703       pthread_cond_destroy (_cond);
  5704       pthread_cond_init (_cond, os::Linux::condAttr()) ;
  5706     assert_status(status == 0 || status == EINTR ||
  5707                   status == ETIME || status == ETIMEDOUT,
  5708                   status, "cond_timedwait");
  5709     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  5710     if (status == ETIME || status == ETIMEDOUT) break ;
  5711     // We consume and ignore EINTR and spurious wakeups.
  5713   --_nParked ;
  5714   if (_Event >= 0) {
  5715      ret = OS_OK;
  5717   _Event = 0 ;
  5718   status = pthread_mutex_unlock(_mutex);
  5719   assert_status(status == 0, status, "mutex_unlock");
  5720   assert (_nParked == 0, "invariant") ;
  5721   // Paranoia to ensure our locked and lock-free paths interact
  5722   // correctly with each other.
  5723   OrderAccess::fence();
  5724   return ret;
  5727 void os::PlatformEvent::unpark() {
  5728   // Transitions for _Event:
  5729   //    0 :=> 1
  5730   //    1 :=> 1
  5731   //   -1 :=> either 0 or 1; must signal target thread
  5732   //          That is, we can safely transition _Event from -1 to either
  5733   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  5734   //          unpark() calls.
  5735   // See also: "Semaphores in Plan 9" by Mullender & Cox
  5736   //
  5737   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  5738   // that it will take two back-to-back park() calls for the owning
  5739   // thread to block. This has the benefit of forcing a spurious return
  5740   // from the first park() call after an unpark() call which will help
  5741   // shake out uses of park() and unpark() without condition variables.
  5743   if (Atomic::xchg(1, &_Event) >= 0) return;
  5745   // Wait for the thread associated with the event to vacate
  5746   int status = pthread_mutex_lock(_mutex);
  5747   assert_status(status == 0, status, "mutex_lock");
  5748   int AnyWaiters = _nParked;
  5749   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  5750   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  5751     AnyWaiters = 0;
  5752     pthread_cond_signal(_cond);
  5754   status = pthread_mutex_unlock(_mutex);
  5755   assert_status(status == 0, status, "mutex_unlock");
  5756   if (AnyWaiters != 0) {
  5757     status = pthread_cond_signal(_cond);
  5758     assert_status(status == 0, status, "cond_signal");
  5761   // Note that we signal() _after dropping the lock for "immortal" Events.
  5762   // This is safe and avoids a common class of  futile wakeups.  In rare
  5763   // circumstances this can cause a thread to return prematurely from
  5764   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  5765   // simply re-test the condition and re-park itself.
  5769 // JSR166
  5770 // -------------------------------------------------------
  5772 /*
  5773  * The solaris and linux implementations of park/unpark are fairly
  5774  * conservative for now, but can be improved. They currently use a
  5775  * mutex/condvar pair, plus a a count.
  5776  * Park decrements count if > 0, else does a condvar wait.  Unpark
  5777  * sets count to 1 and signals condvar.  Only one thread ever waits
  5778  * on the condvar. Contention seen when trying to park implies that someone
  5779  * is unparking you, so don't wait. And spurious returns are fine, so there
  5780  * is no need to track notifications.
  5781  */
  5783 /*
  5784  * This code is common to linux and solaris and will be moved to a
  5785  * common place in dolphin.
  5787  * The passed in time value is either a relative time in nanoseconds
  5788  * or an absolute time in milliseconds. Either way it has to be unpacked
  5789  * into suitable seconds and nanoseconds components and stored in the
  5790  * given timespec structure.
  5791  * Given time is a 64-bit value and the time_t used in the timespec is only
  5792  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  5793  * overflow if times way in the future are given. Further on Solaris versions
  5794  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  5795  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  5796  * As it will be 28 years before "now + 100000000" will overflow we can
  5797  * ignore overflow and just impose a hard-limit on seconds using the value
  5798  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  5799  * years from "now".
  5800  */
  5802 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  5803   assert (time > 0, "convertTime");
  5804   time_t max_secs = 0;
  5806   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
  5807     struct timeval now;
  5808     int status = gettimeofday(&now, NULL);
  5809     assert(status == 0, "gettimeofday");
  5811     max_secs = now.tv_sec + MAX_SECS;
  5813     if (isAbsolute) {
  5814       jlong secs = time / 1000;
  5815       if (secs > max_secs) {
  5816         absTime->tv_sec = max_secs;
  5817       } else {
  5818         absTime->tv_sec = secs;
  5820       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  5821     } else {
  5822       jlong secs = time / NANOSECS_PER_SEC;
  5823       if (secs >= MAX_SECS) {
  5824         absTime->tv_sec = max_secs;
  5825         absTime->tv_nsec = 0;
  5826       } else {
  5827         absTime->tv_sec = now.tv_sec + secs;
  5828         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  5829         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5830           absTime->tv_nsec -= NANOSECS_PER_SEC;
  5831           ++absTime->tv_sec; // note: this must be <= max_secs
  5835   } else {
  5836     // must be relative using monotonic clock
  5837     struct timespec now;
  5838     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  5839     assert_status(status == 0, status, "clock_gettime");
  5840     max_secs = now.tv_sec + MAX_SECS;
  5841     jlong secs = time / NANOSECS_PER_SEC;
  5842     if (secs >= MAX_SECS) {
  5843       absTime->tv_sec = max_secs;
  5844       absTime->tv_nsec = 0;
  5845     } else {
  5846       absTime->tv_sec = now.tv_sec + secs;
  5847       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
  5848       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5849         absTime->tv_nsec -= NANOSECS_PER_SEC;
  5850         ++absTime->tv_sec; // note: this must be <= max_secs
  5854   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  5855   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  5856   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  5857   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  5860 void Parker::park(bool isAbsolute, jlong time) {
  5861   // Ideally we'd do something useful while spinning, such
  5862   // as calling unpackTime().
  5864   // Optional fast-path check:
  5865   // Return immediately if a permit is available.
  5866   // We depend on Atomic::xchg() having full barrier semantics
  5867   // since we are doing a lock-free update to _counter.
  5868   if (Atomic::xchg(0, &_counter) > 0) return;
  5870   Thread* thread = Thread::current();
  5871   assert(thread->is_Java_thread(), "Must be JavaThread");
  5872   JavaThread *jt = (JavaThread *)thread;
  5874   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  5875   // Check interrupt before trying to wait
  5876   if (Thread::is_interrupted(thread, false)) {
  5877     return;
  5880   // Next, demultiplex/decode time arguments
  5881   timespec absTime;
  5882   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  5883     return;
  5885   if (time > 0) {
  5886     unpackTime(&absTime, isAbsolute, time);
  5890   // Enter safepoint region
  5891   // Beware of deadlocks such as 6317397.
  5892   // The per-thread Parker:: mutex is a classic leaf-lock.
  5893   // In particular a thread must never block on the Threads_lock while
  5894   // holding the Parker:: mutex.  If safepoints are pending both the
  5895   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  5896   ThreadBlockInVM tbivm(jt);
  5898   // Don't wait if cannot get lock since interference arises from
  5899   // unblocking.  Also. check interrupt before trying wait
  5900   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  5901     return;
  5904   int status ;
  5905   if (_counter > 0)  { // no wait needed
  5906     _counter = 0;
  5907     status = pthread_mutex_unlock(_mutex);
  5908     assert (status == 0, "invariant") ;
  5909     // Paranoia to ensure our locked and lock-free paths interact
  5910     // correctly with each other and Java-level accesses.
  5911     OrderAccess::fence();
  5912     return;
  5915 #ifdef ASSERT
  5916   // Don't catch signals while blocked; let the running threads have the signals.
  5917   // (This allows a debugger to break into the running thread.)
  5918   sigset_t oldsigs;
  5919   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  5920   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  5921 #endif
  5923   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  5924   jt->set_suspend_equivalent();
  5925   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  5927   assert(_cur_index == -1, "invariant");
  5928   if (time == 0) {
  5929     _cur_index = REL_INDEX; // arbitrary choice when not timed
  5930     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
  5931   } else {
  5932     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
  5933     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
  5934     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5935       pthread_cond_destroy (&_cond[_cur_index]) ;
  5936       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
  5939   _cur_index = -1;
  5940   assert_status(status == 0 || status == EINTR ||
  5941                 status == ETIME || status == ETIMEDOUT,
  5942                 status, "cond_timedwait");
  5944 #ifdef ASSERT
  5945   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  5946 #endif
  5948   _counter = 0 ;
  5949   status = pthread_mutex_unlock(_mutex) ;
  5950   assert_status(status == 0, status, "invariant") ;
  5951   // Paranoia to ensure our locked and lock-free paths interact
  5952   // correctly with each other and Java-level accesses.
  5953   OrderAccess::fence();
  5955   // If externally suspended while waiting, re-suspend
  5956   if (jt->handle_special_suspend_equivalent_condition()) {
  5957     jt->java_suspend_self();
  5961 void Parker::unpark() {
  5962   int s, status ;
  5963   status = pthread_mutex_lock(_mutex);
  5964   assert (status == 0, "invariant") ;
  5965   s = _counter;
  5966   _counter = 1;
  5967   if (s < 1) {
  5968     // thread might be parked
  5969     if (_cur_index != -1) {
  5970       // thread is definitely parked
  5971       if (WorkAroundNPTLTimedWaitHang) {
  5972         status = pthread_cond_signal (&_cond[_cur_index]);
  5973         assert (status == 0, "invariant");
  5974         status = pthread_mutex_unlock(_mutex);
  5975         assert (status == 0, "invariant");
  5976       } else {
  5977         status = pthread_mutex_unlock(_mutex);
  5978         assert (status == 0, "invariant");
  5979         status = pthread_cond_signal (&_cond[_cur_index]);
  5980         assert (status == 0, "invariant");
  5982     } else {
  5983       pthread_mutex_unlock(_mutex);
  5984       assert (status == 0, "invariant") ;
  5986   } else {
  5987     pthread_mutex_unlock(_mutex);
  5988     assert (status == 0, "invariant") ;
  5993 extern char** environ;
  5995 #ifndef __NR_fork
  5996 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
  5997 #endif
  5999 #ifndef __NR_execve
  6000 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
  6001 #endif
  6003 // Run the specified command in a separate process. Return its exit value,
  6004 // or -1 on failure (e.g. can't fork a new process).
  6005 // Unlike system(), this function can be called from signal handler. It
  6006 // doesn't block SIGINT et al.
  6007 int os::fork_and_exec(char* cmd) {
  6008   const char * argv[4] = {"sh", "-c", cmd, NULL};
  6010   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
  6011   // pthread_atfork handlers and reset pthread library. All we need is a
  6012   // separate process to execve. Make a direct syscall to fork process.
  6013   // On IA64 there's no fork syscall, we have to use fork() and hope for
  6014   // the best...
  6015   pid_t pid = NOT_IA64(syscall(__NR_fork);)
  6016               IA64_ONLY(fork();)
  6018   if (pid < 0) {
  6019     // fork failed
  6020     return -1;
  6022   } else if (pid == 0) {
  6023     // child process
  6025     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
  6026     // first to kill every thread on the thread list. Because this list is
  6027     // not reset by fork() (see notes above), execve() will instead kill
  6028     // every thread in the parent process. We know this is the only thread
  6029     // in the new process, so make a system call directly.
  6030     // IA64 should use normal execve() from glibc to match the glibc fork()
  6031     // above.
  6032     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
  6033     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
  6035     // execve failed
  6036     _exit(-1);
  6038   } else  {
  6039     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  6040     // care about the actual exit code, for now.
  6042     int status;
  6044     // Wait for the child process to exit.  This returns immediately if
  6045     // the child has already exited. */
  6046     while (waitpid(pid, &status, 0) < 0) {
  6047         switch (errno) {
  6048         case ECHILD: return 0;
  6049         case EINTR: break;
  6050         default: return -1;
  6054     if (WIFEXITED(status)) {
  6055        // The child exited normally; get its exit code.
  6056        return WEXITSTATUS(status);
  6057     } else if (WIFSIGNALED(status)) {
  6058        // The child exited because of a signal
  6059        // The best value to return is 0x80 + signal number,
  6060        // because that is what all Unix shells do, and because
  6061        // it allows callers to distinguish between process exit and
  6062        // process death by signal.
  6063        return 0x80 + WTERMSIG(status);
  6064     } else {
  6065        // Unknown exit code; pass it through
  6066        return status;
  6071 // is_headless_jre()
  6072 //
  6073 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  6074 // in order to report if we are running in a headless jre
  6075 //
  6076 // Since JDK8 xawt/libmawt.so was moved into the same directory
  6077 // as libawt.so, and renamed libawt_xawt.so
  6078 //
  6079 bool os::is_headless_jre() {
  6080     struct stat statbuf;
  6081     char buf[MAXPATHLEN];
  6082     char libmawtpath[MAXPATHLEN];
  6083     const char *xawtstr  = "/xawt/libmawt.so";
  6084     const char *new_xawtstr = "/libawt_xawt.so";
  6085     char *p;
  6087     // Get path to libjvm.so
  6088     os::jvm_path(buf, sizeof(buf));
  6090     // Get rid of libjvm.so
  6091     p = strrchr(buf, '/');
  6092     if (p == NULL) return false;
  6093     else *p = '\0';
  6095     // Get rid of client or server
  6096     p = strrchr(buf, '/');
  6097     if (p == NULL) return false;
  6098     else *p = '\0';
  6100     // check xawt/libmawt.so
  6101     strcpy(libmawtpath, buf);
  6102     strcat(libmawtpath, xawtstr);
  6103     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6105     // check libawt_xawt.so
  6106     strcpy(libmawtpath, buf);
  6107     strcat(libmawtpath, new_xawtstr);
  6108     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6110     return true;
  6113 // Get the default path to the core file
  6114 // Returns the length of the string
  6115 int os::get_core_path(char* buffer, size_t bufferSize) {
  6116   const char* p = get_current_directory(buffer, bufferSize);
  6118   if (p == NULL) {
  6119     assert(p != NULL, "failed to get current directory");
  6120     return 0;
  6123   return strlen(buffer);
  6126 #ifdef JAVASE_EMBEDDED
  6127 //
  6128 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
  6129 //
  6130 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
  6132 // ctor
  6133 //
  6134 MemNotifyThread::MemNotifyThread(int fd): Thread() {
  6135   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
  6136   _fd = fd;
  6138   if (os::create_thread(this, os::os_thread)) {
  6139     _memnotify_thread = this;
  6140     os::set_priority(this, NearMaxPriority);
  6141     os::start_thread(this);
  6145 // Where all the work gets done
  6146 //
  6147 void MemNotifyThread::run() {
  6148   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
  6150   // Set up the select arguments
  6151   fd_set rfds;
  6152   if (_fd != -1) {
  6153     FD_ZERO(&rfds);
  6154     FD_SET(_fd, &rfds);
  6157   // Now wait for the mem_notify device to wake up
  6158   while (1) {
  6159     // Wait for the mem_notify device to signal us..
  6160     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
  6161     if (rc == -1) {
  6162       perror("select!\n");
  6163       break;
  6164     } else if (rc) {
  6165       //ssize_t free_before = os::available_memory();
  6166       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
  6168       // The kernel is telling us there is not much memory left...
  6169       // try to do something about that
  6171       // If we are not already in a GC, try one.
  6172       if (!Universe::heap()->is_gc_active()) {
  6173         Universe::heap()->collect(GCCause::_allocation_failure);
  6175         //ssize_t free_after = os::available_memory();
  6176         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
  6177         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
  6179       // We might want to do something like the following if we find the GC's are not helping...
  6180       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
  6185 //
  6186 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
  6187 //
  6188 void MemNotifyThread::start() {
  6189   int    fd;
  6190   fd = open ("/dev/mem_notify", O_RDONLY, 0);
  6191   if (fd < 0) {
  6192       return;
  6195   if (memnotify_thread() == NULL) {
  6196     new MemNotifyThread(fd);
  6200 #endif // JAVASE_EMBEDDED
  6203 /////////////// Unit tests ///////////////
  6205 #ifndef PRODUCT
  6207 #define test_log(...) \
  6208   do {\
  6209     if (VerboseInternalVMTests) { \
  6210       tty->print_cr(__VA_ARGS__); \
  6211       tty->flush(); \
  6212     }\
  6213   } while (false)
  6215 class TestReserveMemorySpecial : AllStatic {
  6216  public:
  6217   static void small_page_write(void* addr, size_t size) {
  6218     size_t page_size = os::vm_page_size();
  6220     char* end = (char*)addr + size;
  6221     for (char* p = (char*)addr; p < end; p += page_size) {
  6222       *p = 1;
  6226   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
  6227     if (!UseHugeTLBFS) {
  6228       return;
  6231     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
  6233     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
  6235     if (addr != NULL) {
  6236       small_page_write(addr, size);
  6238       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6242   static void test_reserve_memory_special_huge_tlbfs_only() {
  6243     if (!UseHugeTLBFS) {
  6244       return;
  6247     size_t lp = os::large_page_size();
  6249     for (size_t size = lp; size <= lp * 10; size += lp) {
  6250       test_reserve_memory_special_huge_tlbfs_only(size);
  6254   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
  6255     if (!UseHugeTLBFS) {
  6256         return;
  6259     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
  6260         size, alignment);
  6262     assert(size >= os::large_page_size(), "Incorrect input to test");
  6264     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
  6266     if (addr != NULL) {
  6267       small_page_write(addr, size);
  6269       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6273   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
  6274     size_t lp = os::large_page_size();
  6275     size_t ag = os::vm_allocation_granularity();
  6277     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6278       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
  6282   static void test_reserve_memory_special_huge_tlbfs_mixed() {
  6283     size_t lp = os::large_page_size();
  6284     size_t ag = os::vm_allocation_granularity();
  6286     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
  6287     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
  6288     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
  6289     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
  6290     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
  6291     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
  6292     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
  6293     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
  6294     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
  6297   static void test_reserve_memory_special_huge_tlbfs() {
  6298     if (!UseHugeTLBFS) {
  6299       return;
  6302     test_reserve_memory_special_huge_tlbfs_only();
  6303     test_reserve_memory_special_huge_tlbfs_mixed();
  6306   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
  6307     if (!UseSHM) {
  6308       return;
  6311     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
  6313     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
  6315     if (addr != NULL) {
  6316       assert(is_ptr_aligned(addr, alignment), "Check");
  6317       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
  6319       small_page_write(addr, size);
  6321       os::Linux::release_memory_special_shm(addr, size);
  6325   static void test_reserve_memory_special_shm() {
  6326     size_t lp = os::large_page_size();
  6327     size_t ag = os::vm_allocation_granularity();
  6329     for (size_t size = ag; size < lp * 3; size += ag) {
  6330       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6331         test_reserve_memory_special_shm(size, alignment);
  6336   static void test() {
  6337     test_reserve_memory_special_huge_tlbfs();
  6338     test_reserve_memory_special_shm();
  6340 };
  6342 void TestReserveMemorySpecial_test() {
  6343   TestReserveMemorySpecial::test();
  6346 #endif

mercurial