src/cpu/sparc/vm/assembler_sparc.inline.hpp

Tue, 06 Oct 2009 02:11:49 -0700

author
twisti
date
Tue, 06 Oct 2009 02:11:49 -0700
changeset 1441
dcf03e02b020
parent 1162
6b2273dd6fa9
child 1858
c640000b7cc1
permissions
-rw-r--r--

6879902: CTW failure jdk6_18/hotspot/src/cpu/sparc/vm/assembler_sparc.hpp:845
Summary: For signatures with a large number of arguments the offset for the float store becomes too big and does not fit in 13-bit.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
    26   jint& stub_inst = *(jint*) branch;
    27   stub_inst = patched_branch(target - branch, stub_inst, 0);
    28 }
    30 #ifndef PRODUCT
    31 inline void MacroAssembler::pd_print_patched_instruction(address branch) {
    32   jint stub_inst = *(jint*) branch;
    33   print_instruction(stub_inst);
    34   ::tty->print("%s", " (unresolved)");
    35 }
    36 #endif // PRODUCT
    38 inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
    41 inline int AddressLiteral::low10() const {
    42   return Assembler::low10(value());
    43 }
    46 // inlines for SPARC assembler -- dmu 5/97
    48 inline void Assembler::check_delay() {
    49 # ifdef CHECK_DELAY
    50   guarantee( delay_state != at_delay_slot, "must say delayed() when filling delay slot");
    51   delay_state = no_delay;
    52 # endif
    53 }
    55 inline void Assembler::emit_long(int x) {
    56   check_delay();
    57   AbstractAssembler::emit_long(x);
    58 }
    60 inline void Assembler::emit_data(int x, relocInfo::relocType rtype) {
    61   relocate(rtype);
    62   emit_long(x);
    63 }
    65 inline void Assembler::emit_data(int x, RelocationHolder const& rspec) {
    66   relocate(rspec);
    67   emit_long(x);
    68 }
    71 inline void Assembler::add(Register s1, Register s2, Register d )                             { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); }
    72 inline void Assembler::add(Register s1, int simm13a, Register d, relocInfo::relocType rtype ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rtype ); }
    73 inline void Assembler::add(Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec ); }
    75 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bpr_op2) | wdisp16(intptr_t(d), intptr_t(pc())) | predict(p) | rs1(s1), rt);  has_delay_slot(); }
    76 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, Label& L) { bpr( c, a, p, s1, target(L)); }
    78 inline void Assembler::fb( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    79 inline void Assembler::fb( Condition c, bool a, Label& L ) { fb(c, a, target(L)); }
    81 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fbp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
    82 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) { fbp(c, a, cc, p, target(L)); }
    84 inline void Assembler::cb( Condition c, bool a, address d, relocInfo::relocType rt ) { v8_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(cb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    85 inline void Assembler::cb( Condition c, bool a, Label& L ) { cb(c, a, target(L)); }
    87 inline void Assembler::br( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();   emit_data( op(branch_op) | annul(a) | cond(c) | op2(br_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    88 inline void Assembler::br( Condition c, bool a, Label& L ) { br(c, a, target(L)); }
    90 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
    91 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) { bp(c, a, cc, p, target(L)); }
    93 inline void Assembler::call( address d,  relocInfo::relocType rt ) { emit_data( op(call_op) | wdisp(intptr_t(d), intptr_t(pc()), 30), rt);  has_delay_slot(); assert(rt != relocInfo::virtual_call_type, "must use virtual_call_Relocation::spec"); }
    94 inline void Assembler::call( Label& L,   relocInfo::relocType rt ) { call( target(L), rt); }
    96 inline void Assembler::flush( Register s1, Register s2) { emit_long( op(arith_op) | op3(flush_op3) | rs1(s1) | rs2(s2)); }
    97 inline void Assembler::flush( Register s1, int simm13a) { emit_data( op(arith_op) | op3(flush_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
    99 inline void Assembler::jmpl( Register s1, Register s2, Register d                          ) { emit_long( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
   100 inline void Assembler::jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec);  has_delay_slot(); }
   102 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d) {
   103   if (s2.is_register()) ldf(w, s1, s2.as_register(), d);
   104   else                  ldf(w, s1, s2.as_constant(), d);
   105 }
   107 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | rs2(s2) ); }
   108 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec); }
   110 inline void Assembler::ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) { relocate(a.rspec(offset)); ldf( w, a.base(), a.disp() + offset, d); }
   112 inline void Assembler::ldfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
   113 inline void Assembler::ldfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   114 inline void Assembler::ldxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
   115 inline void Assembler::ldxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   117 inline void Assembler::ldc(   Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | rs2(s2) ); }
   118 inline void Assembler::ldc(   Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   119 inline void Assembler::lddc(  Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | rs2(s2) ); }
   120 inline void Assembler::lddc(  Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   121 inline void Assembler::ldcsr( Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | rs2(s2) ); }
   122 inline void Assembler::ldcsr( Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   124 inline void Assembler::ldsb(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | rs2(s2) ); }
   125 inline void Assembler::ldsb(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   127 inline void Assembler::ldsh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | rs2(s2) ); }
   128 inline void Assembler::ldsh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   129 inline void Assembler::ldsw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | rs2(s2) ); }
   130 inline void Assembler::ldsw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   131 inline void Assembler::ldub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | rs2(s2) ); }
   132 inline void Assembler::ldub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   133 inline void Assembler::lduh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | rs2(s2) ); }
   134 inline void Assembler::lduh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   135 inline void Assembler::lduw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | rs2(s2) ); }
   136 inline void Assembler::lduw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   138 inline void Assembler::ldx(   Register s1, Register s2, Register d) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | rs2(s2) ); }
   139 inline void Assembler::ldx(   Register s1, int simm13a, Register d) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   140 inline void Assembler::ldd(   Register s1, Register s2, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | rs2(s2) ); }
   141 inline void Assembler::ldd(   Register s1, int simm13a, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   143 #ifdef _LP64
   144 // Make all 32 bit loads signed so 64 bit registers maintain proper sign
   145 inline void Assembler::ld(  Register s1, Register s2, Register d)      { ldsw( s1, s2, d); }
   146 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { ldsw( s1, simm13a, d); }
   147 #else
   148 inline void Assembler::ld(  Register s1, Register s2, Register d)      { lduw( s1, s2, d); }
   149 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { lduw( s1, simm13a, d); }
   150 #endif
   152 #ifdef ASSERT
   153   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   154 # ifdef _LP64
   155 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { ldsw( s1, in_bytes(simm13a), d); }
   156 # else
   157 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { lduw( s1, in_bytes(simm13a), d); }
   158 # endif
   159 #endif
   161 inline void Assembler::ld(  const Address& a, Register d, int offset) {
   162   if (a.has_index()) { assert(offset == 0, ""); ld(  a.base(), a.index(),         d); }
   163   else               {                          ld(  a.base(), a.disp() + offset, d); }
   164 }
   165 inline void Assembler::ldsb(const Address& a, Register d, int offset) {
   166   if (a.has_index()) { assert(offset == 0, ""); ldsb(a.base(), a.index(),         d); }
   167   else               {                          ldsb(a.base(), a.disp() + offset, d); }
   168 }
   169 inline void Assembler::ldsh(const Address& a, Register d, int offset) {
   170   if (a.has_index()) { assert(offset == 0, ""); ldsh(a.base(), a.index(),         d); }
   171   else               {                          ldsh(a.base(), a.disp() + offset, d); }
   172 }
   173 inline void Assembler::ldsw(const Address& a, Register d, int offset) {
   174   if (a.has_index()) { assert(offset == 0, ""); ldsw(a.base(), a.index(),         d); }
   175   else               {                          ldsw(a.base(), a.disp() + offset, d); }
   176 }
   177 inline void Assembler::ldub(const Address& a, Register d, int offset) {
   178   if (a.has_index()) { assert(offset == 0, ""); ldub(a.base(), a.index(),         d); }
   179   else               {                          ldub(a.base(), a.disp() + offset, d); }
   180 }
   181 inline void Assembler::lduh(const Address& a, Register d, int offset) {
   182   if (a.has_index()) { assert(offset == 0, ""); lduh(a.base(), a.index(),         d); }
   183   else               {                          lduh(a.base(), a.disp() + offset, d); }
   184 }
   185 inline void Assembler::lduw(const Address& a, Register d, int offset) {
   186   if (a.has_index()) { assert(offset == 0, ""); lduw(a.base(), a.index(),         d); }
   187   else               {                          lduw(a.base(), a.disp() + offset, d); }
   188 }
   189 inline void Assembler::ldd( const Address& a, Register d, int offset) {
   190   if (a.has_index()) { assert(offset == 0, ""); ldd( a.base(), a.index(),         d); }
   191   else               {                          ldd( a.base(), a.disp() + offset, d); }
   192 }
   193 inline void Assembler::ldx( const Address& a, Register d, int offset) {
   194   if (a.has_index()) { assert(offset == 0, ""); ldx( a.base(), a.index(),         d); }
   195   else               {                          ldx( a.base(), a.disp() + offset, d); }
   196 }
   198 inline void Assembler::ldub(Register s1, RegisterOrConstant s2, Register d) { ldub(Address(s1, s2), d); }
   199 inline void Assembler::ldsb(Register s1, RegisterOrConstant s2, Register d) { ldsb(Address(s1, s2), d); }
   200 inline void Assembler::lduh(Register s1, RegisterOrConstant s2, Register d) { lduh(Address(s1, s2), d); }
   201 inline void Assembler::ldsh(Register s1, RegisterOrConstant s2, Register d) { ldsh(Address(s1, s2), d); }
   202 inline void Assembler::lduw(Register s1, RegisterOrConstant s2, Register d) { lduw(Address(s1, s2), d); }
   203 inline void Assembler::ldsw(Register s1, RegisterOrConstant s2, Register d) { ldsw(Address(s1, s2), d); }
   204 inline void Assembler::ldx( Register s1, RegisterOrConstant s2, Register d) { ldx( Address(s1, s2), d); }
   205 inline void Assembler::ld(  Register s1, RegisterOrConstant s2, Register d) { ld(  Address(s1, s2), d); }
   206 inline void Assembler::ldd( Register s1, RegisterOrConstant s2, Register d) { ldd( Address(s1, s2), d); }
   208 // form effective addresses this way:
   209 inline void Assembler::add(   Register s1, RegisterOrConstant s2, Register d, int offset) {
   210   if (s2.is_register())  add(s1, s2.as_register(), d);
   211   else                 { add(s1, s2.as_constant() + offset, d); offset = 0; }
   212   if (offset != 0)       add(d,  offset,                    d);
   213 }
   215 inline void Assembler::ldstub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | rs2(s2) ); }
   216 inline void Assembler::ldstub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   219 inline void Assembler::prefetch(Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
   220 inline void Assembler::prefetch(Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   222 inline void Assembler::prefetch(const Address& a, PrefetchFcn f, int offset) { v9_only(); relocate(a.rspec(offset)); prefetch(a.base(), a.disp() + offset, f); }
   225 inline void Assembler::rett( Register s1, Register s2                         ) { emit_long( op(arith_op) | op3(rett_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
   226 inline void Assembler::rett( Register s1, int simm13a, relocInfo::relocType rt) { emit_data( op(arith_op) | op3(rett_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rt);  has_delay_slot(); }
   228 inline void Assembler::sethi( int imm22a, Register d, RelocationHolder const& rspec ) { emit_data( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(imm22a), rspec); }
   230   // pp 222
   232 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2) {
   233   if (s2.is_register()) stf(w, d, s1, s2.as_register());
   234   else                  stf(w, d, s1, s2.as_constant());
   235 }
   237 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); }
   238 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   240 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) { relocate(a.rspec(offset)); stf(w, d, a.base(), a.disp() + offset); }
   242 inline void Assembler::stfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
   243 inline void Assembler::stfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   244 inline void Assembler::stxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
   245 inline void Assembler::stxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   247   // p 226
   249 inline void Assembler::stb(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | rs2(s2) ); }
   250 inline void Assembler::stb(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   251 inline void Assembler::sth(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | rs2(s2) ); }
   252 inline void Assembler::sth(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   253 inline void Assembler::stw(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | rs2(s2) ); }
   254 inline void Assembler::stw(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   257 inline void Assembler::stx(  Register d, Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | rs2(s2) ); }
   258 inline void Assembler::stx(  Register d, Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   259 inline void Assembler::std(  Register d, Register s1, Register s2) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | rs2(s2) ); }
   260 inline void Assembler::std(  Register d, Register s1, int simm13a) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   262 inline void Assembler::st( Register d, Register s1, Register s2)      { stw(d, s1, s2); }
   263 inline void Assembler::st( Register d, Register s1, int simm13a)      { stw(d, s1, simm13a); }
   265 #ifdef ASSERT
   266 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   267 inline void Assembler::st( Register d, Register s1, ByteSize simm13a) { stw(d, s1, in_bytes(simm13a)); }
   268 #endif
   270 inline void Assembler::stb(Register d, const Address& a, int offset) {
   271   if (a.has_index()) { assert(offset == 0, ""); stb(d, a.base(), a.index()        ); }
   272   else               {                          stb(d, a.base(), a.disp() + offset); }
   273 }
   274 inline void Assembler::sth(Register d, const Address& a, int offset) {
   275   if (a.has_index()) { assert(offset == 0, ""); sth(d, a.base(), a.index()        ); }
   276   else               {                          sth(d, a.base(), a.disp() + offset); }
   277 }
   278 inline void Assembler::stw(Register d, const Address& a, int offset) {
   279   if (a.has_index()) { assert(offset == 0, ""); stw(d, a.base(), a.index()        ); }
   280   else               {                          stw(d, a.base(), a.disp() + offset); }
   281 }
   282 inline void Assembler::st( Register d, const Address& a, int offset) {
   283   if (a.has_index()) { assert(offset == 0, ""); st( d, a.base(), a.index()        ); }
   284   else               {                          st( d, a.base(), a.disp() + offset); }
   285 }
   286 inline void Assembler::std(Register d, const Address& a, int offset) {
   287   if (a.has_index()) { assert(offset == 0, ""); std(d, a.base(), a.index()        ); }
   288   else               {                          std(d, a.base(), a.disp() + offset); }
   289 }
   290 inline void Assembler::stx(Register d, const Address& a, int offset) {
   291   if (a.has_index()) { assert(offset == 0, ""); stx(d, a.base(), a.index()        ); }
   292   else               {                          stx(d, a.base(), a.disp() + offset); }
   293 }
   295 inline void Assembler::stb(Register d, Register s1, RegisterOrConstant s2) { stb(d, Address(s1, s2)); }
   296 inline void Assembler::sth(Register d, Register s1, RegisterOrConstant s2) { sth(d, Address(s1, s2)); }
   297 inline void Assembler::stw(Register d, Register s1, RegisterOrConstant s2) { stw(d, Address(s1, s2)); }
   298 inline void Assembler::stx(Register d, Register s1, RegisterOrConstant s2) { stx(d, Address(s1, s2)); }
   299 inline void Assembler::std(Register d, Register s1, RegisterOrConstant s2) { std(d, Address(s1, s2)); }
   300 inline void Assembler::st( Register d, Register s1, RegisterOrConstant s2) { st( d, Address(s1, s2)); }
   302 // v8 p 99
   304 inline void Assembler::stc(    int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | rs2(s2) ); }
   305 inline void Assembler::stc(    int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   306 inline void Assembler::stdc(   int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | rs2(s2) ); }
   307 inline void Assembler::stdc(   int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   308 inline void Assembler::stcsr(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | rs2(s2) ); }
   309 inline void Assembler::stcsr(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   310 inline void Assembler::stdcq(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | rs2(s2) ); }
   311 inline void Assembler::stdcq(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   314 // pp 231
   316 inline void Assembler::swap(    Register s1, Register s2, Register d) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | rs2(s2) ); }
   317 inline void Assembler::swap(    Register s1, int simm13a, Register d) { v9_dep();  emit_data( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   319 inline void Assembler::swap(    Address& a, Register d, int offset ) { relocate(a.rspec(offset)); swap(  a.base(), a.disp() + offset, d ); }
   322 // Use the right loads/stores for the platform
   323 inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
   324 #ifdef _LP64
   325   Assembler::ldx(s1, s2, d);
   326 #else
   327   Assembler::ld( s1, s2, d);
   328 #endif
   329 }
   331 inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
   332 #ifdef _LP64
   333   Assembler::ldx(s1, simm13a, d);
   334 #else
   335   Assembler::ld( s1, simm13a, d);
   336 #endif
   337 }
   339 #ifdef ASSERT
   340 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   341 inline void MacroAssembler::ld_ptr( Register s1, ByteSize simm13a, Register d ) {
   342   ld_ptr(s1, in_bytes(simm13a), d);
   343 }
   344 #endif
   346 inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) {
   347 #ifdef _LP64
   348   Assembler::ldx(s1, s2, d);
   349 #else
   350   Assembler::ld( s1, s2, d);
   351 #endif
   352 }
   354 inline void MacroAssembler::ld_ptr(const Address& a, Register d, int offset) {
   355 #ifdef _LP64
   356   Assembler::ldx(a, d, offset);
   357 #else
   358   Assembler::ld( a, d, offset);
   359 #endif
   360 }
   362 inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
   363 #ifdef _LP64
   364   Assembler::stx(d, s1, s2);
   365 #else
   366   Assembler::st( d, s1, s2);
   367 #endif
   368 }
   370 inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
   371 #ifdef _LP64
   372   Assembler::stx(d, s1, simm13a);
   373 #else
   374   Assembler::st( d, s1, simm13a);
   375 #endif
   376 }
   378 #ifdef ASSERT
   379 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   380 inline void MacroAssembler::st_ptr( Register d, Register s1, ByteSize simm13a ) {
   381   st_ptr(d, s1, in_bytes(simm13a));
   382 }
   383 #endif
   385 inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) {
   386 #ifdef _LP64
   387   Assembler::stx(d, s1, s2);
   388 #else
   389   Assembler::st( d, s1, s2);
   390 #endif
   391 }
   393 inline void MacroAssembler::st_ptr(Register d, const Address& a, int offset) {
   394 #ifdef _LP64
   395   Assembler::stx(d, a, offset);
   396 #else
   397   Assembler::st( d, a, offset);
   398 #endif
   399 }
   401 // Use the right loads/stores for the platform
   402 inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
   403 #ifdef _LP64
   404   Assembler::ldx(s1, s2, d);
   405 #else
   406   Assembler::ldd(s1, s2, d);
   407 #endif
   408 }
   410 inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
   411 #ifdef _LP64
   412   Assembler::ldx(s1, simm13a, d);
   413 #else
   414   Assembler::ldd(s1, simm13a, d);
   415 #endif
   416 }
   418 inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) {
   419 #ifdef _LP64
   420   Assembler::ldx(s1, s2, d);
   421 #else
   422   Assembler::ldd(s1, s2, d);
   423 #endif
   424 }
   426 inline void MacroAssembler::ld_long(const Address& a, Register d, int offset) {
   427 #ifdef _LP64
   428   Assembler::ldx(a, d, offset);
   429 #else
   430   Assembler::ldd(a, d, offset);
   431 #endif
   432 }
   434 inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
   435 #ifdef _LP64
   436   Assembler::stx(d, s1, s2);
   437 #else
   438   Assembler::std(d, s1, s2);
   439 #endif
   440 }
   442 inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
   443 #ifdef _LP64
   444   Assembler::stx(d, s1, simm13a);
   445 #else
   446   Assembler::std(d, s1, simm13a);
   447 #endif
   448 }
   450 inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) {
   451 #ifdef _LP64
   452   Assembler::stx(d, s1, s2);
   453 #else
   454   Assembler::std(d, s1, s2);
   455 #endif
   456 }
   458 inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
   459 #ifdef _LP64
   460   Assembler::stx(d, a, offset);
   461 #else
   462   Assembler::std(d, a, offset);
   463 #endif
   464 }
   466 // Functions for isolating 64 bit shifts for LP64
   468 inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
   469 #ifdef _LP64
   470   Assembler::sllx(s1, s2, d);
   471 #else
   472   Assembler::sll( s1, s2, d);
   473 #endif
   474 }
   476 inline void MacroAssembler::sll_ptr( Register s1, int imm6a,   Register d ) {
   477 #ifdef _LP64
   478   Assembler::sllx(s1, imm6a, d);
   479 #else
   480   Assembler::sll( s1, imm6a, d);
   481 #endif
   482 }
   484 inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
   485 #ifdef _LP64
   486   Assembler::srlx(s1, s2, d);
   487 #else
   488   Assembler::srl( s1, s2, d);
   489 #endif
   490 }
   492 inline void MacroAssembler::srl_ptr( Register s1, int imm6a,   Register d ) {
   493 #ifdef _LP64
   494   Assembler::srlx(s1, imm6a, d);
   495 #else
   496   Assembler::srl( s1, imm6a, d);
   497 #endif
   498 }
   500 inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) {
   501   if (s2.is_register())  sll_ptr(s1, s2.as_register(), d);
   502   else                   sll_ptr(s1, s2.as_constant(), d);
   503 }
   505 // Use the right branch for the platform
   507 inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   508   if (VM_Version::v9_instructions_work())
   509     Assembler::bp(c, a, icc, p, d, rt);
   510   else
   511     Assembler::br(c, a, d, rt);
   512 }
   514 inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
   515   br(c, a, p, target(L));
   516 }
   519 // Branch that tests either xcc or icc depending on the
   520 // architecture compiled (LP64 or not)
   521 inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   522 #ifdef _LP64
   523     Assembler::bp(c, a, xcc, p, d, rt);
   524 #else
   525     MacroAssembler::br(c, a, p, d, rt);
   526 #endif
   527 }
   529 inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
   530   brx(c, a, p, target(L));
   531 }
   533 inline void MacroAssembler::ba( bool a, Label& L ) {
   534   br(always, a, pt, L);
   535 }
   537 // Warning: V9 only functions
   538 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
   539   Assembler::bp(c, a, cc, p, d, rt);
   540 }
   542 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
   543   Assembler::bp(c, a, cc, p, L);
   544 }
   546 inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   547   if (VM_Version::v9_instructions_work())
   548     fbp(c, a, fcc0, p, d, rt);
   549   else
   550     Assembler::fb(c, a, d, rt);
   551 }
   553 inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
   554   fb(c, a, p, target(L));
   555 }
   557 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
   558   Assembler::fbp(c, a, cc, p, d, rt);
   559 }
   561 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
   562   Assembler::fbp(c, a, cc, p, L);
   563 }
   565 inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
   566 inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
   568 // Call with a check to see if we need to deal with the added
   569 // expense of relocation and if we overflow the displacement
   570 // of the quick call instruction./
   571 // Check to see if we have to deal with relocations
   572 inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
   573 #ifdef _LP64
   574   intptr_t disp;
   575   // NULL is ok because it will be relocated later.
   576   // Must change NULL to a reachable address in order to
   577   // pass asserts here and in wdisp.
   578   if ( d == NULL )
   579     d = pc();
   581   // Is this address within range of the call instruction?
   582   // If not, use the expensive instruction sequence
   583   disp = (intptr_t)d - (intptr_t)pc();
   584   if ( disp != (intptr_t)(int32_t)disp ) {
   585     relocate(rt);
   586     AddressLiteral dest(d);
   587     jumpl_to(dest, O7, O7);
   588   }
   589   else {
   590     Assembler::call( d, rt );
   591   }
   592 #else
   593   Assembler::call( d, rt );
   594 #endif
   595 }
   597 inline void MacroAssembler::call( Label& L,   relocInfo::relocType rt ) {
   598   MacroAssembler::call( target(L), rt);
   599 }
   603 inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
   604 inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
   606 // prefetch instruction
   607 inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
   608   if (VM_Version::v9_instructions_work())
   609     Assembler::bp( never, true, xcc, pt, d, rt );
   610 }
   611 inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
   614 // clobbers o7 on V8!!
   615 // returns delta from gotten pc to addr after
   616 inline int MacroAssembler::get_pc( Register d ) {
   617   int x = offset();
   618   if (VM_Version::v9_instructions_work())
   619     rdpc(d);
   620   else {
   621     Label lbl;
   622     Assembler::call(lbl, relocInfo::none);  // No relocation as this is call to pc+0x8
   623     if (d == O7)  delayed()->nop();
   624     else          delayed()->mov(O7, d);
   625     bind(lbl);
   626   }
   627   return offset() - x;
   628 }
   631 // Note:  All MacroAssembler::set_foo functions are defined out-of-line.
   634 // Loads the current PC of the following instruction as an immediate value in
   635 // 2 instructions.  All PCs in the CodeCache are within 2 Gig of each other.
   636 inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
   637   intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
   638 #ifdef _LP64
   639   Unimplemented();
   640 #else
   641   Assembler::sethi(  thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
   642   Assembler::add(reg,thepc &  0x3ff, reg, internal_word_Relocation::spec((address)thepc));
   643 #endif
   644   return thepc;
   645 }
   648 inline void MacroAssembler::load_contents(AddressLiteral& addrlit, Register d, int offset) {
   649   assert_not_delayed();
   650   sethi(addrlit, d);
   651   ld(d, addrlit.low10() + offset, d);
   652 }
   655 inline void MacroAssembler::load_ptr_contents(AddressLiteral& addrlit, Register d, int offset) {
   656   assert_not_delayed();
   657   sethi(addrlit, d);
   658   ld_ptr(d, addrlit.low10() + offset, d);
   659 }
   662 inline void MacroAssembler::store_contents(Register s, AddressLiteral& addrlit, Register temp, int offset) {
   663   assert_not_delayed();
   664   sethi(addrlit, temp);
   665   st(s, temp, addrlit.low10() + offset);
   666 }
   669 inline void MacroAssembler::store_ptr_contents(Register s, AddressLiteral& addrlit, Register temp, int offset) {
   670   assert_not_delayed();
   671   sethi(addrlit, temp);
   672   st_ptr(s, temp, addrlit.low10() + offset);
   673 }
   676 // This code sequence is relocatable to any address, even on LP64.
   677 inline void MacroAssembler::jumpl_to(AddressLiteral& addrlit, Register temp, Register d, int offset) {
   678   assert_not_delayed();
   679   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   680   // variable length instruction streams.
   681   patchable_sethi(addrlit, temp);
   682   jmpl(temp, addrlit.low10() + offset, d);
   683 }
   686 inline void MacroAssembler::jump_to(AddressLiteral& addrlit, Register temp, int offset) {
   687   jumpl_to(addrlit, temp, G0, offset);
   688 }
   691 inline void MacroAssembler::jump_indirect_to(Address& a, Register temp,
   692                                              int ld_offset, int jmp_offset) {
   693   assert_not_delayed();
   694   //sethi(al);                   // sethi is caller responsibility for this one
   695   ld_ptr(a, temp, ld_offset);
   696   jmp(temp, jmp_offset);
   697 }
   700 inline void MacroAssembler::set_oop(jobject obj, Register d) {
   701   set_oop(allocate_oop_address(obj), d);
   702 }
   705 inline void MacroAssembler::set_oop_constant(jobject obj, Register d) {
   706   set_oop(constant_oop_address(obj), d);
   707 }
   710 inline void MacroAssembler::set_oop(AddressLiteral& obj_addr, Register d) {
   711   assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   712   set(obj_addr, d);
   713 }
   716 inline void MacroAssembler::load_argument( Argument& a, Register  d ) {
   717   if (a.is_register())
   718     mov(a.as_register(), d);
   719   else
   720     ld (a.as_address(),  d);
   721 }
   723 inline void MacroAssembler::store_argument( Register s, Argument& a ) {
   724   if (a.is_register())
   725     mov(s, a.as_register());
   726   else
   727     st_ptr (s, a.as_address());         // ABI says everything is right justified.
   728 }
   730 inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
   731   if (a.is_register())
   732     mov(s, a.as_register());
   733   else
   734     st_ptr (s, a.as_address());
   735 }
   738 #ifdef _LP64
   739 inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
   740   if (a.is_float_register())
   741 // V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
   742     fmov(FloatRegisterImpl::S, s, a.as_float_register() );
   743   else
   744     // Floats are stored in the high half of the stack entry
   745     // The low half is undefined per the ABI.
   746     stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
   747 }
   749 inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
   750   if (a.is_float_register())
   751 // V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
   752     fmov(FloatRegisterImpl::D, s, a.as_double_register() );
   753   else
   754     stf(FloatRegisterImpl::D, s, a.as_address());
   755 }
   757 inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
   758   if (a.is_register())
   759     mov(s, a.as_register());
   760   else
   761     stx(s, a.as_address());
   762 }
   763 #endif
   765 inline void MacroAssembler::clrb( Register s1, Register s2) {  stb( G0, s1, s2 ); }
   766 inline void MacroAssembler::clrh( Register s1, Register s2) {  sth( G0, s1, s2 ); }
   767 inline void MacroAssembler::clr(  Register s1, Register s2) {  stw( G0, s1, s2 ); }
   768 inline void MacroAssembler::clrx( Register s1, Register s2) {  stx( G0, s1, s2 ); }
   770 inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
   771 inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
   772 inline void MacroAssembler::clr(  Register s1, int simm13a) { stw( G0, s1, simm13a); }
   773 inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
   775 // returns if membar generates anything, obviously this code should mirror
   776 // membar below.
   777 inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
   778   if( !os::is_MP() ) return false;  // Not needed on single CPU
   779   if( VM_Version::v9_instructions_work() ) {
   780     const Membar_mask_bits effective_mask =
   781         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
   782     return (effective_mask != 0);
   783   } else {
   784     return true;
   785   }
   786 }
   788 inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
   789   // Uniprocessors do not need memory barriers
   790   if (!os::is_MP()) return;
   791   // Weakened for current Sparcs and TSO.  See the v9 manual, sections 8.4.3,
   792   // 8.4.4.3, a.31 and a.50.
   793   if( VM_Version::v9_instructions_work() ) {
   794     // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
   795     // of the mmask subfield of const7a that does anything that isn't done
   796     // implicitly is StoreLoad.
   797     const Membar_mask_bits effective_mask =
   798         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
   799     if ( effective_mask != 0 ) {
   800       Assembler::membar( effective_mask );
   801     }
   802   } else {
   803     // stbar is the closest there is on v8.  Equivalent to membar(StoreStore).  We
   804     // do not issue the stbar because to my knowledge all v8 machines implement TSO,
   805     // which guarantees that all stores behave as if an stbar were issued just after
   806     // each one of them.  On these machines, stbar ought to be a nop.  There doesn't
   807     // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
   808     // it can't be specified by stbar, nor have I come up with a way to simulate it.
   809     //
   810     // Addendum.  Dave says that ldstub guarantees a write buffer flush to coherent
   811     // space.  Put one here to be on the safe side.
   812     Assembler::ldstub(SP, 0, G0);
   813   }
   814 }

mercurial