src/cpu/sparc/vm/assembler_sparc.inline.hpp

Tue, 21 Apr 2009 11:16:30 -0700

author
twisti
date
Tue, 21 Apr 2009 11:16:30 -0700
changeset 1162
6b2273dd6fa9
parent 1145
e5b0439ef4ae
child 1441
dcf03e02b020
permissions
-rw-r--r--

6822110: Add AddressLiteral class on SPARC
Summary: The Address class on SPARC currently handles both, addresses and address literals, what makes the Address class more complicated than it has to be.
Reviewed-by: never, kvn

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
    26   jint& stub_inst = *(jint*) branch;
    27   stub_inst = patched_branch(target - branch, stub_inst, 0);
    28 }
    30 #ifndef PRODUCT
    31 inline void MacroAssembler::pd_print_patched_instruction(address branch) {
    32   jint stub_inst = *(jint*) branch;
    33   print_instruction(stub_inst);
    34   ::tty->print("%s", " (unresolved)");
    35 }
    36 #endif // PRODUCT
    38 inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
    41 inline int AddressLiteral::low10() const {
    42   return Assembler::low10(value());
    43 }
    46 // inlines for SPARC assembler -- dmu 5/97
    48 inline void Assembler::check_delay() {
    49 # ifdef CHECK_DELAY
    50   guarantee( delay_state != at_delay_slot, "must say delayed() when filling delay slot");
    51   delay_state = no_delay;
    52 # endif
    53 }
    55 inline void Assembler::emit_long(int x) {
    56   check_delay();
    57   AbstractAssembler::emit_long(x);
    58 }
    60 inline void Assembler::emit_data(int x, relocInfo::relocType rtype) {
    61   relocate(rtype);
    62   emit_long(x);
    63 }
    65 inline void Assembler::emit_data(int x, RelocationHolder const& rspec) {
    66   relocate(rspec);
    67   emit_long(x);
    68 }
    71 inline void Assembler::add(Register s1, Register s2, Register d )                             { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); }
    72 inline void Assembler::add(Register s1, int simm13a, Register d, relocInfo::relocType rtype ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rtype ); }
    73 inline void Assembler::add(Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec ); }
    75 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bpr_op2) | wdisp16(intptr_t(d), intptr_t(pc())) | predict(p) | rs1(s1), rt);  has_delay_slot(); }
    76 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, Label& L) { bpr( c, a, p, s1, target(L)); }
    78 inline void Assembler::fb( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    79 inline void Assembler::fb( Condition c, bool a, Label& L ) { fb(c, a, target(L)); }
    81 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fbp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
    82 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) { fbp(c, a, cc, p, target(L)); }
    84 inline void Assembler::cb( Condition c, bool a, address d, relocInfo::relocType rt ) { v8_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(cb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    85 inline void Assembler::cb( Condition c, bool a, Label& L ) { cb(c, a, target(L)); }
    87 inline void Assembler::br( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();   emit_data( op(branch_op) | annul(a) | cond(c) | op2(br_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    88 inline void Assembler::br( Condition c, bool a, Label& L ) { br(c, a, target(L)); }
    90 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
    91 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) { bp(c, a, cc, p, target(L)); }
    93 inline void Assembler::call( address d,  relocInfo::relocType rt ) { emit_data( op(call_op) | wdisp(intptr_t(d), intptr_t(pc()), 30), rt);  has_delay_slot(); assert(rt != relocInfo::virtual_call_type, "must use virtual_call_Relocation::spec"); }
    94 inline void Assembler::call( Label& L,   relocInfo::relocType rt ) { call( target(L), rt); }
    96 inline void Assembler::flush( Register s1, Register s2) { emit_long( op(arith_op) | op3(flush_op3) | rs1(s1) | rs2(s2)); }
    97 inline void Assembler::flush( Register s1, int simm13a) { emit_data( op(arith_op) | op3(flush_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
    99 inline void Assembler::jmpl( Register s1, Register s2, Register d                          ) { emit_long( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
   100 inline void Assembler::jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec);  has_delay_slot(); }
   102 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | rs2(s2) ); }
   103 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec); }
   105 inline void Assembler::ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) { relocate(a.rspec(offset)); ldf( w, a.base(), a.disp() + offset, d); }
   107 inline void Assembler::ldfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
   108 inline void Assembler::ldfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   109 inline void Assembler::ldxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
   110 inline void Assembler::ldxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   112 inline void Assembler::ldc(   Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | rs2(s2) ); }
   113 inline void Assembler::ldc(   Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   114 inline void Assembler::lddc(  Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | rs2(s2) ); }
   115 inline void Assembler::lddc(  Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   116 inline void Assembler::ldcsr( Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | rs2(s2) ); }
   117 inline void Assembler::ldcsr( Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   119 inline void Assembler::ldsb(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | rs2(s2) ); }
   120 inline void Assembler::ldsb(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   122 inline void Assembler::ldsh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | rs2(s2) ); }
   123 inline void Assembler::ldsh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   124 inline void Assembler::ldsw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | rs2(s2) ); }
   125 inline void Assembler::ldsw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   126 inline void Assembler::ldub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | rs2(s2) ); }
   127 inline void Assembler::ldub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   128 inline void Assembler::lduh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | rs2(s2) ); }
   129 inline void Assembler::lduh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   130 inline void Assembler::lduw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | rs2(s2) ); }
   131 inline void Assembler::lduw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   133 inline void Assembler::ldx(   Register s1, Register s2, Register d) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | rs2(s2) ); }
   134 inline void Assembler::ldx(   Register s1, int simm13a, Register d) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   135 inline void Assembler::ldd(   Register s1, Register s2, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | rs2(s2) ); }
   136 inline void Assembler::ldd(   Register s1, int simm13a, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   138 #ifdef _LP64
   139 // Make all 32 bit loads signed so 64 bit registers maintain proper sign
   140 inline void Assembler::ld(  Register s1, Register s2, Register d)      { ldsw( s1, s2, d); }
   141 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { ldsw( s1, simm13a, d); }
   142 #else
   143 inline void Assembler::ld(  Register s1, Register s2, Register d)      { lduw( s1, s2, d); }
   144 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { lduw( s1, simm13a, d); }
   145 #endif
   147 #ifdef ASSERT
   148   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   149 # ifdef _LP64
   150 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { ldsw( s1, in_bytes(simm13a), d); }
   151 # else
   152 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { lduw( s1, in_bytes(simm13a), d); }
   153 # endif
   154 #endif
   156 inline void Assembler::ld(  const Address& a, Register d, int offset) {
   157   if (a.has_index()) { assert(offset == 0, ""); ld(  a.base(), a.index(),         d); }
   158   else               {                          ld(  a.base(), a.disp() + offset, d); }
   159 }
   160 inline void Assembler::ldsb(const Address& a, Register d, int offset) {
   161   if (a.has_index()) { assert(offset == 0, ""); ldsb(a.base(), a.index(),         d); }
   162   else               {                          ldsb(a.base(), a.disp() + offset, d); }
   163 }
   164 inline void Assembler::ldsh(const Address& a, Register d, int offset) {
   165   if (a.has_index()) { assert(offset == 0, ""); ldsh(a.base(), a.index(),         d); }
   166   else               {                          ldsh(a.base(), a.disp() + offset, d); }
   167 }
   168 inline void Assembler::ldsw(const Address& a, Register d, int offset) {
   169   if (a.has_index()) { assert(offset == 0, ""); ldsw(a.base(), a.index(),         d); }
   170   else               {                          ldsw(a.base(), a.disp() + offset, d); }
   171 }
   172 inline void Assembler::ldub(const Address& a, Register d, int offset) {
   173   if (a.has_index()) { assert(offset == 0, ""); ldub(a.base(), a.index(),         d); }
   174   else               {                          ldub(a.base(), a.disp() + offset, d); }
   175 }
   176 inline void Assembler::lduh(const Address& a, Register d, int offset) {
   177   if (a.has_index()) { assert(offset == 0, ""); lduh(a.base(), a.index(),         d); }
   178   else               {                          lduh(a.base(), a.disp() + offset, d); }
   179 }
   180 inline void Assembler::lduw(const Address& a, Register d, int offset) {
   181   if (a.has_index()) { assert(offset == 0, ""); lduw(a.base(), a.index(),         d); }
   182   else               {                          lduw(a.base(), a.disp() + offset, d); }
   183 }
   184 inline void Assembler::ldd( const Address& a, Register d, int offset) {
   185   if (a.has_index()) { assert(offset == 0, ""); ldd( a.base(), a.index(),         d); }
   186   else               {                          ldd( a.base(), a.disp() + offset, d); }
   187 }
   188 inline void Assembler::ldx( const Address& a, Register d, int offset) {
   189   if (a.has_index()) { assert(offset == 0, ""); ldx( a.base(), a.index(),         d); }
   190   else               {                          ldx( a.base(), a.disp() + offset, d); }
   191 }
   193 inline void Assembler::ldub(Register s1, RegisterOrConstant s2, Register d) { ldub(Address(s1, s2), d); }
   194 inline void Assembler::ldsb(Register s1, RegisterOrConstant s2, Register d) { ldsb(Address(s1, s2), d); }
   195 inline void Assembler::lduh(Register s1, RegisterOrConstant s2, Register d) { lduh(Address(s1, s2), d); }
   196 inline void Assembler::ldsh(Register s1, RegisterOrConstant s2, Register d) { ldsh(Address(s1, s2), d); }
   197 inline void Assembler::lduw(Register s1, RegisterOrConstant s2, Register d) { lduw(Address(s1, s2), d); }
   198 inline void Assembler::ldsw(Register s1, RegisterOrConstant s2, Register d) { ldsw(Address(s1, s2), d); }
   199 inline void Assembler::ldx( Register s1, RegisterOrConstant s2, Register d) { ldx( Address(s1, s2), d); }
   200 inline void Assembler::ld(  Register s1, RegisterOrConstant s2, Register d) { ld(  Address(s1, s2), d); }
   201 inline void Assembler::ldd( Register s1, RegisterOrConstant s2, Register d) { ldd( Address(s1, s2), d); }
   203 // form effective addresses this way:
   204 inline void Assembler::add(   Register s1, RegisterOrConstant s2, Register d, int offset) {
   205   if (s2.is_register())  add(s1, s2.as_register(), d);
   206   else                 { add(s1, s2.as_constant() + offset, d); offset = 0; }
   207   if (offset != 0)       add(d,  offset,                    d);
   208 }
   210 inline void Assembler::ldstub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | rs2(s2) ); }
   211 inline void Assembler::ldstub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   214 inline void Assembler::prefetch(Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
   215 inline void Assembler::prefetch(Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   217 inline void Assembler::prefetch(const Address& a, PrefetchFcn f, int offset) { v9_only(); relocate(a.rspec(offset)); prefetch(a.base(), a.disp() + offset, f); }
   220 inline void Assembler::rett( Register s1, Register s2                         ) { emit_long( op(arith_op) | op3(rett_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
   221 inline void Assembler::rett( Register s1, int simm13a, relocInfo::relocType rt) { emit_data( op(arith_op) | op3(rett_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rt);  has_delay_slot(); }
   223 inline void Assembler::sethi( int imm22a, Register d, RelocationHolder const& rspec ) { emit_data( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(imm22a), rspec); }
   225   // pp 222
   227 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); }
   228 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   230 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) { relocate(a.rspec(offset)); stf(w, d, a.base(), a.disp() + offset); }
   232 inline void Assembler::stfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
   233 inline void Assembler::stfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   234 inline void Assembler::stxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
   235 inline void Assembler::stxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   237   // p 226
   239 inline void Assembler::stb(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | rs2(s2) ); }
   240 inline void Assembler::stb(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   241 inline void Assembler::sth(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | rs2(s2) ); }
   242 inline void Assembler::sth(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   243 inline void Assembler::stw(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | rs2(s2) ); }
   244 inline void Assembler::stw(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   247 inline void Assembler::stx(  Register d, Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | rs2(s2) ); }
   248 inline void Assembler::stx(  Register d, Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   249 inline void Assembler::std(  Register d, Register s1, Register s2) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | rs2(s2) ); }
   250 inline void Assembler::std(  Register d, Register s1, int simm13a) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   252 inline void Assembler::st( Register d, Register s1, Register s2)      { stw(d, s1, s2); }
   253 inline void Assembler::st( Register d, Register s1, int simm13a)      { stw(d, s1, simm13a); }
   255 #ifdef ASSERT
   256 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   257 inline void Assembler::st( Register d, Register s1, ByteSize simm13a) { stw(d, s1, in_bytes(simm13a)); }
   258 #endif
   260 inline void Assembler::stb(Register d, const Address& a, int offset) {
   261   if (a.has_index()) { assert(offset == 0, ""); stb(d, a.base(), a.index()        ); }
   262   else               {                          stb(d, a.base(), a.disp() + offset); }
   263 }
   264 inline void Assembler::sth(Register d, const Address& a, int offset) {
   265   if (a.has_index()) { assert(offset == 0, ""); sth(d, a.base(), a.index()        ); }
   266   else               {                          sth(d, a.base(), a.disp() + offset); }
   267 }
   268 inline void Assembler::stw(Register d, const Address& a, int offset) {
   269   if (a.has_index()) { assert(offset == 0, ""); stw(d, a.base(), a.index()        ); }
   270   else               {                          stw(d, a.base(), a.disp() + offset); }
   271 }
   272 inline void Assembler::st( Register d, const Address& a, int offset) {
   273   if (a.has_index()) { assert(offset == 0, ""); st( d, a.base(), a.index()        ); }
   274   else               {                          st( d, a.base(), a.disp() + offset); }
   275 }
   276 inline void Assembler::std(Register d, const Address& a, int offset) {
   277   if (a.has_index()) { assert(offset == 0, ""); std(d, a.base(), a.index()        ); }
   278   else               {                          std(d, a.base(), a.disp() + offset); }
   279 }
   280 inline void Assembler::stx(Register d, const Address& a, int offset) {
   281   if (a.has_index()) { assert(offset == 0, ""); stx(d, a.base(), a.index()        ); }
   282   else               {                          stx(d, a.base(), a.disp() + offset); }
   283 }
   285 inline void Assembler::stb(Register d, Register s1, RegisterOrConstant s2) { stb(d, Address(s1, s2)); }
   286 inline void Assembler::sth(Register d, Register s1, RegisterOrConstant s2) { sth(d, Address(s1, s2)); }
   287 inline void Assembler::stx(Register d, Register s1, RegisterOrConstant s2) { stx(d, Address(s1, s2)); }
   288 inline void Assembler::std(Register d, Register s1, RegisterOrConstant s2) { std(d, Address(s1, s2)); }
   289 inline void Assembler::st( Register d, Register s1, RegisterOrConstant s2) { st( d, Address(s1, s2)); }
   291 // v8 p 99
   293 inline void Assembler::stc(    int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | rs2(s2) ); }
   294 inline void Assembler::stc(    int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   295 inline void Assembler::stdc(   int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | rs2(s2) ); }
   296 inline void Assembler::stdc(   int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   297 inline void Assembler::stcsr(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | rs2(s2) ); }
   298 inline void Assembler::stcsr(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   299 inline void Assembler::stdcq(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | rs2(s2) ); }
   300 inline void Assembler::stdcq(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   303 // pp 231
   305 inline void Assembler::swap(    Register s1, Register s2, Register d) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | rs2(s2) ); }
   306 inline void Assembler::swap(    Register s1, int simm13a, Register d) { v9_dep();  emit_data( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   308 inline void Assembler::swap(    Address& a, Register d, int offset ) { relocate(a.rspec(offset)); swap(  a.base(), a.disp() + offset, d ); }
   311 // Use the right loads/stores for the platform
   312 inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
   313 #ifdef _LP64
   314   Assembler::ldx(s1, s2, d);
   315 #else
   316   Assembler::ld( s1, s2, d);
   317 #endif
   318 }
   320 inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
   321 #ifdef _LP64
   322   Assembler::ldx(s1, simm13a, d);
   323 #else
   324   Assembler::ld( s1, simm13a, d);
   325 #endif
   326 }
   328 #ifdef ASSERT
   329 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   330 inline void MacroAssembler::ld_ptr( Register s1, ByteSize simm13a, Register d ) {
   331   ld_ptr(s1, in_bytes(simm13a), d);
   332 }
   333 #endif
   335 inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) {
   336 #ifdef _LP64
   337   Assembler::ldx(s1, s2, d);
   338 #else
   339   Assembler::ld( s1, s2, d);
   340 #endif
   341 }
   343 inline void MacroAssembler::ld_ptr(const Address& a, Register d, int offset) {
   344 #ifdef _LP64
   345   Assembler::ldx(a, d, offset);
   346 #else
   347   Assembler::ld( a, d, offset);
   348 #endif
   349 }
   351 inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
   352 #ifdef _LP64
   353   Assembler::stx(d, s1, s2);
   354 #else
   355   Assembler::st( d, s1, s2);
   356 #endif
   357 }
   359 inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
   360 #ifdef _LP64
   361   Assembler::stx(d, s1, simm13a);
   362 #else
   363   Assembler::st( d, s1, simm13a);
   364 #endif
   365 }
   367 #ifdef ASSERT
   368 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   369 inline void MacroAssembler::st_ptr( Register d, Register s1, ByteSize simm13a ) {
   370   st_ptr(d, s1, in_bytes(simm13a));
   371 }
   372 #endif
   374 inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) {
   375 #ifdef _LP64
   376   Assembler::stx(d, s1, s2);
   377 #else
   378   Assembler::st( d, s1, s2);
   379 #endif
   380 }
   382 inline void MacroAssembler::st_ptr(Register d, const Address& a, int offset) {
   383 #ifdef _LP64
   384   Assembler::stx(d, a, offset);
   385 #else
   386   Assembler::st( d, a, offset);
   387 #endif
   388 }
   390 // Use the right loads/stores for the platform
   391 inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
   392 #ifdef _LP64
   393   Assembler::ldx(s1, s2, d);
   394 #else
   395   Assembler::ldd(s1, s2, d);
   396 #endif
   397 }
   399 inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
   400 #ifdef _LP64
   401   Assembler::ldx(s1, simm13a, d);
   402 #else
   403   Assembler::ldd(s1, simm13a, d);
   404 #endif
   405 }
   407 inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) {
   408 #ifdef _LP64
   409   Assembler::ldx(s1, s2, d);
   410 #else
   411   Assembler::ldd(s1, s2, d);
   412 #endif
   413 }
   415 inline void MacroAssembler::ld_long(const Address& a, Register d, int offset) {
   416 #ifdef _LP64
   417   Assembler::ldx(a, d, offset);
   418 #else
   419   Assembler::ldd(a, d, offset);
   420 #endif
   421 }
   423 inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
   424 #ifdef _LP64
   425   Assembler::stx(d, s1, s2);
   426 #else
   427   Assembler::std(d, s1, s2);
   428 #endif
   429 }
   431 inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
   432 #ifdef _LP64
   433   Assembler::stx(d, s1, simm13a);
   434 #else
   435   Assembler::std(d, s1, simm13a);
   436 #endif
   437 }
   439 inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) {
   440 #ifdef _LP64
   441   Assembler::stx(d, s1, s2);
   442 #else
   443   Assembler::std(d, s1, s2);
   444 #endif
   445 }
   447 inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
   448 #ifdef _LP64
   449   Assembler::stx(d, a, offset);
   450 #else
   451   Assembler::std(d, a, offset);
   452 #endif
   453 }
   455 // Functions for isolating 64 bit shifts for LP64
   457 inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
   458 #ifdef _LP64
   459   Assembler::sllx(s1, s2, d);
   460 #else
   461   Assembler::sll( s1, s2, d);
   462 #endif
   463 }
   465 inline void MacroAssembler::sll_ptr( Register s1, int imm6a,   Register d ) {
   466 #ifdef _LP64
   467   Assembler::sllx(s1, imm6a, d);
   468 #else
   469   Assembler::sll( s1, imm6a, d);
   470 #endif
   471 }
   473 inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
   474 #ifdef _LP64
   475   Assembler::srlx(s1, s2, d);
   476 #else
   477   Assembler::srl( s1, s2, d);
   478 #endif
   479 }
   481 inline void MacroAssembler::srl_ptr( Register s1, int imm6a,   Register d ) {
   482 #ifdef _LP64
   483   Assembler::srlx(s1, imm6a, d);
   484 #else
   485   Assembler::srl( s1, imm6a, d);
   486 #endif
   487 }
   489 inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) {
   490   if (s2.is_register())  sll_ptr(s1, s2.as_register(), d);
   491   else                   sll_ptr(s1, s2.as_constant(), d);
   492 }
   494 // Use the right branch for the platform
   496 inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   497   if (VM_Version::v9_instructions_work())
   498     Assembler::bp(c, a, icc, p, d, rt);
   499   else
   500     Assembler::br(c, a, d, rt);
   501 }
   503 inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
   504   br(c, a, p, target(L));
   505 }
   508 // Branch that tests either xcc or icc depending on the
   509 // architecture compiled (LP64 or not)
   510 inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   511 #ifdef _LP64
   512     Assembler::bp(c, a, xcc, p, d, rt);
   513 #else
   514     MacroAssembler::br(c, a, p, d, rt);
   515 #endif
   516 }
   518 inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
   519   brx(c, a, p, target(L));
   520 }
   522 inline void MacroAssembler::ba( bool a, Label& L ) {
   523   br(always, a, pt, L);
   524 }
   526 // Warning: V9 only functions
   527 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
   528   Assembler::bp(c, a, cc, p, d, rt);
   529 }
   531 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
   532   Assembler::bp(c, a, cc, p, L);
   533 }
   535 inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   536   if (VM_Version::v9_instructions_work())
   537     fbp(c, a, fcc0, p, d, rt);
   538   else
   539     Assembler::fb(c, a, d, rt);
   540 }
   542 inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
   543   fb(c, a, p, target(L));
   544 }
   546 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
   547   Assembler::fbp(c, a, cc, p, d, rt);
   548 }
   550 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
   551   Assembler::fbp(c, a, cc, p, L);
   552 }
   554 inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
   555 inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
   557 // Call with a check to see if we need to deal with the added
   558 // expense of relocation and if we overflow the displacement
   559 // of the quick call instruction./
   560 // Check to see if we have to deal with relocations
   561 inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
   562 #ifdef _LP64
   563   intptr_t disp;
   564   // NULL is ok because it will be relocated later.
   565   // Must change NULL to a reachable address in order to
   566   // pass asserts here and in wdisp.
   567   if ( d == NULL )
   568     d = pc();
   570   // Is this address within range of the call instruction?
   571   // If not, use the expensive instruction sequence
   572   disp = (intptr_t)d - (intptr_t)pc();
   573   if ( disp != (intptr_t)(int32_t)disp ) {
   574     relocate(rt);
   575     AddressLiteral dest(d);
   576     jumpl_to(dest, O7, O7);
   577   }
   578   else {
   579     Assembler::call( d, rt );
   580   }
   581 #else
   582   Assembler::call( d, rt );
   583 #endif
   584 }
   586 inline void MacroAssembler::call( Label& L,   relocInfo::relocType rt ) {
   587   MacroAssembler::call( target(L), rt);
   588 }
   592 inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
   593 inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
   595 // prefetch instruction
   596 inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
   597   if (VM_Version::v9_instructions_work())
   598     Assembler::bp( never, true, xcc, pt, d, rt );
   599 }
   600 inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
   603 // clobbers o7 on V8!!
   604 // returns delta from gotten pc to addr after
   605 inline int MacroAssembler::get_pc( Register d ) {
   606   int x = offset();
   607   if (VM_Version::v9_instructions_work())
   608     rdpc(d);
   609   else {
   610     Label lbl;
   611     Assembler::call(lbl, relocInfo::none);  // No relocation as this is call to pc+0x8
   612     if (d == O7)  delayed()->nop();
   613     else          delayed()->mov(O7, d);
   614     bind(lbl);
   615   }
   616   return offset() - x;
   617 }
   620 // Note:  All MacroAssembler::set_foo functions are defined out-of-line.
   623 // Loads the current PC of the following instruction as an immediate value in
   624 // 2 instructions.  All PCs in the CodeCache are within 2 Gig of each other.
   625 inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
   626   intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
   627 #ifdef _LP64
   628   Unimplemented();
   629 #else
   630   Assembler::sethi(  thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
   631   Assembler::add(reg,thepc &  0x3ff, reg, internal_word_Relocation::spec((address)thepc));
   632 #endif
   633   return thepc;
   634 }
   637 inline void MacroAssembler::load_contents(AddressLiteral& addrlit, Register d, int offset) {
   638   assert_not_delayed();
   639   sethi(addrlit, d);
   640   ld(d, addrlit.low10() + offset, d);
   641 }
   644 inline void MacroAssembler::load_ptr_contents(AddressLiteral& addrlit, Register d, int offset) {
   645   assert_not_delayed();
   646   sethi(addrlit, d);
   647   ld_ptr(d, addrlit.low10() + offset, d);
   648 }
   651 inline void MacroAssembler::store_contents(Register s, AddressLiteral& addrlit, Register temp, int offset) {
   652   assert_not_delayed();
   653   sethi(addrlit, temp);
   654   st(s, temp, addrlit.low10() + offset);
   655 }
   658 inline void MacroAssembler::store_ptr_contents(Register s, AddressLiteral& addrlit, Register temp, int offset) {
   659   assert_not_delayed();
   660   sethi(addrlit, temp);
   661   st_ptr(s, temp, addrlit.low10() + offset);
   662 }
   665 // This code sequence is relocatable to any address, even on LP64.
   666 inline void MacroAssembler::jumpl_to(AddressLiteral& addrlit, Register temp, Register d, int offset) {
   667   assert_not_delayed();
   668   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   669   // variable length instruction streams.
   670   patchable_sethi(addrlit, temp);
   671   jmpl(temp, addrlit.low10() + offset, d);
   672 }
   675 inline void MacroAssembler::jump_to(AddressLiteral& addrlit, Register temp, int offset) {
   676   jumpl_to(addrlit, temp, G0, offset);
   677 }
   680 inline void MacroAssembler::jump_indirect_to(Address& a, Register temp,
   681                                              int ld_offset, int jmp_offset) {
   682   assert_not_delayed();
   683   //sethi(al);                   // sethi is caller responsibility for this one
   684   ld_ptr(a, temp, ld_offset);
   685   jmp(temp, jmp_offset);
   686 }
   689 inline void MacroAssembler::set_oop(jobject obj, Register d) {
   690   set_oop(allocate_oop_address(obj), d);
   691 }
   694 inline void MacroAssembler::set_oop_constant(jobject obj, Register d) {
   695   set_oop(constant_oop_address(obj), d);
   696 }
   699 inline void MacroAssembler::set_oop(AddressLiteral& obj_addr, Register d) {
   700   assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   701   set(obj_addr, d);
   702 }
   705 inline void MacroAssembler::load_argument( Argument& a, Register  d ) {
   706   if (a.is_register())
   707     mov(a.as_register(), d);
   708   else
   709     ld (a.as_address(),  d);
   710 }
   712 inline void MacroAssembler::store_argument( Register s, Argument& a ) {
   713   if (a.is_register())
   714     mov(s, a.as_register());
   715   else
   716     st_ptr (s, a.as_address());         // ABI says everything is right justified.
   717 }
   719 inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
   720   if (a.is_register())
   721     mov(s, a.as_register());
   722   else
   723     st_ptr (s, a.as_address());
   724 }
   727 #ifdef _LP64
   728 inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
   729   if (a.is_float_register())
   730 // V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
   731     fmov(FloatRegisterImpl::S, s, a.as_float_register() );
   732   else
   733     // Floats are stored in the high half of the stack entry
   734     // The low half is undefined per the ABI.
   735     stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
   736 }
   738 inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
   739   if (a.is_float_register())
   740 // V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
   741     fmov(FloatRegisterImpl::D, s, a.as_double_register() );
   742   else
   743     stf(FloatRegisterImpl::D, s, a.as_address());
   744 }
   746 inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
   747   if (a.is_register())
   748     mov(s, a.as_register());
   749   else
   750     stx(s, a.as_address());
   751 }
   752 #endif
   754 inline void MacroAssembler::clrb( Register s1, Register s2) {  stb( G0, s1, s2 ); }
   755 inline void MacroAssembler::clrh( Register s1, Register s2) {  sth( G0, s1, s2 ); }
   756 inline void MacroAssembler::clr(  Register s1, Register s2) {  stw( G0, s1, s2 ); }
   757 inline void MacroAssembler::clrx( Register s1, Register s2) {  stx( G0, s1, s2 ); }
   759 inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
   760 inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
   761 inline void MacroAssembler::clr(  Register s1, int simm13a) { stw( G0, s1, simm13a); }
   762 inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
   764 // returns if membar generates anything, obviously this code should mirror
   765 // membar below.
   766 inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
   767   if( !os::is_MP() ) return false;  // Not needed on single CPU
   768   if( VM_Version::v9_instructions_work() ) {
   769     const Membar_mask_bits effective_mask =
   770         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
   771     return (effective_mask != 0);
   772   } else {
   773     return true;
   774   }
   775 }
   777 inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
   778   // Uniprocessors do not need memory barriers
   779   if (!os::is_MP()) return;
   780   // Weakened for current Sparcs and TSO.  See the v9 manual, sections 8.4.3,
   781   // 8.4.4.3, a.31 and a.50.
   782   if( VM_Version::v9_instructions_work() ) {
   783     // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
   784     // of the mmask subfield of const7a that does anything that isn't done
   785     // implicitly is StoreLoad.
   786     const Membar_mask_bits effective_mask =
   787         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
   788     if ( effective_mask != 0 ) {
   789       Assembler::membar( effective_mask );
   790     }
   791   } else {
   792     // stbar is the closest there is on v8.  Equivalent to membar(StoreStore).  We
   793     // do not issue the stbar because to my knowledge all v8 machines implement TSO,
   794     // which guarantees that all stores behave as if an stbar were issued just after
   795     // each one of them.  On these machines, stbar ought to be a nop.  There doesn't
   796     // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
   797     // it can't be specified by stbar, nor have I come up with a way to simulate it.
   798     //
   799     // Addendum.  Dave says that ldstub guarantees a write buffer flush to coherent
   800     // space.  Put one here to be on the safe side.
   801     Assembler::ldstub(SP, 0, G0);
   802   }
   803 }

mercurial