src/share/vm/c1/c1_LIRGenerator.cpp

Wed, 23 Jan 2013 13:02:39 -0500

author
jprovino
date
Wed, 23 Jan 2013 13:02:39 -0500
changeset 4542
db9981fd3124
parent 4361
1e41b0bc58a0
child 4860
46f6f063b272
child 4889
cc32ccaaf47f
permissions
-rw-r--r--

8005915: Unify SERIALGC and INCLUDE_ALTERNATE_GCS
Summary: Rename INCLUDE_ALTERNATE_GCS to INCLUDE_ALL_GCS and replace SERIALGC with INCLUDE_ALL_GCS.
Reviewed-by: coleenp, stefank

     1 /*
     2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_FrameMap.hpp"
    28 #include "c1/c1_Instruction.hpp"
    29 #include "c1/c1_LIRAssembler.hpp"
    30 #include "c1/c1_LIRGenerator.hpp"
    31 #include "c1/c1_ValueStack.hpp"
    32 #include "ci/ciArrayKlass.hpp"
    33 #include "ci/ciInstance.hpp"
    34 #include "ci/ciObjArray.hpp"
    35 #include "runtime/sharedRuntime.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "utilities/bitMap.inline.hpp"
    38 #include "utilities/macros.hpp"
    39 #if INCLUDE_ALL_GCS
    40 #include "gc_implementation/g1/heapRegion.hpp"
    41 #endif // INCLUDE_ALL_GCS
    43 #ifdef ASSERT
    44 #define __ gen()->lir(__FILE__, __LINE__)->
    45 #else
    46 #define __ gen()->lir()->
    47 #endif
    49 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
    50 #ifdef ARM
    51 #define PATCHED_ADDR  (204)
    52 #else
    53 #define PATCHED_ADDR  (max_jint)
    54 #endif
    56 void PhiResolverState::reset(int max_vregs) {
    57   // Initialize array sizes
    58   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    59   _virtual_operands.trunc_to(0);
    60   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    61   _other_operands.trunc_to(0);
    62   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
    63   _vreg_table.trunc_to(0);
    64 }
    68 //--------------------------------------------------------------
    69 // PhiResolver
    71 // Resolves cycles:
    72 //
    73 //  r1 := r2  becomes  temp := r1
    74 //  r2 := r1           r1 := r2
    75 //                     r2 := temp
    76 // and orders moves:
    77 //
    78 //  r2 := r3  becomes  r1 := r2
    79 //  r1 := r2           r2 := r3
    81 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
    82  : _gen(gen)
    83  , _state(gen->resolver_state())
    84  , _temp(LIR_OprFact::illegalOpr)
    85 {
    86   // reinitialize the shared state arrays
    87   _state.reset(max_vregs);
    88 }
    91 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
    92   assert(src->is_valid(), "");
    93   assert(dest->is_valid(), "");
    94   __ move(src, dest);
    95 }
    98 void PhiResolver::move_temp_to(LIR_Opr dest) {
    99   assert(_temp->is_valid(), "");
   100   emit_move(_temp, dest);
   101   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
   102 }
   105 void PhiResolver::move_to_temp(LIR_Opr src) {
   106   assert(_temp->is_illegal(), "");
   107   _temp = _gen->new_register(src->type());
   108   emit_move(src, _temp);
   109 }
   112 // Traverse assignment graph in depth first order and generate moves in post order
   113 // ie. two assignments: b := c, a := b start with node c:
   114 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
   115 // Generates moves in this order: move b to a and move c to b
   116 // ie. cycle a := b, b := a start with node a
   117 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
   118 // Generates moves in this order: move b to temp, move a to b, move temp to a
   119 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
   120   if (!dest->visited()) {
   121     dest->set_visited();
   122     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
   123       move(dest, dest->destination_at(i));
   124     }
   125   } else if (!dest->start_node()) {
   126     // cylce in graph detected
   127     assert(_loop == NULL, "only one loop valid!");
   128     _loop = dest;
   129     move_to_temp(src->operand());
   130     return;
   131   } // else dest is a start node
   133   if (!dest->assigned()) {
   134     if (_loop == dest) {
   135       move_temp_to(dest->operand());
   136       dest->set_assigned();
   137     } else if (src != NULL) {
   138       emit_move(src->operand(), dest->operand());
   139       dest->set_assigned();
   140     }
   141   }
   142 }
   145 PhiResolver::~PhiResolver() {
   146   int i;
   147   // resolve any cycles in moves from and to virtual registers
   148   for (i = virtual_operands().length() - 1; i >= 0; i --) {
   149     ResolveNode* node = virtual_operands()[i];
   150     if (!node->visited()) {
   151       _loop = NULL;
   152       move(NULL, node);
   153       node->set_start_node();
   154       assert(_temp->is_illegal(), "move_temp_to() call missing");
   155     }
   156   }
   158   // generate move for move from non virtual register to abitrary destination
   159   for (i = other_operands().length() - 1; i >= 0; i --) {
   160     ResolveNode* node = other_operands()[i];
   161     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
   162       emit_move(node->operand(), node->destination_at(j)->operand());
   163     }
   164   }
   165 }
   168 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
   169   ResolveNode* node;
   170   if (opr->is_virtual()) {
   171     int vreg_num = opr->vreg_number();
   172     node = vreg_table().at_grow(vreg_num, NULL);
   173     assert(node == NULL || node->operand() == opr, "");
   174     if (node == NULL) {
   175       node = new ResolveNode(opr);
   176       vreg_table()[vreg_num] = node;
   177     }
   178     // Make sure that all virtual operands show up in the list when
   179     // they are used as the source of a move.
   180     if (source && !virtual_operands().contains(node)) {
   181       virtual_operands().append(node);
   182     }
   183   } else {
   184     assert(source, "");
   185     node = new ResolveNode(opr);
   186     other_operands().append(node);
   187   }
   188   return node;
   189 }
   192 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
   193   assert(dest->is_virtual(), "");
   194   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
   195   assert(src->is_valid(), "");
   196   assert(dest->is_valid(), "");
   197   ResolveNode* source = source_node(src);
   198   source->append(destination_node(dest));
   199 }
   202 //--------------------------------------------------------------
   203 // LIRItem
   205 void LIRItem::set_result(LIR_Opr opr) {
   206   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
   207   value()->set_operand(opr);
   209   if (opr->is_virtual()) {
   210     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
   211   }
   213   _result = opr;
   214 }
   216 void LIRItem::load_item() {
   217   if (result()->is_illegal()) {
   218     // update the items result
   219     _result = value()->operand();
   220   }
   221   if (!result()->is_register()) {
   222     LIR_Opr reg = _gen->new_register(value()->type());
   223     __ move(result(), reg);
   224     if (result()->is_constant()) {
   225       _result = reg;
   226     } else {
   227       set_result(reg);
   228     }
   229   }
   230 }
   233 void LIRItem::load_for_store(BasicType type) {
   234   if (_gen->can_store_as_constant(value(), type)) {
   235     _result = value()->operand();
   236     if (!_result->is_constant()) {
   237       _result = LIR_OprFact::value_type(value()->type());
   238     }
   239   } else if (type == T_BYTE || type == T_BOOLEAN) {
   240     load_byte_item();
   241   } else {
   242     load_item();
   243   }
   244 }
   246 void LIRItem::load_item_force(LIR_Opr reg) {
   247   LIR_Opr r = result();
   248   if (r != reg) {
   249 #if !defined(ARM) && !defined(E500V2)
   250     if (r->type() != reg->type()) {
   251       // moves between different types need an intervening spill slot
   252       r = _gen->force_to_spill(r, reg->type());
   253     }
   254 #endif
   255     __ move(r, reg);
   256     _result = reg;
   257   }
   258 }
   260 ciObject* LIRItem::get_jobject_constant() const {
   261   ObjectType* oc = type()->as_ObjectType();
   262   if (oc) {
   263     return oc->constant_value();
   264   }
   265   return NULL;
   266 }
   269 jint LIRItem::get_jint_constant() const {
   270   assert(is_constant() && value() != NULL, "");
   271   assert(type()->as_IntConstant() != NULL, "type check");
   272   return type()->as_IntConstant()->value();
   273 }
   276 jint LIRItem::get_address_constant() const {
   277   assert(is_constant() && value() != NULL, "");
   278   assert(type()->as_AddressConstant() != NULL, "type check");
   279   return type()->as_AddressConstant()->value();
   280 }
   283 jfloat LIRItem::get_jfloat_constant() const {
   284   assert(is_constant() && value() != NULL, "");
   285   assert(type()->as_FloatConstant() != NULL, "type check");
   286   return type()->as_FloatConstant()->value();
   287 }
   290 jdouble LIRItem::get_jdouble_constant() const {
   291   assert(is_constant() && value() != NULL, "");
   292   assert(type()->as_DoubleConstant() != NULL, "type check");
   293   return type()->as_DoubleConstant()->value();
   294 }
   297 jlong LIRItem::get_jlong_constant() const {
   298   assert(is_constant() && value() != NULL, "");
   299   assert(type()->as_LongConstant() != NULL, "type check");
   300   return type()->as_LongConstant()->value();
   301 }
   305 //--------------------------------------------------------------
   308 void LIRGenerator::init() {
   309   _bs = Universe::heap()->barrier_set();
   310 }
   313 void LIRGenerator::block_do_prolog(BlockBegin* block) {
   314 #ifndef PRODUCT
   315   if (PrintIRWithLIR) {
   316     block->print();
   317   }
   318 #endif
   320   // set up the list of LIR instructions
   321   assert(block->lir() == NULL, "LIR list already computed for this block");
   322   _lir = new LIR_List(compilation(), block);
   323   block->set_lir(_lir);
   325   __ branch_destination(block->label());
   327   if (LIRTraceExecution &&
   328       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
   329       !block->is_set(BlockBegin::exception_entry_flag)) {
   330     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
   331     trace_block_entry(block);
   332   }
   333 }
   336 void LIRGenerator::block_do_epilog(BlockBegin* block) {
   337 #ifndef PRODUCT
   338   if (PrintIRWithLIR) {
   339     tty->cr();
   340   }
   341 #endif
   343   // LIR_Opr for unpinned constants shouldn't be referenced by other
   344   // blocks so clear them out after processing the block.
   345   for (int i = 0; i < _unpinned_constants.length(); i++) {
   346     _unpinned_constants.at(i)->clear_operand();
   347   }
   348   _unpinned_constants.trunc_to(0);
   350   // clear our any registers for other local constants
   351   _constants.trunc_to(0);
   352   _reg_for_constants.trunc_to(0);
   353 }
   356 void LIRGenerator::block_do(BlockBegin* block) {
   357   CHECK_BAILOUT();
   359   block_do_prolog(block);
   360   set_block(block);
   362   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
   363     if (instr->is_pinned()) do_root(instr);
   364   }
   366   set_block(NULL);
   367   block_do_epilog(block);
   368 }
   371 //-------------------------LIRGenerator-----------------------------
   373 // This is where the tree-walk starts; instr must be root;
   374 void LIRGenerator::do_root(Value instr) {
   375   CHECK_BAILOUT();
   377   InstructionMark im(compilation(), instr);
   379   assert(instr->is_pinned(), "use only with roots");
   380   assert(instr->subst() == instr, "shouldn't have missed substitution");
   382   instr->visit(this);
   384   assert(!instr->has_uses() || instr->operand()->is_valid() ||
   385          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
   386 }
   389 // This is called for each node in tree; the walk stops if a root is reached
   390 void LIRGenerator::walk(Value instr) {
   391   InstructionMark im(compilation(), instr);
   392   //stop walk when encounter a root
   393   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
   394     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
   395   } else {
   396     assert(instr->subst() == instr, "shouldn't have missed substitution");
   397     instr->visit(this);
   398     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
   399   }
   400 }
   403 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
   404   assert(state != NULL, "state must be defined");
   406   ValueStack* s = state;
   407   for_each_state(s) {
   408     if (s->kind() == ValueStack::EmptyExceptionState) {
   409       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
   410       continue;
   411     }
   413     int index;
   414     Value value;
   415     for_each_stack_value(s, index, value) {
   416       assert(value->subst() == value, "missed substitution");
   417       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   418         walk(value);
   419         assert(value->operand()->is_valid(), "must be evaluated now");
   420       }
   421     }
   423     int bci = s->bci();
   424     IRScope* scope = s->scope();
   425     ciMethod* method = scope->method();
   427     MethodLivenessResult liveness = method->liveness_at_bci(bci);
   428     if (bci == SynchronizationEntryBCI) {
   429       if (x->as_ExceptionObject() || x->as_Throw()) {
   430         // all locals are dead on exit from the synthetic unlocker
   431         liveness.clear();
   432       } else {
   433         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
   434       }
   435     }
   436     if (!liveness.is_valid()) {
   437       // Degenerate or breakpointed method.
   438       bailout("Degenerate or breakpointed method");
   439     } else {
   440       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
   441       for_each_local_value(s, index, value) {
   442         assert(value->subst() == value, "missed substition");
   443         if (liveness.at(index) && !value->type()->is_illegal()) {
   444           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   445             walk(value);
   446             assert(value->operand()->is_valid(), "must be evaluated now");
   447           }
   448         } else {
   449           // NULL out this local so that linear scan can assume that all non-NULL values are live.
   450           s->invalidate_local(index);
   451         }
   452       }
   453     }
   454   }
   456   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers());
   457 }
   460 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
   461   return state_for(x, x->exception_state());
   462 }
   465 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info) {
   466   if (!obj->is_loaded() || PatchALot) {
   467     assert(info != NULL, "info must be set if class is not loaded");
   468     __ klass2reg_patch(NULL, r, info);
   469   } else {
   470     // no patching needed
   471     __ metadata2reg(obj->constant_encoding(), r);
   472   }
   473 }
   476 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
   477                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
   478   CodeStub* stub = new RangeCheckStub(range_check_info, index);
   479   if (index->is_constant()) {
   480     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
   481                 index->as_jint(), null_check_info);
   482     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   483   } else {
   484     cmp_reg_mem(lir_cond_aboveEqual, index, array,
   485                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
   486     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   487   }
   488 }
   491 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
   492   CodeStub* stub = new RangeCheckStub(info, index, true);
   493   if (index->is_constant()) {
   494     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
   495     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   496   } else {
   497     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
   498                 java_nio_Buffer::limit_offset(), T_INT, info);
   499     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   500   }
   501   __ move(index, result);
   502 }
   506 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
   507   LIR_Opr result_op = result;
   508   LIR_Opr left_op   = left;
   509   LIR_Opr right_op  = right;
   511   if (TwoOperandLIRForm && left_op != result_op) {
   512     assert(right_op != result_op, "malformed");
   513     __ move(left_op, result_op);
   514     left_op = result_op;
   515   }
   517   switch(code) {
   518     case Bytecodes::_dadd:
   519     case Bytecodes::_fadd:
   520     case Bytecodes::_ladd:
   521     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
   522     case Bytecodes::_fmul:
   523     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
   525     case Bytecodes::_dmul:
   526       {
   527         if (is_strictfp) {
   528           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
   529         } else {
   530           __ mul(left_op, right_op, result_op); break;
   531         }
   532       }
   533       break;
   535     case Bytecodes::_imul:
   536       {
   537         bool    did_strength_reduce = false;
   539         if (right->is_constant()) {
   540           int c = right->as_jint();
   541           if (is_power_of_2(c)) {
   542             // do not need tmp here
   543             __ shift_left(left_op, exact_log2(c), result_op);
   544             did_strength_reduce = true;
   545           } else {
   546             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
   547           }
   548         }
   549         // we couldn't strength reduce so just emit the multiply
   550         if (!did_strength_reduce) {
   551           __ mul(left_op, right_op, result_op);
   552         }
   553       }
   554       break;
   556     case Bytecodes::_dsub:
   557     case Bytecodes::_fsub:
   558     case Bytecodes::_lsub:
   559     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
   561     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
   562     // ldiv and lrem are implemented with a direct runtime call
   564     case Bytecodes::_ddiv:
   565       {
   566         if (is_strictfp) {
   567           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
   568         } else {
   569           __ div (left_op, right_op, result_op); break;
   570         }
   571       }
   572       break;
   574     case Bytecodes::_drem:
   575     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
   577     default: ShouldNotReachHere();
   578   }
   579 }
   582 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
   583   arithmetic_op(code, result, left, right, false, tmp);
   584 }
   587 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
   588   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
   589 }
   592 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
   593   arithmetic_op(code, result, left, right, is_strictfp, tmp);
   594 }
   597 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
   598   if (TwoOperandLIRForm && value != result_op) {
   599     assert(count != result_op, "malformed");
   600     __ move(value, result_op);
   601     value = result_op;
   602   }
   604   assert(count->is_constant() || count->is_register(), "must be");
   605   switch(code) {
   606   case Bytecodes::_ishl:
   607   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
   608   case Bytecodes::_ishr:
   609   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
   610   case Bytecodes::_iushr:
   611   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
   612   default: ShouldNotReachHere();
   613   }
   614 }
   617 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
   618   if (TwoOperandLIRForm && left_op != result_op) {
   619     assert(right_op != result_op, "malformed");
   620     __ move(left_op, result_op);
   621     left_op = result_op;
   622   }
   624   switch(code) {
   625     case Bytecodes::_iand:
   626     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
   628     case Bytecodes::_ior:
   629     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
   631     case Bytecodes::_ixor:
   632     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
   634     default: ShouldNotReachHere();
   635   }
   636 }
   639 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
   640   if (!GenerateSynchronizationCode) return;
   641   // for slow path, use debug info for state after successful locking
   642   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
   643   __ load_stack_address_monitor(monitor_no, lock);
   644   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
   645   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
   646 }
   649 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
   650   if (!GenerateSynchronizationCode) return;
   651   // setup registers
   652   LIR_Opr hdr = lock;
   653   lock = new_hdr;
   654   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
   655   __ load_stack_address_monitor(monitor_no, lock);
   656   __ unlock_object(hdr, object, lock, scratch, slow_path);
   657 }
   660 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
   661   klass2reg_with_patching(klass_reg, klass, info);
   662   // If klass is not loaded we do not know if the klass has finalizers:
   663   if (UseFastNewInstance && klass->is_loaded()
   664       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
   666     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
   668     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
   670     assert(klass->is_loaded(), "must be loaded");
   671     // allocate space for instance
   672     assert(klass->size_helper() >= 0, "illegal instance size");
   673     const int instance_size = align_object_size(klass->size_helper());
   674     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
   675                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
   676   } else {
   677     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
   678     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
   679     __ branch_destination(slow_path->continuation());
   680   }
   681 }
   684 static bool is_constant_zero(Instruction* inst) {
   685   IntConstant* c = inst->type()->as_IntConstant();
   686   if (c) {
   687     return (c->value() == 0);
   688   }
   689   return false;
   690 }
   693 static bool positive_constant(Instruction* inst) {
   694   IntConstant* c = inst->type()->as_IntConstant();
   695   if (c) {
   696     return (c->value() >= 0);
   697   }
   698   return false;
   699 }
   702 static ciArrayKlass* as_array_klass(ciType* type) {
   703   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
   704     return (ciArrayKlass*)type;
   705   } else {
   706     return NULL;
   707   }
   708 }
   710 static Value maxvalue(IfOp* ifop) {
   711   switch (ifop->cond()) {
   712     case If::eql: return NULL;
   713     case If::neq: return NULL;
   714     case If::lss: // x <  y ? x : y
   715     case If::leq: // x <= y ? x : y
   716       if (ifop->x() == ifop->tval() &&
   717           ifop->y() == ifop->fval()) return ifop->y();
   718       return NULL;
   720     case If::gtr: // x >  y ? y : x
   721     case If::geq: // x >= y ? y : x
   722       if (ifop->x() == ifop->tval() &&
   723           ifop->y() == ifop->fval()) return ifop->y();
   724       return NULL;
   726   }
   727 }
   729 static ciType* phi_declared_type(Phi* phi) {
   730   ciType* t = phi->operand_at(0)->declared_type();
   731   if (t == NULL) {
   732     return NULL;
   733   }
   734   for(int i = 1; i < phi->operand_count(); i++) {
   735     if (t != phi->operand_at(i)->declared_type()) {
   736       return NULL;
   737     }
   738   }
   739   return t;
   740 }
   742 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
   743   Instruction* src     = x->argument_at(0);
   744   Instruction* src_pos = x->argument_at(1);
   745   Instruction* dst     = x->argument_at(2);
   746   Instruction* dst_pos = x->argument_at(3);
   747   Instruction* length  = x->argument_at(4);
   749   // first try to identify the likely type of the arrays involved
   750   ciArrayKlass* expected_type = NULL;
   751   bool is_exact = false, src_objarray = false, dst_objarray = false;
   752   {
   753     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
   754     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
   755     Phi* phi;
   756     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
   757       src_declared_type = as_array_klass(phi_declared_type(phi));
   758     }
   759     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
   760     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
   761     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
   762       dst_declared_type = as_array_klass(phi_declared_type(phi));
   763     }
   765     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
   766       // the types exactly match so the type is fully known
   767       is_exact = true;
   768       expected_type = src_exact_type;
   769     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
   770       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
   771       ciArrayKlass* src_type = NULL;
   772       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
   773         src_type = (ciArrayKlass*) src_exact_type;
   774       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
   775         src_type = (ciArrayKlass*) src_declared_type;
   776       }
   777       if (src_type != NULL) {
   778         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
   779           is_exact = true;
   780           expected_type = dst_type;
   781         }
   782       }
   783     }
   784     // at least pass along a good guess
   785     if (expected_type == NULL) expected_type = dst_exact_type;
   786     if (expected_type == NULL) expected_type = src_declared_type;
   787     if (expected_type == NULL) expected_type = dst_declared_type;
   789     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
   790     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
   791   }
   793   // if a probable array type has been identified, figure out if any
   794   // of the required checks for a fast case can be elided.
   795   int flags = LIR_OpArrayCopy::all_flags;
   797   if (!src_objarray)
   798     flags &= ~LIR_OpArrayCopy::src_objarray;
   799   if (!dst_objarray)
   800     flags &= ~LIR_OpArrayCopy::dst_objarray;
   802   if (!x->arg_needs_null_check(0))
   803     flags &= ~LIR_OpArrayCopy::src_null_check;
   804   if (!x->arg_needs_null_check(2))
   805     flags &= ~LIR_OpArrayCopy::dst_null_check;
   808   if (expected_type != NULL) {
   809     Value length_limit = NULL;
   811     IfOp* ifop = length->as_IfOp();
   812     if (ifop != NULL) {
   813       // look for expressions like min(v, a.length) which ends up as
   814       //   x > y ? y : x  or  x >= y ? y : x
   815       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
   816           ifop->x() == ifop->fval() &&
   817           ifop->y() == ifop->tval()) {
   818         length_limit = ifop->y();
   819       }
   820     }
   822     // try to skip null checks and range checks
   823     NewArray* src_array = src->as_NewArray();
   824     if (src_array != NULL) {
   825       flags &= ~LIR_OpArrayCopy::src_null_check;
   826       if (length_limit != NULL &&
   827           src_array->length() == length_limit &&
   828           is_constant_zero(src_pos)) {
   829         flags &= ~LIR_OpArrayCopy::src_range_check;
   830       }
   831     }
   833     NewArray* dst_array = dst->as_NewArray();
   834     if (dst_array != NULL) {
   835       flags &= ~LIR_OpArrayCopy::dst_null_check;
   836       if (length_limit != NULL &&
   837           dst_array->length() == length_limit &&
   838           is_constant_zero(dst_pos)) {
   839         flags &= ~LIR_OpArrayCopy::dst_range_check;
   840       }
   841     }
   843     // check from incoming constant values
   844     if (positive_constant(src_pos))
   845       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
   846     if (positive_constant(dst_pos))
   847       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
   848     if (positive_constant(length))
   849       flags &= ~LIR_OpArrayCopy::length_positive_check;
   851     // see if the range check can be elided, which might also imply
   852     // that src or dst is non-null.
   853     ArrayLength* al = length->as_ArrayLength();
   854     if (al != NULL) {
   855       if (al->array() == src) {
   856         // it's the length of the source array
   857         flags &= ~LIR_OpArrayCopy::length_positive_check;
   858         flags &= ~LIR_OpArrayCopy::src_null_check;
   859         if (is_constant_zero(src_pos))
   860           flags &= ~LIR_OpArrayCopy::src_range_check;
   861       }
   862       if (al->array() == dst) {
   863         // it's the length of the destination array
   864         flags &= ~LIR_OpArrayCopy::length_positive_check;
   865         flags &= ~LIR_OpArrayCopy::dst_null_check;
   866         if (is_constant_zero(dst_pos))
   867           flags &= ~LIR_OpArrayCopy::dst_range_check;
   868       }
   869     }
   870     if (is_exact) {
   871       flags &= ~LIR_OpArrayCopy::type_check;
   872     }
   873   }
   875   IntConstant* src_int = src_pos->type()->as_IntConstant();
   876   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
   877   if (src_int && dst_int) {
   878     int s_offs = src_int->value();
   879     int d_offs = dst_int->value();
   880     if (src_int->value() >= dst_int->value()) {
   881       flags &= ~LIR_OpArrayCopy::overlapping;
   882     }
   883     if (expected_type != NULL) {
   884       BasicType t = expected_type->element_type()->basic_type();
   885       int element_size = type2aelembytes(t);
   886       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
   887           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
   888         flags &= ~LIR_OpArrayCopy::unaligned;
   889       }
   890     }
   891   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
   892     // src and dest positions are the same, or dst is zero so assume
   893     // nonoverlapping copy.
   894     flags &= ~LIR_OpArrayCopy::overlapping;
   895   }
   897   if (src == dst) {
   898     // moving within a single array so no type checks are needed
   899     if (flags & LIR_OpArrayCopy::type_check) {
   900       flags &= ~LIR_OpArrayCopy::type_check;
   901     }
   902   }
   903   *flagsp = flags;
   904   *expected_typep = (ciArrayKlass*)expected_type;
   905 }
   908 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
   909   assert(opr->is_register(), "why spill if item is not register?");
   911   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
   912     LIR_Opr result = new_register(T_FLOAT);
   913     set_vreg_flag(result, must_start_in_memory);
   914     assert(opr->is_register(), "only a register can be spilled");
   915     assert(opr->value_type()->is_float(), "rounding only for floats available");
   916     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
   917     return result;
   918   }
   919   return opr;
   920 }
   923 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
   924   assert(type2size[t] == type2size[value->type()],
   925          err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
   926   if (!value->is_register()) {
   927     // force into a register
   928     LIR_Opr r = new_register(value->type());
   929     __ move(value, r);
   930     value = r;
   931   }
   933   // create a spill location
   934   LIR_Opr tmp = new_register(t);
   935   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
   937   // move from register to spill
   938   __ move(value, tmp);
   939   return tmp;
   940 }
   942 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
   943   if (if_instr->should_profile()) {
   944     ciMethod* method = if_instr->profiled_method();
   945     assert(method != NULL, "method should be set if branch is profiled");
   946     ciMethodData* md = method->method_data_or_null();
   947     assert(md != NULL, "Sanity");
   948     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
   949     assert(data != NULL, "must have profiling data");
   950     assert(data->is_BranchData(), "need BranchData for two-way branches");
   951     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
   952     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
   953     if (if_instr->is_swapped()) {
   954       int t = taken_count_offset;
   955       taken_count_offset = not_taken_count_offset;
   956       not_taken_count_offset = t;
   957     }
   959     LIR_Opr md_reg = new_register(T_METADATA);
   960     __ metadata2reg(md->constant_encoding(), md_reg);
   962     LIR_Opr data_offset_reg = new_pointer_register();
   963     __ cmove(lir_cond(cond),
   964              LIR_OprFact::intptrConst(taken_count_offset),
   965              LIR_OprFact::intptrConst(not_taken_count_offset),
   966              data_offset_reg, as_BasicType(if_instr->x()->type()));
   968     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
   969     LIR_Opr data_reg = new_pointer_register();
   970     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
   971     __ move(data_addr, data_reg);
   972     // Use leal instead of add to avoid destroying condition codes on x86
   973     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
   974     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
   975     __ move(data_reg, data_addr);
   976   }
   977 }
   979 // Phi technique:
   980 // This is about passing live values from one basic block to the other.
   981 // In code generated with Java it is rather rare that more than one
   982 // value is on the stack from one basic block to the other.
   983 // We optimize our technique for efficient passing of one value
   984 // (of type long, int, double..) but it can be extended.
   985 // When entering or leaving a basic block, all registers and all spill
   986 // slots are release and empty. We use the released registers
   987 // and spill slots to pass the live values from one block
   988 // to the other. The topmost value, i.e., the value on TOS of expression
   989 // stack is passed in registers. All other values are stored in spilling
   990 // area. Every Phi has an index which designates its spill slot
   991 // At exit of a basic block, we fill the register(s) and spill slots.
   992 // At entry of a basic block, the block_prolog sets up the content of phi nodes
   993 // and locks necessary registers and spilling slots.
   996 // move current value to referenced phi function
   997 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
   998   Phi* phi = sux_val->as_Phi();
   999   // cur_val can be null without phi being null in conjunction with inlining
  1000   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
  1001     LIR_Opr operand = cur_val->operand();
  1002     if (cur_val->operand()->is_illegal()) {
  1003       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
  1004              "these can be produced lazily");
  1005       operand = operand_for_instruction(cur_val);
  1007     resolver->move(operand, operand_for_instruction(phi));
  1012 // Moves all stack values into their PHI position
  1013 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
  1014   BlockBegin* bb = block();
  1015   if (bb->number_of_sux() == 1) {
  1016     BlockBegin* sux = bb->sux_at(0);
  1017     assert(sux->number_of_preds() > 0, "invalid CFG");
  1019     // a block with only one predecessor never has phi functions
  1020     if (sux->number_of_preds() > 1) {
  1021       int max_phis = cur_state->stack_size() + cur_state->locals_size();
  1022       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
  1024       ValueStack* sux_state = sux->state();
  1025       Value sux_value;
  1026       int index;
  1028       assert(cur_state->scope() == sux_state->scope(), "not matching");
  1029       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
  1030       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
  1032       for_each_stack_value(sux_state, index, sux_value) {
  1033         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
  1036       for_each_local_value(sux_state, index, sux_value) {
  1037         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
  1040       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
  1046 LIR_Opr LIRGenerator::new_register(BasicType type) {
  1047   int vreg = _virtual_register_number;
  1048   // add a little fudge factor for the bailout, since the bailout is
  1049   // only checked periodically.  This gives a few extra registers to
  1050   // hand out before we really run out, which helps us keep from
  1051   // tripping over assertions.
  1052   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
  1053     bailout("out of virtual registers");
  1054     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
  1055       // wrap it around
  1056       _virtual_register_number = LIR_OprDesc::vreg_base;
  1059   _virtual_register_number += 1;
  1060   return LIR_OprFact::virtual_register(vreg, type);
  1064 // Try to lock using register in hint
  1065 LIR_Opr LIRGenerator::rlock(Value instr) {
  1066   return new_register(instr->type());
  1070 // does an rlock and sets result
  1071 LIR_Opr LIRGenerator::rlock_result(Value x) {
  1072   LIR_Opr reg = rlock(x);
  1073   set_result(x, reg);
  1074   return reg;
  1078 // does an rlock and sets result
  1079 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
  1080   LIR_Opr reg;
  1081   switch (type) {
  1082   case T_BYTE:
  1083   case T_BOOLEAN:
  1084     reg = rlock_byte(type);
  1085     break;
  1086   default:
  1087     reg = rlock(x);
  1088     break;
  1091   set_result(x, reg);
  1092   return reg;
  1096 //---------------------------------------------------------------------
  1097 ciObject* LIRGenerator::get_jobject_constant(Value value) {
  1098   ObjectType* oc = value->type()->as_ObjectType();
  1099   if (oc) {
  1100     return oc->constant_value();
  1102   return NULL;
  1106 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
  1107   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
  1108   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
  1110   // no moves are created for phi functions at the begin of exception
  1111   // handlers, so assign operands manually here
  1112   for_each_phi_fun(block(), phi,
  1113                    operand_for_instruction(phi));
  1115   LIR_Opr thread_reg = getThreadPointer();
  1116   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
  1117                exceptionOopOpr());
  1118   __ move_wide(LIR_OprFact::oopConst(NULL),
  1119                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
  1120   __ move_wide(LIR_OprFact::oopConst(NULL),
  1121                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
  1123   LIR_Opr result = new_register(T_OBJECT);
  1124   __ move(exceptionOopOpr(), result);
  1125   set_result(x, result);
  1129 //----------------------------------------------------------------------
  1130 //----------------------------------------------------------------------
  1131 //----------------------------------------------------------------------
  1132 //----------------------------------------------------------------------
  1133 //                        visitor functions
  1134 //----------------------------------------------------------------------
  1135 //----------------------------------------------------------------------
  1136 //----------------------------------------------------------------------
  1137 //----------------------------------------------------------------------
  1139 void LIRGenerator::do_Phi(Phi* x) {
  1140   // phi functions are never visited directly
  1141   ShouldNotReachHere();
  1145 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
  1146 void LIRGenerator::do_Constant(Constant* x) {
  1147   if (x->state_before() != NULL) {
  1148     // Any constant with a ValueStack requires patching so emit the patch here
  1149     LIR_Opr reg = rlock_result(x);
  1150     CodeEmitInfo* info = state_for(x, x->state_before());
  1151     __ oop2reg_patch(NULL, reg, info);
  1152   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
  1153     if (!x->is_pinned()) {
  1154       // unpinned constants are handled specially so that they can be
  1155       // put into registers when they are used multiple times within a
  1156       // block.  After the block completes their operand will be
  1157       // cleared so that other blocks can't refer to that register.
  1158       set_result(x, load_constant(x));
  1159     } else {
  1160       LIR_Opr res = x->operand();
  1161       if (!res->is_valid()) {
  1162         res = LIR_OprFact::value_type(x->type());
  1164       if (res->is_constant()) {
  1165         LIR_Opr reg = rlock_result(x);
  1166         __ move(res, reg);
  1167       } else {
  1168         set_result(x, res);
  1171   } else {
  1172     set_result(x, LIR_OprFact::value_type(x->type()));
  1177 void LIRGenerator::do_Local(Local* x) {
  1178   // operand_for_instruction has the side effect of setting the result
  1179   // so there's no need to do it here.
  1180   operand_for_instruction(x);
  1184 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
  1185   Unimplemented();
  1189 void LIRGenerator::do_Return(Return* x) {
  1190   if (compilation()->env()->dtrace_method_probes()) {
  1191     BasicTypeList signature;
  1192     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  1193     signature.append(T_OBJECT); // Method*
  1194     LIR_OprList* args = new LIR_OprList();
  1195     args->append(getThreadPointer());
  1196     LIR_Opr meth = new_register(T_METADATA);
  1197     __ metadata2reg(method()->constant_encoding(), meth);
  1198     args->append(meth);
  1199     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
  1202   if (x->type()->is_void()) {
  1203     __ return_op(LIR_OprFact::illegalOpr);
  1204   } else {
  1205     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
  1206     LIRItem result(x->result(), this);
  1208     result.load_item_force(reg);
  1209     __ return_op(result.result());
  1211   set_no_result(x);
  1214 // Examble: ref.get()
  1215 // Combination of LoadField and g1 pre-write barrier
  1216 void LIRGenerator::do_Reference_get(Intrinsic* x) {
  1218   const int referent_offset = java_lang_ref_Reference::referent_offset;
  1219   guarantee(referent_offset > 0, "referent offset not initialized");
  1221   assert(x->number_of_arguments() == 1, "wrong type");
  1223   LIRItem reference(x->argument_at(0), this);
  1224   reference.load_item();
  1226   // need to perform the null check on the reference objecy
  1227   CodeEmitInfo* info = NULL;
  1228   if (x->needs_null_check()) {
  1229     info = state_for(x);
  1232   LIR_Address* referent_field_adr =
  1233     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
  1235   LIR_Opr result = rlock_result(x);
  1237   __ load(referent_field_adr, result, info);
  1239   // Register the value in the referent field with the pre-barrier
  1240   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
  1241               result /* pre_val */,
  1242               false  /* do_load */,
  1243               false  /* patch */,
  1244               NULL   /* info */);
  1247 // Example: clazz.isInstance(object)
  1248 void LIRGenerator::do_isInstance(Intrinsic* x) {
  1249   assert(x->number_of_arguments() == 2, "wrong type");
  1251   // TODO could try to substitute this node with an equivalent InstanceOf
  1252   // if clazz is known to be a constant Class. This will pick up newly found
  1253   // constants after HIR construction. I'll leave this to a future change.
  1255   // as a first cut, make a simple leaf call to runtime to stay platform independent.
  1256   // could follow the aastore example in a future change.
  1258   LIRItem clazz(x->argument_at(0), this);
  1259   LIRItem object(x->argument_at(1), this);
  1260   clazz.load_item();
  1261   object.load_item();
  1262   LIR_Opr result = rlock_result(x);
  1264   // need to perform null check on clazz
  1265   if (x->needs_null_check()) {
  1266     CodeEmitInfo* info = state_for(x);
  1267     __ null_check(clazz.result(), info);
  1270   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
  1271                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
  1272                                      x->type(),
  1273                                      NULL); // NULL CodeEmitInfo results in a leaf call
  1274   __ move(call_result, result);
  1277 // Example: object.getClass ()
  1278 void LIRGenerator::do_getClass(Intrinsic* x) {
  1279   assert(x->number_of_arguments() == 1, "wrong type");
  1281   LIRItem rcvr(x->argument_at(0), this);
  1282   rcvr.load_item();
  1283   LIR_Opr result = rlock_result(x);
  1285   // need to perform the null check on the rcvr
  1286   CodeEmitInfo* info = NULL;
  1287   if (x->needs_null_check()) {
  1288     info = state_for(x);
  1290   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), result, info);
  1291   __ move_wide(new LIR_Address(result, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
  1295 // Example: Thread.currentThread()
  1296 void LIRGenerator::do_currentThread(Intrinsic* x) {
  1297   assert(x->number_of_arguments() == 0, "wrong type");
  1298   LIR_Opr reg = rlock_result(x);
  1299   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
  1303 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
  1304   assert(x->number_of_arguments() == 1, "wrong type");
  1305   LIRItem receiver(x->argument_at(0), this);
  1307   receiver.load_item();
  1308   BasicTypeList signature;
  1309   signature.append(T_OBJECT); // receiver
  1310   LIR_OprList* args = new LIR_OprList();
  1311   args->append(receiver.result());
  1312   CodeEmitInfo* info = state_for(x, x->state());
  1313   call_runtime(&signature, args,
  1314                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
  1315                voidType, info);
  1317   set_no_result(x);
  1321 //------------------------local access--------------------------------------
  1323 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
  1324   if (x->operand()->is_illegal()) {
  1325     Constant* c = x->as_Constant();
  1326     if (c != NULL) {
  1327       x->set_operand(LIR_OprFact::value_type(c->type()));
  1328     } else {
  1329       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
  1330       // allocate a virtual register for this local or phi
  1331       x->set_operand(rlock(x));
  1332       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
  1335   return x->operand();
  1339 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
  1340   if (opr->is_virtual()) {
  1341     return instruction_for_vreg(opr->vreg_number());
  1343   return NULL;
  1347 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
  1348   if (reg_num < _instruction_for_operand.length()) {
  1349     return _instruction_for_operand.at(reg_num);
  1351   return NULL;
  1355 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
  1356   if (_vreg_flags.size_in_bits() == 0) {
  1357     BitMap2D temp(100, num_vreg_flags);
  1358     temp.clear();
  1359     _vreg_flags = temp;
  1361   _vreg_flags.at_put_grow(vreg_num, f, true);
  1364 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
  1365   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
  1366     return false;
  1368   return _vreg_flags.at(vreg_num, f);
  1372 // Block local constant handling.  This code is useful for keeping
  1373 // unpinned constants and constants which aren't exposed in the IR in
  1374 // registers.  Unpinned Constant instructions have their operands
  1375 // cleared when the block is finished so that other blocks can't end
  1376 // up referring to their registers.
  1378 LIR_Opr LIRGenerator::load_constant(Constant* x) {
  1379   assert(!x->is_pinned(), "only for unpinned constants");
  1380   _unpinned_constants.append(x);
  1381   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
  1385 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
  1386   BasicType t = c->type();
  1387   for (int i = 0; i < _constants.length(); i++) {
  1388     LIR_Const* other = _constants.at(i);
  1389     if (t == other->type()) {
  1390       switch (t) {
  1391       case T_INT:
  1392       case T_FLOAT:
  1393         if (c->as_jint_bits() != other->as_jint_bits()) continue;
  1394         break;
  1395       case T_LONG:
  1396       case T_DOUBLE:
  1397         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
  1398         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
  1399         break;
  1400       case T_OBJECT:
  1401         if (c->as_jobject() != other->as_jobject()) continue;
  1402         break;
  1404       return _reg_for_constants.at(i);
  1408   LIR_Opr result = new_register(t);
  1409   __ move((LIR_Opr)c, result);
  1410   _constants.append(c);
  1411   _reg_for_constants.append(result);
  1412   return result;
  1415 // Various barriers
  1417 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
  1418                                bool do_load, bool patch, CodeEmitInfo* info) {
  1419   // Do the pre-write barrier, if any.
  1420   switch (_bs->kind()) {
  1421 #if INCLUDE_ALL_GCS
  1422     case BarrierSet::G1SATBCT:
  1423     case BarrierSet::G1SATBCTLogging:
  1424       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
  1425       break;
  1426 #endif // INCLUDE_ALL_GCS
  1427     case BarrierSet::CardTableModRef:
  1428     case BarrierSet::CardTableExtension:
  1429       // No pre barriers
  1430       break;
  1431     case BarrierSet::ModRef:
  1432     case BarrierSet::Other:
  1433       // No pre barriers
  1434       break;
  1435     default      :
  1436       ShouldNotReachHere();
  1441 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1442   switch (_bs->kind()) {
  1443 #if INCLUDE_ALL_GCS
  1444     case BarrierSet::G1SATBCT:
  1445     case BarrierSet::G1SATBCTLogging:
  1446       G1SATBCardTableModRef_post_barrier(addr,  new_val);
  1447       break;
  1448 #endif // INCLUDE_ALL_GCS
  1449     case BarrierSet::CardTableModRef:
  1450     case BarrierSet::CardTableExtension:
  1451       CardTableModRef_post_barrier(addr,  new_val);
  1452       break;
  1453     case BarrierSet::ModRef:
  1454     case BarrierSet::Other:
  1455       // No post barriers
  1456       break;
  1457     default      :
  1458       ShouldNotReachHere();
  1462 ////////////////////////////////////////////////////////////////////////
  1463 #if INCLUDE_ALL_GCS
  1465 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
  1466                                                      bool do_load, bool patch, CodeEmitInfo* info) {
  1467   // First we test whether marking is in progress.
  1468   BasicType flag_type;
  1469   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  1470     flag_type = T_INT;
  1471   } else {
  1472     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  1473               "Assumption");
  1474     flag_type = T_BYTE;
  1476   LIR_Opr thrd = getThreadPointer();
  1477   LIR_Address* mark_active_flag_addr =
  1478     new LIR_Address(thrd,
  1479                     in_bytes(JavaThread::satb_mark_queue_offset() +
  1480                              PtrQueue::byte_offset_of_active()),
  1481                     flag_type);
  1482   // Read the marking-in-progress flag.
  1483   LIR_Opr flag_val = new_register(T_INT);
  1484   __ load(mark_active_flag_addr, flag_val);
  1485   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
  1487   LIR_PatchCode pre_val_patch_code = lir_patch_none;
  1489   CodeStub* slow;
  1491   if (do_load) {
  1492     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
  1493     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
  1495     if (patch)
  1496       pre_val_patch_code = lir_patch_normal;
  1498     pre_val = new_register(T_OBJECT);
  1500     if (!addr_opr->is_address()) {
  1501       assert(addr_opr->is_register(), "must be");
  1502       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
  1504     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
  1505   } else {
  1506     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
  1507     assert(pre_val->is_register(), "must be");
  1508     assert(pre_val->type() == T_OBJECT, "must be an object");
  1509     assert(info == NULL, "sanity");
  1511     slow = new G1PreBarrierStub(pre_val);
  1514   __ branch(lir_cond_notEqual, T_INT, slow);
  1515   __ branch_destination(slow->continuation());
  1518 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1519   // If the "new_val" is a constant NULL, no barrier is necessary.
  1520   if (new_val->is_constant() &&
  1521       new_val->as_constant_ptr()->as_jobject() == NULL) return;
  1523   if (!new_val->is_register()) {
  1524     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1525     if (new_val->is_constant()) {
  1526       __ move(new_val, new_val_reg);
  1527     } else {
  1528       __ leal(new_val, new_val_reg);
  1530     new_val = new_val_reg;
  1532   assert(new_val->is_register(), "must be a register at this point");
  1534   if (addr->is_address()) {
  1535     LIR_Address* address = addr->as_address_ptr();
  1536     LIR_Opr ptr = new_pointer_register();
  1537     if (!address->index()->is_valid() && address->disp() == 0) {
  1538       __ move(address->base(), ptr);
  1539     } else {
  1540       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1541       __ leal(addr, ptr);
  1543     addr = ptr;
  1545   assert(addr->is_register(), "must be a register at this point");
  1547   LIR_Opr xor_res = new_pointer_register();
  1548   LIR_Opr xor_shift_res = new_pointer_register();
  1549   if (TwoOperandLIRForm ) {
  1550     __ move(addr, xor_res);
  1551     __ logical_xor(xor_res, new_val, xor_res);
  1552     __ move(xor_res, xor_shift_res);
  1553     __ unsigned_shift_right(xor_shift_res,
  1554                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1555                             xor_shift_res,
  1556                             LIR_OprDesc::illegalOpr());
  1557   } else {
  1558     __ logical_xor(addr, new_val, xor_res);
  1559     __ unsigned_shift_right(xor_res,
  1560                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1561                             xor_shift_res,
  1562                             LIR_OprDesc::illegalOpr());
  1565   if (!new_val->is_register()) {
  1566     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1567     __ leal(new_val, new_val_reg);
  1568     new_val = new_val_reg;
  1570   assert(new_val->is_register(), "must be a register at this point");
  1572   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
  1574   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
  1575   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
  1576   __ branch_destination(slow->continuation());
  1579 #endif // INCLUDE_ALL_GCS
  1580 ////////////////////////////////////////////////////////////////////////
  1582 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1584   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
  1585   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
  1586   if (addr->is_address()) {
  1587     LIR_Address* address = addr->as_address_ptr();
  1588     // ptr cannot be an object because we use this barrier for array card marks
  1589     // and addr can point in the middle of an array.
  1590     LIR_Opr ptr = new_pointer_register();
  1591     if (!address->index()->is_valid() && address->disp() == 0) {
  1592       __ move(address->base(), ptr);
  1593     } else {
  1594       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1595       __ leal(addr, ptr);
  1597     addr = ptr;
  1599   assert(addr->is_register(), "must be a register at this point");
  1601 #ifdef ARM
  1602   // TODO: ARM - move to platform-dependent code
  1603   LIR_Opr tmp = FrameMap::R14_opr;
  1604   if (VM_Version::supports_movw()) {
  1605     __ move((LIR_Opr)card_table_base, tmp);
  1606   } else {
  1607     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
  1610   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
  1611   LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
  1612   if(((int)ct->byte_map_base & 0xff) == 0) {
  1613     __ move(tmp, card_addr);
  1614   } else {
  1615     LIR_Opr tmp_zero = new_register(T_INT);
  1616     __ move(LIR_OprFact::intConst(0), tmp_zero);
  1617     __ move(tmp_zero, card_addr);
  1619 #else // ARM
  1620   LIR_Opr tmp = new_pointer_register();
  1621   if (TwoOperandLIRForm) {
  1622     __ move(addr, tmp);
  1623     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
  1624   } else {
  1625     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
  1627   if (can_inline_as_constant(card_table_base)) {
  1628     __ move(LIR_OprFact::intConst(0),
  1629               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
  1630   } else {
  1631     __ move(LIR_OprFact::intConst(0),
  1632               new LIR_Address(tmp, load_constant(card_table_base),
  1633                               T_BYTE));
  1635 #endif // ARM
  1639 //------------------------field access--------------------------------------
  1641 // Comment copied form templateTable_i486.cpp
  1642 // ----------------------------------------------------------------------------
  1643 // Volatile variables demand their effects be made known to all CPU's in
  1644 // order.  Store buffers on most chips allow reads & writes to reorder; the
  1645 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  1646 // memory barrier (i.e., it's not sufficient that the interpreter does not
  1647 // reorder volatile references, the hardware also must not reorder them).
  1648 //
  1649 // According to the new Java Memory Model (JMM):
  1650 // (1) All volatiles are serialized wrt to each other.
  1651 // ALSO reads & writes act as aquire & release, so:
  1652 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  1653 // the read float up to before the read.  It's OK for non-volatile memory refs
  1654 // that happen before the volatile read to float down below it.
  1655 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  1656 // that happen BEFORE the write float down to after the write.  It's OK for
  1657 // non-volatile memory refs that happen after the volatile write to float up
  1658 // before it.
  1659 //
  1660 // We only put in barriers around volatile refs (they are expensive), not
  1661 // _between_ memory refs (that would require us to track the flavor of the
  1662 // previous memory refs).  Requirements (2) and (3) require some barriers
  1663 // before volatile stores and after volatile loads.  These nearly cover
  1664 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  1665 // case is placed after volatile-stores although it could just as well go
  1666 // before volatile-loads.
  1669 void LIRGenerator::do_StoreField(StoreField* x) {
  1670   bool needs_patching = x->needs_patching();
  1671   bool is_volatile = x->field()->is_volatile();
  1672   BasicType field_type = x->field_type();
  1673   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
  1675   CodeEmitInfo* info = NULL;
  1676   if (needs_patching) {
  1677     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1678     info = state_for(x, x->state_before());
  1679   } else if (x->needs_null_check()) {
  1680     NullCheck* nc = x->explicit_null_check();
  1681     if (nc == NULL) {
  1682       info = state_for(x);
  1683     } else {
  1684       info = state_for(nc);
  1689   LIRItem object(x->obj(), this);
  1690   LIRItem value(x->value(),  this);
  1692   object.load_item();
  1694   if (is_volatile || needs_patching) {
  1695     // load item if field is volatile (fewer special cases for volatiles)
  1696     // load item if field not initialized
  1697     // load item if field not constant
  1698     // because of code patching we cannot inline constants
  1699     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
  1700       value.load_byte_item();
  1701     } else  {
  1702       value.load_item();
  1704   } else {
  1705     value.load_for_store(field_type);
  1708   set_no_result(x);
  1710 #ifndef PRODUCT
  1711   if (PrintNotLoaded && needs_patching) {
  1712     tty->print_cr("   ###class not loaded at store_%s bci %d",
  1713                   x->is_static() ?  "static" : "field", x->printable_bci());
  1715 #endif
  1717   if (x->needs_null_check() &&
  1718       (needs_patching ||
  1719        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1720     // emit an explicit null check because the offset is too large
  1721     __ null_check(object.result(), new CodeEmitInfo(info));
  1724   LIR_Address* address;
  1725   if (needs_patching) {
  1726     // we need to patch the offset in the instruction so don't allow
  1727     // generate_address to try to be smart about emitting the -1.
  1728     // Otherwise the patching code won't know how to find the
  1729     // instruction to patch.
  1730     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1731   } else {
  1732     address = generate_address(object.result(), x->offset(), field_type);
  1735   if (is_volatile && os::is_MP()) {
  1736     __ membar_release();
  1739   if (is_oop) {
  1740     // Do the pre-write barrier, if any.
  1741     pre_barrier(LIR_OprFact::address(address),
  1742                 LIR_OprFact::illegalOpr /* pre_val */,
  1743                 true /* do_load*/,
  1744                 needs_patching,
  1745                 (info ? new CodeEmitInfo(info) : NULL));
  1748   if (is_volatile && !needs_patching) {
  1749     volatile_field_store(value.result(), address, info);
  1750   } else {
  1751     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1752     __ store(value.result(), address, info, patch_code);
  1755   if (is_oop) {
  1756     // Store to object so mark the card of the header
  1757     post_barrier(object.result(), value.result());
  1760   if (is_volatile && os::is_MP()) {
  1761     __ membar();
  1766 void LIRGenerator::do_LoadField(LoadField* x) {
  1767   bool needs_patching = x->needs_patching();
  1768   bool is_volatile = x->field()->is_volatile();
  1769   BasicType field_type = x->field_type();
  1771   CodeEmitInfo* info = NULL;
  1772   if (needs_patching) {
  1773     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1774     info = state_for(x, x->state_before());
  1775   } else if (x->needs_null_check()) {
  1776     NullCheck* nc = x->explicit_null_check();
  1777     if (nc == NULL) {
  1778       info = state_for(x);
  1779     } else {
  1780       info = state_for(nc);
  1784   LIRItem object(x->obj(), this);
  1786   object.load_item();
  1788 #ifndef PRODUCT
  1789   if (PrintNotLoaded && needs_patching) {
  1790     tty->print_cr("   ###class not loaded at load_%s bci %d",
  1791                   x->is_static() ?  "static" : "field", x->printable_bci());
  1793 #endif
  1795   if (x->needs_null_check() &&
  1796       (needs_patching ||
  1797        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1798     // emit an explicit null check because the offset is too large
  1799     __ null_check(object.result(), new CodeEmitInfo(info));
  1802   LIR_Opr reg = rlock_result(x, field_type);
  1803   LIR_Address* address;
  1804   if (needs_patching) {
  1805     // we need to patch the offset in the instruction so don't allow
  1806     // generate_address to try to be smart about emitting the -1.
  1807     // Otherwise the patching code won't know how to find the
  1808     // instruction to patch.
  1809     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1810   } else {
  1811     address = generate_address(object.result(), x->offset(), field_type);
  1814   if (is_volatile && !needs_patching) {
  1815     volatile_field_load(address, reg, info);
  1816   } else {
  1817     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1818     __ load(address, reg, info, patch_code);
  1821   if (is_volatile && os::is_MP()) {
  1822     __ membar_acquire();
  1827 //------------------------java.nio.Buffer.checkIndex------------------------
  1829 // int java.nio.Buffer.checkIndex(int)
  1830 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
  1831   // NOTE: by the time we are in checkIndex() we are guaranteed that
  1832   // the buffer is non-null (because checkIndex is package-private and
  1833   // only called from within other methods in the buffer).
  1834   assert(x->number_of_arguments() == 2, "wrong type");
  1835   LIRItem buf  (x->argument_at(0), this);
  1836   LIRItem index(x->argument_at(1), this);
  1837   buf.load_item();
  1838   index.load_item();
  1840   LIR_Opr result = rlock_result(x);
  1841   if (GenerateRangeChecks) {
  1842     CodeEmitInfo* info = state_for(x);
  1843     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
  1844     if (index.result()->is_constant()) {
  1845       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
  1846       __ branch(lir_cond_belowEqual, T_INT, stub);
  1847     } else {
  1848       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
  1849                   java_nio_Buffer::limit_offset(), T_INT, info);
  1850       __ branch(lir_cond_aboveEqual, T_INT, stub);
  1852     __ move(index.result(), result);
  1853   } else {
  1854     // Just load the index into the result register
  1855     __ move(index.result(), result);
  1860 //------------------------array access--------------------------------------
  1863 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
  1864   LIRItem array(x->array(), this);
  1865   array.load_item();
  1866   LIR_Opr reg = rlock_result(x);
  1868   CodeEmitInfo* info = NULL;
  1869   if (x->needs_null_check()) {
  1870     NullCheck* nc = x->explicit_null_check();
  1871     if (nc == NULL) {
  1872       info = state_for(x);
  1873     } else {
  1874       info = state_for(nc);
  1877   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
  1881 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
  1882   bool use_length = x->length() != NULL;
  1883   LIRItem array(x->array(), this);
  1884   LIRItem index(x->index(), this);
  1885   LIRItem length(this);
  1886   bool needs_range_check = true;
  1888   if (use_length) {
  1889     needs_range_check = x->compute_needs_range_check();
  1890     if (needs_range_check) {
  1891       length.set_instruction(x->length());
  1892       length.load_item();
  1896   array.load_item();
  1897   if (index.is_constant() && can_inline_as_constant(x->index())) {
  1898     // let it be a constant
  1899     index.dont_load_item();
  1900   } else {
  1901     index.load_item();
  1904   CodeEmitInfo* range_check_info = state_for(x);
  1905   CodeEmitInfo* null_check_info = NULL;
  1906   if (x->needs_null_check()) {
  1907     NullCheck* nc = x->explicit_null_check();
  1908     if (nc != NULL) {
  1909       null_check_info = state_for(nc);
  1910     } else {
  1911       null_check_info = range_check_info;
  1915   // emit array address setup early so it schedules better
  1916   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
  1918   if (GenerateRangeChecks && needs_range_check) {
  1919     if (use_length) {
  1920       // TODO: use a (modified) version of array_range_check that does not require a
  1921       //       constant length to be loaded to a register
  1922       __ cmp(lir_cond_belowEqual, length.result(), index.result());
  1923       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
  1924     } else {
  1925       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
  1926       // The range check performs the null check, so clear it out for the load
  1927       null_check_info = NULL;
  1931   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
  1935 void LIRGenerator::do_NullCheck(NullCheck* x) {
  1936   if (x->can_trap()) {
  1937     LIRItem value(x->obj(), this);
  1938     value.load_item();
  1939     CodeEmitInfo* info = state_for(x);
  1940     __ null_check(value.result(), info);
  1945 void LIRGenerator::do_TypeCast(TypeCast* x) {
  1946   LIRItem value(x->obj(), this);
  1947   value.load_item();
  1948   // the result is the same as from the node we are casting
  1949   set_result(x, value.result());
  1953 void LIRGenerator::do_Throw(Throw* x) {
  1954   LIRItem exception(x->exception(), this);
  1955   exception.load_item();
  1956   set_no_result(x);
  1957   LIR_Opr exception_opr = exception.result();
  1958   CodeEmitInfo* info = state_for(x, x->state());
  1960 #ifndef PRODUCT
  1961   if (PrintC1Statistics) {
  1962     increment_counter(Runtime1::throw_count_address(), T_INT);
  1964 #endif
  1966   // check if the instruction has an xhandler in any of the nested scopes
  1967   bool unwind = false;
  1968   if (info->exception_handlers()->length() == 0) {
  1969     // this throw is not inside an xhandler
  1970     unwind = true;
  1971   } else {
  1972     // get some idea of the throw type
  1973     bool type_is_exact = true;
  1974     ciType* throw_type = x->exception()->exact_type();
  1975     if (throw_type == NULL) {
  1976       type_is_exact = false;
  1977       throw_type = x->exception()->declared_type();
  1979     if (throw_type != NULL && throw_type->is_instance_klass()) {
  1980       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
  1981       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
  1985   // do null check before moving exception oop into fixed register
  1986   // to avoid a fixed interval with an oop during the null check.
  1987   // Use a copy of the CodeEmitInfo because debug information is
  1988   // different for null_check and throw.
  1989   if (GenerateCompilerNullChecks &&
  1990       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
  1991     // if the exception object wasn't created using new then it might be null.
  1992     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
  1995   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
  1996     // we need to go through the exception lookup path to get JVMTI
  1997     // notification done
  1998     unwind = false;
  2001   // move exception oop into fixed register
  2002   __ move(exception_opr, exceptionOopOpr());
  2004   if (unwind) {
  2005     __ unwind_exception(exceptionOopOpr());
  2006   } else {
  2007     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
  2012 void LIRGenerator::do_RoundFP(RoundFP* x) {
  2013   LIRItem input(x->input(), this);
  2014   input.load_item();
  2015   LIR_Opr input_opr = input.result();
  2016   assert(input_opr->is_register(), "why round if value is not in a register?");
  2017   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
  2018   if (input_opr->is_single_fpu()) {
  2019     set_result(x, round_item(input_opr)); // This code path not currently taken
  2020   } else {
  2021     LIR_Opr result = new_register(T_DOUBLE);
  2022     set_vreg_flag(result, must_start_in_memory);
  2023     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
  2024     set_result(x, result);
  2028 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
  2029   LIRItem base(x->base(), this);
  2030   LIRItem idx(this);
  2032   base.load_item();
  2033   if (x->has_index()) {
  2034     idx.set_instruction(x->index());
  2035     idx.load_nonconstant();
  2038   LIR_Opr reg = rlock_result(x, x->basic_type());
  2040   int   log2_scale = 0;
  2041   if (x->has_index()) {
  2042     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
  2043     log2_scale = x->log2_scale();
  2046   assert(!x->has_index() || idx.value() == x->index(), "should match");
  2048   LIR_Opr base_op = base.result();
  2049 #ifndef _LP64
  2050   if (x->base()->type()->tag() == longTag) {
  2051     base_op = new_register(T_INT);
  2052     __ convert(Bytecodes::_l2i, base.result(), base_op);
  2053   } else {
  2054     assert(x->base()->type()->tag() == intTag, "must be");
  2056 #endif
  2058   BasicType dst_type = x->basic_type();
  2059   LIR_Opr index_op = idx.result();
  2061   LIR_Address* addr;
  2062   if (index_op->is_constant()) {
  2063     assert(log2_scale == 0, "must not have a scale");
  2064     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
  2065   } else {
  2066 #ifdef X86
  2067 #ifdef _LP64
  2068     if (!index_op->is_illegal() && index_op->type() == T_INT) {
  2069       LIR_Opr tmp = new_pointer_register();
  2070       __ convert(Bytecodes::_i2l, index_op, tmp);
  2071       index_op = tmp;
  2073 #endif
  2074     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
  2075 #elif defined(ARM)
  2076     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
  2077 #else
  2078     if (index_op->is_illegal() || log2_scale == 0) {
  2079 #ifdef _LP64
  2080       if (!index_op->is_illegal() && index_op->type() == T_INT) {
  2081         LIR_Opr tmp = new_pointer_register();
  2082         __ convert(Bytecodes::_i2l, index_op, tmp);
  2083         index_op = tmp;
  2085 #endif
  2086       addr = new LIR_Address(base_op, index_op, dst_type);
  2087     } else {
  2088       LIR_Opr tmp = new_pointer_register();
  2089       __ shift_left(index_op, log2_scale, tmp);
  2090       addr = new LIR_Address(base_op, tmp, dst_type);
  2092 #endif
  2095   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
  2096     __ unaligned_move(addr, reg);
  2097   } else {
  2098     if (dst_type == T_OBJECT && x->is_wide()) {
  2099       __ move_wide(addr, reg);
  2100     } else {
  2101       __ move(addr, reg);
  2107 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
  2108   int  log2_scale = 0;
  2109   BasicType type = x->basic_type();
  2111   if (x->has_index()) {
  2112     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
  2113     log2_scale = x->log2_scale();
  2116   LIRItem base(x->base(), this);
  2117   LIRItem value(x->value(), this);
  2118   LIRItem idx(this);
  2120   base.load_item();
  2121   if (x->has_index()) {
  2122     idx.set_instruction(x->index());
  2123     idx.load_item();
  2126   if (type == T_BYTE || type == T_BOOLEAN) {
  2127     value.load_byte_item();
  2128   } else {
  2129     value.load_item();
  2132   set_no_result(x);
  2134   LIR_Opr base_op = base.result();
  2135 #ifndef _LP64
  2136   if (x->base()->type()->tag() == longTag) {
  2137     base_op = new_register(T_INT);
  2138     __ convert(Bytecodes::_l2i, base.result(), base_op);
  2139   } else {
  2140     assert(x->base()->type()->tag() == intTag, "must be");
  2142 #endif
  2144   LIR_Opr index_op = idx.result();
  2145   if (log2_scale != 0) {
  2146     // temporary fix (platform dependent code without shift on Intel would be better)
  2147     index_op = new_pointer_register();
  2148 #ifdef _LP64
  2149     if(idx.result()->type() == T_INT) {
  2150       __ convert(Bytecodes::_i2l, idx.result(), index_op);
  2151     } else {
  2152 #endif
  2153       // TODO: ARM also allows embedded shift in the address
  2154       __ move(idx.result(), index_op);
  2155 #ifdef _LP64
  2157 #endif
  2158     __ shift_left(index_op, log2_scale, index_op);
  2160 #ifdef _LP64
  2161   else if(!index_op->is_illegal() && index_op->type() == T_INT) {
  2162     LIR_Opr tmp = new_pointer_register();
  2163     __ convert(Bytecodes::_i2l, index_op, tmp);
  2164     index_op = tmp;
  2166 #endif
  2168   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
  2169   __ move(value.result(), addr);
  2173 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
  2174   BasicType type = x->basic_type();
  2175   LIRItem src(x->object(), this);
  2176   LIRItem off(x->offset(), this);
  2178   off.load_item();
  2179   src.load_item();
  2181   LIR_Opr value = rlock_result(x, x->basic_type());
  2183   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
  2185 #if INCLUDE_ALL_GCS
  2186   // We might be reading the value of the referent field of a
  2187   // Reference object in order to attach it back to the live
  2188   // object graph. If G1 is enabled then we need to record
  2189   // the value that is being returned in an SATB log buffer.
  2190   //
  2191   // We need to generate code similar to the following...
  2192   //
  2193   // if (offset == java_lang_ref_Reference::referent_offset) {
  2194   //   if (src != NULL) {
  2195   //     if (klass(src)->reference_type() != REF_NONE) {
  2196   //       pre_barrier(..., value, ...);
  2197   //     }
  2198   //   }
  2199   // }
  2201   if (UseG1GC && type == T_OBJECT) {
  2202     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
  2203     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
  2204     bool gen_source_check = true;    // Assume we need to check the src object for null.
  2205     bool gen_type_check = true;      // Assume we need to check the reference_type.
  2207     if (off.is_constant()) {
  2208       jlong off_con = (off.type()->is_int() ?
  2209                         (jlong) off.get_jint_constant() :
  2210                         off.get_jlong_constant());
  2213       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
  2214         // The constant offset is something other than referent_offset.
  2215         // We can skip generating/checking the remaining guards and
  2216         // skip generation of the code stub.
  2217         gen_pre_barrier = false;
  2218       } else {
  2219         // The constant offset is the same as referent_offset -
  2220         // we do not need to generate a runtime offset check.
  2221         gen_offset_check = false;
  2225     // We don't need to generate stub if the source object is an array
  2226     if (gen_pre_barrier && src.type()->is_array()) {
  2227       gen_pre_barrier = false;
  2230     if (gen_pre_barrier) {
  2231       // We still need to continue with the checks.
  2232       if (src.is_constant()) {
  2233         ciObject* src_con = src.get_jobject_constant();
  2235         if (src_con->is_null_object()) {
  2236           // The constant src object is null - We can skip
  2237           // generating the code stub.
  2238           gen_pre_barrier = false;
  2239         } else {
  2240           // Non-null constant source object. We still have to generate
  2241           // the slow stub - but we don't need to generate the runtime
  2242           // null object check.
  2243           gen_source_check = false;
  2247     if (gen_pre_barrier && !PatchALot) {
  2248       // Can the klass of object be statically determined to be
  2249       // a sub-class of Reference?
  2250       ciType* type = src.value()->declared_type();
  2251       if ((type != NULL) && type->is_loaded()) {
  2252         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
  2253           gen_type_check = false;
  2254         } else if (type->is_klass() &&
  2255                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
  2256           // Not Reference and not Object klass.
  2257           gen_pre_barrier = false;
  2262     if (gen_pre_barrier) {
  2263       LabelObj* Lcont = new LabelObj();
  2265       // We can have generate one runtime check here. Let's start with
  2266       // the offset check.
  2267       if (gen_offset_check) {
  2268         // if (offset != referent_offset) -> continue
  2269         // If offset is an int then we can do the comparison with the
  2270         // referent_offset constant; otherwise we need to move
  2271         // referent_offset into a temporary register and generate
  2272         // a reg-reg compare.
  2274         LIR_Opr referent_off;
  2276         if (off.type()->is_int()) {
  2277           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
  2278         } else {
  2279           assert(off.type()->is_long(), "what else?");
  2280           referent_off = new_register(T_LONG);
  2281           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
  2283         __ cmp(lir_cond_notEqual, off.result(), referent_off);
  2284         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
  2286       if (gen_source_check) {
  2287         // offset is a const and equals referent offset
  2288         // if (source == null) -> continue
  2289         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
  2290         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
  2292       LIR_Opr src_klass = new_register(T_OBJECT);
  2293       if (gen_type_check) {
  2294         // We have determined that offset == referent_offset && src != null.
  2295         // if (src->_klass->_reference_type == REF_NONE) -> continue
  2296         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), UseCompressedKlassPointers ? T_OBJECT : T_ADDRESS), src_klass);
  2297         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
  2298         LIR_Opr reference_type = new_register(T_INT);
  2299         __ move(reference_type_addr, reference_type);
  2300         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
  2301         __ branch(lir_cond_equal, T_INT, Lcont->label());
  2304         // We have determined that src->_klass->_reference_type != REF_NONE
  2305         // so register the value in the referent field with the pre-barrier.
  2306         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
  2307                     value  /* pre_val */,
  2308                     false  /* do_load */,
  2309                     false  /* patch */,
  2310                     NULL   /* info */);
  2312       __ branch_destination(Lcont->label());
  2315 #endif // INCLUDE_ALL_GCS
  2317   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
  2321 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
  2322   BasicType type = x->basic_type();
  2323   LIRItem src(x->object(), this);
  2324   LIRItem off(x->offset(), this);
  2325   LIRItem data(x->value(), this);
  2327   src.load_item();
  2328   if (type == T_BOOLEAN || type == T_BYTE) {
  2329     data.load_byte_item();
  2330   } else {
  2331     data.load_item();
  2333   off.load_item();
  2335   set_no_result(x);
  2337   if (x->is_volatile() && os::is_MP()) __ membar_release();
  2338   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
  2339   if (x->is_volatile() && os::is_MP()) __ membar();
  2343 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
  2344   LIRItem src(x->object(), this);
  2345   LIRItem off(x->offset(), this);
  2347   src.load_item();
  2348   if (off.is_constant() && can_inline_as_constant(x->offset())) {
  2349     // let it be a constant
  2350     off.dont_load_item();
  2351   } else {
  2352     off.load_item();
  2355   set_no_result(x);
  2357   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
  2358   __ prefetch(addr, is_store);
  2362 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
  2363   do_UnsafePrefetch(x, false);
  2367 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
  2368   do_UnsafePrefetch(x, true);
  2372 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
  2373   int lng = x->length();
  2375   for (int i = 0; i < lng; i++) {
  2376     SwitchRange* one_range = x->at(i);
  2377     int low_key = one_range->low_key();
  2378     int high_key = one_range->high_key();
  2379     BlockBegin* dest = one_range->sux();
  2380     if (low_key == high_key) {
  2381       __ cmp(lir_cond_equal, value, low_key);
  2382       __ branch(lir_cond_equal, T_INT, dest);
  2383     } else if (high_key - low_key == 1) {
  2384       __ cmp(lir_cond_equal, value, low_key);
  2385       __ branch(lir_cond_equal, T_INT, dest);
  2386       __ cmp(lir_cond_equal, value, high_key);
  2387       __ branch(lir_cond_equal, T_INT, dest);
  2388     } else {
  2389       LabelObj* L = new LabelObj();
  2390       __ cmp(lir_cond_less, value, low_key);
  2391       __ branch(lir_cond_less, T_INT, L->label());
  2392       __ cmp(lir_cond_lessEqual, value, high_key);
  2393       __ branch(lir_cond_lessEqual, T_INT, dest);
  2394       __ branch_destination(L->label());
  2397   __ jump(default_sux);
  2401 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
  2402   SwitchRangeList* res = new SwitchRangeList();
  2403   int len = x->length();
  2404   if (len > 0) {
  2405     BlockBegin* sux = x->sux_at(0);
  2406     int key = x->lo_key();
  2407     BlockBegin* default_sux = x->default_sux();
  2408     SwitchRange* range = new SwitchRange(key, sux);
  2409     for (int i = 0; i < len; i++, key++) {
  2410       BlockBegin* new_sux = x->sux_at(i);
  2411       if (sux == new_sux) {
  2412         // still in same range
  2413         range->set_high_key(key);
  2414       } else {
  2415         // skip tests which explicitly dispatch to the default
  2416         if (sux != default_sux) {
  2417           res->append(range);
  2419         range = new SwitchRange(key, new_sux);
  2421       sux = new_sux;
  2423     if (res->length() == 0 || res->last() != range)  res->append(range);
  2425   return res;
  2429 // we expect the keys to be sorted by increasing value
  2430 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
  2431   SwitchRangeList* res = new SwitchRangeList();
  2432   int len = x->length();
  2433   if (len > 0) {
  2434     BlockBegin* default_sux = x->default_sux();
  2435     int key = x->key_at(0);
  2436     BlockBegin* sux = x->sux_at(0);
  2437     SwitchRange* range = new SwitchRange(key, sux);
  2438     for (int i = 1; i < len; i++) {
  2439       int new_key = x->key_at(i);
  2440       BlockBegin* new_sux = x->sux_at(i);
  2441       if (key+1 == new_key && sux == new_sux) {
  2442         // still in same range
  2443         range->set_high_key(new_key);
  2444       } else {
  2445         // skip tests which explicitly dispatch to the default
  2446         if (range->sux() != default_sux) {
  2447           res->append(range);
  2449         range = new SwitchRange(new_key, new_sux);
  2451       key = new_key;
  2452       sux = new_sux;
  2454     if (res->length() == 0 || res->last() != range)  res->append(range);
  2456   return res;
  2460 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
  2461   LIRItem tag(x->tag(), this);
  2462   tag.load_item();
  2463   set_no_result(x);
  2465   if (x->is_safepoint()) {
  2466     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2469   // move values into phi locations
  2470   move_to_phi(x->state());
  2472   int lo_key = x->lo_key();
  2473   int hi_key = x->hi_key();
  2474   int len = x->length();
  2475   LIR_Opr value = tag.result();
  2476   if (UseTableRanges) {
  2477     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2478   } else {
  2479     for (int i = 0; i < len; i++) {
  2480       __ cmp(lir_cond_equal, value, i + lo_key);
  2481       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2483     __ jump(x->default_sux());
  2488 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
  2489   LIRItem tag(x->tag(), this);
  2490   tag.load_item();
  2491   set_no_result(x);
  2493   if (x->is_safepoint()) {
  2494     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2497   // move values into phi locations
  2498   move_to_phi(x->state());
  2500   LIR_Opr value = tag.result();
  2501   if (UseTableRanges) {
  2502     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2503   } else {
  2504     int len = x->length();
  2505     for (int i = 0; i < len; i++) {
  2506       __ cmp(lir_cond_equal, value, x->key_at(i));
  2507       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2509     __ jump(x->default_sux());
  2514 void LIRGenerator::do_Goto(Goto* x) {
  2515   set_no_result(x);
  2517   if (block()->next()->as_OsrEntry()) {
  2518     // need to free up storage used for OSR entry point
  2519     LIR_Opr osrBuffer = block()->next()->operand();
  2520     BasicTypeList signature;
  2521     signature.append(T_INT);
  2522     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
  2523     __ move(osrBuffer, cc->args()->at(0));
  2524     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
  2525                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
  2528   if (x->is_safepoint()) {
  2529     ValueStack* state = x->state_before() ? x->state_before() : x->state();
  2531     // increment backedge counter if needed
  2532     CodeEmitInfo* info = state_for(x, state);
  2533     increment_backedge_counter(info, x->profiled_bci());
  2534     CodeEmitInfo* safepoint_info = state_for(x, state);
  2535     __ safepoint(safepoint_poll_register(), safepoint_info);
  2538   // Gotos can be folded Ifs, handle this case.
  2539   if (x->should_profile()) {
  2540     ciMethod* method = x->profiled_method();
  2541     assert(method != NULL, "method should be set if branch is profiled");
  2542     ciMethodData* md = method->method_data_or_null();
  2543     assert(md != NULL, "Sanity");
  2544     ciProfileData* data = md->bci_to_data(x->profiled_bci());
  2545     assert(data != NULL, "must have profiling data");
  2546     int offset;
  2547     if (x->direction() == Goto::taken) {
  2548       assert(data->is_BranchData(), "need BranchData for two-way branches");
  2549       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
  2550     } else if (x->direction() == Goto::not_taken) {
  2551       assert(data->is_BranchData(), "need BranchData for two-way branches");
  2552       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
  2553     } else {
  2554       assert(data->is_JumpData(), "need JumpData for branches");
  2555       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
  2557     LIR_Opr md_reg = new_register(T_METADATA);
  2558     __ metadata2reg(md->constant_encoding(), md_reg);
  2560     increment_counter(new LIR_Address(md_reg, offset,
  2561                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
  2564   // emit phi-instruction move after safepoint since this simplifies
  2565   // describing the state as the safepoint.
  2566   move_to_phi(x->state());
  2568   __ jump(x->default_sux());
  2572 void LIRGenerator::do_Base(Base* x) {
  2573   __ std_entry(LIR_OprFact::illegalOpr);
  2574   // Emit moves from physical registers / stack slots to virtual registers
  2575   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  2576   IRScope* irScope = compilation()->hir()->top_scope();
  2577   int java_index = 0;
  2578   for (int i = 0; i < args->length(); i++) {
  2579     LIR_Opr src = args->at(i);
  2580     assert(!src->is_illegal(), "check");
  2581     BasicType t = src->type();
  2583     // Types which are smaller than int are passed as int, so
  2584     // correct the type which passed.
  2585     switch (t) {
  2586     case T_BYTE:
  2587     case T_BOOLEAN:
  2588     case T_SHORT:
  2589     case T_CHAR:
  2590       t = T_INT;
  2591       break;
  2594     LIR_Opr dest = new_register(t);
  2595     __ move(src, dest);
  2597     // Assign new location to Local instruction for this local
  2598     Local* local = x->state()->local_at(java_index)->as_Local();
  2599     assert(local != NULL, "Locals for incoming arguments must have been created");
  2600 #ifndef __SOFTFP__
  2601     // The java calling convention passes double as long and float as int.
  2602     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
  2603 #endif // __SOFTFP__
  2604     local->set_operand(dest);
  2605     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
  2606     java_index += type2size[t];
  2609   if (compilation()->env()->dtrace_method_probes()) {
  2610     BasicTypeList signature;
  2611     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  2612     signature.append(T_OBJECT); // Method*
  2613     LIR_OprList* args = new LIR_OprList();
  2614     args->append(getThreadPointer());
  2615     LIR_Opr meth = new_register(T_METADATA);
  2616     __ metadata2reg(method()->constant_encoding(), meth);
  2617     args->append(meth);
  2618     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
  2621   if (method()->is_synchronized()) {
  2622     LIR_Opr obj;
  2623     if (method()->is_static()) {
  2624       obj = new_register(T_OBJECT);
  2625       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
  2626     } else {
  2627       Local* receiver = x->state()->local_at(0)->as_Local();
  2628       assert(receiver != NULL, "must already exist");
  2629       obj = receiver->operand();
  2631     assert(obj->is_valid(), "must be valid");
  2633     if (method()->is_synchronized() && GenerateSynchronizationCode) {
  2634       LIR_Opr lock = new_register(T_INT);
  2635       __ load_stack_address_monitor(0, lock);
  2637       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
  2638       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
  2640       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
  2641       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
  2645   // increment invocation counters if needed
  2646   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
  2647     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
  2648     increment_invocation_counter(info);
  2651   // all blocks with a successor must end with an unconditional jump
  2652   // to the successor even if they are consecutive
  2653   __ jump(x->default_sux());
  2657 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
  2658   // construct our frame and model the production of incoming pointer
  2659   // to the OSR buffer.
  2660   __ osr_entry(LIR_Assembler::osrBufferPointer());
  2661   LIR_Opr result = rlock_result(x);
  2662   __ move(LIR_Assembler::osrBufferPointer(), result);
  2666 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
  2667   assert(args->length() == arg_list->length(),
  2668          err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
  2669   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
  2670     LIRItem* param = args->at(i);
  2671     LIR_Opr loc = arg_list->at(i);
  2672     if (loc->is_register()) {
  2673       param->load_item_force(loc);
  2674     } else {
  2675       LIR_Address* addr = loc->as_address_ptr();
  2676       param->load_for_store(addr->type());
  2677       if (addr->type() == T_OBJECT) {
  2678         __ move_wide(param->result(), addr);
  2679       } else
  2680         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  2681           __ unaligned_move(param->result(), addr);
  2682         } else {
  2683           __ move(param->result(), addr);
  2688   if (x->has_receiver()) {
  2689     LIRItem* receiver = args->at(0);
  2690     LIR_Opr loc = arg_list->at(0);
  2691     if (loc->is_register()) {
  2692       receiver->load_item_force(loc);
  2693     } else {
  2694       assert(loc->is_address(), "just checking");
  2695       receiver->load_for_store(T_OBJECT);
  2696       __ move_wide(receiver->result(), loc->as_address_ptr());
  2702 // Visits all arguments, returns appropriate items without loading them
  2703 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
  2704   LIRItemList* argument_items = new LIRItemList();
  2705   if (x->has_receiver()) {
  2706     LIRItem* receiver = new LIRItem(x->receiver(), this);
  2707     argument_items->append(receiver);
  2709   for (int i = 0; i < x->number_of_arguments(); i++) {
  2710     LIRItem* param = new LIRItem(x->argument_at(i), this);
  2711     argument_items->append(param);
  2713   return argument_items;
  2717 // The invoke with receiver has following phases:
  2718 //   a) traverse and load/lock receiver;
  2719 //   b) traverse all arguments -> item-array (invoke_visit_argument)
  2720 //   c) push receiver on stack
  2721 //   d) load each of the items and push on stack
  2722 //   e) unlock receiver
  2723 //   f) move receiver into receiver-register %o0
  2724 //   g) lock result registers and emit call operation
  2725 //
  2726 // Before issuing a call, we must spill-save all values on stack
  2727 // that are in caller-save register. "spill-save" moves thos registers
  2728 // either in a free callee-save register or spills them if no free
  2729 // callee save register is available.
  2730 //
  2731 // The problem is where to invoke spill-save.
  2732 // - if invoked between e) and f), we may lock callee save
  2733 //   register in "spill-save" that destroys the receiver register
  2734 //   before f) is executed
  2735 // - if we rearange the f) to be earlier, by loading %o0, it
  2736 //   may destroy a value on the stack that is currently in %o0
  2737 //   and is waiting to be spilled
  2738 // - if we keep the receiver locked while doing spill-save,
  2739 //   we cannot spill it as it is spill-locked
  2740 //
  2741 void LIRGenerator::do_Invoke(Invoke* x) {
  2742   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
  2744   LIR_OprList* arg_list = cc->args();
  2745   LIRItemList* args = invoke_visit_arguments(x);
  2746   LIR_Opr receiver = LIR_OprFact::illegalOpr;
  2748   // setup result register
  2749   LIR_Opr result_register = LIR_OprFact::illegalOpr;
  2750   if (x->type() != voidType) {
  2751     result_register = result_register_for(x->type());
  2754   CodeEmitInfo* info = state_for(x, x->state());
  2756   invoke_load_arguments(x, args, arg_list);
  2758   if (x->has_receiver()) {
  2759     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
  2760     receiver = args->at(0)->result();
  2763   // emit invoke code
  2764   bool optimized = x->target_is_loaded() && x->target_is_final();
  2765   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
  2767   // JSR 292
  2768   // Preserve the SP over MethodHandle call sites.
  2769   ciMethod* target = x->target();
  2770   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
  2771                                   target->is_method_handle_intrinsic() ||
  2772                                   target->is_compiled_lambda_form());
  2773   if (is_method_handle_invoke) {
  2774     info->set_is_method_handle_invoke(true);
  2775     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
  2778   switch (x->code()) {
  2779     case Bytecodes::_invokestatic:
  2780       __ call_static(target, result_register,
  2781                      SharedRuntime::get_resolve_static_call_stub(),
  2782                      arg_list, info);
  2783       break;
  2784     case Bytecodes::_invokespecial:
  2785     case Bytecodes::_invokevirtual:
  2786     case Bytecodes::_invokeinterface:
  2787       // for final target we still produce an inline cache, in order
  2788       // to be able to call mixed mode
  2789       if (x->code() == Bytecodes::_invokespecial || optimized) {
  2790         __ call_opt_virtual(target, receiver, result_register,
  2791                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
  2792                             arg_list, info);
  2793       } else if (x->vtable_index() < 0) {
  2794         __ call_icvirtual(target, receiver, result_register,
  2795                           SharedRuntime::get_resolve_virtual_call_stub(),
  2796                           arg_list, info);
  2797       } else {
  2798         int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
  2799         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
  2800         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
  2802       break;
  2803     case Bytecodes::_invokedynamic: {
  2804       __ call_dynamic(target, receiver, result_register,
  2805                       SharedRuntime::get_resolve_static_call_stub(),
  2806                       arg_list, info);
  2807       break;
  2809     default:
  2810       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
  2811       break;
  2814   // JSR 292
  2815   // Restore the SP after MethodHandle call sites.
  2816   if (is_method_handle_invoke) {
  2817     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
  2820   if (x->type()->is_float() || x->type()->is_double()) {
  2821     // Force rounding of results from non-strictfp when in strictfp
  2822     // scope (or when we don't know the strictness of the callee, to
  2823     // be safe.)
  2824     if (method()->is_strict()) {
  2825       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
  2826         result_register = round_item(result_register);
  2831   if (result_register->is_valid()) {
  2832     LIR_Opr result = rlock_result(x);
  2833     __ move(result_register, result);
  2838 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
  2839   assert(x->number_of_arguments() == 1, "wrong type");
  2840   LIRItem value       (x->argument_at(0), this);
  2841   LIR_Opr reg = rlock_result(x);
  2842   value.load_item();
  2843   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
  2844   __ move(tmp, reg);
  2849 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
  2850 void LIRGenerator::do_IfOp(IfOp* x) {
  2851 #ifdef ASSERT
  2853     ValueTag xtag = x->x()->type()->tag();
  2854     ValueTag ttag = x->tval()->type()->tag();
  2855     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
  2856     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
  2857     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
  2859 #endif
  2861   LIRItem left(x->x(), this);
  2862   LIRItem right(x->y(), this);
  2863   left.load_item();
  2864   if (can_inline_as_constant(right.value())) {
  2865     right.dont_load_item();
  2866   } else {
  2867     right.load_item();
  2870   LIRItem t_val(x->tval(), this);
  2871   LIRItem f_val(x->fval(), this);
  2872   t_val.dont_load_item();
  2873   f_val.dont_load_item();
  2874   LIR_Opr reg = rlock_result(x);
  2876   __ cmp(lir_cond(x->cond()), left.result(), right.result());
  2877   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
  2880 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
  2881     assert(x->number_of_arguments() == expected_arguments, "wrong type");
  2882     LIR_Opr reg = result_register_for(x->type());
  2883     __ call_runtime_leaf(routine, getThreadTemp(),
  2884                          reg, new LIR_OprList());
  2885     LIR_Opr result = rlock_result(x);
  2886     __ move(reg, result);
  2889 #ifdef TRACE_HAVE_INTRINSICS
  2890 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
  2891     LIR_Opr thread = getThreadPointer();
  2892     LIR_Opr osthread = new_pointer_register();
  2893     __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
  2894     size_t thread_id_size = OSThread::thread_id_size();
  2895     if (thread_id_size == (size_t) BytesPerLong) {
  2896       LIR_Opr id = new_register(T_LONG);
  2897       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
  2898       __ convert(Bytecodes::_l2i, id, rlock_result(x));
  2899     } else if (thread_id_size == (size_t) BytesPerInt) {
  2900       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
  2901     } else {
  2902       ShouldNotReachHere();
  2906 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
  2907     CodeEmitInfo* info = state_for(x);
  2908     CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
  2909     BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
  2910     assert(info != NULL, "must have info");
  2911     LIRItem arg(x->argument_at(1), this);
  2912     arg.load_item();
  2913     LIR_Opr klass = new_pointer_register();
  2914     __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
  2915     LIR_Opr id = new_register(T_LONG);
  2916     ByteSize offset = TRACE_ID_OFFSET;
  2917     LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
  2918     __ move(trace_id_addr, id);
  2919     __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
  2920     __ store(id, trace_id_addr);
  2921     __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
  2922     __ move(id, rlock_result(x));
  2924 #endif
  2926 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
  2927   switch (x->id()) {
  2928   case vmIntrinsics::_intBitsToFloat      :
  2929   case vmIntrinsics::_doubleToRawLongBits :
  2930   case vmIntrinsics::_longBitsToDouble    :
  2931   case vmIntrinsics::_floatToRawIntBits   : {
  2932     do_FPIntrinsics(x);
  2933     break;
  2936 #ifdef TRACE_HAVE_INTRINSICS
  2937   case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
  2938   case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
  2939   case vmIntrinsics::_counterTime:
  2940     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
  2941     break;
  2942 #endif
  2944   case vmIntrinsics::_currentTimeMillis:
  2945     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
  2946     break;
  2948   case vmIntrinsics::_nanoTime:
  2949     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
  2950     break;
  2952   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
  2953   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
  2954   case vmIntrinsics::_getClass:       do_getClass(x);      break;
  2955   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
  2957   case vmIntrinsics::_dlog:           // fall through
  2958   case vmIntrinsics::_dlog10:         // fall through
  2959   case vmIntrinsics::_dabs:           // fall through
  2960   case vmIntrinsics::_dsqrt:          // fall through
  2961   case vmIntrinsics::_dtan:           // fall through
  2962   case vmIntrinsics::_dsin :          // fall through
  2963   case vmIntrinsics::_dcos :          // fall through
  2964   case vmIntrinsics::_dexp :          // fall through
  2965   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
  2966   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
  2968   // java.nio.Buffer.checkIndex
  2969   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
  2971   case vmIntrinsics::_compareAndSwapObject:
  2972     do_CompareAndSwap(x, objectType);
  2973     break;
  2974   case vmIntrinsics::_compareAndSwapInt:
  2975     do_CompareAndSwap(x, intType);
  2976     break;
  2977   case vmIntrinsics::_compareAndSwapLong:
  2978     do_CompareAndSwap(x, longType);
  2979     break;
  2981   case vmIntrinsics::_loadFence :
  2982     if (os::is_MP()) __ membar_acquire();
  2983     break;
  2984   case vmIntrinsics::_storeFence:
  2985     if (os::is_MP()) __ membar_release();
  2986     break;
  2987   case vmIntrinsics::_fullFence :
  2988     if (os::is_MP()) __ membar();
  2989     break;
  2991   case vmIntrinsics::_Reference_get:
  2992     do_Reference_get(x);
  2993     break;
  2995   default: ShouldNotReachHere(); break;
  2999 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
  3000   // Need recv in a temporary register so it interferes with the other temporaries
  3001   LIR_Opr recv = LIR_OprFact::illegalOpr;
  3002   LIR_Opr mdo = new_register(T_OBJECT);
  3003   // tmp is used to hold the counters on SPARC
  3004   LIR_Opr tmp = new_pointer_register();
  3005   if (x->recv() != NULL) {
  3006     LIRItem value(x->recv(), this);
  3007     value.load_item();
  3008     recv = new_register(T_OBJECT);
  3009     __ move(value.result(), recv);
  3011   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
  3014 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
  3015   // We can safely ignore accessors here, since c2 will inline them anyway,
  3016   // accessors are also always mature.
  3017   if (!x->inlinee()->is_accessor()) {
  3018     CodeEmitInfo* info = state_for(x, x->state(), true);
  3019     // Notify the runtime very infrequently only to take care of counter overflows
  3020     increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
  3024 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
  3025   int freq_log;
  3026   int level = compilation()->env()->comp_level();
  3027   if (level == CompLevel_limited_profile) {
  3028     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
  3029   } else if (level == CompLevel_full_profile) {
  3030     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
  3031   } else {
  3032     ShouldNotReachHere();
  3034   // Increment the appropriate invocation/backedge counter and notify the runtime.
  3035   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
  3038 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
  3039                                                 ciMethod *method, int frequency,
  3040                                                 int bci, bool backedge, bool notify) {
  3041   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
  3042   int level = _compilation->env()->comp_level();
  3043   assert(level > CompLevel_simple, "Shouldn't be here");
  3045   int offset = -1;
  3046   LIR_Opr counter_holder = new_register(T_METADATA);
  3047   LIR_Opr meth;
  3048   if (level == CompLevel_limited_profile) {
  3049     offset = in_bytes(backedge ? Method::backedge_counter_offset() :
  3050                                  Method::invocation_counter_offset());
  3051     __ metadata2reg(method->constant_encoding(), counter_holder);
  3052     meth = counter_holder;
  3053   } else if (level == CompLevel_full_profile) {
  3054     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
  3055                                  MethodData::invocation_counter_offset());
  3056     ciMethodData* md = method->method_data_or_null();
  3057     assert(md != NULL, "Sanity");
  3058     __ metadata2reg(md->constant_encoding(), counter_holder);
  3059     meth = new_register(T_METADATA);
  3060     __ metadata2reg(method->constant_encoding(), meth);
  3061   } else {
  3062     ShouldNotReachHere();
  3064   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
  3065   LIR_Opr result = new_register(T_INT);
  3066   __ load(counter, result);
  3067   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
  3068   __ store(result, counter);
  3069   if (notify) {
  3070     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
  3071     __ logical_and(result, mask, result);
  3072     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
  3073     // The bci for info can point to cmp for if's we want the if bci
  3074     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
  3075     __ branch(lir_cond_equal, T_INT, overflow);
  3076     __ branch_destination(overflow->continuation());
  3080 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
  3081   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
  3082   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
  3084   if (x->pass_thread()) {
  3085     signature->append(T_ADDRESS);
  3086     args->append(getThreadPointer());
  3089   for (int i = 0; i < x->number_of_arguments(); i++) {
  3090     Value a = x->argument_at(i);
  3091     LIRItem* item = new LIRItem(a, this);
  3092     item->load_item();
  3093     args->append(item->result());
  3094     signature->append(as_BasicType(a->type()));
  3097   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
  3098   if (x->type() == voidType) {
  3099     set_no_result(x);
  3100   } else {
  3101     __ move(result, rlock_result(x));
  3105 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
  3106   LIRItemList args(1);
  3107   LIRItem value(arg1, this);
  3108   args.append(&value);
  3109   BasicTypeList signature;
  3110   signature.append(as_BasicType(arg1->type()));
  3112   return call_runtime(&signature, &args, entry, result_type, info);
  3116 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
  3117   LIRItemList args(2);
  3118   LIRItem value1(arg1, this);
  3119   LIRItem value2(arg2, this);
  3120   args.append(&value1);
  3121   args.append(&value2);
  3122   BasicTypeList signature;
  3123   signature.append(as_BasicType(arg1->type()));
  3124   signature.append(as_BasicType(arg2->type()));
  3126   return call_runtime(&signature, &args, entry, result_type, info);
  3130 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
  3131                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  3132   // get a result register
  3133   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  3134   LIR_Opr result = LIR_OprFact::illegalOpr;
  3135   if (result_type->tag() != voidTag) {
  3136     result = new_register(result_type);
  3137     phys_reg = result_register_for(result_type);
  3140   // move the arguments into the correct location
  3141   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  3142   assert(cc->length() == args->length(), "argument mismatch");
  3143   for (int i = 0; i < args->length(); i++) {
  3144     LIR_Opr arg = args->at(i);
  3145     LIR_Opr loc = cc->at(i);
  3146     if (loc->is_register()) {
  3147       __ move(arg, loc);
  3148     } else {
  3149       LIR_Address* addr = loc->as_address_ptr();
  3150 //           if (!can_store_as_constant(arg)) {
  3151 //             LIR_Opr tmp = new_register(arg->type());
  3152 //             __ move(arg, tmp);
  3153 //             arg = tmp;
  3154 //           }
  3155       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  3156         __ unaligned_move(arg, addr);
  3157       } else {
  3158         __ move(arg, addr);
  3163   if (info) {
  3164     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  3165   } else {
  3166     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  3168   if (result->is_valid()) {
  3169     __ move(phys_reg, result);
  3171   return result;
  3175 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
  3176                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  3177   // get a result register
  3178   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  3179   LIR_Opr result = LIR_OprFact::illegalOpr;
  3180   if (result_type->tag() != voidTag) {
  3181     result = new_register(result_type);
  3182     phys_reg = result_register_for(result_type);
  3185   // move the arguments into the correct location
  3186   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  3188   assert(cc->length() == args->length(), "argument mismatch");
  3189   for (int i = 0; i < args->length(); i++) {
  3190     LIRItem* arg = args->at(i);
  3191     LIR_Opr loc = cc->at(i);
  3192     if (loc->is_register()) {
  3193       arg->load_item_force(loc);
  3194     } else {
  3195       LIR_Address* addr = loc->as_address_ptr();
  3196       arg->load_for_store(addr->type());
  3197       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  3198         __ unaligned_move(arg->result(), addr);
  3199       } else {
  3200         __ move(arg->result(), addr);
  3205   if (info) {
  3206     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  3207   } else {
  3208     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  3210   if (result->is_valid()) {
  3211     __ move(phys_reg, result);
  3213   return result;
  3216 void LIRGenerator::do_MemBar(MemBar* x) {
  3217   if (os::is_MP()) {
  3218     LIR_Code code = x->code();
  3219     switch(code) {
  3220       case lir_membar_acquire   : __ membar_acquire(); break;
  3221       case lir_membar_release   : __ membar_release(); break;
  3222       case lir_membar           : __ membar(); break;
  3223       case lir_membar_loadload  : __ membar_loadload(); break;
  3224       case lir_membar_storestore: __ membar_storestore(); break;
  3225       case lir_membar_loadstore : __ membar_loadstore(); break;
  3226       case lir_membar_storeload : __ membar_storeload(); break;
  3227       default                   : ShouldNotReachHere(); break;

mercurial