src/share/vm/c1/c1_LIRGenerator.cpp

Thu, 21 Mar 2013 09:27:54 +0100

author
roland
date
Thu, 21 Mar 2013 09:27:54 +0100
changeset 4860
46f6f063b272
parent 4542
db9981fd3124
child 4869
d595e8ddadd9
permissions
-rw-r--r--

7153771: array bound check elimination for c1
Summary: when possible optimize out array bound checks, inserting predicates when needed.
Reviewed-by: never, kvn, twisti
Contributed-by: thomaswue <thomas.wuerthinger@oracle.com>

     1 /*
     2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_FrameMap.hpp"
    28 #include "c1/c1_Instruction.hpp"
    29 #include "c1/c1_LIRAssembler.hpp"
    30 #include "c1/c1_LIRGenerator.hpp"
    31 #include "c1/c1_ValueStack.hpp"
    32 #include "ci/ciArrayKlass.hpp"
    33 #include "ci/ciInstance.hpp"
    34 #include "ci/ciObjArray.hpp"
    35 #include "runtime/sharedRuntime.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "utilities/bitMap.inline.hpp"
    38 #include "utilities/macros.hpp"
    39 #if INCLUDE_ALL_GCS
    40 #include "gc_implementation/g1/heapRegion.hpp"
    41 #endif // INCLUDE_ALL_GCS
    43 #ifdef ASSERT
    44 #define __ gen()->lir(__FILE__, __LINE__)->
    45 #else
    46 #define __ gen()->lir()->
    47 #endif
    49 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
    50 #ifdef ARM
    51 #define PATCHED_ADDR  (204)
    52 #else
    53 #define PATCHED_ADDR  (max_jint)
    54 #endif
    56 void PhiResolverState::reset(int max_vregs) {
    57   // Initialize array sizes
    58   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    59   _virtual_operands.trunc_to(0);
    60   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    61   _other_operands.trunc_to(0);
    62   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
    63   _vreg_table.trunc_to(0);
    64 }
    68 //--------------------------------------------------------------
    69 // PhiResolver
    71 // Resolves cycles:
    72 //
    73 //  r1 := r2  becomes  temp := r1
    74 //  r2 := r1           r1 := r2
    75 //                     r2 := temp
    76 // and orders moves:
    77 //
    78 //  r2 := r3  becomes  r1 := r2
    79 //  r1 := r2           r2 := r3
    81 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
    82  : _gen(gen)
    83  , _state(gen->resolver_state())
    84  , _temp(LIR_OprFact::illegalOpr)
    85 {
    86   // reinitialize the shared state arrays
    87   _state.reset(max_vregs);
    88 }
    91 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
    92   assert(src->is_valid(), "");
    93   assert(dest->is_valid(), "");
    94   __ move(src, dest);
    95 }
    98 void PhiResolver::move_temp_to(LIR_Opr dest) {
    99   assert(_temp->is_valid(), "");
   100   emit_move(_temp, dest);
   101   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
   102 }
   105 void PhiResolver::move_to_temp(LIR_Opr src) {
   106   assert(_temp->is_illegal(), "");
   107   _temp = _gen->new_register(src->type());
   108   emit_move(src, _temp);
   109 }
   112 // Traverse assignment graph in depth first order and generate moves in post order
   113 // ie. two assignments: b := c, a := b start with node c:
   114 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
   115 // Generates moves in this order: move b to a and move c to b
   116 // ie. cycle a := b, b := a start with node a
   117 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
   118 // Generates moves in this order: move b to temp, move a to b, move temp to a
   119 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
   120   if (!dest->visited()) {
   121     dest->set_visited();
   122     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
   123       move(dest, dest->destination_at(i));
   124     }
   125   } else if (!dest->start_node()) {
   126     // cylce in graph detected
   127     assert(_loop == NULL, "only one loop valid!");
   128     _loop = dest;
   129     move_to_temp(src->operand());
   130     return;
   131   } // else dest is a start node
   133   if (!dest->assigned()) {
   134     if (_loop == dest) {
   135       move_temp_to(dest->operand());
   136       dest->set_assigned();
   137     } else if (src != NULL) {
   138       emit_move(src->operand(), dest->operand());
   139       dest->set_assigned();
   140     }
   141   }
   142 }
   145 PhiResolver::~PhiResolver() {
   146   int i;
   147   // resolve any cycles in moves from and to virtual registers
   148   for (i = virtual_operands().length() - 1; i >= 0; i --) {
   149     ResolveNode* node = virtual_operands()[i];
   150     if (!node->visited()) {
   151       _loop = NULL;
   152       move(NULL, node);
   153       node->set_start_node();
   154       assert(_temp->is_illegal(), "move_temp_to() call missing");
   155     }
   156   }
   158   // generate move for move from non virtual register to abitrary destination
   159   for (i = other_operands().length() - 1; i >= 0; i --) {
   160     ResolveNode* node = other_operands()[i];
   161     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
   162       emit_move(node->operand(), node->destination_at(j)->operand());
   163     }
   164   }
   165 }
   168 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
   169   ResolveNode* node;
   170   if (opr->is_virtual()) {
   171     int vreg_num = opr->vreg_number();
   172     node = vreg_table().at_grow(vreg_num, NULL);
   173     assert(node == NULL || node->operand() == opr, "");
   174     if (node == NULL) {
   175       node = new ResolveNode(opr);
   176       vreg_table()[vreg_num] = node;
   177     }
   178     // Make sure that all virtual operands show up in the list when
   179     // they are used as the source of a move.
   180     if (source && !virtual_operands().contains(node)) {
   181       virtual_operands().append(node);
   182     }
   183   } else {
   184     assert(source, "");
   185     node = new ResolveNode(opr);
   186     other_operands().append(node);
   187   }
   188   return node;
   189 }
   192 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
   193   assert(dest->is_virtual(), "");
   194   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
   195   assert(src->is_valid(), "");
   196   assert(dest->is_valid(), "");
   197   ResolveNode* source = source_node(src);
   198   source->append(destination_node(dest));
   199 }
   202 //--------------------------------------------------------------
   203 // LIRItem
   205 void LIRItem::set_result(LIR_Opr opr) {
   206   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
   207   value()->set_operand(opr);
   209   if (opr->is_virtual()) {
   210     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
   211   }
   213   _result = opr;
   214 }
   216 void LIRItem::load_item() {
   217   if (result()->is_illegal()) {
   218     // update the items result
   219     _result = value()->operand();
   220   }
   221   if (!result()->is_register()) {
   222     LIR_Opr reg = _gen->new_register(value()->type());
   223     __ move(result(), reg);
   224     if (result()->is_constant()) {
   225       _result = reg;
   226     } else {
   227       set_result(reg);
   228     }
   229   }
   230 }
   233 void LIRItem::load_for_store(BasicType type) {
   234   if (_gen->can_store_as_constant(value(), type)) {
   235     _result = value()->operand();
   236     if (!_result->is_constant()) {
   237       _result = LIR_OprFact::value_type(value()->type());
   238     }
   239   } else if (type == T_BYTE || type == T_BOOLEAN) {
   240     load_byte_item();
   241   } else {
   242     load_item();
   243   }
   244 }
   246 void LIRItem::load_item_force(LIR_Opr reg) {
   247   LIR_Opr r = result();
   248   if (r != reg) {
   249 #if !defined(ARM) && !defined(E500V2)
   250     if (r->type() != reg->type()) {
   251       // moves between different types need an intervening spill slot
   252       r = _gen->force_to_spill(r, reg->type());
   253     }
   254 #endif
   255     __ move(r, reg);
   256     _result = reg;
   257   }
   258 }
   260 ciObject* LIRItem::get_jobject_constant() const {
   261   ObjectType* oc = type()->as_ObjectType();
   262   if (oc) {
   263     return oc->constant_value();
   264   }
   265   return NULL;
   266 }
   269 jint LIRItem::get_jint_constant() const {
   270   assert(is_constant() && value() != NULL, "");
   271   assert(type()->as_IntConstant() != NULL, "type check");
   272   return type()->as_IntConstant()->value();
   273 }
   276 jint LIRItem::get_address_constant() const {
   277   assert(is_constant() && value() != NULL, "");
   278   assert(type()->as_AddressConstant() != NULL, "type check");
   279   return type()->as_AddressConstant()->value();
   280 }
   283 jfloat LIRItem::get_jfloat_constant() const {
   284   assert(is_constant() && value() != NULL, "");
   285   assert(type()->as_FloatConstant() != NULL, "type check");
   286   return type()->as_FloatConstant()->value();
   287 }
   290 jdouble LIRItem::get_jdouble_constant() const {
   291   assert(is_constant() && value() != NULL, "");
   292   assert(type()->as_DoubleConstant() != NULL, "type check");
   293   return type()->as_DoubleConstant()->value();
   294 }
   297 jlong LIRItem::get_jlong_constant() const {
   298   assert(is_constant() && value() != NULL, "");
   299   assert(type()->as_LongConstant() != NULL, "type check");
   300   return type()->as_LongConstant()->value();
   301 }
   305 //--------------------------------------------------------------
   308 void LIRGenerator::init() {
   309   _bs = Universe::heap()->barrier_set();
   310 }
   313 void LIRGenerator::block_do_prolog(BlockBegin* block) {
   314 #ifndef PRODUCT
   315   if (PrintIRWithLIR) {
   316     block->print();
   317   }
   318 #endif
   320   // set up the list of LIR instructions
   321   assert(block->lir() == NULL, "LIR list already computed for this block");
   322   _lir = new LIR_List(compilation(), block);
   323   block->set_lir(_lir);
   325   __ branch_destination(block->label());
   327   if (LIRTraceExecution &&
   328       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
   329       !block->is_set(BlockBegin::exception_entry_flag)) {
   330     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
   331     trace_block_entry(block);
   332   }
   333 }
   336 void LIRGenerator::block_do_epilog(BlockBegin* block) {
   337 #ifndef PRODUCT
   338   if (PrintIRWithLIR) {
   339     tty->cr();
   340   }
   341 #endif
   343   // LIR_Opr for unpinned constants shouldn't be referenced by other
   344   // blocks so clear them out after processing the block.
   345   for (int i = 0; i < _unpinned_constants.length(); i++) {
   346     _unpinned_constants.at(i)->clear_operand();
   347   }
   348   _unpinned_constants.trunc_to(0);
   350   // clear our any registers for other local constants
   351   _constants.trunc_to(0);
   352   _reg_for_constants.trunc_to(0);
   353 }
   356 void LIRGenerator::block_do(BlockBegin* block) {
   357   CHECK_BAILOUT();
   359   block_do_prolog(block);
   360   set_block(block);
   362   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
   363     if (instr->is_pinned()) do_root(instr);
   364   }
   366   set_block(NULL);
   367   block_do_epilog(block);
   368 }
   371 //-------------------------LIRGenerator-----------------------------
   373 // This is where the tree-walk starts; instr must be root;
   374 void LIRGenerator::do_root(Value instr) {
   375   CHECK_BAILOUT();
   377   InstructionMark im(compilation(), instr);
   379   assert(instr->is_pinned(), "use only with roots");
   380   assert(instr->subst() == instr, "shouldn't have missed substitution");
   382   instr->visit(this);
   384   assert(!instr->has_uses() || instr->operand()->is_valid() ||
   385          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
   386 }
   389 // This is called for each node in tree; the walk stops if a root is reached
   390 void LIRGenerator::walk(Value instr) {
   391   InstructionMark im(compilation(), instr);
   392   //stop walk when encounter a root
   393   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
   394     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
   395   } else {
   396     assert(instr->subst() == instr, "shouldn't have missed substitution");
   397     instr->visit(this);
   398     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
   399   }
   400 }
   403 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
   404   assert(state != NULL, "state must be defined");
   406 #ifndef PRODUCT
   407   state->verify();
   408 #endif
   410   ValueStack* s = state;
   411   for_each_state(s) {
   412     if (s->kind() == ValueStack::EmptyExceptionState) {
   413       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
   414       continue;
   415     }
   417     int index;
   418     Value value;
   419     for_each_stack_value(s, index, value) {
   420       assert(value->subst() == value, "missed substitution");
   421       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   422         walk(value);
   423         assert(value->operand()->is_valid(), "must be evaluated now");
   424       }
   425     }
   427     int bci = s->bci();
   428     IRScope* scope = s->scope();
   429     ciMethod* method = scope->method();
   431     MethodLivenessResult liveness = method->liveness_at_bci(bci);
   432     if (bci == SynchronizationEntryBCI) {
   433       if (x->as_ExceptionObject() || x->as_Throw()) {
   434         // all locals are dead on exit from the synthetic unlocker
   435         liveness.clear();
   436       } else {
   437         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
   438       }
   439     }
   440     if (!liveness.is_valid()) {
   441       // Degenerate or breakpointed method.
   442       bailout("Degenerate or breakpointed method");
   443     } else {
   444       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
   445       for_each_local_value(s, index, value) {
   446         assert(value->subst() == value, "missed substition");
   447         if (liveness.at(index) && !value->type()->is_illegal()) {
   448           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   449             walk(value);
   450             assert(value->operand()->is_valid(), "must be evaluated now");
   451           }
   452         } else {
   453           // NULL out this local so that linear scan can assume that all non-NULL values are live.
   454           s->invalidate_local(index);
   455         }
   456       }
   457     }
   458   }
   460   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
   461 }
   464 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
   465   return state_for(x, x->exception_state());
   466 }
   469 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info) {
   470   if (!obj->is_loaded() || PatchALot) {
   471     assert(info != NULL, "info must be set if class is not loaded");
   472     __ klass2reg_patch(NULL, r, info);
   473   } else {
   474     // no patching needed
   475     __ metadata2reg(obj->constant_encoding(), r);
   476   }
   477 }
   480 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
   481                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
   482   CodeStub* stub = new RangeCheckStub(range_check_info, index);
   483   if (index->is_constant()) {
   484     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
   485                 index->as_jint(), null_check_info);
   486     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   487   } else {
   488     cmp_reg_mem(lir_cond_aboveEqual, index, array,
   489                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
   490     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   491   }
   492 }
   495 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
   496   CodeStub* stub = new RangeCheckStub(info, index, true);
   497   if (index->is_constant()) {
   498     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
   499     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   500   } else {
   501     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
   502                 java_nio_Buffer::limit_offset(), T_INT, info);
   503     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   504   }
   505   __ move(index, result);
   506 }
   510 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
   511   LIR_Opr result_op = result;
   512   LIR_Opr left_op   = left;
   513   LIR_Opr right_op  = right;
   515   if (TwoOperandLIRForm && left_op != result_op) {
   516     assert(right_op != result_op, "malformed");
   517     __ move(left_op, result_op);
   518     left_op = result_op;
   519   }
   521   switch(code) {
   522     case Bytecodes::_dadd:
   523     case Bytecodes::_fadd:
   524     case Bytecodes::_ladd:
   525     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
   526     case Bytecodes::_fmul:
   527     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
   529     case Bytecodes::_dmul:
   530       {
   531         if (is_strictfp) {
   532           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
   533         } else {
   534           __ mul(left_op, right_op, result_op); break;
   535         }
   536       }
   537       break;
   539     case Bytecodes::_imul:
   540       {
   541         bool    did_strength_reduce = false;
   543         if (right->is_constant()) {
   544           int c = right->as_jint();
   545           if (is_power_of_2(c)) {
   546             // do not need tmp here
   547             __ shift_left(left_op, exact_log2(c), result_op);
   548             did_strength_reduce = true;
   549           } else {
   550             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
   551           }
   552         }
   553         // we couldn't strength reduce so just emit the multiply
   554         if (!did_strength_reduce) {
   555           __ mul(left_op, right_op, result_op);
   556         }
   557       }
   558       break;
   560     case Bytecodes::_dsub:
   561     case Bytecodes::_fsub:
   562     case Bytecodes::_lsub:
   563     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
   565     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
   566     // ldiv and lrem are implemented with a direct runtime call
   568     case Bytecodes::_ddiv:
   569       {
   570         if (is_strictfp) {
   571           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
   572         } else {
   573           __ div (left_op, right_op, result_op); break;
   574         }
   575       }
   576       break;
   578     case Bytecodes::_drem:
   579     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
   581     default: ShouldNotReachHere();
   582   }
   583 }
   586 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
   587   arithmetic_op(code, result, left, right, false, tmp);
   588 }
   591 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
   592   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
   593 }
   596 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
   597   arithmetic_op(code, result, left, right, is_strictfp, tmp);
   598 }
   601 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
   602   if (TwoOperandLIRForm && value != result_op) {
   603     assert(count != result_op, "malformed");
   604     __ move(value, result_op);
   605     value = result_op;
   606   }
   608   assert(count->is_constant() || count->is_register(), "must be");
   609   switch(code) {
   610   case Bytecodes::_ishl:
   611   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
   612   case Bytecodes::_ishr:
   613   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
   614   case Bytecodes::_iushr:
   615   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
   616   default: ShouldNotReachHere();
   617   }
   618 }
   621 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
   622   if (TwoOperandLIRForm && left_op != result_op) {
   623     assert(right_op != result_op, "malformed");
   624     __ move(left_op, result_op);
   625     left_op = result_op;
   626   }
   628   switch(code) {
   629     case Bytecodes::_iand:
   630     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
   632     case Bytecodes::_ior:
   633     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
   635     case Bytecodes::_ixor:
   636     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
   638     default: ShouldNotReachHere();
   639   }
   640 }
   643 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
   644   if (!GenerateSynchronizationCode) return;
   645   // for slow path, use debug info for state after successful locking
   646   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
   647   __ load_stack_address_monitor(monitor_no, lock);
   648   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
   649   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
   650 }
   653 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
   654   if (!GenerateSynchronizationCode) return;
   655   // setup registers
   656   LIR_Opr hdr = lock;
   657   lock = new_hdr;
   658   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
   659   __ load_stack_address_monitor(monitor_no, lock);
   660   __ unlock_object(hdr, object, lock, scratch, slow_path);
   661 }
   664 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
   665   klass2reg_with_patching(klass_reg, klass, info);
   666   // If klass is not loaded we do not know if the klass has finalizers:
   667   if (UseFastNewInstance && klass->is_loaded()
   668       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
   670     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
   672     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
   674     assert(klass->is_loaded(), "must be loaded");
   675     // allocate space for instance
   676     assert(klass->size_helper() >= 0, "illegal instance size");
   677     const int instance_size = align_object_size(klass->size_helper());
   678     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
   679                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
   680   } else {
   681     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
   682     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
   683     __ branch_destination(slow_path->continuation());
   684   }
   685 }
   688 static bool is_constant_zero(Instruction* inst) {
   689   IntConstant* c = inst->type()->as_IntConstant();
   690   if (c) {
   691     return (c->value() == 0);
   692   }
   693   return false;
   694 }
   697 static bool positive_constant(Instruction* inst) {
   698   IntConstant* c = inst->type()->as_IntConstant();
   699   if (c) {
   700     return (c->value() >= 0);
   701   }
   702   return false;
   703 }
   706 static ciArrayKlass* as_array_klass(ciType* type) {
   707   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
   708     return (ciArrayKlass*)type;
   709   } else {
   710     return NULL;
   711   }
   712 }
   714 static Value maxvalue(IfOp* ifop) {
   715   switch (ifop->cond()) {
   716     case If::eql: return NULL;
   717     case If::neq: return NULL;
   718     case If::lss: // x <  y ? x : y
   719     case If::leq: // x <= y ? x : y
   720       if (ifop->x() == ifop->tval() &&
   721           ifop->y() == ifop->fval()) return ifop->y();
   722       return NULL;
   724     case If::gtr: // x >  y ? y : x
   725     case If::geq: // x >= y ? y : x
   726       if (ifop->x() == ifop->tval() &&
   727           ifop->y() == ifop->fval()) return ifop->y();
   728       return NULL;
   730   }
   731 }
   733 static ciType* phi_declared_type(Phi* phi) {
   734   ciType* t = phi->operand_at(0)->declared_type();
   735   if (t == NULL) {
   736     return NULL;
   737   }
   738   for(int i = 1; i < phi->operand_count(); i++) {
   739     if (t != phi->operand_at(i)->declared_type()) {
   740       return NULL;
   741     }
   742   }
   743   return t;
   744 }
   746 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
   747   Instruction* src     = x->argument_at(0);
   748   Instruction* src_pos = x->argument_at(1);
   749   Instruction* dst     = x->argument_at(2);
   750   Instruction* dst_pos = x->argument_at(3);
   751   Instruction* length  = x->argument_at(4);
   753   // first try to identify the likely type of the arrays involved
   754   ciArrayKlass* expected_type = NULL;
   755   bool is_exact = false, src_objarray = false, dst_objarray = false;
   756   {
   757     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
   758     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
   759     Phi* phi;
   760     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
   761       src_declared_type = as_array_klass(phi_declared_type(phi));
   762     }
   763     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
   764     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
   765     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
   766       dst_declared_type = as_array_klass(phi_declared_type(phi));
   767     }
   769     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
   770       // the types exactly match so the type is fully known
   771       is_exact = true;
   772       expected_type = src_exact_type;
   773     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
   774       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
   775       ciArrayKlass* src_type = NULL;
   776       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
   777         src_type = (ciArrayKlass*) src_exact_type;
   778       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
   779         src_type = (ciArrayKlass*) src_declared_type;
   780       }
   781       if (src_type != NULL) {
   782         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
   783           is_exact = true;
   784           expected_type = dst_type;
   785         }
   786       }
   787     }
   788     // at least pass along a good guess
   789     if (expected_type == NULL) expected_type = dst_exact_type;
   790     if (expected_type == NULL) expected_type = src_declared_type;
   791     if (expected_type == NULL) expected_type = dst_declared_type;
   793     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
   794     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
   795   }
   797   // if a probable array type has been identified, figure out if any
   798   // of the required checks for a fast case can be elided.
   799   int flags = LIR_OpArrayCopy::all_flags;
   801   if (!src_objarray)
   802     flags &= ~LIR_OpArrayCopy::src_objarray;
   803   if (!dst_objarray)
   804     flags &= ~LIR_OpArrayCopy::dst_objarray;
   806   if (!x->arg_needs_null_check(0))
   807     flags &= ~LIR_OpArrayCopy::src_null_check;
   808   if (!x->arg_needs_null_check(2))
   809     flags &= ~LIR_OpArrayCopy::dst_null_check;
   812   if (expected_type != NULL) {
   813     Value length_limit = NULL;
   815     IfOp* ifop = length->as_IfOp();
   816     if (ifop != NULL) {
   817       // look for expressions like min(v, a.length) which ends up as
   818       //   x > y ? y : x  or  x >= y ? y : x
   819       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
   820           ifop->x() == ifop->fval() &&
   821           ifop->y() == ifop->tval()) {
   822         length_limit = ifop->y();
   823       }
   824     }
   826     // try to skip null checks and range checks
   827     NewArray* src_array = src->as_NewArray();
   828     if (src_array != NULL) {
   829       flags &= ~LIR_OpArrayCopy::src_null_check;
   830       if (length_limit != NULL &&
   831           src_array->length() == length_limit &&
   832           is_constant_zero(src_pos)) {
   833         flags &= ~LIR_OpArrayCopy::src_range_check;
   834       }
   835     }
   837     NewArray* dst_array = dst->as_NewArray();
   838     if (dst_array != NULL) {
   839       flags &= ~LIR_OpArrayCopy::dst_null_check;
   840       if (length_limit != NULL &&
   841           dst_array->length() == length_limit &&
   842           is_constant_zero(dst_pos)) {
   843         flags &= ~LIR_OpArrayCopy::dst_range_check;
   844       }
   845     }
   847     // check from incoming constant values
   848     if (positive_constant(src_pos))
   849       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
   850     if (positive_constant(dst_pos))
   851       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
   852     if (positive_constant(length))
   853       flags &= ~LIR_OpArrayCopy::length_positive_check;
   855     // see if the range check can be elided, which might also imply
   856     // that src or dst is non-null.
   857     ArrayLength* al = length->as_ArrayLength();
   858     if (al != NULL) {
   859       if (al->array() == src) {
   860         // it's the length of the source array
   861         flags &= ~LIR_OpArrayCopy::length_positive_check;
   862         flags &= ~LIR_OpArrayCopy::src_null_check;
   863         if (is_constant_zero(src_pos))
   864           flags &= ~LIR_OpArrayCopy::src_range_check;
   865       }
   866       if (al->array() == dst) {
   867         // it's the length of the destination array
   868         flags &= ~LIR_OpArrayCopy::length_positive_check;
   869         flags &= ~LIR_OpArrayCopy::dst_null_check;
   870         if (is_constant_zero(dst_pos))
   871           flags &= ~LIR_OpArrayCopy::dst_range_check;
   872       }
   873     }
   874     if (is_exact) {
   875       flags &= ~LIR_OpArrayCopy::type_check;
   876     }
   877   }
   879   IntConstant* src_int = src_pos->type()->as_IntConstant();
   880   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
   881   if (src_int && dst_int) {
   882     int s_offs = src_int->value();
   883     int d_offs = dst_int->value();
   884     if (src_int->value() >= dst_int->value()) {
   885       flags &= ~LIR_OpArrayCopy::overlapping;
   886     }
   887     if (expected_type != NULL) {
   888       BasicType t = expected_type->element_type()->basic_type();
   889       int element_size = type2aelembytes(t);
   890       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
   891           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
   892         flags &= ~LIR_OpArrayCopy::unaligned;
   893       }
   894     }
   895   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
   896     // src and dest positions are the same, or dst is zero so assume
   897     // nonoverlapping copy.
   898     flags &= ~LIR_OpArrayCopy::overlapping;
   899   }
   901   if (src == dst) {
   902     // moving within a single array so no type checks are needed
   903     if (flags & LIR_OpArrayCopy::type_check) {
   904       flags &= ~LIR_OpArrayCopy::type_check;
   905     }
   906   }
   907   *flagsp = flags;
   908   *expected_typep = (ciArrayKlass*)expected_type;
   909 }
   912 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
   913   assert(opr->is_register(), "why spill if item is not register?");
   915   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
   916     LIR_Opr result = new_register(T_FLOAT);
   917     set_vreg_flag(result, must_start_in_memory);
   918     assert(opr->is_register(), "only a register can be spilled");
   919     assert(opr->value_type()->is_float(), "rounding only for floats available");
   920     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
   921     return result;
   922   }
   923   return opr;
   924 }
   927 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
   928   assert(type2size[t] == type2size[value->type()],
   929          err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
   930   if (!value->is_register()) {
   931     // force into a register
   932     LIR_Opr r = new_register(value->type());
   933     __ move(value, r);
   934     value = r;
   935   }
   937   // create a spill location
   938   LIR_Opr tmp = new_register(t);
   939   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
   941   // move from register to spill
   942   __ move(value, tmp);
   943   return tmp;
   944 }
   946 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
   947   if (if_instr->should_profile()) {
   948     ciMethod* method = if_instr->profiled_method();
   949     assert(method != NULL, "method should be set if branch is profiled");
   950     ciMethodData* md = method->method_data_or_null();
   951     assert(md != NULL, "Sanity");
   952     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
   953     assert(data != NULL, "must have profiling data");
   954     assert(data->is_BranchData(), "need BranchData for two-way branches");
   955     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
   956     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
   957     if (if_instr->is_swapped()) {
   958       int t = taken_count_offset;
   959       taken_count_offset = not_taken_count_offset;
   960       not_taken_count_offset = t;
   961     }
   963     LIR_Opr md_reg = new_register(T_METADATA);
   964     __ metadata2reg(md->constant_encoding(), md_reg);
   966     LIR_Opr data_offset_reg = new_pointer_register();
   967     __ cmove(lir_cond(cond),
   968              LIR_OprFact::intptrConst(taken_count_offset),
   969              LIR_OprFact::intptrConst(not_taken_count_offset),
   970              data_offset_reg, as_BasicType(if_instr->x()->type()));
   972     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
   973     LIR_Opr data_reg = new_pointer_register();
   974     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
   975     __ move(data_addr, data_reg);
   976     // Use leal instead of add to avoid destroying condition codes on x86
   977     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
   978     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
   979     __ move(data_reg, data_addr);
   980   }
   981 }
   983 // Phi technique:
   984 // This is about passing live values from one basic block to the other.
   985 // In code generated with Java it is rather rare that more than one
   986 // value is on the stack from one basic block to the other.
   987 // We optimize our technique for efficient passing of one value
   988 // (of type long, int, double..) but it can be extended.
   989 // When entering or leaving a basic block, all registers and all spill
   990 // slots are release and empty. We use the released registers
   991 // and spill slots to pass the live values from one block
   992 // to the other. The topmost value, i.e., the value on TOS of expression
   993 // stack is passed in registers. All other values are stored in spilling
   994 // area. Every Phi has an index which designates its spill slot
   995 // At exit of a basic block, we fill the register(s) and spill slots.
   996 // At entry of a basic block, the block_prolog sets up the content of phi nodes
   997 // and locks necessary registers and spilling slots.
  1000 // move current value to referenced phi function
  1001 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
  1002   Phi* phi = sux_val->as_Phi();
  1003   // cur_val can be null without phi being null in conjunction with inlining
  1004   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
  1005     LIR_Opr operand = cur_val->operand();
  1006     if (cur_val->operand()->is_illegal()) {
  1007       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
  1008              "these can be produced lazily");
  1009       operand = operand_for_instruction(cur_val);
  1011     resolver->move(operand, operand_for_instruction(phi));
  1016 // Moves all stack values into their PHI position
  1017 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
  1018   BlockBegin* bb = block();
  1019   if (bb->number_of_sux() == 1) {
  1020     BlockBegin* sux = bb->sux_at(0);
  1021     assert(sux->number_of_preds() > 0, "invalid CFG");
  1023     // a block with only one predecessor never has phi functions
  1024     if (sux->number_of_preds() > 1) {
  1025       int max_phis = cur_state->stack_size() + cur_state->locals_size();
  1026       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
  1028       ValueStack* sux_state = sux->state();
  1029       Value sux_value;
  1030       int index;
  1032       assert(cur_state->scope() == sux_state->scope(), "not matching");
  1033       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
  1034       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
  1036       for_each_stack_value(sux_state, index, sux_value) {
  1037         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
  1040       for_each_local_value(sux_state, index, sux_value) {
  1041         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
  1044       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
  1050 LIR_Opr LIRGenerator::new_register(BasicType type) {
  1051   int vreg = _virtual_register_number;
  1052   // add a little fudge factor for the bailout, since the bailout is
  1053   // only checked periodically.  This gives a few extra registers to
  1054   // hand out before we really run out, which helps us keep from
  1055   // tripping over assertions.
  1056   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
  1057     bailout("out of virtual registers");
  1058     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
  1059       // wrap it around
  1060       _virtual_register_number = LIR_OprDesc::vreg_base;
  1063   _virtual_register_number += 1;
  1064   return LIR_OprFact::virtual_register(vreg, type);
  1068 // Try to lock using register in hint
  1069 LIR_Opr LIRGenerator::rlock(Value instr) {
  1070   return new_register(instr->type());
  1074 // does an rlock and sets result
  1075 LIR_Opr LIRGenerator::rlock_result(Value x) {
  1076   LIR_Opr reg = rlock(x);
  1077   set_result(x, reg);
  1078   return reg;
  1082 // does an rlock and sets result
  1083 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
  1084   LIR_Opr reg;
  1085   switch (type) {
  1086   case T_BYTE:
  1087   case T_BOOLEAN:
  1088     reg = rlock_byte(type);
  1089     break;
  1090   default:
  1091     reg = rlock(x);
  1092     break;
  1095   set_result(x, reg);
  1096   return reg;
  1100 //---------------------------------------------------------------------
  1101 ciObject* LIRGenerator::get_jobject_constant(Value value) {
  1102   ObjectType* oc = value->type()->as_ObjectType();
  1103   if (oc) {
  1104     return oc->constant_value();
  1106   return NULL;
  1110 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
  1111   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
  1112   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
  1114   // no moves are created for phi functions at the begin of exception
  1115   // handlers, so assign operands manually here
  1116   for_each_phi_fun(block(), phi,
  1117                    operand_for_instruction(phi));
  1119   LIR_Opr thread_reg = getThreadPointer();
  1120   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
  1121                exceptionOopOpr());
  1122   __ move_wide(LIR_OprFact::oopConst(NULL),
  1123                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
  1124   __ move_wide(LIR_OprFact::oopConst(NULL),
  1125                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
  1127   LIR_Opr result = new_register(T_OBJECT);
  1128   __ move(exceptionOopOpr(), result);
  1129   set_result(x, result);
  1133 //----------------------------------------------------------------------
  1134 //----------------------------------------------------------------------
  1135 //----------------------------------------------------------------------
  1136 //----------------------------------------------------------------------
  1137 //                        visitor functions
  1138 //----------------------------------------------------------------------
  1139 //----------------------------------------------------------------------
  1140 //----------------------------------------------------------------------
  1141 //----------------------------------------------------------------------
  1143 void LIRGenerator::do_Phi(Phi* x) {
  1144   // phi functions are never visited directly
  1145   ShouldNotReachHere();
  1149 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
  1150 void LIRGenerator::do_Constant(Constant* x) {
  1151   if (x->state_before() != NULL) {
  1152     // Any constant with a ValueStack requires patching so emit the patch here
  1153     LIR_Opr reg = rlock_result(x);
  1154     CodeEmitInfo* info = state_for(x, x->state_before());
  1155     __ oop2reg_patch(NULL, reg, info);
  1156   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
  1157     if (!x->is_pinned()) {
  1158       // unpinned constants are handled specially so that they can be
  1159       // put into registers when they are used multiple times within a
  1160       // block.  After the block completes their operand will be
  1161       // cleared so that other blocks can't refer to that register.
  1162       set_result(x, load_constant(x));
  1163     } else {
  1164       LIR_Opr res = x->operand();
  1165       if (!res->is_valid()) {
  1166         res = LIR_OprFact::value_type(x->type());
  1168       if (res->is_constant()) {
  1169         LIR_Opr reg = rlock_result(x);
  1170         __ move(res, reg);
  1171       } else {
  1172         set_result(x, res);
  1175   } else {
  1176     set_result(x, LIR_OprFact::value_type(x->type()));
  1181 void LIRGenerator::do_Local(Local* x) {
  1182   // operand_for_instruction has the side effect of setting the result
  1183   // so there's no need to do it here.
  1184   operand_for_instruction(x);
  1188 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
  1189   Unimplemented();
  1193 void LIRGenerator::do_Return(Return* x) {
  1194   if (compilation()->env()->dtrace_method_probes()) {
  1195     BasicTypeList signature;
  1196     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  1197     signature.append(T_OBJECT); // Method*
  1198     LIR_OprList* args = new LIR_OprList();
  1199     args->append(getThreadPointer());
  1200     LIR_Opr meth = new_register(T_METADATA);
  1201     __ metadata2reg(method()->constant_encoding(), meth);
  1202     args->append(meth);
  1203     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
  1206   if (x->type()->is_void()) {
  1207     __ return_op(LIR_OprFact::illegalOpr);
  1208   } else {
  1209     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
  1210     LIRItem result(x->result(), this);
  1212     result.load_item_force(reg);
  1213     __ return_op(result.result());
  1215   set_no_result(x);
  1218 // Examble: ref.get()
  1219 // Combination of LoadField and g1 pre-write barrier
  1220 void LIRGenerator::do_Reference_get(Intrinsic* x) {
  1222   const int referent_offset = java_lang_ref_Reference::referent_offset;
  1223   guarantee(referent_offset > 0, "referent offset not initialized");
  1225   assert(x->number_of_arguments() == 1, "wrong type");
  1227   LIRItem reference(x->argument_at(0), this);
  1228   reference.load_item();
  1230   // need to perform the null check on the reference objecy
  1231   CodeEmitInfo* info = NULL;
  1232   if (x->needs_null_check()) {
  1233     info = state_for(x);
  1236   LIR_Address* referent_field_adr =
  1237     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
  1239   LIR_Opr result = rlock_result(x);
  1241   __ load(referent_field_adr, result, info);
  1243   // Register the value in the referent field with the pre-barrier
  1244   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
  1245               result /* pre_val */,
  1246               false  /* do_load */,
  1247               false  /* patch */,
  1248               NULL   /* info */);
  1251 // Example: clazz.isInstance(object)
  1252 void LIRGenerator::do_isInstance(Intrinsic* x) {
  1253   assert(x->number_of_arguments() == 2, "wrong type");
  1255   // TODO could try to substitute this node with an equivalent InstanceOf
  1256   // if clazz is known to be a constant Class. This will pick up newly found
  1257   // constants after HIR construction. I'll leave this to a future change.
  1259   // as a first cut, make a simple leaf call to runtime to stay platform independent.
  1260   // could follow the aastore example in a future change.
  1262   LIRItem clazz(x->argument_at(0), this);
  1263   LIRItem object(x->argument_at(1), this);
  1264   clazz.load_item();
  1265   object.load_item();
  1266   LIR_Opr result = rlock_result(x);
  1268   // need to perform null check on clazz
  1269   if (x->needs_null_check()) {
  1270     CodeEmitInfo* info = state_for(x);
  1271     __ null_check(clazz.result(), info);
  1274   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
  1275                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
  1276                                      x->type(),
  1277                                      NULL); // NULL CodeEmitInfo results in a leaf call
  1278   __ move(call_result, result);
  1281 // Example: object.getClass ()
  1282 void LIRGenerator::do_getClass(Intrinsic* x) {
  1283   assert(x->number_of_arguments() == 1, "wrong type");
  1285   LIRItem rcvr(x->argument_at(0), this);
  1286   rcvr.load_item();
  1287   LIR_Opr result = rlock_result(x);
  1289   // need to perform the null check on the rcvr
  1290   CodeEmitInfo* info = NULL;
  1291   if (x->needs_null_check()) {
  1292     info = state_for(x);
  1294   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), result, info);
  1295   __ move_wide(new LIR_Address(result, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
  1299 // Example: Thread.currentThread()
  1300 void LIRGenerator::do_currentThread(Intrinsic* x) {
  1301   assert(x->number_of_arguments() == 0, "wrong type");
  1302   LIR_Opr reg = rlock_result(x);
  1303   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
  1307 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
  1308   assert(x->number_of_arguments() == 1, "wrong type");
  1309   LIRItem receiver(x->argument_at(0), this);
  1311   receiver.load_item();
  1312   BasicTypeList signature;
  1313   signature.append(T_OBJECT); // receiver
  1314   LIR_OprList* args = new LIR_OprList();
  1315   args->append(receiver.result());
  1316   CodeEmitInfo* info = state_for(x, x->state());
  1317   call_runtime(&signature, args,
  1318                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
  1319                voidType, info);
  1321   set_no_result(x);
  1325 //------------------------local access--------------------------------------
  1327 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
  1328   if (x->operand()->is_illegal()) {
  1329     Constant* c = x->as_Constant();
  1330     if (c != NULL) {
  1331       x->set_operand(LIR_OprFact::value_type(c->type()));
  1332     } else {
  1333       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
  1334       // allocate a virtual register for this local or phi
  1335       x->set_operand(rlock(x));
  1336       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
  1339   return x->operand();
  1343 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
  1344   if (opr->is_virtual()) {
  1345     return instruction_for_vreg(opr->vreg_number());
  1347   return NULL;
  1351 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
  1352   if (reg_num < _instruction_for_operand.length()) {
  1353     return _instruction_for_operand.at(reg_num);
  1355   return NULL;
  1359 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
  1360   if (_vreg_flags.size_in_bits() == 0) {
  1361     BitMap2D temp(100, num_vreg_flags);
  1362     temp.clear();
  1363     _vreg_flags = temp;
  1365   _vreg_flags.at_put_grow(vreg_num, f, true);
  1368 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
  1369   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
  1370     return false;
  1372   return _vreg_flags.at(vreg_num, f);
  1376 // Block local constant handling.  This code is useful for keeping
  1377 // unpinned constants and constants which aren't exposed in the IR in
  1378 // registers.  Unpinned Constant instructions have their operands
  1379 // cleared when the block is finished so that other blocks can't end
  1380 // up referring to their registers.
  1382 LIR_Opr LIRGenerator::load_constant(Constant* x) {
  1383   assert(!x->is_pinned(), "only for unpinned constants");
  1384   _unpinned_constants.append(x);
  1385   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
  1389 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
  1390   BasicType t = c->type();
  1391   for (int i = 0; i < _constants.length(); i++) {
  1392     LIR_Const* other = _constants.at(i);
  1393     if (t == other->type()) {
  1394       switch (t) {
  1395       case T_INT:
  1396       case T_FLOAT:
  1397         if (c->as_jint_bits() != other->as_jint_bits()) continue;
  1398         break;
  1399       case T_LONG:
  1400       case T_DOUBLE:
  1401         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
  1402         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
  1403         break;
  1404       case T_OBJECT:
  1405         if (c->as_jobject() != other->as_jobject()) continue;
  1406         break;
  1408       return _reg_for_constants.at(i);
  1412   LIR_Opr result = new_register(t);
  1413   __ move((LIR_Opr)c, result);
  1414   _constants.append(c);
  1415   _reg_for_constants.append(result);
  1416   return result;
  1419 // Various barriers
  1421 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
  1422                                bool do_load, bool patch, CodeEmitInfo* info) {
  1423   // Do the pre-write barrier, if any.
  1424   switch (_bs->kind()) {
  1425 #if INCLUDE_ALL_GCS
  1426     case BarrierSet::G1SATBCT:
  1427     case BarrierSet::G1SATBCTLogging:
  1428       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
  1429       break;
  1430 #endif // INCLUDE_ALL_GCS
  1431     case BarrierSet::CardTableModRef:
  1432     case BarrierSet::CardTableExtension:
  1433       // No pre barriers
  1434       break;
  1435     case BarrierSet::ModRef:
  1436     case BarrierSet::Other:
  1437       // No pre barriers
  1438       break;
  1439     default      :
  1440       ShouldNotReachHere();
  1445 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1446   switch (_bs->kind()) {
  1447 #if INCLUDE_ALL_GCS
  1448     case BarrierSet::G1SATBCT:
  1449     case BarrierSet::G1SATBCTLogging:
  1450       G1SATBCardTableModRef_post_barrier(addr,  new_val);
  1451       break;
  1452 #endif // INCLUDE_ALL_GCS
  1453     case BarrierSet::CardTableModRef:
  1454     case BarrierSet::CardTableExtension:
  1455       CardTableModRef_post_barrier(addr,  new_val);
  1456       break;
  1457     case BarrierSet::ModRef:
  1458     case BarrierSet::Other:
  1459       // No post barriers
  1460       break;
  1461     default      :
  1462       ShouldNotReachHere();
  1466 ////////////////////////////////////////////////////////////////////////
  1467 #if INCLUDE_ALL_GCS
  1469 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
  1470                                                      bool do_load, bool patch, CodeEmitInfo* info) {
  1471   // First we test whether marking is in progress.
  1472   BasicType flag_type;
  1473   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  1474     flag_type = T_INT;
  1475   } else {
  1476     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  1477               "Assumption");
  1478     flag_type = T_BYTE;
  1480   LIR_Opr thrd = getThreadPointer();
  1481   LIR_Address* mark_active_flag_addr =
  1482     new LIR_Address(thrd,
  1483                     in_bytes(JavaThread::satb_mark_queue_offset() +
  1484                              PtrQueue::byte_offset_of_active()),
  1485                     flag_type);
  1486   // Read the marking-in-progress flag.
  1487   LIR_Opr flag_val = new_register(T_INT);
  1488   __ load(mark_active_flag_addr, flag_val);
  1489   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
  1491   LIR_PatchCode pre_val_patch_code = lir_patch_none;
  1493   CodeStub* slow;
  1495   if (do_load) {
  1496     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
  1497     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
  1499     if (patch)
  1500       pre_val_patch_code = lir_patch_normal;
  1502     pre_val = new_register(T_OBJECT);
  1504     if (!addr_opr->is_address()) {
  1505       assert(addr_opr->is_register(), "must be");
  1506       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
  1508     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
  1509   } else {
  1510     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
  1511     assert(pre_val->is_register(), "must be");
  1512     assert(pre_val->type() == T_OBJECT, "must be an object");
  1513     assert(info == NULL, "sanity");
  1515     slow = new G1PreBarrierStub(pre_val);
  1518   __ branch(lir_cond_notEqual, T_INT, slow);
  1519   __ branch_destination(slow->continuation());
  1522 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1523   // If the "new_val" is a constant NULL, no barrier is necessary.
  1524   if (new_val->is_constant() &&
  1525       new_val->as_constant_ptr()->as_jobject() == NULL) return;
  1527   if (!new_val->is_register()) {
  1528     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1529     if (new_val->is_constant()) {
  1530       __ move(new_val, new_val_reg);
  1531     } else {
  1532       __ leal(new_val, new_val_reg);
  1534     new_val = new_val_reg;
  1536   assert(new_val->is_register(), "must be a register at this point");
  1538   if (addr->is_address()) {
  1539     LIR_Address* address = addr->as_address_ptr();
  1540     LIR_Opr ptr = new_pointer_register();
  1541     if (!address->index()->is_valid() && address->disp() == 0) {
  1542       __ move(address->base(), ptr);
  1543     } else {
  1544       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1545       __ leal(addr, ptr);
  1547     addr = ptr;
  1549   assert(addr->is_register(), "must be a register at this point");
  1551   LIR_Opr xor_res = new_pointer_register();
  1552   LIR_Opr xor_shift_res = new_pointer_register();
  1553   if (TwoOperandLIRForm ) {
  1554     __ move(addr, xor_res);
  1555     __ logical_xor(xor_res, new_val, xor_res);
  1556     __ move(xor_res, xor_shift_res);
  1557     __ unsigned_shift_right(xor_shift_res,
  1558                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1559                             xor_shift_res,
  1560                             LIR_OprDesc::illegalOpr());
  1561   } else {
  1562     __ logical_xor(addr, new_val, xor_res);
  1563     __ unsigned_shift_right(xor_res,
  1564                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1565                             xor_shift_res,
  1566                             LIR_OprDesc::illegalOpr());
  1569   if (!new_val->is_register()) {
  1570     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1571     __ leal(new_val, new_val_reg);
  1572     new_val = new_val_reg;
  1574   assert(new_val->is_register(), "must be a register at this point");
  1576   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
  1578   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
  1579   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
  1580   __ branch_destination(slow->continuation());
  1583 #endif // INCLUDE_ALL_GCS
  1584 ////////////////////////////////////////////////////////////////////////
  1586 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1588   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
  1589   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
  1590   if (addr->is_address()) {
  1591     LIR_Address* address = addr->as_address_ptr();
  1592     // ptr cannot be an object because we use this barrier for array card marks
  1593     // and addr can point in the middle of an array.
  1594     LIR_Opr ptr = new_pointer_register();
  1595     if (!address->index()->is_valid() && address->disp() == 0) {
  1596       __ move(address->base(), ptr);
  1597     } else {
  1598       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1599       __ leal(addr, ptr);
  1601     addr = ptr;
  1603   assert(addr->is_register(), "must be a register at this point");
  1605 #ifdef ARM
  1606   // TODO: ARM - move to platform-dependent code
  1607   LIR_Opr tmp = FrameMap::R14_opr;
  1608   if (VM_Version::supports_movw()) {
  1609     __ move((LIR_Opr)card_table_base, tmp);
  1610   } else {
  1611     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
  1614   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
  1615   LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
  1616   if(((int)ct->byte_map_base & 0xff) == 0) {
  1617     __ move(tmp, card_addr);
  1618   } else {
  1619     LIR_Opr tmp_zero = new_register(T_INT);
  1620     __ move(LIR_OprFact::intConst(0), tmp_zero);
  1621     __ move(tmp_zero, card_addr);
  1623 #else // ARM
  1624   LIR_Opr tmp = new_pointer_register();
  1625   if (TwoOperandLIRForm) {
  1626     __ move(addr, tmp);
  1627     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
  1628   } else {
  1629     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
  1631   if (can_inline_as_constant(card_table_base)) {
  1632     __ move(LIR_OprFact::intConst(0),
  1633               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
  1634   } else {
  1635     __ move(LIR_OprFact::intConst(0),
  1636               new LIR_Address(tmp, load_constant(card_table_base),
  1637                               T_BYTE));
  1639 #endif // ARM
  1643 //------------------------field access--------------------------------------
  1645 // Comment copied form templateTable_i486.cpp
  1646 // ----------------------------------------------------------------------------
  1647 // Volatile variables demand their effects be made known to all CPU's in
  1648 // order.  Store buffers on most chips allow reads & writes to reorder; the
  1649 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  1650 // memory barrier (i.e., it's not sufficient that the interpreter does not
  1651 // reorder volatile references, the hardware also must not reorder them).
  1652 //
  1653 // According to the new Java Memory Model (JMM):
  1654 // (1) All volatiles are serialized wrt to each other.
  1655 // ALSO reads & writes act as aquire & release, so:
  1656 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  1657 // the read float up to before the read.  It's OK for non-volatile memory refs
  1658 // that happen before the volatile read to float down below it.
  1659 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  1660 // that happen BEFORE the write float down to after the write.  It's OK for
  1661 // non-volatile memory refs that happen after the volatile write to float up
  1662 // before it.
  1663 //
  1664 // We only put in barriers around volatile refs (they are expensive), not
  1665 // _between_ memory refs (that would require us to track the flavor of the
  1666 // previous memory refs).  Requirements (2) and (3) require some barriers
  1667 // before volatile stores and after volatile loads.  These nearly cover
  1668 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  1669 // case is placed after volatile-stores although it could just as well go
  1670 // before volatile-loads.
  1673 void LIRGenerator::do_StoreField(StoreField* x) {
  1674   bool needs_patching = x->needs_patching();
  1675   bool is_volatile = x->field()->is_volatile();
  1676   BasicType field_type = x->field_type();
  1677   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
  1679   CodeEmitInfo* info = NULL;
  1680   if (needs_patching) {
  1681     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1682     info = state_for(x, x->state_before());
  1683   } else if (x->needs_null_check()) {
  1684     NullCheck* nc = x->explicit_null_check();
  1685     if (nc == NULL) {
  1686       info = state_for(x);
  1687     } else {
  1688       info = state_for(nc);
  1693   LIRItem object(x->obj(), this);
  1694   LIRItem value(x->value(),  this);
  1696   object.load_item();
  1698   if (is_volatile || needs_patching) {
  1699     // load item if field is volatile (fewer special cases for volatiles)
  1700     // load item if field not initialized
  1701     // load item if field not constant
  1702     // because of code patching we cannot inline constants
  1703     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
  1704       value.load_byte_item();
  1705     } else  {
  1706       value.load_item();
  1708   } else {
  1709     value.load_for_store(field_type);
  1712   set_no_result(x);
  1714 #ifndef PRODUCT
  1715   if (PrintNotLoaded && needs_patching) {
  1716     tty->print_cr("   ###class not loaded at store_%s bci %d",
  1717                   x->is_static() ?  "static" : "field", x->printable_bci());
  1719 #endif
  1721   if (x->needs_null_check() &&
  1722       (needs_patching ||
  1723        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1724     // emit an explicit null check because the offset is too large
  1725     __ null_check(object.result(), new CodeEmitInfo(info));
  1728   LIR_Address* address;
  1729   if (needs_patching) {
  1730     // we need to patch the offset in the instruction so don't allow
  1731     // generate_address to try to be smart about emitting the -1.
  1732     // Otherwise the patching code won't know how to find the
  1733     // instruction to patch.
  1734     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1735   } else {
  1736     address = generate_address(object.result(), x->offset(), field_type);
  1739   if (is_volatile && os::is_MP()) {
  1740     __ membar_release();
  1743   if (is_oop) {
  1744     // Do the pre-write barrier, if any.
  1745     pre_barrier(LIR_OprFact::address(address),
  1746                 LIR_OprFact::illegalOpr /* pre_val */,
  1747                 true /* do_load*/,
  1748                 needs_patching,
  1749                 (info ? new CodeEmitInfo(info) : NULL));
  1752   if (is_volatile && !needs_patching) {
  1753     volatile_field_store(value.result(), address, info);
  1754   } else {
  1755     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1756     __ store(value.result(), address, info, patch_code);
  1759   if (is_oop) {
  1760     // Store to object so mark the card of the header
  1761     post_barrier(object.result(), value.result());
  1764   if (is_volatile && os::is_MP()) {
  1765     __ membar();
  1770 void LIRGenerator::do_LoadField(LoadField* x) {
  1771   bool needs_patching = x->needs_patching();
  1772   bool is_volatile = x->field()->is_volatile();
  1773   BasicType field_type = x->field_type();
  1775   CodeEmitInfo* info = NULL;
  1776   if (needs_patching) {
  1777     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1778     info = state_for(x, x->state_before());
  1779   } else if (x->needs_null_check()) {
  1780     NullCheck* nc = x->explicit_null_check();
  1781     if (nc == NULL) {
  1782       info = state_for(x);
  1783     } else {
  1784       info = state_for(nc);
  1788   LIRItem object(x->obj(), this);
  1790   object.load_item();
  1792 #ifndef PRODUCT
  1793   if (PrintNotLoaded && needs_patching) {
  1794     tty->print_cr("   ###class not loaded at load_%s bci %d",
  1795                   x->is_static() ?  "static" : "field", x->printable_bci());
  1797 #endif
  1799   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
  1800   if (x->needs_null_check() &&
  1801       (needs_patching ||
  1802        MacroAssembler::needs_explicit_null_check(x->offset()) ||
  1803        stress_deopt)) {
  1804     LIR_Opr obj = object.result();
  1805     if (stress_deopt) {
  1806       obj = new_register(T_OBJECT);
  1807       __ move(LIR_OprFact::oopConst(NULL), obj);
  1809     // emit an explicit null check because the offset is too large
  1810     __ null_check(obj, new CodeEmitInfo(info));
  1813   LIR_Opr reg = rlock_result(x, field_type);
  1814   LIR_Address* address;
  1815   if (needs_patching) {
  1816     // we need to patch the offset in the instruction so don't allow
  1817     // generate_address to try to be smart about emitting the -1.
  1818     // Otherwise the patching code won't know how to find the
  1819     // instruction to patch.
  1820     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1821   } else {
  1822     address = generate_address(object.result(), x->offset(), field_type);
  1825   if (is_volatile && !needs_patching) {
  1826     volatile_field_load(address, reg, info);
  1827   } else {
  1828     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1829     __ load(address, reg, info, patch_code);
  1832   if (is_volatile && os::is_MP()) {
  1833     __ membar_acquire();
  1838 //------------------------java.nio.Buffer.checkIndex------------------------
  1840 // int java.nio.Buffer.checkIndex(int)
  1841 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
  1842   // NOTE: by the time we are in checkIndex() we are guaranteed that
  1843   // the buffer is non-null (because checkIndex is package-private and
  1844   // only called from within other methods in the buffer).
  1845   assert(x->number_of_arguments() == 2, "wrong type");
  1846   LIRItem buf  (x->argument_at(0), this);
  1847   LIRItem index(x->argument_at(1), this);
  1848   buf.load_item();
  1849   index.load_item();
  1851   LIR_Opr result = rlock_result(x);
  1852   if (GenerateRangeChecks) {
  1853     CodeEmitInfo* info = state_for(x);
  1854     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
  1855     if (index.result()->is_constant()) {
  1856       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
  1857       __ branch(lir_cond_belowEqual, T_INT, stub);
  1858     } else {
  1859       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
  1860                   java_nio_Buffer::limit_offset(), T_INT, info);
  1861       __ branch(lir_cond_aboveEqual, T_INT, stub);
  1863     __ move(index.result(), result);
  1864   } else {
  1865     // Just load the index into the result register
  1866     __ move(index.result(), result);
  1871 //------------------------array access--------------------------------------
  1874 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
  1875   if (x->use_count() == 0 && !x->can_trap()) return;
  1877   LIRItem array(x->array(), this);
  1878   array.load_item();
  1879   LIR_Opr reg = rlock_result(x);
  1881   CodeEmitInfo* info = NULL;
  1882   if (x->needs_null_check()) {
  1883     NullCheck* nc = x->explicit_null_check();
  1884     if (nc == NULL) {
  1885       info = state_for(x);
  1886     } else {
  1887       info = state_for(nc);
  1889     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
  1890       LIR_Opr obj = new_register(T_OBJECT);
  1891       __ move(LIR_OprFact::oopConst(NULL), obj);
  1892       __ null_check(obj, new CodeEmitInfo(info));
  1895   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
  1899 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
  1900   bool use_length = x->length() != NULL;
  1901   LIRItem array(x->array(), this);
  1902   LIRItem index(x->index(), this);
  1903   LIRItem length(this);
  1904   bool needs_range_check = x->compute_needs_range_check();
  1906   if (use_length && needs_range_check) {
  1907     length.set_instruction(x->length());
  1908     length.load_item();
  1911   array.load_item();
  1912   if (index.is_constant() && can_inline_as_constant(x->index())) {
  1913     // let it be a constant
  1914     index.dont_load_item();
  1915   } else {
  1916     index.load_item();
  1919   CodeEmitInfo* range_check_info = state_for(x);
  1920   CodeEmitInfo* null_check_info = NULL;
  1921   if (x->needs_null_check()) {
  1922     NullCheck* nc = x->explicit_null_check();
  1923     if (nc != NULL) {
  1924       null_check_info = state_for(nc);
  1925     } else {
  1926       null_check_info = range_check_info;
  1928     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
  1929       LIR_Opr obj = new_register(T_OBJECT);
  1930       __ move(LIR_OprFact::oopConst(NULL), obj);
  1931       __ null_check(obj, new CodeEmitInfo(null_check_info));
  1935   // emit array address setup early so it schedules better
  1936   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
  1938   if (GenerateRangeChecks && needs_range_check) {
  1939     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
  1940       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
  1941     } else if (use_length) {
  1942       // TODO: use a (modified) version of array_range_check that does not require a
  1943       //       constant length to be loaded to a register
  1944       __ cmp(lir_cond_belowEqual, length.result(), index.result());
  1945       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
  1946     } else {
  1947       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
  1948       // The range check performs the null check, so clear it out for the load
  1949       null_check_info = NULL;
  1953   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
  1957 void LIRGenerator::do_NullCheck(NullCheck* x) {
  1958   if (x->can_trap()) {
  1959     LIRItem value(x->obj(), this);
  1960     value.load_item();
  1961     CodeEmitInfo* info = state_for(x);
  1962     __ null_check(value.result(), info);
  1967 void LIRGenerator::do_TypeCast(TypeCast* x) {
  1968   LIRItem value(x->obj(), this);
  1969   value.load_item();
  1970   // the result is the same as from the node we are casting
  1971   set_result(x, value.result());
  1975 void LIRGenerator::do_Throw(Throw* x) {
  1976   LIRItem exception(x->exception(), this);
  1977   exception.load_item();
  1978   set_no_result(x);
  1979   LIR_Opr exception_opr = exception.result();
  1980   CodeEmitInfo* info = state_for(x, x->state());
  1982 #ifndef PRODUCT
  1983   if (PrintC1Statistics) {
  1984     increment_counter(Runtime1::throw_count_address(), T_INT);
  1986 #endif
  1988   // check if the instruction has an xhandler in any of the nested scopes
  1989   bool unwind = false;
  1990   if (info->exception_handlers()->length() == 0) {
  1991     // this throw is not inside an xhandler
  1992     unwind = true;
  1993   } else {
  1994     // get some idea of the throw type
  1995     bool type_is_exact = true;
  1996     ciType* throw_type = x->exception()->exact_type();
  1997     if (throw_type == NULL) {
  1998       type_is_exact = false;
  1999       throw_type = x->exception()->declared_type();
  2001     if (throw_type != NULL && throw_type->is_instance_klass()) {
  2002       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
  2003       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
  2007   // do null check before moving exception oop into fixed register
  2008   // to avoid a fixed interval with an oop during the null check.
  2009   // Use a copy of the CodeEmitInfo because debug information is
  2010   // different for null_check and throw.
  2011   if (GenerateCompilerNullChecks &&
  2012       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
  2013     // if the exception object wasn't created using new then it might be null.
  2014     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
  2017   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
  2018     // we need to go through the exception lookup path to get JVMTI
  2019     // notification done
  2020     unwind = false;
  2023   // move exception oop into fixed register
  2024   __ move(exception_opr, exceptionOopOpr());
  2026   if (unwind) {
  2027     __ unwind_exception(exceptionOopOpr());
  2028   } else {
  2029     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
  2034 void LIRGenerator::do_RoundFP(RoundFP* x) {
  2035   LIRItem input(x->input(), this);
  2036   input.load_item();
  2037   LIR_Opr input_opr = input.result();
  2038   assert(input_opr->is_register(), "why round if value is not in a register?");
  2039   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
  2040   if (input_opr->is_single_fpu()) {
  2041     set_result(x, round_item(input_opr)); // This code path not currently taken
  2042   } else {
  2043     LIR_Opr result = new_register(T_DOUBLE);
  2044     set_vreg_flag(result, must_start_in_memory);
  2045     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
  2046     set_result(x, result);
  2050 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
  2051   LIRItem base(x->base(), this);
  2052   LIRItem idx(this);
  2054   base.load_item();
  2055   if (x->has_index()) {
  2056     idx.set_instruction(x->index());
  2057     idx.load_nonconstant();
  2060   LIR_Opr reg = rlock_result(x, x->basic_type());
  2062   int   log2_scale = 0;
  2063   if (x->has_index()) {
  2064     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
  2065     log2_scale = x->log2_scale();
  2068   assert(!x->has_index() || idx.value() == x->index(), "should match");
  2070   LIR_Opr base_op = base.result();
  2071 #ifndef _LP64
  2072   if (x->base()->type()->tag() == longTag) {
  2073     base_op = new_register(T_INT);
  2074     __ convert(Bytecodes::_l2i, base.result(), base_op);
  2075   } else {
  2076     assert(x->base()->type()->tag() == intTag, "must be");
  2078 #endif
  2080   BasicType dst_type = x->basic_type();
  2081   LIR_Opr index_op = idx.result();
  2083   LIR_Address* addr;
  2084   if (index_op->is_constant()) {
  2085     assert(log2_scale == 0, "must not have a scale");
  2086     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
  2087   } else {
  2088 #ifdef X86
  2089 #ifdef _LP64
  2090     if (!index_op->is_illegal() && index_op->type() == T_INT) {
  2091       LIR_Opr tmp = new_pointer_register();
  2092       __ convert(Bytecodes::_i2l, index_op, tmp);
  2093       index_op = tmp;
  2095 #endif
  2096     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
  2097 #elif defined(ARM)
  2098     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
  2099 #else
  2100     if (index_op->is_illegal() || log2_scale == 0) {
  2101 #ifdef _LP64
  2102       if (!index_op->is_illegal() && index_op->type() == T_INT) {
  2103         LIR_Opr tmp = new_pointer_register();
  2104         __ convert(Bytecodes::_i2l, index_op, tmp);
  2105         index_op = tmp;
  2107 #endif
  2108       addr = new LIR_Address(base_op, index_op, dst_type);
  2109     } else {
  2110       LIR_Opr tmp = new_pointer_register();
  2111       __ shift_left(index_op, log2_scale, tmp);
  2112       addr = new LIR_Address(base_op, tmp, dst_type);
  2114 #endif
  2117   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
  2118     __ unaligned_move(addr, reg);
  2119   } else {
  2120     if (dst_type == T_OBJECT && x->is_wide()) {
  2121       __ move_wide(addr, reg);
  2122     } else {
  2123       __ move(addr, reg);
  2129 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
  2130   int  log2_scale = 0;
  2131   BasicType type = x->basic_type();
  2133   if (x->has_index()) {
  2134     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
  2135     log2_scale = x->log2_scale();
  2138   LIRItem base(x->base(), this);
  2139   LIRItem value(x->value(), this);
  2140   LIRItem idx(this);
  2142   base.load_item();
  2143   if (x->has_index()) {
  2144     idx.set_instruction(x->index());
  2145     idx.load_item();
  2148   if (type == T_BYTE || type == T_BOOLEAN) {
  2149     value.load_byte_item();
  2150   } else {
  2151     value.load_item();
  2154   set_no_result(x);
  2156   LIR_Opr base_op = base.result();
  2157 #ifndef _LP64
  2158   if (x->base()->type()->tag() == longTag) {
  2159     base_op = new_register(T_INT);
  2160     __ convert(Bytecodes::_l2i, base.result(), base_op);
  2161   } else {
  2162     assert(x->base()->type()->tag() == intTag, "must be");
  2164 #endif
  2166   LIR_Opr index_op = idx.result();
  2167   if (log2_scale != 0) {
  2168     // temporary fix (platform dependent code without shift on Intel would be better)
  2169     index_op = new_pointer_register();
  2170 #ifdef _LP64
  2171     if(idx.result()->type() == T_INT) {
  2172       __ convert(Bytecodes::_i2l, idx.result(), index_op);
  2173     } else {
  2174 #endif
  2175       // TODO: ARM also allows embedded shift in the address
  2176       __ move(idx.result(), index_op);
  2177 #ifdef _LP64
  2179 #endif
  2180     __ shift_left(index_op, log2_scale, index_op);
  2182 #ifdef _LP64
  2183   else if(!index_op->is_illegal() && index_op->type() == T_INT) {
  2184     LIR_Opr tmp = new_pointer_register();
  2185     __ convert(Bytecodes::_i2l, index_op, tmp);
  2186     index_op = tmp;
  2188 #endif
  2190   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
  2191   __ move(value.result(), addr);
  2195 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
  2196   BasicType type = x->basic_type();
  2197   LIRItem src(x->object(), this);
  2198   LIRItem off(x->offset(), this);
  2200   off.load_item();
  2201   src.load_item();
  2203   LIR_Opr value = rlock_result(x, x->basic_type());
  2205   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
  2207 #if INCLUDE_ALL_GCS
  2208   // We might be reading the value of the referent field of a
  2209   // Reference object in order to attach it back to the live
  2210   // object graph. If G1 is enabled then we need to record
  2211   // the value that is being returned in an SATB log buffer.
  2212   //
  2213   // We need to generate code similar to the following...
  2214   //
  2215   // if (offset == java_lang_ref_Reference::referent_offset) {
  2216   //   if (src != NULL) {
  2217   //     if (klass(src)->reference_type() != REF_NONE) {
  2218   //       pre_barrier(..., value, ...);
  2219   //     }
  2220   //   }
  2221   // }
  2223   if (UseG1GC && type == T_OBJECT) {
  2224     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
  2225     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
  2226     bool gen_source_check = true;    // Assume we need to check the src object for null.
  2227     bool gen_type_check = true;      // Assume we need to check the reference_type.
  2229     if (off.is_constant()) {
  2230       jlong off_con = (off.type()->is_int() ?
  2231                         (jlong) off.get_jint_constant() :
  2232                         off.get_jlong_constant());
  2235       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
  2236         // The constant offset is something other than referent_offset.
  2237         // We can skip generating/checking the remaining guards and
  2238         // skip generation of the code stub.
  2239         gen_pre_barrier = false;
  2240       } else {
  2241         // The constant offset is the same as referent_offset -
  2242         // we do not need to generate a runtime offset check.
  2243         gen_offset_check = false;
  2247     // We don't need to generate stub if the source object is an array
  2248     if (gen_pre_barrier && src.type()->is_array()) {
  2249       gen_pre_barrier = false;
  2252     if (gen_pre_barrier) {
  2253       // We still need to continue with the checks.
  2254       if (src.is_constant()) {
  2255         ciObject* src_con = src.get_jobject_constant();
  2257         if (src_con->is_null_object()) {
  2258           // The constant src object is null - We can skip
  2259           // generating the code stub.
  2260           gen_pre_barrier = false;
  2261         } else {
  2262           // Non-null constant source object. We still have to generate
  2263           // the slow stub - but we don't need to generate the runtime
  2264           // null object check.
  2265           gen_source_check = false;
  2269     if (gen_pre_barrier && !PatchALot) {
  2270       // Can the klass of object be statically determined to be
  2271       // a sub-class of Reference?
  2272       ciType* type = src.value()->declared_type();
  2273       if ((type != NULL) && type->is_loaded()) {
  2274         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
  2275           gen_type_check = false;
  2276         } else if (type->is_klass() &&
  2277                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
  2278           // Not Reference and not Object klass.
  2279           gen_pre_barrier = false;
  2284     if (gen_pre_barrier) {
  2285       LabelObj* Lcont = new LabelObj();
  2287       // We can have generate one runtime check here. Let's start with
  2288       // the offset check.
  2289       if (gen_offset_check) {
  2290         // if (offset != referent_offset) -> continue
  2291         // If offset is an int then we can do the comparison with the
  2292         // referent_offset constant; otherwise we need to move
  2293         // referent_offset into a temporary register and generate
  2294         // a reg-reg compare.
  2296         LIR_Opr referent_off;
  2298         if (off.type()->is_int()) {
  2299           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
  2300         } else {
  2301           assert(off.type()->is_long(), "what else?");
  2302           referent_off = new_register(T_LONG);
  2303           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
  2305         __ cmp(lir_cond_notEqual, off.result(), referent_off);
  2306         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
  2308       if (gen_source_check) {
  2309         // offset is a const and equals referent offset
  2310         // if (source == null) -> continue
  2311         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
  2312         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
  2314       LIR_Opr src_klass = new_register(T_OBJECT);
  2315       if (gen_type_check) {
  2316         // We have determined that offset == referent_offset && src != null.
  2317         // if (src->_klass->_reference_type == REF_NONE) -> continue
  2318         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), UseCompressedKlassPointers ? T_OBJECT : T_ADDRESS), src_klass);
  2319         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
  2320         LIR_Opr reference_type = new_register(T_INT);
  2321         __ move(reference_type_addr, reference_type);
  2322         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
  2323         __ branch(lir_cond_equal, T_INT, Lcont->label());
  2326         // We have determined that src->_klass->_reference_type != REF_NONE
  2327         // so register the value in the referent field with the pre-barrier.
  2328         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
  2329                     value  /* pre_val */,
  2330                     false  /* do_load */,
  2331                     false  /* patch */,
  2332                     NULL   /* info */);
  2334       __ branch_destination(Lcont->label());
  2337 #endif // INCLUDE_ALL_GCS
  2339   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
  2343 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
  2344   BasicType type = x->basic_type();
  2345   LIRItem src(x->object(), this);
  2346   LIRItem off(x->offset(), this);
  2347   LIRItem data(x->value(), this);
  2349   src.load_item();
  2350   if (type == T_BOOLEAN || type == T_BYTE) {
  2351     data.load_byte_item();
  2352   } else {
  2353     data.load_item();
  2355   off.load_item();
  2357   set_no_result(x);
  2359   if (x->is_volatile() && os::is_MP()) __ membar_release();
  2360   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
  2361   if (x->is_volatile() && os::is_MP()) __ membar();
  2365 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
  2366   LIRItem src(x->object(), this);
  2367   LIRItem off(x->offset(), this);
  2369   src.load_item();
  2370   if (off.is_constant() && can_inline_as_constant(x->offset())) {
  2371     // let it be a constant
  2372     off.dont_load_item();
  2373   } else {
  2374     off.load_item();
  2377   set_no_result(x);
  2379   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
  2380   __ prefetch(addr, is_store);
  2384 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
  2385   do_UnsafePrefetch(x, false);
  2389 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
  2390   do_UnsafePrefetch(x, true);
  2394 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
  2395   int lng = x->length();
  2397   for (int i = 0; i < lng; i++) {
  2398     SwitchRange* one_range = x->at(i);
  2399     int low_key = one_range->low_key();
  2400     int high_key = one_range->high_key();
  2401     BlockBegin* dest = one_range->sux();
  2402     if (low_key == high_key) {
  2403       __ cmp(lir_cond_equal, value, low_key);
  2404       __ branch(lir_cond_equal, T_INT, dest);
  2405     } else if (high_key - low_key == 1) {
  2406       __ cmp(lir_cond_equal, value, low_key);
  2407       __ branch(lir_cond_equal, T_INT, dest);
  2408       __ cmp(lir_cond_equal, value, high_key);
  2409       __ branch(lir_cond_equal, T_INT, dest);
  2410     } else {
  2411       LabelObj* L = new LabelObj();
  2412       __ cmp(lir_cond_less, value, low_key);
  2413       __ branch(lir_cond_less, T_INT, L->label());
  2414       __ cmp(lir_cond_lessEqual, value, high_key);
  2415       __ branch(lir_cond_lessEqual, T_INT, dest);
  2416       __ branch_destination(L->label());
  2419   __ jump(default_sux);
  2423 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
  2424   SwitchRangeList* res = new SwitchRangeList();
  2425   int len = x->length();
  2426   if (len > 0) {
  2427     BlockBegin* sux = x->sux_at(0);
  2428     int key = x->lo_key();
  2429     BlockBegin* default_sux = x->default_sux();
  2430     SwitchRange* range = new SwitchRange(key, sux);
  2431     for (int i = 0; i < len; i++, key++) {
  2432       BlockBegin* new_sux = x->sux_at(i);
  2433       if (sux == new_sux) {
  2434         // still in same range
  2435         range->set_high_key(key);
  2436       } else {
  2437         // skip tests which explicitly dispatch to the default
  2438         if (sux != default_sux) {
  2439           res->append(range);
  2441         range = new SwitchRange(key, new_sux);
  2443       sux = new_sux;
  2445     if (res->length() == 0 || res->last() != range)  res->append(range);
  2447   return res;
  2451 // we expect the keys to be sorted by increasing value
  2452 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
  2453   SwitchRangeList* res = new SwitchRangeList();
  2454   int len = x->length();
  2455   if (len > 0) {
  2456     BlockBegin* default_sux = x->default_sux();
  2457     int key = x->key_at(0);
  2458     BlockBegin* sux = x->sux_at(0);
  2459     SwitchRange* range = new SwitchRange(key, sux);
  2460     for (int i = 1; i < len; i++) {
  2461       int new_key = x->key_at(i);
  2462       BlockBegin* new_sux = x->sux_at(i);
  2463       if (key+1 == new_key && sux == new_sux) {
  2464         // still in same range
  2465         range->set_high_key(new_key);
  2466       } else {
  2467         // skip tests which explicitly dispatch to the default
  2468         if (range->sux() != default_sux) {
  2469           res->append(range);
  2471         range = new SwitchRange(new_key, new_sux);
  2473       key = new_key;
  2474       sux = new_sux;
  2476     if (res->length() == 0 || res->last() != range)  res->append(range);
  2478   return res;
  2482 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
  2483   LIRItem tag(x->tag(), this);
  2484   tag.load_item();
  2485   set_no_result(x);
  2487   if (x->is_safepoint()) {
  2488     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2491   // move values into phi locations
  2492   move_to_phi(x->state());
  2494   int lo_key = x->lo_key();
  2495   int hi_key = x->hi_key();
  2496   int len = x->length();
  2497   LIR_Opr value = tag.result();
  2498   if (UseTableRanges) {
  2499     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2500   } else {
  2501     for (int i = 0; i < len; i++) {
  2502       __ cmp(lir_cond_equal, value, i + lo_key);
  2503       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2505     __ jump(x->default_sux());
  2510 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
  2511   LIRItem tag(x->tag(), this);
  2512   tag.load_item();
  2513   set_no_result(x);
  2515   if (x->is_safepoint()) {
  2516     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2519   // move values into phi locations
  2520   move_to_phi(x->state());
  2522   LIR_Opr value = tag.result();
  2523   if (UseTableRanges) {
  2524     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2525   } else {
  2526     int len = x->length();
  2527     for (int i = 0; i < len; i++) {
  2528       __ cmp(lir_cond_equal, value, x->key_at(i));
  2529       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2531     __ jump(x->default_sux());
  2536 void LIRGenerator::do_Goto(Goto* x) {
  2537   set_no_result(x);
  2539   if (block()->next()->as_OsrEntry()) {
  2540     // need to free up storage used for OSR entry point
  2541     LIR_Opr osrBuffer = block()->next()->operand();
  2542     BasicTypeList signature;
  2543     signature.append(T_INT);
  2544     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
  2545     __ move(osrBuffer, cc->args()->at(0));
  2546     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
  2547                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
  2550   if (x->is_safepoint()) {
  2551     ValueStack* state = x->state_before() ? x->state_before() : x->state();
  2553     // increment backedge counter if needed
  2554     CodeEmitInfo* info = state_for(x, state);
  2555     increment_backedge_counter(info, x->profiled_bci());
  2556     CodeEmitInfo* safepoint_info = state_for(x, state);
  2557     __ safepoint(safepoint_poll_register(), safepoint_info);
  2560   // Gotos can be folded Ifs, handle this case.
  2561   if (x->should_profile()) {
  2562     ciMethod* method = x->profiled_method();
  2563     assert(method != NULL, "method should be set if branch is profiled");
  2564     ciMethodData* md = method->method_data_or_null();
  2565     assert(md != NULL, "Sanity");
  2566     ciProfileData* data = md->bci_to_data(x->profiled_bci());
  2567     assert(data != NULL, "must have profiling data");
  2568     int offset;
  2569     if (x->direction() == Goto::taken) {
  2570       assert(data->is_BranchData(), "need BranchData for two-way branches");
  2571       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
  2572     } else if (x->direction() == Goto::not_taken) {
  2573       assert(data->is_BranchData(), "need BranchData for two-way branches");
  2574       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
  2575     } else {
  2576       assert(data->is_JumpData(), "need JumpData for branches");
  2577       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
  2579     LIR_Opr md_reg = new_register(T_METADATA);
  2580     __ metadata2reg(md->constant_encoding(), md_reg);
  2582     increment_counter(new LIR_Address(md_reg, offset,
  2583                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
  2586   // emit phi-instruction move after safepoint since this simplifies
  2587   // describing the state as the safepoint.
  2588   move_to_phi(x->state());
  2590   __ jump(x->default_sux());
  2594 void LIRGenerator::do_Base(Base* x) {
  2595   __ std_entry(LIR_OprFact::illegalOpr);
  2596   // Emit moves from physical registers / stack slots to virtual registers
  2597   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  2598   IRScope* irScope = compilation()->hir()->top_scope();
  2599   int java_index = 0;
  2600   for (int i = 0; i < args->length(); i++) {
  2601     LIR_Opr src = args->at(i);
  2602     assert(!src->is_illegal(), "check");
  2603     BasicType t = src->type();
  2605     // Types which are smaller than int are passed as int, so
  2606     // correct the type which passed.
  2607     switch (t) {
  2608     case T_BYTE:
  2609     case T_BOOLEAN:
  2610     case T_SHORT:
  2611     case T_CHAR:
  2612       t = T_INT;
  2613       break;
  2616     LIR_Opr dest = new_register(t);
  2617     __ move(src, dest);
  2619     // Assign new location to Local instruction for this local
  2620     Local* local = x->state()->local_at(java_index)->as_Local();
  2621     assert(local != NULL, "Locals for incoming arguments must have been created");
  2622 #ifndef __SOFTFP__
  2623     // The java calling convention passes double as long and float as int.
  2624     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
  2625 #endif // __SOFTFP__
  2626     local->set_operand(dest);
  2627     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
  2628     java_index += type2size[t];
  2631   if (compilation()->env()->dtrace_method_probes()) {
  2632     BasicTypeList signature;
  2633     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  2634     signature.append(T_OBJECT); // Method*
  2635     LIR_OprList* args = new LIR_OprList();
  2636     args->append(getThreadPointer());
  2637     LIR_Opr meth = new_register(T_METADATA);
  2638     __ metadata2reg(method()->constant_encoding(), meth);
  2639     args->append(meth);
  2640     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
  2643   if (method()->is_synchronized()) {
  2644     LIR_Opr obj;
  2645     if (method()->is_static()) {
  2646       obj = new_register(T_OBJECT);
  2647       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
  2648     } else {
  2649       Local* receiver = x->state()->local_at(0)->as_Local();
  2650       assert(receiver != NULL, "must already exist");
  2651       obj = receiver->operand();
  2653     assert(obj->is_valid(), "must be valid");
  2655     if (method()->is_synchronized() && GenerateSynchronizationCode) {
  2656       LIR_Opr lock = new_register(T_INT);
  2657       __ load_stack_address_monitor(0, lock);
  2659       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
  2660       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
  2662       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
  2663       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
  2667   // increment invocation counters if needed
  2668   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
  2669     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
  2670     increment_invocation_counter(info);
  2673   // all blocks with a successor must end with an unconditional jump
  2674   // to the successor even if they are consecutive
  2675   __ jump(x->default_sux());
  2679 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
  2680   // construct our frame and model the production of incoming pointer
  2681   // to the OSR buffer.
  2682   __ osr_entry(LIR_Assembler::osrBufferPointer());
  2683   LIR_Opr result = rlock_result(x);
  2684   __ move(LIR_Assembler::osrBufferPointer(), result);
  2688 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
  2689   assert(args->length() == arg_list->length(),
  2690          err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
  2691   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
  2692     LIRItem* param = args->at(i);
  2693     LIR_Opr loc = arg_list->at(i);
  2694     if (loc->is_register()) {
  2695       param->load_item_force(loc);
  2696     } else {
  2697       LIR_Address* addr = loc->as_address_ptr();
  2698       param->load_for_store(addr->type());
  2699       if (addr->type() == T_OBJECT) {
  2700         __ move_wide(param->result(), addr);
  2701       } else
  2702         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  2703           __ unaligned_move(param->result(), addr);
  2704         } else {
  2705           __ move(param->result(), addr);
  2710   if (x->has_receiver()) {
  2711     LIRItem* receiver = args->at(0);
  2712     LIR_Opr loc = arg_list->at(0);
  2713     if (loc->is_register()) {
  2714       receiver->load_item_force(loc);
  2715     } else {
  2716       assert(loc->is_address(), "just checking");
  2717       receiver->load_for_store(T_OBJECT);
  2718       __ move_wide(receiver->result(), loc->as_address_ptr());
  2724 // Visits all arguments, returns appropriate items without loading them
  2725 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
  2726   LIRItemList* argument_items = new LIRItemList();
  2727   if (x->has_receiver()) {
  2728     LIRItem* receiver = new LIRItem(x->receiver(), this);
  2729     argument_items->append(receiver);
  2731   for (int i = 0; i < x->number_of_arguments(); i++) {
  2732     LIRItem* param = new LIRItem(x->argument_at(i), this);
  2733     argument_items->append(param);
  2735   return argument_items;
  2739 // The invoke with receiver has following phases:
  2740 //   a) traverse and load/lock receiver;
  2741 //   b) traverse all arguments -> item-array (invoke_visit_argument)
  2742 //   c) push receiver on stack
  2743 //   d) load each of the items and push on stack
  2744 //   e) unlock receiver
  2745 //   f) move receiver into receiver-register %o0
  2746 //   g) lock result registers and emit call operation
  2747 //
  2748 // Before issuing a call, we must spill-save all values on stack
  2749 // that are in caller-save register. "spill-save" moves thos registers
  2750 // either in a free callee-save register or spills them if no free
  2751 // callee save register is available.
  2752 //
  2753 // The problem is where to invoke spill-save.
  2754 // - if invoked between e) and f), we may lock callee save
  2755 //   register in "spill-save" that destroys the receiver register
  2756 //   before f) is executed
  2757 // - if we rearange the f) to be earlier, by loading %o0, it
  2758 //   may destroy a value on the stack that is currently in %o0
  2759 //   and is waiting to be spilled
  2760 // - if we keep the receiver locked while doing spill-save,
  2761 //   we cannot spill it as it is spill-locked
  2762 //
  2763 void LIRGenerator::do_Invoke(Invoke* x) {
  2764   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
  2766   LIR_OprList* arg_list = cc->args();
  2767   LIRItemList* args = invoke_visit_arguments(x);
  2768   LIR_Opr receiver = LIR_OprFact::illegalOpr;
  2770   // setup result register
  2771   LIR_Opr result_register = LIR_OprFact::illegalOpr;
  2772   if (x->type() != voidType) {
  2773     result_register = result_register_for(x->type());
  2776   CodeEmitInfo* info = state_for(x, x->state());
  2778   invoke_load_arguments(x, args, arg_list);
  2780   if (x->has_receiver()) {
  2781     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
  2782     receiver = args->at(0)->result();
  2785   // emit invoke code
  2786   bool optimized = x->target_is_loaded() && x->target_is_final();
  2787   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
  2789   // JSR 292
  2790   // Preserve the SP over MethodHandle call sites.
  2791   ciMethod* target = x->target();
  2792   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
  2793                                   target->is_method_handle_intrinsic() ||
  2794                                   target->is_compiled_lambda_form());
  2795   if (is_method_handle_invoke) {
  2796     info->set_is_method_handle_invoke(true);
  2797     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
  2800   switch (x->code()) {
  2801     case Bytecodes::_invokestatic:
  2802       __ call_static(target, result_register,
  2803                      SharedRuntime::get_resolve_static_call_stub(),
  2804                      arg_list, info);
  2805       break;
  2806     case Bytecodes::_invokespecial:
  2807     case Bytecodes::_invokevirtual:
  2808     case Bytecodes::_invokeinterface:
  2809       // for final target we still produce an inline cache, in order
  2810       // to be able to call mixed mode
  2811       if (x->code() == Bytecodes::_invokespecial || optimized) {
  2812         __ call_opt_virtual(target, receiver, result_register,
  2813                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
  2814                             arg_list, info);
  2815       } else if (x->vtable_index() < 0) {
  2816         __ call_icvirtual(target, receiver, result_register,
  2817                           SharedRuntime::get_resolve_virtual_call_stub(),
  2818                           arg_list, info);
  2819       } else {
  2820         int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
  2821         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
  2822         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
  2824       break;
  2825     case Bytecodes::_invokedynamic: {
  2826       __ call_dynamic(target, receiver, result_register,
  2827                       SharedRuntime::get_resolve_static_call_stub(),
  2828                       arg_list, info);
  2829       break;
  2831     default:
  2832       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
  2833       break;
  2836   // JSR 292
  2837   // Restore the SP after MethodHandle call sites.
  2838   if (is_method_handle_invoke) {
  2839     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
  2842   if (x->type()->is_float() || x->type()->is_double()) {
  2843     // Force rounding of results from non-strictfp when in strictfp
  2844     // scope (or when we don't know the strictness of the callee, to
  2845     // be safe.)
  2846     if (method()->is_strict()) {
  2847       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
  2848         result_register = round_item(result_register);
  2853   if (result_register->is_valid()) {
  2854     LIR_Opr result = rlock_result(x);
  2855     __ move(result_register, result);
  2860 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
  2861   assert(x->number_of_arguments() == 1, "wrong type");
  2862   LIRItem value       (x->argument_at(0), this);
  2863   LIR_Opr reg = rlock_result(x);
  2864   value.load_item();
  2865   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
  2866   __ move(tmp, reg);
  2871 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
  2872 void LIRGenerator::do_IfOp(IfOp* x) {
  2873 #ifdef ASSERT
  2875     ValueTag xtag = x->x()->type()->tag();
  2876     ValueTag ttag = x->tval()->type()->tag();
  2877     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
  2878     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
  2879     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
  2881 #endif
  2883   LIRItem left(x->x(), this);
  2884   LIRItem right(x->y(), this);
  2885   left.load_item();
  2886   if (can_inline_as_constant(right.value())) {
  2887     right.dont_load_item();
  2888   } else {
  2889     right.load_item();
  2892   LIRItem t_val(x->tval(), this);
  2893   LIRItem f_val(x->fval(), this);
  2894   t_val.dont_load_item();
  2895   f_val.dont_load_item();
  2896   LIR_Opr reg = rlock_result(x);
  2898   __ cmp(lir_cond(x->cond()), left.result(), right.result());
  2899   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
  2902 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
  2903     assert(x->number_of_arguments() == expected_arguments, "wrong type");
  2904     LIR_Opr reg = result_register_for(x->type());
  2905     __ call_runtime_leaf(routine, getThreadTemp(),
  2906                          reg, new LIR_OprList());
  2907     LIR_Opr result = rlock_result(x);
  2908     __ move(reg, result);
  2911 #ifdef TRACE_HAVE_INTRINSICS
  2912 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
  2913     LIR_Opr thread = getThreadPointer();
  2914     LIR_Opr osthread = new_pointer_register();
  2915     __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
  2916     size_t thread_id_size = OSThread::thread_id_size();
  2917     if (thread_id_size == (size_t) BytesPerLong) {
  2918       LIR_Opr id = new_register(T_LONG);
  2919       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
  2920       __ convert(Bytecodes::_l2i, id, rlock_result(x));
  2921     } else if (thread_id_size == (size_t) BytesPerInt) {
  2922       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
  2923     } else {
  2924       ShouldNotReachHere();
  2928 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
  2929     CodeEmitInfo* info = state_for(x);
  2930     CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
  2931     BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
  2932     assert(info != NULL, "must have info");
  2933     LIRItem arg(x->argument_at(1), this);
  2934     arg.load_item();
  2935     LIR_Opr klass = new_pointer_register();
  2936     __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
  2937     LIR_Opr id = new_register(T_LONG);
  2938     ByteSize offset = TRACE_ID_OFFSET;
  2939     LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
  2940     __ move(trace_id_addr, id);
  2941     __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
  2942     __ store(id, trace_id_addr);
  2943     __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
  2944     __ move(id, rlock_result(x));
  2946 #endif
  2948 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
  2949   switch (x->id()) {
  2950   case vmIntrinsics::_intBitsToFloat      :
  2951   case vmIntrinsics::_doubleToRawLongBits :
  2952   case vmIntrinsics::_longBitsToDouble    :
  2953   case vmIntrinsics::_floatToRawIntBits   : {
  2954     do_FPIntrinsics(x);
  2955     break;
  2958 #ifdef TRACE_HAVE_INTRINSICS
  2959   case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
  2960   case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
  2961   case vmIntrinsics::_counterTime:
  2962     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
  2963     break;
  2964 #endif
  2966   case vmIntrinsics::_currentTimeMillis:
  2967     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
  2968     break;
  2970   case vmIntrinsics::_nanoTime:
  2971     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
  2972     break;
  2974   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
  2975   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
  2976   case vmIntrinsics::_getClass:       do_getClass(x);      break;
  2977   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
  2979   case vmIntrinsics::_dlog:           // fall through
  2980   case vmIntrinsics::_dlog10:         // fall through
  2981   case vmIntrinsics::_dabs:           // fall through
  2982   case vmIntrinsics::_dsqrt:          // fall through
  2983   case vmIntrinsics::_dtan:           // fall through
  2984   case vmIntrinsics::_dsin :          // fall through
  2985   case vmIntrinsics::_dcos :          // fall through
  2986   case vmIntrinsics::_dexp :          // fall through
  2987   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
  2988   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
  2990   // java.nio.Buffer.checkIndex
  2991   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
  2993   case vmIntrinsics::_compareAndSwapObject:
  2994     do_CompareAndSwap(x, objectType);
  2995     break;
  2996   case vmIntrinsics::_compareAndSwapInt:
  2997     do_CompareAndSwap(x, intType);
  2998     break;
  2999   case vmIntrinsics::_compareAndSwapLong:
  3000     do_CompareAndSwap(x, longType);
  3001     break;
  3003   case vmIntrinsics::_loadFence :
  3004     if (os::is_MP()) __ membar_acquire();
  3005     break;
  3006   case vmIntrinsics::_storeFence:
  3007     if (os::is_MP()) __ membar_release();
  3008     break;
  3009   case vmIntrinsics::_fullFence :
  3010     if (os::is_MP()) __ membar();
  3011     break;
  3013   case vmIntrinsics::_Reference_get:
  3014     do_Reference_get(x);
  3015     break;
  3017   default: ShouldNotReachHere(); break;
  3021 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
  3022   // Need recv in a temporary register so it interferes with the other temporaries
  3023   LIR_Opr recv = LIR_OprFact::illegalOpr;
  3024   LIR_Opr mdo = new_register(T_OBJECT);
  3025   // tmp is used to hold the counters on SPARC
  3026   LIR_Opr tmp = new_pointer_register();
  3027   if (x->recv() != NULL) {
  3028     LIRItem value(x->recv(), this);
  3029     value.load_item();
  3030     recv = new_register(T_OBJECT);
  3031     __ move(value.result(), recv);
  3033   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
  3036 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
  3037   // We can safely ignore accessors here, since c2 will inline them anyway,
  3038   // accessors are also always mature.
  3039   if (!x->inlinee()->is_accessor()) {
  3040     CodeEmitInfo* info = state_for(x, x->state(), true);
  3041     // Notify the runtime very infrequently only to take care of counter overflows
  3042     increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
  3046 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
  3047   int freq_log;
  3048   int level = compilation()->env()->comp_level();
  3049   if (level == CompLevel_limited_profile) {
  3050     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
  3051   } else if (level == CompLevel_full_profile) {
  3052     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
  3053   } else {
  3054     ShouldNotReachHere();
  3056   // Increment the appropriate invocation/backedge counter and notify the runtime.
  3057   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
  3060 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
  3061                                                 ciMethod *method, int frequency,
  3062                                                 int bci, bool backedge, bool notify) {
  3063   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
  3064   int level = _compilation->env()->comp_level();
  3065   assert(level > CompLevel_simple, "Shouldn't be here");
  3067   int offset = -1;
  3068   LIR_Opr counter_holder = new_register(T_METADATA);
  3069   LIR_Opr meth;
  3070   if (level == CompLevel_limited_profile) {
  3071     offset = in_bytes(backedge ? Method::backedge_counter_offset() :
  3072                                  Method::invocation_counter_offset());
  3073     __ metadata2reg(method->constant_encoding(), counter_holder);
  3074     meth = counter_holder;
  3075   } else if (level == CompLevel_full_profile) {
  3076     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
  3077                                  MethodData::invocation_counter_offset());
  3078     ciMethodData* md = method->method_data_or_null();
  3079     assert(md != NULL, "Sanity");
  3080     __ metadata2reg(md->constant_encoding(), counter_holder);
  3081     meth = new_register(T_METADATA);
  3082     __ metadata2reg(method->constant_encoding(), meth);
  3083   } else {
  3084     ShouldNotReachHere();
  3086   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
  3087   LIR_Opr result = new_register(T_INT);
  3088   __ load(counter, result);
  3089   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
  3090   __ store(result, counter);
  3091   if (notify) {
  3092     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
  3093     __ logical_and(result, mask, result);
  3094     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
  3095     // The bci for info can point to cmp for if's we want the if bci
  3096     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
  3097     __ branch(lir_cond_equal, T_INT, overflow);
  3098     __ branch_destination(overflow->continuation());
  3102 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
  3103   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
  3104   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
  3106   if (x->pass_thread()) {
  3107     signature->append(T_ADDRESS);
  3108     args->append(getThreadPointer());
  3111   for (int i = 0; i < x->number_of_arguments(); i++) {
  3112     Value a = x->argument_at(i);
  3113     LIRItem* item = new LIRItem(a, this);
  3114     item->load_item();
  3115     args->append(item->result());
  3116     signature->append(as_BasicType(a->type()));
  3119   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
  3120   if (x->type() == voidType) {
  3121     set_no_result(x);
  3122   } else {
  3123     __ move(result, rlock_result(x));
  3127 void LIRGenerator::do_Assert(Assert *x) {
  3128 #ifdef ASSERT
  3129   ValueTag tag = x->x()->type()->tag();
  3130   If::Condition cond = x->cond();
  3132   LIRItem xitem(x->x(), this);
  3133   LIRItem yitem(x->y(), this);
  3134   LIRItem* xin = &xitem;
  3135   LIRItem* yin = &yitem;
  3137   assert(tag == intTag, "Only integer assertions are valid!");
  3139   xin->load_item();
  3140   yin->dont_load_item();
  3142   set_no_result(x);
  3144   LIR_Opr left = xin->result();
  3145   LIR_Opr right = yin->result();
  3147   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
  3148 #endif
  3152 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
  3155   Instruction *a = x->x();
  3156   Instruction *b = x->y();
  3157   if (!a || StressRangeCheckElimination) {
  3158     assert(!b || StressRangeCheckElimination, "B must also be null");
  3160     CodeEmitInfo *info = state_for(x, x->state());
  3161     CodeStub* stub = new PredicateFailedStub(info);
  3163     __ jump(stub);
  3164   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
  3165     int a_int = a->type()->as_IntConstant()->value();
  3166     int b_int = b->type()->as_IntConstant()->value();
  3168     bool ok = false;
  3170     switch(x->cond()) {
  3171       case Instruction::eql: ok = (a_int == b_int); break;
  3172       case Instruction::neq: ok = (a_int != b_int); break;
  3173       case Instruction::lss: ok = (a_int < b_int); break;
  3174       case Instruction::leq: ok = (a_int <= b_int); break;
  3175       case Instruction::gtr: ok = (a_int > b_int); break;
  3176       case Instruction::geq: ok = (a_int >= b_int); break;
  3177       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
  3178       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
  3179       default: ShouldNotReachHere();
  3182     if (ok) {
  3184       CodeEmitInfo *info = state_for(x, x->state());
  3185       CodeStub* stub = new PredicateFailedStub(info);
  3187       __ jump(stub);
  3189   } else {
  3191     ValueTag tag = x->x()->type()->tag();
  3192     If::Condition cond = x->cond();
  3193     LIRItem xitem(x->x(), this);
  3194     LIRItem yitem(x->y(), this);
  3195     LIRItem* xin = &xitem;
  3196     LIRItem* yin = &yitem;
  3198     assert(tag == intTag, "Only integer deoptimizations are valid!");
  3200     xin->load_item();
  3201     yin->dont_load_item();
  3202     set_no_result(x);
  3204     LIR_Opr left = xin->result();
  3205     LIR_Opr right = yin->result();
  3207     CodeEmitInfo *info = state_for(x, x->state());
  3208     CodeStub* stub = new PredicateFailedStub(info);
  3210     __ cmp(lir_cond(cond), left, right);
  3211     __ branch(lir_cond(cond), right->type(), stub);
  3216 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
  3217   LIRItemList args(1);
  3218   LIRItem value(arg1, this);
  3219   args.append(&value);
  3220   BasicTypeList signature;
  3221   signature.append(as_BasicType(arg1->type()));
  3223   return call_runtime(&signature, &args, entry, result_type, info);
  3227 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
  3228   LIRItemList args(2);
  3229   LIRItem value1(arg1, this);
  3230   LIRItem value2(arg2, this);
  3231   args.append(&value1);
  3232   args.append(&value2);
  3233   BasicTypeList signature;
  3234   signature.append(as_BasicType(arg1->type()));
  3235   signature.append(as_BasicType(arg2->type()));
  3237   return call_runtime(&signature, &args, entry, result_type, info);
  3241 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
  3242                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  3243   // get a result register
  3244   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  3245   LIR_Opr result = LIR_OprFact::illegalOpr;
  3246   if (result_type->tag() != voidTag) {
  3247     result = new_register(result_type);
  3248     phys_reg = result_register_for(result_type);
  3251   // move the arguments into the correct location
  3252   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  3253   assert(cc->length() == args->length(), "argument mismatch");
  3254   for (int i = 0; i < args->length(); i++) {
  3255     LIR_Opr arg = args->at(i);
  3256     LIR_Opr loc = cc->at(i);
  3257     if (loc->is_register()) {
  3258       __ move(arg, loc);
  3259     } else {
  3260       LIR_Address* addr = loc->as_address_ptr();
  3261 //           if (!can_store_as_constant(arg)) {
  3262 //             LIR_Opr tmp = new_register(arg->type());
  3263 //             __ move(arg, tmp);
  3264 //             arg = tmp;
  3265 //           }
  3266       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  3267         __ unaligned_move(arg, addr);
  3268       } else {
  3269         __ move(arg, addr);
  3274   if (info) {
  3275     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  3276   } else {
  3277     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  3279   if (result->is_valid()) {
  3280     __ move(phys_reg, result);
  3282   return result;
  3286 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
  3287                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  3288   // get a result register
  3289   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  3290   LIR_Opr result = LIR_OprFact::illegalOpr;
  3291   if (result_type->tag() != voidTag) {
  3292     result = new_register(result_type);
  3293     phys_reg = result_register_for(result_type);
  3296   // move the arguments into the correct location
  3297   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  3299   assert(cc->length() == args->length(), "argument mismatch");
  3300   for (int i = 0; i < args->length(); i++) {
  3301     LIRItem* arg = args->at(i);
  3302     LIR_Opr loc = cc->at(i);
  3303     if (loc->is_register()) {
  3304       arg->load_item_force(loc);
  3305     } else {
  3306       LIR_Address* addr = loc->as_address_ptr();
  3307       arg->load_for_store(addr->type());
  3308       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  3309         __ unaligned_move(arg->result(), addr);
  3310       } else {
  3311         __ move(arg->result(), addr);
  3316   if (info) {
  3317     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  3318   } else {
  3319     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  3321   if (result->is_valid()) {
  3322     __ move(phys_reg, result);
  3324   return result;
  3327 void LIRGenerator::do_MemBar(MemBar* x) {
  3328   if (os::is_MP()) {
  3329     LIR_Code code = x->code();
  3330     switch(code) {
  3331       case lir_membar_acquire   : __ membar_acquire(); break;
  3332       case lir_membar_release   : __ membar_release(); break;
  3333       case lir_membar           : __ membar(); break;
  3334       case lir_membar_loadload  : __ membar_loadload(); break;
  3335       case lir_membar_storestore: __ membar_storestore(); break;
  3336       case lir_membar_loadstore : __ membar_loadstore(); break;
  3337       case lir_membar_storeload : __ membar_storeload(); break;
  3338       default                   : ShouldNotReachHere(); break;

mercurial