src/cpu/x86/vm/templateTable_x86_32.cpp

Wed, 23 Jan 2013 13:02:39 -0500

author
jprovino
date
Wed, 23 Jan 2013 13:02:39 -0500
changeset 4542
db9981fd3124
parent 4318
cd3d6a6b95d9
child 4936
aeaca88565e6
permissions
-rw-r--r--

8005915: Unify SERIALGC and INCLUDE_ALTERNATE_GCS
Summary: Rename INCLUDE_ALTERNATE_GCS to INCLUDE_ALL_GCS and replace SERIALGC with INCLUDE_ALL_GCS.
Reviewed-by: coleenp, stefank

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "interpreter/interpreter.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "interpreter/templateTable.hpp"
    30 #include "memory/universe.inline.hpp"
    31 #include "oops/methodData.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/sharedRuntime.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "runtime/synchronizer.hpp"
    38 #include "utilities/macros.hpp"
    40 #ifndef CC_INTERP
    41 #define __ _masm->
    43 //----------------------------------------------------------------------------------------------------
    44 // Platform-dependent initialization
    46 void TemplateTable::pd_initialize() {
    47   // No i486 specific initialization
    48 }
    50 //----------------------------------------------------------------------------------------------------
    51 // Address computation
    53 // local variables
    54 static inline Address iaddress(int n)            {
    55   return Address(rdi, Interpreter::local_offset_in_bytes(n));
    56 }
    58 static inline Address laddress(int n)            { return iaddress(n + 1); }
    59 static inline Address haddress(int n)            { return iaddress(n + 0); }
    60 static inline Address faddress(int n)            { return iaddress(n); }
    61 static inline Address daddress(int n)            { return laddress(n); }
    62 static inline Address aaddress(int n)            { return iaddress(n); }
    64 static inline Address iaddress(Register r)       {
    65   return Address(rdi, r, Interpreter::stackElementScale());
    66 }
    67 static inline Address laddress(Register r)       {
    68   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1));
    69 }
    70 static inline Address haddress(Register r)       {
    71   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
    72 }
    74 static inline Address faddress(Register r)       { return iaddress(r); }
    75 static inline Address daddress(Register r)       { return laddress(r); }
    76 static inline Address aaddress(Register r)       { return iaddress(r); }
    78 // expression stack
    79 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
    80 // data beyond the rsp which is potentially unsafe in an MT environment;
    81 // an interrupt may overwrite that data.)
    82 static inline Address at_rsp   () {
    83   return Address(rsp, 0);
    84 }
    86 // At top of Java expression stack which may be different than rsp().  It
    87 // isn't for category 1 objects.
    88 static inline Address at_tos   () {
    89   Address tos = Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    90   return tos;
    91 }
    93 static inline Address at_tos_p1() {
    94   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
    95 }
    97 static inline Address at_tos_p2() {
    98   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
    99 }
   101 // Condition conversion
   102 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   103   switch (cc) {
   104     case TemplateTable::equal        : return Assembler::notEqual;
   105     case TemplateTable::not_equal    : return Assembler::equal;
   106     case TemplateTable::less         : return Assembler::greaterEqual;
   107     case TemplateTable::less_equal   : return Assembler::greater;
   108     case TemplateTable::greater      : return Assembler::lessEqual;
   109     case TemplateTable::greater_equal: return Assembler::less;
   110   }
   111   ShouldNotReachHere();
   112   return Assembler::zero;
   113 }
   116 //----------------------------------------------------------------------------------------------------
   117 // Miscelaneous helper routines
   119 // Store an oop (or NULL) at the address described by obj.
   120 // If val == noreg this means store a NULL
   122 static void do_oop_store(InterpreterMacroAssembler* _masm,
   123                          Address obj,
   124                          Register val,
   125                          BarrierSet::Name barrier,
   126                          bool precise) {
   127   assert(val == noreg || val == rax, "parameter is just for looks");
   128   switch (barrier) {
   129 #if INCLUDE_ALL_GCS
   130     case BarrierSet::G1SATBCT:
   131     case BarrierSet::G1SATBCTLogging:
   132       {
   133         // flatten object address if needed
   134         // We do it regardless of precise because we need the registers
   135         if (obj.index() == noreg && obj.disp() == 0) {
   136           if (obj.base() != rdx) {
   137             __ movl(rdx, obj.base());
   138           }
   139         } else {
   140           __ leal(rdx, obj);
   141         }
   142         __ get_thread(rcx);
   143         __ save_bcp();
   144         __ g1_write_barrier_pre(rdx /* obj */,
   145                                 rbx /* pre_val */,
   146                                 rcx /* thread */,
   147                                 rsi /* tmp */,
   148                                 val != noreg /* tosca_live */,
   149                                 false /* expand_call */);
   151         // Do the actual store
   152         // noreg means NULL
   153         if (val == noreg) {
   154           __ movptr(Address(rdx, 0), NULL_WORD);
   155           // No post barrier for NULL
   156         } else {
   157           __ movl(Address(rdx, 0), val);
   158           __ g1_write_barrier_post(rdx /* store_adr */,
   159                                    val /* new_val */,
   160                                    rcx /* thread */,
   161                                    rbx /* tmp */,
   162                                    rsi /* tmp2 */);
   163         }
   164         __ restore_bcp();
   166       }
   167       break;
   168 #endif // INCLUDE_ALL_GCS
   169     case BarrierSet::CardTableModRef:
   170     case BarrierSet::CardTableExtension:
   171       {
   172         if (val == noreg) {
   173           __ movptr(obj, NULL_WORD);
   174         } else {
   175           __ movl(obj, val);
   176           // flatten object address if needed
   177           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   178             __ store_check(obj.base());
   179           } else {
   180             __ leal(rdx, obj);
   181             __ store_check(rdx);
   182           }
   183         }
   184       }
   185       break;
   186     case BarrierSet::ModRef:
   187     case BarrierSet::Other:
   188       if (val == noreg) {
   189         __ movptr(obj, NULL_WORD);
   190       } else {
   191         __ movl(obj, val);
   192       }
   193       break;
   194     default      :
   195       ShouldNotReachHere();
   197   }
   198 }
   200 Address TemplateTable::at_bcp(int offset) {
   201   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   202   return Address(rsi, offset);
   203 }
   206 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
   207                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
   208                                    int byte_no) {
   209   if (!RewriteBytecodes)  return;
   210   Label L_patch_done;
   212   switch (bc) {
   213   case Bytecodes::_fast_aputfield:
   214   case Bytecodes::_fast_bputfield:
   215   case Bytecodes::_fast_cputfield:
   216   case Bytecodes::_fast_dputfield:
   217   case Bytecodes::_fast_fputfield:
   218   case Bytecodes::_fast_iputfield:
   219   case Bytecodes::_fast_lputfield:
   220   case Bytecodes::_fast_sputfield:
   221     {
   222       // We skip bytecode quickening for putfield instructions when
   223       // the put_code written to the constant pool cache is zero.
   224       // This is required so that every execution of this instruction
   225       // calls out to InterpreterRuntime::resolve_get_put to do
   226       // additional, required work.
   227       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
   228       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
   229       __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1);
   230       __ movl(bc_reg, bc);
   231       __ cmpl(temp_reg, (int) 0);
   232       __ jcc(Assembler::zero, L_patch_done);  // don't patch
   233     }
   234     break;
   235   default:
   236     assert(byte_no == -1, "sanity");
   237     // the pair bytecodes have already done the load.
   238     if (load_bc_into_bc_reg) {
   239       __ movl(bc_reg, bc);
   240     }
   241   }
   243   if (JvmtiExport::can_post_breakpoint()) {
   244     Label L_fast_patch;
   245     // if a breakpoint is present we can't rewrite the stream directly
   246     __ movzbl(temp_reg, at_bcp(0));
   247     __ cmpl(temp_reg, Bytecodes::_breakpoint);
   248     __ jcc(Assembler::notEqual, L_fast_patch);
   249     __ get_method(temp_reg);
   250     // Let breakpoint table handling rewrite to quicker bytecode
   251     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rsi, bc_reg);
   252 #ifndef ASSERT
   253     __ jmpb(L_patch_done);
   254 #else
   255     __ jmp(L_patch_done);
   256 #endif
   257     __ bind(L_fast_patch);
   258   }
   260 #ifdef ASSERT
   261   Label L_okay;
   262   __ load_unsigned_byte(temp_reg, at_bcp(0));
   263   __ cmpl(temp_reg, (int)Bytecodes::java_code(bc));
   264   __ jccb(Assembler::equal, L_okay);
   265   __ cmpl(temp_reg, bc_reg);
   266   __ jcc(Assembler::equal, L_okay);
   267   __ stop("patching the wrong bytecode");
   268   __ bind(L_okay);
   269 #endif
   271   // patch bytecode
   272   __ movb(at_bcp(0), bc_reg);
   273   __ bind(L_patch_done);
   274 }
   276 //----------------------------------------------------------------------------------------------------
   277 // Individual instructions
   279 void TemplateTable::nop() {
   280   transition(vtos, vtos);
   281   // nothing to do
   282 }
   284 void TemplateTable::shouldnotreachhere() {
   285   transition(vtos, vtos);
   286   __ stop("shouldnotreachhere bytecode");
   287 }
   291 void TemplateTable::aconst_null() {
   292   transition(vtos, atos);
   293   __ xorptr(rax, rax);
   294 }
   297 void TemplateTable::iconst(int value) {
   298   transition(vtos, itos);
   299   if (value == 0) {
   300     __ xorptr(rax, rax);
   301   } else {
   302     __ movptr(rax, value);
   303   }
   304 }
   307 void TemplateTable::lconst(int value) {
   308   transition(vtos, ltos);
   309   if (value == 0) {
   310     __ xorptr(rax, rax);
   311   } else {
   312     __ movptr(rax, value);
   313   }
   314   assert(value >= 0, "check this code");
   315   __ xorptr(rdx, rdx);
   316 }
   319 void TemplateTable::fconst(int value) {
   320   transition(vtos, ftos);
   321          if (value == 0) { __ fldz();
   322   } else if (value == 1) { __ fld1();
   323   } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
   324   } else                 { ShouldNotReachHere();
   325   }
   326 }
   329 void TemplateTable::dconst(int value) {
   330   transition(vtos, dtos);
   331          if (value == 0) { __ fldz();
   332   } else if (value == 1) { __ fld1();
   333   } else                 { ShouldNotReachHere();
   334   }
   335 }
   338 void TemplateTable::bipush() {
   339   transition(vtos, itos);
   340   __ load_signed_byte(rax, at_bcp(1));
   341 }
   344 void TemplateTable::sipush() {
   345   transition(vtos, itos);
   346   __ load_unsigned_short(rax, at_bcp(1));
   347   __ bswapl(rax);
   348   __ sarl(rax, 16);
   349 }
   351 void TemplateTable::ldc(bool wide) {
   352   transition(vtos, vtos);
   353   Label call_ldc, notFloat, notClass, Done;
   355   if (wide) {
   356     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   357   } else {
   358     __ load_unsigned_byte(rbx, at_bcp(1));
   359   }
   360   __ get_cpool_and_tags(rcx, rax);
   361   const int base_offset = ConstantPool::header_size() * wordSize;
   362   const int tags_offset = Array<u1>::base_offset_in_bytes();
   364   // get type
   365   __ xorptr(rdx, rdx);
   366   __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   368   // unresolved class - get the resolved class
   369   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   370   __ jccb(Assembler::equal, call_ldc);
   372   // unresolved class in error (resolution failed) - call into runtime
   373   // so that the same error from first resolution attempt is thrown.
   374   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   375   __ jccb(Assembler::equal, call_ldc);
   377   // resolved class - need to call vm to get java mirror of the class
   378   __ cmpl(rdx, JVM_CONSTANT_Class);
   379   __ jcc(Assembler::notEqual, notClass);
   381   __ bind(call_ldc);
   382   __ movl(rcx, wide);
   383   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx);
   384   __ push(atos);
   385   __ jmp(Done);
   387   __ bind(notClass);
   388   __ cmpl(rdx, JVM_CONSTANT_Float);
   389   __ jccb(Assembler::notEqual, notFloat);
   390   // ftos
   391   __ fld_s(    Address(rcx, rbx, Address::times_ptr, base_offset));
   392   __ push(ftos);
   393   __ jmp(Done);
   395   __ bind(notFloat);
   396 #ifdef ASSERT
   397   { Label L;
   398     __ cmpl(rdx, JVM_CONSTANT_Integer);
   399     __ jcc(Assembler::equal, L);
   400     // String and Object are rewritten to fast_aldc
   401     __ stop("unexpected tag type in ldc");
   402     __ bind(L);
   403   }
   404 #endif
   405   // itos JVM_CONSTANT_Integer only
   406   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
   407   __ push(itos);
   408   __ bind(Done);
   409 }
   411 // Fast path for caching oop constants.
   412 void TemplateTable::fast_aldc(bool wide) {
   413   transition(vtos, atos);
   415   Register result = rax;
   416   Register tmp = rdx;
   417   int index_size = wide ? sizeof(u2) : sizeof(u1);
   419   Label resolved;
   421   // We are resolved if the resolved reference cache entry contains a
   422   // non-null object (String, MethodType, etc.)
   423   assert_different_registers(result, tmp);
   424   __ get_cache_index_at_bcp(tmp, 1, index_size);
   425   __ load_resolved_reference_at_index(result, tmp);
   426   __ testl(result, result);
   427   __ jcc(Assembler::notZero, resolved);
   429   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
   431   // first time invocation - must resolve first
   432   __ movl(tmp, (int)bytecode());
   433   __ call_VM(result, entry, tmp);
   435   __ bind(resolved);
   437   if (VerifyOops) {
   438     __ verify_oop(result);
   439   }
   440 }
   442 void TemplateTable::ldc2_w() {
   443   transition(vtos, vtos);
   444   Label Long, Done;
   445   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   447   __ get_cpool_and_tags(rcx, rax);
   448   const int base_offset = ConstantPool::header_size() * wordSize;
   449   const int tags_offset = Array<u1>::base_offset_in_bytes();
   451   // get type
   452   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double);
   453   __ jccb(Assembler::notEqual, Long);
   454   // dtos
   455   __ fld_d(    Address(rcx, rbx, Address::times_ptr, base_offset));
   456   __ push(dtos);
   457   __ jmpb(Done);
   459   __ bind(Long);
   460   // ltos
   461   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
   462   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
   464   __ push(ltos);
   466   __ bind(Done);
   467 }
   470 void TemplateTable::locals_index(Register reg, int offset) {
   471   __ load_unsigned_byte(reg, at_bcp(offset));
   472   __ negptr(reg);
   473 }
   476 void TemplateTable::iload() {
   477   transition(vtos, itos);
   478   if (RewriteFrequentPairs) {
   479     Label rewrite, done;
   481     // get next byte
   482     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   483     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   484     // last two iloads in a pair.  Comparing against fast_iload means that
   485     // the next bytecode is neither an iload or a caload, and therefore
   486     // an iload pair.
   487     __ cmpl(rbx, Bytecodes::_iload);
   488     __ jcc(Assembler::equal, done);
   490     __ cmpl(rbx, Bytecodes::_fast_iload);
   491     __ movl(rcx, Bytecodes::_fast_iload2);
   492     __ jccb(Assembler::equal, rewrite);
   494     // if _caload, rewrite to fast_icaload
   495     __ cmpl(rbx, Bytecodes::_caload);
   496     __ movl(rcx, Bytecodes::_fast_icaload);
   497     __ jccb(Assembler::equal, rewrite);
   499     // rewrite so iload doesn't check again.
   500     __ movl(rcx, Bytecodes::_fast_iload);
   502     // rewrite
   503     // rcx: fast bytecode
   504     __ bind(rewrite);
   505     patch_bytecode(Bytecodes::_iload, rcx, rbx, false);
   506     __ bind(done);
   507   }
   509   // Get the local value into tos
   510   locals_index(rbx);
   511   __ movl(rax, iaddress(rbx));
   512 }
   515 void TemplateTable::fast_iload2() {
   516   transition(vtos, itos);
   517   locals_index(rbx);
   518   __ movl(rax, iaddress(rbx));
   519   __ push(itos);
   520   locals_index(rbx, 3);
   521   __ movl(rax, iaddress(rbx));
   522 }
   524 void TemplateTable::fast_iload() {
   525   transition(vtos, itos);
   526   locals_index(rbx);
   527   __ movl(rax, iaddress(rbx));
   528 }
   531 void TemplateTable::lload() {
   532   transition(vtos, ltos);
   533   locals_index(rbx);
   534   __ movptr(rax, laddress(rbx));
   535   NOT_LP64(__ movl(rdx, haddress(rbx)));
   536 }
   539 void TemplateTable::fload() {
   540   transition(vtos, ftos);
   541   locals_index(rbx);
   542   __ fld_s(faddress(rbx));
   543 }
   546 void TemplateTable::dload() {
   547   transition(vtos, dtos);
   548   locals_index(rbx);
   549   __ fld_d(daddress(rbx));
   550 }
   553 void TemplateTable::aload() {
   554   transition(vtos, atos);
   555   locals_index(rbx);
   556   __ movptr(rax, aaddress(rbx));
   557 }
   560 void TemplateTable::locals_index_wide(Register reg) {
   561   __ movl(reg, at_bcp(2));
   562   __ bswapl(reg);
   563   __ shrl(reg, 16);
   564   __ negptr(reg);
   565 }
   568 void TemplateTable::wide_iload() {
   569   transition(vtos, itos);
   570   locals_index_wide(rbx);
   571   __ movl(rax, iaddress(rbx));
   572 }
   575 void TemplateTable::wide_lload() {
   576   transition(vtos, ltos);
   577   locals_index_wide(rbx);
   578   __ movptr(rax, laddress(rbx));
   579   NOT_LP64(__ movl(rdx, haddress(rbx)));
   580 }
   583 void TemplateTable::wide_fload() {
   584   transition(vtos, ftos);
   585   locals_index_wide(rbx);
   586   __ fld_s(faddress(rbx));
   587 }
   590 void TemplateTable::wide_dload() {
   591   transition(vtos, dtos);
   592   locals_index_wide(rbx);
   593   __ fld_d(daddress(rbx));
   594 }
   597 void TemplateTable::wide_aload() {
   598   transition(vtos, atos);
   599   locals_index_wide(rbx);
   600   __ movptr(rax, aaddress(rbx));
   601 }
   603 void TemplateTable::index_check(Register array, Register index) {
   604   // Pop ptr into array
   605   __ pop_ptr(array);
   606   index_check_without_pop(array, index);
   607 }
   609 void TemplateTable::index_check_without_pop(Register array, Register index) {
   610   // destroys rbx,
   611   // check array
   612   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   613   LP64_ONLY(__ movslq(index, index));
   614   // check index
   615   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   616   if (index != rbx) {
   617     // ??? convention: move aberrant index into rbx, for exception message
   618     assert(rbx != array, "different registers");
   619     __ mov(rbx, index);
   620   }
   621   __ jump_cc(Assembler::aboveEqual,
   622              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   623 }
   626 void TemplateTable::iaload() {
   627   transition(itos, itos);
   628   // rdx: array
   629   index_check(rdx, rax);  // kills rbx,
   630   // rax,: index
   631   __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)));
   632 }
   635 void TemplateTable::laload() {
   636   transition(itos, ltos);
   637   // rax,: index
   638   // rdx: array
   639   index_check(rdx, rax);
   640   __ mov(rbx, rax);
   641   // rbx,: index
   642   __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
   643   NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
   644 }
   647 void TemplateTable::faload() {
   648   transition(itos, ftos);
   649   // rdx: array
   650   index_check(rdx, rax);  // kills rbx,
   651   // rax,: index
   652   __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   653 }
   656 void TemplateTable::daload() {
   657   transition(itos, dtos);
   658   // rdx: array
   659   index_check(rdx, rax);  // kills rbx,
   660   // rax,: index
   661   __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   662 }
   665 void TemplateTable::aaload() {
   666   transition(itos, atos);
   667   // rdx: array
   668   index_check(rdx, rax);  // kills rbx,
   669   // rax,: index
   670   __ movptr(rax, Address(rdx, rax, Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   671 }
   674 void TemplateTable::baload() {
   675   transition(itos, itos);
   676   // rdx: array
   677   index_check(rdx, rax);  // kills rbx,
   678   // rax,: index
   679   // can do better code for P5 - fix this at some point
   680   __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   681   __ mov(rax, rbx);
   682 }
   685 void TemplateTable::caload() {
   686   transition(itos, itos);
   687   // rdx: array
   688   index_check(rdx, rax);  // kills rbx,
   689   // rax,: index
   690   // can do better code for P5 - may want to improve this at some point
   691   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   692   __ mov(rax, rbx);
   693 }
   695 // iload followed by caload frequent pair
   696 void TemplateTable::fast_icaload() {
   697   transition(vtos, itos);
   698   // load index out of locals
   699   locals_index(rbx);
   700   __ movl(rax, iaddress(rbx));
   702   // rdx: array
   703   index_check(rdx, rax);
   704   // rax,: index
   705   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   706   __ mov(rax, rbx);
   707 }
   709 void TemplateTable::saload() {
   710   transition(itos, itos);
   711   // rdx: array
   712   index_check(rdx, rax);  // kills rbx,
   713   // rax,: index
   714   // can do better code for P5 - may want to improve this at some point
   715   __ load_signed_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   716   __ mov(rax, rbx);
   717 }
   720 void TemplateTable::iload(int n) {
   721   transition(vtos, itos);
   722   __ movl(rax, iaddress(n));
   723 }
   726 void TemplateTable::lload(int n) {
   727   transition(vtos, ltos);
   728   __ movptr(rax, laddress(n));
   729   NOT_LP64(__ movptr(rdx, haddress(n)));
   730 }
   733 void TemplateTable::fload(int n) {
   734   transition(vtos, ftos);
   735   __ fld_s(faddress(n));
   736 }
   739 void TemplateTable::dload(int n) {
   740   transition(vtos, dtos);
   741   __ fld_d(daddress(n));
   742 }
   745 void TemplateTable::aload(int n) {
   746   transition(vtos, atos);
   747   __ movptr(rax, aaddress(n));
   748 }
   751 void TemplateTable::aload_0() {
   752   transition(vtos, atos);
   753   // According to bytecode histograms, the pairs:
   754   //
   755   // _aload_0, _fast_igetfield
   756   // _aload_0, _fast_agetfield
   757   // _aload_0, _fast_fgetfield
   758   //
   759   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
   760   // bytecode checks if the next bytecode is either _fast_igetfield,
   761   // _fast_agetfield or _fast_fgetfield and then rewrites the
   762   // current bytecode into a pair bytecode; otherwise it rewrites the current
   763   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
   764   //
   765   // Note: If the next bytecode is _getfield, the rewrite must be delayed,
   766   //       otherwise we may miss an opportunity for a pair.
   767   //
   768   // Also rewrite frequent pairs
   769   //   aload_0, aload_1
   770   //   aload_0, iload_1
   771   // These bytecodes with a small amount of code are most profitable to rewrite
   772   if (RewriteFrequentPairs) {
   773     Label rewrite, done;
   774     // get next byte
   775     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   777     // do actual aload_0
   778     aload(0);
   780     // if _getfield then wait with rewrite
   781     __ cmpl(rbx, Bytecodes::_getfield);
   782     __ jcc(Assembler::equal, done);
   784     // if _igetfield then reqrite to _fast_iaccess_0
   785     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   786     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   787     __ movl(rcx, Bytecodes::_fast_iaccess_0);
   788     __ jccb(Assembler::equal, rewrite);
   790     // if _agetfield then reqrite to _fast_aaccess_0
   791     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   792     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   793     __ movl(rcx, Bytecodes::_fast_aaccess_0);
   794     __ jccb(Assembler::equal, rewrite);
   796     // if _fgetfield then reqrite to _fast_faccess_0
   797     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   798     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   799     __ movl(rcx, Bytecodes::_fast_faccess_0);
   800     __ jccb(Assembler::equal, rewrite);
   802     // else rewrite to _fast_aload0
   803     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
   804     __ movl(rcx, Bytecodes::_fast_aload_0);
   806     // rewrite
   807     // rcx: fast bytecode
   808     __ bind(rewrite);
   809     patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false);
   811     __ bind(done);
   812   } else {
   813     aload(0);
   814   }
   815 }
   817 void TemplateTable::istore() {
   818   transition(itos, vtos);
   819   locals_index(rbx);
   820   __ movl(iaddress(rbx), rax);
   821 }
   824 void TemplateTable::lstore() {
   825   transition(ltos, vtos);
   826   locals_index(rbx);
   827   __ movptr(laddress(rbx), rax);
   828   NOT_LP64(__ movptr(haddress(rbx), rdx));
   829 }
   832 void TemplateTable::fstore() {
   833   transition(ftos, vtos);
   834   locals_index(rbx);
   835   __ fstp_s(faddress(rbx));
   836 }
   839 void TemplateTable::dstore() {
   840   transition(dtos, vtos);
   841   locals_index(rbx);
   842   __ fstp_d(daddress(rbx));
   843 }
   846 void TemplateTable::astore() {
   847   transition(vtos, vtos);
   848   __ pop_ptr(rax);
   849   locals_index(rbx);
   850   __ movptr(aaddress(rbx), rax);
   851 }
   854 void TemplateTable::wide_istore() {
   855   transition(vtos, vtos);
   856   __ pop_i(rax);
   857   locals_index_wide(rbx);
   858   __ movl(iaddress(rbx), rax);
   859 }
   862 void TemplateTable::wide_lstore() {
   863   transition(vtos, vtos);
   864   __ pop_l(rax, rdx);
   865   locals_index_wide(rbx);
   866   __ movptr(laddress(rbx), rax);
   867   NOT_LP64(__ movl(haddress(rbx), rdx));
   868 }
   871 void TemplateTable::wide_fstore() {
   872   wide_istore();
   873 }
   876 void TemplateTable::wide_dstore() {
   877   wide_lstore();
   878 }
   881 void TemplateTable::wide_astore() {
   882   transition(vtos, vtos);
   883   __ pop_ptr(rax);
   884   locals_index_wide(rbx);
   885   __ movptr(aaddress(rbx), rax);
   886 }
   889 void TemplateTable::iastore() {
   890   transition(itos, vtos);
   891   __ pop_i(rbx);
   892   // rax,: value
   893   // rdx: array
   894   index_check(rdx, rbx);  // prefer index in rbx,
   895   // rbx,: index
   896   __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax);
   897 }
   900 void TemplateTable::lastore() {
   901   transition(ltos, vtos);
   902   __ pop_i(rbx);
   903   // rax,: low(value)
   904   // rcx: array
   905   // rdx: high(value)
   906   index_check(rcx, rbx);  // prefer index in rbx,
   907   // rbx,: index
   908   __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
   909   NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
   910 }
   913 void TemplateTable::fastore() {
   914   transition(ftos, vtos);
   915   __ pop_i(rbx);
   916   // rdx: array
   917   // st0: value
   918   index_check(rdx, rbx);  // prefer index in rbx,
   919   // rbx,: index
   920   __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   921 }
   924 void TemplateTable::dastore() {
   925   transition(dtos, vtos);
   926   __ pop_i(rbx);
   927   // rdx: array
   928   // st0: value
   929   index_check(rdx, rbx);  // prefer index in rbx,
   930   // rbx,: index
   931   __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   932 }
   935 void TemplateTable::aastore() {
   936   Label is_null, ok_is_subtype, done;
   937   transition(vtos, vtos);
   938   // stack: ..., array, index, value
   939   __ movptr(rax, at_tos());     // Value
   940   __ movl(rcx, at_tos_p1());  // Index
   941   __ movptr(rdx, at_tos_p2());  // Array
   943   Address element_address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   944   index_check_without_pop(rdx, rcx);      // kills rbx,
   945   // do array store check - check for NULL value first
   946   __ testptr(rax, rax);
   947   __ jcc(Assembler::zero, is_null);
   949   // Move subklass into EBX
   950   __ load_klass(rbx, rax);
   951   // Move superklass into EAX
   952   __ load_klass(rax, rdx);
   953   __ movptr(rax, Address(rax, ObjArrayKlass::element_klass_offset()));
   954   // Compress array+index*wordSize+12 into a single register.  Frees ECX.
   955   __ lea(rdx, element_address);
   957   // Generate subtype check.  Blows ECX.  Resets EDI to locals.
   958   // Superklass in EAX.  Subklass in EBX.
   959   __ gen_subtype_check( rbx, ok_is_subtype );
   961   // Come here on failure
   962   // object is at TOS
   963   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   965   // Come here on success
   966   __ bind(ok_is_subtype);
   968   // Get the value to store
   969   __ movptr(rax, at_rsp());
   970   // and store it with appropriate barrier
   971   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   973   __ jmp(done);
   975   // Have a NULL in EAX, EDX=array, ECX=index.  Store NULL at ary[idx]
   976   __ bind(is_null);
   977   __ profile_null_seen(rbx);
   979   // Store NULL, (noreg means NULL to do_oop_store)
   980   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
   982   // Pop stack arguments
   983   __ bind(done);
   984   __ addptr(rsp, 3 * Interpreter::stackElementSize);
   985 }
   988 void TemplateTable::bastore() {
   989   transition(itos, vtos);
   990   __ pop_i(rbx);
   991   // rax,: value
   992   // rdx: array
   993   index_check(rdx, rbx);  // prefer index in rbx,
   994   // rbx,: index
   995   __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax);
   996 }
   999 void TemplateTable::castore() {
  1000   transition(itos, vtos);
  1001   __ pop_i(rbx);
  1002   // rax,: value
  1003   // rdx: array
  1004   index_check(rdx, rbx);  // prefer index in rbx,
  1005   // rbx,: index
  1006   __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax);
  1010 void TemplateTable::sastore() {
  1011   castore();
  1015 void TemplateTable::istore(int n) {
  1016   transition(itos, vtos);
  1017   __ movl(iaddress(n), rax);
  1021 void TemplateTable::lstore(int n) {
  1022   transition(ltos, vtos);
  1023   __ movptr(laddress(n), rax);
  1024   NOT_LP64(__ movptr(haddress(n), rdx));
  1028 void TemplateTable::fstore(int n) {
  1029   transition(ftos, vtos);
  1030   __ fstp_s(faddress(n));
  1034 void TemplateTable::dstore(int n) {
  1035   transition(dtos, vtos);
  1036   __ fstp_d(daddress(n));
  1040 void TemplateTable::astore(int n) {
  1041   transition(vtos, vtos);
  1042   __ pop_ptr(rax);
  1043   __ movptr(aaddress(n), rax);
  1047 void TemplateTable::pop() {
  1048   transition(vtos, vtos);
  1049   __ addptr(rsp, Interpreter::stackElementSize);
  1053 void TemplateTable::pop2() {
  1054   transition(vtos, vtos);
  1055   __ addptr(rsp, 2*Interpreter::stackElementSize);
  1059 void TemplateTable::dup() {
  1060   transition(vtos, vtos);
  1061   // stack: ..., a
  1062   __ load_ptr(0, rax);
  1063   __ push_ptr(rax);
  1064   // stack: ..., a, a
  1068 void TemplateTable::dup_x1() {
  1069   transition(vtos, vtos);
  1070   // stack: ..., a, b
  1071   __ load_ptr( 0, rax);  // load b
  1072   __ load_ptr( 1, rcx);  // load a
  1073   __ store_ptr(1, rax);  // store b
  1074   __ store_ptr(0, rcx);  // store a
  1075   __ push_ptr(rax);      // push b
  1076   // stack: ..., b, a, b
  1080 void TemplateTable::dup_x2() {
  1081   transition(vtos, vtos);
  1082   // stack: ..., a, b, c
  1083   __ load_ptr( 0, rax);  // load c
  1084   __ load_ptr( 2, rcx);  // load a
  1085   __ store_ptr(2, rax);  // store c in a
  1086   __ push_ptr(rax);      // push c
  1087   // stack: ..., c, b, c, c
  1088   __ load_ptr( 2, rax);  // load b
  1089   __ store_ptr(2, rcx);  // store a in b
  1090   // stack: ..., c, a, c, c
  1091   __ store_ptr(1, rax);  // store b in c
  1092   // stack: ..., c, a, b, c
  1096 void TemplateTable::dup2() {
  1097   transition(vtos, vtos);
  1098   // stack: ..., a, b
  1099   __ load_ptr(1, rax);  // load a
  1100   __ push_ptr(rax);     // push a
  1101   __ load_ptr(1, rax);  // load b
  1102   __ push_ptr(rax);     // push b
  1103   // stack: ..., a, b, a, b
  1107 void TemplateTable::dup2_x1() {
  1108   transition(vtos, vtos);
  1109   // stack: ..., a, b, c
  1110   __ load_ptr( 0, rcx);  // load c
  1111   __ load_ptr( 1, rax);  // load b
  1112   __ push_ptr(rax);      // push b
  1113   __ push_ptr(rcx);      // push c
  1114   // stack: ..., a, b, c, b, c
  1115   __ store_ptr(3, rcx);  // store c in b
  1116   // stack: ..., a, c, c, b, c
  1117   __ load_ptr( 4, rcx);  // load a
  1118   __ store_ptr(2, rcx);  // store a in 2nd c
  1119   // stack: ..., a, c, a, b, c
  1120   __ store_ptr(4, rax);  // store b in a
  1121   // stack: ..., b, c, a, b, c
  1122   // stack: ..., b, c, a, b, c
  1126 void TemplateTable::dup2_x2() {
  1127   transition(vtos, vtos);
  1128   // stack: ..., a, b, c, d
  1129   __ load_ptr( 0, rcx);  // load d
  1130   __ load_ptr( 1, rax);  // load c
  1131   __ push_ptr(rax);      // push c
  1132   __ push_ptr(rcx);      // push d
  1133   // stack: ..., a, b, c, d, c, d
  1134   __ load_ptr( 4, rax);  // load b
  1135   __ store_ptr(2, rax);  // store b in d
  1136   __ store_ptr(4, rcx);  // store d in b
  1137   // stack: ..., a, d, c, b, c, d
  1138   __ load_ptr( 5, rcx);  // load a
  1139   __ load_ptr( 3, rax);  // load c
  1140   __ store_ptr(3, rcx);  // store a in c
  1141   __ store_ptr(5, rax);  // store c in a
  1142   // stack: ..., c, d, a, b, c, d
  1143   // stack: ..., c, d, a, b, c, d
  1147 void TemplateTable::swap() {
  1148   transition(vtos, vtos);
  1149   // stack: ..., a, b
  1150   __ load_ptr( 1, rcx);  // load a
  1151   __ load_ptr( 0, rax);  // load b
  1152   __ store_ptr(0, rcx);  // store a in b
  1153   __ store_ptr(1, rax);  // store b in a
  1154   // stack: ..., b, a
  1158 void TemplateTable::iop2(Operation op) {
  1159   transition(itos, itos);
  1160   switch (op) {
  1161     case add  :                   __ pop_i(rdx); __ addl (rax, rdx); break;
  1162     case sub  : __ mov(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1163     case mul  :                   __ pop_i(rdx); __ imull(rax, rdx); break;
  1164     case _and :                   __ pop_i(rdx); __ andl (rax, rdx); break;
  1165     case _or  :                   __ pop_i(rdx); __ orl  (rax, rdx); break;
  1166     case _xor :                   __ pop_i(rdx); __ xorl (rax, rdx); break;
  1167     case shl  : __ mov(rcx, rax); __ pop_i(rax); __ shll (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1168     case shr  : __ mov(rcx, rax); __ pop_i(rax); __ sarl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1169     case ushr : __ mov(rcx, rax); __ pop_i(rax); __ shrl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1170     default   : ShouldNotReachHere();
  1175 void TemplateTable::lop2(Operation op) {
  1176   transition(ltos, ltos);
  1177   __ pop_l(rbx, rcx);
  1178   switch (op) {
  1179     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
  1180     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
  1181                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
  1182     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
  1183     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
  1184     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
  1185     default   : ShouldNotReachHere();
  1190 void TemplateTable::idiv() {
  1191   transition(itos, itos);
  1192   __ mov(rcx, rax);
  1193   __ pop_i(rax);
  1194   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1195   //       they are not equal, one could do a normal division (no correction
  1196   //       needed), which may speed up this implementation for the common case.
  1197   //       (see also JVM spec., p.243 & p.271)
  1198   __ corrected_idivl(rcx);
  1202 void TemplateTable::irem() {
  1203   transition(itos, itos);
  1204   __ mov(rcx, rax);
  1205   __ pop_i(rax);
  1206   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1207   //       they are not equal, one could do a normal division (no correction
  1208   //       needed), which may speed up this implementation for the common case.
  1209   //       (see also JVM spec., p.243 & p.271)
  1210   __ corrected_idivl(rcx);
  1211   __ mov(rax, rdx);
  1215 void TemplateTable::lmul() {
  1216   transition(ltos, ltos);
  1217   __ pop_l(rbx, rcx);
  1218   __ push(rcx); __ push(rbx);
  1219   __ push(rdx); __ push(rax);
  1220   __ lmul(2 * wordSize, 0);
  1221   __ addptr(rsp, 4 * wordSize);  // take off temporaries
  1225 void TemplateTable::ldiv() {
  1226   transition(ltos, ltos);
  1227   __ pop_l(rbx, rcx);
  1228   __ push(rcx); __ push(rbx);
  1229   __ push(rdx); __ push(rax);
  1230   // check if y = 0
  1231   __ orl(rax, rdx);
  1232   __ jump_cc(Assembler::zero,
  1233              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1234   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
  1235   __ addptr(rsp, 4 * wordSize);  // take off temporaries
  1239 void TemplateTable::lrem() {
  1240   transition(ltos, ltos);
  1241   __ pop_l(rbx, rcx);
  1242   __ push(rcx); __ push(rbx);
  1243   __ push(rdx); __ push(rax);
  1244   // check if y = 0
  1245   __ orl(rax, rdx);
  1246   __ jump_cc(Assembler::zero,
  1247              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1248   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
  1249   __ addptr(rsp, 4 * wordSize);
  1253 void TemplateTable::lshl() {
  1254   transition(itos, ltos);
  1255   __ movl(rcx, rax);                             // get shift count
  1256   __ pop_l(rax, rdx);                            // get shift value
  1257   __ lshl(rdx, rax);
  1261 void TemplateTable::lshr() {
  1262   transition(itos, ltos);
  1263   __ mov(rcx, rax);                              // get shift count
  1264   __ pop_l(rax, rdx);                            // get shift value
  1265   __ lshr(rdx, rax, true);
  1269 void TemplateTable::lushr() {
  1270   transition(itos, ltos);
  1271   __ mov(rcx, rax);                              // get shift count
  1272   __ pop_l(rax, rdx);                            // get shift value
  1273   __ lshr(rdx, rax);
  1277 void TemplateTable::fop2(Operation op) {
  1278   transition(ftos, ftos);
  1279   switch (op) {
  1280     case add: __ fadd_s (at_rsp());                break;
  1281     case sub: __ fsubr_s(at_rsp());                break;
  1282     case mul: __ fmul_s (at_rsp());                break;
  1283     case div: __ fdivr_s(at_rsp());                break;
  1284     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
  1285     default : ShouldNotReachHere();
  1287   __ f2ieee();
  1288   __ pop(rax);  // pop float thing off
  1292 void TemplateTable::dop2(Operation op) {
  1293   transition(dtos, dtos);
  1295   switch (op) {
  1296     case add: __ fadd_d (at_rsp());                break;
  1297     case sub: __ fsubr_d(at_rsp());                break;
  1298     case mul: {
  1299       Label L_strict;
  1300       Label L_join;
  1301       const Address access_flags      (rcx, Method::access_flags_offset());
  1302       __ get_method(rcx);
  1303       __ movl(rcx, access_flags);
  1304       __ testl(rcx, JVM_ACC_STRICT);
  1305       __ jccb(Assembler::notZero, L_strict);
  1306       __ fmul_d (at_rsp());
  1307       __ jmpb(L_join);
  1308       __ bind(L_strict);
  1309       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1310       __ fmulp();
  1311       __ fmul_d (at_rsp());
  1312       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1313       __ fmulp();
  1314       __ bind(L_join);
  1315       break;
  1317     case div: {
  1318       Label L_strict;
  1319       Label L_join;
  1320       const Address access_flags      (rcx, Method::access_flags_offset());
  1321       __ get_method(rcx);
  1322       __ movl(rcx, access_flags);
  1323       __ testl(rcx, JVM_ACC_STRICT);
  1324       __ jccb(Assembler::notZero, L_strict);
  1325       __ fdivr_d(at_rsp());
  1326       __ jmp(L_join);
  1327       __ bind(L_strict);
  1328       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1329       __ fmul_d (at_rsp());
  1330       __ fdivrp();
  1331       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1332       __ fmulp();
  1333       __ bind(L_join);
  1334       break;
  1336     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
  1337     default : ShouldNotReachHere();
  1339   __ d2ieee();
  1340   // Pop double precision number from rsp.
  1341   __ pop(rax);
  1342   __ pop(rdx);
  1346 void TemplateTable::ineg() {
  1347   transition(itos, itos);
  1348   __ negl(rax);
  1352 void TemplateTable::lneg() {
  1353   transition(ltos, ltos);
  1354   __ lneg(rdx, rax);
  1358 void TemplateTable::fneg() {
  1359   transition(ftos, ftos);
  1360   __ fchs();
  1364 void TemplateTable::dneg() {
  1365   transition(dtos, dtos);
  1366   __ fchs();
  1370 void TemplateTable::iinc() {
  1371   transition(vtos, vtos);
  1372   __ load_signed_byte(rdx, at_bcp(2));           // get constant
  1373   locals_index(rbx);
  1374   __ addl(iaddress(rbx), rdx);
  1378 void TemplateTable::wide_iinc() {
  1379   transition(vtos, vtos);
  1380   __ movl(rdx, at_bcp(4));                       // get constant
  1381   locals_index_wide(rbx);
  1382   __ bswapl(rdx);                                 // swap bytes & sign-extend constant
  1383   __ sarl(rdx, 16);
  1384   __ addl(iaddress(rbx), rdx);
  1385   // Note: should probably use only one movl to get both
  1386   //       the index and the constant -> fix this
  1390 void TemplateTable::convert() {
  1391   // Checking
  1392 #ifdef ASSERT
  1393   { TosState tos_in  = ilgl;
  1394     TosState tos_out = ilgl;
  1395     switch (bytecode()) {
  1396       case Bytecodes::_i2l: // fall through
  1397       case Bytecodes::_i2f: // fall through
  1398       case Bytecodes::_i2d: // fall through
  1399       case Bytecodes::_i2b: // fall through
  1400       case Bytecodes::_i2c: // fall through
  1401       case Bytecodes::_i2s: tos_in = itos; break;
  1402       case Bytecodes::_l2i: // fall through
  1403       case Bytecodes::_l2f: // fall through
  1404       case Bytecodes::_l2d: tos_in = ltos; break;
  1405       case Bytecodes::_f2i: // fall through
  1406       case Bytecodes::_f2l: // fall through
  1407       case Bytecodes::_f2d: tos_in = ftos; break;
  1408       case Bytecodes::_d2i: // fall through
  1409       case Bytecodes::_d2l: // fall through
  1410       case Bytecodes::_d2f: tos_in = dtos; break;
  1411       default             : ShouldNotReachHere();
  1413     switch (bytecode()) {
  1414       case Bytecodes::_l2i: // fall through
  1415       case Bytecodes::_f2i: // fall through
  1416       case Bytecodes::_d2i: // fall through
  1417       case Bytecodes::_i2b: // fall through
  1418       case Bytecodes::_i2c: // fall through
  1419       case Bytecodes::_i2s: tos_out = itos; break;
  1420       case Bytecodes::_i2l: // fall through
  1421       case Bytecodes::_f2l: // fall through
  1422       case Bytecodes::_d2l: tos_out = ltos; break;
  1423       case Bytecodes::_i2f: // fall through
  1424       case Bytecodes::_l2f: // fall through
  1425       case Bytecodes::_d2f: tos_out = ftos; break;
  1426       case Bytecodes::_i2d: // fall through
  1427       case Bytecodes::_l2d: // fall through
  1428       case Bytecodes::_f2d: tos_out = dtos; break;
  1429       default             : ShouldNotReachHere();
  1431     transition(tos_in, tos_out);
  1433 #endif // ASSERT
  1435   // Conversion
  1436   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
  1437   switch (bytecode()) {
  1438     case Bytecodes::_i2l:
  1439       __ extend_sign(rdx, rax);
  1440       break;
  1441     case Bytecodes::_i2f:
  1442       __ push(rax);          // store int on tos
  1443       __ fild_s(at_rsp());   // load int to ST0
  1444       __ f2ieee();           // truncate to float size
  1445       __ pop(rcx);           // adjust rsp
  1446       break;
  1447     case Bytecodes::_i2d:
  1448       __ push(rax);          // add one slot for d2ieee()
  1449       __ push(rax);          // store int on tos
  1450       __ fild_s(at_rsp());   // load int to ST0
  1451       __ d2ieee();           // truncate to double size
  1452       __ pop(rcx);           // adjust rsp
  1453       __ pop(rcx);
  1454       break;
  1455     case Bytecodes::_i2b:
  1456       __ shll(rax, 24);      // truncate upper 24 bits
  1457       __ sarl(rax, 24);      // and sign-extend byte
  1458       LP64_ONLY(__ movsbl(rax, rax));
  1459       break;
  1460     case Bytecodes::_i2c:
  1461       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
  1462       LP64_ONLY(__ movzwl(rax, rax));
  1463       break;
  1464     case Bytecodes::_i2s:
  1465       __ shll(rax, 16);      // truncate upper 16 bits
  1466       __ sarl(rax, 16);      // and sign-extend short
  1467       LP64_ONLY(__ movswl(rax, rax));
  1468       break;
  1469     case Bytecodes::_l2i:
  1470       /* nothing to do */
  1471       break;
  1472     case Bytecodes::_l2f:
  1473       __ push(rdx);          // store long on tos
  1474       __ push(rax);
  1475       __ fild_d(at_rsp());   // load long to ST0
  1476       __ f2ieee();           // truncate to float size
  1477       __ pop(rcx);           // adjust rsp
  1478       __ pop(rcx);
  1479       break;
  1480     case Bytecodes::_l2d:
  1481       __ push(rdx);          // store long on tos
  1482       __ push(rax);
  1483       __ fild_d(at_rsp());   // load long to ST0
  1484       __ d2ieee();           // truncate to double size
  1485       __ pop(rcx);           // adjust rsp
  1486       __ pop(rcx);
  1487       break;
  1488     case Bytecodes::_f2i:
  1489       __ push(rcx);          // reserve space for argument
  1490       __ fstp_s(at_rsp());   // pass float argument on stack
  1491       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1492       break;
  1493     case Bytecodes::_f2l:
  1494       __ push(rcx);          // reserve space for argument
  1495       __ fstp_s(at_rsp());   // pass float argument on stack
  1496       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1497       break;
  1498     case Bytecodes::_f2d:
  1499       /* nothing to do */
  1500       break;
  1501     case Bytecodes::_d2i:
  1502       __ push(rcx);          // reserve space for argument
  1503       __ push(rcx);
  1504       __ fstp_d(at_rsp());   // pass double argument on stack
  1505       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
  1506       break;
  1507     case Bytecodes::_d2l:
  1508       __ push(rcx);          // reserve space for argument
  1509       __ push(rcx);
  1510       __ fstp_d(at_rsp());   // pass double argument on stack
  1511       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
  1512       break;
  1513     case Bytecodes::_d2f:
  1514       __ push(rcx);          // reserve space for f2ieee()
  1515       __ f2ieee();           // truncate to float size
  1516       __ pop(rcx);           // adjust rsp
  1517       break;
  1518     default             :
  1519       ShouldNotReachHere();
  1524 void TemplateTable::lcmp() {
  1525   transition(ltos, itos);
  1526   // y = rdx:rax
  1527   __ pop_l(rbx, rcx);             // get x = rcx:rbx
  1528   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
  1529   __ mov(rax, rcx);
  1533 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1534   if (is_float) {
  1535     __ fld_s(at_rsp());
  1536   } else {
  1537     __ fld_d(at_rsp());
  1538     __ pop(rdx);
  1540   __ pop(rcx);
  1541   __ fcmp2int(rax, unordered_result < 0);
  1545 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1546   __ get_method(rcx);           // ECX holds method
  1547   __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count
  1549   const ByteSize be_offset = Method::backedge_counter_offset() + InvocationCounter::counter_offset();
  1550   const ByteSize inv_offset = Method::invocation_counter_offset() + InvocationCounter::counter_offset();
  1551   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1553   // Load up EDX with the branch displacement
  1554   __ movl(rdx, at_bcp(1));
  1555   __ bswapl(rdx);
  1556   if (!is_wide) __ sarl(rdx, 16);
  1557   LP64_ONLY(__ movslq(rdx, rdx));
  1560   // Handle all the JSR stuff here, then exit.
  1561   // It's much shorter and cleaner than intermingling with the
  1562   // non-JSR normal-branch stuff occurring below.
  1563   if (is_jsr) {
  1564     // Pre-load the next target bytecode into EBX
  1565     __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0));
  1567     // compute return address as bci in rax,
  1568     __ lea(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(ConstMethod::codes_offset())));
  1569     __ subptr(rax, Address(rcx, Method::const_offset()));
  1570     // Adjust the bcp in RSI by the displacement in EDX
  1571     __ addptr(rsi, rdx);
  1572     // Push return address
  1573     __ push_i(rax);
  1574     // jsr returns vtos
  1575     __ dispatch_only_noverify(vtos);
  1576     return;
  1579   // Normal (non-jsr) branch handling
  1581   // Adjust the bcp in RSI by the displacement in EDX
  1582   __ addptr(rsi, rdx);
  1584   assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
  1585   Label backedge_counter_overflow;
  1586   Label profile_method;
  1587   Label dispatch;
  1588   if (UseLoopCounter) {
  1589     // increment backedge counter for backward branches
  1590     // rax,: MDO
  1591     // rbx,: MDO bumped taken-count
  1592     // rcx: method
  1593     // rdx: target offset
  1594     // rsi: target bcp
  1595     // rdi: locals pointer
  1596     __ testl(rdx, rdx);             // check if forward or backward branch
  1597     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1599     if (TieredCompilation) {
  1600       Label no_mdo;
  1601       int increment = InvocationCounter::count_increment;
  1602       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1603       if (ProfileInterpreter) {
  1604         // Are we profiling?
  1605         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
  1606         __ testptr(rbx, rbx);
  1607         __ jccb(Assembler::zero, no_mdo);
  1608         // Increment the MDO backedge counter
  1609         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
  1610                                                 in_bytes(InvocationCounter::counter_offset()));
  1611         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
  1612                                    rax, false, Assembler::zero, &backedge_counter_overflow);
  1613         __ jmp(dispatch);
  1615       __ bind(no_mdo);
  1616       // Increment backedge counter in Method*
  1617       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
  1618                                  rax, false, Assembler::zero, &backedge_counter_overflow);
  1619     } else {
  1620       // increment counter
  1621       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1622       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
  1623       __ movl(Address(rcx, be_offset), rax);        // store counter
  1625       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1626       __ andl(rax, InvocationCounter::count_mask_value);     // and the status bits
  1627       __ addl(rax, Address(rcx, be_offset));        // add both counters
  1629       if (ProfileInterpreter) {
  1630         // Test to see if we should create a method data oop
  1631         __ cmp32(rax,
  1632                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1633         __ jcc(Assembler::less, dispatch);
  1635         // if no method data exists, go to profile method
  1636         __ test_method_data_pointer(rax, profile_method);
  1638         if (UseOnStackReplacement) {
  1639           // check for overflow against rbx, which is the MDO taken count
  1640           __ cmp32(rbx,
  1641                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1642           __ jcc(Assembler::below, dispatch);
  1644           // When ProfileInterpreter is on, the backedge_count comes from the
  1645           // MethodData*, which value does not get reset on the call to
  1646           // frequency_counter_overflow().  To avoid excessive calls to the overflow
  1647           // routine while the method is being compiled, add a second test to make
  1648           // sure the overflow function is called only once every overflow_frequency.
  1649           const int overflow_frequency = 1024;
  1650           __ andptr(rbx, overflow_frequency-1);
  1651           __ jcc(Assembler::zero, backedge_counter_overflow);
  1653       } else {
  1654         if (UseOnStackReplacement) {
  1655           // check for overflow against rax, which is the sum of the counters
  1656           __ cmp32(rax,
  1657                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1658           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1663     __ bind(dispatch);
  1666   // Pre-load the next target bytecode into EBX
  1667   __ load_unsigned_byte(rbx, Address(rsi, 0));
  1669   // continue with the bytecode @ target
  1670   // rax,: return bci for jsr's, unused otherwise
  1671   // rbx,: target bytecode
  1672   // rsi: target bcp
  1673   __ dispatch_only(vtos);
  1675   if (UseLoopCounter) {
  1676     if (ProfileInterpreter) {
  1677       // Out-of-line code to allocate method data oop.
  1678       __ bind(profile_method);
  1679       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1680       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1681       __ set_method_data_pointer_for_bcp();
  1682       __ jmp(dispatch);
  1685     if (UseOnStackReplacement) {
  1687       // invocation counter overflow
  1688       __ bind(backedge_counter_overflow);
  1689       __ negptr(rdx);
  1690       __ addptr(rdx, rsi);        // branch bcp
  1691       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx);
  1692       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1694       // rax,: osr nmethod (osr ok) or NULL (osr not possible)
  1695       // rbx,: target bytecode
  1696       // rdx: scratch
  1697       // rdi: locals pointer
  1698       // rsi: bcp
  1699       __ testptr(rax, rax);                      // test result
  1700       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1701       // nmethod may have been invalidated (VM may block upon call_VM return)
  1702       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1703       __ cmpl(rcx, InvalidOSREntryBci);
  1704       __ jcc(Assembler::equal, dispatch);
  1706       // We have the address of an on stack replacement routine in rax,
  1707       // We need to prepare to execute the OSR method. First we must
  1708       // migrate the locals and monitors off of the stack.
  1710       __ mov(rbx, rax);                             // save the nmethod
  1712       const Register thread = rcx;
  1713       __ get_thread(thread);
  1714       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1715       // rax, is OSR buffer, move it to expected parameter location
  1716       __ mov(rcx, rax);
  1718       // pop the interpreter frame
  1719       __ movptr(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1720       __ leave();                                // remove frame anchor
  1721       __ pop(rdi);                               // get return address
  1722       __ mov(rsp, rdx);                          // set sp to sender sp
  1724       // Align stack pointer for compiled code (note that caller is
  1725       // responsible for undoing this fixup by remembering the old SP
  1726       // in an rbp,-relative location)
  1727       __ andptr(rsp, -(StackAlignmentInBytes));
  1729       // push the (possibly adjusted) return address
  1730       __ push(rdi);
  1732       // and begin the OSR nmethod
  1733       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
  1739 void TemplateTable::if_0cmp(Condition cc) {
  1740   transition(itos, vtos);
  1741   // assume branch is more often taken than not (loops use backward branches)
  1742   Label not_taken;
  1743   __ testl(rax, rax);
  1744   __ jcc(j_not(cc), not_taken);
  1745   branch(false, false);
  1746   __ bind(not_taken);
  1747   __ profile_not_taken_branch(rax);
  1751 void TemplateTable::if_icmp(Condition cc) {
  1752   transition(itos, vtos);
  1753   // assume branch is more often taken than not (loops use backward branches)
  1754   Label not_taken;
  1755   __ pop_i(rdx);
  1756   __ cmpl(rdx, rax);
  1757   __ jcc(j_not(cc), not_taken);
  1758   branch(false, false);
  1759   __ bind(not_taken);
  1760   __ profile_not_taken_branch(rax);
  1764 void TemplateTable::if_nullcmp(Condition cc) {
  1765   transition(atos, vtos);
  1766   // assume branch is more often taken than not (loops use backward branches)
  1767   Label not_taken;
  1768   __ testptr(rax, rax);
  1769   __ jcc(j_not(cc), not_taken);
  1770   branch(false, false);
  1771   __ bind(not_taken);
  1772   __ profile_not_taken_branch(rax);
  1776 void TemplateTable::if_acmp(Condition cc) {
  1777   transition(atos, vtos);
  1778   // assume branch is more often taken than not (loops use backward branches)
  1779   Label not_taken;
  1780   __ pop_ptr(rdx);
  1781   __ cmpptr(rdx, rax);
  1782   __ jcc(j_not(cc), not_taken);
  1783   branch(false, false);
  1784   __ bind(not_taken);
  1785   __ profile_not_taken_branch(rax);
  1789 void TemplateTable::ret() {
  1790   transition(vtos, vtos);
  1791   locals_index(rbx);
  1792   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1793   __ profile_ret(rbx, rcx);
  1794   __ get_method(rax);
  1795   __ movptr(rsi, Address(rax, Method::const_offset()));
  1796   __ lea(rsi, Address(rsi, rbx, Address::times_1,
  1797                       ConstMethod::codes_offset()));
  1798   __ dispatch_next(vtos);
  1802 void TemplateTable::wide_ret() {
  1803   transition(vtos, vtos);
  1804   locals_index_wide(rbx);
  1805   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1806   __ profile_ret(rbx, rcx);
  1807   __ get_method(rax);
  1808   __ movptr(rsi, Address(rax, Method::const_offset()));
  1809   __ lea(rsi, Address(rsi, rbx, Address::times_1, ConstMethod::codes_offset()));
  1810   __ dispatch_next(vtos);
  1814 void TemplateTable::tableswitch() {
  1815   Label default_case, continue_execution;
  1816   transition(itos, vtos);
  1817   // align rsi
  1818   __ lea(rbx, at_bcp(wordSize));
  1819   __ andptr(rbx, -wordSize);
  1820   // load lo & hi
  1821   __ movl(rcx, Address(rbx, 1 * wordSize));
  1822   __ movl(rdx, Address(rbx, 2 * wordSize));
  1823   __ bswapl(rcx);
  1824   __ bswapl(rdx);
  1825   // check against lo & hi
  1826   __ cmpl(rax, rcx);
  1827   __ jccb(Assembler::less, default_case);
  1828   __ cmpl(rax, rdx);
  1829   __ jccb(Assembler::greater, default_case);
  1830   // lookup dispatch offset
  1831   __ subl(rax, rcx);
  1832   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1833   __ profile_switch_case(rax, rbx, rcx);
  1834   // continue execution
  1835   __ bind(continue_execution);
  1836   __ bswapl(rdx);
  1837   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1838   __ addptr(rsi, rdx);
  1839   __ dispatch_only(vtos);
  1840   // handle default
  1841   __ bind(default_case);
  1842   __ profile_switch_default(rax);
  1843   __ movl(rdx, Address(rbx, 0));
  1844   __ jmp(continue_execution);
  1848 void TemplateTable::lookupswitch() {
  1849   transition(itos, itos);
  1850   __ stop("lookupswitch bytecode should have been rewritten");
  1854 void TemplateTable::fast_linearswitch() {
  1855   transition(itos, vtos);
  1856   Label loop_entry, loop, found, continue_execution;
  1857   // bswapl rax, so we can avoid bswapping the table entries
  1858   __ bswapl(rax);
  1859   // align rsi
  1860   __ lea(rbx, at_bcp(wordSize));                // btw: should be able to get rid of this instruction (change offsets below)
  1861   __ andptr(rbx, -wordSize);
  1862   // set counter
  1863   __ movl(rcx, Address(rbx, wordSize));
  1864   __ bswapl(rcx);
  1865   __ jmpb(loop_entry);
  1866   // table search
  1867   __ bind(loop);
  1868   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize));
  1869   __ jccb(Assembler::equal, found);
  1870   __ bind(loop_entry);
  1871   __ decrementl(rcx);
  1872   __ jcc(Assembler::greaterEqual, loop);
  1873   // default case
  1874   __ profile_switch_default(rax);
  1875   __ movl(rdx, Address(rbx, 0));
  1876   __ jmpb(continue_execution);
  1877   // entry found -> get offset
  1878   __ bind(found);
  1879   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize));
  1880   __ profile_switch_case(rcx, rax, rbx);
  1881   // continue execution
  1882   __ bind(continue_execution);
  1883   __ bswapl(rdx);
  1884   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1885   __ addptr(rsi, rdx);
  1886   __ dispatch_only(vtos);
  1890 void TemplateTable::fast_binaryswitch() {
  1891   transition(itos, vtos);
  1892   // Implementation using the following core algorithm:
  1893   //
  1894   // int binary_search(int key, LookupswitchPair* array, int n) {
  1895   //   // Binary search according to "Methodik des Programmierens" by
  1896   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1897   //   int i = 0;
  1898   //   int j = n;
  1899   //   while (i+1 < j) {
  1900   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1901   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1902   //     // where a stands for the array and assuming that the (inexisting)
  1903   //     // element a[n] is infinitely big.
  1904   //     int h = (i + j) >> 1;
  1905   //     // i < h < j
  1906   //     if (key < array[h].fast_match()) {
  1907   //       j = h;
  1908   //     } else {
  1909   //       i = h;
  1910   //     }
  1911   //   }
  1912   //   // R: a[i] <= key < a[i+1] or Q
  1913   //   // (i.e., if key is within array, i is the correct index)
  1914   //   return i;
  1915   // }
  1917   // register allocation
  1918   const Register key   = rax;                    // already set (tosca)
  1919   const Register array = rbx;
  1920   const Register i     = rcx;
  1921   const Register j     = rdx;
  1922   const Register h     = rdi;                    // needs to be restored
  1923   const Register temp  = rsi;
  1924   // setup array
  1925   __ save_bcp();
  1927   __ lea(array, at_bcp(3*wordSize));             // btw: should be able to get rid of this instruction (change offsets below)
  1928   __ andptr(array, -wordSize);
  1929   // initialize i & j
  1930   __ xorl(i, i);                                 // i = 0;
  1931   __ movl(j, Address(array, -wordSize));         // j = length(array);
  1932   // Convert j into native byteordering
  1933   __ bswapl(j);
  1934   // and start
  1935   Label entry;
  1936   __ jmp(entry);
  1938   // binary search loop
  1939   { Label loop;
  1940     __ bind(loop);
  1941     // int h = (i + j) >> 1;
  1942     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1943     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1944     // if (key < array[h].fast_match()) {
  1945     //   j = h;
  1946     // } else {
  1947     //   i = h;
  1948     // }
  1949     // Convert array[h].match to native byte-ordering before compare
  1950     __ movl(temp, Address(array, h, Address::times_8, 0*wordSize));
  1951     __ bswapl(temp);
  1952     __ cmpl(key, temp);
  1953     // j = h if (key <  array[h].fast_match())
  1954     __ cmov32(Assembler::less        , j, h);
  1955     // i = h if (key >= array[h].fast_match())
  1956     __ cmov32(Assembler::greaterEqual, i, h);
  1957     // while (i+1 < j)
  1958     __ bind(entry);
  1959     __ leal(h, Address(i, 1));                   // i+1
  1960     __ cmpl(h, j);                               // i+1 < j
  1961     __ jcc(Assembler::less, loop);
  1964   // end of binary search, result index is i (must check again!)
  1965   Label default_case;
  1966   // Convert array[i].match to native byte-ordering before compare
  1967   __ movl(temp, Address(array, i, Address::times_8, 0*wordSize));
  1968   __ bswapl(temp);
  1969   __ cmpl(key, temp);
  1970   __ jcc(Assembler::notEqual, default_case);
  1972   // entry found -> j = offset
  1973   __ movl(j , Address(array, i, Address::times_8, 1*wordSize));
  1974   __ profile_switch_case(i, key, array);
  1975   __ bswapl(j);
  1976   LP64_ONLY(__ movslq(j, j));
  1977   __ restore_bcp();
  1978   __ restore_locals();                           // restore rdi
  1979   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  1981   __ addptr(rsi, j);
  1982   __ dispatch_only(vtos);
  1984   // default case -> j = default offset
  1985   __ bind(default_case);
  1986   __ profile_switch_default(i);
  1987   __ movl(j, Address(array, -2*wordSize));
  1988   __ bswapl(j);
  1989   LP64_ONLY(__ movslq(j, j));
  1990   __ restore_bcp();
  1991   __ restore_locals();                           // restore rdi
  1992   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  1993   __ addptr(rsi, j);
  1994   __ dispatch_only(vtos);
  1998 void TemplateTable::_return(TosState state) {
  1999   transition(state, state);
  2000   assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation
  2002   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2003     assert(state == vtos, "only valid state");
  2004     __ movptr(rax, aaddress(0));
  2005     __ load_klass(rdi, rax);
  2006     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
  2007     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2008     Label skip_register_finalizer;
  2009     __ jcc(Assembler::zero, skip_register_finalizer);
  2011     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax);
  2013     __ bind(skip_register_finalizer);
  2016   __ remove_activation(state, rsi);
  2017   __ jmp(rsi);
  2021 // ----------------------------------------------------------------------------
  2022 // Volatile variables demand their effects be made known to all CPU's in
  2023 // order.  Store buffers on most chips allow reads & writes to reorder; the
  2024 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  2025 // memory barrier (i.e., it's not sufficient that the interpreter does not
  2026 // reorder volatile references, the hardware also must not reorder them).
  2027 //
  2028 // According to the new Java Memory Model (JMM):
  2029 // (1) All volatiles are serialized wrt to each other.
  2030 // ALSO reads & writes act as aquire & release, so:
  2031 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  2032 // the read float up to before the read.  It's OK for non-volatile memory refs
  2033 // that happen before the volatile read to float down below it.
  2034 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  2035 // that happen BEFORE the write float down to after the write.  It's OK for
  2036 // non-volatile memory refs that happen after the volatile write to float up
  2037 // before it.
  2038 //
  2039 // We only put in barriers around volatile refs (they are expensive), not
  2040 // _between_ memory refs (that would require us to track the flavor of the
  2041 // previous memory refs).  Requirements (2) and (3) require some barriers
  2042 // before volatile stores and after volatile loads.  These nearly cover
  2043 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  2044 // case is placed after volatile-stores although it could just as well go
  2045 // before volatile-loads.
  2046 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
  2047   // Helper function to insert a is-volatile test and memory barrier
  2048   if( !os::is_MP() ) return;    // Not needed on single CPU
  2049   __ membar(order_constraint);
  2052 void TemplateTable::resolve_cache_and_index(int byte_no,
  2053                                             Register Rcache,
  2054                                             Register index,
  2055                                             size_t index_size) {
  2056   const Register temp = rbx;
  2057   assert_different_registers(Rcache, index, temp);
  2059   Label resolved;
  2060     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2061     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
  2062     __ cmpl(temp, (int) bytecode());  // have we resolved this bytecode?
  2063     __ jcc(Assembler::equal, resolved);
  2065   // resolve first time through
  2066   address entry;
  2067   switch (bytecode()) {
  2068     case Bytecodes::_getstatic      : // fall through
  2069     case Bytecodes::_putstatic      : // fall through
  2070     case Bytecodes::_getfield       : // fall through
  2071     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);        break;
  2072     case Bytecodes::_invokevirtual  : // fall through
  2073     case Bytecodes::_invokespecial  : // fall through
  2074     case Bytecodes::_invokestatic   : // fall through
  2075     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);         break;
  2076     case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);   break;
  2077     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
  2078     default:
  2079       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
  2080       break;
  2082   __ movl(temp, (int)bytecode());
  2083   __ call_VM(noreg, entry, temp);
  2084   // Update registers with resolved info
  2085   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2086   __ bind(resolved);
  2090 // The cache and index registers must be set before call
  2091 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2092                                               Register cache,
  2093                                               Register index,
  2094                                               Register off,
  2095                                               Register flags,
  2096                                               bool is_static = false) {
  2097   assert_different_registers(cache, index, flags, off);
  2099   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2100   // Field offset
  2101   __ movptr(off, Address(cache, index, Address::times_ptr,
  2102                          in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset())));
  2103   // Flags
  2104   __ movl(flags, Address(cache, index, Address::times_ptr,
  2105            in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset())));
  2107   // klass overwrite register
  2108   if (is_static) {
  2109     __ movptr(obj, Address(cache, index, Address::times_ptr,
  2110                            in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset())));
  2111     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  2112     __ movptr(obj, Address(obj, mirror_offset));
  2116 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2117                                                Register method,
  2118                                                Register itable_index,
  2119                                                Register flags,
  2120                                                bool is_invokevirtual,
  2121                                                bool is_invokevfinal, /*unused*/
  2122                                                bool is_invokedynamic) {
  2123   // setup registers
  2124   const Register cache = rcx;
  2125   const Register index = rdx;
  2126   assert_different_registers(method, flags);
  2127   assert_different_registers(method, cache, index);
  2128   assert_different_registers(itable_index, flags);
  2129   assert_different_registers(itable_index, cache, index);
  2130   // determine constant pool cache field offsets
  2131   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
  2132   const int method_offset = in_bytes(
  2133     ConstantPoolCache::base_offset() +
  2134       ((byte_no == f2_byte)
  2135        ? ConstantPoolCacheEntry::f2_offset()
  2136        : ConstantPoolCacheEntry::f1_offset()));
  2137   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
  2138                                     ConstantPoolCacheEntry::flags_offset());
  2139   // access constant pool cache fields
  2140   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
  2141                                     ConstantPoolCacheEntry::f2_offset());
  2143   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
  2144   resolve_cache_and_index(byte_no, cache, index, index_size);
  2145     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2147   if (itable_index != noreg) {
  2148     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2150   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
  2154 // The registers cache and index expected to be set before call.
  2155 // Correct values of the cache and index registers are preserved.
  2156 void TemplateTable::jvmti_post_field_access(Register cache,
  2157                                             Register index,
  2158                                             bool is_static,
  2159                                             bool has_tos) {
  2160   if (JvmtiExport::can_post_field_access()) {
  2161     // Check to see if a field access watch has been set before we take
  2162     // the time to call into the VM.
  2163     Label L1;
  2164     assert_different_registers(cache, index, rax);
  2165     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2166     __ testl(rax,rax);
  2167     __ jcc(Assembler::zero, L1);
  2169     // cache entry pointer
  2170     __ addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
  2171     __ shll(index, LogBytesPerWord);
  2172     __ addptr(cache, index);
  2173     if (is_static) {
  2174       __ xorptr(rax, rax);      // NULL object reference
  2175     } else {
  2176       __ pop(atos);         // Get the object
  2177       __ verify_oop(rax);
  2178       __ push(atos);        // Restore stack state
  2180     // rax,:   object pointer or NULL
  2181     // cache: cache entry pointer
  2182     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
  2183                rax, cache);
  2184     __ get_cache_and_index_at_bcp(cache, index, 1);
  2185     __ bind(L1);
  2189 void TemplateTable::pop_and_check_object(Register r) {
  2190   __ pop_ptr(r);
  2191   __ null_check(r);  // for field access must check obj.
  2192   __ verify_oop(r);
  2195 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2196   transition(vtos, vtos);
  2198   const Register cache = rcx;
  2199   const Register index = rdx;
  2200   const Register obj   = rcx;
  2201   const Register off   = rbx;
  2202   const Register flags = rax;
  2204   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
  2205   jvmti_post_field_access(cache, index, is_static, false);
  2206   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2208   if (!is_static) pop_and_check_object(obj);
  2210   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2211   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2213   Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2215   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2216   assert(btos == 0, "change code, btos != 0");
  2217   // btos
  2218   __ andptr(flags, ConstantPoolCacheEntry::tos_state_mask);
  2219   __ jcc(Assembler::notZero, notByte);
  2221   __ load_signed_byte(rax, lo );
  2222   __ push(btos);
  2223   // Rewrite bytecode to be faster
  2224   if (!is_static) {
  2225     patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx);
  2227   __ jmp(Done);
  2229   __ bind(notByte);
  2230   // itos
  2231   __ cmpl(flags, itos );
  2232   __ jcc(Assembler::notEqual, notInt);
  2234   __ movl(rax, lo );
  2235   __ push(itos);
  2236   // Rewrite bytecode to be faster
  2237   if (!is_static) {
  2238     patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx);
  2240   __ jmp(Done);
  2242   __ bind(notInt);
  2243   // atos
  2244   __ cmpl(flags, atos );
  2245   __ jcc(Assembler::notEqual, notObj);
  2247   __ movl(rax, lo );
  2248   __ push(atos);
  2249   if (!is_static) {
  2250     patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx);
  2252   __ jmp(Done);
  2254   __ bind(notObj);
  2255   // ctos
  2256   __ cmpl(flags, ctos );
  2257   __ jcc(Assembler::notEqual, notChar);
  2259   __ load_unsigned_short(rax, lo );
  2260   __ push(ctos);
  2261   if (!is_static) {
  2262     patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx);
  2264   __ jmp(Done);
  2266   __ bind(notChar);
  2267   // stos
  2268   __ cmpl(flags, stos );
  2269   __ jcc(Assembler::notEqual, notShort);
  2271   __ load_signed_short(rax, lo );
  2272   __ push(stos);
  2273   if (!is_static) {
  2274     patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx);
  2276   __ jmp(Done);
  2278   __ bind(notShort);
  2279   // ltos
  2280   __ cmpl(flags, ltos );
  2281   __ jcc(Assembler::notEqual, notLong);
  2283   // Generate code as if volatile.  There just aren't enough registers to
  2284   // save that information and this code is faster than the test.
  2285   __ fild_d(lo);                // Must load atomically
  2286   __ subptr(rsp,2*wordSize);    // Make space for store
  2287   __ fistp_d(Address(rsp,0));
  2288   __ pop(rax);
  2289   __ pop(rdx);
  2291   __ push(ltos);
  2292   // Don't rewrite to _fast_lgetfield for potential volatile case.
  2293   __ jmp(Done);
  2295   __ bind(notLong);
  2296   // ftos
  2297   __ cmpl(flags, ftos );
  2298   __ jcc(Assembler::notEqual, notFloat);
  2300   __ fld_s(lo);
  2301   __ push(ftos);
  2302   if (!is_static) {
  2303     patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx);
  2305   __ jmp(Done);
  2307   __ bind(notFloat);
  2308   // dtos
  2309   __ cmpl(flags, dtos );
  2310   __ jcc(Assembler::notEqual, notDouble);
  2312   __ fld_d(lo);
  2313   __ push(dtos);
  2314   if (!is_static) {
  2315     patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx);
  2317   __ jmpb(Done);
  2319   __ bind(notDouble);
  2321   __ stop("Bad state");
  2323   __ bind(Done);
  2324   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2325   // volatile_barrier( );
  2329 void TemplateTable::getfield(int byte_no) {
  2330   getfield_or_static(byte_no, false);
  2334 void TemplateTable::getstatic(int byte_no) {
  2335   getfield_or_static(byte_no, true);
  2338 // The registers cache and index expected to be set before call.
  2339 // The function may destroy various registers, just not the cache and index registers.
  2340 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2342   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2344   if (JvmtiExport::can_post_field_modification()) {
  2345     // Check to see if a field modification watch has been set before we take
  2346     // the time to call into the VM.
  2347     Label L1;
  2348     assert_different_registers(cache, index, rax);
  2349     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2350     __ testl(rax, rax);
  2351     __ jcc(Assembler::zero, L1);
  2353     // The cache and index registers have been already set.
  2354     // This allows to eliminate this call but the cache and index
  2355     // registers have to be correspondingly used after this line.
  2356     __ get_cache_and_index_at_bcp(rax, rdx, 1);
  2358     if (is_static) {
  2359       // Life is simple.  Null out the object pointer.
  2360       __ xorptr(rbx, rbx);
  2361     } else {
  2362       // Life is harder. The stack holds the value on top, followed by the object.
  2363       // We don't know the size of the value, though; it could be one or two words
  2364       // depending on its type. As a result, we must find the type to determine where
  2365       // the object is.
  2366       Label two_word, valsize_known;
  2367       __ movl(rcx, Address(rax, rdx, Address::times_ptr, in_bytes(cp_base_offset +
  2368                                    ConstantPoolCacheEntry::flags_offset())));
  2369       __ mov(rbx, rsp);
  2370       __ shrl(rcx, ConstantPoolCacheEntry::tos_state_shift);
  2371       // Make sure we don't need to mask rcx after the above shift
  2372       ConstantPoolCacheEntry::verify_tos_state_shift();
  2373       __ cmpl(rcx, ltos);
  2374       __ jccb(Assembler::equal, two_word);
  2375       __ cmpl(rcx, dtos);
  2376       __ jccb(Assembler::equal, two_word);
  2377       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
  2378       __ jmpb(valsize_known);
  2380       __ bind(two_word);
  2381       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
  2383       __ bind(valsize_known);
  2384       // setup object pointer
  2385       __ movptr(rbx, Address(rbx, 0));
  2387     // cache entry pointer
  2388     __ addptr(rax, in_bytes(cp_base_offset));
  2389     __ shll(rdx, LogBytesPerWord);
  2390     __ addptr(rax, rdx);
  2391     // object (tos)
  2392     __ mov(rcx, rsp);
  2393     // rbx,: object pointer set up above (NULL if static)
  2394     // rax,: cache entry pointer
  2395     // rcx: jvalue object on the stack
  2396     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
  2397                rbx, rax, rcx);
  2398     __ get_cache_and_index_at_bcp(cache, index, 1);
  2399     __ bind(L1);
  2404 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2405   transition(vtos, vtos);
  2407   const Register cache = rcx;
  2408   const Register index = rdx;
  2409   const Register obj   = rcx;
  2410   const Register off   = rbx;
  2411   const Register flags = rax;
  2413   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
  2414   jvmti_post_field_mod(cache, index, is_static);
  2415   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2417   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2418   // volatile_barrier( );
  2420   Label notVolatile, Done;
  2421   __ movl(rdx, flags);
  2422   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2423   __ andl(rdx, 0x1);
  2425   // field addresses
  2426   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2427   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2429   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2431   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2432   assert(btos == 0, "change code, btos != 0");
  2433   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
  2434   __ jcc(Assembler::notZero, notByte);
  2436   // btos
  2438     __ pop(btos);
  2439     if (!is_static) pop_and_check_object(obj);
  2440     __ movb(lo, rax);
  2441     if (!is_static) {
  2442       patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx, true, byte_no);
  2444     __ jmp(Done);
  2447   __ bind(notByte);
  2448   __ cmpl(flags, itos);
  2449   __ jcc(Assembler::notEqual, notInt);
  2451   // itos
  2453     __ pop(itos);
  2454     if (!is_static) pop_and_check_object(obj);
  2455     __ movl(lo, rax);
  2456     if (!is_static) {
  2457       patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx, true, byte_no);
  2459     __ jmp(Done);
  2462   __ bind(notInt);
  2463   __ cmpl(flags, atos);
  2464   __ jcc(Assembler::notEqual, notObj);
  2466   // atos
  2468     __ pop(atos);
  2469     if (!is_static) pop_and_check_object(obj);
  2470     do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2471     if (!is_static) {
  2472       patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx, true, byte_no);
  2474     __ jmp(Done);
  2477   __ bind(notObj);
  2478   __ cmpl(flags, ctos);
  2479   __ jcc(Assembler::notEqual, notChar);
  2481   // ctos
  2483     __ pop(ctos);
  2484     if (!is_static) pop_and_check_object(obj);
  2485     __ movw(lo, rax);
  2486     if (!is_static) {
  2487       patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx, true, byte_no);
  2489     __ jmp(Done);
  2492   __ bind(notChar);
  2493   __ cmpl(flags, stos);
  2494   __ jcc(Assembler::notEqual, notShort);
  2496   // stos
  2498     __ pop(stos);
  2499     if (!is_static) pop_and_check_object(obj);
  2500     __ movw(lo, rax);
  2501     if (!is_static) {
  2502       patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx, true, byte_no);
  2504     __ jmp(Done);
  2507   __ bind(notShort);
  2508   __ cmpl(flags, ltos);
  2509   __ jcc(Assembler::notEqual, notLong);
  2511   // ltos
  2513     Label notVolatileLong;
  2514     __ testl(rdx, rdx);
  2515     __ jcc(Assembler::zero, notVolatileLong);
  2517     __ pop(ltos);  // overwrites rdx, do this after testing volatile.
  2518     if (!is_static) pop_and_check_object(obj);
  2520     // Replace with real volatile test
  2521     __ push(rdx);
  2522     __ push(rax);                 // Must update atomically with FIST
  2523     __ fild_d(Address(rsp,0));    // So load into FPU register
  2524     __ fistp_d(lo);               // and put into memory atomically
  2525     __ addptr(rsp, 2*wordSize);
  2526     // volatile_barrier();
  2527     volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2528                                                  Assembler::StoreStore));
  2529     // Don't rewrite volatile version
  2530     __ jmp(notVolatile);
  2532     __ bind(notVolatileLong);
  2534     __ pop(ltos);  // overwrites rdx
  2535     if (!is_static) pop_and_check_object(obj);
  2536     NOT_LP64(__ movptr(hi, rdx));
  2537     __ movptr(lo, rax);
  2538     if (!is_static) {
  2539       patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx, true, byte_no);
  2541     __ jmp(notVolatile);
  2544   __ bind(notLong);
  2545   __ cmpl(flags, ftos);
  2546   __ jcc(Assembler::notEqual, notFloat);
  2548   // ftos
  2550     __ pop(ftos);
  2551     if (!is_static) pop_and_check_object(obj);
  2552     __ fstp_s(lo);
  2553     if (!is_static) {
  2554       patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx, true, byte_no);
  2556     __ jmp(Done);
  2559   __ bind(notFloat);
  2560 #ifdef ASSERT
  2561   __ cmpl(flags, dtos);
  2562   __ jcc(Assembler::notEqual, notDouble);
  2563 #endif
  2565   // dtos
  2567     __ pop(dtos);
  2568     if (!is_static) pop_and_check_object(obj);
  2569     __ fstp_d(lo);
  2570     if (!is_static) {
  2571       patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx, true, byte_no);
  2573     __ jmp(Done);
  2576 #ifdef ASSERT
  2577   __ bind(notDouble);
  2578   __ stop("Bad state");
  2579 #endif
  2581   __ bind(Done);
  2583   // Check for volatile store
  2584   __ testl(rdx, rdx);
  2585   __ jcc(Assembler::zero, notVolatile);
  2586   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2587                                                Assembler::StoreStore));
  2588   __ bind(notVolatile);
  2592 void TemplateTable::putfield(int byte_no) {
  2593   putfield_or_static(byte_no, false);
  2597 void TemplateTable::putstatic(int byte_no) {
  2598   putfield_or_static(byte_no, true);
  2601 void TemplateTable::jvmti_post_fast_field_mod() {
  2602   if (JvmtiExport::can_post_field_modification()) {
  2603     // Check to see if a field modification watch has been set before we take
  2604     // the time to call into the VM.
  2605     Label L2;
  2606      __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2607      __ testl(rcx,rcx);
  2608      __ jcc(Assembler::zero, L2);
  2609      __ pop_ptr(rbx);               // copy the object pointer from tos
  2610      __ verify_oop(rbx);
  2611      __ push_ptr(rbx);              // put the object pointer back on tos
  2613      // Save tos values before call_VM() clobbers them. Since we have
  2614      // to do it for every data type, we use the saved values as the
  2615      // jvalue object.
  2616      switch (bytecode()) {          // load values into the jvalue object
  2617      case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
  2618      case Bytecodes::_fast_bputfield: // fall through
  2619      case Bytecodes::_fast_sputfield: // fall through
  2620      case Bytecodes::_fast_cputfield: // fall through
  2621      case Bytecodes::_fast_iputfield: __ push_i(rax); break;
  2622      case Bytecodes::_fast_dputfield: __ push_d(); break;
  2623      case Bytecodes::_fast_fputfield: __ push_f(); break;
  2624      case Bytecodes::_fast_lputfield: __ push_l(rax); break;
  2626      default:
  2627        ShouldNotReachHere();
  2629      __ mov(rcx, rsp);              // points to jvalue on the stack
  2630      // access constant pool cache entry
  2631      __ get_cache_entry_pointer_at_bcp(rax, rdx, 1);
  2632      __ verify_oop(rbx);
  2633      // rbx,: object pointer copied above
  2634      // rax,: cache entry pointer
  2635      // rcx: jvalue object on the stack
  2636      __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx);
  2638      switch (bytecode()) {             // restore tos values
  2639      case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
  2640      case Bytecodes::_fast_bputfield: // fall through
  2641      case Bytecodes::_fast_sputfield: // fall through
  2642      case Bytecodes::_fast_cputfield: // fall through
  2643      case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
  2644      case Bytecodes::_fast_dputfield: __ pop_d(); break;
  2645      case Bytecodes::_fast_fputfield: __ pop_f(); break;
  2646      case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
  2648      __ bind(L2);
  2652 void TemplateTable::fast_storefield(TosState state) {
  2653   transition(state, vtos);
  2655   ByteSize base = ConstantPoolCache::base_offset();
  2657   jvmti_post_fast_field_mod();
  2659   // access constant pool cache
  2660   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2662   // test for volatile with rdx but rdx is tos register for lputfield.
  2663   if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
  2664   __ movl(rdx, Address(rcx, rbx, Address::times_ptr, in_bytes(base +
  2665                        ConstantPoolCacheEntry::flags_offset())));
  2667   // replace index with field offset from cache entry
  2668   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2670   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2671   // volatile_barrier( );
  2673   Label notVolatile, Done;
  2674   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2675   __ andl(rdx, 0x1);
  2676   // Check for volatile store
  2677   __ testl(rdx, rdx);
  2678   __ jcc(Assembler::zero, notVolatile);
  2680   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
  2682   // Get object from stack
  2683   pop_and_check_object(rcx);
  2685   // field addresses
  2686   const Address lo(rcx, rbx, Address::times_1, 0*wordSize);
  2687   const Address hi(rcx, rbx, Address::times_1, 1*wordSize);
  2689   // access field
  2690   switch (bytecode()) {
  2691     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2692     case Bytecodes::_fast_sputfield: // fall through
  2693     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2694     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2695     case Bytecodes::_fast_lputfield:
  2696       NOT_LP64(__ movptr(hi, rdx));
  2697       __ movptr(lo, rax);
  2698       break;
  2699     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2700     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2701     case Bytecodes::_fast_aputfield: {
  2702       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2703       break;
  2705     default:
  2706       ShouldNotReachHere();
  2709   Label done;
  2710   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2711                                                Assembler::StoreStore));
  2712   // Barriers are so large that short branch doesn't reach!
  2713   __ jmp(done);
  2715   // Same code as above, but don't need rdx to test for volatile.
  2716   __ bind(notVolatile);
  2718   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
  2720   // Get object from stack
  2721   pop_and_check_object(rcx);
  2723   // access field
  2724   switch (bytecode()) {
  2725     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2726     case Bytecodes::_fast_sputfield: // fall through
  2727     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2728     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2729     case Bytecodes::_fast_lputfield:
  2730       NOT_LP64(__ movptr(hi, rdx));
  2731       __ movptr(lo, rax);
  2732       break;
  2733     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2734     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2735     case Bytecodes::_fast_aputfield: {
  2736       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2737       break;
  2739     default:
  2740       ShouldNotReachHere();
  2742   __ bind(done);
  2746 void TemplateTable::fast_accessfield(TosState state) {
  2747   transition(atos, state);
  2749   // do the JVMTI work here to avoid disturbing the register state below
  2750   if (JvmtiExport::can_post_field_access()) {
  2751     // Check to see if a field access watch has been set before we take
  2752     // the time to call into the VM.
  2753     Label L1;
  2754     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2755     __ testl(rcx,rcx);
  2756     __ jcc(Assembler::zero, L1);
  2757     // access constant pool cache entry
  2758     __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1);
  2759     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2760     __ verify_oop(rax);
  2761     // rax,: object pointer copied above
  2762     // rcx: cache entry pointer
  2763     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx);
  2764     __ pop_ptr(rax);   // restore object pointer
  2765     __ bind(L1);
  2768   // access constant pool cache
  2769   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2770   // replace index with field offset from cache entry
  2771   __ movptr(rbx, Address(rcx,
  2772                          rbx,
  2773                          Address::times_ptr,
  2774                          in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2777   // rax,: object
  2778   __ verify_oop(rax);
  2779   __ null_check(rax);
  2780   // field addresses
  2781   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2782   const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize);
  2784   // access field
  2785   switch (bytecode()) {
  2786     case Bytecodes::_fast_bgetfield: __ movsbl(rax, lo );                 break;
  2787     case Bytecodes::_fast_sgetfield: __ load_signed_short(rax, lo );      break;
  2788     case Bytecodes::_fast_cgetfield: __ load_unsigned_short(rax, lo );    break;
  2789     case Bytecodes::_fast_igetfield: __ movl(rax, lo);                    break;
  2790     case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten");  break;
  2791     case Bytecodes::_fast_fgetfield: __ fld_s(lo);                        break;
  2792     case Bytecodes::_fast_dgetfield: __ fld_d(lo);                        break;
  2793     case Bytecodes::_fast_agetfield: __ movptr(rax, lo); __ verify_oop(rax); break;
  2794     default:
  2795       ShouldNotReachHere();
  2798   // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO)
  2799   // volatile_barrier( );
  2802 void TemplateTable::fast_xaccess(TosState state) {
  2803   transition(vtos, state);
  2804   // get receiver
  2805   __ movptr(rax, aaddress(0));
  2806   // access constant pool cache
  2807   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2808   __ movptr(rbx, Address(rcx,
  2809                          rdx,
  2810                          Address::times_ptr,
  2811                          in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2812   // make sure exception is reported in correct bcp range (getfield is next instruction)
  2813   __ increment(rsi);
  2814   __ null_check(rax);
  2815   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2816   if (state == itos) {
  2817     __ movl(rax, lo);
  2818   } else if (state == atos) {
  2819     __ movptr(rax, lo);
  2820     __ verify_oop(rax);
  2821   } else if (state == ftos) {
  2822     __ fld_s(lo);
  2823   } else {
  2824     ShouldNotReachHere();
  2826   __ decrement(rsi);
  2831 //----------------------------------------------------------------------------------------------------
  2832 // Calls
  2834 void TemplateTable::count_calls(Register method, Register temp) {
  2835   // implemented elsewhere
  2836   ShouldNotReachHere();
  2840 void TemplateTable::prepare_invoke(int byte_no,
  2841                                    Register method,  // linked method (or i-klass)
  2842                                    Register index,   // itable index, MethodType, etc.
  2843                                    Register recv,    // if caller wants to see it
  2844                                    Register flags    // if caller wants to test it
  2845                                    ) {
  2846   // determine flags
  2847   const Bytecodes::Code code = bytecode();
  2848   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2849   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2850   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
  2851   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2852   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2853   const bool load_receiver       = (recv  != noreg);
  2854   const bool save_flags          = (flags != noreg);
  2855   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
  2856   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
  2857   assert(flags == noreg || flags == rdx, "");
  2858   assert(recv  == noreg || recv  == rcx, "");
  2860   // setup registers & access constant pool cache
  2861   if (recv  == noreg)  recv  = rcx;
  2862   if (flags == noreg)  flags = rdx;
  2863   assert_different_registers(method, index, recv, flags);
  2865   // save 'interpreter return address'
  2866   __ save_bcp();
  2868   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2870   // maybe push appendix to arguments (just before return address)
  2871   if (is_invokedynamic || is_invokehandle) {
  2872     Label L_no_push;
  2873     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
  2874     __ jccb(Assembler::zero, L_no_push);
  2875     // Push the appendix as a trailing parameter.
  2876     // This must be done before we get the receiver,
  2877     // since the parameter_size includes it.
  2878     __ push(rbx);
  2879     __ mov(rbx, index);
  2880     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
  2881     __ load_resolved_reference_at_index(index, rbx);
  2882     __ pop(rbx);
  2883     __ push(index);  // push appendix (MethodType, CallSite, etc.)
  2884     __ bind(L_no_push);
  2887   // load receiver if needed (note: no return address pushed yet)
  2888   if (load_receiver) {
  2889     __ movl(recv, flags);
  2890     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
  2891     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
  2892     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
  2893     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
  2894     __ movptr(recv, recv_addr);
  2895     __ verify_oop(recv);
  2898   if (save_flags) {
  2899     __ mov(rsi, flags);
  2902   // compute return type
  2903   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2904   // Make sure we don't need to mask flags after the above shift
  2905   ConstantPoolCacheEntry::verify_tos_state_shift();
  2906   // load return address
  2908     const address table_addr = (is_invokeinterface || is_invokedynamic) ?
  2909         (address)Interpreter::return_5_addrs_by_index_table() :
  2910         (address)Interpreter::return_3_addrs_by_index_table();
  2911     ExternalAddress table(table_addr);
  2912     __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)));
  2915   // push return address
  2916   __ push(flags);
  2918   // Restore flags value from the constant pool cache, and restore rsi
  2919   // for later null checks.  rsi is the bytecode pointer
  2920   if (save_flags) {
  2921     __ mov(flags, rsi);
  2922     __ restore_bcp();
  2927 void TemplateTable::invokevirtual_helper(Register index,
  2928                                          Register recv,
  2929                                          Register flags) {
  2930   // Uses temporary registers rax, rdx
  2931   assert_different_registers(index, recv, rax, rdx);
  2932   assert(index == rbx, "");
  2933   assert(recv  == rcx, "");
  2935   // Test for an invoke of a final method
  2936   Label notFinal;
  2937   __ movl(rax, flags);
  2938   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
  2939   __ jcc(Assembler::zero, notFinal);
  2941   const Register method = index;  // method must be rbx
  2942   assert(method == rbx,
  2943          "Method* must be rbx for interpreter calling convention");
  2945   // do the call - the index is actually the method to call
  2946   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
  2948   // It's final, need a null check here!
  2949   __ null_check(recv);
  2951   // profile this call
  2952   __ profile_final_call(rax);
  2954   __ jump_from_interpreted(method, rax);
  2956   __ bind(notFinal);
  2958   // get receiver klass
  2959   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  2960   __ load_klass(rax, recv);
  2962   // profile this call
  2963   __ profile_virtual_call(rax, rdi, rdx);
  2965   // get target Method* & entry point
  2966   __ lookup_virtual_method(rax, index, method);
  2967   __ jump_from_interpreted(method, rdx);
  2971 void TemplateTable::invokevirtual(int byte_no) {
  2972   transition(vtos, vtos);
  2973   assert(byte_no == f2_byte, "use this argument");
  2974   prepare_invoke(byte_no,
  2975                  rbx,    // method or vtable index
  2976                  noreg,  // unused itable index
  2977                  rcx, rdx); // recv, flags
  2979   // rbx: index
  2980   // rcx: receiver
  2981   // rdx: flags
  2983   invokevirtual_helper(rbx, rcx, rdx);
  2987 void TemplateTable::invokespecial(int byte_no) {
  2988   transition(vtos, vtos);
  2989   assert(byte_no == f1_byte, "use this argument");
  2990   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
  2991                  rcx);  // get receiver also for null check
  2992   __ verify_oop(rcx);
  2993   __ null_check(rcx);
  2994   // do the call
  2995   __ profile_call(rax);
  2996   __ jump_from_interpreted(rbx, rax);
  3000 void TemplateTable::invokestatic(int byte_no) {
  3001   transition(vtos, vtos);
  3002   assert(byte_no == f1_byte, "use this argument");
  3003   prepare_invoke(byte_no, rbx);  // get f1 Method*
  3004   // do the call
  3005   __ profile_call(rax);
  3006   __ jump_from_interpreted(rbx, rax);
  3010 void TemplateTable::fast_invokevfinal(int byte_no) {
  3011   transition(vtos, vtos);
  3012   assert(byte_no == f2_byte, "use this argument");
  3013   __ stop("fast_invokevfinal not used on x86");
  3017 void TemplateTable::invokeinterface(int byte_no) {
  3018   transition(vtos, vtos);
  3019   assert(byte_no == f1_byte, "use this argument");
  3020   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 itable index
  3021                  rcx, rdx); // recv, flags
  3023   // rax: interface klass (from f1)
  3024   // rbx: itable index (from f2)
  3025   // rcx: receiver
  3026   // rdx: flags
  3028   // Special case of invokeinterface called for virtual method of
  3029   // java.lang.Object.  See cpCacheOop.cpp for details.
  3030   // This code isn't produced by javac, but could be produced by
  3031   // another compliant java compiler.
  3032   Label notMethod;
  3033   __ movl(rdi, rdx);
  3034   __ andl(rdi, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
  3035   __ jcc(Assembler::zero, notMethod);
  3037   invokevirtual_helper(rbx, rcx, rdx);
  3038   __ bind(notMethod);
  3040   // Get receiver klass into rdx - also a null check
  3041   __ restore_locals();  // restore rdi
  3042   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
  3043   __ load_klass(rdx, rcx);
  3045   // profile this call
  3046   __ profile_virtual_call(rdx, rsi, rdi);
  3048   Label no_such_interface, no_such_method;
  3050   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3051                              rdx, rax, rbx,
  3052                              // outputs: method, scan temp. reg
  3053                              rbx, rsi,
  3054                              no_such_interface);
  3056   // rbx: Method* to call
  3057   // rcx: receiver
  3058   // Check for abstract method error
  3059   // Note: This should be done more efficiently via a throw_abstract_method_error
  3060   //       interpreter entry point and a conditional jump to it in case of a null
  3061   //       method.
  3062   __ testptr(rbx, rbx);
  3063   __ jcc(Assembler::zero, no_such_method);
  3065   // do the call
  3066   // rcx: receiver
  3067   // rbx,: Method*
  3068   __ jump_from_interpreted(rbx, rdx);
  3069   __ should_not_reach_here();
  3071   // exception handling code follows...
  3072   // note: must restore interpreter registers to canonical
  3073   //       state for exception handling to work correctly!
  3075   __ bind(no_such_method);
  3076   // throw exception
  3077   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3078   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3079   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3080   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3081   // the call_VM checks for exception, so we should never return here.
  3082   __ should_not_reach_here();
  3084   __ bind(no_such_interface);
  3085   // throw exception
  3086   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3087   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3088   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3089   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3090                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3091   // the call_VM checks for exception, so we should never return here.
  3092   __ should_not_reach_here();
  3095 void TemplateTable::invokehandle(int byte_no) {
  3096   transition(vtos, vtos);
  3097   assert(byte_no == f1_byte, "use this argument");
  3098   const Register rbx_method = rbx;
  3099   const Register rax_mtype  = rax;
  3100   const Register rcx_recv   = rcx;
  3101   const Register rdx_flags  = rdx;
  3103   if (!EnableInvokeDynamic) {
  3104     // rewriter does not generate this bytecode
  3105     __ should_not_reach_here();
  3106     return;
  3109   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
  3110   __ verify_method_ptr(rbx_method);
  3111   __ verify_oop(rcx_recv);
  3112   __ null_check(rcx_recv);
  3114   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
  3115   // rbx: MH.invokeExact_MT method (from f2)
  3117   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
  3119   // FIXME: profile the LambdaForm also
  3120   __ profile_final_call(rax);
  3122   __ jump_from_interpreted(rbx_method, rdx);
  3126 void TemplateTable::invokedynamic(int byte_no) {
  3127   transition(vtos, vtos);
  3128   assert(byte_no == f1_byte, "use this argument");
  3130   if (!EnableInvokeDynamic) {
  3131     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3132     // The verifier will stop it.  However, if we get past the verifier,
  3133     // this will stop the thread in a reasonable way, without crashing the JVM.
  3134     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3135                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3136     // the call_VM checks for exception, so we should never return here.
  3137     __ should_not_reach_here();
  3138     return;
  3141   const Register rbx_method   = rbx;
  3142   const Register rax_callsite = rax;
  3144   prepare_invoke(byte_no, rbx_method, rax_callsite);
  3146   // rax: CallSite object (from cpool->resolved_references[f1])
  3147   // rbx: MH.linkToCallSite method (from f2)
  3149   // Note:  rax_callsite is already pushed by prepare_invoke
  3151   // %%% should make a type profile for any invokedynamic that takes a ref argument
  3152   // profile this call
  3153   __ profile_call(rsi);
  3155   __ verify_oop(rax_callsite);
  3157   __ jump_from_interpreted(rbx_method, rdx);
  3160 //----------------------------------------------------------------------------------------------------
  3161 // Allocation
  3163 void TemplateTable::_new() {
  3164   transition(vtos, atos);
  3165   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3166   Label slow_case;
  3167   Label slow_case_no_pop;
  3168   Label done;
  3169   Label initialize_header;
  3170   Label initialize_object;  // including clearing the fields
  3171   Label allocate_shared;
  3173   __ get_cpool_and_tags(rcx, rax);
  3175   // Make sure the class we're about to instantiate has been resolved.
  3176   // This is done before loading InstanceKlass to be consistent with the order
  3177   // how Constant Pool is updated (see ConstantPool::klass_at_put)
  3178   const int tags_offset = Array<u1>::base_offset_in_bytes();
  3179   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
  3180   __ jcc(Assembler::notEqual, slow_case_no_pop);
  3182   // get InstanceKlass
  3183   __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(ConstantPool)));
  3184   __ push(rcx);  // save the contexts of klass for initializing the header
  3186   // make sure klass is initialized & doesn't have finalizer
  3187   // make sure klass is fully initialized
  3188   __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
  3189   __ jcc(Assembler::notEqual, slow_case);
  3191   // get instance_size in InstanceKlass (scaled to a count of bytes)
  3192   __ movl(rdx, Address(rcx, Klass::layout_helper_offset()));
  3193   // test to see if it has a finalizer or is malformed in some way
  3194   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3195   __ jcc(Assembler::notZero, slow_case);
  3197   //
  3198   // Allocate the instance
  3199   // 1) Try to allocate in the TLAB
  3200   // 2) if fail and the object is large allocate in the shared Eden
  3201   // 3) if the above fails (or is not applicable), go to a slow case
  3202   // (creates a new TLAB, etc.)
  3204   const bool allow_shared_alloc =
  3205     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3207   const Register thread = rcx;
  3208   if (UseTLAB || allow_shared_alloc) {
  3209     __ get_thread(thread);
  3212   if (UseTLAB) {
  3213     __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
  3214     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3215     __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
  3216     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3217     __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3218     if (ZeroTLAB) {
  3219       // the fields have been already cleared
  3220       __ jmp(initialize_header);
  3221     } else {
  3222       // initialize both the header and fields
  3223       __ jmp(initialize_object);
  3227   // Allocation in the shared Eden, if allowed.
  3228   //
  3229   // rdx: instance size in bytes
  3230   if (allow_shared_alloc) {
  3231     __ bind(allocate_shared);
  3233     ExternalAddress heap_top((address)Universe::heap()->top_addr());
  3235     Label retry;
  3236     __ bind(retry);
  3237     __ movptr(rax, heap_top);
  3238     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3239     __ cmpptr(rbx, ExternalAddress((address)Universe::heap()->end_addr()));
  3240     __ jcc(Assembler::above, slow_case);
  3242     // Compare rax, with the top addr, and if still equal, store the new
  3243     // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
  3244     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3245     //
  3246     // rax,: object begin
  3247     // rbx,: object end
  3248     // rdx: instance size in bytes
  3249     __ locked_cmpxchgptr(rbx, heap_top);
  3251     // if someone beat us on the allocation, try again, otherwise continue
  3252     __ jcc(Assembler::notEqual, retry);
  3254     __ incr_allocated_bytes(thread, rdx, 0);
  3257   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3258     // The object is initialized before the header.  If the object size is
  3259     // zero, go directly to the header initialization.
  3260     __ bind(initialize_object);
  3261     __ decrement(rdx, sizeof(oopDesc));
  3262     __ jcc(Assembler::zero, initialize_header);
  3264     // Initialize topmost object field, divide rdx by 8, check if odd and
  3265     // test if zero.
  3266     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
  3267     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
  3269     // rdx must have been multiple of 8
  3270 #ifdef ASSERT
  3271     // make sure rdx was multiple of 8
  3272     Label L;
  3273     // Ignore partial flag stall after shrl() since it is debug VM
  3274     __ jccb(Assembler::carryClear, L);
  3275     __ stop("object size is not multiple of 2 - adjust this code");
  3276     __ bind(L);
  3277     // rdx must be > 0, no extra check needed here
  3278 #endif
  3280     // initialize remaining object fields: rdx was a multiple of 8
  3281     { Label loop;
  3282     __ bind(loop);
  3283     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
  3284     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
  3285     __ decrement(rdx);
  3286     __ jcc(Assembler::notZero, loop);
  3289     // initialize object header only.
  3290     __ bind(initialize_header);
  3291     if (UseBiasedLocking) {
  3292       __ pop(rcx);   // get saved klass back in the register.
  3293       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset()));
  3294       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
  3295     } else {
  3296       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
  3297                 (int32_t)markOopDesc::prototype()); // header
  3298       __ pop(rcx);   // get saved klass back in the register.
  3300     __ store_klass(rax, rcx);  // klass
  3303       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
  3304       // Trigger dtrace event for fastpath
  3305       __ push(atos);
  3306       __ call_VM_leaf(
  3307            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3308       __ pop(atos);
  3311     __ jmp(done);
  3314   // slow case
  3315   __ bind(slow_case);
  3316   __ pop(rcx);   // restore stack pointer to what it was when we came in.
  3317   __ bind(slow_case_no_pop);
  3318   __ get_constant_pool(rax);
  3319   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3320   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx);
  3322   // continue
  3323   __ bind(done);
  3327 void TemplateTable::newarray() {
  3328   transition(itos, atos);
  3329   __ push_i(rax);                                 // make sure everything is on the stack
  3330   __ load_unsigned_byte(rdx, at_bcp(1));
  3331   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax);
  3332   __ pop_i(rdx);                                  // discard size
  3336 void TemplateTable::anewarray() {
  3337   transition(itos, atos);
  3338   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3339   __ get_constant_pool(rcx);
  3340   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax);
  3344 void TemplateTable::arraylength() {
  3345   transition(atos, itos);
  3346   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3347   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3351 void TemplateTable::checkcast() {
  3352   transition(atos, atos);
  3353   Label done, is_null, ok_is_subtype, quicked, resolved;
  3354   __ testptr(rax, rax);   // Object is in EAX
  3355   __ jcc(Assembler::zero, is_null);
  3357   // Get cpool & tags index
  3358   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3359   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3360   // See if bytecode has already been quicked
  3361   __ cmpb(Address(rdx, rbx, Address::times_1, Array<u1>::base_offset_in_bytes()), JVM_CONSTANT_Class);
  3362   __ jcc(Assembler::equal, quicked);
  3364   __ push(atos);
  3365   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3366   // vm_result_2 has metadata result
  3367   // borrow rdi from locals
  3368   __ get_thread(rdi);
  3369   __ get_vm_result_2(rax, rdi);
  3370   __ restore_locals();
  3371   __ pop_ptr(rdx);
  3372   __ jmpb(resolved);
  3374   // Get superklass in EAX and subklass in EBX
  3375   __ bind(quicked);
  3376   __ mov(rdx, rax);          // Save object in EDX; EAX needed for subtype check
  3377   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(ConstantPool)));
  3379   __ bind(resolved);
  3380   __ load_klass(rbx, rdx);
  3382   // Generate subtype check.  Blows ECX.  Resets EDI.  Object in EDX.
  3383   // Superklass in EAX.  Subklass in EBX.
  3384   __ gen_subtype_check( rbx, ok_is_subtype );
  3386   // Come here on failure
  3387   __ push(rdx);
  3388   // object is at TOS
  3389   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3391   // Come here on success
  3392   __ bind(ok_is_subtype);
  3393   __ mov(rax,rdx);           // Restore object in EDX
  3395   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3396   if (ProfileInterpreter) {
  3397     __ jmp(done);
  3398     __ bind(is_null);
  3399     __ profile_null_seen(rcx);
  3400   } else {
  3401     __ bind(is_null);   // same as 'done'
  3403   __ bind(done);
  3407 void TemplateTable::instanceof() {
  3408   transition(atos, itos);
  3409   Label done, is_null, ok_is_subtype, quicked, resolved;
  3410   __ testptr(rax, rax);
  3411   __ jcc(Assembler::zero, is_null);
  3413   // Get cpool & tags index
  3414   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3415   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3416   // See if bytecode has already been quicked
  3417   __ cmpb(Address(rdx, rbx, Address::times_1, Array<u1>::base_offset_in_bytes()), JVM_CONSTANT_Class);
  3418   __ jcc(Assembler::equal, quicked);
  3420   __ push(atos);
  3421   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3422   // vm_result_2 has metadata result
  3423   // borrow rdi from locals
  3424   __ get_thread(rdi);
  3425   __ get_vm_result_2(rax, rdi);
  3426   __ restore_locals();
  3427   __ pop_ptr(rdx);
  3428   __ load_klass(rdx, rdx);
  3429   __ jmp(resolved);
  3431   // Get superklass in EAX and subklass in EDX
  3432   __ bind(quicked);
  3433   __ load_klass(rdx, rax);
  3434   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(ConstantPool)));
  3436   __ bind(resolved);
  3438   // Generate subtype check.  Blows ECX.  Resets EDI.
  3439   // Superklass in EAX.  Subklass in EDX.
  3440   __ gen_subtype_check( rdx, ok_is_subtype );
  3442   // Come here on failure
  3443   __ xorl(rax,rax);
  3444   __ jmpb(done);
  3445   // Come here on success
  3446   __ bind(ok_is_subtype);
  3447   __ movl(rax, 1);
  3449   // Collect counts on whether this test sees NULLs a lot or not.
  3450   if (ProfileInterpreter) {
  3451     __ jmp(done);
  3452     __ bind(is_null);
  3453     __ profile_null_seen(rcx);
  3454   } else {
  3455     __ bind(is_null);   // same as 'done'
  3457   __ bind(done);
  3458   // rax, = 0: obj == NULL or  obj is not an instanceof the specified klass
  3459   // rax, = 1: obj != NULL and obj is     an instanceof the specified klass
  3463 //----------------------------------------------------------------------------------------------------
  3464 // Breakpoints
  3465 void TemplateTable::_breakpoint() {
  3467   // Note: We get here even if we are single stepping..
  3468   // jbug inists on setting breakpoints at every bytecode
  3469   // even if we are in single step mode.
  3471   transition(vtos, vtos);
  3473   // get the unpatched byte code
  3474   __ get_method(rcx);
  3475   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi);
  3476   __ mov(rbx, rax);
  3478   // post the breakpoint event
  3479   __ get_method(rcx);
  3480   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi);
  3482   // complete the execution of original bytecode
  3483   __ dispatch_only_normal(vtos);
  3487 //----------------------------------------------------------------------------------------------------
  3488 // Exceptions
  3490 void TemplateTable::athrow() {
  3491   transition(atos, vtos);
  3492   __ null_check(rax);
  3493   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3497 //----------------------------------------------------------------------------------------------------
  3498 // Synchronization
  3499 //
  3500 // Note: monitorenter & exit are symmetric routines; which is reflected
  3501 //       in the assembly code structure as well
  3502 //
  3503 // Stack layout:
  3504 //
  3505 // [expressions  ] <--- rsp               = expression stack top
  3506 // ..
  3507 // [expressions  ]
  3508 // [monitor entry] <--- monitor block top = expression stack bot
  3509 // ..
  3510 // [monitor entry]
  3511 // [frame data   ] <--- monitor block bot
  3512 // ...
  3513 // [saved rbp,    ] <--- rbp,
  3516 void TemplateTable::monitorenter() {
  3517   transition(atos, vtos);
  3519   // check for NULL object
  3520   __ null_check(rax);
  3522   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3523   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3524   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3525   Label allocated;
  3527   // initialize entry pointer
  3528   __ xorl(rdx, rdx);                             // points to free slot or NULL
  3530   // find a free slot in the monitor block (result in rdx)
  3531   { Label entry, loop, exit;
  3532     __ movptr(rcx, monitor_block_top);           // points to current entry, starting with top-most entry
  3534     __ lea(rbx, monitor_block_bot);              // points to word before bottom of monitor block
  3535     __ jmpb(entry);
  3537     __ bind(loop);
  3538     __ cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
  3539     __ cmovptr(Assembler::equal, rdx, rcx);      // if not used then remember entry in rdx
  3540     __ cmpptr(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3541     __ jccb(Assembler::equal, exit);             // if same object then stop searching
  3542     __ addptr(rcx, entry_size);                  // otherwise advance to next entry
  3543     __ bind(entry);
  3544     __ cmpptr(rcx, rbx);                         // check if bottom reached
  3545     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3546     __ bind(exit);
  3549   __ testptr(rdx, rdx);                          // check if a slot has been found
  3550   __ jccb(Assembler::notZero, allocated);        // if found, continue with that one
  3552   // allocate one if there's no free slot
  3553   { Label entry, loop;
  3554     // 1. compute new pointers                   // rsp: old expression stack top
  3555     __ movptr(rdx, monitor_block_bot);           // rdx: old expression stack bottom
  3556     __ subptr(rsp, entry_size);                  // move expression stack top
  3557     __ subptr(rdx, entry_size);                  // move expression stack bottom
  3558     __ mov(rcx, rsp);                            // set start value for copy loop
  3559     __ movptr(monitor_block_bot, rdx);           // set new monitor block top
  3560     __ jmp(entry);
  3561     // 2. move expression stack contents
  3562     __ bind(loop);
  3563     __ movptr(rbx, Address(rcx, entry_size));    // load expression stack word from old location
  3564     __ movptr(Address(rcx, 0), rbx);             // and store it at new location
  3565     __ addptr(rcx, wordSize);                    // advance to next word
  3566     __ bind(entry);
  3567     __ cmpptr(rcx, rdx);                         // check if bottom reached
  3568     __ jcc(Assembler::notEqual, loop);           // if not at bottom then copy next word
  3571   // call run-time routine
  3572   // rdx: points to monitor entry
  3573   __ bind(allocated);
  3575   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  3576   // The object has already been poped from the stack, so the expression stack looks correct.
  3577   __ increment(rsi);
  3579   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax);     // store object
  3580   __ lock_object(rdx);
  3582   // check to make sure this monitor doesn't cause stack overflow after locking
  3583   __ save_bcp();  // in case of exception
  3584   __ generate_stack_overflow_check(0);
  3586   // The bcp has already been incremented. Just need to dispatch to next instruction.
  3587   __ dispatch_next(vtos);
  3591 void TemplateTable::monitorexit() {
  3592   transition(atos, vtos);
  3594   // check for NULL object
  3595   __ null_check(rax);
  3597   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3598   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3599   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3600   Label found;
  3602   // find matching slot
  3603   { Label entry, loop;
  3604     __ movptr(rdx, monitor_block_top);           // points to current entry, starting with top-most entry
  3605     __ lea(rbx, monitor_block_bot);             // points to word before bottom of monitor block
  3606     __ jmpb(entry);
  3608     __ bind(loop);
  3609     __ cmpptr(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3610     __ jcc(Assembler::equal, found);             // if same object then stop searching
  3611     __ addptr(rdx, entry_size);                  // otherwise advance to next entry
  3612     __ bind(entry);
  3613     __ cmpptr(rdx, rbx);                         // check if bottom reached
  3614     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3617   // error handling. Unlocking was not block-structured
  3618   Label end;
  3619   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  3620   __ should_not_reach_here();
  3622   // call run-time routine
  3623   // rcx: points to monitor entry
  3624   __ bind(found);
  3625   __ push_ptr(rax);                                 // make sure object is on stack (contract with oopMaps)
  3626   __ unlock_object(rdx);
  3627   __ pop_ptr(rax);                                  // discard object
  3628   __ bind(end);
  3632 //----------------------------------------------------------------------------------------------------
  3633 // Wide instructions
  3635 void TemplateTable::wide() {
  3636   transition(vtos, vtos);
  3637   __ load_unsigned_byte(rbx, at_bcp(1));
  3638   ExternalAddress wtable((address)Interpreter::_wentry_point);
  3639   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
  3640   // Note: the rsi increment step is part of the individual wide bytecode implementations
  3644 //----------------------------------------------------------------------------------------------------
  3645 // Multi arrays
  3647 void TemplateTable::multianewarray() {
  3648   transition(vtos, atos);
  3649   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3650   // last dim is on top of stack; we want address of first one:
  3651   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
  3652   // the latter wordSize to point to the beginning of the array.
  3653   __ lea(  rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
  3654   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax);     // pass in rax,
  3655   __ load_unsigned_byte(rbx, at_bcp(3));
  3656   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
  3659 #endif /* !CC_INTERP */

mercurial