src/cpu/x86/vm/templateTable_x86_32.cpp

Fri, 30 Nov 2012 15:23:16 -0800

author
twisti
date
Fri, 30 Nov 2012 15:23:16 -0800
changeset 4318
cd3d6a6b95d9
parent 4151
6e5a59a8e4a7
child 4542
db9981fd3124
permissions
-rw-r--r--

8003240: x86: move MacroAssembler into separate file
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "interpreter/interpreter.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "interpreter/templateTable.hpp"
    30 #include "memory/universe.inline.hpp"
    31 #include "oops/methodData.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/sharedRuntime.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "runtime/synchronizer.hpp"
    39 #ifndef CC_INTERP
    40 #define __ _masm->
    42 //----------------------------------------------------------------------------------------------------
    43 // Platform-dependent initialization
    45 void TemplateTable::pd_initialize() {
    46   // No i486 specific initialization
    47 }
    49 //----------------------------------------------------------------------------------------------------
    50 // Address computation
    52 // local variables
    53 static inline Address iaddress(int n)            {
    54   return Address(rdi, Interpreter::local_offset_in_bytes(n));
    55 }
    57 static inline Address laddress(int n)            { return iaddress(n + 1); }
    58 static inline Address haddress(int n)            { return iaddress(n + 0); }
    59 static inline Address faddress(int n)            { return iaddress(n); }
    60 static inline Address daddress(int n)            { return laddress(n); }
    61 static inline Address aaddress(int n)            { return iaddress(n); }
    63 static inline Address iaddress(Register r)       {
    64   return Address(rdi, r, Interpreter::stackElementScale());
    65 }
    66 static inline Address laddress(Register r)       {
    67   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1));
    68 }
    69 static inline Address haddress(Register r)       {
    70   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
    71 }
    73 static inline Address faddress(Register r)       { return iaddress(r); }
    74 static inline Address daddress(Register r)       { return laddress(r); }
    75 static inline Address aaddress(Register r)       { return iaddress(r); }
    77 // expression stack
    78 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
    79 // data beyond the rsp which is potentially unsafe in an MT environment;
    80 // an interrupt may overwrite that data.)
    81 static inline Address at_rsp   () {
    82   return Address(rsp, 0);
    83 }
    85 // At top of Java expression stack which may be different than rsp().  It
    86 // isn't for category 1 objects.
    87 static inline Address at_tos   () {
    88   Address tos = Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    89   return tos;
    90 }
    92 static inline Address at_tos_p1() {
    93   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
    94 }
    96 static inline Address at_tos_p2() {
    97   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
    98 }
   100 // Condition conversion
   101 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   102   switch (cc) {
   103     case TemplateTable::equal        : return Assembler::notEqual;
   104     case TemplateTable::not_equal    : return Assembler::equal;
   105     case TemplateTable::less         : return Assembler::greaterEqual;
   106     case TemplateTable::less_equal   : return Assembler::greater;
   107     case TemplateTable::greater      : return Assembler::lessEqual;
   108     case TemplateTable::greater_equal: return Assembler::less;
   109   }
   110   ShouldNotReachHere();
   111   return Assembler::zero;
   112 }
   115 //----------------------------------------------------------------------------------------------------
   116 // Miscelaneous helper routines
   118 // Store an oop (or NULL) at the address described by obj.
   119 // If val == noreg this means store a NULL
   121 static void do_oop_store(InterpreterMacroAssembler* _masm,
   122                          Address obj,
   123                          Register val,
   124                          BarrierSet::Name barrier,
   125                          bool precise) {
   126   assert(val == noreg || val == rax, "parameter is just for looks");
   127   switch (barrier) {
   128 #ifndef SERIALGC
   129     case BarrierSet::G1SATBCT:
   130     case BarrierSet::G1SATBCTLogging:
   131       {
   132         // flatten object address if needed
   133         // We do it regardless of precise because we need the registers
   134         if (obj.index() == noreg && obj.disp() == 0) {
   135           if (obj.base() != rdx) {
   136             __ movl(rdx, obj.base());
   137           }
   138         } else {
   139           __ leal(rdx, obj);
   140         }
   141         __ get_thread(rcx);
   142         __ save_bcp();
   143         __ g1_write_barrier_pre(rdx /* obj */,
   144                                 rbx /* pre_val */,
   145                                 rcx /* thread */,
   146                                 rsi /* tmp */,
   147                                 val != noreg /* tosca_live */,
   148                                 false /* expand_call */);
   150         // Do the actual store
   151         // noreg means NULL
   152         if (val == noreg) {
   153           __ movptr(Address(rdx, 0), NULL_WORD);
   154           // No post barrier for NULL
   155         } else {
   156           __ movl(Address(rdx, 0), val);
   157           __ g1_write_barrier_post(rdx /* store_adr */,
   158                                    val /* new_val */,
   159                                    rcx /* thread */,
   160                                    rbx /* tmp */,
   161                                    rsi /* tmp2 */);
   162         }
   163         __ restore_bcp();
   165       }
   166       break;
   167 #endif // SERIALGC
   168     case BarrierSet::CardTableModRef:
   169     case BarrierSet::CardTableExtension:
   170       {
   171         if (val == noreg) {
   172           __ movptr(obj, NULL_WORD);
   173         } else {
   174           __ movl(obj, val);
   175           // flatten object address if needed
   176           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   177             __ store_check(obj.base());
   178           } else {
   179             __ leal(rdx, obj);
   180             __ store_check(rdx);
   181           }
   182         }
   183       }
   184       break;
   185     case BarrierSet::ModRef:
   186     case BarrierSet::Other:
   187       if (val == noreg) {
   188         __ movptr(obj, NULL_WORD);
   189       } else {
   190         __ movl(obj, val);
   191       }
   192       break;
   193     default      :
   194       ShouldNotReachHere();
   196   }
   197 }
   199 Address TemplateTable::at_bcp(int offset) {
   200   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   201   return Address(rsi, offset);
   202 }
   205 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
   206                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
   207                                    int byte_no) {
   208   if (!RewriteBytecodes)  return;
   209   Label L_patch_done;
   211   switch (bc) {
   212   case Bytecodes::_fast_aputfield:
   213   case Bytecodes::_fast_bputfield:
   214   case Bytecodes::_fast_cputfield:
   215   case Bytecodes::_fast_dputfield:
   216   case Bytecodes::_fast_fputfield:
   217   case Bytecodes::_fast_iputfield:
   218   case Bytecodes::_fast_lputfield:
   219   case Bytecodes::_fast_sputfield:
   220     {
   221       // We skip bytecode quickening for putfield instructions when
   222       // the put_code written to the constant pool cache is zero.
   223       // This is required so that every execution of this instruction
   224       // calls out to InterpreterRuntime::resolve_get_put to do
   225       // additional, required work.
   226       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
   227       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
   228       __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1);
   229       __ movl(bc_reg, bc);
   230       __ cmpl(temp_reg, (int) 0);
   231       __ jcc(Assembler::zero, L_patch_done);  // don't patch
   232     }
   233     break;
   234   default:
   235     assert(byte_no == -1, "sanity");
   236     // the pair bytecodes have already done the load.
   237     if (load_bc_into_bc_reg) {
   238       __ movl(bc_reg, bc);
   239     }
   240   }
   242   if (JvmtiExport::can_post_breakpoint()) {
   243     Label L_fast_patch;
   244     // if a breakpoint is present we can't rewrite the stream directly
   245     __ movzbl(temp_reg, at_bcp(0));
   246     __ cmpl(temp_reg, Bytecodes::_breakpoint);
   247     __ jcc(Assembler::notEqual, L_fast_patch);
   248     __ get_method(temp_reg);
   249     // Let breakpoint table handling rewrite to quicker bytecode
   250     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rsi, bc_reg);
   251 #ifndef ASSERT
   252     __ jmpb(L_patch_done);
   253 #else
   254     __ jmp(L_patch_done);
   255 #endif
   256     __ bind(L_fast_patch);
   257   }
   259 #ifdef ASSERT
   260   Label L_okay;
   261   __ load_unsigned_byte(temp_reg, at_bcp(0));
   262   __ cmpl(temp_reg, (int)Bytecodes::java_code(bc));
   263   __ jccb(Assembler::equal, L_okay);
   264   __ cmpl(temp_reg, bc_reg);
   265   __ jcc(Assembler::equal, L_okay);
   266   __ stop("patching the wrong bytecode");
   267   __ bind(L_okay);
   268 #endif
   270   // patch bytecode
   271   __ movb(at_bcp(0), bc_reg);
   272   __ bind(L_patch_done);
   273 }
   275 //----------------------------------------------------------------------------------------------------
   276 // Individual instructions
   278 void TemplateTable::nop() {
   279   transition(vtos, vtos);
   280   // nothing to do
   281 }
   283 void TemplateTable::shouldnotreachhere() {
   284   transition(vtos, vtos);
   285   __ stop("shouldnotreachhere bytecode");
   286 }
   290 void TemplateTable::aconst_null() {
   291   transition(vtos, atos);
   292   __ xorptr(rax, rax);
   293 }
   296 void TemplateTable::iconst(int value) {
   297   transition(vtos, itos);
   298   if (value == 0) {
   299     __ xorptr(rax, rax);
   300   } else {
   301     __ movptr(rax, value);
   302   }
   303 }
   306 void TemplateTable::lconst(int value) {
   307   transition(vtos, ltos);
   308   if (value == 0) {
   309     __ xorptr(rax, rax);
   310   } else {
   311     __ movptr(rax, value);
   312   }
   313   assert(value >= 0, "check this code");
   314   __ xorptr(rdx, rdx);
   315 }
   318 void TemplateTable::fconst(int value) {
   319   transition(vtos, ftos);
   320          if (value == 0) { __ fldz();
   321   } else if (value == 1) { __ fld1();
   322   } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
   323   } else                 { ShouldNotReachHere();
   324   }
   325 }
   328 void TemplateTable::dconst(int value) {
   329   transition(vtos, dtos);
   330          if (value == 0) { __ fldz();
   331   } else if (value == 1) { __ fld1();
   332   } else                 { ShouldNotReachHere();
   333   }
   334 }
   337 void TemplateTable::bipush() {
   338   transition(vtos, itos);
   339   __ load_signed_byte(rax, at_bcp(1));
   340 }
   343 void TemplateTable::sipush() {
   344   transition(vtos, itos);
   345   __ load_unsigned_short(rax, at_bcp(1));
   346   __ bswapl(rax);
   347   __ sarl(rax, 16);
   348 }
   350 void TemplateTable::ldc(bool wide) {
   351   transition(vtos, vtos);
   352   Label call_ldc, notFloat, notClass, Done;
   354   if (wide) {
   355     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   356   } else {
   357     __ load_unsigned_byte(rbx, at_bcp(1));
   358   }
   359   __ get_cpool_and_tags(rcx, rax);
   360   const int base_offset = ConstantPool::header_size() * wordSize;
   361   const int tags_offset = Array<u1>::base_offset_in_bytes();
   363   // get type
   364   __ xorptr(rdx, rdx);
   365   __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   367   // unresolved class - get the resolved class
   368   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   369   __ jccb(Assembler::equal, call_ldc);
   371   // unresolved class in error (resolution failed) - call into runtime
   372   // so that the same error from first resolution attempt is thrown.
   373   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   374   __ jccb(Assembler::equal, call_ldc);
   376   // resolved class - need to call vm to get java mirror of the class
   377   __ cmpl(rdx, JVM_CONSTANT_Class);
   378   __ jcc(Assembler::notEqual, notClass);
   380   __ bind(call_ldc);
   381   __ movl(rcx, wide);
   382   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx);
   383   __ push(atos);
   384   __ jmp(Done);
   386   __ bind(notClass);
   387   __ cmpl(rdx, JVM_CONSTANT_Float);
   388   __ jccb(Assembler::notEqual, notFloat);
   389   // ftos
   390   __ fld_s(    Address(rcx, rbx, Address::times_ptr, base_offset));
   391   __ push(ftos);
   392   __ jmp(Done);
   394   __ bind(notFloat);
   395 #ifdef ASSERT
   396   { Label L;
   397     __ cmpl(rdx, JVM_CONSTANT_Integer);
   398     __ jcc(Assembler::equal, L);
   399     // String and Object are rewritten to fast_aldc
   400     __ stop("unexpected tag type in ldc");
   401     __ bind(L);
   402   }
   403 #endif
   404   // itos JVM_CONSTANT_Integer only
   405   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
   406   __ push(itos);
   407   __ bind(Done);
   408 }
   410 // Fast path for caching oop constants.
   411 void TemplateTable::fast_aldc(bool wide) {
   412   transition(vtos, atos);
   414   Register result = rax;
   415   Register tmp = rdx;
   416   int index_size = wide ? sizeof(u2) : sizeof(u1);
   418   Label resolved;
   420   // We are resolved if the resolved reference cache entry contains a
   421   // non-null object (String, MethodType, etc.)
   422   assert_different_registers(result, tmp);
   423   __ get_cache_index_at_bcp(tmp, 1, index_size);
   424   __ load_resolved_reference_at_index(result, tmp);
   425   __ testl(result, result);
   426   __ jcc(Assembler::notZero, resolved);
   428   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
   430   // first time invocation - must resolve first
   431   __ movl(tmp, (int)bytecode());
   432   __ call_VM(result, entry, tmp);
   434   __ bind(resolved);
   436   if (VerifyOops) {
   437     __ verify_oop(result);
   438   }
   439 }
   441 void TemplateTable::ldc2_w() {
   442   transition(vtos, vtos);
   443   Label Long, Done;
   444   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   446   __ get_cpool_and_tags(rcx, rax);
   447   const int base_offset = ConstantPool::header_size() * wordSize;
   448   const int tags_offset = Array<u1>::base_offset_in_bytes();
   450   // get type
   451   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double);
   452   __ jccb(Assembler::notEqual, Long);
   453   // dtos
   454   __ fld_d(    Address(rcx, rbx, Address::times_ptr, base_offset));
   455   __ push(dtos);
   456   __ jmpb(Done);
   458   __ bind(Long);
   459   // ltos
   460   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
   461   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
   463   __ push(ltos);
   465   __ bind(Done);
   466 }
   469 void TemplateTable::locals_index(Register reg, int offset) {
   470   __ load_unsigned_byte(reg, at_bcp(offset));
   471   __ negptr(reg);
   472 }
   475 void TemplateTable::iload() {
   476   transition(vtos, itos);
   477   if (RewriteFrequentPairs) {
   478     Label rewrite, done;
   480     // get next byte
   481     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   482     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   483     // last two iloads in a pair.  Comparing against fast_iload means that
   484     // the next bytecode is neither an iload or a caload, and therefore
   485     // an iload pair.
   486     __ cmpl(rbx, Bytecodes::_iload);
   487     __ jcc(Assembler::equal, done);
   489     __ cmpl(rbx, Bytecodes::_fast_iload);
   490     __ movl(rcx, Bytecodes::_fast_iload2);
   491     __ jccb(Assembler::equal, rewrite);
   493     // if _caload, rewrite to fast_icaload
   494     __ cmpl(rbx, Bytecodes::_caload);
   495     __ movl(rcx, Bytecodes::_fast_icaload);
   496     __ jccb(Assembler::equal, rewrite);
   498     // rewrite so iload doesn't check again.
   499     __ movl(rcx, Bytecodes::_fast_iload);
   501     // rewrite
   502     // rcx: fast bytecode
   503     __ bind(rewrite);
   504     patch_bytecode(Bytecodes::_iload, rcx, rbx, false);
   505     __ bind(done);
   506   }
   508   // Get the local value into tos
   509   locals_index(rbx);
   510   __ movl(rax, iaddress(rbx));
   511 }
   514 void TemplateTable::fast_iload2() {
   515   transition(vtos, itos);
   516   locals_index(rbx);
   517   __ movl(rax, iaddress(rbx));
   518   __ push(itos);
   519   locals_index(rbx, 3);
   520   __ movl(rax, iaddress(rbx));
   521 }
   523 void TemplateTable::fast_iload() {
   524   transition(vtos, itos);
   525   locals_index(rbx);
   526   __ movl(rax, iaddress(rbx));
   527 }
   530 void TemplateTable::lload() {
   531   transition(vtos, ltos);
   532   locals_index(rbx);
   533   __ movptr(rax, laddress(rbx));
   534   NOT_LP64(__ movl(rdx, haddress(rbx)));
   535 }
   538 void TemplateTable::fload() {
   539   transition(vtos, ftos);
   540   locals_index(rbx);
   541   __ fld_s(faddress(rbx));
   542 }
   545 void TemplateTable::dload() {
   546   transition(vtos, dtos);
   547   locals_index(rbx);
   548   __ fld_d(daddress(rbx));
   549 }
   552 void TemplateTable::aload() {
   553   transition(vtos, atos);
   554   locals_index(rbx);
   555   __ movptr(rax, aaddress(rbx));
   556 }
   559 void TemplateTable::locals_index_wide(Register reg) {
   560   __ movl(reg, at_bcp(2));
   561   __ bswapl(reg);
   562   __ shrl(reg, 16);
   563   __ negptr(reg);
   564 }
   567 void TemplateTable::wide_iload() {
   568   transition(vtos, itos);
   569   locals_index_wide(rbx);
   570   __ movl(rax, iaddress(rbx));
   571 }
   574 void TemplateTable::wide_lload() {
   575   transition(vtos, ltos);
   576   locals_index_wide(rbx);
   577   __ movptr(rax, laddress(rbx));
   578   NOT_LP64(__ movl(rdx, haddress(rbx)));
   579 }
   582 void TemplateTable::wide_fload() {
   583   transition(vtos, ftos);
   584   locals_index_wide(rbx);
   585   __ fld_s(faddress(rbx));
   586 }
   589 void TemplateTable::wide_dload() {
   590   transition(vtos, dtos);
   591   locals_index_wide(rbx);
   592   __ fld_d(daddress(rbx));
   593 }
   596 void TemplateTable::wide_aload() {
   597   transition(vtos, atos);
   598   locals_index_wide(rbx);
   599   __ movptr(rax, aaddress(rbx));
   600 }
   602 void TemplateTable::index_check(Register array, Register index) {
   603   // Pop ptr into array
   604   __ pop_ptr(array);
   605   index_check_without_pop(array, index);
   606 }
   608 void TemplateTable::index_check_without_pop(Register array, Register index) {
   609   // destroys rbx,
   610   // check array
   611   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   612   LP64_ONLY(__ movslq(index, index));
   613   // check index
   614   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   615   if (index != rbx) {
   616     // ??? convention: move aberrant index into rbx, for exception message
   617     assert(rbx != array, "different registers");
   618     __ mov(rbx, index);
   619   }
   620   __ jump_cc(Assembler::aboveEqual,
   621              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   622 }
   625 void TemplateTable::iaload() {
   626   transition(itos, itos);
   627   // rdx: array
   628   index_check(rdx, rax);  // kills rbx,
   629   // rax,: index
   630   __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)));
   631 }
   634 void TemplateTable::laload() {
   635   transition(itos, ltos);
   636   // rax,: index
   637   // rdx: array
   638   index_check(rdx, rax);
   639   __ mov(rbx, rax);
   640   // rbx,: index
   641   __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
   642   NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
   643 }
   646 void TemplateTable::faload() {
   647   transition(itos, ftos);
   648   // rdx: array
   649   index_check(rdx, rax);  // kills rbx,
   650   // rax,: index
   651   __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   652 }
   655 void TemplateTable::daload() {
   656   transition(itos, dtos);
   657   // rdx: array
   658   index_check(rdx, rax);  // kills rbx,
   659   // rax,: index
   660   __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   661 }
   664 void TemplateTable::aaload() {
   665   transition(itos, atos);
   666   // rdx: array
   667   index_check(rdx, rax);  // kills rbx,
   668   // rax,: index
   669   __ movptr(rax, Address(rdx, rax, Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   670 }
   673 void TemplateTable::baload() {
   674   transition(itos, itos);
   675   // rdx: array
   676   index_check(rdx, rax);  // kills rbx,
   677   // rax,: index
   678   // can do better code for P5 - fix this at some point
   679   __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   680   __ mov(rax, rbx);
   681 }
   684 void TemplateTable::caload() {
   685   transition(itos, itos);
   686   // rdx: array
   687   index_check(rdx, rax);  // kills rbx,
   688   // rax,: index
   689   // can do better code for P5 - may want to improve this at some point
   690   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   691   __ mov(rax, rbx);
   692 }
   694 // iload followed by caload frequent pair
   695 void TemplateTable::fast_icaload() {
   696   transition(vtos, itos);
   697   // load index out of locals
   698   locals_index(rbx);
   699   __ movl(rax, iaddress(rbx));
   701   // rdx: array
   702   index_check(rdx, rax);
   703   // rax,: index
   704   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   705   __ mov(rax, rbx);
   706 }
   708 void TemplateTable::saload() {
   709   transition(itos, itos);
   710   // rdx: array
   711   index_check(rdx, rax);  // kills rbx,
   712   // rax,: index
   713   // can do better code for P5 - may want to improve this at some point
   714   __ load_signed_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   715   __ mov(rax, rbx);
   716 }
   719 void TemplateTable::iload(int n) {
   720   transition(vtos, itos);
   721   __ movl(rax, iaddress(n));
   722 }
   725 void TemplateTable::lload(int n) {
   726   transition(vtos, ltos);
   727   __ movptr(rax, laddress(n));
   728   NOT_LP64(__ movptr(rdx, haddress(n)));
   729 }
   732 void TemplateTable::fload(int n) {
   733   transition(vtos, ftos);
   734   __ fld_s(faddress(n));
   735 }
   738 void TemplateTable::dload(int n) {
   739   transition(vtos, dtos);
   740   __ fld_d(daddress(n));
   741 }
   744 void TemplateTable::aload(int n) {
   745   transition(vtos, atos);
   746   __ movptr(rax, aaddress(n));
   747 }
   750 void TemplateTable::aload_0() {
   751   transition(vtos, atos);
   752   // According to bytecode histograms, the pairs:
   753   //
   754   // _aload_0, _fast_igetfield
   755   // _aload_0, _fast_agetfield
   756   // _aload_0, _fast_fgetfield
   757   //
   758   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
   759   // bytecode checks if the next bytecode is either _fast_igetfield,
   760   // _fast_agetfield or _fast_fgetfield and then rewrites the
   761   // current bytecode into a pair bytecode; otherwise it rewrites the current
   762   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
   763   //
   764   // Note: If the next bytecode is _getfield, the rewrite must be delayed,
   765   //       otherwise we may miss an opportunity for a pair.
   766   //
   767   // Also rewrite frequent pairs
   768   //   aload_0, aload_1
   769   //   aload_0, iload_1
   770   // These bytecodes with a small amount of code are most profitable to rewrite
   771   if (RewriteFrequentPairs) {
   772     Label rewrite, done;
   773     // get next byte
   774     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   776     // do actual aload_0
   777     aload(0);
   779     // if _getfield then wait with rewrite
   780     __ cmpl(rbx, Bytecodes::_getfield);
   781     __ jcc(Assembler::equal, done);
   783     // if _igetfield then reqrite to _fast_iaccess_0
   784     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   785     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   786     __ movl(rcx, Bytecodes::_fast_iaccess_0);
   787     __ jccb(Assembler::equal, rewrite);
   789     // if _agetfield then reqrite to _fast_aaccess_0
   790     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   791     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   792     __ movl(rcx, Bytecodes::_fast_aaccess_0);
   793     __ jccb(Assembler::equal, rewrite);
   795     // if _fgetfield then reqrite to _fast_faccess_0
   796     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   797     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   798     __ movl(rcx, Bytecodes::_fast_faccess_0);
   799     __ jccb(Assembler::equal, rewrite);
   801     // else rewrite to _fast_aload0
   802     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
   803     __ movl(rcx, Bytecodes::_fast_aload_0);
   805     // rewrite
   806     // rcx: fast bytecode
   807     __ bind(rewrite);
   808     patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false);
   810     __ bind(done);
   811   } else {
   812     aload(0);
   813   }
   814 }
   816 void TemplateTable::istore() {
   817   transition(itos, vtos);
   818   locals_index(rbx);
   819   __ movl(iaddress(rbx), rax);
   820 }
   823 void TemplateTable::lstore() {
   824   transition(ltos, vtos);
   825   locals_index(rbx);
   826   __ movptr(laddress(rbx), rax);
   827   NOT_LP64(__ movptr(haddress(rbx), rdx));
   828 }
   831 void TemplateTable::fstore() {
   832   transition(ftos, vtos);
   833   locals_index(rbx);
   834   __ fstp_s(faddress(rbx));
   835 }
   838 void TemplateTable::dstore() {
   839   transition(dtos, vtos);
   840   locals_index(rbx);
   841   __ fstp_d(daddress(rbx));
   842 }
   845 void TemplateTable::astore() {
   846   transition(vtos, vtos);
   847   __ pop_ptr(rax);
   848   locals_index(rbx);
   849   __ movptr(aaddress(rbx), rax);
   850 }
   853 void TemplateTable::wide_istore() {
   854   transition(vtos, vtos);
   855   __ pop_i(rax);
   856   locals_index_wide(rbx);
   857   __ movl(iaddress(rbx), rax);
   858 }
   861 void TemplateTable::wide_lstore() {
   862   transition(vtos, vtos);
   863   __ pop_l(rax, rdx);
   864   locals_index_wide(rbx);
   865   __ movptr(laddress(rbx), rax);
   866   NOT_LP64(__ movl(haddress(rbx), rdx));
   867 }
   870 void TemplateTable::wide_fstore() {
   871   wide_istore();
   872 }
   875 void TemplateTable::wide_dstore() {
   876   wide_lstore();
   877 }
   880 void TemplateTable::wide_astore() {
   881   transition(vtos, vtos);
   882   __ pop_ptr(rax);
   883   locals_index_wide(rbx);
   884   __ movptr(aaddress(rbx), rax);
   885 }
   888 void TemplateTable::iastore() {
   889   transition(itos, vtos);
   890   __ pop_i(rbx);
   891   // rax,: value
   892   // rdx: array
   893   index_check(rdx, rbx);  // prefer index in rbx,
   894   // rbx,: index
   895   __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax);
   896 }
   899 void TemplateTable::lastore() {
   900   transition(ltos, vtos);
   901   __ pop_i(rbx);
   902   // rax,: low(value)
   903   // rcx: array
   904   // rdx: high(value)
   905   index_check(rcx, rbx);  // prefer index in rbx,
   906   // rbx,: index
   907   __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
   908   NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
   909 }
   912 void TemplateTable::fastore() {
   913   transition(ftos, vtos);
   914   __ pop_i(rbx);
   915   // rdx: array
   916   // st0: value
   917   index_check(rdx, rbx);  // prefer index in rbx,
   918   // rbx,: index
   919   __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   920 }
   923 void TemplateTable::dastore() {
   924   transition(dtos, vtos);
   925   __ pop_i(rbx);
   926   // rdx: array
   927   // st0: value
   928   index_check(rdx, rbx);  // prefer index in rbx,
   929   // rbx,: index
   930   __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   931 }
   934 void TemplateTable::aastore() {
   935   Label is_null, ok_is_subtype, done;
   936   transition(vtos, vtos);
   937   // stack: ..., array, index, value
   938   __ movptr(rax, at_tos());     // Value
   939   __ movl(rcx, at_tos_p1());  // Index
   940   __ movptr(rdx, at_tos_p2());  // Array
   942   Address element_address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   943   index_check_without_pop(rdx, rcx);      // kills rbx,
   944   // do array store check - check for NULL value first
   945   __ testptr(rax, rax);
   946   __ jcc(Assembler::zero, is_null);
   948   // Move subklass into EBX
   949   __ load_klass(rbx, rax);
   950   // Move superklass into EAX
   951   __ load_klass(rax, rdx);
   952   __ movptr(rax, Address(rax, ObjArrayKlass::element_klass_offset()));
   953   // Compress array+index*wordSize+12 into a single register.  Frees ECX.
   954   __ lea(rdx, element_address);
   956   // Generate subtype check.  Blows ECX.  Resets EDI to locals.
   957   // Superklass in EAX.  Subklass in EBX.
   958   __ gen_subtype_check( rbx, ok_is_subtype );
   960   // Come here on failure
   961   // object is at TOS
   962   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   964   // Come here on success
   965   __ bind(ok_is_subtype);
   967   // Get the value to store
   968   __ movptr(rax, at_rsp());
   969   // and store it with appropriate barrier
   970   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   972   __ jmp(done);
   974   // Have a NULL in EAX, EDX=array, ECX=index.  Store NULL at ary[idx]
   975   __ bind(is_null);
   976   __ profile_null_seen(rbx);
   978   // Store NULL, (noreg means NULL to do_oop_store)
   979   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
   981   // Pop stack arguments
   982   __ bind(done);
   983   __ addptr(rsp, 3 * Interpreter::stackElementSize);
   984 }
   987 void TemplateTable::bastore() {
   988   transition(itos, vtos);
   989   __ pop_i(rbx);
   990   // rax,: value
   991   // rdx: array
   992   index_check(rdx, rbx);  // prefer index in rbx,
   993   // rbx,: index
   994   __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax);
   995 }
   998 void TemplateTable::castore() {
   999   transition(itos, vtos);
  1000   __ pop_i(rbx);
  1001   // rax,: value
  1002   // rdx: array
  1003   index_check(rdx, rbx);  // prefer index in rbx,
  1004   // rbx,: index
  1005   __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax);
  1009 void TemplateTable::sastore() {
  1010   castore();
  1014 void TemplateTable::istore(int n) {
  1015   transition(itos, vtos);
  1016   __ movl(iaddress(n), rax);
  1020 void TemplateTable::lstore(int n) {
  1021   transition(ltos, vtos);
  1022   __ movptr(laddress(n), rax);
  1023   NOT_LP64(__ movptr(haddress(n), rdx));
  1027 void TemplateTable::fstore(int n) {
  1028   transition(ftos, vtos);
  1029   __ fstp_s(faddress(n));
  1033 void TemplateTable::dstore(int n) {
  1034   transition(dtos, vtos);
  1035   __ fstp_d(daddress(n));
  1039 void TemplateTable::astore(int n) {
  1040   transition(vtos, vtos);
  1041   __ pop_ptr(rax);
  1042   __ movptr(aaddress(n), rax);
  1046 void TemplateTable::pop() {
  1047   transition(vtos, vtos);
  1048   __ addptr(rsp, Interpreter::stackElementSize);
  1052 void TemplateTable::pop2() {
  1053   transition(vtos, vtos);
  1054   __ addptr(rsp, 2*Interpreter::stackElementSize);
  1058 void TemplateTable::dup() {
  1059   transition(vtos, vtos);
  1060   // stack: ..., a
  1061   __ load_ptr(0, rax);
  1062   __ push_ptr(rax);
  1063   // stack: ..., a, a
  1067 void TemplateTable::dup_x1() {
  1068   transition(vtos, vtos);
  1069   // stack: ..., a, b
  1070   __ load_ptr( 0, rax);  // load b
  1071   __ load_ptr( 1, rcx);  // load a
  1072   __ store_ptr(1, rax);  // store b
  1073   __ store_ptr(0, rcx);  // store a
  1074   __ push_ptr(rax);      // push b
  1075   // stack: ..., b, a, b
  1079 void TemplateTable::dup_x2() {
  1080   transition(vtos, vtos);
  1081   // stack: ..., a, b, c
  1082   __ load_ptr( 0, rax);  // load c
  1083   __ load_ptr( 2, rcx);  // load a
  1084   __ store_ptr(2, rax);  // store c in a
  1085   __ push_ptr(rax);      // push c
  1086   // stack: ..., c, b, c, c
  1087   __ load_ptr( 2, rax);  // load b
  1088   __ store_ptr(2, rcx);  // store a in b
  1089   // stack: ..., c, a, c, c
  1090   __ store_ptr(1, rax);  // store b in c
  1091   // stack: ..., c, a, b, c
  1095 void TemplateTable::dup2() {
  1096   transition(vtos, vtos);
  1097   // stack: ..., a, b
  1098   __ load_ptr(1, rax);  // load a
  1099   __ push_ptr(rax);     // push a
  1100   __ load_ptr(1, rax);  // load b
  1101   __ push_ptr(rax);     // push b
  1102   // stack: ..., a, b, a, b
  1106 void TemplateTable::dup2_x1() {
  1107   transition(vtos, vtos);
  1108   // stack: ..., a, b, c
  1109   __ load_ptr( 0, rcx);  // load c
  1110   __ load_ptr( 1, rax);  // load b
  1111   __ push_ptr(rax);      // push b
  1112   __ push_ptr(rcx);      // push c
  1113   // stack: ..., a, b, c, b, c
  1114   __ store_ptr(3, rcx);  // store c in b
  1115   // stack: ..., a, c, c, b, c
  1116   __ load_ptr( 4, rcx);  // load a
  1117   __ store_ptr(2, rcx);  // store a in 2nd c
  1118   // stack: ..., a, c, a, b, c
  1119   __ store_ptr(4, rax);  // store b in a
  1120   // stack: ..., b, c, a, b, c
  1121   // stack: ..., b, c, a, b, c
  1125 void TemplateTable::dup2_x2() {
  1126   transition(vtos, vtos);
  1127   // stack: ..., a, b, c, d
  1128   __ load_ptr( 0, rcx);  // load d
  1129   __ load_ptr( 1, rax);  // load c
  1130   __ push_ptr(rax);      // push c
  1131   __ push_ptr(rcx);      // push d
  1132   // stack: ..., a, b, c, d, c, d
  1133   __ load_ptr( 4, rax);  // load b
  1134   __ store_ptr(2, rax);  // store b in d
  1135   __ store_ptr(4, rcx);  // store d in b
  1136   // stack: ..., a, d, c, b, c, d
  1137   __ load_ptr( 5, rcx);  // load a
  1138   __ load_ptr( 3, rax);  // load c
  1139   __ store_ptr(3, rcx);  // store a in c
  1140   __ store_ptr(5, rax);  // store c in a
  1141   // stack: ..., c, d, a, b, c, d
  1142   // stack: ..., c, d, a, b, c, d
  1146 void TemplateTable::swap() {
  1147   transition(vtos, vtos);
  1148   // stack: ..., a, b
  1149   __ load_ptr( 1, rcx);  // load a
  1150   __ load_ptr( 0, rax);  // load b
  1151   __ store_ptr(0, rcx);  // store a in b
  1152   __ store_ptr(1, rax);  // store b in a
  1153   // stack: ..., b, a
  1157 void TemplateTable::iop2(Operation op) {
  1158   transition(itos, itos);
  1159   switch (op) {
  1160     case add  :                   __ pop_i(rdx); __ addl (rax, rdx); break;
  1161     case sub  : __ mov(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1162     case mul  :                   __ pop_i(rdx); __ imull(rax, rdx); break;
  1163     case _and :                   __ pop_i(rdx); __ andl (rax, rdx); break;
  1164     case _or  :                   __ pop_i(rdx); __ orl  (rax, rdx); break;
  1165     case _xor :                   __ pop_i(rdx); __ xorl (rax, rdx); break;
  1166     case shl  : __ mov(rcx, rax); __ pop_i(rax); __ shll (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1167     case shr  : __ mov(rcx, rax); __ pop_i(rax); __ sarl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1168     case ushr : __ mov(rcx, rax); __ pop_i(rax); __ shrl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1169     default   : ShouldNotReachHere();
  1174 void TemplateTable::lop2(Operation op) {
  1175   transition(ltos, ltos);
  1176   __ pop_l(rbx, rcx);
  1177   switch (op) {
  1178     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
  1179     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
  1180                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
  1181     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
  1182     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
  1183     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
  1184     default   : ShouldNotReachHere();
  1189 void TemplateTable::idiv() {
  1190   transition(itos, itos);
  1191   __ mov(rcx, rax);
  1192   __ pop_i(rax);
  1193   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1194   //       they are not equal, one could do a normal division (no correction
  1195   //       needed), which may speed up this implementation for the common case.
  1196   //       (see also JVM spec., p.243 & p.271)
  1197   __ corrected_idivl(rcx);
  1201 void TemplateTable::irem() {
  1202   transition(itos, itos);
  1203   __ mov(rcx, rax);
  1204   __ pop_i(rax);
  1205   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1206   //       they are not equal, one could do a normal division (no correction
  1207   //       needed), which may speed up this implementation for the common case.
  1208   //       (see also JVM spec., p.243 & p.271)
  1209   __ corrected_idivl(rcx);
  1210   __ mov(rax, rdx);
  1214 void TemplateTable::lmul() {
  1215   transition(ltos, ltos);
  1216   __ pop_l(rbx, rcx);
  1217   __ push(rcx); __ push(rbx);
  1218   __ push(rdx); __ push(rax);
  1219   __ lmul(2 * wordSize, 0);
  1220   __ addptr(rsp, 4 * wordSize);  // take off temporaries
  1224 void TemplateTable::ldiv() {
  1225   transition(ltos, ltos);
  1226   __ pop_l(rbx, rcx);
  1227   __ push(rcx); __ push(rbx);
  1228   __ push(rdx); __ push(rax);
  1229   // check if y = 0
  1230   __ orl(rax, rdx);
  1231   __ jump_cc(Assembler::zero,
  1232              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1233   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
  1234   __ addptr(rsp, 4 * wordSize);  // take off temporaries
  1238 void TemplateTable::lrem() {
  1239   transition(ltos, ltos);
  1240   __ pop_l(rbx, rcx);
  1241   __ push(rcx); __ push(rbx);
  1242   __ push(rdx); __ push(rax);
  1243   // check if y = 0
  1244   __ orl(rax, rdx);
  1245   __ jump_cc(Assembler::zero,
  1246              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1247   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
  1248   __ addptr(rsp, 4 * wordSize);
  1252 void TemplateTable::lshl() {
  1253   transition(itos, ltos);
  1254   __ movl(rcx, rax);                             // get shift count
  1255   __ pop_l(rax, rdx);                            // get shift value
  1256   __ lshl(rdx, rax);
  1260 void TemplateTable::lshr() {
  1261   transition(itos, ltos);
  1262   __ mov(rcx, rax);                              // get shift count
  1263   __ pop_l(rax, rdx);                            // get shift value
  1264   __ lshr(rdx, rax, true);
  1268 void TemplateTable::lushr() {
  1269   transition(itos, ltos);
  1270   __ mov(rcx, rax);                              // get shift count
  1271   __ pop_l(rax, rdx);                            // get shift value
  1272   __ lshr(rdx, rax);
  1276 void TemplateTable::fop2(Operation op) {
  1277   transition(ftos, ftos);
  1278   switch (op) {
  1279     case add: __ fadd_s (at_rsp());                break;
  1280     case sub: __ fsubr_s(at_rsp());                break;
  1281     case mul: __ fmul_s (at_rsp());                break;
  1282     case div: __ fdivr_s(at_rsp());                break;
  1283     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
  1284     default : ShouldNotReachHere();
  1286   __ f2ieee();
  1287   __ pop(rax);  // pop float thing off
  1291 void TemplateTable::dop2(Operation op) {
  1292   transition(dtos, dtos);
  1294   switch (op) {
  1295     case add: __ fadd_d (at_rsp());                break;
  1296     case sub: __ fsubr_d(at_rsp());                break;
  1297     case mul: {
  1298       Label L_strict;
  1299       Label L_join;
  1300       const Address access_flags      (rcx, Method::access_flags_offset());
  1301       __ get_method(rcx);
  1302       __ movl(rcx, access_flags);
  1303       __ testl(rcx, JVM_ACC_STRICT);
  1304       __ jccb(Assembler::notZero, L_strict);
  1305       __ fmul_d (at_rsp());
  1306       __ jmpb(L_join);
  1307       __ bind(L_strict);
  1308       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1309       __ fmulp();
  1310       __ fmul_d (at_rsp());
  1311       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1312       __ fmulp();
  1313       __ bind(L_join);
  1314       break;
  1316     case div: {
  1317       Label L_strict;
  1318       Label L_join;
  1319       const Address access_flags      (rcx, Method::access_flags_offset());
  1320       __ get_method(rcx);
  1321       __ movl(rcx, access_flags);
  1322       __ testl(rcx, JVM_ACC_STRICT);
  1323       __ jccb(Assembler::notZero, L_strict);
  1324       __ fdivr_d(at_rsp());
  1325       __ jmp(L_join);
  1326       __ bind(L_strict);
  1327       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1328       __ fmul_d (at_rsp());
  1329       __ fdivrp();
  1330       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1331       __ fmulp();
  1332       __ bind(L_join);
  1333       break;
  1335     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
  1336     default : ShouldNotReachHere();
  1338   __ d2ieee();
  1339   // Pop double precision number from rsp.
  1340   __ pop(rax);
  1341   __ pop(rdx);
  1345 void TemplateTable::ineg() {
  1346   transition(itos, itos);
  1347   __ negl(rax);
  1351 void TemplateTable::lneg() {
  1352   transition(ltos, ltos);
  1353   __ lneg(rdx, rax);
  1357 void TemplateTable::fneg() {
  1358   transition(ftos, ftos);
  1359   __ fchs();
  1363 void TemplateTable::dneg() {
  1364   transition(dtos, dtos);
  1365   __ fchs();
  1369 void TemplateTable::iinc() {
  1370   transition(vtos, vtos);
  1371   __ load_signed_byte(rdx, at_bcp(2));           // get constant
  1372   locals_index(rbx);
  1373   __ addl(iaddress(rbx), rdx);
  1377 void TemplateTable::wide_iinc() {
  1378   transition(vtos, vtos);
  1379   __ movl(rdx, at_bcp(4));                       // get constant
  1380   locals_index_wide(rbx);
  1381   __ bswapl(rdx);                                 // swap bytes & sign-extend constant
  1382   __ sarl(rdx, 16);
  1383   __ addl(iaddress(rbx), rdx);
  1384   // Note: should probably use only one movl to get both
  1385   //       the index and the constant -> fix this
  1389 void TemplateTable::convert() {
  1390   // Checking
  1391 #ifdef ASSERT
  1392   { TosState tos_in  = ilgl;
  1393     TosState tos_out = ilgl;
  1394     switch (bytecode()) {
  1395       case Bytecodes::_i2l: // fall through
  1396       case Bytecodes::_i2f: // fall through
  1397       case Bytecodes::_i2d: // fall through
  1398       case Bytecodes::_i2b: // fall through
  1399       case Bytecodes::_i2c: // fall through
  1400       case Bytecodes::_i2s: tos_in = itos; break;
  1401       case Bytecodes::_l2i: // fall through
  1402       case Bytecodes::_l2f: // fall through
  1403       case Bytecodes::_l2d: tos_in = ltos; break;
  1404       case Bytecodes::_f2i: // fall through
  1405       case Bytecodes::_f2l: // fall through
  1406       case Bytecodes::_f2d: tos_in = ftos; break;
  1407       case Bytecodes::_d2i: // fall through
  1408       case Bytecodes::_d2l: // fall through
  1409       case Bytecodes::_d2f: tos_in = dtos; break;
  1410       default             : ShouldNotReachHere();
  1412     switch (bytecode()) {
  1413       case Bytecodes::_l2i: // fall through
  1414       case Bytecodes::_f2i: // fall through
  1415       case Bytecodes::_d2i: // fall through
  1416       case Bytecodes::_i2b: // fall through
  1417       case Bytecodes::_i2c: // fall through
  1418       case Bytecodes::_i2s: tos_out = itos; break;
  1419       case Bytecodes::_i2l: // fall through
  1420       case Bytecodes::_f2l: // fall through
  1421       case Bytecodes::_d2l: tos_out = ltos; break;
  1422       case Bytecodes::_i2f: // fall through
  1423       case Bytecodes::_l2f: // fall through
  1424       case Bytecodes::_d2f: tos_out = ftos; break;
  1425       case Bytecodes::_i2d: // fall through
  1426       case Bytecodes::_l2d: // fall through
  1427       case Bytecodes::_f2d: tos_out = dtos; break;
  1428       default             : ShouldNotReachHere();
  1430     transition(tos_in, tos_out);
  1432 #endif // ASSERT
  1434   // Conversion
  1435   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
  1436   switch (bytecode()) {
  1437     case Bytecodes::_i2l:
  1438       __ extend_sign(rdx, rax);
  1439       break;
  1440     case Bytecodes::_i2f:
  1441       __ push(rax);          // store int on tos
  1442       __ fild_s(at_rsp());   // load int to ST0
  1443       __ f2ieee();           // truncate to float size
  1444       __ pop(rcx);           // adjust rsp
  1445       break;
  1446     case Bytecodes::_i2d:
  1447       __ push(rax);          // add one slot for d2ieee()
  1448       __ push(rax);          // store int on tos
  1449       __ fild_s(at_rsp());   // load int to ST0
  1450       __ d2ieee();           // truncate to double size
  1451       __ pop(rcx);           // adjust rsp
  1452       __ pop(rcx);
  1453       break;
  1454     case Bytecodes::_i2b:
  1455       __ shll(rax, 24);      // truncate upper 24 bits
  1456       __ sarl(rax, 24);      // and sign-extend byte
  1457       LP64_ONLY(__ movsbl(rax, rax));
  1458       break;
  1459     case Bytecodes::_i2c:
  1460       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
  1461       LP64_ONLY(__ movzwl(rax, rax));
  1462       break;
  1463     case Bytecodes::_i2s:
  1464       __ shll(rax, 16);      // truncate upper 16 bits
  1465       __ sarl(rax, 16);      // and sign-extend short
  1466       LP64_ONLY(__ movswl(rax, rax));
  1467       break;
  1468     case Bytecodes::_l2i:
  1469       /* nothing to do */
  1470       break;
  1471     case Bytecodes::_l2f:
  1472       __ push(rdx);          // store long on tos
  1473       __ push(rax);
  1474       __ fild_d(at_rsp());   // load long to ST0
  1475       __ f2ieee();           // truncate to float size
  1476       __ pop(rcx);           // adjust rsp
  1477       __ pop(rcx);
  1478       break;
  1479     case Bytecodes::_l2d:
  1480       __ push(rdx);          // store long on tos
  1481       __ push(rax);
  1482       __ fild_d(at_rsp());   // load long to ST0
  1483       __ d2ieee();           // truncate to double size
  1484       __ pop(rcx);           // adjust rsp
  1485       __ pop(rcx);
  1486       break;
  1487     case Bytecodes::_f2i:
  1488       __ push(rcx);          // reserve space for argument
  1489       __ fstp_s(at_rsp());   // pass float argument on stack
  1490       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1491       break;
  1492     case Bytecodes::_f2l:
  1493       __ push(rcx);          // reserve space for argument
  1494       __ fstp_s(at_rsp());   // pass float argument on stack
  1495       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1496       break;
  1497     case Bytecodes::_f2d:
  1498       /* nothing to do */
  1499       break;
  1500     case Bytecodes::_d2i:
  1501       __ push(rcx);          // reserve space for argument
  1502       __ push(rcx);
  1503       __ fstp_d(at_rsp());   // pass double argument on stack
  1504       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
  1505       break;
  1506     case Bytecodes::_d2l:
  1507       __ push(rcx);          // reserve space for argument
  1508       __ push(rcx);
  1509       __ fstp_d(at_rsp());   // pass double argument on stack
  1510       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
  1511       break;
  1512     case Bytecodes::_d2f:
  1513       __ push(rcx);          // reserve space for f2ieee()
  1514       __ f2ieee();           // truncate to float size
  1515       __ pop(rcx);           // adjust rsp
  1516       break;
  1517     default             :
  1518       ShouldNotReachHere();
  1523 void TemplateTable::lcmp() {
  1524   transition(ltos, itos);
  1525   // y = rdx:rax
  1526   __ pop_l(rbx, rcx);             // get x = rcx:rbx
  1527   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
  1528   __ mov(rax, rcx);
  1532 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1533   if (is_float) {
  1534     __ fld_s(at_rsp());
  1535   } else {
  1536     __ fld_d(at_rsp());
  1537     __ pop(rdx);
  1539   __ pop(rcx);
  1540   __ fcmp2int(rax, unordered_result < 0);
  1544 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1545   __ get_method(rcx);           // ECX holds method
  1546   __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count
  1548   const ByteSize be_offset = Method::backedge_counter_offset() + InvocationCounter::counter_offset();
  1549   const ByteSize inv_offset = Method::invocation_counter_offset() + InvocationCounter::counter_offset();
  1550   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1552   // Load up EDX with the branch displacement
  1553   __ movl(rdx, at_bcp(1));
  1554   __ bswapl(rdx);
  1555   if (!is_wide) __ sarl(rdx, 16);
  1556   LP64_ONLY(__ movslq(rdx, rdx));
  1559   // Handle all the JSR stuff here, then exit.
  1560   // It's much shorter and cleaner than intermingling with the
  1561   // non-JSR normal-branch stuff occurring below.
  1562   if (is_jsr) {
  1563     // Pre-load the next target bytecode into EBX
  1564     __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0));
  1566     // compute return address as bci in rax,
  1567     __ lea(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(ConstMethod::codes_offset())));
  1568     __ subptr(rax, Address(rcx, Method::const_offset()));
  1569     // Adjust the bcp in RSI by the displacement in EDX
  1570     __ addptr(rsi, rdx);
  1571     // Push return address
  1572     __ push_i(rax);
  1573     // jsr returns vtos
  1574     __ dispatch_only_noverify(vtos);
  1575     return;
  1578   // Normal (non-jsr) branch handling
  1580   // Adjust the bcp in RSI by the displacement in EDX
  1581   __ addptr(rsi, rdx);
  1583   assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
  1584   Label backedge_counter_overflow;
  1585   Label profile_method;
  1586   Label dispatch;
  1587   if (UseLoopCounter) {
  1588     // increment backedge counter for backward branches
  1589     // rax,: MDO
  1590     // rbx,: MDO bumped taken-count
  1591     // rcx: method
  1592     // rdx: target offset
  1593     // rsi: target bcp
  1594     // rdi: locals pointer
  1595     __ testl(rdx, rdx);             // check if forward or backward branch
  1596     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1598     if (TieredCompilation) {
  1599       Label no_mdo;
  1600       int increment = InvocationCounter::count_increment;
  1601       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1602       if (ProfileInterpreter) {
  1603         // Are we profiling?
  1604         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
  1605         __ testptr(rbx, rbx);
  1606         __ jccb(Assembler::zero, no_mdo);
  1607         // Increment the MDO backedge counter
  1608         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
  1609                                                 in_bytes(InvocationCounter::counter_offset()));
  1610         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
  1611                                    rax, false, Assembler::zero, &backedge_counter_overflow);
  1612         __ jmp(dispatch);
  1614       __ bind(no_mdo);
  1615       // Increment backedge counter in Method*
  1616       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
  1617                                  rax, false, Assembler::zero, &backedge_counter_overflow);
  1618     } else {
  1619       // increment counter
  1620       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1621       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
  1622       __ movl(Address(rcx, be_offset), rax);        // store counter
  1624       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1625       __ andl(rax, InvocationCounter::count_mask_value);     // and the status bits
  1626       __ addl(rax, Address(rcx, be_offset));        // add both counters
  1628       if (ProfileInterpreter) {
  1629         // Test to see if we should create a method data oop
  1630         __ cmp32(rax,
  1631                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1632         __ jcc(Assembler::less, dispatch);
  1634         // if no method data exists, go to profile method
  1635         __ test_method_data_pointer(rax, profile_method);
  1637         if (UseOnStackReplacement) {
  1638           // check for overflow against rbx, which is the MDO taken count
  1639           __ cmp32(rbx,
  1640                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1641           __ jcc(Assembler::below, dispatch);
  1643           // When ProfileInterpreter is on, the backedge_count comes from the
  1644           // MethodData*, which value does not get reset on the call to
  1645           // frequency_counter_overflow().  To avoid excessive calls to the overflow
  1646           // routine while the method is being compiled, add a second test to make
  1647           // sure the overflow function is called only once every overflow_frequency.
  1648           const int overflow_frequency = 1024;
  1649           __ andptr(rbx, overflow_frequency-1);
  1650           __ jcc(Assembler::zero, backedge_counter_overflow);
  1652       } else {
  1653         if (UseOnStackReplacement) {
  1654           // check for overflow against rax, which is the sum of the counters
  1655           __ cmp32(rax,
  1656                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1657           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1662     __ bind(dispatch);
  1665   // Pre-load the next target bytecode into EBX
  1666   __ load_unsigned_byte(rbx, Address(rsi, 0));
  1668   // continue with the bytecode @ target
  1669   // rax,: return bci for jsr's, unused otherwise
  1670   // rbx,: target bytecode
  1671   // rsi: target bcp
  1672   __ dispatch_only(vtos);
  1674   if (UseLoopCounter) {
  1675     if (ProfileInterpreter) {
  1676       // Out-of-line code to allocate method data oop.
  1677       __ bind(profile_method);
  1678       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1679       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1680       __ set_method_data_pointer_for_bcp();
  1681       __ jmp(dispatch);
  1684     if (UseOnStackReplacement) {
  1686       // invocation counter overflow
  1687       __ bind(backedge_counter_overflow);
  1688       __ negptr(rdx);
  1689       __ addptr(rdx, rsi);        // branch bcp
  1690       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx);
  1691       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1693       // rax,: osr nmethod (osr ok) or NULL (osr not possible)
  1694       // rbx,: target bytecode
  1695       // rdx: scratch
  1696       // rdi: locals pointer
  1697       // rsi: bcp
  1698       __ testptr(rax, rax);                      // test result
  1699       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1700       // nmethod may have been invalidated (VM may block upon call_VM return)
  1701       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1702       __ cmpl(rcx, InvalidOSREntryBci);
  1703       __ jcc(Assembler::equal, dispatch);
  1705       // We have the address of an on stack replacement routine in rax,
  1706       // We need to prepare to execute the OSR method. First we must
  1707       // migrate the locals and monitors off of the stack.
  1709       __ mov(rbx, rax);                             // save the nmethod
  1711       const Register thread = rcx;
  1712       __ get_thread(thread);
  1713       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1714       // rax, is OSR buffer, move it to expected parameter location
  1715       __ mov(rcx, rax);
  1717       // pop the interpreter frame
  1718       __ movptr(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1719       __ leave();                                // remove frame anchor
  1720       __ pop(rdi);                               // get return address
  1721       __ mov(rsp, rdx);                          // set sp to sender sp
  1723       // Align stack pointer for compiled code (note that caller is
  1724       // responsible for undoing this fixup by remembering the old SP
  1725       // in an rbp,-relative location)
  1726       __ andptr(rsp, -(StackAlignmentInBytes));
  1728       // push the (possibly adjusted) return address
  1729       __ push(rdi);
  1731       // and begin the OSR nmethod
  1732       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
  1738 void TemplateTable::if_0cmp(Condition cc) {
  1739   transition(itos, vtos);
  1740   // assume branch is more often taken than not (loops use backward branches)
  1741   Label not_taken;
  1742   __ testl(rax, rax);
  1743   __ jcc(j_not(cc), not_taken);
  1744   branch(false, false);
  1745   __ bind(not_taken);
  1746   __ profile_not_taken_branch(rax);
  1750 void TemplateTable::if_icmp(Condition cc) {
  1751   transition(itos, vtos);
  1752   // assume branch is more often taken than not (loops use backward branches)
  1753   Label not_taken;
  1754   __ pop_i(rdx);
  1755   __ cmpl(rdx, rax);
  1756   __ jcc(j_not(cc), not_taken);
  1757   branch(false, false);
  1758   __ bind(not_taken);
  1759   __ profile_not_taken_branch(rax);
  1763 void TemplateTable::if_nullcmp(Condition cc) {
  1764   transition(atos, vtos);
  1765   // assume branch is more often taken than not (loops use backward branches)
  1766   Label not_taken;
  1767   __ testptr(rax, rax);
  1768   __ jcc(j_not(cc), not_taken);
  1769   branch(false, false);
  1770   __ bind(not_taken);
  1771   __ profile_not_taken_branch(rax);
  1775 void TemplateTable::if_acmp(Condition cc) {
  1776   transition(atos, vtos);
  1777   // assume branch is more often taken than not (loops use backward branches)
  1778   Label not_taken;
  1779   __ pop_ptr(rdx);
  1780   __ cmpptr(rdx, rax);
  1781   __ jcc(j_not(cc), not_taken);
  1782   branch(false, false);
  1783   __ bind(not_taken);
  1784   __ profile_not_taken_branch(rax);
  1788 void TemplateTable::ret() {
  1789   transition(vtos, vtos);
  1790   locals_index(rbx);
  1791   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1792   __ profile_ret(rbx, rcx);
  1793   __ get_method(rax);
  1794   __ movptr(rsi, Address(rax, Method::const_offset()));
  1795   __ lea(rsi, Address(rsi, rbx, Address::times_1,
  1796                       ConstMethod::codes_offset()));
  1797   __ dispatch_next(vtos);
  1801 void TemplateTable::wide_ret() {
  1802   transition(vtos, vtos);
  1803   locals_index_wide(rbx);
  1804   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1805   __ profile_ret(rbx, rcx);
  1806   __ get_method(rax);
  1807   __ movptr(rsi, Address(rax, Method::const_offset()));
  1808   __ lea(rsi, Address(rsi, rbx, Address::times_1, ConstMethod::codes_offset()));
  1809   __ dispatch_next(vtos);
  1813 void TemplateTable::tableswitch() {
  1814   Label default_case, continue_execution;
  1815   transition(itos, vtos);
  1816   // align rsi
  1817   __ lea(rbx, at_bcp(wordSize));
  1818   __ andptr(rbx, -wordSize);
  1819   // load lo & hi
  1820   __ movl(rcx, Address(rbx, 1 * wordSize));
  1821   __ movl(rdx, Address(rbx, 2 * wordSize));
  1822   __ bswapl(rcx);
  1823   __ bswapl(rdx);
  1824   // check against lo & hi
  1825   __ cmpl(rax, rcx);
  1826   __ jccb(Assembler::less, default_case);
  1827   __ cmpl(rax, rdx);
  1828   __ jccb(Assembler::greater, default_case);
  1829   // lookup dispatch offset
  1830   __ subl(rax, rcx);
  1831   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1832   __ profile_switch_case(rax, rbx, rcx);
  1833   // continue execution
  1834   __ bind(continue_execution);
  1835   __ bswapl(rdx);
  1836   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1837   __ addptr(rsi, rdx);
  1838   __ dispatch_only(vtos);
  1839   // handle default
  1840   __ bind(default_case);
  1841   __ profile_switch_default(rax);
  1842   __ movl(rdx, Address(rbx, 0));
  1843   __ jmp(continue_execution);
  1847 void TemplateTable::lookupswitch() {
  1848   transition(itos, itos);
  1849   __ stop("lookupswitch bytecode should have been rewritten");
  1853 void TemplateTable::fast_linearswitch() {
  1854   transition(itos, vtos);
  1855   Label loop_entry, loop, found, continue_execution;
  1856   // bswapl rax, so we can avoid bswapping the table entries
  1857   __ bswapl(rax);
  1858   // align rsi
  1859   __ lea(rbx, at_bcp(wordSize));                // btw: should be able to get rid of this instruction (change offsets below)
  1860   __ andptr(rbx, -wordSize);
  1861   // set counter
  1862   __ movl(rcx, Address(rbx, wordSize));
  1863   __ bswapl(rcx);
  1864   __ jmpb(loop_entry);
  1865   // table search
  1866   __ bind(loop);
  1867   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize));
  1868   __ jccb(Assembler::equal, found);
  1869   __ bind(loop_entry);
  1870   __ decrementl(rcx);
  1871   __ jcc(Assembler::greaterEqual, loop);
  1872   // default case
  1873   __ profile_switch_default(rax);
  1874   __ movl(rdx, Address(rbx, 0));
  1875   __ jmpb(continue_execution);
  1876   // entry found -> get offset
  1877   __ bind(found);
  1878   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize));
  1879   __ profile_switch_case(rcx, rax, rbx);
  1880   // continue execution
  1881   __ bind(continue_execution);
  1882   __ bswapl(rdx);
  1883   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1884   __ addptr(rsi, rdx);
  1885   __ dispatch_only(vtos);
  1889 void TemplateTable::fast_binaryswitch() {
  1890   transition(itos, vtos);
  1891   // Implementation using the following core algorithm:
  1892   //
  1893   // int binary_search(int key, LookupswitchPair* array, int n) {
  1894   //   // Binary search according to "Methodik des Programmierens" by
  1895   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1896   //   int i = 0;
  1897   //   int j = n;
  1898   //   while (i+1 < j) {
  1899   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1900   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1901   //     // where a stands for the array and assuming that the (inexisting)
  1902   //     // element a[n] is infinitely big.
  1903   //     int h = (i + j) >> 1;
  1904   //     // i < h < j
  1905   //     if (key < array[h].fast_match()) {
  1906   //       j = h;
  1907   //     } else {
  1908   //       i = h;
  1909   //     }
  1910   //   }
  1911   //   // R: a[i] <= key < a[i+1] or Q
  1912   //   // (i.e., if key is within array, i is the correct index)
  1913   //   return i;
  1914   // }
  1916   // register allocation
  1917   const Register key   = rax;                    // already set (tosca)
  1918   const Register array = rbx;
  1919   const Register i     = rcx;
  1920   const Register j     = rdx;
  1921   const Register h     = rdi;                    // needs to be restored
  1922   const Register temp  = rsi;
  1923   // setup array
  1924   __ save_bcp();
  1926   __ lea(array, at_bcp(3*wordSize));             // btw: should be able to get rid of this instruction (change offsets below)
  1927   __ andptr(array, -wordSize);
  1928   // initialize i & j
  1929   __ xorl(i, i);                                 // i = 0;
  1930   __ movl(j, Address(array, -wordSize));         // j = length(array);
  1931   // Convert j into native byteordering
  1932   __ bswapl(j);
  1933   // and start
  1934   Label entry;
  1935   __ jmp(entry);
  1937   // binary search loop
  1938   { Label loop;
  1939     __ bind(loop);
  1940     // int h = (i + j) >> 1;
  1941     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1942     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1943     // if (key < array[h].fast_match()) {
  1944     //   j = h;
  1945     // } else {
  1946     //   i = h;
  1947     // }
  1948     // Convert array[h].match to native byte-ordering before compare
  1949     __ movl(temp, Address(array, h, Address::times_8, 0*wordSize));
  1950     __ bswapl(temp);
  1951     __ cmpl(key, temp);
  1952     // j = h if (key <  array[h].fast_match())
  1953     __ cmov32(Assembler::less        , j, h);
  1954     // i = h if (key >= array[h].fast_match())
  1955     __ cmov32(Assembler::greaterEqual, i, h);
  1956     // while (i+1 < j)
  1957     __ bind(entry);
  1958     __ leal(h, Address(i, 1));                   // i+1
  1959     __ cmpl(h, j);                               // i+1 < j
  1960     __ jcc(Assembler::less, loop);
  1963   // end of binary search, result index is i (must check again!)
  1964   Label default_case;
  1965   // Convert array[i].match to native byte-ordering before compare
  1966   __ movl(temp, Address(array, i, Address::times_8, 0*wordSize));
  1967   __ bswapl(temp);
  1968   __ cmpl(key, temp);
  1969   __ jcc(Assembler::notEqual, default_case);
  1971   // entry found -> j = offset
  1972   __ movl(j , Address(array, i, Address::times_8, 1*wordSize));
  1973   __ profile_switch_case(i, key, array);
  1974   __ bswapl(j);
  1975   LP64_ONLY(__ movslq(j, j));
  1976   __ restore_bcp();
  1977   __ restore_locals();                           // restore rdi
  1978   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  1980   __ addptr(rsi, j);
  1981   __ dispatch_only(vtos);
  1983   // default case -> j = default offset
  1984   __ bind(default_case);
  1985   __ profile_switch_default(i);
  1986   __ movl(j, Address(array, -2*wordSize));
  1987   __ bswapl(j);
  1988   LP64_ONLY(__ movslq(j, j));
  1989   __ restore_bcp();
  1990   __ restore_locals();                           // restore rdi
  1991   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  1992   __ addptr(rsi, j);
  1993   __ dispatch_only(vtos);
  1997 void TemplateTable::_return(TosState state) {
  1998   transition(state, state);
  1999   assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation
  2001   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2002     assert(state == vtos, "only valid state");
  2003     __ movptr(rax, aaddress(0));
  2004     __ load_klass(rdi, rax);
  2005     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
  2006     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2007     Label skip_register_finalizer;
  2008     __ jcc(Assembler::zero, skip_register_finalizer);
  2010     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax);
  2012     __ bind(skip_register_finalizer);
  2015   __ remove_activation(state, rsi);
  2016   __ jmp(rsi);
  2020 // ----------------------------------------------------------------------------
  2021 // Volatile variables demand their effects be made known to all CPU's in
  2022 // order.  Store buffers on most chips allow reads & writes to reorder; the
  2023 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  2024 // memory barrier (i.e., it's not sufficient that the interpreter does not
  2025 // reorder volatile references, the hardware also must not reorder them).
  2026 //
  2027 // According to the new Java Memory Model (JMM):
  2028 // (1) All volatiles are serialized wrt to each other.
  2029 // ALSO reads & writes act as aquire & release, so:
  2030 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  2031 // the read float up to before the read.  It's OK for non-volatile memory refs
  2032 // that happen before the volatile read to float down below it.
  2033 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  2034 // that happen BEFORE the write float down to after the write.  It's OK for
  2035 // non-volatile memory refs that happen after the volatile write to float up
  2036 // before it.
  2037 //
  2038 // We only put in barriers around volatile refs (they are expensive), not
  2039 // _between_ memory refs (that would require us to track the flavor of the
  2040 // previous memory refs).  Requirements (2) and (3) require some barriers
  2041 // before volatile stores and after volatile loads.  These nearly cover
  2042 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  2043 // case is placed after volatile-stores although it could just as well go
  2044 // before volatile-loads.
  2045 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
  2046   // Helper function to insert a is-volatile test and memory barrier
  2047   if( !os::is_MP() ) return;    // Not needed on single CPU
  2048   __ membar(order_constraint);
  2051 void TemplateTable::resolve_cache_and_index(int byte_no,
  2052                                             Register Rcache,
  2053                                             Register index,
  2054                                             size_t index_size) {
  2055   const Register temp = rbx;
  2056   assert_different_registers(Rcache, index, temp);
  2058   Label resolved;
  2059     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2060     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
  2061     __ cmpl(temp, (int) bytecode());  // have we resolved this bytecode?
  2062     __ jcc(Assembler::equal, resolved);
  2064   // resolve first time through
  2065   address entry;
  2066   switch (bytecode()) {
  2067     case Bytecodes::_getstatic      : // fall through
  2068     case Bytecodes::_putstatic      : // fall through
  2069     case Bytecodes::_getfield       : // fall through
  2070     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);        break;
  2071     case Bytecodes::_invokevirtual  : // fall through
  2072     case Bytecodes::_invokespecial  : // fall through
  2073     case Bytecodes::_invokestatic   : // fall through
  2074     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);         break;
  2075     case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);   break;
  2076     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
  2077     default:
  2078       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
  2079       break;
  2081   __ movl(temp, (int)bytecode());
  2082   __ call_VM(noreg, entry, temp);
  2083   // Update registers with resolved info
  2084   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2085   __ bind(resolved);
  2089 // The cache and index registers must be set before call
  2090 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2091                                               Register cache,
  2092                                               Register index,
  2093                                               Register off,
  2094                                               Register flags,
  2095                                               bool is_static = false) {
  2096   assert_different_registers(cache, index, flags, off);
  2098   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2099   // Field offset
  2100   __ movptr(off, Address(cache, index, Address::times_ptr,
  2101                          in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset())));
  2102   // Flags
  2103   __ movl(flags, Address(cache, index, Address::times_ptr,
  2104            in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset())));
  2106   // klass overwrite register
  2107   if (is_static) {
  2108     __ movptr(obj, Address(cache, index, Address::times_ptr,
  2109                            in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset())));
  2110     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  2111     __ movptr(obj, Address(obj, mirror_offset));
  2115 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2116                                                Register method,
  2117                                                Register itable_index,
  2118                                                Register flags,
  2119                                                bool is_invokevirtual,
  2120                                                bool is_invokevfinal, /*unused*/
  2121                                                bool is_invokedynamic) {
  2122   // setup registers
  2123   const Register cache = rcx;
  2124   const Register index = rdx;
  2125   assert_different_registers(method, flags);
  2126   assert_different_registers(method, cache, index);
  2127   assert_different_registers(itable_index, flags);
  2128   assert_different_registers(itable_index, cache, index);
  2129   // determine constant pool cache field offsets
  2130   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
  2131   const int method_offset = in_bytes(
  2132     ConstantPoolCache::base_offset() +
  2133       ((byte_no == f2_byte)
  2134        ? ConstantPoolCacheEntry::f2_offset()
  2135        : ConstantPoolCacheEntry::f1_offset()));
  2136   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
  2137                                     ConstantPoolCacheEntry::flags_offset());
  2138   // access constant pool cache fields
  2139   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
  2140                                     ConstantPoolCacheEntry::f2_offset());
  2142   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
  2143   resolve_cache_and_index(byte_no, cache, index, index_size);
  2144     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2146   if (itable_index != noreg) {
  2147     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2149   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
  2153 // The registers cache and index expected to be set before call.
  2154 // Correct values of the cache and index registers are preserved.
  2155 void TemplateTable::jvmti_post_field_access(Register cache,
  2156                                             Register index,
  2157                                             bool is_static,
  2158                                             bool has_tos) {
  2159   if (JvmtiExport::can_post_field_access()) {
  2160     // Check to see if a field access watch has been set before we take
  2161     // the time to call into the VM.
  2162     Label L1;
  2163     assert_different_registers(cache, index, rax);
  2164     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2165     __ testl(rax,rax);
  2166     __ jcc(Assembler::zero, L1);
  2168     // cache entry pointer
  2169     __ addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
  2170     __ shll(index, LogBytesPerWord);
  2171     __ addptr(cache, index);
  2172     if (is_static) {
  2173       __ xorptr(rax, rax);      // NULL object reference
  2174     } else {
  2175       __ pop(atos);         // Get the object
  2176       __ verify_oop(rax);
  2177       __ push(atos);        // Restore stack state
  2179     // rax,:   object pointer or NULL
  2180     // cache: cache entry pointer
  2181     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
  2182                rax, cache);
  2183     __ get_cache_and_index_at_bcp(cache, index, 1);
  2184     __ bind(L1);
  2188 void TemplateTable::pop_and_check_object(Register r) {
  2189   __ pop_ptr(r);
  2190   __ null_check(r);  // for field access must check obj.
  2191   __ verify_oop(r);
  2194 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2195   transition(vtos, vtos);
  2197   const Register cache = rcx;
  2198   const Register index = rdx;
  2199   const Register obj   = rcx;
  2200   const Register off   = rbx;
  2201   const Register flags = rax;
  2203   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
  2204   jvmti_post_field_access(cache, index, is_static, false);
  2205   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2207   if (!is_static) pop_and_check_object(obj);
  2209   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2210   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2212   Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2214   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2215   assert(btos == 0, "change code, btos != 0");
  2216   // btos
  2217   __ andptr(flags, ConstantPoolCacheEntry::tos_state_mask);
  2218   __ jcc(Assembler::notZero, notByte);
  2220   __ load_signed_byte(rax, lo );
  2221   __ push(btos);
  2222   // Rewrite bytecode to be faster
  2223   if (!is_static) {
  2224     patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx);
  2226   __ jmp(Done);
  2228   __ bind(notByte);
  2229   // itos
  2230   __ cmpl(flags, itos );
  2231   __ jcc(Assembler::notEqual, notInt);
  2233   __ movl(rax, lo );
  2234   __ push(itos);
  2235   // Rewrite bytecode to be faster
  2236   if (!is_static) {
  2237     patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx);
  2239   __ jmp(Done);
  2241   __ bind(notInt);
  2242   // atos
  2243   __ cmpl(flags, atos );
  2244   __ jcc(Assembler::notEqual, notObj);
  2246   __ movl(rax, lo );
  2247   __ push(atos);
  2248   if (!is_static) {
  2249     patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx);
  2251   __ jmp(Done);
  2253   __ bind(notObj);
  2254   // ctos
  2255   __ cmpl(flags, ctos );
  2256   __ jcc(Assembler::notEqual, notChar);
  2258   __ load_unsigned_short(rax, lo );
  2259   __ push(ctos);
  2260   if (!is_static) {
  2261     patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx);
  2263   __ jmp(Done);
  2265   __ bind(notChar);
  2266   // stos
  2267   __ cmpl(flags, stos );
  2268   __ jcc(Assembler::notEqual, notShort);
  2270   __ load_signed_short(rax, lo );
  2271   __ push(stos);
  2272   if (!is_static) {
  2273     patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx);
  2275   __ jmp(Done);
  2277   __ bind(notShort);
  2278   // ltos
  2279   __ cmpl(flags, ltos );
  2280   __ jcc(Assembler::notEqual, notLong);
  2282   // Generate code as if volatile.  There just aren't enough registers to
  2283   // save that information and this code is faster than the test.
  2284   __ fild_d(lo);                // Must load atomically
  2285   __ subptr(rsp,2*wordSize);    // Make space for store
  2286   __ fistp_d(Address(rsp,0));
  2287   __ pop(rax);
  2288   __ pop(rdx);
  2290   __ push(ltos);
  2291   // Don't rewrite to _fast_lgetfield for potential volatile case.
  2292   __ jmp(Done);
  2294   __ bind(notLong);
  2295   // ftos
  2296   __ cmpl(flags, ftos );
  2297   __ jcc(Assembler::notEqual, notFloat);
  2299   __ fld_s(lo);
  2300   __ push(ftos);
  2301   if (!is_static) {
  2302     patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx);
  2304   __ jmp(Done);
  2306   __ bind(notFloat);
  2307   // dtos
  2308   __ cmpl(flags, dtos );
  2309   __ jcc(Assembler::notEqual, notDouble);
  2311   __ fld_d(lo);
  2312   __ push(dtos);
  2313   if (!is_static) {
  2314     patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx);
  2316   __ jmpb(Done);
  2318   __ bind(notDouble);
  2320   __ stop("Bad state");
  2322   __ bind(Done);
  2323   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2324   // volatile_barrier( );
  2328 void TemplateTable::getfield(int byte_no) {
  2329   getfield_or_static(byte_no, false);
  2333 void TemplateTable::getstatic(int byte_no) {
  2334   getfield_or_static(byte_no, true);
  2337 // The registers cache and index expected to be set before call.
  2338 // The function may destroy various registers, just not the cache and index registers.
  2339 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2341   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2343   if (JvmtiExport::can_post_field_modification()) {
  2344     // Check to see if a field modification watch has been set before we take
  2345     // the time to call into the VM.
  2346     Label L1;
  2347     assert_different_registers(cache, index, rax);
  2348     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2349     __ testl(rax, rax);
  2350     __ jcc(Assembler::zero, L1);
  2352     // The cache and index registers have been already set.
  2353     // This allows to eliminate this call but the cache and index
  2354     // registers have to be correspondingly used after this line.
  2355     __ get_cache_and_index_at_bcp(rax, rdx, 1);
  2357     if (is_static) {
  2358       // Life is simple.  Null out the object pointer.
  2359       __ xorptr(rbx, rbx);
  2360     } else {
  2361       // Life is harder. The stack holds the value on top, followed by the object.
  2362       // We don't know the size of the value, though; it could be one or two words
  2363       // depending on its type. As a result, we must find the type to determine where
  2364       // the object is.
  2365       Label two_word, valsize_known;
  2366       __ movl(rcx, Address(rax, rdx, Address::times_ptr, in_bytes(cp_base_offset +
  2367                                    ConstantPoolCacheEntry::flags_offset())));
  2368       __ mov(rbx, rsp);
  2369       __ shrl(rcx, ConstantPoolCacheEntry::tos_state_shift);
  2370       // Make sure we don't need to mask rcx after the above shift
  2371       ConstantPoolCacheEntry::verify_tos_state_shift();
  2372       __ cmpl(rcx, ltos);
  2373       __ jccb(Assembler::equal, two_word);
  2374       __ cmpl(rcx, dtos);
  2375       __ jccb(Assembler::equal, two_word);
  2376       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
  2377       __ jmpb(valsize_known);
  2379       __ bind(two_word);
  2380       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
  2382       __ bind(valsize_known);
  2383       // setup object pointer
  2384       __ movptr(rbx, Address(rbx, 0));
  2386     // cache entry pointer
  2387     __ addptr(rax, in_bytes(cp_base_offset));
  2388     __ shll(rdx, LogBytesPerWord);
  2389     __ addptr(rax, rdx);
  2390     // object (tos)
  2391     __ mov(rcx, rsp);
  2392     // rbx,: object pointer set up above (NULL if static)
  2393     // rax,: cache entry pointer
  2394     // rcx: jvalue object on the stack
  2395     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
  2396                rbx, rax, rcx);
  2397     __ get_cache_and_index_at_bcp(cache, index, 1);
  2398     __ bind(L1);
  2403 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2404   transition(vtos, vtos);
  2406   const Register cache = rcx;
  2407   const Register index = rdx;
  2408   const Register obj   = rcx;
  2409   const Register off   = rbx;
  2410   const Register flags = rax;
  2412   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
  2413   jvmti_post_field_mod(cache, index, is_static);
  2414   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2416   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2417   // volatile_barrier( );
  2419   Label notVolatile, Done;
  2420   __ movl(rdx, flags);
  2421   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2422   __ andl(rdx, 0x1);
  2424   // field addresses
  2425   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2426   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2428   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2430   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2431   assert(btos == 0, "change code, btos != 0");
  2432   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
  2433   __ jcc(Assembler::notZero, notByte);
  2435   // btos
  2437     __ pop(btos);
  2438     if (!is_static) pop_and_check_object(obj);
  2439     __ movb(lo, rax);
  2440     if (!is_static) {
  2441       patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx, true, byte_no);
  2443     __ jmp(Done);
  2446   __ bind(notByte);
  2447   __ cmpl(flags, itos);
  2448   __ jcc(Assembler::notEqual, notInt);
  2450   // itos
  2452     __ pop(itos);
  2453     if (!is_static) pop_and_check_object(obj);
  2454     __ movl(lo, rax);
  2455     if (!is_static) {
  2456       patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx, true, byte_no);
  2458     __ jmp(Done);
  2461   __ bind(notInt);
  2462   __ cmpl(flags, atos);
  2463   __ jcc(Assembler::notEqual, notObj);
  2465   // atos
  2467     __ pop(atos);
  2468     if (!is_static) pop_and_check_object(obj);
  2469     do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2470     if (!is_static) {
  2471       patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx, true, byte_no);
  2473     __ jmp(Done);
  2476   __ bind(notObj);
  2477   __ cmpl(flags, ctos);
  2478   __ jcc(Assembler::notEqual, notChar);
  2480   // ctos
  2482     __ pop(ctos);
  2483     if (!is_static) pop_and_check_object(obj);
  2484     __ movw(lo, rax);
  2485     if (!is_static) {
  2486       patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx, true, byte_no);
  2488     __ jmp(Done);
  2491   __ bind(notChar);
  2492   __ cmpl(flags, stos);
  2493   __ jcc(Assembler::notEqual, notShort);
  2495   // stos
  2497     __ pop(stos);
  2498     if (!is_static) pop_and_check_object(obj);
  2499     __ movw(lo, rax);
  2500     if (!is_static) {
  2501       patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx, true, byte_no);
  2503     __ jmp(Done);
  2506   __ bind(notShort);
  2507   __ cmpl(flags, ltos);
  2508   __ jcc(Assembler::notEqual, notLong);
  2510   // ltos
  2512     Label notVolatileLong;
  2513     __ testl(rdx, rdx);
  2514     __ jcc(Assembler::zero, notVolatileLong);
  2516     __ pop(ltos);  // overwrites rdx, do this after testing volatile.
  2517     if (!is_static) pop_and_check_object(obj);
  2519     // Replace with real volatile test
  2520     __ push(rdx);
  2521     __ push(rax);                 // Must update atomically with FIST
  2522     __ fild_d(Address(rsp,0));    // So load into FPU register
  2523     __ fistp_d(lo);               // and put into memory atomically
  2524     __ addptr(rsp, 2*wordSize);
  2525     // volatile_barrier();
  2526     volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2527                                                  Assembler::StoreStore));
  2528     // Don't rewrite volatile version
  2529     __ jmp(notVolatile);
  2531     __ bind(notVolatileLong);
  2533     __ pop(ltos);  // overwrites rdx
  2534     if (!is_static) pop_and_check_object(obj);
  2535     NOT_LP64(__ movptr(hi, rdx));
  2536     __ movptr(lo, rax);
  2537     if (!is_static) {
  2538       patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx, true, byte_no);
  2540     __ jmp(notVolatile);
  2543   __ bind(notLong);
  2544   __ cmpl(flags, ftos);
  2545   __ jcc(Assembler::notEqual, notFloat);
  2547   // ftos
  2549     __ pop(ftos);
  2550     if (!is_static) pop_and_check_object(obj);
  2551     __ fstp_s(lo);
  2552     if (!is_static) {
  2553       patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx, true, byte_no);
  2555     __ jmp(Done);
  2558   __ bind(notFloat);
  2559 #ifdef ASSERT
  2560   __ cmpl(flags, dtos);
  2561   __ jcc(Assembler::notEqual, notDouble);
  2562 #endif
  2564   // dtos
  2566     __ pop(dtos);
  2567     if (!is_static) pop_and_check_object(obj);
  2568     __ fstp_d(lo);
  2569     if (!is_static) {
  2570       patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx, true, byte_no);
  2572     __ jmp(Done);
  2575 #ifdef ASSERT
  2576   __ bind(notDouble);
  2577   __ stop("Bad state");
  2578 #endif
  2580   __ bind(Done);
  2582   // Check for volatile store
  2583   __ testl(rdx, rdx);
  2584   __ jcc(Assembler::zero, notVolatile);
  2585   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2586                                                Assembler::StoreStore));
  2587   __ bind(notVolatile);
  2591 void TemplateTable::putfield(int byte_no) {
  2592   putfield_or_static(byte_no, false);
  2596 void TemplateTable::putstatic(int byte_no) {
  2597   putfield_or_static(byte_no, true);
  2600 void TemplateTable::jvmti_post_fast_field_mod() {
  2601   if (JvmtiExport::can_post_field_modification()) {
  2602     // Check to see if a field modification watch has been set before we take
  2603     // the time to call into the VM.
  2604     Label L2;
  2605      __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2606      __ testl(rcx,rcx);
  2607      __ jcc(Assembler::zero, L2);
  2608      __ pop_ptr(rbx);               // copy the object pointer from tos
  2609      __ verify_oop(rbx);
  2610      __ push_ptr(rbx);              // put the object pointer back on tos
  2612      // Save tos values before call_VM() clobbers them. Since we have
  2613      // to do it for every data type, we use the saved values as the
  2614      // jvalue object.
  2615      switch (bytecode()) {          // load values into the jvalue object
  2616      case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
  2617      case Bytecodes::_fast_bputfield: // fall through
  2618      case Bytecodes::_fast_sputfield: // fall through
  2619      case Bytecodes::_fast_cputfield: // fall through
  2620      case Bytecodes::_fast_iputfield: __ push_i(rax); break;
  2621      case Bytecodes::_fast_dputfield: __ push_d(); break;
  2622      case Bytecodes::_fast_fputfield: __ push_f(); break;
  2623      case Bytecodes::_fast_lputfield: __ push_l(rax); break;
  2625      default:
  2626        ShouldNotReachHere();
  2628      __ mov(rcx, rsp);              // points to jvalue on the stack
  2629      // access constant pool cache entry
  2630      __ get_cache_entry_pointer_at_bcp(rax, rdx, 1);
  2631      __ verify_oop(rbx);
  2632      // rbx,: object pointer copied above
  2633      // rax,: cache entry pointer
  2634      // rcx: jvalue object on the stack
  2635      __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx);
  2637      switch (bytecode()) {             // restore tos values
  2638      case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
  2639      case Bytecodes::_fast_bputfield: // fall through
  2640      case Bytecodes::_fast_sputfield: // fall through
  2641      case Bytecodes::_fast_cputfield: // fall through
  2642      case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
  2643      case Bytecodes::_fast_dputfield: __ pop_d(); break;
  2644      case Bytecodes::_fast_fputfield: __ pop_f(); break;
  2645      case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
  2647      __ bind(L2);
  2651 void TemplateTable::fast_storefield(TosState state) {
  2652   transition(state, vtos);
  2654   ByteSize base = ConstantPoolCache::base_offset();
  2656   jvmti_post_fast_field_mod();
  2658   // access constant pool cache
  2659   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2661   // test for volatile with rdx but rdx is tos register for lputfield.
  2662   if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
  2663   __ movl(rdx, Address(rcx, rbx, Address::times_ptr, in_bytes(base +
  2664                        ConstantPoolCacheEntry::flags_offset())));
  2666   // replace index with field offset from cache entry
  2667   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2669   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2670   // volatile_barrier( );
  2672   Label notVolatile, Done;
  2673   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2674   __ andl(rdx, 0x1);
  2675   // Check for volatile store
  2676   __ testl(rdx, rdx);
  2677   __ jcc(Assembler::zero, notVolatile);
  2679   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
  2681   // Get object from stack
  2682   pop_and_check_object(rcx);
  2684   // field addresses
  2685   const Address lo(rcx, rbx, Address::times_1, 0*wordSize);
  2686   const Address hi(rcx, rbx, Address::times_1, 1*wordSize);
  2688   // access field
  2689   switch (bytecode()) {
  2690     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2691     case Bytecodes::_fast_sputfield: // fall through
  2692     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2693     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2694     case Bytecodes::_fast_lputfield:
  2695       NOT_LP64(__ movptr(hi, rdx));
  2696       __ movptr(lo, rax);
  2697       break;
  2698     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2699     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2700     case Bytecodes::_fast_aputfield: {
  2701       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2702       break;
  2704     default:
  2705       ShouldNotReachHere();
  2708   Label done;
  2709   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2710                                                Assembler::StoreStore));
  2711   // Barriers are so large that short branch doesn't reach!
  2712   __ jmp(done);
  2714   // Same code as above, but don't need rdx to test for volatile.
  2715   __ bind(notVolatile);
  2717   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
  2719   // Get object from stack
  2720   pop_and_check_object(rcx);
  2722   // access field
  2723   switch (bytecode()) {
  2724     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2725     case Bytecodes::_fast_sputfield: // fall through
  2726     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2727     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2728     case Bytecodes::_fast_lputfield:
  2729       NOT_LP64(__ movptr(hi, rdx));
  2730       __ movptr(lo, rax);
  2731       break;
  2732     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2733     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2734     case Bytecodes::_fast_aputfield: {
  2735       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2736       break;
  2738     default:
  2739       ShouldNotReachHere();
  2741   __ bind(done);
  2745 void TemplateTable::fast_accessfield(TosState state) {
  2746   transition(atos, state);
  2748   // do the JVMTI work here to avoid disturbing the register state below
  2749   if (JvmtiExport::can_post_field_access()) {
  2750     // Check to see if a field access watch has been set before we take
  2751     // the time to call into the VM.
  2752     Label L1;
  2753     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2754     __ testl(rcx,rcx);
  2755     __ jcc(Assembler::zero, L1);
  2756     // access constant pool cache entry
  2757     __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1);
  2758     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2759     __ verify_oop(rax);
  2760     // rax,: object pointer copied above
  2761     // rcx: cache entry pointer
  2762     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx);
  2763     __ pop_ptr(rax);   // restore object pointer
  2764     __ bind(L1);
  2767   // access constant pool cache
  2768   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2769   // replace index with field offset from cache entry
  2770   __ movptr(rbx, Address(rcx,
  2771                          rbx,
  2772                          Address::times_ptr,
  2773                          in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2776   // rax,: object
  2777   __ verify_oop(rax);
  2778   __ null_check(rax);
  2779   // field addresses
  2780   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2781   const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize);
  2783   // access field
  2784   switch (bytecode()) {
  2785     case Bytecodes::_fast_bgetfield: __ movsbl(rax, lo );                 break;
  2786     case Bytecodes::_fast_sgetfield: __ load_signed_short(rax, lo );      break;
  2787     case Bytecodes::_fast_cgetfield: __ load_unsigned_short(rax, lo );    break;
  2788     case Bytecodes::_fast_igetfield: __ movl(rax, lo);                    break;
  2789     case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten");  break;
  2790     case Bytecodes::_fast_fgetfield: __ fld_s(lo);                        break;
  2791     case Bytecodes::_fast_dgetfield: __ fld_d(lo);                        break;
  2792     case Bytecodes::_fast_agetfield: __ movptr(rax, lo); __ verify_oop(rax); break;
  2793     default:
  2794       ShouldNotReachHere();
  2797   // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO)
  2798   // volatile_barrier( );
  2801 void TemplateTable::fast_xaccess(TosState state) {
  2802   transition(vtos, state);
  2803   // get receiver
  2804   __ movptr(rax, aaddress(0));
  2805   // access constant pool cache
  2806   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2807   __ movptr(rbx, Address(rcx,
  2808                          rdx,
  2809                          Address::times_ptr,
  2810                          in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2811   // make sure exception is reported in correct bcp range (getfield is next instruction)
  2812   __ increment(rsi);
  2813   __ null_check(rax);
  2814   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2815   if (state == itos) {
  2816     __ movl(rax, lo);
  2817   } else if (state == atos) {
  2818     __ movptr(rax, lo);
  2819     __ verify_oop(rax);
  2820   } else if (state == ftos) {
  2821     __ fld_s(lo);
  2822   } else {
  2823     ShouldNotReachHere();
  2825   __ decrement(rsi);
  2830 //----------------------------------------------------------------------------------------------------
  2831 // Calls
  2833 void TemplateTable::count_calls(Register method, Register temp) {
  2834   // implemented elsewhere
  2835   ShouldNotReachHere();
  2839 void TemplateTable::prepare_invoke(int byte_no,
  2840                                    Register method,  // linked method (or i-klass)
  2841                                    Register index,   // itable index, MethodType, etc.
  2842                                    Register recv,    // if caller wants to see it
  2843                                    Register flags    // if caller wants to test it
  2844                                    ) {
  2845   // determine flags
  2846   const Bytecodes::Code code = bytecode();
  2847   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2848   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2849   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
  2850   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2851   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2852   const bool load_receiver       = (recv  != noreg);
  2853   const bool save_flags          = (flags != noreg);
  2854   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
  2855   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
  2856   assert(flags == noreg || flags == rdx, "");
  2857   assert(recv  == noreg || recv  == rcx, "");
  2859   // setup registers & access constant pool cache
  2860   if (recv  == noreg)  recv  = rcx;
  2861   if (flags == noreg)  flags = rdx;
  2862   assert_different_registers(method, index, recv, flags);
  2864   // save 'interpreter return address'
  2865   __ save_bcp();
  2867   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2869   // maybe push appendix to arguments (just before return address)
  2870   if (is_invokedynamic || is_invokehandle) {
  2871     Label L_no_push;
  2872     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
  2873     __ jccb(Assembler::zero, L_no_push);
  2874     // Push the appendix as a trailing parameter.
  2875     // This must be done before we get the receiver,
  2876     // since the parameter_size includes it.
  2877     __ push(rbx);
  2878     __ mov(rbx, index);
  2879     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
  2880     __ load_resolved_reference_at_index(index, rbx);
  2881     __ pop(rbx);
  2882     __ push(index);  // push appendix (MethodType, CallSite, etc.)
  2883     __ bind(L_no_push);
  2886   // load receiver if needed (note: no return address pushed yet)
  2887   if (load_receiver) {
  2888     __ movl(recv, flags);
  2889     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
  2890     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
  2891     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
  2892     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
  2893     __ movptr(recv, recv_addr);
  2894     __ verify_oop(recv);
  2897   if (save_flags) {
  2898     __ mov(rsi, flags);
  2901   // compute return type
  2902   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2903   // Make sure we don't need to mask flags after the above shift
  2904   ConstantPoolCacheEntry::verify_tos_state_shift();
  2905   // load return address
  2907     const address table_addr = (is_invokeinterface || is_invokedynamic) ?
  2908         (address)Interpreter::return_5_addrs_by_index_table() :
  2909         (address)Interpreter::return_3_addrs_by_index_table();
  2910     ExternalAddress table(table_addr);
  2911     __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)));
  2914   // push return address
  2915   __ push(flags);
  2917   // Restore flags value from the constant pool cache, and restore rsi
  2918   // for later null checks.  rsi is the bytecode pointer
  2919   if (save_flags) {
  2920     __ mov(flags, rsi);
  2921     __ restore_bcp();
  2926 void TemplateTable::invokevirtual_helper(Register index,
  2927                                          Register recv,
  2928                                          Register flags) {
  2929   // Uses temporary registers rax, rdx
  2930   assert_different_registers(index, recv, rax, rdx);
  2931   assert(index == rbx, "");
  2932   assert(recv  == rcx, "");
  2934   // Test for an invoke of a final method
  2935   Label notFinal;
  2936   __ movl(rax, flags);
  2937   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
  2938   __ jcc(Assembler::zero, notFinal);
  2940   const Register method = index;  // method must be rbx
  2941   assert(method == rbx,
  2942          "Method* must be rbx for interpreter calling convention");
  2944   // do the call - the index is actually the method to call
  2945   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
  2947   // It's final, need a null check here!
  2948   __ null_check(recv);
  2950   // profile this call
  2951   __ profile_final_call(rax);
  2953   __ jump_from_interpreted(method, rax);
  2955   __ bind(notFinal);
  2957   // get receiver klass
  2958   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  2959   __ load_klass(rax, recv);
  2961   // profile this call
  2962   __ profile_virtual_call(rax, rdi, rdx);
  2964   // get target Method* & entry point
  2965   __ lookup_virtual_method(rax, index, method);
  2966   __ jump_from_interpreted(method, rdx);
  2970 void TemplateTable::invokevirtual(int byte_no) {
  2971   transition(vtos, vtos);
  2972   assert(byte_no == f2_byte, "use this argument");
  2973   prepare_invoke(byte_no,
  2974                  rbx,    // method or vtable index
  2975                  noreg,  // unused itable index
  2976                  rcx, rdx); // recv, flags
  2978   // rbx: index
  2979   // rcx: receiver
  2980   // rdx: flags
  2982   invokevirtual_helper(rbx, rcx, rdx);
  2986 void TemplateTable::invokespecial(int byte_no) {
  2987   transition(vtos, vtos);
  2988   assert(byte_no == f1_byte, "use this argument");
  2989   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
  2990                  rcx);  // get receiver also for null check
  2991   __ verify_oop(rcx);
  2992   __ null_check(rcx);
  2993   // do the call
  2994   __ profile_call(rax);
  2995   __ jump_from_interpreted(rbx, rax);
  2999 void TemplateTable::invokestatic(int byte_no) {
  3000   transition(vtos, vtos);
  3001   assert(byte_no == f1_byte, "use this argument");
  3002   prepare_invoke(byte_no, rbx);  // get f1 Method*
  3003   // do the call
  3004   __ profile_call(rax);
  3005   __ jump_from_interpreted(rbx, rax);
  3009 void TemplateTable::fast_invokevfinal(int byte_no) {
  3010   transition(vtos, vtos);
  3011   assert(byte_no == f2_byte, "use this argument");
  3012   __ stop("fast_invokevfinal not used on x86");
  3016 void TemplateTable::invokeinterface(int byte_no) {
  3017   transition(vtos, vtos);
  3018   assert(byte_no == f1_byte, "use this argument");
  3019   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 itable index
  3020                  rcx, rdx); // recv, flags
  3022   // rax: interface klass (from f1)
  3023   // rbx: itable index (from f2)
  3024   // rcx: receiver
  3025   // rdx: flags
  3027   // Special case of invokeinterface called for virtual method of
  3028   // java.lang.Object.  See cpCacheOop.cpp for details.
  3029   // This code isn't produced by javac, but could be produced by
  3030   // another compliant java compiler.
  3031   Label notMethod;
  3032   __ movl(rdi, rdx);
  3033   __ andl(rdi, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
  3034   __ jcc(Assembler::zero, notMethod);
  3036   invokevirtual_helper(rbx, rcx, rdx);
  3037   __ bind(notMethod);
  3039   // Get receiver klass into rdx - also a null check
  3040   __ restore_locals();  // restore rdi
  3041   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
  3042   __ load_klass(rdx, rcx);
  3044   // profile this call
  3045   __ profile_virtual_call(rdx, rsi, rdi);
  3047   Label no_such_interface, no_such_method;
  3049   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3050                              rdx, rax, rbx,
  3051                              // outputs: method, scan temp. reg
  3052                              rbx, rsi,
  3053                              no_such_interface);
  3055   // rbx: Method* to call
  3056   // rcx: receiver
  3057   // Check for abstract method error
  3058   // Note: This should be done more efficiently via a throw_abstract_method_error
  3059   //       interpreter entry point and a conditional jump to it in case of a null
  3060   //       method.
  3061   __ testptr(rbx, rbx);
  3062   __ jcc(Assembler::zero, no_such_method);
  3064   // do the call
  3065   // rcx: receiver
  3066   // rbx,: Method*
  3067   __ jump_from_interpreted(rbx, rdx);
  3068   __ should_not_reach_here();
  3070   // exception handling code follows...
  3071   // note: must restore interpreter registers to canonical
  3072   //       state for exception handling to work correctly!
  3074   __ bind(no_such_method);
  3075   // throw exception
  3076   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3077   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3078   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3079   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3080   // the call_VM checks for exception, so we should never return here.
  3081   __ should_not_reach_here();
  3083   __ bind(no_such_interface);
  3084   // throw exception
  3085   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3086   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3087   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3088   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3089                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3090   // the call_VM checks for exception, so we should never return here.
  3091   __ should_not_reach_here();
  3094 void TemplateTable::invokehandle(int byte_no) {
  3095   transition(vtos, vtos);
  3096   assert(byte_no == f1_byte, "use this argument");
  3097   const Register rbx_method = rbx;
  3098   const Register rax_mtype  = rax;
  3099   const Register rcx_recv   = rcx;
  3100   const Register rdx_flags  = rdx;
  3102   if (!EnableInvokeDynamic) {
  3103     // rewriter does not generate this bytecode
  3104     __ should_not_reach_here();
  3105     return;
  3108   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
  3109   __ verify_method_ptr(rbx_method);
  3110   __ verify_oop(rcx_recv);
  3111   __ null_check(rcx_recv);
  3113   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
  3114   // rbx: MH.invokeExact_MT method (from f2)
  3116   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
  3118   // FIXME: profile the LambdaForm also
  3119   __ profile_final_call(rax);
  3121   __ jump_from_interpreted(rbx_method, rdx);
  3125 void TemplateTable::invokedynamic(int byte_no) {
  3126   transition(vtos, vtos);
  3127   assert(byte_no == f1_byte, "use this argument");
  3129   if (!EnableInvokeDynamic) {
  3130     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3131     // The verifier will stop it.  However, if we get past the verifier,
  3132     // this will stop the thread in a reasonable way, without crashing the JVM.
  3133     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3134                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3135     // the call_VM checks for exception, so we should never return here.
  3136     __ should_not_reach_here();
  3137     return;
  3140   const Register rbx_method   = rbx;
  3141   const Register rax_callsite = rax;
  3143   prepare_invoke(byte_no, rbx_method, rax_callsite);
  3145   // rax: CallSite object (from cpool->resolved_references[f1])
  3146   // rbx: MH.linkToCallSite method (from f2)
  3148   // Note:  rax_callsite is already pushed by prepare_invoke
  3150   // %%% should make a type profile for any invokedynamic that takes a ref argument
  3151   // profile this call
  3152   __ profile_call(rsi);
  3154   __ verify_oop(rax_callsite);
  3156   __ jump_from_interpreted(rbx_method, rdx);
  3159 //----------------------------------------------------------------------------------------------------
  3160 // Allocation
  3162 void TemplateTable::_new() {
  3163   transition(vtos, atos);
  3164   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3165   Label slow_case;
  3166   Label slow_case_no_pop;
  3167   Label done;
  3168   Label initialize_header;
  3169   Label initialize_object;  // including clearing the fields
  3170   Label allocate_shared;
  3172   __ get_cpool_and_tags(rcx, rax);
  3174   // Make sure the class we're about to instantiate has been resolved.
  3175   // This is done before loading InstanceKlass to be consistent with the order
  3176   // how Constant Pool is updated (see ConstantPool::klass_at_put)
  3177   const int tags_offset = Array<u1>::base_offset_in_bytes();
  3178   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
  3179   __ jcc(Assembler::notEqual, slow_case_no_pop);
  3181   // get InstanceKlass
  3182   __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(ConstantPool)));
  3183   __ push(rcx);  // save the contexts of klass for initializing the header
  3185   // make sure klass is initialized & doesn't have finalizer
  3186   // make sure klass is fully initialized
  3187   __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
  3188   __ jcc(Assembler::notEqual, slow_case);
  3190   // get instance_size in InstanceKlass (scaled to a count of bytes)
  3191   __ movl(rdx, Address(rcx, Klass::layout_helper_offset()));
  3192   // test to see if it has a finalizer or is malformed in some way
  3193   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3194   __ jcc(Assembler::notZero, slow_case);
  3196   //
  3197   // Allocate the instance
  3198   // 1) Try to allocate in the TLAB
  3199   // 2) if fail and the object is large allocate in the shared Eden
  3200   // 3) if the above fails (or is not applicable), go to a slow case
  3201   // (creates a new TLAB, etc.)
  3203   const bool allow_shared_alloc =
  3204     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3206   const Register thread = rcx;
  3207   if (UseTLAB || allow_shared_alloc) {
  3208     __ get_thread(thread);
  3211   if (UseTLAB) {
  3212     __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
  3213     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3214     __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
  3215     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3216     __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3217     if (ZeroTLAB) {
  3218       // the fields have been already cleared
  3219       __ jmp(initialize_header);
  3220     } else {
  3221       // initialize both the header and fields
  3222       __ jmp(initialize_object);
  3226   // Allocation in the shared Eden, if allowed.
  3227   //
  3228   // rdx: instance size in bytes
  3229   if (allow_shared_alloc) {
  3230     __ bind(allocate_shared);
  3232     ExternalAddress heap_top((address)Universe::heap()->top_addr());
  3234     Label retry;
  3235     __ bind(retry);
  3236     __ movptr(rax, heap_top);
  3237     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3238     __ cmpptr(rbx, ExternalAddress((address)Universe::heap()->end_addr()));
  3239     __ jcc(Assembler::above, slow_case);
  3241     // Compare rax, with the top addr, and if still equal, store the new
  3242     // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
  3243     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3244     //
  3245     // rax,: object begin
  3246     // rbx,: object end
  3247     // rdx: instance size in bytes
  3248     __ locked_cmpxchgptr(rbx, heap_top);
  3250     // if someone beat us on the allocation, try again, otherwise continue
  3251     __ jcc(Assembler::notEqual, retry);
  3253     __ incr_allocated_bytes(thread, rdx, 0);
  3256   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3257     // The object is initialized before the header.  If the object size is
  3258     // zero, go directly to the header initialization.
  3259     __ bind(initialize_object);
  3260     __ decrement(rdx, sizeof(oopDesc));
  3261     __ jcc(Assembler::zero, initialize_header);
  3263     // Initialize topmost object field, divide rdx by 8, check if odd and
  3264     // test if zero.
  3265     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
  3266     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
  3268     // rdx must have been multiple of 8
  3269 #ifdef ASSERT
  3270     // make sure rdx was multiple of 8
  3271     Label L;
  3272     // Ignore partial flag stall after shrl() since it is debug VM
  3273     __ jccb(Assembler::carryClear, L);
  3274     __ stop("object size is not multiple of 2 - adjust this code");
  3275     __ bind(L);
  3276     // rdx must be > 0, no extra check needed here
  3277 #endif
  3279     // initialize remaining object fields: rdx was a multiple of 8
  3280     { Label loop;
  3281     __ bind(loop);
  3282     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
  3283     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
  3284     __ decrement(rdx);
  3285     __ jcc(Assembler::notZero, loop);
  3288     // initialize object header only.
  3289     __ bind(initialize_header);
  3290     if (UseBiasedLocking) {
  3291       __ pop(rcx);   // get saved klass back in the register.
  3292       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset()));
  3293       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
  3294     } else {
  3295       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
  3296                 (int32_t)markOopDesc::prototype()); // header
  3297       __ pop(rcx);   // get saved klass back in the register.
  3299     __ store_klass(rax, rcx);  // klass
  3302       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
  3303       // Trigger dtrace event for fastpath
  3304       __ push(atos);
  3305       __ call_VM_leaf(
  3306            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3307       __ pop(atos);
  3310     __ jmp(done);
  3313   // slow case
  3314   __ bind(slow_case);
  3315   __ pop(rcx);   // restore stack pointer to what it was when we came in.
  3316   __ bind(slow_case_no_pop);
  3317   __ get_constant_pool(rax);
  3318   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3319   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx);
  3321   // continue
  3322   __ bind(done);
  3326 void TemplateTable::newarray() {
  3327   transition(itos, atos);
  3328   __ push_i(rax);                                 // make sure everything is on the stack
  3329   __ load_unsigned_byte(rdx, at_bcp(1));
  3330   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax);
  3331   __ pop_i(rdx);                                  // discard size
  3335 void TemplateTable::anewarray() {
  3336   transition(itos, atos);
  3337   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3338   __ get_constant_pool(rcx);
  3339   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax);
  3343 void TemplateTable::arraylength() {
  3344   transition(atos, itos);
  3345   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3346   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3350 void TemplateTable::checkcast() {
  3351   transition(atos, atos);
  3352   Label done, is_null, ok_is_subtype, quicked, resolved;
  3353   __ testptr(rax, rax);   // Object is in EAX
  3354   __ jcc(Assembler::zero, is_null);
  3356   // Get cpool & tags index
  3357   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3358   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3359   // See if bytecode has already been quicked
  3360   __ cmpb(Address(rdx, rbx, Address::times_1, Array<u1>::base_offset_in_bytes()), JVM_CONSTANT_Class);
  3361   __ jcc(Assembler::equal, quicked);
  3363   __ push(atos);
  3364   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3365   // vm_result_2 has metadata result
  3366   // borrow rdi from locals
  3367   __ get_thread(rdi);
  3368   __ get_vm_result_2(rax, rdi);
  3369   __ restore_locals();
  3370   __ pop_ptr(rdx);
  3371   __ jmpb(resolved);
  3373   // Get superklass in EAX and subklass in EBX
  3374   __ bind(quicked);
  3375   __ mov(rdx, rax);          // Save object in EDX; EAX needed for subtype check
  3376   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(ConstantPool)));
  3378   __ bind(resolved);
  3379   __ load_klass(rbx, rdx);
  3381   // Generate subtype check.  Blows ECX.  Resets EDI.  Object in EDX.
  3382   // Superklass in EAX.  Subklass in EBX.
  3383   __ gen_subtype_check( rbx, ok_is_subtype );
  3385   // Come here on failure
  3386   __ push(rdx);
  3387   // object is at TOS
  3388   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3390   // Come here on success
  3391   __ bind(ok_is_subtype);
  3392   __ mov(rax,rdx);           // Restore object in EDX
  3394   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3395   if (ProfileInterpreter) {
  3396     __ jmp(done);
  3397     __ bind(is_null);
  3398     __ profile_null_seen(rcx);
  3399   } else {
  3400     __ bind(is_null);   // same as 'done'
  3402   __ bind(done);
  3406 void TemplateTable::instanceof() {
  3407   transition(atos, itos);
  3408   Label done, is_null, ok_is_subtype, quicked, resolved;
  3409   __ testptr(rax, rax);
  3410   __ jcc(Assembler::zero, is_null);
  3412   // Get cpool & tags index
  3413   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3414   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3415   // See if bytecode has already been quicked
  3416   __ cmpb(Address(rdx, rbx, Address::times_1, Array<u1>::base_offset_in_bytes()), JVM_CONSTANT_Class);
  3417   __ jcc(Assembler::equal, quicked);
  3419   __ push(atos);
  3420   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3421   // vm_result_2 has metadata result
  3422   // borrow rdi from locals
  3423   __ get_thread(rdi);
  3424   __ get_vm_result_2(rax, rdi);
  3425   __ restore_locals();
  3426   __ pop_ptr(rdx);
  3427   __ load_klass(rdx, rdx);
  3428   __ jmp(resolved);
  3430   // Get superklass in EAX and subklass in EDX
  3431   __ bind(quicked);
  3432   __ load_klass(rdx, rax);
  3433   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(ConstantPool)));
  3435   __ bind(resolved);
  3437   // Generate subtype check.  Blows ECX.  Resets EDI.
  3438   // Superklass in EAX.  Subklass in EDX.
  3439   __ gen_subtype_check( rdx, ok_is_subtype );
  3441   // Come here on failure
  3442   __ xorl(rax,rax);
  3443   __ jmpb(done);
  3444   // Come here on success
  3445   __ bind(ok_is_subtype);
  3446   __ movl(rax, 1);
  3448   // Collect counts on whether this test sees NULLs a lot or not.
  3449   if (ProfileInterpreter) {
  3450     __ jmp(done);
  3451     __ bind(is_null);
  3452     __ profile_null_seen(rcx);
  3453   } else {
  3454     __ bind(is_null);   // same as 'done'
  3456   __ bind(done);
  3457   // rax, = 0: obj == NULL or  obj is not an instanceof the specified klass
  3458   // rax, = 1: obj != NULL and obj is     an instanceof the specified klass
  3462 //----------------------------------------------------------------------------------------------------
  3463 // Breakpoints
  3464 void TemplateTable::_breakpoint() {
  3466   // Note: We get here even if we are single stepping..
  3467   // jbug inists on setting breakpoints at every bytecode
  3468   // even if we are in single step mode.
  3470   transition(vtos, vtos);
  3472   // get the unpatched byte code
  3473   __ get_method(rcx);
  3474   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi);
  3475   __ mov(rbx, rax);
  3477   // post the breakpoint event
  3478   __ get_method(rcx);
  3479   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi);
  3481   // complete the execution of original bytecode
  3482   __ dispatch_only_normal(vtos);
  3486 //----------------------------------------------------------------------------------------------------
  3487 // Exceptions
  3489 void TemplateTable::athrow() {
  3490   transition(atos, vtos);
  3491   __ null_check(rax);
  3492   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3496 //----------------------------------------------------------------------------------------------------
  3497 // Synchronization
  3498 //
  3499 // Note: monitorenter & exit are symmetric routines; which is reflected
  3500 //       in the assembly code structure as well
  3501 //
  3502 // Stack layout:
  3503 //
  3504 // [expressions  ] <--- rsp               = expression stack top
  3505 // ..
  3506 // [expressions  ]
  3507 // [monitor entry] <--- monitor block top = expression stack bot
  3508 // ..
  3509 // [monitor entry]
  3510 // [frame data   ] <--- monitor block bot
  3511 // ...
  3512 // [saved rbp,    ] <--- rbp,
  3515 void TemplateTable::monitorenter() {
  3516   transition(atos, vtos);
  3518   // check for NULL object
  3519   __ null_check(rax);
  3521   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3522   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3523   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3524   Label allocated;
  3526   // initialize entry pointer
  3527   __ xorl(rdx, rdx);                             // points to free slot or NULL
  3529   // find a free slot in the monitor block (result in rdx)
  3530   { Label entry, loop, exit;
  3531     __ movptr(rcx, monitor_block_top);           // points to current entry, starting with top-most entry
  3533     __ lea(rbx, monitor_block_bot);              // points to word before bottom of monitor block
  3534     __ jmpb(entry);
  3536     __ bind(loop);
  3537     __ cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
  3538     __ cmovptr(Assembler::equal, rdx, rcx);      // if not used then remember entry in rdx
  3539     __ cmpptr(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3540     __ jccb(Assembler::equal, exit);             // if same object then stop searching
  3541     __ addptr(rcx, entry_size);                  // otherwise advance to next entry
  3542     __ bind(entry);
  3543     __ cmpptr(rcx, rbx);                         // check if bottom reached
  3544     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3545     __ bind(exit);
  3548   __ testptr(rdx, rdx);                          // check if a slot has been found
  3549   __ jccb(Assembler::notZero, allocated);        // if found, continue with that one
  3551   // allocate one if there's no free slot
  3552   { Label entry, loop;
  3553     // 1. compute new pointers                   // rsp: old expression stack top
  3554     __ movptr(rdx, monitor_block_bot);           // rdx: old expression stack bottom
  3555     __ subptr(rsp, entry_size);                  // move expression stack top
  3556     __ subptr(rdx, entry_size);                  // move expression stack bottom
  3557     __ mov(rcx, rsp);                            // set start value for copy loop
  3558     __ movptr(monitor_block_bot, rdx);           // set new monitor block top
  3559     __ jmp(entry);
  3560     // 2. move expression stack contents
  3561     __ bind(loop);
  3562     __ movptr(rbx, Address(rcx, entry_size));    // load expression stack word from old location
  3563     __ movptr(Address(rcx, 0), rbx);             // and store it at new location
  3564     __ addptr(rcx, wordSize);                    // advance to next word
  3565     __ bind(entry);
  3566     __ cmpptr(rcx, rdx);                         // check if bottom reached
  3567     __ jcc(Assembler::notEqual, loop);           // if not at bottom then copy next word
  3570   // call run-time routine
  3571   // rdx: points to monitor entry
  3572   __ bind(allocated);
  3574   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  3575   // The object has already been poped from the stack, so the expression stack looks correct.
  3576   __ increment(rsi);
  3578   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax);     // store object
  3579   __ lock_object(rdx);
  3581   // check to make sure this monitor doesn't cause stack overflow after locking
  3582   __ save_bcp();  // in case of exception
  3583   __ generate_stack_overflow_check(0);
  3585   // The bcp has already been incremented. Just need to dispatch to next instruction.
  3586   __ dispatch_next(vtos);
  3590 void TemplateTable::monitorexit() {
  3591   transition(atos, vtos);
  3593   // check for NULL object
  3594   __ null_check(rax);
  3596   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3597   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3598   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3599   Label found;
  3601   // find matching slot
  3602   { Label entry, loop;
  3603     __ movptr(rdx, monitor_block_top);           // points to current entry, starting with top-most entry
  3604     __ lea(rbx, monitor_block_bot);             // points to word before bottom of monitor block
  3605     __ jmpb(entry);
  3607     __ bind(loop);
  3608     __ cmpptr(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3609     __ jcc(Assembler::equal, found);             // if same object then stop searching
  3610     __ addptr(rdx, entry_size);                  // otherwise advance to next entry
  3611     __ bind(entry);
  3612     __ cmpptr(rdx, rbx);                         // check if bottom reached
  3613     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3616   // error handling. Unlocking was not block-structured
  3617   Label end;
  3618   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  3619   __ should_not_reach_here();
  3621   // call run-time routine
  3622   // rcx: points to monitor entry
  3623   __ bind(found);
  3624   __ push_ptr(rax);                                 // make sure object is on stack (contract with oopMaps)
  3625   __ unlock_object(rdx);
  3626   __ pop_ptr(rax);                                  // discard object
  3627   __ bind(end);
  3631 //----------------------------------------------------------------------------------------------------
  3632 // Wide instructions
  3634 void TemplateTable::wide() {
  3635   transition(vtos, vtos);
  3636   __ load_unsigned_byte(rbx, at_bcp(1));
  3637   ExternalAddress wtable((address)Interpreter::_wentry_point);
  3638   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
  3639   // Note: the rsi increment step is part of the individual wide bytecode implementations
  3643 //----------------------------------------------------------------------------------------------------
  3644 // Multi arrays
  3646 void TemplateTable::multianewarray() {
  3647   transition(vtos, atos);
  3648   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3649   // last dim is on top of stack; we want address of first one:
  3650   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
  3651   // the latter wordSize to point to the beginning of the array.
  3652   __ lea(  rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
  3653   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax);     // pass in rax,
  3654   __ load_unsigned_byte(rbx, at_bcp(3));
  3655   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
  3658 #endif /* !CC_INTERP */

mercurial