src/share/vm/memory/allocation.cpp

Sat, 01 Sep 2012 13:25:18 -0400

author
coleenp
date
Sat, 01 Sep 2012 13:25:18 -0400
changeset 4037
da91efe96a93
parent 3900
d2a62e0f25eb
child 4183
7b5885dadbdc
permissions
-rw-r--r--

6964458: Reimplement class meta-data storage to use native memory
Summary: Remove PermGen, allocate meta-data in metaspace linked to class loaders, rewrite GC walking, rewrite and rename metadata to be C++ classes
Reviewed-by: jmasa, stefank, never, coleenp, kvn, brutisso, mgerdin, dholmes, jrose, twisti, roland
Contributed-by: jmasa <jon.masamitsu@oracle.com>, stefank <stefan.karlsson@oracle.com>, mgerdin <mikael.gerdin@oracle.com>, never <tom.rodriguez@oracle.com>

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "memory/genCollectedHeap.hpp"
    29 #include "memory/metaspaceShared.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "memory/universe.hpp"
    32 #include "runtime/atomic.hpp"
    33 #include "runtime/os.hpp"
    34 #include "runtime/task.hpp"
    35 #include "runtime/threadCritical.hpp"
    36 #include "services/memTracker.hpp"
    37 #include "utilities/ostream.hpp"
    39 #ifdef TARGET_OS_FAMILY_linux
    40 # include "os_linux.inline.hpp"
    41 #endif
    42 #ifdef TARGET_OS_FAMILY_solaris
    43 # include "os_solaris.inline.hpp"
    44 #endif
    45 #ifdef TARGET_OS_FAMILY_windows
    46 # include "os_windows.inline.hpp"
    47 #endif
    48 #ifdef TARGET_OS_FAMILY_bsd
    49 # include "os_bsd.inline.hpp"
    50 #endif
    52 void* StackObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
    53 void  StackObj::operator delete(void* p)   { ShouldNotCallThis(); };
    54 void* _ValueObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
    55 void  _ValueObj::operator delete(void* p)   { ShouldNotCallThis(); };
    57 void* MetaspaceObj::operator new(size_t size, ClassLoaderData* loader_data,
    58                                 size_t word_size, bool read_only, TRAPS) {
    59   // Klass has it's own operator new
    60   return Metaspace::allocate(loader_data, word_size, read_only,
    61                              Metaspace::NonClassType, CHECK_NULL);
    62 }
    64 bool MetaspaceObj::is_shared() const {
    65   return MetaspaceShared::is_in_shared_space(this);
    66 }
    68 bool MetaspaceObj::is_metadata() const {
    69   // ClassLoaderDataGraph::contains((address)this); has lock inversion problems
    70   return !Universe::heap()->is_in_reserved(this);
    71 }
    73 void MetaspaceObj::print_address_on(outputStream* st) const {
    74   st->print(" {"INTPTR_FORMAT"}", this);
    75 }
    78 void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) {
    79   address res;
    80   switch (type) {
    81    case C_HEAP:
    82     res = (address)AllocateHeap(size, flags, CALLER_PC);
    83     DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
    84     break;
    85    case RESOURCE_AREA:
    86     // new(size) sets allocation type RESOURCE_AREA.
    87     res = (address)operator new(size);
    88     break;
    89    default:
    90     ShouldNotReachHere();
    91   }
    92   return res;
    93 }
    95 void ResourceObj::operator delete(void* p) {
    96   assert(((ResourceObj *)p)->allocated_on_C_heap(),
    97          "delete only allowed for C_HEAP objects");
    98   DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
    99   FreeHeap(p);
   100 }
   102 #ifdef ASSERT
   103 void ResourceObj::set_allocation_type(address res, allocation_type type) {
   104     // Set allocation type in the resource object
   105     uintptr_t allocation = (uintptr_t)res;
   106     assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
   107     assert(type <= allocation_mask, "incorrect allocation type");
   108     ResourceObj* resobj = (ResourceObj *)res;
   109     resobj->_allocation_t[0] = ~(allocation + type);
   110     if (type != STACK_OR_EMBEDDED) {
   111       // Called from operator new() and CollectionSetChooser(),
   112       // set verification value.
   113       resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
   114     }
   115 }
   117 ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
   118     assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
   119     return (allocation_type)((~_allocation_t[0]) & allocation_mask);
   120 }
   122 bool ResourceObj::is_type_set() const {
   123     allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
   124     return get_allocation_type()  == type &&
   125            (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
   126 }
   128 ResourceObj::ResourceObj() { // default constructor
   129     if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
   130       // Operator new() is not called for allocations
   131       // on stack and for embedded objects.
   132       set_allocation_type((address)this, STACK_OR_EMBEDDED);
   133     } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
   134       // For some reason we got a value which resembles
   135       // an embedded or stack object (operator new() does not
   136       // set such type). Keep it since it is valid value
   137       // (even if it was garbage).
   138       // Ignore garbage in other fields.
   139     } else if (is_type_set()) {
   140       // Operator new() was called and type was set.
   141       assert(!allocated_on_stack(),
   142              err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   143                      this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   144     } else {
   145       // Operator new() was not called.
   146       // Assume that it is embedded or stack object.
   147       set_allocation_type((address)this, STACK_OR_EMBEDDED);
   148     }
   149     _allocation_t[1] = 0; // Zap verification value
   150 }
   152 ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
   153     // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
   154     // Note: garbage may resembles valid value.
   155     assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
   156            err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   157                    this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   158     set_allocation_type((address)this, STACK_OR_EMBEDDED);
   159     _allocation_t[1] = 0; // Zap verification value
   160 }
   162 ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
   163     // Used in InlineTree::ok_to_inline() for WarmCallInfo.
   164     assert(allocated_on_stack(),
   165            err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   166                    this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   167     // Keep current _allocation_t value;
   168     return *this;
   169 }
   171 ResourceObj::~ResourceObj() {
   172     // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
   173     if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
   174       _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
   175     }
   176 }
   177 #endif // ASSERT
   180 void trace_heap_malloc(size_t size, const char* name, void* p) {
   181   // A lock is not needed here - tty uses a lock internally
   182   tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p, size, name == NULL ? "" : name);
   183 }
   186 void trace_heap_free(void* p) {
   187   // A lock is not needed here - tty uses a lock internally
   188   tty->print_cr("Heap free   " INTPTR_FORMAT, p);
   189 }
   191 bool warn_new_operator = false; // see vm_main
   193 //--------------------------------------------------------------------------------------
   194 // ChunkPool implementation
   196 // MT-safe pool of chunks to reduce malloc/free thrashing
   197 // NB: not using Mutex because pools are used before Threads are initialized
   198 class ChunkPool: public CHeapObj<mtInternal> {
   199   Chunk*       _first;        // first cached Chunk; its first word points to next chunk
   200   size_t       _num_chunks;   // number of unused chunks in pool
   201   size_t       _num_used;     // number of chunks currently checked out
   202   const size_t _size;         // size of each chunk (must be uniform)
   204   // Our three static pools
   205   static ChunkPool* _large_pool;
   206   static ChunkPool* _medium_pool;
   207   static ChunkPool* _small_pool;
   209   // return first element or null
   210   void* get_first() {
   211     Chunk* c = _first;
   212     if (_first) {
   213       _first = _first->next();
   214       _num_chunks--;
   215     }
   216     return c;
   217   }
   219  public:
   220   // All chunks in a ChunkPool has the same size
   221    ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
   223   // Allocate a new chunk from the pool (might expand the pool)
   224   _NOINLINE_ void* allocate(size_t bytes) {
   225     assert(bytes == _size, "bad size");
   226     void* p = NULL;
   227     // No VM lock can be taken inside ThreadCritical lock, so os::malloc
   228     // should be done outside ThreadCritical lock due to NMT
   229     { ThreadCritical tc;
   230       _num_used++;
   231       p = get_first();
   232     }
   233     if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
   234     if (p == NULL)
   235       vm_exit_out_of_memory(bytes, "ChunkPool::allocate");
   237     return p;
   238   }
   240   // Return a chunk to the pool
   241   void free(Chunk* chunk) {
   242     assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
   243     ThreadCritical tc;
   244     _num_used--;
   246     // Add chunk to list
   247     chunk->set_next(_first);
   248     _first = chunk;
   249     _num_chunks++;
   250   }
   252   // Prune the pool
   253   void free_all_but(size_t n) {
   254     Chunk* cur = NULL;
   255     Chunk* next;
   256     {
   257     // if we have more than n chunks, free all of them
   258     ThreadCritical tc;
   259     if (_num_chunks > n) {
   260       // free chunks at end of queue, for better locality
   261         cur = _first;
   262       for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
   264       if (cur != NULL) {
   265           next = cur->next();
   266         cur->set_next(NULL);
   267         cur = next;
   269           _num_chunks = n;
   270         }
   271       }
   272     }
   274     // Free all remaining chunks, outside of ThreadCritical
   275     // to avoid deadlock with NMT
   276         while(cur != NULL) {
   277           next = cur->next();
   278       os::free(cur, mtChunk);
   279           cur = next;
   280         }
   281       }
   283   // Accessors to preallocated pool's
   284   static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
   285   static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
   286   static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
   288   static void initialize() {
   289     _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
   290     _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
   291     _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
   292   }
   294   static void clean() {
   295     enum { BlocksToKeep = 5 };
   296      _small_pool->free_all_but(BlocksToKeep);
   297      _medium_pool->free_all_but(BlocksToKeep);
   298      _large_pool->free_all_but(BlocksToKeep);
   299   }
   300 };
   302 ChunkPool* ChunkPool::_large_pool  = NULL;
   303 ChunkPool* ChunkPool::_medium_pool = NULL;
   304 ChunkPool* ChunkPool::_small_pool  = NULL;
   306 void chunkpool_init() {
   307   ChunkPool::initialize();
   308 }
   310 void
   311 Chunk::clean_chunk_pool() {
   312   ChunkPool::clean();
   313 }
   316 //--------------------------------------------------------------------------------------
   317 // ChunkPoolCleaner implementation
   318 //
   320 class ChunkPoolCleaner : public PeriodicTask {
   321   enum { CleaningInterval = 5000 };      // cleaning interval in ms
   323  public:
   324    ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
   325    void task() {
   326      ChunkPool::clean();
   327    }
   328 };
   330 //--------------------------------------------------------------------------------------
   331 // Chunk implementation
   333 void* Chunk::operator new(size_t requested_size, size_t length) {
   334   // requested_size is equal to sizeof(Chunk) but in order for the arena
   335   // allocations to come out aligned as expected the size must be aligned
   336   // to expected arean alignment.
   337   // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
   338   assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
   339   size_t bytes = ARENA_ALIGN(requested_size) + length;
   340   switch (length) {
   341    case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes);
   342    case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes);
   343    case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes);
   344    default: {
   345      void *p =  os::malloc(bytes, mtChunk, CALLER_PC);
   346      if (p == NULL)
   347        vm_exit_out_of_memory(bytes, "Chunk::new");
   348      return p;
   349    }
   350   }
   351 }
   353 void Chunk::operator delete(void* p) {
   354   Chunk* c = (Chunk*)p;
   355   switch (c->length()) {
   356    case Chunk::size:        ChunkPool::large_pool()->free(c); break;
   357    case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
   358    case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
   359    default:                 os::free(c, mtChunk);
   360   }
   361 }
   363 Chunk::Chunk(size_t length) : _len(length) {
   364   _next = NULL;         // Chain on the linked list
   365 }
   368 void Chunk::chop() {
   369   Chunk *k = this;
   370   while( k ) {
   371     Chunk *tmp = k->next();
   372     // clear out this chunk (to detect allocation bugs)
   373     if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
   374     delete k;                   // Free chunk (was malloc'd)
   375     k = tmp;
   376   }
   377 }
   379 void Chunk::next_chop() {
   380   _next->chop();
   381   _next = NULL;
   382 }
   385 void Chunk::start_chunk_pool_cleaner_task() {
   386 #ifdef ASSERT
   387   static bool task_created = false;
   388   assert(!task_created, "should not start chuck pool cleaner twice");
   389   task_created = true;
   390 #endif
   391   ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
   392   cleaner->enroll();
   393 }
   395 //------------------------------Arena------------------------------------------
   396 NOT_PRODUCT(volatile jint Arena::_instance_count = 0;)
   398 Arena::Arena(size_t init_size) {
   399   size_t round_size = (sizeof (char *)) - 1;
   400   init_size = (init_size+round_size) & ~round_size;
   401   _first = _chunk = new (init_size) Chunk(init_size);
   402   _hwm = _chunk->bottom();      // Save the cached hwm, max
   403   _max = _chunk->top();
   404   set_size_in_bytes(init_size);
   405   NOT_PRODUCT(Atomic::inc(&_instance_count);)
   406 }
   408 Arena::Arena() {
   409   _first = _chunk = new (Chunk::init_size) Chunk(Chunk::init_size);
   410   _hwm = _chunk->bottom();      // Save the cached hwm, max
   411   _max = _chunk->top();
   412   set_size_in_bytes(Chunk::init_size);
   413   NOT_PRODUCT(Atomic::inc(&_instance_count);)
   414 }
   416 Arena::Arena(Arena *a) : _chunk(a->_chunk), _hwm(a->_hwm), _max(a->_max), _first(a->_first) {
   417   set_size_in_bytes(a->size_in_bytes());
   418   NOT_PRODUCT(Atomic::inc(&_instance_count);)
   419 }
   422 Arena *Arena::move_contents(Arena *copy) {
   423   copy->destruct_contents();
   424   copy->_chunk = _chunk;
   425   copy->_hwm   = _hwm;
   426   copy->_max   = _max;
   427   copy->_first = _first;
   428   copy->set_size_in_bytes(size_in_bytes());
   429   // Destroy original arena
   430   reset();
   431   return copy;            // Return Arena with contents
   432 }
   434 Arena::~Arena() {
   435   destruct_contents();
   436   NOT_PRODUCT(Atomic::dec(&_instance_count);)
   437 }
   439 void* Arena::operator new(size_t size) {
   440   assert(false, "Use dynamic memory type binding");
   441   return NULL;
   442 }
   444 void* Arena::operator new (size_t size, const std::nothrow_t&  nothrow_constant) {
   445   assert(false, "Use dynamic memory type binding");
   446   return NULL;
   447 }
   449   // dynamic memory type binding
   450 void* Arena::operator new(size_t size, MEMFLAGS flags) {
   451 #ifdef ASSERT
   452   void* p = (void*)AllocateHeap(size, flags|otArena, CALLER_PC);
   453   if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
   454   return p;
   455 #else
   456   return (void *) AllocateHeap(size, flags|otArena, CALLER_PC);
   457 #endif
   458 }
   460 void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) {
   461 #ifdef ASSERT
   462   void* p = os::malloc(size, flags|otArena, CALLER_PC);
   463   if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
   464   return p;
   465 #else
   466   return os::malloc(size, flags|otArena, CALLER_PC);
   467 #endif
   468 }
   470 void Arena::operator delete(void* p) {
   471   FreeHeap(p);
   472 }
   474 // Destroy this arenas contents and reset to empty
   475 void Arena::destruct_contents() {
   476   if (UseMallocOnly && _first != NULL) {
   477     char* end = _first->next() ? _first->top() : _hwm;
   478     free_malloced_objects(_first, _first->bottom(), end, _hwm);
   479   }
   480   _first->chop();
   481   reset();
   482 }
   484 // This is high traffic method, but many calls actually don't
   485 // change the size
   486 void Arena::set_size_in_bytes(size_t size) {
   487   if (_size_in_bytes != size) {
   488     _size_in_bytes = size;
   489     MemTracker::record_arena_size((address)this, size);
   490   }
   491 }
   493 // Total of all Chunks in arena
   494 size_t Arena::used() const {
   495   size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
   496   register Chunk *k = _first;
   497   while( k != _chunk) {         // Whilst have Chunks in a row
   498     sum += k->length();         // Total size of this Chunk
   499     k = k->next();              // Bump along to next Chunk
   500   }
   501   return sum;                   // Return total consumed space.
   502 }
   504 void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
   505   vm_exit_out_of_memory(sz, whence);
   506 }
   508 // Grow a new Chunk
   509 void* Arena::grow( size_t x ) {
   510   // Get minimal required size.  Either real big, or even bigger for giant objs
   511   size_t len = MAX2(x, (size_t) Chunk::size);
   513   Chunk *k = _chunk;            // Get filled-up chunk address
   514   _chunk = new (len) Chunk(len);
   516   if (_chunk == NULL) {
   517     signal_out_of_memory(len * Chunk::aligned_overhead_size(), "Arena::grow");
   518   }
   519   if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
   520   else _first = _chunk;
   521   _hwm  = _chunk->bottom();     // Save the cached hwm, max
   522   _max =  _chunk->top();
   523   set_size_in_bytes(size_in_bytes() + len);
   524   void* result = _hwm;
   525   _hwm += x;
   526   return result;
   527 }
   531 // Reallocate storage in Arena.
   532 void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size) {
   533   assert(new_size >= 0, "bad size");
   534   if (new_size == 0) return NULL;
   535 #ifdef ASSERT
   536   if (UseMallocOnly) {
   537     // always allocate a new object  (otherwise we'll free this one twice)
   538     char* copy = (char*)Amalloc(new_size);
   539     size_t n = MIN2(old_size, new_size);
   540     if (n > 0) memcpy(copy, old_ptr, n);
   541     Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
   542     return copy;
   543   }
   544 #endif
   545   char *c_old = (char*)old_ptr; // Handy name
   546   // Stupid fast special case
   547   if( new_size <= old_size ) {  // Shrink in-place
   548     if( c_old+old_size == _hwm) // Attempt to free the excess bytes
   549       _hwm = c_old+new_size;    // Adjust hwm
   550     return c_old;
   551   }
   553   // make sure that new_size is legal
   554   size_t corrected_new_size = ARENA_ALIGN(new_size);
   556   // See if we can resize in-place
   557   if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
   558       (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
   559     _hwm = c_old+corrected_new_size;      // Adjust hwm
   560     return c_old;               // Return old pointer
   561   }
   563   // Oops, got to relocate guts
   564   void *new_ptr = Amalloc(new_size);
   565   memcpy( new_ptr, c_old, old_size );
   566   Afree(c_old,old_size);        // Mostly done to keep stats accurate
   567   return new_ptr;
   568 }
   571 // Determine if pointer belongs to this Arena or not.
   572 bool Arena::contains( const void *ptr ) const {
   573 #ifdef ASSERT
   574   if (UseMallocOnly) {
   575     // really slow, but not easy to make fast
   576     if (_chunk == NULL) return false;
   577     char** bottom = (char**)_chunk->bottom();
   578     for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
   579       if (*p == ptr) return true;
   580     }
   581     for (Chunk *c = _first; c != NULL; c = c->next()) {
   582       if (c == _chunk) continue;  // current chunk has been processed
   583       char** bottom = (char**)c->bottom();
   584       for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
   585         if (*p == ptr) return true;
   586       }
   587     }
   588     return false;
   589   }
   590 #endif
   591   if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
   592     return true;                // Check for in this chunk
   593   for (Chunk *c = _first; c; c = c->next()) {
   594     if (c == _chunk) continue;  // current chunk has been processed
   595     if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
   596       return true;              // Check for every chunk in Arena
   597     }
   598   }
   599   return false;                 // Not in any Chunk, so not in Arena
   600 }
   603 #ifdef ASSERT
   604 void* Arena::malloc(size_t size) {
   605   assert(UseMallocOnly, "shouldn't call");
   606   // use malloc, but save pointer in res. area for later freeing
   607   char** save = (char**)internal_malloc_4(sizeof(char*));
   608   return (*save = (char*)os::malloc(size, mtChunk));
   609 }
   611 // for debugging with UseMallocOnly
   612 void* Arena::internal_malloc_4(size_t x) {
   613   assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
   614   check_for_overflow(x, "Arena::internal_malloc_4");
   615   if (_hwm + x > _max) {
   616     return grow(x);
   617   } else {
   618     char *old = _hwm;
   619     _hwm += x;
   620     return old;
   621   }
   622 }
   623 #endif
   626 //--------------------------------------------------------------------------------------
   627 // Non-product code
   629 #ifndef PRODUCT
   630 // The global operator new should never be called since it will usually indicate
   631 // a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
   632 // that they're allocated on the C heap.
   633 // Commented out in product version to avoid conflicts with third-party C++ native code.
   634 // %% note this is causing a problem on solaris debug build. the global
   635 // new is being called from jdk source and causing data corruption.
   636 // src/share/native/sun/awt/font/fontmanager/textcache/hsMemory.cpp::hsSoftNew
   637 // define CATCH_OPERATOR_NEW_USAGE if you want to use this.
   638 #ifdef CATCH_OPERATOR_NEW_USAGE
   639 void* operator new(size_t size){
   640   static bool warned = false;
   641   if (!warned && warn_new_operator)
   642     warning("should not call global (default) operator new");
   643   warned = true;
   644   return (void *) AllocateHeap(size, "global operator new");
   645 }
   646 #endif
   648 void AllocatedObj::print() const       { print_on(tty); }
   649 void AllocatedObj::print_value() const { print_value_on(tty); }
   651 void AllocatedObj::print_on(outputStream* st) const {
   652   st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
   653 }
   655 void AllocatedObj::print_value_on(outputStream* st) const {
   656   st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
   657 }
   659 julong Arena::_bytes_allocated = 0;
   661 void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
   663 AllocStats::AllocStats() {
   664   start_mallocs      = os::num_mallocs;
   665   start_frees        = os::num_frees;
   666   start_malloc_bytes = os::alloc_bytes;
   667   start_mfree_bytes  = os::free_bytes;
   668   start_res_bytes    = Arena::_bytes_allocated;
   669 }
   671 julong  AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
   672 julong  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
   673 julong  AllocStats::num_frees()   { return os::num_frees - start_frees; }
   674 julong  AllocStats::free_bytes()  { return os::free_bytes - start_mfree_bytes; }
   675 julong  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
   676 void    AllocStats::print() {
   677   tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
   678                 UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
   679                 num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
   680 }
   683 // debugging code
   684 inline void Arena::free_all(char** start, char** end) {
   685   for (char** p = start; p < end; p++) if (*p) os::free(*p);
   686 }
   688 void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
   689   assert(UseMallocOnly, "should not call");
   690   // free all objects malloced since resource mark was created; resource area
   691   // contains their addresses
   692   if (chunk->next()) {
   693     // this chunk is full, and some others too
   694     for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
   695       char* top = c->top();
   696       if (c->next() == NULL) {
   697         top = hwm2;     // last junk is only used up to hwm2
   698         assert(c->contains(hwm2), "bad hwm2");
   699       }
   700       free_all((char**)c->bottom(), (char**)top);
   701     }
   702     assert(chunk->contains(hwm), "bad hwm");
   703     assert(chunk->contains(max), "bad max");
   704     free_all((char**)hwm, (char**)max);
   705   } else {
   706     // this chunk was partially used
   707     assert(chunk->contains(hwm), "bad hwm");
   708     assert(chunk->contains(hwm2), "bad hwm2");
   709     free_all((char**)hwm, (char**)hwm2);
   710   }
   711 }
   714 ReallocMark::ReallocMark() {
   715 #ifdef ASSERT
   716   Thread *thread = ThreadLocalStorage::get_thread_slow();
   717   _nesting = thread->resource_area()->nesting();
   718 #endif
   719 }
   721 void ReallocMark::check() {
   722 #ifdef ASSERT
   723   if (_nesting != Thread::current()->resource_area()->nesting()) {
   724     fatal("allocation bug: array could grow within nested ResourceMark");
   725   }
   726 #endif
   727 }
   729 #endif // Non-product

mercurial