src/share/vm/memory/allocation.cpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 3156
f08d439fab8c
child 4037
da91efe96a93
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "memory/resourceArea.hpp"
    29 #include "runtime/atomic.hpp"
    30 #include "runtime/os.hpp"
    31 #include "runtime/task.hpp"
    32 #include "runtime/threadCritical.hpp"
    33 #include "services/memTracker.hpp"
    34 #include "utilities/ostream.hpp"
    36 #ifdef TARGET_OS_FAMILY_linux
    37 # include "os_linux.inline.hpp"
    38 #endif
    39 #ifdef TARGET_OS_FAMILY_solaris
    40 # include "os_solaris.inline.hpp"
    41 #endif
    42 #ifdef TARGET_OS_FAMILY_windows
    43 # include "os_windows.inline.hpp"
    44 #endif
    45 #ifdef TARGET_OS_FAMILY_bsd
    46 # include "os_bsd.inline.hpp"
    47 #endif
    49 void* StackObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
    50 void  StackObj::operator delete(void* p)   { ShouldNotCallThis(); };
    51 void* _ValueObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
    52 void  _ValueObj::operator delete(void* p)   { ShouldNotCallThis(); };
    54 void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) {
    55   address res;
    56   switch (type) {
    57    case C_HEAP:
    58     res = (address)AllocateHeap(size, flags, CALLER_PC);
    59     DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
    60     break;
    61    case RESOURCE_AREA:
    62     // new(size) sets allocation type RESOURCE_AREA.
    63     res = (address)operator new(size);
    64     break;
    65    default:
    66     ShouldNotReachHere();
    67   }
    68   return res;
    69 }
    71 void ResourceObj::operator delete(void* p) {
    72   assert(((ResourceObj *)p)->allocated_on_C_heap(),
    73          "delete only allowed for C_HEAP objects");
    74   DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
    75   FreeHeap(p);
    76 }
    78 #ifdef ASSERT
    79 void ResourceObj::set_allocation_type(address res, allocation_type type) {
    80     // Set allocation type in the resource object
    81     uintptr_t allocation = (uintptr_t)res;
    82     assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
    83     assert(type <= allocation_mask, "incorrect allocation type");
    84     ResourceObj* resobj = (ResourceObj *)res;
    85     resobj->_allocation_t[0] = ~(allocation + type);
    86     if (type != STACK_OR_EMBEDDED) {
    87       // Called from operator new() and CollectionSetChooser(),
    88       // set verification value.
    89       resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
    90     }
    91 }
    93 ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
    94     assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
    95     return (allocation_type)((~_allocation_t[0]) & allocation_mask);
    96 }
    98 bool ResourceObj::is_type_set() const {
    99     allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
   100     return get_allocation_type()  == type &&
   101            (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
   102 }
   104 ResourceObj::ResourceObj() { // default constructor
   105     if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
   106       // Operator new() is not called for allocations
   107       // on stack and for embedded objects.
   108       set_allocation_type((address)this, STACK_OR_EMBEDDED);
   109     } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
   110       // For some reason we got a value which resembles
   111       // an embedded or stack object (operator new() does not
   112       // set such type). Keep it since it is valid value
   113       // (even if it was garbage).
   114       // Ignore garbage in other fields.
   115     } else if (is_type_set()) {
   116       // Operator new() was called and type was set.
   117       assert(!allocated_on_stack(),
   118              err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   119                      this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   120     } else {
   121       // Operator new() was not called.
   122       // Assume that it is embedded or stack object.
   123       set_allocation_type((address)this, STACK_OR_EMBEDDED);
   124     }
   125     _allocation_t[1] = 0; // Zap verification value
   126 }
   128 ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
   129     // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
   130     // Note: garbage may resembles valid value.
   131     assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
   132            err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   133                    this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   134     set_allocation_type((address)this, STACK_OR_EMBEDDED);
   135     _allocation_t[1] = 0; // Zap verification value
   136 }
   138 ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
   139     // Used in InlineTree::ok_to_inline() for WarmCallInfo.
   140     assert(allocated_on_stack(),
   141            err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   142                    this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   143     // Keep current _allocation_t value;
   144     return *this;
   145 }
   147 ResourceObj::~ResourceObj() {
   148     // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
   149     if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
   150       _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
   151     }
   152 }
   153 #endif // ASSERT
   156 void trace_heap_malloc(size_t size, const char* name, void* p) {
   157   // A lock is not needed here - tty uses a lock internally
   158   tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p, size, name == NULL ? "" : name);
   159 }
   162 void trace_heap_free(void* p) {
   163   // A lock is not needed here - tty uses a lock internally
   164   tty->print_cr("Heap free   " INTPTR_FORMAT, p);
   165 }
   167 bool warn_new_operator = false; // see vm_main
   169 //--------------------------------------------------------------------------------------
   170 // ChunkPool implementation
   172 // MT-safe pool of chunks to reduce malloc/free thrashing
   173 // NB: not using Mutex because pools are used before Threads are initialized
   174 class ChunkPool: public CHeapObj<mtInternal> {
   175   Chunk*       _first;        // first cached Chunk; its first word points to next chunk
   176   size_t       _num_chunks;   // number of unused chunks in pool
   177   size_t       _num_used;     // number of chunks currently checked out
   178   const size_t _size;         // size of each chunk (must be uniform)
   180   // Our three static pools
   181   static ChunkPool* _large_pool;
   182   static ChunkPool* _medium_pool;
   183   static ChunkPool* _small_pool;
   185   // return first element or null
   186   void* get_first() {
   187     Chunk* c = _first;
   188     if (_first) {
   189       _first = _first->next();
   190       _num_chunks--;
   191     }
   192     return c;
   193   }
   195  public:
   196   // All chunks in a ChunkPool has the same size
   197    ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
   199   // Allocate a new chunk from the pool (might expand the pool)
   200   _NOINLINE_ void* allocate(size_t bytes) {
   201     assert(bytes == _size, "bad size");
   202     void* p = NULL;
   203     // No VM lock can be taken inside ThreadCritical lock, so os::malloc
   204     // should be done outside ThreadCritical lock due to NMT
   205     { ThreadCritical tc;
   206       _num_used++;
   207       p = get_first();
   208     }
   209     if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
   210     if (p == NULL)
   211       vm_exit_out_of_memory(bytes, "ChunkPool::allocate");
   213     return p;
   214   }
   216   // Return a chunk to the pool
   217   void free(Chunk* chunk) {
   218     assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
   219     ThreadCritical tc;
   220     _num_used--;
   222     // Add chunk to list
   223     chunk->set_next(_first);
   224     _first = chunk;
   225     _num_chunks++;
   226   }
   228   // Prune the pool
   229   void free_all_but(size_t n) {
   230     Chunk* cur = NULL;
   231     Chunk* next;
   232     {
   233     // if we have more than n chunks, free all of them
   234     ThreadCritical tc;
   235     if (_num_chunks > n) {
   236       // free chunks at end of queue, for better locality
   237         cur = _first;
   238       for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
   240       if (cur != NULL) {
   241           next = cur->next();
   242         cur->set_next(NULL);
   243         cur = next;
   245           _num_chunks = n;
   246         }
   247       }
   248     }
   250     // Free all remaining chunks, outside of ThreadCritical
   251     // to avoid deadlock with NMT
   252         while(cur != NULL) {
   253           next = cur->next();
   254       os::free(cur, mtChunk);
   255           cur = next;
   256         }
   257       }
   259   // Accessors to preallocated pool's
   260   static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
   261   static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
   262   static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
   264   static void initialize() {
   265     _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
   266     _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
   267     _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
   268   }
   270   static void clean() {
   271     enum { BlocksToKeep = 5 };
   272      _small_pool->free_all_but(BlocksToKeep);
   273      _medium_pool->free_all_but(BlocksToKeep);
   274      _large_pool->free_all_but(BlocksToKeep);
   275   }
   276 };
   278 ChunkPool* ChunkPool::_large_pool  = NULL;
   279 ChunkPool* ChunkPool::_medium_pool = NULL;
   280 ChunkPool* ChunkPool::_small_pool  = NULL;
   282 void chunkpool_init() {
   283   ChunkPool::initialize();
   284 }
   286 void
   287 Chunk::clean_chunk_pool() {
   288   ChunkPool::clean();
   289 }
   292 //--------------------------------------------------------------------------------------
   293 // ChunkPoolCleaner implementation
   294 //
   296 class ChunkPoolCleaner : public PeriodicTask {
   297   enum { CleaningInterval = 5000 };      // cleaning interval in ms
   299  public:
   300    ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
   301    void task() {
   302      ChunkPool::clean();
   303    }
   304 };
   306 //--------------------------------------------------------------------------------------
   307 // Chunk implementation
   309 void* Chunk::operator new(size_t requested_size, size_t length) {
   310   // requested_size is equal to sizeof(Chunk) but in order for the arena
   311   // allocations to come out aligned as expected the size must be aligned
   312   // to expected arean alignment.
   313   // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
   314   assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
   315   size_t bytes = ARENA_ALIGN(requested_size) + length;
   316   switch (length) {
   317    case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes);
   318    case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes);
   319    case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes);
   320    default: {
   321      void *p =  os::malloc(bytes, mtChunk, CALLER_PC);
   322      if (p == NULL)
   323        vm_exit_out_of_memory(bytes, "Chunk::new");
   324      return p;
   325    }
   326   }
   327 }
   329 void Chunk::operator delete(void* p) {
   330   Chunk* c = (Chunk*)p;
   331   switch (c->length()) {
   332    case Chunk::size:        ChunkPool::large_pool()->free(c); break;
   333    case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
   334    case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
   335    default:                 os::free(c, mtChunk);
   336   }
   337 }
   339 Chunk::Chunk(size_t length) : _len(length) {
   340   _next = NULL;         // Chain on the linked list
   341 }
   344 void Chunk::chop() {
   345   Chunk *k = this;
   346   while( k ) {
   347     Chunk *tmp = k->next();
   348     // clear out this chunk (to detect allocation bugs)
   349     if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
   350     delete k;                   // Free chunk (was malloc'd)
   351     k = tmp;
   352   }
   353 }
   355 void Chunk::next_chop() {
   356   _next->chop();
   357   _next = NULL;
   358 }
   361 void Chunk::start_chunk_pool_cleaner_task() {
   362 #ifdef ASSERT
   363   static bool task_created = false;
   364   assert(!task_created, "should not start chuck pool cleaner twice");
   365   task_created = true;
   366 #endif
   367   ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
   368   cleaner->enroll();
   369 }
   371 //------------------------------Arena------------------------------------------
   372 NOT_PRODUCT(volatile jint Arena::_instance_count = 0;)
   374 Arena::Arena(size_t init_size) {
   375   size_t round_size = (sizeof (char *)) - 1;
   376   init_size = (init_size+round_size) & ~round_size;
   377   _first = _chunk = new (init_size) Chunk(init_size);
   378   _hwm = _chunk->bottom();      // Save the cached hwm, max
   379   _max = _chunk->top();
   380   set_size_in_bytes(init_size);
   381   NOT_PRODUCT(Atomic::inc(&_instance_count);)
   382 }
   384 Arena::Arena() {
   385   _first = _chunk = new (Chunk::init_size) Chunk(Chunk::init_size);
   386   _hwm = _chunk->bottom();      // Save the cached hwm, max
   387   _max = _chunk->top();
   388   set_size_in_bytes(Chunk::init_size);
   389   NOT_PRODUCT(Atomic::inc(&_instance_count);)
   390 }
   392 Arena::Arena(Arena *a) : _chunk(a->_chunk), _hwm(a->_hwm), _max(a->_max), _first(a->_first) {
   393   set_size_in_bytes(a->size_in_bytes());
   394   NOT_PRODUCT(Atomic::inc(&_instance_count);)
   395 }
   398 Arena *Arena::move_contents(Arena *copy) {
   399   copy->destruct_contents();
   400   copy->_chunk = _chunk;
   401   copy->_hwm   = _hwm;
   402   copy->_max   = _max;
   403   copy->_first = _first;
   404   copy->set_size_in_bytes(size_in_bytes());
   405   // Destroy original arena
   406   reset();
   407   return copy;            // Return Arena with contents
   408 }
   410 Arena::~Arena() {
   411   destruct_contents();
   412   NOT_PRODUCT(Atomic::dec(&_instance_count);)
   413 }
   415 void* Arena::operator new(size_t size) {
   416   assert(false, "Use dynamic memory type binding");
   417   return NULL;
   418 }
   420 void* Arena::operator new (size_t size, const std::nothrow_t&  nothrow_constant) {
   421   assert(false, "Use dynamic memory type binding");
   422   return NULL;
   423 }
   425   // dynamic memory type binding
   426 void* Arena::operator new(size_t size, MEMFLAGS flags) {
   427 #ifdef ASSERT
   428   void* p = (void*)AllocateHeap(size, flags|otArena, CALLER_PC);
   429   if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
   430   return p;
   431 #else
   432   return (void *) AllocateHeap(size, flags|otArena, CALLER_PC);
   433 #endif
   434 }
   436 void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) {
   437 #ifdef ASSERT
   438   void* p = os::malloc(size, flags|otArena, CALLER_PC);
   439   if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
   440   return p;
   441 #else
   442   return os::malloc(size, flags|otArena, CALLER_PC);
   443 #endif
   444 }
   446 void Arena::operator delete(void* p) {
   447   FreeHeap(p);
   448 }
   450 // Destroy this arenas contents and reset to empty
   451 void Arena::destruct_contents() {
   452   if (UseMallocOnly && _first != NULL) {
   453     char* end = _first->next() ? _first->top() : _hwm;
   454     free_malloced_objects(_first, _first->bottom(), end, _hwm);
   455   }
   456   _first->chop();
   457   reset();
   458 }
   460 // This is high traffic method, but many calls actually don't
   461 // change the size
   462 void Arena::set_size_in_bytes(size_t size) {
   463   if (_size_in_bytes != size) {
   464     _size_in_bytes = size;
   465     MemTracker::record_arena_size((address)this, size);
   466   }
   467 }
   469 // Total of all Chunks in arena
   470 size_t Arena::used() const {
   471   size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
   472   register Chunk *k = _first;
   473   while( k != _chunk) {         // Whilst have Chunks in a row
   474     sum += k->length();         // Total size of this Chunk
   475     k = k->next();              // Bump along to next Chunk
   476   }
   477   return sum;                   // Return total consumed space.
   478 }
   480 void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
   481   vm_exit_out_of_memory(sz, whence);
   482 }
   484 // Grow a new Chunk
   485 void* Arena::grow( size_t x ) {
   486   // Get minimal required size.  Either real big, or even bigger for giant objs
   487   size_t len = MAX2(x, (size_t) Chunk::size);
   489   Chunk *k = _chunk;            // Get filled-up chunk address
   490   _chunk = new (len) Chunk(len);
   492   if (_chunk == NULL) {
   493     signal_out_of_memory(len * Chunk::aligned_overhead_size(), "Arena::grow");
   494   }
   495   if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
   496   else _first = _chunk;
   497   _hwm  = _chunk->bottom();     // Save the cached hwm, max
   498   _max =  _chunk->top();
   499   set_size_in_bytes(size_in_bytes() + len);
   500   void* result = _hwm;
   501   _hwm += x;
   502   return result;
   503 }
   507 // Reallocate storage in Arena.
   508 void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size) {
   509   assert(new_size >= 0, "bad size");
   510   if (new_size == 0) return NULL;
   511 #ifdef ASSERT
   512   if (UseMallocOnly) {
   513     // always allocate a new object  (otherwise we'll free this one twice)
   514     char* copy = (char*)Amalloc(new_size);
   515     size_t n = MIN2(old_size, new_size);
   516     if (n > 0) memcpy(copy, old_ptr, n);
   517     Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
   518     return copy;
   519   }
   520 #endif
   521   char *c_old = (char*)old_ptr; // Handy name
   522   // Stupid fast special case
   523   if( new_size <= old_size ) {  // Shrink in-place
   524     if( c_old+old_size == _hwm) // Attempt to free the excess bytes
   525       _hwm = c_old+new_size;    // Adjust hwm
   526     return c_old;
   527   }
   529   // make sure that new_size is legal
   530   size_t corrected_new_size = ARENA_ALIGN(new_size);
   532   // See if we can resize in-place
   533   if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
   534       (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
   535     _hwm = c_old+corrected_new_size;      // Adjust hwm
   536     return c_old;               // Return old pointer
   537   }
   539   // Oops, got to relocate guts
   540   void *new_ptr = Amalloc(new_size);
   541   memcpy( new_ptr, c_old, old_size );
   542   Afree(c_old,old_size);        // Mostly done to keep stats accurate
   543   return new_ptr;
   544 }
   547 // Determine if pointer belongs to this Arena or not.
   548 bool Arena::contains( const void *ptr ) const {
   549 #ifdef ASSERT
   550   if (UseMallocOnly) {
   551     // really slow, but not easy to make fast
   552     if (_chunk == NULL) return false;
   553     char** bottom = (char**)_chunk->bottom();
   554     for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
   555       if (*p == ptr) return true;
   556     }
   557     for (Chunk *c = _first; c != NULL; c = c->next()) {
   558       if (c == _chunk) continue;  // current chunk has been processed
   559       char** bottom = (char**)c->bottom();
   560       for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
   561         if (*p == ptr) return true;
   562       }
   563     }
   564     return false;
   565   }
   566 #endif
   567   if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
   568     return true;                // Check for in this chunk
   569   for (Chunk *c = _first; c; c = c->next()) {
   570     if (c == _chunk) continue;  // current chunk has been processed
   571     if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
   572       return true;              // Check for every chunk in Arena
   573     }
   574   }
   575   return false;                 // Not in any Chunk, so not in Arena
   576 }
   579 #ifdef ASSERT
   580 void* Arena::malloc(size_t size) {
   581   assert(UseMallocOnly, "shouldn't call");
   582   // use malloc, but save pointer in res. area for later freeing
   583   char** save = (char**)internal_malloc_4(sizeof(char*));
   584   return (*save = (char*)os::malloc(size, mtChunk));
   585 }
   587 // for debugging with UseMallocOnly
   588 void* Arena::internal_malloc_4(size_t x) {
   589   assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
   590   check_for_overflow(x, "Arena::internal_malloc_4");
   591   if (_hwm + x > _max) {
   592     return grow(x);
   593   } else {
   594     char *old = _hwm;
   595     _hwm += x;
   596     return old;
   597   }
   598 }
   599 #endif
   602 //--------------------------------------------------------------------------------------
   603 // Non-product code
   605 #ifndef PRODUCT
   606 // The global operator new should never be called since it will usually indicate
   607 // a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
   608 // that they're allocated on the C heap.
   609 // Commented out in product version to avoid conflicts with third-party C++ native code.
   610 // %% note this is causing a problem on solaris debug build. the global
   611 // new is being called from jdk source and causing data corruption.
   612 // src/share/native/sun/awt/font/fontmanager/textcache/hsMemory.cpp::hsSoftNew
   613 // define CATCH_OPERATOR_NEW_USAGE if you want to use this.
   614 #ifdef CATCH_OPERATOR_NEW_USAGE
   615 void* operator new(size_t size){
   616   static bool warned = false;
   617   if (!warned && warn_new_operator)
   618     warning("should not call global (default) operator new");
   619   warned = true;
   620   return (void *) AllocateHeap(size, "global operator new");
   621 }
   622 #endif
   624 void AllocatedObj::print() const       { print_on(tty); }
   625 void AllocatedObj::print_value() const { print_value_on(tty); }
   627 void AllocatedObj::print_on(outputStream* st) const {
   628   st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
   629 }
   631 void AllocatedObj::print_value_on(outputStream* st) const {
   632   st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
   633 }
   635 julong Arena::_bytes_allocated = 0;
   637 void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
   639 AllocStats::AllocStats() {
   640   start_mallocs      = os::num_mallocs;
   641   start_frees        = os::num_frees;
   642   start_malloc_bytes = os::alloc_bytes;
   643   start_mfree_bytes  = os::free_bytes;
   644   start_res_bytes    = Arena::_bytes_allocated;
   645 }
   647 julong  AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
   648 julong  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
   649 julong  AllocStats::num_frees()   { return os::num_frees - start_frees; }
   650 julong  AllocStats::free_bytes()  { return os::free_bytes - start_mfree_bytes; }
   651 julong  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
   652 void    AllocStats::print() {
   653   tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
   654                 UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
   655                 num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
   656 }
   659 // debugging code
   660 inline void Arena::free_all(char** start, char** end) {
   661   for (char** p = start; p < end; p++) if (*p) os::free(*p);
   662 }
   664 void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
   665   assert(UseMallocOnly, "should not call");
   666   // free all objects malloced since resource mark was created; resource area
   667   // contains their addresses
   668   if (chunk->next()) {
   669     // this chunk is full, and some others too
   670     for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
   671       char* top = c->top();
   672       if (c->next() == NULL) {
   673         top = hwm2;     // last junk is only used up to hwm2
   674         assert(c->contains(hwm2), "bad hwm2");
   675       }
   676       free_all((char**)c->bottom(), (char**)top);
   677     }
   678     assert(chunk->contains(hwm), "bad hwm");
   679     assert(chunk->contains(max), "bad max");
   680     free_all((char**)hwm, (char**)max);
   681   } else {
   682     // this chunk was partially used
   683     assert(chunk->contains(hwm), "bad hwm");
   684     assert(chunk->contains(hwm2), "bad hwm2");
   685     free_all((char**)hwm, (char**)hwm2);
   686   }
   687 }
   690 ReallocMark::ReallocMark() {
   691 #ifdef ASSERT
   692   Thread *thread = ThreadLocalStorage::get_thread_slow();
   693   _nesting = thread->resource_area()->nesting();
   694 #endif
   695 }
   697 void ReallocMark::check() {
   698 #ifdef ASSERT
   699   if (_nesting != Thread::current()->resource_area()->nesting()) {
   700     fatal("allocation bug: array could grow within nested ResourceMark");
   701   }
   702 #endif
   703 }
   705 #endif // Non-product

mercurial