src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Sat, 01 Sep 2012 13:25:18 -0400

author
coleenp
date
Sat, 01 Sep 2012 13:25:18 -0400
changeset 4037
da91efe96a93
parent 3969
1d7922586cf6
child 4051
8a02ca5e5576
permissions
-rw-r--r--

6964458: Reimplement class meta-data storage to use native memory
Summary: Remove PermGen, allocate meta-data in metaspace linked to class loaders, rewrite GC walking, rewrite and rename metadata to be C++ classes
Reviewed-by: jmasa, stefank, never, coleenp, kvn, brutisso, mgerdin, dholmes, jrose, twisti, roland
Contributed-by: jmasa <jon.masamitsu@oracle.com>, stefank <stefan.karlsson@oracle.com>, mgerdin <mikael.gerdin@oracle.com>, never <tom.rodriguez@oracle.com>

     1 /*
     2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "c1/c1_Compilation.hpp"
    28 #include "c1/c1_LIRAssembler.hpp"
    29 #include "c1/c1_MacroAssembler.hpp"
    30 #include "c1/c1_Runtime1.hpp"
    31 #include "c1/c1_ValueStack.hpp"
    32 #include "ci/ciArrayKlass.hpp"
    33 #include "ci/ciInstance.hpp"
    34 #include "gc_interface/collectedHeap.hpp"
    35 #include "memory/barrierSet.hpp"
    36 #include "memory/cardTableModRefBS.hpp"
    37 #include "nativeInst_x86.hpp"
    38 #include "oops/objArrayKlass.hpp"
    39 #include "runtime/sharedRuntime.hpp"
    42 // These masks are used to provide 128-bit aligned bitmasks to the XMM
    43 // instructions, to allow sign-masking or sign-bit flipping.  They allow
    44 // fast versions of NegF/NegD and AbsF/AbsD.
    46 // Note: 'double' and 'long long' have 32-bits alignment on x86.
    47 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
    48   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
    49   // of 128-bits operands for SSE instructions.
    50   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
    51   // Store the value to a 128-bits operand.
    52   operand[0] = lo;
    53   operand[1] = hi;
    54   return operand;
    55 }
    57 // Buffer for 128-bits masks used by SSE instructions.
    58 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
    60 // Static initialization during VM startup.
    61 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
    62 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
    63 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
    64 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
    68 NEEDS_CLEANUP // remove this definitions ?
    69 const Register IC_Klass    = rax;   // where the IC klass is cached
    70 const Register SYNC_header = rax;   // synchronization header
    71 const Register SHIFT_count = rcx;   // where count for shift operations must be
    73 #define __ _masm->
    76 static void select_different_registers(Register preserve,
    77                                        Register extra,
    78                                        Register &tmp1,
    79                                        Register &tmp2) {
    80   if (tmp1 == preserve) {
    81     assert_different_registers(tmp1, tmp2, extra);
    82     tmp1 = extra;
    83   } else if (tmp2 == preserve) {
    84     assert_different_registers(tmp1, tmp2, extra);
    85     tmp2 = extra;
    86   }
    87   assert_different_registers(preserve, tmp1, tmp2);
    88 }
    92 static void select_different_registers(Register preserve,
    93                                        Register extra,
    94                                        Register &tmp1,
    95                                        Register &tmp2,
    96                                        Register &tmp3) {
    97   if (tmp1 == preserve) {
    98     assert_different_registers(tmp1, tmp2, tmp3, extra);
    99     tmp1 = extra;
   100   } else if (tmp2 == preserve) {
   101     assert_different_registers(tmp1, tmp2, tmp3, extra);
   102     tmp2 = extra;
   103   } else if (tmp3 == preserve) {
   104     assert_different_registers(tmp1, tmp2, tmp3, extra);
   105     tmp3 = extra;
   106   }
   107   assert_different_registers(preserve, tmp1, tmp2, tmp3);
   108 }
   112 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
   113   if (opr->is_constant()) {
   114     LIR_Const* constant = opr->as_constant_ptr();
   115     switch (constant->type()) {
   116       case T_INT: {
   117         return true;
   118       }
   120       default:
   121         return false;
   122     }
   123   }
   124   return false;
   125 }
   128 LIR_Opr LIR_Assembler::receiverOpr() {
   129   return FrameMap::receiver_opr;
   130 }
   132 LIR_Opr LIR_Assembler::osrBufferPointer() {
   133   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
   134 }
   136 //--------------fpu register translations-----------------------
   139 address LIR_Assembler::float_constant(float f) {
   140   address const_addr = __ float_constant(f);
   141   if (const_addr == NULL) {
   142     bailout("const section overflow");
   143     return __ code()->consts()->start();
   144   } else {
   145     return const_addr;
   146   }
   147 }
   150 address LIR_Assembler::double_constant(double d) {
   151   address const_addr = __ double_constant(d);
   152   if (const_addr == NULL) {
   153     bailout("const section overflow");
   154     return __ code()->consts()->start();
   155   } else {
   156     return const_addr;
   157   }
   158 }
   161 void LIR_Assembler::set_24bit_FPU() {
   162   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   163 }
   165 void LIR_Assembler::reset_FPU() {
   166   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   167 }
   169 void LIR_Assembler::fpop() {
   170   __ fpop();
   171 }
   173 void LIR_Assembler::fxch(int i) {
   174   __ fxch(i);
   175 }
   177 void LIR_Assembler::fld(int i) {
   178   __ fld_s(i);
   179 }
   181 void LIR_Assembler::ffree(int i) {
   182   __ ffree(i);
   183 }
   185 void LIR_Assembler::breakpoint() {
   186   __ int3();
   187 }
   189 void LIR_Assembler::push(LIR_Opr opr) {
   190   if (opr->is_single_cpu()) {
   191     __ push_reg(opr->as_register());
   192   } else if (opr->is_double_cpu()) {
   193     NOT_LP64(__ push_reg(opr->as_register_hi()));
   194     __ push_reg(opr->as_register_lo());
   195   } else if (opr->is_stack()) {
   196     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
   197   } else if (opr->is_constant()) {
   198     LIR_Const* const_opr = opr->as_constant_ptr();
   199     if (const_opr->type() == T_OBJECT) {
   200       __ push_oop(const_opr->as_jobject());
   201     } else if (const_opr->type() == T_INT) {
   202       __ push_jint(const_opr->as_jint());
   203     } else {
   204       ShouldNotReachHere();
   205     }
   207   } else {
   208     ShouldNotReachHere();
   209   }
   210 }
   212 void LIR_Assembler::pop(LIR_Opr opr) {
   213   if (opr->is_single_cpu()) {
   214     __ pop_reg(opr->as_register());
   215   } else {
   216     ShouldNotReachHere();
   217   }
   218 }
   220 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
   221   return addr->base()->is_illegal() && addr->index()->is_illegal();
   222 }
   224 //-------------------------------------------
   226 Address LIR_Assembler::as_Address(LIR_Address* addr) {
   227   return as_Address(addr, rscratch1);
   228 }
   230 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
   231   if (addr->base()->is_illegal()) {
   232     assert(addr->index()->is_illegal(), "must be illegal too");
   233     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
   234     if (! __ reachable(laddr)) {
   235       __ movptr(tmp, laddr.addr());
   236       Address res(tmp, 0);
   237       return res;
   238     } else {
   239       return __ as_Address(laddr);
   240     }
   241   }
   243   Register base = addr->base()->as_pointer_register();
   245   if (addr->index()->is_illegal()) {
   246     return Address( base, addr->disp());
   247   } else if (addr->index()->is_cpu_register()) {
   248     Register index = addr->index()->as_pointer_register();
   249     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
   250   } else if (addr->index()->is_constant()) {
   251     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
   252     assert(Assembler::is_simm32(addr_offset), "must be");
   254     return Address(base, addr_offset);
   255   } else {
   256     Unimplemented();
   257     return Address();
   258   }
   259 }
   262 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
   263   Address base = as_Address(addr);
   264   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
   265 }
   268 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
   269   return as_Address(addr);
   270 }
   273 void LIR_Assembler::osr_entry() {
   274   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   275   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   276   ValueStack* entry_state = osr_entry->state();
   277   int number_of_locks = entry_state->locks_size();
   279   // we jump here if osr happens with the interpreter
   280   // state set up to continue at the beginning of the
   281   // loop that triggered osr - in particular, we have
   282   // the following registers setup:
   283   //
   284   // rcx: osr buffer
   285   //
   287   // build frame
   288   ciMethod* m = compilation()->method();
   289   __ build_frame(initial_frame_size_in_bytes());
   291   // OSR buffer is
   292   //
   293   // locals[nlocals-1..0]
   294   // monitors[0..number_of_locks]
   295   //
   296   // locals is a direct copy of the interpreter frame so in the osr buffer
   297   // so first slot in the local array is the last local from the interpreter
   298   // and last slot is local[0] (receiver) from the interpreter
   299   //
   300   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   301   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   302   // in the interpreter frame (the method lock if a sync method)
   304   // Initialize monitors in the compiled activation.
   305   //   rcx: pointer to osr buffer
   306   //
   307   // All other registers are dead at this point and the locals will be
   308   // copied into place by code emitted in the IR.
   310   Register OSR_buf = osrBufferPointer()->as_pointer_register();
   311   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   312     int monitor_offset = BytesPerWord * method()->max_locals() +
   313       (2 * BytesPerWord) * (number_of_locks - 1);
   314     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   315     // the OSR buffer using 2 word entries: first the lock and then
   316     // the oop.
   317     for (int i = 0; i < number_of_locks; i++) {
   318       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   319 #ifdef ASSERT
   320       // verify the interpreter's monitor has a non-null object
   321       {
   322         Label L;
   323         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
   324         __ jcc(Assembler::notZero, L);
   325         __ stop("locked object is NULL");
   326         __ bind(L);
   327       }
   328 #endif
   329       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
   330       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
   331       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
   332       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
   333     }
   334   }
   335 }
   338 // inline cache check; done before the frame is built.
   339 int LIR_Assembler::check_icache() {
   340   Register receiver = FrameMap::receiver_opr->as_register();
   341   Register ic_klass = IC_Klass;
   342   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
   343   const bool do_post_padding = VerifyOops || UseCompressedOops;
   344   if (!do_post_padding) {
   345     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
   346     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
   347       __ nop();
   348     }
   349   }
   350   int offset = __ offset();
   351   __ inline_cache_check(receiver, IC_Klass);
   352   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
   353   if (do_post_padding) {
   354     // force alignment after the cache check.
   355     // It's been verified to be aligned if !VerifyOops
   356     __ align(CodeEntryAlignment);
   357   }
   358   return offset;
   359 }
   362 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
   363   jobject o = NULL;
   364   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_mirror_id);
   365   __ movoop(reg, o);
   366   patching_epilog(patch, lir_patch_normal, reg, info);
   367 }
   369 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
   370   Metadata* o = NULL;
   371   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
   372   __ mov_metadata(reg, o);
   373   patching_epilog(patch, lir_patch_normal, reg, info);
   374 }
   376 // This specifies the rsp decrement needed to build the frame
   377 int LIR_Assembler::initial_frame_size_in_bytes() {
   378   // if rounding, must let FrameMap know!
   380   // The frame_map records size in slots (32bit word)
   382   // subtract two words to account for return address and link
   383   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
   384 }
   387 int LIR_Assembler::emit_exception_handler() {
   388   // if the last instruction is a call (typically to do a throw which
   389   // is coming at the end after block reordering) the return address
   390   // must still point into the code area in order to avoid assertion
   391   // failures when searching for the corresponding bci => add a nop
   392   // (was bug 5/14/1999 - gri)
   393   __ nop();
   395   // generate code for exception handler
   396   address handler_base = __ start_a_stub(exception_handler_size);
   397   if (handler_base == NULL) {
   398     // not enough space left for the handler
   399     bailout("exception handler overflow");
   400     return -1;
   401   }
   403   int offset = code_offset();
   405   // the exception oop and pc are in rax, and rdx
   406   // no other registers need to be preserved, so invalidate them
   407   __ invalidate_registers(false, true, true, false, true, true);
   409   // check that there is really an exception
   410   __ verify_not_null_oop(rax);
   412   // search an exception handler (rax: exception oop, rdx: throwing pc)
   413   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
   414   __ should_not_reach_here();
   415   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
   416   __ end_a_stub();
   418   return offset;
   419 }
   422 // Emit the code to remove the frame from the stack in the exception
   423 // unwind path.
   424 int LIR_Assembler::emit_unwind_handler() {
   425 #ifndef PRODUCT
   426   if (CommentedAssembly) {
   427     _masm->block_comment("Unwind handler");
   428   }
   429 #endif
   431   int offset = code_offset();
   433   // Fetch the exception from TLS and clear out exception related thread state
   434   __ get_thread(rsi);
   435   __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
   436   __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
   437   __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
   439   __ bind(_unwind_handler_entry);
   440   __ verify_not_null_oop(rax);
   441   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   442     __ mov(rsi, rax);  // Preserve the exception
   443   }
   445   // Preform needed unlocking
   446   MonitorExitStub* stub = NULL;
   447   if (method()->is_synchronized()) {
   448     monitor_address(0, FrameMap::rax_opr);
   449     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
   450     __ unlock_object(rdi, rbx, rax, *stub->entry());
   451     __ bind(*stub->continuation());
   452   }
   454   if (compilation()->env()->dtrace_method_probes()) {
   455     __ get_thread(rax);
   456     __ movptr(Address(rsp, 0), rax);
   457     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
   458     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
   459   }
   461   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   462     __ mov(rax, rsi);  // Restore the exception
   463   }
   465   // remove the activation and dispatch to the unwind handler
   466   __ remove_frame(initial_frame_size_in_bytes());
   467   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
   469   // Emit the slow path assembly
   470   if (stub != NULL) {
   471     stub->emit_code(this);
   472   }
   474   return offset;
   475 }
   478 int LIR_Assembler::emit_deopt_handler() {
   479   // if the last instruction is a call (typically to do a throw which
   480   // is coming at the end after block reordering) the return address
   481   // must still point into the code area in order to avoid assertion
   482   // failures when searching for the corresponding bci => add a nop
   483   // (was bug 5/14/1999 - gri)
   484   __ nop();
   486   // generate code for exception handler
   487   address handler_base = __ start_a_stub(deopt_handler_size);
   488   if (handler_base == NULL) {
   489     // not enough space left for the handler
   490     bailout("deopt handler overflow");
   491     return -1;
   492   }
   494   int offset = code_offset();
   495   InternalAddress here(__ pc());
   497   __ pushptr(here.addr());
   498   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
   499   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
   500   __ end_a_stub();
   502   return offset;
   503 }
   506 // This is the fast version of java.lang.String.compare; it has not
   507 // OSR-entry and therefore, we generate a slow version for OSR's
   508 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
   509   __ movptr (rbx, rcx); // receiver is in rcx
   510   __ movptr (rax, arg1->as_register());
   512   // Get addresses of first characters from both Strings
   513   __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
   514   if (java_lang_String::has_offset_field()) {
   515     __ movptr     (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
   516     __ movl       (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
   517     __ lea        (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   518   } else {
   519     __ movl       (rax, Address(rsi, arrayOopDesc::length_offset_in_bytes()));
   520     __ lea        (rsi, Address(rsi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   521   }
   523   // rbx, may be NULL
   524   add_debug_info_for_null_check_here(info);
   525   __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
   526   if (java_lang_String::has_offset_field()) {
   527     __ movptr     (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
   528     __ movl       (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   529     __ lea        (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   530   } else {
   531     __ movl       (rbx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
   532     __ lea        (rdi, Address(rdi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   533   }
   535   // compute minimum length (in rax) and difference of lengths (on top of stack)
   536   __ mov   (rcx, rbx);
   537   __ subptr(rbx, rax); // subtract lengths
   538   __ push  (rbx);      // result
   539   __ cmov  (Assembler::lessEqual, rax, rcx);
   541   // is minimum length 0?
   542   Label noLoop, haveResult;
   543   __ testptr (rax, rax);
   544   __ jcc (Assembler::zero, noLoop);
   546   // compare first characters
   547   __ load_unsigned_short(rcx, Address(rdi, 0));
   548   __ load_unsigned_short(rbx, Address(rsi, 0));
   549   __ subl(rcx, rbx);
   550   __ jcc(Assembler::notZero, haveResult);
   551   // starting loop
   552   __ decrement(rax); // we already tested index: skip one
   553   __ jcc(Assembler::zero, noLoop);
   555   // set rsi.edi to the end of the arrays (arrays have same length)
   556   // negate the index
   558   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   559   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   560   __ negptr(rax);
   562   // compare the strings in a loop
   564   Label loop;
   565   __ align(wordSize);
   566   __ bind(loop);
   567   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
   568   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
   569   __ subl(rcx, rbx);
   570   __ jcc(Assembler::notZero, haveResult);
   571   __ increment(rax);
   572   __ jcc(Assembler::notZero, loop);
   574   // strings are equal up to min length
   576   __ bind(noLoop);
   577   __ pop(rax);
   578   return_op(LIR_OprFact::illegalOpr);
   580   __ bind(haveResult);
   581   // leave instruction is going to discard the TOS value
   582   __ mov (rax, rcx); // result of call is in rax,
   583 }
   586 void LIR_Assembler::return_op(LIR_Opr result) {
   587   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
   588   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
   589     assert(result->fpu() == 0, "result must already be on TOS");
   590   }
   592   // Pop the stack before the safepoint code
   593   __ remove_frame(initial_frame_size_in_bytes());
   595   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
   597   // Note: we do not need to round double result; float result has the right precision
   598   // the poll sets the condition code, but no data registers
   599   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   600                               relocInfo::poll_return_type);
   602   if (Assembler::is_polling_page_far()) {
   603     __ lea(rscratch1, polling_page);
   604     __ relocate(relocInfo::poll_return_type);
   605     __ testl(rax, Address(rscratch1, 0));
   606   } else {
   607     __ testl(rax, polling_page);
   608   }
   609   __ ret(0);
   610 }
   613 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
   614   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   615                               relocInfo::poll_type);
   616   guarantee(info != NULL, "Shouldn't be NULL");
   617   int offset = __ offset();
   618   if (Assembler::is_polling_page_far()) {
   619     __ lea(rscratch1, polling_page);
   620     offset = __ offset();
   621     add_debug_info_for_branch(info);
   622     __ testl(rax, Address(rscratch1, 0));
   623   } else {
   624     add_debug_info_for_branch(info);
   625     __ testl(rax, polling_page);
   626   }
   627   return offset;
   628 }
   631 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
   632   if (from_reg != to_reg) __ mov(to_reg, from_reg);
   633 }
   635 void LIR_Assembler::swap_reg(Register a, Register b) {
   636   __ xchgptr(a, b);
   637 }
   640 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
   641   assert(src->is_constant(), "should not call otherwise");
   642   assert(dest->is_register(), "should not call otherwise");
   643   LIR_Const* c = src->as_constant_ptr();
   645   switch (c->type()) {
   646     case T_INT: {
   647       assert(patch_code == lir_patch_none, "no patching handled here");
   648       __ movl(dest->as_register(), c->as_jint());
   649       break;
   650     }
   652     case T_ADDRESS: {
   653       assert(patch_code == lir_patch_none, "no patching handled here");
   654       __ movptr(dest->as_register(), c->as_jint());
   655       break;
   656     }
   658     case T_LONG: {
   659       assert(patch_code == lir_patch_none, "no patching handled here");
   660 #ifdef _LP64
   661       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
   662 #else
   663       __ movptr(dest->as_register_lo(), c->as_jint_lo());
   664       __ movptr(dest->as_register_hi(), c->as_jint_hi());
   665 #endif // _LP64
   666       break;
   667     }
   669     case T_OBJECT: {
   670       if (patch_code != lir_patch_none) {
   671         jobject2reg_with_patching(dest->as_register(), info);
   672       } else {
   673         __ movoop(dest->as_register(), c->as_jobject());
   674       }
   675       break;
   676     }
   678     case T_METADATA: {
   679       if (patch_code != lir_patch_none) {
   680         klass2reg_with_patching(dest->as_register(), info);
   681       } else {
   682         __ mov_metadata(dest->as_register(), c->as_metadata());
   683       }
   684       break;
   685     }
   687     case T_FLOAT: {
   688       if (dest->is_single_xmm()) {
   689         if (c->is_zero_float()) {
   690           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
   691         } else {
   692           __ movflt(dest->as_xmm_float_reg(),
   693                    InternalAddress(float_constant(c->as_jfloat())));
   694         }
   695       } else {
   696         assert(dest->is_single_fpu(), "must be");
   697         assert(dest->fpu_regnr() == 0, "dest must be TOS");
   698         if (c->is_zero_float()) {
   699           __ fldz();
   700         } else if (c->is_one_float()) {
   701           __ fld1();
   702         } else {
   703           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
   704         }
   705       }
   706       break;
   707     }
   709     case T_DOUBLE: {
   710       if (dest->is_double_xmm()) {
   711         if (c->is_zero_double()) {
   712           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
   713         } else {
   714           __ movdbl(dest->as_xmm_double_reg(),
   715                     InternalAddress(double_constant(c->as_jdouble())));
   716         }
   717       } else {
   718         assert(dest->is_double_fpu(), "must be");
   719         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
   720         if (c->is_zero_double()) {
   721           __ fldz();
   722         } else if (c->is_one_double()) {
   723           __ fld1();
   724         } else {
   725           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
   726         }
   727       }
   728       break;
   729     }
   731     default:
   732       ShouldNotReachHere();
   733   }
   734 }
   736 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
   737   assert(src->is_constant(), "should not call otherwise");
   738   assert(dest->is_stack(), "should not call otherwise");
   739   LIR_Const* c = src->as_constant_ptr();
   741   switch (c->type()) {
   742     case T_INT:  // fall through
   743     case T_FLOAT:
   744       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   745       break;
   747     case T_ADDRESS:
   748       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   749       break;
   751     case T_OBJECT:
   752       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
   753       break;
   755     case T_LONG:  // fall through
   756     case T_DOUBLE:
   757 #ifdef _LP64
   758       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   759                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
   760 #else
   761       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   762                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
   763       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   764                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
   765 #endif // _LP64
   766       break;
   768     default:
   769       ShouldNotReachHere();
   770   }
   771 }
   773 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
   774   assert(src->is_constant(), "should not call otherwise");
   775   assert(dest->is_address(), "should not call otherwise");
   776   LIR_Const* c = src->as_constant_ptr();
   777   LIR_Address* addr = dest->as_address_ptr();
   779   int null_check_here = code_offset();
   780   switch (type) {
   781     case T_INT:    // fall through
   782     case T_FLOAT:
   783       __ movl(as_Address(addr), c->as_jint_bits());
   784       break;
   786     case T_ADDRESS:
   787       __ movptr(as_Address(addr), c->as_jint_bits());
   788       break;
   790     case T_OBJECT:  // fall through
   791     case T_ARRAY:
   792       if (c->as_jobject() == NULL) {
   793         if (UseCompressedOops && !wide) {
   794           __ movl(as_Address(addr), (int32_t)NULL_WORD);
   795         } else {
   796           __ movptr(as_Address(addr), NULL_WORD);
   797         }
   798       } else {
   799         if (is_literal_address(addr)) {
   800           ShouldNotReachHere();
   801           __ movoop(as_Address(addr, noreg), c->as_jobject());
   802         } else {
   803 #ifdef _LP64
   804           __ movoop(rscratch1, c->as_jobject());
   805           if (UseCompressedOops && !wide) {
   806             __ encode_heap_oop(rscratch1);
   807             null_check_here = code_offset();
   808             __ movl(as_Address_lo(addr), rscratch1);
   809           } else {
   810             null_check_here = code_offset();
   811             __ movptr(as_Address_lo(addr), rscratch1);
   812           }
   813 #else
   814           __ movoop(as_Address(addr), c->as_jobject());
   815 #endif
   816         }
   817       }
   818       break;
   820     case T_LONG:    // fall through
   821     case T_DOUBLE:
   822 #ifdef _LP64
   823       if (is_literal_address(addr)) {
   824         ShouldNotReachHere();
   825         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
   826       } else {
   827         __ movptr(r10, (intptr_t)c->as_jlong_bits());
   828         null_check_here = code_offset();
   829         __ movptr(as_Address_lo(addr), r10);
   830       }
   831 #else
   832       // Always reachable in 32bit so this doesn't produce useless move literal
   833       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
   834       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
   835 #endif // _LP64
   836       break;
   838     case T_BOOLEAN: // fall through
   839     case T_BYTE:
   840       __ movb(as_Address(addr), c->as_jint() & 0xFF);
   841       break;
   843     case T_CHAR:    // fall through
   844     case T_SHORT:
   845       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
   846       break;
   848     default:
   849       ShouldNotReachHere();
   850   };
   852   if (info != NULL) {
   853     add_debug_info_for_null_check(null_check_here, info);
   854   }
   855 }
   858 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
   859   assert(src->is_register(), "should not call otherwise");
   860   assert(dest->is_register(), "should not call otherwise");
   862   // move between cpu-registers
   863   if (dest->is_single_cpu()) {
   864 #ifdef _LP64
   865     if (src->type() == T_LONG) {
   866       // Can do LONG -> OBJECT
   867       move_regs(src->as_register_lo(), dest->as_register());
   868       return;
   869     }
   870 #endif
   871     assert(src->is_single_cpu(), "must match");
   872     if (src->type() == T_OBJECT) {
   873       __ verify_oop(src->as_register());
   874     }
   875     move_regs(src->as_register(), dest->as_register());
   877   } else if (dest->is_double_cpu()) {
   878 #ifdef _LP64
   879     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
   880       // Surprising to me but we can see move of a long to t_object
   881       __ verify_oop(src->as_register());
   882       move_regs(src->as_register(), dest->as_register_lo());
   883       return;
   884     }
   885 #endif
   886     assert(src->is_double_cpu(), "must match");
   887     Register f_lo = src->as_register_lo();
   888     Register f_hi = src->as_register_hi();
   889     Register t_lo = dest->as_register_lo();
   890     Register t_hi = dest->as_register_hi();
   891 #ifdef _LP64
   892     assert(f_hi == f_lo, "must be same");
   893     assert(t_hi == t_lo, "must be same");
   894     move_regs(f_lo, t_lo);
   895 #else
   896     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
   899     if (f_lo == t_hi && f_hi == t_lo) {
   900       swap_reg(f_lo, f_hi);
   901     } else if (f_hi == t_lo) {
   902       assert(f_lo != t_hi, "overwriting register");
   903       move_regs(f_hi, t_hi);
   904       move_regs(f_lo, t_lo);
   905     } else {
   906       assert(f_hi != t_lo, "overwriting register");
   907       move_regs(f_lo, t_lo);
   908       move_regs(f_hi, t_hi);
   909     }
   910 #endif // LP64
   912     // special moves from fpu-register to xmm-register
   913     // necessary for method results
   914   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
   915     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
   916     __ fld_s(Address(rsp, 0));
   917   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
   918     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
   919     __ fld_d(Address(rsp, 0));
   920   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
   921     __ fstp_s(Address(rsp, 0));
   922     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
   923   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
   924     __ fstp_d(Address(rsp, 0));
   925     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
   927     // move between xmm-registers
   928   } else if (dest->is_single_xmm()) {
   929     assert(src->is_single_xmm(), "must match");
   930     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
   931   } else if (dest->is_double_xmm()) {
   932     assert(src->is_double_xmm(), "must match");
   933     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
   935     // move between fpu-registers (no instruction necessary because of fpu-stack)
   936   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
   937     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
   938     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
   939   } else {
   940     ShouldNotReachHere();
   941   }
   942 }
   944 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
   945   assert(src->is_register(), "should not call otherwise");
   946   assert(dest->is_stack(), "should not call otherwise");
   948   if (src->is_single_cpu()) {
   949     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
   950     if (type == T_OBJECT || type == T_ARRAY) {
   951       __ verify_oop(src->as_register());
   952       __ movptr (dst, src->as_register());
   953     } else {
   954       __ movl (dst, src->as_register());
   955     }
   957   } else if (src->is_double_cpu()) {
   958     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
   959     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
   960     __ movptr (dstLO, src->as_register_lo());
   961     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
   963   } else if (src->is_single_xmm()) {
   964     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   965     __ movflt(dst_addr, src->as_xmm_float_reg());
   967   } else if (src->is_double_xmm()) {
   968     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   969     __ movdbl(dst_addr, src->as_xmm_double_reg());
   971   } else if (src->is_single_fpu()) {
   972     assert(src->fpu_regnr() == 0, "argument must be on TOS");
   973     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   974     if (pop_fpu_stack)     __ fstp_s (dst_addr);
   975     else                   __ fst_s  (dst_addr);
   977   } else if (src->is_double_fpu()) {
   978     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
   979     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   980     if (pop_fpu_stack)     __ fstp_d (dst_addr);
   981     else                   __ fst_d  (dst_addr);
   983   } else {
   984     ShouldNotReachHere();
   985   }
   986 }
   989 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
   990   LIR_Address* to_addr = dest->as_address_ptr();
   991   PatchingStub* patch = NULL;
   992   Register compressed_src = rscratch1;
   994   if (type == T_ARRAY || type == T_OBJECT) {
   995     __ verify_oop(src->as_register());
   996 #ifdef _LP64
   997     if (UseCompressedOops && !wide) {
   998       __ movptr(compressed_src, src->as_register());
   999       __ encode_heap_oop(compressed_src);
  1001 #endif
  1004   if (patch_code != lir_patch_none) {
  1005     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1006     Address toa = as_Address(to_addr);
  1007     assert(toa.disp() != 0, "must have");
  1010   int null_check_here = code_offset();
  1011   switch (type) {
  1012     case T_FLOAT: {
  1013       if (src->is_single_xmm()) {
  1014         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
  1015       } else {
  1016         assert(src->is_single_fpu(), "must be");
  1017         assert(src->fpu_regnr() == 0, "argument must be on TOS");
  1018         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
  1019         else                    __ fst_s (as_Address(to_addr));
  1021       break;
  1024     case T_DOUBLE: {
  1025       if (src->is_double_xmm()) {
  1026         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
  1027       } else {
  1028         assert(src->is_double_fpu(), "must be");
  1029         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
  1030         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
  1031         else                    __ fst_d (as_Address(to_addr));
  1033       break;
  1036     case T_ARRAY:   // fall through
  1037     case T_OBJECT:  // fall through
  1038       if (UseCompressedOops && !wide) {
  1039         __ movl(as_Address(to_addr), compressed_src);
  1040       } else {
  1041         __ movptr(as_Address(to_addr), src->as_register());
  1043       break;
  1044     case T_ADDRESS:
  1045       __ movptr(as_Address(to_addr), src->as_register());
  1046       break;
  1047     case T_INT:
  1048       __ movl(as_Address(to_addr), src->as_register());
  1049       break;
  1051     case T_LONG: {
  1052       Register from_lo = src->as_register_lo();
  1053       Register from_hi = src->as_register_hi();
  1054 #ifdef _LP64
  1055       __ movptr(as_Address_lo(to_addr), from_lo);
  1056 #else
  1057       Register base = to_addr->base()->as_register();
  1058       Register index = noreg;
  1059       if (to_addr->index()->is_register()) {
  1060         index = to_addr->index()->as_register();
  1062       if (base == from_lo || index == from_lo) {
  1063         assert(base != from_hi, "can't be");
  1064         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
  1065         __ movl(as_Address_hi(to_addr), from_hi);
  1066         if (patch != NULL) {
  1067           patching_epilog(patch, lir_patch_high, base, info);
  1068           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1069           patch_code = lir_patch_low;
  1071         __ movl(as_Address_lo(to_addr), from_lo);
  1072       } else {
  1073         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
  1074         __ movl(as_Address_lo(to_addr), from_lo);
  1075         if (patch != NULL) {
  1076           patching_epilog(patch, lir_patch_low, base, info);
  1077           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1078           patch_code = lir_patch_high;
  1080         __ movl(as_Address_hi(to_addr), from_hi);
  1082 #endif // _LP64
  1083       break;
  1086     case T_BYTE:    // fall through
  1087     case T_BOOLEAN: {
  1088       Register src_reg = src->as_register();
  1089       Address dst_addr = as_Address(to_addr);
  1090       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
  1091       __ movb(dst_addr, src_reg);
  1092       break;
  1095     case T_CHAR:    // fall through
  1096     case T_SHORT:
  1097       __ movw(as_Address(to_addr), src->as_register());
  1098       break;
  1100     default:
  1101       ShouldNotReachHere();
  1103   if (info != NULL) {
  1104     add_debug_info_for_null_check(null_check_here, info);
  1107   if (patch_code != lir_patch_none) {
  1108     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
  1113 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1114   assert(src->is_stack(), "should not call otherwise");
  1115   assert(dest->is_register(), "should not call otherwise");
  1117   if (dest->is_single_cpu()) {
  1118     if (type == T_ARRAY || type == T_OBJECT) {
  1119       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1120       __ verify_oop(dest->as_register());
  1121     } else {
  1122       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1125   } else if (dest->is_double_cpu()) {
  1126     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
  1127     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
  1128     __ movptr(dest->as_register_lo(), src_addr_LO);
  1129     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
  1131   } else if (dest->is_single_xmm()) {
  1132     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1133     __ movflt(dest->as_xmm_float_reg(), src_addr);
  1135   } else if (dest->is_double_xmm()) {
  1136     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1137     __ movdbl(dest->as_xmm_double_reg(), src_addr);
  1139   } else if (dest->is_single_fpu()) {
  1140     assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1141     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1142     __ fld_s(src_addr);
  1144   } else if (dest->is_double_fpu()) {
  1145     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1146     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1147     __ fld_d(src_addr);
  1149   } else {
  1150     ShouldNotReachHere();
  1155 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1156   if (src->is_single_stack()) {
  1157     if (type == T_OBJECT || type == T_ARRAY) {
  1158       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
  1159       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
  1160     } else {
  1161 #ifndef _LP64
  1162       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
  1163       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
  1164 #else
  1165       //no pushl on 64bits
  1166       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
  1167       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
  1168 #endif
  1171   } else if (src->is_double_stack()) {
  1172 #ifdef _LP64
  1173     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
  1174     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
  1175 #else
  1176     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
  1177     // push and pop the part at src + wordSize, adding wordSize for the previous push
  1178     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
  1179     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
  1180     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
  1181 #endif // _LP64
  1183   } else {
  1184     ShouldNotReachHere();
  1189 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
  1190   assert(src->is_address(), "should not call otherwise");
  1191   assert(dest->is_register(), "should not call otherwise");
  1193   LIR_Address* addr = src->as_address_ptr();
  1194   Address from_addr = as_Address(addr);
  1196   switch (type) {
  1197     case T_BOOLEAN: // fall through
  1198     case T_BYTE:    // fall through
  1199     case T_CHAR:    // fall through
  1200     case T_SHORT:
  1201       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
  1202         // on pre P6 processors we may get partial register stalls
  1203         // so blow away the value of to_rinfo before loading a
  1204         // partial word into it.  Do it here so that it precedes
  1205         // the potential patch point below.
  1206         __ xorptr(dest->as_register(), dest->as_register());
  1208       break;
  1211   PatchingStub* patch = NULL;
  1212   if (patch_code != lir_patch_none) {
  1213     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1214     assert(from_addr.disp() != 0, "must have");
  1216   if (info != NULL) {
  1217     add_debug_info_for_null_check_here(info);
  1220   switch (type) {
  1221     case T_FLOAT: {
  1222       if (dest->is_single_xmm()) {
  1223         __ movflt(dest->as_xmm_float_reg(), from_addr);
  1224       } else {
  1225         assert(dest->is_single_fpu(), "must be");
  1226         assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1227         __ fld_s(from_addr);
  1229       break;
  1232     case T_DOUBLE: {
  1233       if (dest->is_double_xmm()) {
  1234         __ movdbl(dest->as_xmm_double_reg(), from_addr);
  1235       } else {
  1236         assert(dest->is_double_fpu(), "must be");
  1237         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1238         __ fld_d(from_addr);
  1240       break;
  1243     case T_OBJECT:  // fall through
  1244     case T_ARRAY:   // fall through
  1245       if (UseCompressedOops && !wide) {
  1246         __ movl(dest->as_register(), from_addr);
  1247       } else {
  1248         __ movptr(dest->as_register(), from_addr);
  1250       break;
  1252     case T_ADDRESS:
  1253       __ movptr(dest->as_register(), from_addr);
  1254       break;
  1255     case T_INT:
  1256       __ movl(dest->as_register(), from_addr);
  1257       break;
  1259     case T_LONG: {
  1260       Register to_lo = dest->as_register_lo();
  1261       Register to_hi = dest->as_register_hi();
  1262 #ifdef _LP64
  1263       __ movptr(to_lo, as_Address_lo(addr));
  1264 #else
  1265       Register base = addr->base()->as_register();
  1266       Register index = noreg;
  1267       if (addr->index()->is_register()) {
  1268         index = addr->index()->as_register();
  1270       if ((base == to_lo && index == to_hi) ||
  1271           (base == to_hi && index == to_lo)) {
  1272         // addresses with 2 registers are only formed as a result of
  1273         // array access so this code will never have to deal with
  1274         // patches or null checks.
  1275         assert(info == NULL && patch == NULL, "must be");
  1276         __ lea(to_hi, as_Address(addr));
  1277         __ movl(to_lo, Address(to_hi, 0));
  1278         __ movl(to_hi, Address(to_hi, BytesPerWord));
  1279       } else if (base == to_lo || index == to_lo) {
  1280         assert(base != to_hi, "can't be");
  1281         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
  1282         __ movl(to_hi, as_Address_hi(addr));
  1283         if (patch != NULL) {
  1284           patching_epilog(patch, lir_patch_high, base, info);
  1285           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1286           patch_code = lir_patch_low;
  1288         __ movl(to_lo, as_Address_lo(addr));
  1289       } else {
  1290         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
  1291         __ movl(to_lo, as_Address_lo(addr));
  1292         if (patch != NULL) {
  1293           patching_epilog(patch, lir_patch_low, base, info);
  1294           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1295           patch_code = lir_patch_high;
  1297         __ movl(to_hi, as_Address_hi(addr));
  1299 #endif // _LP64
  1300       break;
  1303     case T_BOOLEAN: // fall through
  1304     case T_BYTE: {
  1305       Register dest_reg = dest->as_register();
  1306       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1307       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1308         __ movsbl(dest_reg, from_addr);
  1309       } else {
  1310         __ movb(dest_reg, from_addr);
  1311         __ shll(dest_reg, 24);
  1312         __ sarl(dest_reg, 24);
  1314       break;
  1317     case T_CHAR: {
  1318       Register dest_reg = dest->as_register();
  1319       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1320       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1321         __ movzwl(dest_reg, from_addr);
  1322       } else {
  1323         __ movw(dest_reg, from_addr);
  1325       break;
  1328     case T_SHORT: {
  1329       Register dest_reg = dest->as_register();
  1330       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1331         __ movswl(dest_reg, from_addr);
  1332       } else {
  1333         __ movw(dest_reg, from_addr);
  1334         __ shll(dest_reg, 16);
  1335         __ sarl(dest_reg, 16);
  1337       break;
  1340     default:
  1341       ShouldNotReachHere();
  1344   if (patch != NULL) {
  1345     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
  1348   if (type == T_ARRAY || type == T_OBJECT) {
  1349 #ifdef _LP64
  1350     if (UseCompressedOops && !wide) {
  1351       __ decode_heap_oop(dest->as_register());
  1353 #endif
  1354     __ verify_oop(dest->as_register());
  1359 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1360   LIR_Address* addr = src->as_address_ptr();
  1361   Address from_addr = as_Address(addr);
  1363   if (VM_Version::supports_sse()) {
  1364     switch (ReadPrefetchInstr) {
  1365       case 0:
  1366         __ prefetchnta(from_addr); break;
  1367       case 1:
  1368         __ prefetcht0(from_addr); break;
  1369       case 2:
  1370         __ prefetcht2(from_addr); break;
  1371       default:
  1372         ShouldNotReachHere(); break;
  1374   } else if (VM_Version::supports_3dnow_prefetch()) {
  1375     __ prefetchr(from_addr);
  1380 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1381   LIR_Address* addr = src->as_address_ptr();
  1382   Address from_addr = as_Address(addr);
  1384   if (VM_Version::supports_sse()) {
  1385     switch (AllocatePrefetchInstr) {
  1386       case 0:
  1387         __ prefetchnta(from_addr); break;
  1388       case 1:
  1389         __ prefetcht0(from_addr); break;
  1390       case 2:
  1391         __ prefetcht2(from_addr); break;
  1392       case 3:
  1393         __ prefetchw(from_addr); break;
  1394       default:
  1395         ShouldNotReachHere(); break;
  1397   } else if (VM_Version::supports_3dnow_prefetch()) {
  1398     __ prefetchw(from_addr);
  1403 NEEDS_CLEANUP; // This could be static?
  1404 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
  1405   int elem_size = type2aelembytes(type);
  1406   switch (elem_size) {
  1407     case 1: return Address::times_1;
  1408     case 2: return Address::times_2;
  1409     case 4: return Address::times_4;
  1410     case 8: return Address::times_8;
  1412   ShouldNotReachHere();
  1413   return Address::no_scale;
  1417 void LIR_Assembler::emit_op3(LIR_Op3* op) {
  1418   switch (op->code()) {
  1419     case lir_idiv:
  1420     case lir_irem:
  1421       arithmetic_idiv(op->code(),
  1422                       op->in_opr1(),
  1423                       op->in_opr2(),
  1424                       op->in_opr3(),
  1425                       op->result_opr(),
  1426                       op->info());
  1427       break;
  1428     default:      ShouldNotReachHere(); break;
  1432 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
  1433 #ifdef ASSERT
  1434   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
  1435   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
  1436   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
  1437 #endif
  1439   if (op->cond() == lir_cond_always) {
  1440     if (op->info() != NULL) add_debug_info_for_branch(op->info());
  1441     __ jmp (*(op->label()));
  1442   } else {
  1443     Assembler::Condition acond = Assembler::zero;
  1444     if (op->code() == lir_cond_float_branch) {
  1445       assert(op->ublock() != NULL, "must have unordered successor");
  1446       __ jcc(Assembler::parity, *(op->ublock()->label()));
  1447       switch(op->cond()) {
  1448         case lir_cond_equal:        acond = Assembler::equal;      break;
  1449         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
  1450         case lir_cond_less:         acond = Assembler::below;      break;
  1451         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
  1452         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
  1453         case lir_cond_greater:      acond = Assembler::above;      break;
  1454         default:                         ShouldNotReachHere();
  1456     } else {
  1457       switch (op->cond()) {
  1458         case lir_cond_equal:        acond = Assembler::equal;       break;
  1459         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
  1460         case lir_cond_less:         acond = Assembler::less;        break;
  1461         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
  1462         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
  1463         case lir_cond_greater:      acond = Assembler::greater;     break;
  1464         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
  1465         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
  1466         default:                         ShouldNotReachHere();
  1469     __ jcc(acond,*(op->label()));
  1473 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
  1474   LIR_Opr src  = op->in_opr();
  1475   LIR_Opr dest = op->result_opr();
  1477   switch (op->bytecode()) {
  1478     case Bytecodes::_i2l:
  1479 #ifdef _LP64
  1480       __ movl2ptr(dest->as_register_lo(), src->as_register());
  1481 #else
  1482       move_regs(src->as_register(), dest->as_register_lo());
  1483       move_regs(src->as_register(), dest->as_register_hi());
  1484       __ sarl(dest->as_register_hi(), 31);
  1485 #endif // LP64
  1486       break;
  1488     case Bytecodes::_l2i:
  1489 #ifdef _LP64
  1490       __ movl(dest->as_register(), src->as_register_lo());
  1491 #else
  1492       move_regs(src->as_register_lo(), dest->as_register());
  1493 #endif
  1494       break;
  1496     case Bytecodes::_i2b:
  1497       move_regs(src->as_register(), dest->as_register());
  1498       __ sign_extend_byte(dest->as_register());
  1499       break;
  1501     case Bytecodes::_i2c:
  1502       move_regs(src->as_register(), dest->as_register());
  1503       __ andl(dest->as_register(), 0xFFFF);
  1504       break;
  1506     case Bytecodes::_i2s:
  1507       move_regs(src->as_register(), dest->as_register());
  1508       __ sign_extend_short(dest->as_register());
  1509       break;
  1512     case Bytecodes::_f2d:
  1513     case Bytecodes::_d2f:
  1514       if (dest->is_single_xmm()) {
  1515         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
  1516       } else if (dest->is_double_xmm()) {
  1517         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
  1518       } else {
  1519         assert(src->fpu() == dest->fpu(), "register must be equal");
  1520         // do nothing (float result is rounded later through spilling)
  1522       break;
  1524     case Bytecodes::_i2f:
  1525     case Bytecodes::_i2d:
  1526       if (dest->is_single_xmm()) {
  1527         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
  1528       } else if (dest->is_double_xmm()) {
  1529         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
  1530       } else {
  1531         assert(dest->fpu() == 0, "result must be on TOS");
  1532         __ movl(Address(rsp, 0), src->as_register());
  1533         __ fild_s(Address(rsp, 0));
  1535       break;
  1537     case Bytecodes::_f2i:
  1538     case Bytecodes::_d2i:
  1539       if (src->is_single_xmm()) {
  1540         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
  1541       } else if (src->is_double_xmm()) {
  1542         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
  1543       } else {
  1544         assert(src->fpu() == 0, "input must be on TOS");
  1545         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
  1546         __ fist_s(Address(rsp, 0));
  1547         __ movl(dest->as_register(), Address(rsp, 0));
  1548         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1551       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
  1552       assert(op->stub() != NULL, "stub required");
  1553       __ cmpl(dest->as_register(), 0x80000000);
  1554       __ jcc(Assembler::equal, *op->stub()->entry());
  1555       __ bind(*op->stub()->continuation());
  1556       break;
  1558     case Bytecodes::_l2f:
  1559     case Bytecodes::_l2d:
  1560       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
  1561       assert(dest->fpu() == 0, "result must be on TOS");
  1563       __ movptr(Address(rsp, 0),            src->as_register_lo());
  1564       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
  1565       __ fild_d(Address(rsp, 0));
  1566       // float result is rounded later through spilling
  1567       break;
  1569     case Bytecodes::_f2l:
  1570     case Bytecodes::_d2l:
  1571       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
  1572       assert(src->fpu() == 0, "input must be on TOS");
  1573       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
  1575       // instruction sequence too long to inline it here
  1577         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
  1579       break;
  1581     default: ShouldNotReachHere();
  1585 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  1586   if (op->init_check()) {
  1587     __ cmpb(Address(op->klass()->as_register(),
  1588                     InstanceKlass::init_state_offset()),
  1589                     InstanceKlass::fully_initialized);
  1590     add_debug_info_for_null_check_here(op->stub()->info());
  1591     __ jcc(Assembler::notEqual, *op->stub()->entry());
  1593   __ allocate_object(op->obj()->as_register(),
  1594                      op->tmp1()->as_register(),
  1595                      op->tmp2()->as_register(),
  1596                      op->header_size(),
  1597                      op->object_size(),
  1598                      op->klass()->as_register(),
  1599                      *op->stub()->entry());
  1600   __ bind(*op->stub()->continuation());
  1603 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  1604   Register len =  op->len()->as_register();
  1605   LP64_ONLY( __ movslq(len, len); )
  1607   if (UseSlowPath ||
  1608       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  1609       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  1610     __ jmp(*op->stub()->entry());
  1611   } else {
  1612     Register tmp1 = op->tmp1()->as_register();
  1613     Register tmp2 = op->tmp2()->as_register();
  1614     Register tmp3 = op->tmp3()->as_register();
  1615     if (len == tmp1) {
  1616       tmp1 = tmp3;
  1617     } else if (len == tmp2) {
  1618       tmp2 = tmp3;
  1619     } else if (len == tmp3) {
  1620       // everything is ok
  1621     } else {
  1622       __ mov(tmp3, len);
  1624     __ allocate_array(op->obj()->as_register(),
  1625                       len,
  1626                       tmp1,
  1627                       tmp2,
  1628                       arrayOopDesc::header_size(op->type()),
  1629                       array_element_size(op->type()),
  1630                       op->klass()->as_register(),
  1631                       *op->stub()->entry());
  1633   __ bind(*op->stub()->continuation());
  1636 void LIR_Assembler::type_profile_helper(Register mdo,
  1637                                         ciMethodData *md, ciProfileData *data,
  1638                                         Register recv, Label* update_done) {
  1639   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1640     Label next_test;
  1641     // See if the receiver is receiver[n].
  1642     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
  1643     __ jccb(Assembler::notEqual, next_test);
  1644     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
  1645     __ addptr(data_addr, DataLayout::counter_increment);
  1646     __ jmp(*update_done);
  1647     __ bind(next_test);
  1650   // Didn't find receiver; find next empty slot and fill it in
  1651   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1652     Label next_test;
  1653     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
  1654     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
  1655     __ jccb(Assembler::notEqual, next_test);
  1656     __ movptr(recv_addr, recv);
  1657     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
  1658     __ jmp(*update_done);
  1659     __ bind(next_test);
  1663 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  1664   // we always need a stub for the failure case.
  1665   CodeStub* stub = op->stub();
  1666   Register obj = op->object()->as_register();
  1667   Register k_RInfo = op->tmp1()->as_register();
  1668   Register klass_RInfo = op->tmp2()->as_register();
  1669   Register dst = op->result_opr()->as_register();
  1670   ciKlass* k = op->klass();
  1671   Register Rtmp1 = noreg;
  1673   // check if it needs to be profiled
  1674   ciMethodData* md;
  1675   ciProfileData* data;
  1677   if (op->should_profile()) {
  1678     ciMethod* method = op->profiled_method();
  1679     assert(method != NULL, "Should have method");
  1680     int bci = op->profiled_bci();
  1681     md = method->method_data_or_null();
  1682     assert(md != NULL, "Sanity");
  1683     data = md->bci_to_data(bci);
  1684     assert(data != NULL,                "need data for type check");
  1685     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1687   Label profile_cast_success, profile_cast_failure;
  1688   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  1689   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  1691   if (obj == k_RInfo) {
  1692     k_RInfo = dst;
  1693   } else if (obj == klass_RInfo) {
  1694     klass_RInfo = dst;
  1696   if (k->is_loaded() && !UseCompressedOops) {
  1697     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
  1698   } else {
  1699     Rtmp1 = op->tmp3()->as_register();
  1700     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
  1703   assert_different_registers(obj, k_RInfo, klass_RInfo);
  1704   if (!k->is_loaded()) {
  1705     klass2reg_with_patching(k_RInfo, op->info_for_patch());
  1706   } else {
  1707 #ifdef _LP64
  1708     __ mov_metadata(k_RInfo, k->constant_encoding());
  1709 #endif // _LP64
  1711   assert(obj != k_RInfo, "must be different");
  1713   __ cmpptr(obj, (int32_t)NULL_WORD);
  1714   if (op->should_profile()) {
  1715     Label not_null;
  1716     __ jccb(Assembler::notEqual, not_null);
  1717     // Object is null; update MDO and exit
  1718     Register mdo  = klass_RInfo;
  1719     __ mov_metadata(mdo, md->constant_encoding());
  1720     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1721     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1722     __ orl(data_addr, header_bits);
  1723     __ jmp(*obj_is_null);
  1724     __ bind(not_null);
  1725   } else {
  1726     __ jcc(Assembler::equal, *obj_is_null);
  1728   __ verify_oop(obj);
  1730   if (op->fast_check()) {
  1731     // get object class
  1732     // not a safepoint as obj null check happens earlier
  1733 #ifdef _LP64
  1734     if (UseCompressedKlassPointers) {
  1735       __ load_klass(Rtmp1, obj);
  1736       __ cmpptr(k_RInfo, Rtmp1);
  1737     } else {
  1738       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1740 #else
  1741     if (k->is_loaded()) {
  1742       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
  1743     } else {
  1744       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1746 #endif
  1747     __ jcc(Assembler::notEqual, *failure_target);
  1748     // successful cast, fall through to profile or jump
  1749   } else {
  1750     // get object class
  1751     // not a safepoint as obj null check happens earlier
  1752     __ load_klass(klass_RInfo, obj);
  1753     if (k->is_loaded()) {
  1754       // See if we get an immediate positive hit
  1755 #ifdef _LP64
  1756       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
  1757 #else
  1758       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
  1759 #endif // _LP64
  1760       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
  1761         __ jcc(Assembler::notEqual, *failure_target);
  1762         // successful cast, fall through to profile or jump
  1763       } else {
  1764         // See if we get an immediate positive hit
  1765         __ jcc(Assembler::equal, *success_target);
  1766         // check for self
  1767 #ifdef _LP64
  1768         __ cmpptr(klass_RInfo, k_RInfo);
  1769 #else
  1770         __ cmpklass(klass_RInfo, k->constant_encoding());
  1771 #endif // _LP64
  1772         __ jcc(Assembler::equal, *success_target);
  1774         __ push(klass_RInfo);
  1775 #ifdef _LP64
  1776         __ push(k_RInfo);
  1777 #else
  1778         __ pushklass(k->constant_encoding());
  1779 #endif // _LP64
  1780         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1781         __ pop(klass_RInfo);
  1782         __ pop(klass_RInfo);
  1783         // result is a boolean
  1784         __ cmpl(klass_RInfo, 0);
  1785         __ jcc(Assembler::equal, *failure_target);
  1786         // successful cast, fall through to profile or jump
  1788     } else {
  1789       // perform the fast part of the checking logic
  1790       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1791       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1792       __ push(klass_RInfo);
  1793       __ push(k_RInfo);
  1794       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1795       __ pop(klass_RInfo);
  1796       __ pop(k_RInfo);
  1797       // result is a boolean
  1798       __ cmpl(k_RInfo, 0);
  1799       __ jcc(Assembler::equal, *failure_target);
  1800       // successful cast, fall through to profile or jump
  1803   if (op->should_profile()) {
  1804     Register mdo  = klass_RInfo, recv = k_RInfo;
  1805     __ bind(profile_cast_success);
  1806     __ mov_metadata(mdo, md->constant_encoding());
  1807     __ load_klass(recv, obj);
  1808     Label update_done;
  1809     type_profile_helper(mdo, md, data, recv, success);
  1810     __ jmp(*success);
  1812     __ bind(profile_cast_failure);
  1813     __ mov_metadata(mdo, md->constant_encoding());
  1814     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1815     __ subptr(counter_addr, DataLayout::counter_increment);
  1816     __ jmp(*failure);
  1818   __ jmp(*success);
  1822 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  1823   LIR_Code code = op->code();
  1824   if (code == lir_store_check) {
  1825     Register value = op->object()->as_register();
  1826     Register array = op->array()->as_register();
  1827     Register k_RInfo = op->tmp1()->as_register();
  1828     Register klass_RInfo = op->tmp2()->as_register();
  1829     Register Rtmp1 = op->tmp3()->as_register();
  1831     CodeStub* stub = op->stub();
  1833     // check if it needs to be profiled
  1834     ciMethodData* md;
  1835     ciProfileData* data;
  1837     if (op->should_profile()) {
  1838       ciMethod* method = op->profiled_method();
  1839       assert(method != NULL, "Should have method");
  1840       int bci = op->profiled_bci();
  1841       md = method->method_data_or_null();
  1842       assert(md != NULL, "Sanity");
  1843       data = md->bci_to_data(bci);
  1844       assert(data != NULL,                "need data for type check");
  1845       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1847     Label profile_cast_success, profile_cast_failure, done;
  1848     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  1849     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  1851     __ cmpptr(value, (int32_t)NULL_WORD);
  1852     if (op->should_profile()) {
  1853       Label not_null;
  1854       __ jccb(Assembler::notEqual, not_null);
  1855       // Object is null; update MDO and exit
  1856       Register mdo  = klass_RInfo;
  1857       __ mov_metadata(mdo, md->constant_encoding());
  1858       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1859       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1860       __ orl(data_addr, header_bits);
  1861       __ jmp(done);
  1862       __ bind(not_null);
  1863     } else {
  1864       __ jcc(Assembler::equal, done);
  1867     add_debug_info_for_null_check_here(op->info_for_exception());
  1868     __ load_klass(k_RInfo, array);
  1869     __ load_klass(klass_RInfo, value);
  1871     // get instance klass (it's already uncompressed)
  1872     __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset()));
  1873     // perform the fast part of the checking logic
  1874     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1875     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1876     __ push(klass_RInfo);
  1877     __ push(k_RInfo);
  1878     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1879     __ pop(klass_RInfo);
  1880     __ pop(k_RInfo);
  1881     // result is a boolean
  1882     __ cmpl(k_RInfo, 0);
  1883     __ jcc(Assembler::equal, *failure_target);
  1884     // fall through to the success case
  1886     if (op->should_profile()) {
  1887       Register mdo  = klass_RInfo, recv = k_RInfo;
  1888       __ bind(profile_cast_success);
  1889       __ mov_metadata(mdo, md->constant_encoding());
  1890       __ load_klass(recv, value);
  1891       Label update_done;
  1892       type_profile_helper(mdo, md, data, recv, &done);
  1893       __ jmpb(done);
  1895       __ bind(profile_cast_failure);
  1896       __ mov_metadata(mdo, md->constant_encoding());
  1897       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1898       __ subptr(counter_addr, DataLayout::counter_increment);
  1899       __ jmp(*stub->entry());
  1902     __ bind(done);
  1903   } else
  1904     if (code == lir_checkcast) {
  1905       Register obj = op->object()->as_register();
  1906       Register dst = op->result_opr()->as_register();
  1907       Label success;
  1908       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  1909       __ bind(success);
  1910       if (dst != obj) {
  1911         __ mov(dst, obj);
  1913     } else
  1914       if (code == lir_instanceof) {
  1915         Register obj = op->object()->as_register();
  1916         Register dst = op->result_opr()->as_register();
  1917         Label success, failure, done;
  1918         emit_typecheck_helper(op, &success, &failure, &failure);
  1919         __ bind(failure);
  1920         __ xorptr(dst, dst);
  1921         __ jmpb(done);
  1922         __ bind(success);
  1923         __ movptr(dst, 1);
  1924         __ bind(done);
  1925       } else {
  1926         ShouldNotReachHere();
  1932 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  1933   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
  1934     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
  1935     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
  1936     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
  1937     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
  1938     Register addr = op->addr()->as_register();
  1939     if (os::is_MP()) {
  1940       __ lock();
  1942     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
  1944   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
  1945     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
  1946     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1947     Register newval = op->new_value()->as_register();
  1948     Register cmpval = op->cmp_value()->as_register();
  1949     assert(cmpval == rax, "wrong register");
  1950     assert(newval != NULL, "new val must be register");
  1951     assert(cmpval != newval, "cmp and new values must be in different registers");
  1952     assert(cmpval != addr, "cmp and addr must be in different registers");
  1953     assert(newval != addr, "new value and addr must be in different registers");
  1955     if ( op->code() == lir_cas_obj) {
  1956 #ifdef _LP64
  1957       if (UseCompressedOops) {
  1958         __ encode_heap_oop(cmpval);
  1959         __ mov(rscratch1, newval);
  1960         __ encode_heap_oop(rscratch1);
  1961         if (os::is_MP()) {
  1962           __ lock();
  1964         // cmpval (rax) is implicitly used by this instruction
  1965         __ cmpxchgl(rscratch1, Address(addr, 0));
  1966       } else
  1967 #endif
  1969         if (os::is_MP()) {
  1970           __ lock();
  1972         __ cmpxchgptr(newval, Address(addr, 0));
  1974     } else {
  1975       assert(op->code() == lir_cas_int, "lir_cas_int expected");
  1976       if (os::is_MP()) {
  1977         __ lock();
  1979       __ cmpxchgl(newval, Address(addr, 0));
  1981 #ifdef _LP64
  1982   } else if (op->code() == lir_cas_long) {
  1983     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1984     Register newval = op->new_value()->as_register_lo();
  1985     Register cmpval = op->cmp_value()->as_register_lo();
  1986     assert(cmpval == rax, "wrong register");
  1987     assert(newval != NULL, "new val must be register");
  1988     assert(cmpval != newval, "cmp and new values must be in different registers");
  1989     assert(cmpval != addr, "cmp and addr must be in different registers");
  1990     assert(newval != addr, "new value and addr must be in different registers");
  1991     if (os::is_MP()) {
  1992       __ lock();
  1994     __ cmpxchgq(newval, Address(addr, 0));
  1995 #endif // _LP64
  1996   } else {
  1997     Unimplemented();
  2001 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
  2002   Assembler::Condition acond, ncond;
  2003   switch (condition) {
  2004     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
  2005     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
  2006     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
  2007     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
  2008     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
  2009     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
  2010     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
  2011     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
  2012     default:                    ShouldNotReachHere();
  2015   if (opr1->is_cpu_register()) {
  2016     reg2reg(opr1, result);
  2017   } else if (opr1->is_stack()) {
  2018     stack2reg(opr1, result, result->type());
  2019   } else if (opr1->is_constant()) {
  2020     const2reg(opr1, result, lir_patch_none, NULL);
  2021   } else {
  2022     ShouldNotReachHere();
  2025   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
  2026     // optimized version that does not require a branch
  2027     if (opr2->is_single_cpu()) {
  2028       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
  2029       __ cmov(ncond, result->as_register(), opr2->as_register());
  2030     } else if (opr2->is_double_cpu()) {
  2031       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  2032       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  2033       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
  2034       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
  2035     } else if (opr2->is_single_stack()) {
  2036       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
  2037     } else if (opr2->is_double_stack()) {
  2038       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
  2039       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
  2040     } else {
  2041       ShouldNotReachHere();
  2044   } else {
  2045     Label skip;
  2046     __ jcc (acond, skip);
  2047     if (opr2->is_cpu_register()) {
  2048       reg2reg(opr2, result);
  2049     } else if (opr2->is_stack()) {
  2050       stack2reg(opr2, result, result->type());
  2051     } else if (opr2->is_constant()) {
  2052       const2reg(opr2, result, lir_patch_none, NULL);
  2053     } else {
  2054       ShouldNotReachHere();
  2056     __ bind(skip);
  2061 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  2062   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
  2064   if (left->is_single_cpu()) {
  2065     assert(left == dest, "left and dest must be equal");
  2066     Register lreg = left->as_register();
  2068     if (right->is_single_cpu()) {
  2069       // cpu register - cpu register
  2070       Register rreg = right->as_register();
  2071       switch (code) {
  2072         case lir_add: __ addl (lreg, rreg); break;
  2073         case lir_sub: __ subl (lreg, rreg); break;
  2074         case lir_mul: __ imull(lreg, rreg); break;
  2075         default:      ShouldNotReachHere();
  2078     } else if (right->is_stack()) {
  2079       // cpu register - stack
  2080       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2081       switch (code) {
  2082         case lir_add: __ addl(lreg, raddr); break;
  2083         case lir_sub: __ subl(lreg, raddr); break;
  2084         default:      ShouldNotReachHere();
  2087     } else if (right->is_constant()) {
  2088       // cpu register - constant
  2089       jint c = right->as_constant_ptr()->as_jint();
  2090       switch (code) {
  2091         case lir_add: {
  2092           __ incrementl(lreg, c);
  2093           break;
  2095         case lir_sub: {
  2096           __ decrementl(lreg, c);
  2097           break;
  2099         default: ShouldNotReachHere();
  2102     } else {
  2103       ShouldNotReachHere();
  2106   } else if (left->is_double_cpu()) {
  2107     assert(left == dest, "left and dest must be equal");
  2108     Register lreg_lo = left->as_register_lo();
  2109     Register lreg_hi = left->as_register_hi();
  2111     if (right->is_double_cpu()) {
  2112       // cpu register - cpu register
  2113       Register rreg_lo = right->as_register_lo();
  2114       Register rreg_hi = right->as_register_hi();
  2115       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
  2116       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
  2117       switch (code) {
  2118         case lir_add:
  2119           __ addptr(lreg_lo, rreg_lo);
  2120           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
  2121           break;
  2122         case lir_sub:
  2123           __ subptr(lreg_lo, rreg_lo);
  2124           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
  2125           break;
  2126         case lir_mul:
  2127 #ifdef _LP64
  2128           __ imulq(lreg_lo, rreg_lo);
  2129 #else
  2130           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
  2131           __ imull(lreg_hi, rreg_lo);
  2132           __ imull(rreg_hi, lreg_lo);
  2133           __ addl (rreg_hi, lreg_hi);
  2134           __ mull (rreg_lo);
  2135           __ addl (lreg_hi, rreg_hi);
  2136 #endif // _LP64
  2137           break;
  2138         default:
  2139           ShouldNotReachHere();
  2142     } else if (right->is_constant()) {
  2143       // cpu register - constant
  2144 #ifdef _LP64
  2145       jlong c = right->as_constant_ptr()->as_jlong_bits();
  2146       __ movptr(r10, (intptr_t) c);
  2147       switch (code) {
  2148         case lir_add:
  2149           __ addptr(lreg_lo, r10);
  2150           break;
  2151         case lir_sub:
  2152           __ subptr(lreg_lo, r10);
  2153           break;
  2154         default:
  2155           ShouldNotReachHere();
  2157 #else
  2158       jint c_lo = right->as_constant_ptr()->as_jint_lo();
  2159       jint c_hi = right->as_constant_ptr()->as_jint_hi();
  2160       switch (code) {
  2161         case lir_add:
  2162           __ addptr(lreg_lo, c_lo);
  2163           __ adcl(lreg_hi, c_hi);
  2164           break;
  2165         case lir_sub:
  2166           __ subptr(lreg_lo, c_lo);
  2167           __ sbbl(lreg_hi, c_hi);
  2168           break;
  2169         default:
  2170           ShouldNotReachHere();
  2172 #endif // _LP64
  2174     } else {
  2175       ShouldNotReachHere();
  2178   } else if (left->is_single_xmm()) {
  2179     assert(left == dest, "left and dest must be equal");
  2180     XMMRegister lreg = left->as_xmm_float_reg();
  2182     if (right->is_single_xmm()) {
  2183       XMMRegister rreg = right->as_xmm_float_reg();
  2184       switch (code) {
  2185         case lir_add: __ addss(lreg, rreg);  break;
  2186         case lir_sub: __ subss(lreg, rreg);  break;
  2187         case lir_mul_strictfp: // fall through
  2188         case lir_mul: __ mulss(lreg, rreg);  break;
  2189         case lir_div_strictfp: // fall through
  2190         case lir_div: __ divss(lreg, rreg);  break;
  2191         default: ShouldNotReachHere();
  2193     } else {
  2194       Address raddr;
  2195       if (right->is_single_stack()) {
  2196         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2197       } else if (right->is_constant()) {
  2198         // hack for now
  2199         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
  2200       } else {
  2201         ShouldNotReachHere();
  2203       switch (code) {
  2204         case lir_add: __ addss(lreg, raddr);  break;
  2205         case lir_sub: __ subss(lreg, raddr);  break;
  2206         case lir_mul_strictfp: // fall through
  2207         case lir_mul: __ mulss(lreg, raddr);  break;
  2208         case lir_div_strictfp: // fall through
  2209         case lir_div: __ divss(lreg, raddr);  break;
  2210         default: ShouldNotReachHere();
  2214   } else if (left->is_double_xmm()) {
  2215     assert(left == dest, "left and dest must be equal");
  2217     XMMRegister lreg = left->as_xmm_double_reg();
  2218     if (right->is_double_xmm()) {
  2219       XMMRegister rreg = right->as_xmm_double_reg();
  2220       switch (code) {
  2221         case lir_add: __ addsd(lreg, rreg);  break;
  2222         case lir_sub: __ subsd(lreg, rreg);  break;
  2223         case lir_mul_strictfp: // fall through
  2224         case lir_mul: __ mulsd(lreg, rreg);  break;
  2225         case lir_div_strictfp: // fall through
  2226         case lir_div: __ divsd(lreg, rreg);  break;
  2227         default: ShouldNotReachHere();
  2229     } else {
  2230       Address raddr;
  2231       if (right->is_double_stack()) {
  2232         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2233       } else if (right->is_constant()) {
  2234         // hack for now
  2235         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2236       } else {
  2237         ShouldNotReachHere();
  2239       switch (code) {
  2240         case lir_add: __ addsd(lreg, raddr);  break;
  2241         case lir_sub: __ subsd(lreg, raddr);  break;
  2242         case lir_mul_strictfp: // fall through
  2243         case lir_mul: __ mulsd(lreg, raddr);  break;
  2244         case lir_div_strictfp: // fall through
  2245         case lir_div: __ divsd(lreg, raddr);  break;
  2246         default: ShouldNotReachHere();
  2250   } else if (left->is_single_fpu()) {
  2251     assert(dest->is_single_fpu(),  "fpu stack allocation required");
  2253     if (right->is_single_fpu()) {
  2254       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
  2256     } else {
  2257       assert(left->fpu_regnr() == 0, "left must be on TOS");
  2258       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
  2260       Address raddr;
  2261       if (right->is_single_stack()) {
  2262         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2263       } else if (right->is_constant()) {
  2264         address const_addr = float_constant(right->as_jfloat());
  2265         assert(const_addr != NULL, "incorrect float/double constant maintainance");
  2266         // hack for now
  2267         raddr = __ as_Address(InternalAddress(const_addr));
  2268       } else {
  2269         ShouldNotReachHere();
  2272       switch (code) {
  2273         case lir_add: __ fadd_s(raddr); break;
  2274         case lir_sub: __ fsub_s(raddr); break;
  2275         case lir_mul_strictfp: // fall through
  2276         case lir_mul: __ fmul_s(raddr); break;
  2277         case lir_div_strictfp: // fall through
  2278         case lir_div: __ fdiv_s(raddr); break;
  2279         default:      ShouldNotReachHere();
  2283   } else if (left->is_double_fpu()) {
  2284     assert(dest->is_double_fpu(),  "fpu stack allocation required");
  2286     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2287       // Double values require special handling for strictfp mul/div on x86
  2288       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  2289       __ fmulp(left->fpu_regnrLo() + 1);
  2292     if (right->is_double_fpu()) {
  2293       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
  2295     } else {
  2296       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
  2297       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
  2299       Address raddr;
  2300       if (right->is_double_stack()) {
  2301         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2302       } else if (right->is_constant()) {
  2303         // hack for now
  2304         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2305       } else {
  2306         ShouldNotReachHere();
  2309       switch (code) {
  2310         case lir_add: __ fadd_d(raddr); break;
  2311         case lir_sub: __ fsub_d(raddr); break;
  2312         case lir_mul_strictfp: // fall through
  2313         case lir_mul: __ fmul_d(raddr); break;
  2314         case lir_div_strictfp: // fall through
  2315         case lir_div: __ fdiv_d(raddr); break;
  2316         default: ShouldNotReachHere();
  2320     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2321       // Double values require special handling for strictfp mul/div on x86
  2322       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  2323       __ fmulp(dest->fpu_regnrLo() + 1);
  2326   } else if (left->is_single_stack() || left->is_address()) {
  2327     assert(left == dest, "left and dest must be equal");
  2329     Address laddr;
  2330     if (left->is_single_stack()) {
  2331       laddr = frame_map()->address_for_slot(left->single_stack_ix());
  2332     } else if (left->is_address()) {
  2333       laddr = as_Address(left->as_address_ptr());
  2334     } else {
  2335       ShouldNotReachHere();
  2338     if (right->is_single_cpu()) {
  2339       Register rreg = right->as_register();
  2340       switch (code) {
  2341         case lir_add: __ addl(laddr, rreg); break;
  2342         case lir_sub: __ subl(laddr, rreg); break;
  2343         default:      ShouldNotReachHere();
  2345     } else if (right->is_constant()) {
  2346       jint c = right->as_constant_ptr()->as_jint();
  2347       switch (code) {
  2348         case lir_add: {
  2349           __ incrementl(laddr, c);
  2350           break;
  2352         case lir_sub: {
  2353           __ decrementl(laddr, c);
  2354           break;
  2356         default: ShouldNotReachHere();
  2358     } else {
  2359       ShouldNotReachHere();
  2362   } else {
  2363     ShouldNotReachHere();
  2367 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
  2368   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
  2369   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
  2370   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
  2372   bool left_is_tos = (left_index == 0);
  2373   bool dest_is_tos = (dest_index == 0);
  2374   int non_tos_index = (left_is_tos ? right_index : left_index);
  2376   switch (code) {
  2377     case lir_add:
  2378       if (pop_fpu_stack)       __ faddp(non_tos_index);
  2379       else if (dest_is_tos)    __ fadd (non_tos_index);
  2380       else                     __ fadda(non_tos_index);
  2381       break;
  2383     case lir_sub:
  2384       if (left_is_tos) {
  2385         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
  2386         else if (dest_is_tos)  __ fsub  (non_tos_index);
  2387         else                   __ fsubra(non_tos_index);
  2388       } else {
  2389         if (pop_fpu_stack)     __ fsubp (non_tos_index);
  2390         else if (dest_is_tos)  __ fsubr (non_tos_index);
  2391         else                   __ fsuba (non_tos_index);
  2393       break;
  2395     case lir_mul_strictfp: // fall through
  2396     case lir_mul:
  2397       if (pop_fpu_stack)       __ fmulp(non_tos_index);
  2398       else if (dest_is_tos)    __ fmul (non_tos_index);
  2399       else                     __ fmula(non_tos_index);
  2400       break;
  2402     case lir_div_strictfp: // fall through
  2403     case lir_div:
  2404       if (left_is_tos) {
  2405         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
  2406         else if (dest_is_tos)  __ fdiv  (non_tos_index);
  2407         else                   __ fdivra(non_tos_index);
  2408       } else {
  2409         if (pop_fpu_stack)     __ fdivp (non_tos_index);
  2410         else if (dest_is_tos)  __ fdivr (non_tos_index);
  2411         else                   __ fdiva (non_tos_index);
  2413       break;
  2415     case lir_rem:
  2416       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
  2417       __ fremr(noreg);
  2418       break;
  2420     default:
  2421       ShouldNotReachHere();
  2426 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
  2427   if (value->is_double_xmm()) {
  2428     switch(code) {
  2429       case lir_abs :
  2431           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
  2432             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
  2434           __ andpd(dest->as_xmm_double_reg(),
  2435                     ExternalAddress((address)double_signmask_pool));
  2437         break;
  2439       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
  2440       // all other intrinsics are not available in the SSE instruction set, so FPU is used
  2441       default      : ShouldNotReachHere();
  2444   } else if (value->is_double_fpu()) {
  2445     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
  2446     switch(code) {
  2447       case lir_log   : __ flog() ; break;
  2448       case lir_log10 : __ flog10() ; break;
  2449       case lir_abs   : __ fabs() ; break;
  2450       case lir_sqrt  : __ fsqrt(); break;
  2451       case lir_sin   :
  2452         // Should consider not saving rbx, if not necessary
  2453         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
  2454         break;
  2455       case lir_cos :
  2456         // Should consider not saving rbx, if not necessary
  2457         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
  2458         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
  2459         break;
  2460       case lir_tan :
  2461         // Should consider not saving rbx, if not necessary
  2462         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
  2463         break;
  2464       case lir_exp :
  2465         __ exp_with_fallback(op->as_Op2()->fpu_stack_size());
  2466         break;
  2467       case lir_pow :
  2468         __ pow_with_fallback(op->as_Op2()->fpu_stack_size());
  2469         break;
  2470       default      : ShouldNotReachHere();
  2472   } else {
  2473     Unimplemented();
  2477 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  2478   // assert(left->destroys_register(), "check");
  2479   if (left->is_single_cpu()) {
  2480     Register reg = left->as_register();
  2481     if (right->is_constant()) {
  2482       int val = right->as_constant_ptr()->as_jint();
  2483       switch (code) {
  2484         case lir_logic_and: __ andl (reg, val); break;
  2485         case lir_logic_or:  __ orl  (reg, val); break;
  2486         case lir_logic_xor: __ xorl (reg, val); break;
  2487         default: ShouldNotReachHere();
  2489     } else if (right->is_stack()) {
  2490       // added support for stack operands
  2491       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2492       switch (code) {
  2493         case lir_logic_and: __ andl (reg, raddr); break;
  2494         case lir_logic_or:  __ orl  (reg, raddr); break;
  2495         case lir_logic_xor: __ xorl (reg, raddr); break;
  2496         default: ShouldNotReachHere();
  2498     } else {
  2499       Register rright = right->as_register();
  2500       switch (code) {
  2501         case lir_logic_and: __ andptr (reg, rright); break;
  2502         case lir_logic_or : __ orptr  (reg, rright); break;
  2503         case lir_logic_xor: __ xorptr (reg, rright); break;
  2504         default: ShouldNotReachHere();
  2507     move_regs(reg, dst->as_register());
  2508   } else {
  2509     Register l_lo = left->as_register_lo();
  2510     Register l_hi = left->as_register_hi();
  2511     if (right->is_constant()) {
  2512 #ifdef _LP64
  2513       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
  2514       switch (code) {
  2515         case lir_logic_and:
  2516           __ andq(l_lo, rscratch1);
  2517           break;
  2518         case lir_logic_or:
  2519           __ orq(l_lo, rscratch1);
  2520           break;
  2521         case lir_logic_xor:
  2522           __ xorq(l_lo, rscratch1);
  2523           break;
  2524         default: ShouldNotReachHere();
  2526 #else
  2527       int r_lo = right->as_constant_ptr()->as_jint_lo();
  2528       int r_hi = right->as_constant_ptr()->as_jint_hi();
  2529       switch (code) {
  2530         case lir_logic_and:
  2531           __ andl(l_lo, r_lo);
  2532           __ andl(l_hi, r_hi);
  2533           break;
  2534         case lir_logic_or:
  2535           __ orl(l_lo, r_lo);
  2536           __ orl(l_hi, r_hi);
  2537           break;
  2538         case lir_logic_xor:
  2539           __ xorl(l_lo, r_lo);
  2540           __ xorl(l_hi, r_hi);
  2541           break;
  2542         default: ShouldNotReachHere();
  2544 #endif // _LP64
  2545     } else {
  2546 #ifdef _LP64
  2547       Register r_lo;
  2548       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
  2549         r_lo = right->as_register();
  2550       } else {
  2551         r_lo = right->as_register_lo();
  2553 #else
  2554       Register r_lo = right->as_register_lo();
  2555       Register r_hi = right->as_register_hi();
  2556       assert(l_lo != r_hi, "overwriting registers");
  2557 #endif
  2558       switch (code) {
  2559         case lir_logic_and:
  2560           __ andptr(l_lo, r_lo);
  2561           NOT_LP64(__ andptr(l_hi, r_hi);)
  2562           break;
  2563         case lir_logic_or:
  2564           __ orptr(l_lo, r_lo);
  2565           NOT_LP64(__ orptr(l_hi, r_hi);)
  2566           break;
  2567         case lir_logic_xor:
  2568           __ xorptr(l_lo, r_lo);
  2569           NOT_LP64(__ xorptr(l_hi, r_hi);)
  2570           break;
  2571         default: ShouldNotReachHere();
  2575     Register dst_lo = dst->as_register_lo();
  2576     Register dst_hi = dst->as_register_hi();
  2578 #ifdef _LP64
  2579     move_regs(l_lo, dst_lo);
  2580 #else
  2581     if (dst_lo == l_hi) {
  2582       assert(dst_hi != l_lo, "overwriting registers");
  2583       move_regs(l_hi, dst_hi);
  2584       move_regs(l_lo, dst_lo);
  2585     } else {
  2586       assert(dst_lo != l_hi, "overwriting registers");
  2587       move_regs(l_lo, dst_lo);
  2588       move_regs(l_hi, dst_hi);
  2590 #endif // _LP64
  2595 // we assume that rax, and rdx can be overwritten
  2596 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
  2598   assert(left->is_single_cpu(),   "left must be register");
  2599   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
  2600   assert(result->is_single_cpu(), "result must be register");
  2602   //  assert(left->destroys_register(), "check");
  2603   //  assert(right->destroys_register(), "check");
  2605   Register lreg = left->as_register();
  2606   Register dreg = result->as_register();
  2608   if (right->is_constant()) {
  2609     int divisor = right->as_constant_ptr()->as_jint();
  2610     assert(divisor > 0 && is_power_of_2(divisor), "must be");
  2611     if (code == lir_idiv) {
  2612       assert(lreg == rax, "must be rax,");
  2613       assert(temp->as_register() == rdx, "tmp register must be rdx");
  2614       __ cdql(); // sign extend into rdx:rax
  2615       if (divisor == 2) {
  2616         __ subl(lreg, rdx);
  2617       } else {
  2618         __ andl(rdx, divisor - 1);
  2619         __ addl(lreg, rdx);
  2621       __ sarl(lreg, log2_intptr(divisor));
  2622       move_regs(lreg, dreg);
  2623     } else if (code == lir_irem) {
  2624       Label done;
  2625       __ mov(dreg, lreg);
  2626       __ andl(dreg, 0x80000000 | (divisor - 1));
  2627       __ jcc(Assembler::positive, done);
  2628       __ decrement(dreg);
  2629       __ orl(dreg, ~(divisor - 1));
  2630       __ increment(dreg);
  2631       __ bind(done);
  2632     } else {
  2633       ShouldNotReachHere();
  2635   } else {
  2636     Register rreg = right->as_register();
  2637     assert(lreg == rax, "left register must be rax,");
  2638     assert(rreg != rdx, "right register must not be rdx");
  2639     assert(temp->as_register() == rdx, "tmp register must be rdx");
  2641     move_regs(lreg, rax);
  2643     int idivl_offset = __ corrected_idivl(rreg);
  2644     add_debug_info_for_div0(idivl_offset, info);
  2645     if (code == lir_irem) {
  2646       move_regs(rdx, dreg); // result is in rdx
  2647     } else {
  2648       move_regs(rax, dreg);
  2654 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  2655   if (opr1->is_single_cpu()) {
  2656     Register reg1 = opr1->as_register();
  2657     if (opr2->is_single_cpu()) {
  2658       // cpu register - cpu register
  2659       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2660         __ cmpptr(reg1, opr2->as_register());
  2661       } else {
  2662         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
  2663         __ cmpl(reg1, opr2->as_register());
  2665     } else if (opr2->is_stack()) {
  2666       // cpu register - stack
  2667       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2668         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2669       } else {
  2670         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2672     } else if (opr2->is_constant()) {
  2673       // cpu register - constant
  2674       LIR_Const* c = opr2->as_constant_ptr();
  2675       if (c->type() == T_INT) {
  2676         __ cmpl(reg1, c->as_jint());
  2677       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2678         // In 64bit oops are single register
  2679         jobject o = c->as_jobject();
  2680         if (o == NULL) {
  2681           __ cmpptr(reg1, (int32_t)NULL_WORD);
  2682         } else {
  2683 #ifdef _LP64
  2684           __ movoop(rscratch1, o);
  2685           __ cmpptr(reg1, rscratch1);
  2686 #else
  2687           __ cmpoop(reg1, c->as_jobject());
  2688 #endif // _LP64
  2690       } else {
  2691         fatal(err_msg("unexpected type: %s", basictype_to_str(c->type())));
  2693       // cpu register - address
  2694     } else if (opr2->is_address()) {
  2695       if (op->info() != NULL) {
  2696         add_debug_info_for_null_check_here(op->info());
  2698       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
  2699     } else {
  2700       ShouldNotReachHere();
  2703   } else if(opr1->is_double_cpu()) {
  2704     Register xlo = opr1->as_register_lo();
  2705     Register xhi = opr1->as_register_hi();
  2706     if (opr2->is_double_cpu()) {
  2707 #ifdef _LP64
  2708       __ cmpptr(xlo, opr2->as_register_lo());
  2709 #else
  2710       // cpu register - cpu register
  2711       Register ylo = opr2->as_register_lo();
  2712       Register yhi = opr2->as_register_hi();
  2713       __ subl(xlo, ylo);
  2714       __ sbbl(xhi, yhi);
  2715       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  2716         __ orl(xhi, xlo);
  2718 #endif // _LP64
  2719     } else if (opr2->is_constant()) {
  2720       // cpu register - constant 0
  2721       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
  2722 #ifdef _LP64
  2723       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
  2724 #else
  2725       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
  2726       __ orl(xhi, xlo);
  2727 #endif // _LP64
  2728     } else {
  2729       ShouldNotReachHere();
  2732   } else if (opr1->is_single_xmm()) {
  2733     XMMRegister reg1 = opr1->as_xmm_float_reg();
  2734     if (opr2->is_single_xmm()) {
  2735       // xmm register - xmm register
  2736       __ ucomiss(reg1, opr2->as_xmm_float_reg());
  2737     } else if (opr2->is_stack()) {
  2738       // xmm register - stack
  2739       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2740     } else if (opr2->is_constant()) {
  2741       // xmm register - constant
  2742       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
  2743     } else if (opr2->is_address()) {
  2744       // xmm register - address
  2745       if (op->info() != NULL) {
  2746         add_debug_info_for_null_check_here(op->info());
  2748       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
  2749     } else {
  2750       ShouldNotReachHere();
  2753   } else if (opr1->is_double_xmm()) {
  2754     XMMRegister reg1 = opr1->as_xmm_double_reg();
  2755     if (opr2->is_double_xmm()) {
  2756       // xmm register - xmm register
  2757       __ ucomisd(reg1, opr2->as_xmm_double_reg());
  2758     } else if (opr2->is_stack()) {
  2759       // xmm register - stack
  2760       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
  2761     } else if (opr2->is_constant()) {
  2762       // xmm register - constant
  2763       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
  2764     } else if (opr2->is_address()) {
  2765       // xmm register - address
  2766       if (op->info() != NULL) {
  2767         add_debug_info_for_null_check_here(op->info());
  2769       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
  2770     } else {
  2771       ShouldNotReachHere();
  2774   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
  2775     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
  2776     assert(opr2->is_fpu_register(), "both must be registers");
  2777     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2779   } else if (opr1->is_address() && opr2->is_constant()) {
  2780     LIR_Const* c = opr2->as_constant_ptr();
  2781 #ifdef _LP64
  2782     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2783       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
  2784       __ movoop(rscratch1, c->as_jobject());
  2786 #endif // LP64
  2787     if (op->info() != NULL) {
  2788       add_debug_info_for_null_check_here(op->info());
  2790     // special case: address - constant
  2791     LIR_Address* addr = opr1->as_address_ptr();
  2792     if (c->type() == T_INT) {
  2793       __ cmpl(as_Address(addr), c->as_jint());
  2794     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2795 #ifdef _LP64
  2796       // %%% Make this explode if addr isn't reachable until we figure out a
  2797       // better strategy by giving noreg as the temp for as_Address
  2798       __ cmpptr(rscratch1, as_Address(addr, noreg));
  2799 #else
  2800       __ cmpoop(as_Address(addr), c->as_jobject());
  2801 #endif // _LP64
  2802     } else {
  2803       ShouldNotReachHere();
  2806   } else {
  2807     ShouldNotReachHere();
  2811 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
  2812   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  2813     if (left->is_single_xmm()) {
  2814       assert(right->is_single_xmm(), "must match");
  2815       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2816     } else if (left->is_double_xmm()) {
  2817       assert(right->is_double_xmm(), "must match");
  2818       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2820     } else {
  2821       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
  2822       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
  2824       assert(left->fpu() == 0, "left must be on TOS");
  2825       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
  2826                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2828   } else {
  2829     assert(code == lir_cmp_l2i, "check");
  2830 #ifdef _LP64
  2831     Label done;
  2832     Register dest = dst->as_register();
  2833     __ cmpptr(left->as_register_lo(), right->as_register_lo());
  2834     __ movl(dest, -1);
  2835     __ jccb(Assembler::less, done);
  2836     __ set_byte_if_not_zero(dest);
  2837     __ movzbl(dest, dest);
  2838     __ bind(done);
  2839 #else
  2840     __ lcmp2int(left->as_register_hi(),
  2841                 left->as_register_lo(),
  2842                 right->as_register_hi(),
  2843                 right->as_register_lo());
  2844     move_regs(left->as_register_hi(), dst->as_register());
  2845 #endif // _LP64
  2850 void LIR_Assembler::align_call(LIR_Code code) {
  2851   if (os::is_MP()) {
  2852     // make sure that the displacement word of the call ends up word aligned
  2853     int offset = __ offset();
  2854     switch (code) {
  2855       case lir_static_call:
  2856       case lir_optvirtual_call:
  2857       case lir_dynamic_call:
  2858         offset += NativeCall::displacement_offset;
  2859         break;
  2860       case lir_icvirtual_call:
  2861         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
  2862       break;
  2863       case lir_virtual_call:  // currently, sparc-specific for niagara
  2864       default: ShouldNotReachHere();
  2866     while (offset++ % BytesPerWord != 0) {
  2867       __ nop();
  2873 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
  2874   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2875          "must be aligned");
  2876   __ call(AddressLiteral(op->addr(), rtype));
  2877   add_call_info(code_offset(), op->info());
  2881 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
  2882   __ ic_call(op->addr());
  2883   add_call_info(code_offset(), op->info());
  2884   assert(!os::is_MP() ||
  2885          (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
  2886          "must be aligned");
  2890 /* Currently, vtable-dispatch is only enabled for sparc platforms */
  2891 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
  2892   ShouldNotReachHere();
  2896 void LIR_Assembler::emit_static_call_stub() {
  2897   address call_pc = __ pc();
  2898   address stub = __ start_a_stub(call_stub_size);
  2899   if (stub == NULL) {
  2900     bailout("static call stub overflow");
  2901     return;
  2904   int start = __ offset();
  2905   if (os::is_MP()) {
  2906     // make sure that the displacement word of the call ends up word aligned
  2907     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
  2908     while (offset++ % BytesPerWord != 0) {
  2909       __ nop();
  2912   __ relocate(static_stub_Relocation::spec(call_pc));
  2913   __ mov_metadata(rbx, (Metadata*)NULL);
  2914   // must be set to -1 at code generation time
  2915   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
  2916   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
  2917   __ jump(RuntimeAddress(__ pc()));
  2919   assert(__ offset() - start <= call_stub_size, "stub too big");
  2920   __ end_a_stub();
  2924 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2925   assert(exceptionOop->as_register() == rax, "must match");
  2926   assert(exceptionPC->as_register() == rdx, "must match");
  2928   // exception object is not added to oop map by LinearScan
  2929   // (LinearScan assumes that no oops are in fixed registers)
  2930   info->add_register_oop(exceptionOop);
  2931   Runtime1::StubID unwind_id;
  2933   // get current pc information
  2934   // pc is only needed if the method has an exception handler, the unwind code does not need it.
  2935   int pc_for_athrow_offset = __ offset();
  2936   InternalAddress pc_for_athrow(__ pc());
  2937   __ lea(exceptionPC->as_register(), pc_for_athrow);
  2938   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2940   __ verify_not_null_oop(rax);
  2941   // search an exception handler (rax: exception oop, rdx: throwing pc)
  2942   if (compilation()->has_fpu_code()) {
  2943     unwind_id = Runtime1::handle_exception_id;
  2944   } else {
  2945     unwind_id = Runtime1::handle_exception_nofpu_id;
  2947   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
  2949   // enough room for two byte trap
  2950   __ nop();
  2954 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2955   assert(exceptionOop->as_register() == rax, "must match");
  2957   __ jmp(_unwind_handler_entry);
  2961 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2963   // optimized version for linear scan:
  2964   // * count must be already in ECX (guaranteed by LinearScan)
  2965   // * left and dest must be equal
  2966   // * tmp must be unused
  2967   assert(count->as_register() == SHIFT_count, "count must be in ECX");
  2968   assert(left == dest, "left and dest must be equal");
  2969   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
  2971   if (left->is_single_cpu()) {
  2972     Register value = left->as_register();
  2973     assert(value != SHIFT_count, "left cannot be ECX");
  2975     switch (code) {
  2976       case lir_shl:  __ shll(value); break;
  2977       case lir_shr:  __ sarl(value); break;
  2978       case lir_ushr: __ shrl(value); break;
  2979       default: ShouldNotReachHere();
  2981   } else if (left->is_double_cpu()) {
  2982     Register lo = left->as_register_lo();
  2983     Register hi = left->as_register_hi();
  2984     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
  2985 #ifdef _LP64
  2986     switch (code) {
  2987       case lir_shl:  __ shlptr(lo);        break;
  2988       case lir_shr:  __ sarptr(lo);        break;
  2989       case lir_ushr: __ shrptr(lo);        break;
  2990       default: ShouldNotReachHere();
  2992 #else
  2994     switch (code) {
  2995       case lir_shl:  __ lshl(hi, lo);        break;
  2996       case lir_shr:  __ lshr(hi, lo, true);  break;
  2997       case lir_ushr: __ lshr(hi, lo, false); break;
  2998       default: ShouldNotReachHere();
  3000 #endif // LP64
  3001   } else {
  3002     ShouldNotReachHere();
  3007 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  3008   if (dest->is_single_cpu()) {
  3009     // first move left into dest so that left is not destroyed by the shift
  3010     Register value = dest->as_register();
  3011     count = count & 0x1F; // Java spec
  3013     move_regs(left->as_register(), value);
  3014     switch (code) {
  3015       case lir_shl:  __ shll(value, count); break;
  3016       case lir_shr:  __ sarl(value, count); break;
  3017       case lir_ushr: __ shrl(value, count); break;
  3018       default: ShouldNotReachHere();
  3020   } else if (dest->is_double_cpu()) {
  3021 #ifndef _LP64
  3022     Unimplemented();
  3023 #else
  3024     // first move left into dest so that left is not destroyed by the shift
  3025     Register value = dest->as_register_lo();
  3026     count = count & 0x1F; // Java spec
  3028     move_regs(left->as_register_lo(), value);
  3029     switch (code) {
  3030       case lir_shl:  __ shlptr(value, count); break;
  3031       case lir_shr:  __ sarptr(value, count); break;
  3032       case lir_ushr: __ shrptr(value, count); break;
  3033       default: ShouldNotReachHere();
  3035 #endif // _LP64
  3036   } else {
  3037     ShouldNotReachHere();
  3042 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
  3043   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3044   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3045   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3046   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
  3050 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
  3051   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3052   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3053   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3054   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
  3058 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
  3059   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3060   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3061   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3062   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
  3066 // This code replaces a call to arraycopy; no exception may
  3067 // be thrown in this code, they must be thrown in the System.arraycopy
  3068 // activation frame; we could save some checks if this would not be the case
  3069 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  3070   ciArrayKlass* default_type = op->expected_type();
  3071   Register src = op->src()->as_register();
  3072   Register dst = op->dst()->as_register();
  3073   Register src_pos = op->src_pos()->as_register();
  3074   Register dst_pos = op->dst_pos()->as_register();
  3075   Register length  = op->length()->as_register();
  3076   Register tmp = op->tmp()->as_register();
  3078   CodeStub* stub = op->stub();
  3079   int flags = op->flags();
  3080   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  3081   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  3083   // if we don't know anything, just go through the generic arraycopy
  3084   if (default_type == NULL) {
  3085     Label done;
  3086     // save outgoing arguments on stack in case call to System.arraycopy is needed
  3087     // HACK ALERT. This code used to push the parameters in a hardwired fashion
  3088     // for interpreter calling conventions. Now we have to do it in new style conventions.
  3089     // For the moment until C1 gets the new register allocator I just force all the
  3090     // args to the right place (except the register args) and then on the back side
  3091     // reload the register args properly if we go slow path. Yuck
  3093     // These are proper for the calling convention
  3094     store_parameter(length, 2);
  3095     store_parameter(dst_pos, 1);
  3096     store_parameter(dst, 0);
  3098     // these are just temporary placements until we need to reload
  3099     store_parameter(src_pos, 3);
  3100     store_parameter(src, 4);
  3101     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
  3103     address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
  3105     address copyfunc_addr = StubRoutines::generic_arraycopy();
  3107     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
  3108 #ifdef _LP64
  3109     // The arguments are in java calling convention so we can trivially shift them to C
  3110     // convention
  3111     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3112     __ mov(c_rarg0, j_rarg0);
  3113     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3114     __ mov(c_rarg1, j_rarg1);
  3115     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
  3116     __ mov(c_rarg2, j_rarg2);
  3117     assert_different_registers(c_rarg3, j_rarg4);
  3118     __ mov(c_rarg3, j_rarg3);
  3119 #ifdef _WIN64
  3120     // Allocate abi space for args but be sure to keep stack aligned
  3121     __ subptr(rsp, 6*wordSize);
  3122     store_parameter(j_rarg4, 4);
  3123     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3124       __ call(RuntimeAddress(C_entry));
  3125     } else {
  3126 #ifndef PRODUCT
  3127       if (PrintC1Statistics) {
  3128         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3130 #endif
  3131       __ call(RuntimeAddress(copyfunc_addr));
  3133     __ addptr(rsp, 6*wordSize);
  3134 #else
  3135     __ mov(c_rarg4, j_rarg4);
  3136     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3137       __ call(RuntimeAddress(C_entry));
  3138     } else {
  3139 #ifndef PRODUCT
  3140       if (PrintC1Statistics) {
  3141         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3143 #endif
  3144       __ call(RuntimeAddress(copyfunc_addr));
  3146 #endif // _WIN64
  3147 #else
  3148     __ push(length);
  3149     __ push(dst_pos);
  3150     __ push(dst);
  3151     __ push(src_pos);
  3152     __ push(src);
  3154     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3155       __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
  3156     } else {
  3157 #ifndef PRODUCT
  3158       if (PrintC1Statistics) {
  3159         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3161 #endif
  3162       __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
  3165 #endif // _LP64
  3167     __ cmpl(rax, 0);
  3168     __ jcc(Assembler::equal, *stub->continuation());
  3170     if (copyfunc_addr != NULL) {
  3171       __ mov(tmp, rax);
  3172       __ xorl(tmp, -1);
  3175     // Reload values from the stack so they are where the stub
  3176     // expects them.
  3177     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3178     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3179     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3180     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3181     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3183     if (copyfunc_addr != NULL) {
  3184       __ subl(length, tmp);
  3185       __ addl(src_pos, tmp);
  3186       __ addl(dst_pos, tmp);
  3188     __ jmp(*stub->entry());
  3190     __ bind(*stub->continuation());
  3191     return;
  3194   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
  3196   int elem_size = type2aelembytes(basic_type);
  3197   int shift_amount;
  3198   Address::ScaleFactor scale;
  3200   switch (elem_size) {
  3201     case 1 :
  3202       shift_amount = 0;
  3203       scale = Address::times_1;
  3204       break;
  3205     case 2 :
  3206       shift_amount = 1;
  3207       scale = Address::times_2;
  3208       break;
  3209     case 4 :
  3210       shift_amount = 2;
  3211       scale = Address::times_4;
  3212       break;
  3213     case 8 :
  3214       shift_amount = 3;
  3215       scale = Address::times_8;
  3216       break;
  3217     default:
  3218       ShouldNotReachHere();
  3221   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
  3222   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
  3223   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
  3224   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
  3226   // length and pos's are all sign extended at this point on 64bit
  3228   // test for NULL
  3229   if (flags & LIR_OpArrayCopy::src_null_check) {
  3230     __ testptr(src, src);
  3231     __ jcc(Assembler::zero, *stub->entry());
  3233   if (flags & LIR_OpArrayCopy::dst_null_check) {
  3234     __ testptr(dst, dst);
  3235     __ jcc(Assembler::zero, *stub->entry());
  3238   // check if negative
  3239   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  3240     __ testl(src_pos, src_pos);
  3241     __ jcc(Assembler::less, *stub->entry());
  3243   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  3244     __ testl(dst_pos, dst_pos);
  3245     __ jcc(Assembler::less, *stub->entry());
  3248   if (flags & LIR_OpArrayCopy::src_range_check) {
  3249     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
  3250     __ cmpl(tmp, src_length_addr);
  3251     __ jcc(Assembler::above, *stub->entry());
  3253   if (flags & LIR_OpArrayCopy::dst_range_check) {
  3254     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
  3255     __ cmpl(tmp, dst_length_addr);
  3256     __ jcc(Assembler::above, *stub->entry());
  3259   if (flags & LIR_OpArrayCopy::length_positive_check) {
  3260     __ testl(length, length);
  3261     __ jcc(Assembler::less, *stub->entry());
  3262     __ jcc(Assembler::zero, *stub->continuation());
  3265 #ifdef _LP64
  3266   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
  3267   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
  3268 #endif
  3270   if (flags & LIR_OpArrayCopy::type_check) {
  3271     // We don't know the array types are compatible
  3272     if (basic_type != T_OBJECT) {
  3273       // Simple test for basic type arrays
  3274       if (UseCompressedKlassPointers) {
  3275         __ movl(tmp, src_klass_addr);
  3276         __ cmpl(tmp, dst_klass_addr);
  3277       } else {
  3278         __ movptr(tmp, src_klass_addr);
  3279         __ cmpptr(tmp, dst_klass_addr);
  3281       __ jcc(Assembler::notEqual, *stub->entry());
  3282     } else {
  3283       // For object arrays, if src is a sub class of dst then we can
  3284       // safely do the copy.
  3285       Label cont, slow;
  3287       __ push(src);
  3288       __ push(dst);
  3290       __ load_klass(src, src);
  3291       __ load_klass(dst, dst);
  3293       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
  3295       __ push(src);
  3296       __ push(dst);
  3297       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  3298       __ pop(dst);
  3299       __ pop(src);
  3301       __ cmpl(src, 0);
  3302       __ jcc(Assembler::notEqual, cont);
  3304       __ bind(slow);
  3305       __ pop(dst);
  3306       __ pop(src);
  3308       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  3309       if (copyfunc_addr != NULL) { // use stub if available
  3310         // src is not a sub class of dst so we have to do a
  3311         // per-element check.
  3313         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
  3314         if ((flags & mask) != mask) {
  3315           // Check that at least both of them object arrays.
  3316           assert(flags & mask, "one of the two should be known to be an object array");
  3318           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
  3319             __ load_klass(tmp, src);
  3320           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
  3321             __ load_klass(tmp, dst);
  3323           int lh_offset = in_bytes(Klass::layout_helper_offset());
  3324           Address klass_lh_addr(tmp, lh_offset);
  3325           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  3326           __ cmpl(klass_lh_addr, objArray_lh);
  3327           __ jcc(Assembler::notEqual, *stub->entry());
  3330        // Spill because stubs can use any register they like and it's
  3331        // easier to restore just those that we care about.
  3332        store_parameter(dst, 0);
  3333        store_parameter(dst_pos, 1);
  3334        store_parameter(length, 2);
  3335        store_parameter(src_pos, 3);
  3336        store_parameter(src, 4);
  3338 #ifndef _LP64
  3339         __ movptr(tmp, dst_klass_addr);
  3340         __ movptr(tmp, Address(tmp, objArrayKlass::element_klass_offset()));
  3341         __ push(tmp);
  3342         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
  3343         __ push(tmp);
  3344         __ push(length);
  3345         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3346         __ push(tmp);
  3347         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3348         __ push(tmp);
  3350         __ call_VM_leaf(copyfunc_addr, 5);
  3351 #else
  3352         __ movl2ptr(length, length); //higher 32bits must be null
  3354         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3355         assert_different_registers(c_rarg0, dst, dst_pos, length);
  3356         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3357         assert_different_registers(c_rarg1, dst, length);
  3359         __ mov(c_rarg2, length);
  3360         assert_different_registers(c_rarg2, dst);
  3362 #ifdef _WIN64
  3363         // Allocate abi space for args but be sure to keep stack aligned
  3364         __ subptr(rsp, 6*wordSize);
  3365         __ load_klass(c_rarg3, dst);
  3366         __ movptr(c_rarg3, Address(c_rarg3, objArrayKlass::element_klass_offset()));
  3367         store_parameter(c_rarg3, 4);
  3368         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
  3369         __ call(RuntimeAddress(copyfunc_addr));
  3370         __ addptr(rsp, 6*wordSize);
  3371 #else
  3372         __ load_klass(c_rarg4, dst);
  3373         __ movptr(c_rarg4, Address(c_rarg4, objArrayKlass::element_klass_offset()));
  3374         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
  3375         __ call(RuntimeAddress(copyfunc_addr));
  3376 #endif
  3378 #endif
  3380 #ifndef PRODUCT
  3381         if (PrintC1Statistics) {
  3382           Label failed;
  3383           __ testl(rax, rax);
  3384           __ jcc(Assembler::notZero, failed);
  3385           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
  3386           __ bind(failed);
  3388 #endif
  3390         __ testl(rax, rax);
  3391         __ jcc(Assembler::zero, *stub->continuation());
  3393 #ifndef PRODUCT
  3394         if (PrintC1Statistics) {
  3395           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
  3397 #endif
  3399         __ mov(tmp, rax);
  3401         __ xorl(tmp, -1);
  3403         // Restore previously spilled arguments
  3404         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3405         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3406         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3407         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3408         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3411         __ subl(length, tmp);
  3412         __ addl(src_pos, tmp);
  3413         __ addl(dst_pos, tmp);
  3416       __ jmp(*stub->entry());
  3418       __ bind(cont);
  3419       __ pop(dst);
  3420       __ pop(src);
  3424 #ifdef ASSERT
  3425   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  3426     // Sanity check the known type with the incoming class.  For the
  3427     // primitive case the types must match exactly with src.klass and
  3428     // dst.klass each exactly matching the default type.  For the
  3429     // object array case, if no type check is needed then either the
  3430     // dst type is exactly the expected type and the src type is a
  3431     // subtype which we can't check or src is the same array as dst
  3432     // but not necessarily exactly of type default_type.
  3433     Label known_ok, halt;
  3434     __ mov_metadata(tmp, default_type->constant_encoding());
  3435 #ifdef _LP64
  3436     if (UseCompressedKlassPointers) {
  3437       __ encode_heap_oop(tmp);
  3439 #endif
  3441     if (basic_type != T_OBJECT) {
  3443       if (UseCompressedKlassPointers)          __ cmpl(tmp, dst_klass_addr);
  3444       else                   __ cmpptr(tmp, dst_klass_addr);
  3445       __ jcc(Assembler::notEqual, halt);
  3446       if (UseCompressedKlassPointers)          __ cmpl(tmp, src_klass_addr);
  3447       else                   __ cmpptr(tmp, src_klass_addr);
  3448       __ jcc(Assembler::equal, known_ok);
  3449     } else {
  3450       if (UseCompressedKlassPointers)          __ cmpl(tmp, dst_klass_addr);
  3451       else                   __ cmpptr(tmp, dst_klass_addr);
  3452       __ jcc(Assembler::equal, known_ok);
  3453       __ cmpptr(src, dst);
  3454       __ jcc(Assembler::equal, known_ok);
  3456     __ bind(halt);
  3457     __ stop("incorrect type information in arraycopy");
  3458     __ bind(known_ok);
  3460 #endif
  3462 #ifndef PRODUCT
  3463   if (PrintC1Statistics) {
  3464     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
  3466 #endif
  3468 #ifdef _LP64
  3469   assert_different_registers(c_rarg0, dst, dst_pos, length);
  3470   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3471   assert_different_registers(c_rarg1, length);
  3472   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3473   __ mov(c_rarg2, length);
  3475 #else
  3476   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3477   store_parameter(tmp, 0);
  3478   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3479   store_parameter(tmp, 1);
  3480   store_parameter(length, 2);
  3481 #endif // _LP64
  3483   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
  3484   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
  3485   const char *name;
  3486   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
  3487   __ call_VM_leaf(entry, 0);
  3489   __ bind(*stub->continuation());
  3493 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  3494   Register obj = op->obj_opr()->as_register();  // may not be an oop
  3495   Register hdr = op->hdr_opr()->as_register();
  3496   Register lock = op->lock_opr()->as_register();
  3497   if (!UseFastLocking) {
  3498     __ jmp(*op->stub()->entry());
  3499   } else if (op->code() == lir_lock) {
  3500     Register scratch = noreg;
  3501     if (UseBiasedLocking) {
  3502       scratch = op->scratch_opr()->as_register();
  3504     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3505     // add debug info for NullPointerException only if one is possible
  3506     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
  3507     if (op->info() != NULL) {
  3508       add_debug_info_for_null_check(null_check_offset, op->info());
  3510     // done
  3511   } else if (op->code() == lir_unlock) {
  3512     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3513     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  3514   } else {
  3515     Unimplemented();
  3517   __ bind(*op->stub()->continuation());
  3521 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  3522   ciMethod* method = op->profiled_method();
  3523   int bci          = op->profiled_bci();
  3524   ciMethod* callee = op->profiled_callee();
  3526   // Update counter for all call types
  3527   ciMethodData* md = method->method_data_or_null();
  3528   assert(md != NULL, "Sanity");
  3529   ciProfileData* data = md->bci_to_data(bci);
  3530   assert(data->is_CounterData(), "need CounterData for calls");
  3531   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3532   Register mdo  = op->mdo()->as_register();
  3533   __ mov_metadata(mdo, md->constant_encoding());
  3534   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  3535   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3536   const bool callee_is_static = callee->is_loaded() && callee->is_static();
  3537   // Perform additional virtual call profiling for invokevirtual and
  3538   // invokeinterface bytecodes
  3539   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3540       !callee_is_static &&  // required for optimized MH invokes
  3541       C1ProfileVirtualCalls) {
  3542     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3543     Register recv = op->recv()->as_register();
  3544     assert_different_registers(mdo, recv);
  3545     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3546     ciKlass* known_klass = op->known_holder();
  3547     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3548       // We know the type that will be seen at this call site; we can
  3549       // statically update the MethodData* rather than needing to do
  3550       // dynamic tests on the receiver type
  3552       // NOTE: we should probably put a lock around this search to
  3553       // avoid collisions by concurrent compilations
  3554       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3555       uint i;
  3556       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3557         ciKlass* receiver = vc_data->receiver(i);
  3558         if (known_klass->equals(receiver)) {
  3559           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3560           __ addptr(data_addr, DataLayout::counter_increment);
  3561           return;
  3565       // Receiver type not found in profile data; select an empty slot
  3567       // Note that this is less efficient than it should be because it
  3568       // always does a write to the receiver part of the
  3569       // VirtualCallData rather than just the first time
  3570       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3571         ciKlass* receiver = vc_data->receiver(i);
  3572         if (receiver == NULL) {
  3573           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3574           __ mov_metadata(recv_addr, known_klass->constant_encoding());
  3575           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3576           __ addptr(data_addr, DataLayout::counter_increment);
  3577           return;
  3580     } else {
  3581       __ load_klass(recv, recv);
  3582       Label update_done;
  3583       type_profile_helper(mdo, md, data, recv, &update_done);
  3584       // Receiver did not match any saved receiver and there is no empty row for it.
  3585       // Increment total counter to indicate polymorphic case.
  3586       __ addptr(counter_addr, DataLayout::counter_increment);
  3588       __ bind(update_done);
  3590   } else {
  3591     // Static call
  3592     __ addptr(counter_addr, DataLayout::counter_increment);
  3596 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
  3597   Unimplemented();
  3601 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
  3602   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
  3606 void LIR_Assembler::align_backward_branch_target() {
  3607   __ align(BytesPerWord);
  3611 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3612   if (left->is_single_cpu()) {
  3613     __ negl(left->as_register());
  3614     move_regs(left->as_register(), dest->as_register());
  3616   } else if (left->is_double_cpu()) {
  3617     Register lo = left->as_register_lo();
  3618 #ifdef _LP64
  3619     Register dst = dest->as_register_lo();
  3620     __ movptr(dst, lo);
  3621     __ negptr(dst);
  3622 #else
  3623     Register hi = left->as_register_hi();
  3624     __ lneg(hi, lo);
  3625     if (dest->as_register_lo() == hi) {
  3626       assert(dest->as_register_hi() != lo, "destroying register");
  3627       move_regs(hi, dest->as_register_hi());
  3628       move_regs(lo, dest->as_register_lo());
  3629     } else {
  3630       move_regs(lo, dest->as_register_lo());
  3631       move_regs(hi, dest->as_register_hi());
  3633 #endif // _LP64
  3635   } else if (dest->is_single_xmm()) {
  3636     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
  3637       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
  3639     __ xorps(dest->as_xmm_float_reg(),
  3640              ExternalAddress((address)float_signflip_pool));
  3642   } else if (dest->is_double_xmm()) {
  3643     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
  3644       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
  3646     __ xorpd(dest->as_xmm_double_reg(),
  3647              ExternalAddress((address)double_signflip_pool));
  3649   } else if (left->is_single_fpu() || left->is_double_fpu()) {
  3650     assert(left->fpu() == 0, "arg must be on TOS");
  3651     assert(dest->fpu() == 0, "dest must be TOS");
  3652     __ fchs();
  3654   } else {
  3655     ShouldNotReachHere();
  3660 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
  3661   assert(addr->is_address() && dest->is_register(), "check");
  3662   Register reg;
  3663   reg = dest->as_pointer_register();
  3664   __ lea(reg, as_Address(addr->as_address_ptr()));
  3669 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3670   assert(!tmp->is_valid(), "don't need temporary");
  3671   __ call(RuntimeAddress(dest));
  3672   if (info != NULL) {
  3673     add_call_info_here(info);
  3678 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3679   assert(type == T_LONG, "only for volatile long fields");
  3681   if (info != NULL) {
  3682     add_debug_info_for_null_check_here(info);
  3685   if (src->is_double_xmm()) {
  3686     if (dest->is_double_cpu()) {
  3687 #ifdef _LP64
  3688       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
  3689 #else
  3690       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
  3691       __ psrlq(src->as_xmm_double_reg(), 32);
  3692       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
  3693 #endif // _LP64
  3694     } else if (dest->is_double_stack()) {
  3695       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
  3696     } else if (dest->is_address()) {
  3697       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
  3698     } else {
  3699       ShouldNotReachHere();
  3702   } else if (dest->is_double_xmm()) {
  3703     if (src->is_double_stack()) {
  3704       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
  3705     } else if (src->is_address()) {
  3706       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
  3707     } else {
  3708       ShouldNotReachHere();
  3711   } else if (src->is_double_fpu()) {
  3712     assert(src->fpu_regnrLo() == 0, "must be TOS");
  3713     if (dest->is_double_stack()) {
  3714       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
  3715     } else if (dest->is_address()) {
  3716       __ fistp_d(as_Address(dest->as_address_ptr()));
  3717     } else {
  3718       ShouldNotReachHere();
  3721   } else if (dest->is_double_fpu()) {
  3722     assert(dest->fpu_regnrLo() == 0, "must be TOS");
  3723     if (src->is_double_stack()) {
  3724       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
  3725     } else if (src->is_address()) {
  3726       __ fild_d(as_Address(src->as_address_ptr()));
  3727     } else {
  3728       ShouldNotReachHere();
  3730   } else {
  3731     ShouldNotReachHere();
  3736 void LIR_Assembler::membar() {
  3737   // QQQ sparc TSO uses this,
  3738   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3741 void LIR_Assembler::membar_acquire() {
  3742   // No x86 machines currently require load fences
  3743   // __ load_fence();
  3746 void LIR_Assembler::membar_release() {
  3747   // No x86 machines currently require store fences
  3748   // __ store_fence();
  3751 void LIR_Assembler::membar_loadload() {
  3752   // no-op
  3753   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
  3756 void LIR_Assembler::membar_storestore() {
  3757   // no-op
  3758   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
  3761 void LIR_Assembler::membar_loadstore() {
  3762   // no-op
  3763   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
  3766 void LIR_Assembler::membar_storeload() {
  3767   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3770 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3771   assert(result_reg->is_register(), "check");
  3772 #ifdef _LP64
  3773   // __ get_thread(result_reg->as_register_lo());
  3774   __ mov(result_reg->as_register(), r15_thread);
  3775 #else
  3776   __ get_thread(result_reg->as_register());
  3777 #endif // _LP64
  3781 void LIR_Assembler::peephole(LIR_List*) {
  3782   // do nothing for now
  3786 #undef __

mercurial