src/share/vm/opto/callnode.hpp

Thu, 21 Nov 2013 12:30:35 -0800

author
kvn
date
Thu, 21 Nov 2013 12:30:35 -0800
changeset 6485
da862781b584
parent 5643
3bfb204913de
child 6499
ad3b94907eed
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
    26 #define SHARE_VM_OPTO_CALLNODE_HPP
    28 #include "opto/connode.hpp"
    29 #include "opto/mulnode.hpp"
    30 #include "opto/multnode.hpp"
    31 #include "opto/opcodes.hpp"
    32 #include "opto/phaseX.hpp"
    33 #include "opto/type.hpp"
    35 // Portions of code courtesy of Clifford Click
    37 // Optimization - Graph Style
    39 class Chaitin;
    40 class NamedCounter;
    41 class MultiNode;
    42 class  SafePointNode;
    43 class   CallNode;
    44 class     CallJavaNode;
    45 class       CallStaticJavaNode;
    46 class       CallDynamicJavaNode;
    47 class     CallRuntimeNode;
    48 class       CallLeafNode;
    49 class         CallLeafNoFPNode;
    50 class     AllocateNode;
    51 class       AllocateArrayNode;
    52 class     BoxLockNode;
    53 class     LockNode;
    54 class     UnlockNode;
    55 class JVMState;
    56 class OopMap;
    57 class State;
    58 class StartNode;
    59 class MachCallNode;
    60 class FastLockNode;
    62 //------------------------------StartNode--------------------------------------
    63 // The method start node
    64 class StartNode : public MultiNode {
    65   virtual uint cmp( const Node &n ) const;
    66   virtual uint size_of() const; // Size is bigger
    67 public:
    68   const TypeTuple *_domain;
    69   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
    70     init_class_id(Class_Start);
    71     init_req(0,this);
    72     init_req(1,root);
    73   }
    74   virtual int Opcode() const;
    75   virtual bool pinned() const { return true; };
    76   virtual const Type *bottom_type() const;
    77   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
    78   virtual const Type *Value( PhaseTransform *phase ) const;
    79   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    80   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
    81   virtual const RegMask &in_RegMask(uint) const;
    82   virtual Node *match( const ProjNode *proj, const Matcher *m );
    83   virtual uint ideal_reg() const { return 0; }
    84 #ifndef PRODUCT
    85   virtual void  dump_spec(outputStream *st) const;
    86 #endif
    87 };
    89 //------------------------------StartOSRNode-----------------------------------
    90 // The method start node for on stack replacement code
    91 class StartOSRNode : public StartNode {
    92 public:
    93   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
    94   virtual int   Opcode() const;
    95   static  const TypeTuple *osr_domain();
    96 };
    99 //------------------------------ParmNode---------------------------------------
   100 // Incoming parameters
   101 class ParmNode : public ProjNode {
   102   static const char * const names[TypeFunc::Parms+1];
   103 public:
   104   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
   105     init_class_id(Class_Parm);
   106   }
   107   virtual int Opcode() const;
   108   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
   109   virtual uint ideal_reg() const;
   110 #ifndef PRODUCT
   111   virtual void dump_spec(outputStream *st) const;
   112 #endif
   113 };
   116 //------------------------------ReturnNode-------------------------------------
   117 // Return from subroutine node
   118 class ReturnNode : public Node {
   119 public:
   120   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
   121   virtual int Opcode() const;
   122   virtual bool  is_CFG() const { return true; }
   123   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   124   virtual bool depends_only_on_test() const { return false; }
   125   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   126   virtual const Type *Value( PhaseTransform *phase ) const;
   127   virtual uint ideal_reg() const { return NotAMachineReg; }
   128   virtual uint match_edge(uint idx) const;
   129 #ifndef PRODUCT
   130   virtual void dump_req(outputStream *st = tty) const;
   131 #endif
   132 };
   135 //------------------------------RethrowNode------------------------------------
   136 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
   137 // ends the current basic block like a ReturnNode.  Restores registers and
   138 // unwinds stack.  Rethrow happens in the caller's method.
   139 class RethrowNode : public Node {
   140  public:
   141   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
   142   virtual int Opcode() const;
   143   virtual bool  is_CFG() const { return true; }
   144   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   145   virtual bool depends_only_on_test() const { return false; }
   146   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   147   virtual const Type *Value( PhaseTransform *phase ) const;
   148   virtual uint match_edge(uint idx) const;
   149   virtual uint ideal_reg() const { return NotAMachineReg; }
   150 #ifndef PRODUCT
   151   virtual void dump_req(outputStream *st = tty) const;
   152 #endif
   153 };
   156 //------------------------------TailCallNode-----------------------------------
   157 // Pop stack frame and jump indirect
   158 class TailCallNode : public ReturnNode {
   159 public:
   160   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
   161     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
   162     init_req(TypeFunc::Parms, target);
   163     init_req(TypeFunc::Parms+1, moop);
   164   }
   166   virtual int Opcode() const;
   167   virtual uint match_edge(uint idx) const;
   168 };
   170 //------------------------------TailJumpNode-----------------------------------
   171 // Pop stack frame and jump indirect
   172 class TailJumpNode : public ReturnNode {
   173 public:
   174   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
   175     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
   176     init_req(TypeFunc::Parms, target);
   177     init_req(TypeFunc::Parms+1, ex_oop);
   178   }
   180   virtual int Opcode() const;
   181   virtual uint match_edge(uint idx) const;
   182 };
   184 //-------------------------------JVMState-------------------------------------
   185 // A linked list of JVMState nodes captures the whole interpreter state,
   186 // plus GC roots, for all active calls at some call site in this compilation
   187 // unit.  (If there is no inlining, then the list has exactly one link.)
   188 // This provides a way to map the optimized program back into the interpreter,
   189 // or to let the GC mark the stack.
   190 class JVMState : public ResourceObj {
   191   friend class VMStructs;
   192 public:
   193   typedef enum {
   194     Reexecute_Undefined = -1, // not defined -- will be translated into false later
   195     Reexecute_False     =  0, // false       -- do not reexecute
   196     Reexecute_True      =  1  // true        -- reexecute the bytecode
   197   } ReexecuteState; //Reexecute State
   199 private:
   200   JVMState*         _caller;    // List pointer for forming scope chains
   201   uint              _depth;     // One more than caller depth, or one.
   202   uint              _locoff;    // Offset to locals in input edge mapping
   203   uint              _stkoff;    // Offset to stack in input edge mapping
   204   uint              _monoff;    // Offset to monitors in input edge mapping
   205   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
   206   uint              _endoff;    // Offset to end of input edge mapping
   207   uint              _sp;        // Jave Expression Stack Pointer for this state
   208   int               _bci;       // Byte Code Index of this JVM point
   209   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
   210   ciMethod*         _method;    // Method Pointer
   211   SafePointNode*    _map;       // Map node associated with this scope
   212 public:
   213   friend class Compile;
   214   friend class PreserveReexecuteState;
   216   // Because JVMState objects live over the entire lifetime of the
   217   // Compile object, they are allocated into the comp_arena, which
   218   // does not get resource marked or reset during the compile process
   219   void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
   220   void operator delete( void * ) { } // fast deallocation
   222   // Create a new JVMState, ready for abstract interpretation.
   223   JVMState(ciMethod* method, JVMState* caller);
   224   JVMState(int stack_size);  // root state; has a null method
   226   // Access functions for the JVM
   227   // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
   228   //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
   229   uint              locoff() const { return _locoff; }
   230   uint              stkoff() const { return _stkoff; }
   231   uint              argoff() const { return _stkoff + _sp; }
   232   uint              monoff() const { return _monoff; }
   233   uint              scloff() const { return _scloff; }
   234   uint              endoff() const { return _endoff; }
   235   uint              oopoff() const { return debug_end(); }
   237   int            loc_size() const { return stkoff() - locoff(); }
   238   int            stk_size() const { return monoff() - stkoff(); }
   239   int            mon_size() const { return scloff() - monoff(); }
   240   int            scl_size() const { return endoff() - scloff(); }
   242   bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
   243   bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
   244   bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
   245   bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
   247   uint                      sp() const { return _sp; }
   248   int                      bci() const { return _bci; }
   249   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
   250   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
   251   bool              has_method() const { return _method != NULL; }
   252   ciMethod*             method() const { assert(has_method(), ""); return _method; }
   253   JVMState*             caller() const { return _caller; }
   254   SafePointNode*           map() const { return _map; }
   255   uint                   depth() const { return _depth; }
   256   uint             debug_start() const; // returns locoff of root caller
   257   uint               debug_end() const; // returns endoff of self
   258   uint              debug_size() const {
   259     return loc_size() + sp() + mon_size() + scl_size();
   260   }
   261   uint        debug_depth()  const; // returns sum of debug_size values at all depths
   263   // Returns the JVM state at the desired depth (1 == root).
   264   JVMState* of_depth(int d) const;
   266   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
   267   bool same_calls_as(const JVMState* that) const;
   269   // Monitors (monitors are stored as (boxNode, objNode) pairs
   270   enum { logMonitorEdges = 1 };
   271   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
   272   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
   273   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
   274   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
   275   bool is_monitor_box(uint off)    const {
   276     assert(is_mon(off), "should be called only for monitor edge");
   277     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
   278   }
   279   bool is_monitor_use(uint off)    const { return (is_mon(off)
   280                                                    && is_monitor_box(off))
   281                                              || (caller() && caller()->is_monitor_use(off)); }
   283   // Initialization functions for the JVM
   284   void              set_locoff(uint off) { _locoff = off; }
   285   void              set_stkoff(uint off) { _stkoff = off; }
   286   void              set_monoff(uint off) { _monoff = off; }
   287   void              set_scloff(uint off) { _scloff = off; }
   288   void              set_endoff(uint off) { _endoff = off; }
   289   void              set_offsets(uint off) {
   290     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
   291   }
   292   void              set_map(SafePointNode *map) { _map = map; }
   293   void              set_sp(uint sp) { _sp = sp; }
   294                     // _reexecute is initialized to "undefined" for a new bci
   295   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
   296   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
   298   // Miscellaneous utility functions
   299   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
   300   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
   301   void      set_map_deep(SafePointNode *map);// reset map for all callers
   303 #ifndef PRODUCT
   304   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
   305   void      dump_spec(outputStream *st) const;
   306   void      dump_on(outputStream* st) const;
   307   void      dump() const {
   308     dump_on(tty);
   309   }
   310 #endif
   311 };
   313 //------------------------------SafePointNode----------------------------------
   314 // A SafePointNode is a subclass of a MultiNode for convenience (and
   315 // potential code sharing) only - conceptually it is independent of
   316 // the Node semantics.
   317 class SafePointNode : public MultiNode {
   318   virtual uint           cmp( const Node &n ) const;
   319   virtual uint           size_of() const;       // Size is bigger
   321 public:
   322   SafePointNode(uint edges, JVMState* jvms,
   323                 // A plain safepoint advertises no memory effects (NULL):
   324                 const TypePtr* adr_type = NULL)
   325     : MultiNode( edges ),
   326       _jvms(jvms),
   327       _oop_map(NULL),
   328       _adr_type(adr_type)
   329   {
   330     init_class_id(Class_SafePoint);
   331   }
   333   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
   334   JVMState* const _jvms;      // Pointer to list of JVM State objects
   335   const TypePtr*  _adr_type;  // What type of memory does this node produce?
   337   // Many calls take *all* of memory as input,
   338   // but some produce a limited subset of that memory as output.
   339   // The adr_type reports the call's behavior as a store, not a load.
   341   virtual JVMState* jvms() const { return _jvms; }
   342   void set_jvms(JVMState* s) {
   343     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
   344   }
   345   OopMap *oop_map() const { return _oop_map; }
   346   void set_oop_map(OopMap *om) { _oop_map = om; }
   348  private:
   349   void verify_input(JVMState* jvms, uint idx) const {
   350     assert(verify_jvms(jvms), "jvms must match");
   351     Node* n = in(idx);
   352     assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
   353            in(idx + 1)->is_top(), "2nd half of long/double");
   354   }
   356  public:
   357   // Functionality from old debug nodes which has changed
   358   Node *local(JVMState* jvms, uint idx) const {
   359     verify_input(jvms, jvms->locoff() + idx);
   360     return in(jvms->locoff() + idx);
   361   }
   362   Node *stack(JVMState* jvms, uint idx) const {
   363     verify_input(jvms, jvms->stkoff() + idx);
   364     return in(jvms->stkoff() + idx);
   365   }
   366   Node *argument(JVMState* jvms, uint idx) const {
   367     verify_input(jvms, jvms->argoff() + idx);
   368     return in(jvms->argoff() + idx);
   369   }
   370   Node *monitor_box(JVMState* jvms, uint idx) const {
   371     assert(verify_jvms(jvms), "jvms must match");
   372     return in(jvms->monitor_box_offset(idx));
   373   }
   374   Node *monitor_obj(JVMState* jvms, uint idx) const {
   375     assert(verify_jvms(jvms), "jvms must match");
   376     return in(jvms->monitor_obj_offset(idx));
   377   }
   379   void  set_local(JVMState* jvms, uint idx, Node *c);
   381   void  set_stack(JVMState* jvms, uint idx, Node *c) {
   382     assert(verify_jvms(jvms), "jvms must match");
   383     set_req(jvms->stkoff() + idx, c);
   384   }
   385   void  set_argument(JVMState* jvms, uint idx, Node *c) {
   386     assert(verify_jvms(jvms), "jvms must match");
   387     set_req(jvms->argoff() + idx, c);
   388   }
   389   void ensure_stack(JVMState* jvms, uint stk_size) {
   390     assert(verify_jvms(jvms), "jvms must match");
   391     int grow_by = (int)stk_size - (int)jvms->stk_size();
   392     if (grow_by > 0)  grow_stack(jvms, grow_by);
   393   }
   394   void grow_stack(JVMState* jvms, uint grow_by);
   395   // Handle monitor stack
   396   void push_monitor( const FastLockNode *lock );
   397   void pop_monitor ();
   398   Node *peek_monitor_box() const;
   399   Node *peek_monitor_obj() const;
   401   // Access functions for the JVM
   402   Node *control  () const { return in(TypeFunc::Control  ); }
   403   Node *i_o      () const { return in(TypeFunc::I_O      ); }
   404   Node *memory   () const { return in(TypeFunc::Memory   ); }
   405   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
   406   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
   408   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
   409   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
   410   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
   412   MergeMemNode* merged_memory() const {
   413     return in(TypeFunc::Memory)->as_MergeMem();
   414   }
   416   // The parser marks useless maps as dead when it's done with them:
   417   bool is_killed() { return in(TypeFunc::Control) == NULL; }
   419   // Exception states bubbling out of subgraphs such as inlined calls
   420   // are recorded here.  (There might be more than one, hence the "next".)
   421   // This feature is used only for safepoints which serve as "maps"
   422   // for JVM states during parsing, intrinsic expansion, etc.
   423   SafePointNode*         next_exception() const;
   424   void               set_next_exception(SafePointNode* n);
   425   bool                   has_exceptions() const { return next_exception() != NULL; }
   427   // Standard Node stuff
   428   virtual int            Opcode() const;
   429   virtual bool           pinned() const { return true; }
   430   virtual const Type    *Value( PhaseTransform *phase ) const;
   431   virtual const Type    *bottom_type() const { return Type::CONTROL; }
   432   virtual const TypePtr *adr_type() const { return _adr_type; }
   433   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
   434   virtual Node          *Identity( PhaseTransform *phase );
   435   virtual uint           ideal_reg() const { return 0; }
   436   virtual const RegMask &in_RegMask(uint) const;
   437   virtual const RegMask &out_RegMask() const;
   438   virtual uint           match_edge(uint idx) const;
   440   static  bool           needs_polling_address_input();
   442 #ifndef PRODUCT
   443   virtual void           dump_spec(outputStream *st) const;
   444 #endif
   445 };
   447 //------------------------------SafePointScalarObjectNode----------------------
   448 // A SafePointScalarObjectNode represents the state of a scalarized object
   449 // at a safepoint.
   451 class SafePointScalarObjectNode: public TypeNode {
   452   uint _first_index; // First input edge relative index of a SafePoint node where
   453                      // states of the scalarized object fields are collected.
   454                      // It is relative to the last (youngest) jvms->_scloff.
   455   uint _n_fields;    // Number of non-static fields of the scalarized object.
   456   DEBUG_ONLY(AllocateNode* _alloc;)
   458   virtual uint hash() const ; // { return NO_HASH; }
   459   virtual uint cmp( const Node &n ) const;
   461   uint first_index() const { return _first_index; }
   463 public:
   464   SafePointScalarObjectNode(const TypeOopPtr* tp,
   465 #ifdef ASSERT
   466                             AllocateNode* alloc,
   467 #endif
   468                             uint first_index, uint n_fields);
   469   virtual int Opcode() const;
   470   virtual uint           ideal_reg() const;
   471   virtual const RegMask &in_RegMask(uint) const;
   472   virtual const RegMask &out_RegMask() const;
   473   virtual uint           match_edge(uint idx) const;
   475   uint first_index(JVMState* jvms) const {
   476     assert(jvms != NULL, "missed JVMS");
   477     return jvms->scloff() + _first_index;
   478   }
   479   uint n_fields()    const { return _n_fields; }
   481 #ifdef ASSERT
   482   AllocateNode* alloc() const { return _alloc; }
   483 #endif
   485   virtual uint size_of() const { return sizeof(*this); }
   487   // Assumes that "this" is an argument to a safepoint node "s", and that
   488   // "new_call" is being created to correspond to "s".  But the difference
   489   // between the start index of the jvmstates of "new_call" and "s" is
   490   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
   491   // corresponds appropriately to "this" in "new_call".  Assumes that
   492   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
   493   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
   494   SafePointScalarObjectNode* clone(Dict* sosn_map) const;
   496 #ifndef PRODUCT
   497   virtual void              dump_spec(outputStream *st) const;
   498 #endif
   499 };
   502 // Simple container for the outgoing projections of a call.  Useful
   503 // for serious surgery on calls.
   504 class CallProjections : public StackObj {
   505 public:
   506   Node* fallthrough_proj;
   507   Node* fallthrough_catchproj;
   508   Node* fallthrough_memproj;
   509   Node* fallthrough_ioproj;
   510   Node* catchall_catchproj;
   511   Node* catchall_memproj;
   512   Node* catchall_ioproj;
   513   Node* resproj;
   514   Node* exobj;
   515 };
   517 class CallGenerator;
   519 //------------------------------CallNode---------------------------------------
   520 // Call nodes now subsume the function of debug nodes at callsites, so they
   521 // contain the functionality of a full scope chain of debug nodes.
   522 class CallNode : public SafePointNode {
   523   friend class VMStructs;
   524 public:
   525   const TypeFunc *_tf;        // Function type
   526   address      _entry_point;  // Address of method being called
   527   float        _cnt;          // Estimate of number of times called
   528   CallGenerator* _generator;  // corresponding CallGenerator for some late inline calls
   530   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
   531     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
   532       _tf(tf),
   533       _entry_point(addr),
   534       _cnt(COUNT_UNKNOWN),
   535       _generator(NULL)
   536   {
   537     init_class_id(Class_Call);
   538   }
   540   const TypeFunc* tf()         const { return _tf; }
   541   const address  entry_point() const { return _entry_point; }
   542   const float    cnt()         const { return _cnt; }
   543   CallGenerator* generator()   const { return _generator; }
   545   void set_tf(const TypeFunc* tf)       { _tf = tf; }
   546   void set_entry_point(address p)       { _entry_point = p; }
   547   void set_cnt(float c)                 { _cnt = c; }
   548   void set_generator(CallGenerator* cg) { _generator = cg; }
   550   virtual const Type *bottom_type() const;
   551   virtual const Type *Value( PhaseTransform *phase ) const;
   552   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   553   virtual Node *Identity( PhaseTransform *phase ) { return this; }
   554   virtual uint        cmp( const Node &n ) const;
   555   virtual uint        size_of() const = 0;
   556   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   557   virtual Node       *match( const ProjNode *proj, const Matcher *m );
   558   virtual uint        ideal_reg() const { return NotAMachineReg; }
   559   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
   560   // for some macro nodes whose expansion does not have a safepoint on the fast path.
   561   virtual bool        guaranteed_safepoint()  { return true; }
   562   // For macro nodes, the JVMState gets modified during expansion, so when cloning
   563   // the node the JVMState must be cloned.
   564   virtual void        clone_jvms(Compile* C) { }   // default is not to clone
   566   // Returns true if the call may modify n
   567   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase);
   568   // Does this node have a use of n other than in debug information?
   569   bool                has_non_debug_use(Node *n);
   570   // Returns the unique CheckCastPP of a call
   571   // or result projection is there are several CheckCastPP
   572   // or returns NULL if there is no one.
   573   Node *result_cast();
   574   // Does this node returns pointer?
   575   bool returns_pointer() const {
   576     const TypeTuple *r = tf()->range();
   577     return (r->cnt() > TypeFunc::Parms &&
   578             r->field_at(TypeFunc::Parms)->isa_ptr());
   579   }
   581   // Collect all the interesting edges from a call for use in
   582   // replacing the call by something else.  Used by macro expansion
   583   // and the late inlining support.
   584   void extract_projections(CallProjections* projs, bool separate_io_proj);
   586   virtual uint match_edge(uint idx) const;
   588 #ifndef PRODUCT
   589   virtual void        dump_req(outputStream *st = tty) const;
   590   virtual void        dump_spec(outputStream *st) const;
   591 #endif
   592 };
   595 //------------------------------CallJavaNode-----------------------------------
   596 // Make a static or dynamic subroutine call node using Java calling
   597 // convention.  (The "Java" calling convention is the compiler's calling
   598 // convention, as opposed to the interpreter's or that of native C.)
   599 class CallJavaNode : public CallNode {
   600   friend class VMStructs;
   601 protected:
   602   virtual uint cmp( const Node &n ) const;
   603   virtual uint size_of() const; // Size is bigger
   605   bool    _optimized_virtual;
   606   bool    _method_handle_invoke;
   607   ciMethod* _method;            // Method being direct called
   608 public:
   609   const int       _bci;         // Byte Code Index of call byte code
   610   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
   611     : CallNode(tf, addr, TypePtr::BOTTOM),
   612       _method(method), _bci(bci),
   613       _optimized_virtual(false),
   614       _method_handle_invoke(false)
   615   {
   616     init_class_id(Class_CallJava);
   617   }
   619   virtual int   Opcode() const;
   620   ciMethod* method() const                { return _method; }
   621   void  set_method(ciMethod *m)           { _method = m; }
   622   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
   623   bool  is_optimized_virtual() const      { return _optimized_virtual; }
   624   void  set_method_handle_invoke(bool f)  { _method_handle_invoke = f; }
   625   bool  is_method_handle_invoke() const   { return _method_handle_invoke; }
   627 #ifndef PRODUCT
   628   virtual void  dump_spec(outputStream *st) const;
   629 #endif
   630 };
   632 //------------------------------CallStaticJavaNode-----------------------------
   633 // Make a direct subroutine call using Java calling convention (for static
   634 // calls and optimized virtual calls, plus calls to wrappers for run-time
   635 // routines); generates static stub.
   636 class CallStaticJavaNode : public CallJavaNode {
   637   virtual uint cmp( const Node &n ) const;
   638   virtual uint size_of() const; // Size is bigger
   639 public:
   640   CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci)
   641     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
   642     init_class_id(Class_CallStaticJava);
   643     if (C->eliminate_boxing() && (method != NULL) && method->is_boxing_method()) {
   644       init_flags(Flag_is_macro);
   645       C->add_macro_node(this);
   646     }
   647     _is_scalar_replaceable = false;
   648     _is_non_escaping = false;
   649   }
   650   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
   651                      const TypePtr* adr_type)
   652     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
   653     init_class_id(Class_CallStaticJava);
   654     // This node calls a runtime stub, which often has narrow memory effects.
   655     _adr_type = adr_type;
   656     _is_scalar_replaceable = false;
   657     _is_non_escaping = false;
   658   }
   659   const char *_name;      // Runtime wrapper name
   661   // Result of Escape Analysis
   662   bool _is_scalar_replaceable;
   663   bool _is_non_escaping;
   665   // If this is an uncommon trap, return the request code, else zero.
   666   int uncommon_trap_request() const;
   667   static int extract_uncommon_trap_request(const Node* call);
   669   bool is_boxing_method() const {
   670     return is_macro() && (method() != NULL) && method()->is_boxing_method();
   671   }
   672   // Later inlining modifies the JVMState, so we need to clone it
   673   // when the call node is cloned (because it is macro node).
   674   virtual void  clone_jvms(Compile* C) {
   675     if ((jvms() != NULL) && is_boxing_method()) {
   676       set_jvms(jvms()->clone_deep(C));
   677       jvms()->set_map_deep(this);
   678     }
   679   }
   681   virtual int         Opcode() const;
   682 #ifndef PRODUCT
   683   virtual void        dump_spec(outputStream *st) const;
   684 #endif
   685 };
   687 //------------------------------CallDynamicJavaNode----------------------------
   688 // Make a dispatched call using Java calling convention.
   689 class CallDynamicJavaNode : public CallJavaNode {
   690   virtual uint cmp( const Node &n ) const;
   691   virtual uint size_of() const; // Size is bigger
   692 public:
   693   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
   694     init_class_id(Class_CallDynamicJava);
   695   }
   697   int _vtable_index;
   698   virtual int   Opcode() const;
   699 #ifndef PRODUCT
   700   virtual void  dump_spec(outputStream *st) const;
   701 #endif
   702 };
   704 //------------------------------CallRuntimeNode--------------------------------
   705 // Make a direct subroutine call node into compiled C++ code.
   706 class CallRuntimeNode : public CallNode {
   707   virtual uint cmp( const Node &n ) const;
   708   virtual uint size_of() const; // Size is bigger
   709 public:
   710   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
   711                   const TypePtr* adr_type)
   712     : CallNode(tf, addr, adr_type),
   713       _name(name)
   714   {
   715     init_class_id(Class_CallRuntime);
   716   }
   718   const char *_name;            // Printable name, if _method is NULL
   719   virtual int   Opcode() const;
   720   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   722 #ifndef PRODUCT
   723   virtual void  dump_spec(outputStream *st) const;
   724 #endif
   725 };
   727 //------------------------------CallLeafNode-----------------------------------
   728 // Make a direct subroutine call node into compiled C++ code, without
   729 // safepoints
   730 class CallLeafNode : public CallRuntimeNode {
   731 public:
   732   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
   733                const TypePtr* adr_type)
   734     : CallRuntimeNode(tf, addr, name, adr_type)
   735   {
   736     init_class_id(Class_CallLeaf);
   737   }
   738   virtual int   Opcode() const;
   739   virtual bool        guaranteed_safepoint()  { return false; }
   740 #ifndef PRODUCT
   741   virtual void  dump_spec(outputStream *st) const;
   742 #endif
   743 };
   745 //------------------------------CallLeafNoFPNode-------------------------------
   746 // CallLeafNode, not using floating point or using it in the same manner as
   747 // the generated code
   748 class CallLeafNoFPNode : public CallLeafNode {
   749 public:
   750   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
   751                    const TypePtr* adr_type)
   752     : CallLeafNode(tf, addr, name, adr_type)
   753   {
   754   }
   755   virtual int   Opcode() const;
   756 };
   759 //------------------------------Allocate---------------------------------------
   760 // High-level memory allocation
   761 //
   762 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
   763 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
   764 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
   765 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
   766 //  order to differentiate the uses of the projection on the normal control path from
   767 //  those on the exception return path.
   768 //
   769 class AllocateNode : public CallNode {
   770 public:
   771   enum {
   772     // Output:
   773     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
   774     // Inputs:
   775     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
   776     KlassNode,                        // type (maybe dynamic) of the obj.
   777     InitialTest,                      // slow-path test (may be constant)
   778     ALength,                          // array length (or TOP if none)
   779     ParmLimit
   780   };
   782   static const TypeFunc* alloc_type(const Type* t) {
   783     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
   784     fields[AllocSize]   = TypeInt::POS;
   785     fields[KlassNode]   = TypeInstPtr::NOTNULL;
   786     fields[InitialTest] = TypeInt::BOOL;
   787     fields[ALength]     = t;  // length (can be a bad length)
   789     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
   791     // create result type (range)
   792     fields = TypeTuple::fields(1);
   793     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   795     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   797     return TypeFunc::make(domain, range);
   798   }
   800   // Result of Escape Analysis
   801   bool _is_scalar_replaceable;
   802   bool _is_non_escaping;
   804   virtual uint size_of() const; // Size is bigger
   805   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   806                Node *size, Node *klass_node, Node *initial_test);
   807   // Expansion modifies the JVMState, so we need to clone it
   808   virtual void  clone_jvms(Compile* C) {
   809     if (jvms() != NULL) {
   810       set_jvms(jvms()->clone_deep(C));
   811       jvms()->set_map_deep(this);
   812     }
   813   }
   814   virtual int Opcode() const;
   815   virtual uint ideal_reg() const { return Op_RegP; }
   816   virtual bool        guaranteed_safepoint()  { return false; }
   818   // allocations do not modify their arguments
   819   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;}
   821   // Pattern-match a possible usage of AllocateNode.
   822   // Return null if no allocation is recognized.
   823   // The operand is the pointer produced by the (possible) allocation.
   824   // It must be a projection of the Allocate or its subsequent CastPP.
   825   // (Note:  This function is defined in file graphKit.cpp, near
   826   // GraphKit::new_instance/new_array, whose output it recognizes.)
   827   // The 'ptr' may not have an offset unless the 'offset' argument is given.
   828   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
   830   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
   831   // an offset, which is reported back to the caller.
   832   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
   833   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
   834                                         intptr_t& offset);
   836   // Dig the klass operand out of a (possible) allocation site.
   837   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
   838     AllocateNode* allo = Ideal_allocation(ptr, phase);
   839     return (allo == NULL) ? NULL : allo->in(KlassNode);
   840   }
   842   // Conservatively small estimate of offset of first non-header byte.
   843   int minimum_header_size() {
   844     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
   845                                 instanceOopDesc::base_offset_in_bytes();
   846   }
   848   // Return the corresponding initialization barrier (or null if none).
   849   // Walks out edges to find it...
   850   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
   851   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
   852   InitializeNode* initialization();
   854   // Convenience for initialization->maybe_set_complete(phase)
   855   bool maybe_set_complete(PhaseGVN* phase);
   856 };
   858 //------------------------------AllocateArray---------------------------------
   859 //
   860 // High-level array allocation
   861 //
   862 class AllocateArrayNode : public AllocateNode {
   863 public:
   864   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   865                     Node* size, Node* klass_node, Node* initial_test,
   866                     Node* count_val
   867                     )
   868     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
   869                    initial_test)
   870   {
   871     init_class_id(Class_AllocateArray);
   872     set_req(AllocateNode::ALength,        count_val);
   873   }
   874   virtual int Opcode() const;
   875   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   877   // Dig the length operand out of a array allocation site.
   878   Node* Ideal_length() {
   879     return in(AllocateNode::ALength);
   880   }
   882   // Dig the length operand out of a array allocation site and narrow the
   883   // type with a CastII, if necesssary
   884   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
   886   // Pattern-match a possible usage of AllocateArrayNode.
   887   // Return null if no allocation is recognized.
   888   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
   889     AllocateNode* allo = Ideal_allocation(ptr, phase);
   890     return (allo == NULL || !allo->is_AllocateArray())
   891            ? NULL : allo->as_AllocateArray();
   892   }
   893 };
   895 //------------------------------AbstractLockNode-----------------------------------
   896 class AbstractLockNode: public CallNode {
   897 private:
   898   enum {
   899     Regular = 0,  // Normal lock
   900     NonEscObj,    // Lock is used for non escaping object
   901     Coarsened,    // Lock was coarsened
   902     Nested        // Nested lock
   903   } _kind;
   904 #ifndef PRODUCT
   905   NamedCounter* _counter;
   906 #endif
   908 protected:
   909   // helper functions for lock elimination
   910   //
   912   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
   913                             GrowableArray<AbstractLockNode*> &lock_ops);
   914   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
   915                                        GrowableArray<AbstractLockNode*> &lock_ops);
   916   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
   917                                GrowableArray<AbstractLockNode*> &lock_ops);
   918   LockNode *find_matching_lock(UnlockNode* unlock);
   920   // Update the counter to indicate that this lock was eliminated.
   921   void set_eliminated_lock_counter() PRODUCT_RETURN;
   923 public:
   924   AbstractLockNode(const TypeFunc *tf)
   925     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
   926       _kind(Regular)
   927   {
   928 #ifndef PRODUCT
   929     _counter = NULL;
   930 #endif
   931   }
   932   virtual int Opcode() const = 0;
   933   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
   934   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
   935   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
   936   void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
   938   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
   940   virtual uint size_of() const { return sizeof(*this); }
   942   bool is_eliminated()  const { return (_kind != Regular); }
   943   bool is_non_esc_obj() const { return (_kind == NonEscObj); }
   944   bool is_coarsened()   const { return (_kind == Coarsened); }
   945   bool is_nested()      const { return (_kind == Nested); }
   947   void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
   948   void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
   949   void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
   951   // locking does not modify its arguments
   952   virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;}
   954 #ifndef PRODUCT
   955   void create_lock_counter(JVMState* s);
   956   NamedCounter* counter() const { return _counter; }
   957 #endif
   958 };
   960 //------------------------------Lock---------------------------------------
   961 // High-level lock operation
   962 //
   963 // This is a subclass of CallNode because it is a macro node which gets expanded
   964 // into a code sequence containing a call.  This node takes 3 "parameters":
   965 //    0  -  object to lock
   966 //    1 -   a BoxLockNode
   967 //    2 -   a FastLockNode
   968 //
   969 class LockNode : public AbstractLockNode {
   970 public:
   972   static const TypeFunc *lock_type() {
   973     // create input type (domain)
   974     const Type **fields = TypeTuple::fields(3);
   975     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   976     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
   977     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
   978     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
   980     // create result type (range)
   981     fields = TypeTuple::fields(0);
   983     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   985     return TypeFunc::make(domain,range);
   986   }
   988   virtual int Opcode() const;
   989   virtual uint size_of() const; // Size is bigger
   990   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   991     init_class_id(Class_Lock);
   992     init_flags(Flag_is_macro);
   993     C->add_macro_node(this);
   994   }
   995   virtual bool        guaranteed_safepoint()  { return false; }
   997   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   998   // Expansion modifies the JVMState, so we need to clone it
   999   virtual void  clone_jvms(Compile* C) {
  1000     if (jvms() != NULL) {
  1001       set_jvms(jvms()->clone_deep(C));
  1002       jvms()->set_map_deep(this);
  1006   bool is_nested_lock_region(); // Is this Lock nested?
  1007 };
  1009 //------------------------------Unlock---------------------------------------
  1010 // High-level unlock operation
  1011 class UnlockNode : public AbstractLockNode {
  1012 public:
  1013   virtual int Opcode() const;
  1014   virtual uint size_of() const; // Size is bigger
  1015   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
  1016     init_class_id(Class_Unlock);
  1017     init_flags(Flag_is_macro);
  1018     C->add_macro_node(this);
  1020   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  1021   // unlock is never a safepoint
  1022   virtual bool        guaranteed_safepoint()  { return false; }
  1023 };
  1025 #endif // SHARE_VM_OPTO_CALLNODE_HPP

mercurial