src/share/vm/opto/callnode.hpp

Fri, 20 Dec 2013 13:51:14 +0100

author
goetz
date
Fri, 20 Dec 2013 13:51:14 +0100
changeset 6499
ad3b94907eed
parent 5643
3bfb204913de
child 6723
0bf37f737702
permissions
-rw-r--r--

8030863: PPC64: (part 220): ConstantTableBase for calls between args and jvms
Summary: Add ConstantTableBase node edge after parameters and before jvms. Adapt jvms offsets.
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
    26 #define SHARE_VM_OPTO_CALLNODE_HPP
    28 #include "opto/connode.hpp"
    29 #include "opto/mulnode.hpp"
    30 #include "opto/multnode.hpp"
    31 #include "opto/opcodes.hpp"
    32 #include "opto/phaseX.hpp"
    33 #include "opto/type.hpp"
    35 // Portions of code courtesy of Clifford Click
    37 // Optimization - Graph Style
    39 class Chaitin;
    40 class NamedCounter;
    41 class MultiNode;
    42 class  SafePointNode;
    43 class   CallNode;
    44 class     CallJavaNode;
    45 class       CallStaticJavaNode;
    46 class       CallDynamicJavaNode;
    47 class     CallRuntimeNode;
    48 class       CallLeafNode;
    49 class         CallLeafNoFPNode;
    50 class     AllocateNode;
    51 class       AllocateArrayNode;
    52 class     BoxLockNode;
    53 class     LockNode;
    54 class     UnlockNode;
    55 class JVMState;
    56 class OopMap;
    57 class State;
    58 class StartNode;
    59 class MachCallNode;
    60 class FastLockNode;
    62 //------------------------------StartNode--------------------------------------
    63 // The method start node
    64 class StartNode : public MultiNode {
    65   virtual uint cmp( const Node &n ) const;
    66   virtual uint size_of() const; // Size is bigger
    67 public:
    68   const TypeTuple *_domain;
    69   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
    70     init_class_id(Class_Start);
    71     init_req(0,this);
    72     init_req(1,root);
    73   }
    74   virtual int Opcode() const;
    75   virtual bool pinned() const { return true; };
    76   virtual const Type *bottom_type() const;
    77   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
    78   virtual const Type *Value( PhaseTransform *phase ) const;
    79   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    80   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
    81   virtual const RegMask &in_RegMask(uint) const;
    82   virtual Node *match( const ProjNode *proj, const Matcher *m );
    83   virtual uint ideal_reg() const { return 0; }
    84 #ifndef PRODUCT
    85   virtual void  dump_spec(outputStream *st) const;
    86 #endif
    87 };
    89 //------------------------------StartOSRNode-----------------------------------
    90 // The method start node for on stack replacement code
    91 class StartOSRNode : public StartNode {
    92 public:
    93   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
    94   virtual int   Opcode() const;
    95   static  const TypeTuple *osr_domain();
    96 };
    99 //------------------------------ParmNode---------------------------------------
   100 // Incoming parameters
   101 class ParmNode : public ProjNode {
   102   static const char * const names[TypeFunc::Parms+1];
   103 public:
   104   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
   105     init_class_id(Class_Parm);
   106   }
   107   virtual int Opcode() const;
   108   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
   109   virtual uint ideal_reg() const;
   110 #ifndef PRODUCT
   111   virtual void dump_spec(outputStream *st) const;
   112 #endif
   113 };
   116 //------------------------------ReturnNode-------------------------------------
   117 // Return from subroutine node
   118 class ReturnNode : public Node {
   119 public:
   120   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
   121   virtual int Opcode() const;
   122   virtual bool  is_CFG() const { return true; }
   123   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   124   virtual bool depends_only_on_test() const { return false; }
   125   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   126   virtual const Type *Value( PhaseTransform *phase ) const;
   127   virtual uint ideal_reg() const { return NotAMachineReg; }
   128   virtual uint match_edge(uint idx) const;
   129 #ifndef PRODUCT
   130   virtual void dump_req(outputStream *st = tty) const;
   131 #endif
   132 };
   135 //------------------------------RethrowNode------------------------------------
   136 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
   137 // ends the current basic block like a ReturnNode.  Restores registers and
   138 // unwinds stack.  Rethrow happens in the caller's method.
   139 class RethrowNode : public Node {
   140  public:
   141   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
   142   virtual int Opcode() const;
   143   virtual bool  is_CFG() const { return true; }
   144   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   145   virtual bool depends_only_on_test() const { return false; }
   146   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   147   virtual const Type *Value( PhaseTransform *phase ) const;
   148   virtual uint match_edge(uint idx) const;
   149   virtual uint ideal_reg() const { return NotAMachineReg; }
   150 #ifndef PRODUCT
   151   virtual void dump_req(outputStream *st = tty) const;
   152 #endif
   153 };
   156 //------------------------------TailCallNode-----------------------------------
   157 // Pop stack frame and jump indirect
   158 class TailCallNode : public ReturnNode {
   159 public:
   160   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
   161     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
   162     init_req(TypeFunc::Parms, target);
   163     init_req(TypeFunc::Parms+1, moop);
   164   }
   166   virtual int Opcode() const;
   167   virtual uint match_edge(uint idx) const;
   168 };
   170 //------------------------------TailJumpNode-----------------------------------
   171 // Pop stack frame and jump indirect
   172 class TailJumpNode : public ReturnNode {
   173 public:
   174   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
   175     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
   176     init_req(TypeFunc::Parms, target);
   177     init_req(TypeFunc::Parms+1, ex_oop);
   178   }
   180   virtual int Opcode() const;
   181   virtual uint match_edge(uint idx) const;
   182 };
   184 //-------------------------------JVMState-------------------------------------
   185 // A linked list of JVMState nodes captures the whole interpreter state,
   186 // plus GC roots, for all active calls at some call site in this compilation
   187 // unit.  (If there is no inlining, then the list has exactly one link.)
   188 // This provides a way to map the optimized program back into the interpreter,
   189 // or to let the GC mark the stack.
   190 class JVMState : public ResourceObj {
   191   friend class VMStructs;
   192 public:
   193   typedef enum {
   194     Reexecute_Undefined = -1, // not defined -- will be translated into false later
   195     Reexecute_False     =  0, // false       -- do not reexecute
   196     Reexecute_True      =  1  // true        -- reexecute the bytecode
   197   } ReexecuteState; //Reexecute State
   199 private:
   200   JVMState*         _caller;    // List pointer for forming scope chains
   201   uint              _depth;     // One more than caller depth, or one.
   202   uint              _locoff;    // Offset to locals in input edge mapping
   203   uint              _stkoff;    // Offset to stack in input edge mapping
   204   uint              _monoff;    // Offset to monitors in input edge mapping
   205   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
   206   uint              _endoff;    // Offset to end of input edge mapping
   207   uint              _sp;        // Jave Expression Stack Pointer for this state
   208   int               _bci;       // Byte Code Index of this JVM point
   209   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
   210   ciMethod*         _method;    // Method Pointer
   211   SafePointNode*    _map;       // Map node associated with this scope
   212 public:
   213   friend class Compile;
   214   friend class PreserveReexecuteState;
   216   // Because JVMState objects live over the entire lifetime of the
   217   // Compile object, they are allocated into the comp_arena, which
   218   // does not get resource marked or reset during the compile process
   219   void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
   220   void operator delete( void * ) { } // fast deallocation
   222   // Create a new JVMState, ready for abstract interpretation.
   223   JVMState(ciMethod* method, JVMState* caller);
   224   JVMState(int stack_size);  // root state; has a null method
   226   // Access functions for the JVM
   227   // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
   228   //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
   229   uint              locoff() const { return _locoff; }
   230   uint              stkoff() const { return _stkoff; }
   231   uint              argoff() const { return _stkoff + _sp; }
   232   uint              monoff() const { return _monoff; }
   233   uint              scloff() const { return _scloff; }
   234   uint              endoff() const { return _endoff; }
   235   uint              oopoff() const { return debug_end(); }
   237   int            loc_size() const { return stkoff() - locoff(); }
   238   int            stk_size() const { return monoff() - stkoff(); }
   239   int            mon_size() const { return scloff() - monoff(); }
   240   int            scl_size() const { return endoff() - scloff(); }
   242   bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
   243   bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
   244   bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
   245   bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
   247   uint                      sp() const { return _sp; }
   248   int                      bci() const { return _bci; }
   249   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
   250   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
   251   bool              has_method() const { return _method != NULL; }
   252   ciMethod*             method() const { assert(has_method(), ""); return _method; }
   253   JVMState*             caller() const { return _caller; }
   254   SafePointNode*           map() const { return _map; }
   255   uint                   depth() const { return _depth; }
   256   uint             debug_start() const; // returns locoff of root caller
   257   uint               debug_end() const; // returns endoff of self
   258   uint              debug_size() const {
   259     return loc_size() + sp() + mon_size() + scl_size();
   260   }
   261   uint        debug_depth()  const; // returns sum of debug_size values at all depths
   263   // Returns the JVM state at the desired depth (1 == root).
   264   JVMState* of_depth(int d) const;
   266   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
   267   bool same_calls_as(const JVMState* that) const;
   269   // Monitors (monitors are stored as (boxNode, objNode) pairs
   270   enum { logMonitorEdges = 1 };
   271   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
   272   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
   273   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
   274   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
   275   bool is_monitor_box(uint off)    const {
   276     assert(is_mon(off), "should be called only for monitor edge");
   277     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
   278   }
   279   bool is_monitor_use(uint off)    const { return (is_mon(off)
   280                                                    && is_monitor_box(off))
   281                                              || (caller() && caller()->is_monitor_use(off)); }
   283   // Initialization functions for the JVM
   284   void              set_locoff(uint off) { _locoff = off; }
   285   void              set_stkoff(uint off) { _stkoff = off; }
   286   void              set_monoff(uint off) { _monoff = off; }
   287   void              set_scloff(uint off) { _scloff = off; }
   288   void              set_endoff(uint off) { _endoff = off; }
   289   void              set_offsets(uint off) {
   290     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
   291   }
   292   void              set_map(SafePointNode *map) { _map = map; }
   293   void              set_sp(uint sp) { _sp = sp; }
   294                     // _reexecute is initialized to "undefined" for a new bci
   295   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
   296   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
   298   // Miscellaneous utility functions
   299   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
   300   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
   301   void      set_map_deep(SafePointNode *map);// reset map for all callers
   302   void      adapt_position(int delta);       // Adapt offsets in in-array after adding an edge.
   304 #ifndef PRODUCT
   305   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
   306   void      dump_spec(outputStream *st) const;
   307   void      dump_on(outputStream* st) const;
   308   void      dump() const {
   309     dump_on(tty);
   310   }
   311 #endif
   312 };
   314 //------------------------------SafePointNode----------------------------------
   315 // A SafePointNode is a subclass of a MultiNode for convenience (and
   316 // potential code sharing) only - conceptually it is independent of
   317 // the Node semantics.
   318 class SafePointNode : public MultiNode {
   319   virtual uint           cmp( const Node &n ) const;
   320   virtual uint           size_of() const;       // Size is bigger
   322 public:
   323   SafePointNode(uint edges, JVMState* jvms,
   324                 // A plain safepoint advertises no memory effects (NULL):
   325                 const TypePtr* adr_type = NULL)
   326     : MultiNode( edges ),
   327       _jvms(jvms),
   328       _oop_map(NULL),
   329       _adr_type(adr_type)
   330   {
   331     init_class_id(Class_SafePoint);
   332   }
   334   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
   335   JVMState* const _jvms;      // Pointer to list of JVM State objects
   336   const TypePtr*  _adr_type;  // What type of memory does this node produce?
   338   // Many calls take *all* of memory as input,
   339   // but some produce a limited subset of that memory as output.
   340   // The adr_type reports the call's behavior as a store, not a load.
   342   virtual JVMState* jvms() const { return _jvms; }
   343   void set_jvms(JVMState* s) {
   344     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
   345   }
   346   OopMap *oop_map() const { return _oop_map; }
   347   void set_oop_map(OopMap *om) { _oop_map = om; }
   349  private:
   350   void verify_input(JVMState* jvms, uint idx) const {
   351     assert(verify_jvms(jvms), "jvms must match");
   352     Node* n = in(idx);
   353     assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
   354            in(idx + 1)->is_top(), "2nd half of long/double");
   355   }
   357  public:
   358   // Functionality from old debug nodes which has changed
   359   Node *local(JVMState* jvms, uint idx) const {
   360     verify_input(jvms, jvms->locoff() + idx);
   361     return in(jvms->locoff() + idx);
   362   }
   363   Node *stack(JVMState* jvms, uint idx) const {
   364     verify_input(jvms, jvms->stkoff() + idx);
   365     return in(jvms->stkoff() + idx);
   366   }
   367   Node *argument(JVMState* jvms, uint idx) const {
   368     verify_input(jvms, jvms->argoff() + idx);
   369     return in(jvms->argoff() + idx);
   370   }
   371   Node *monitor_box(JVMState* jvms, uint idx) const {
   372     assert(verify_jvms(jvms), "jvms must match");
   373     return in(jvms->monitor_box_offset(idx));
   374   }
   375   Node *monitor_obj(JVMState* jvms, uint idx) const {
   376     assert(verify_jvms(jvms), "jvms must match");
   377     return in(jvms->monitor_obj_offset(idx));
   378   }
   380   void  set_local(JVMState* jvms, uint idx, Node *c);
   382   void  set_stack(JVMState* jvms, uint idx, Node *c) {
   383     assert(verify_jvms(jvms), "jvms must match");
   384     set_req(jvms->stkoff() + idx, c);
   385   }
   386   void  set_argument(JVMState* jvms, uint idx, Node *c) {
   387     assert(verify_jvms(jvms), "jvms must match");
   388     set_req(jvms->argoff() + idx, c);
   389   }
   390   void ensure_stack(JVMState* jvms, uint stk_size) {
   391     assert(verify_jvms(jvms), "jvms must match");
   392     int grow_by = (int)stk_size - (int)jvms->stk_size();
   393     if (grow_by > 0)  grow_stack(jvms, grow_by);
   394   }
   395   void grow_stack(JVMState* jvms, uint grow_by);
   396   // Handle monitor stack
   397   void push_monitor( const FastLockNode *lock );
   398   void pop_monitor ();
   399   Node *peek_monitor_box() const;
   400   Node *peek_monitor_obj() const;
   402   // Access functions for the JVM
   403   Node *control  () const { return in(TypeFunc::Control  ); }
   404   Node *i_o      () const { return in(TypeFunc::I_O      ); }
   405   Node *memory   () const { return in(TypeFunc::Memory   ); }
   406   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
   407   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
   409   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
   410   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
   411   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
   413   MergeMemNode* merged_memory() const {
   414     return in(TypeFunc::Memory)->as_MergeMem();
   415   }
   417   // The parser marks useless maps as dead when it's done with them:
   418   bool is_killed() { return in(TypeFunc::Control) == NULL; }
   420   // Exception states bubbling out of subgraphs such as inlined calls
   421   // are recorded here.  (There might be more than one, hence the "next".)
   422   // This feature is used only for safepoints which serve as "maps"
   423   // for JVM states during parsing, intrinsic expansion, etc.
   424   SafePointNode*         next_exception() const;
   425   void               set_next_exception(SafePointNode* n);
   426   bool                   has_exceptions() const { return next_exception() != NULL; }
   428   // Standard Node stuff
   429   virtual int            Opcode() const;
   430   virtual bool           pinned() const { return true; }
   431   virtual const Type    *Value( PhaseTransform *phase ) const;
   432   virtual const Type    *bottom_type() const { return Type::CONTROL; }
   433   virtual const TypePtr *adr_type() const { return _adr_type; }
   434   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
   435   virtual Node          *Identity( PhaseTransform *phase );
   436   virtual uint           ideal_reg() const { return 0; }
   437   virtual const RegMask &in_RegMask(uint) const;
   438   virtual const RegMask &out_RegMask() const;
   439   virtual uint           match_edge(uint idx) const;
   441   static  bool           needs_polling_address_input();
   443 #ifndef PRODUCT
   444   virtual void           dump_spec(outputStream *st) const;
   445 #endif
   446 };
   448 //------------------------------SafePointScalarObjectNode----------------------
   449 // A SafePointScalarObjectNode represents the state of a scalarized object
   450 // at a safepoint.
   452 class SafePointScalarObjectNode: public TypeNode {
   453   uint _first_index; // First input edge relative index of a SafePoint node where
   454                      // states of the scalarized object fields are collected.
   455                      // It is relative to the last (youngest) jvms->_scloff.
   456   uint _n_fields;    // Number of non-static fields of the scalarized object.
   457   DEBUG_ONLY(AllocateNode* _alloc;)
   459   virtual uint hash() const ; // { return NO_HASH; }
   460   virtual uint cmp( const Node &n ) const;
   462   uint first_index() const { return _first_index; }
   464 public:
   465   SafePointScalarObjectNode(const TypeOopPtr* tp,
   466 #ifdef ASSERT
   467                             AllocateNode* alloc,
   468 #endif
   469                             uint first_index, uint n_fields);
   470   virtual int Opcode() const;
   471   virtual uint           ideal_reg() const;
   472   virtual const RegMask &in_RegMask(uint) const;
   473   virtual const RegMask &out_RegMask() const;
   474   virtual uint           match_edge(uint idx) const;
   476   uint first_index(JVMState* jvms) const {
   477     assert(jvms != NULL, "missed JVMS");
   478     return jvms->scloff() + _first_index;
   479   }
   480   uint n_fields()    const { return _n_fields; }
   482 #ifdef ASSERT
   483   AllocateNode* alloc() const { return _alloc; }
   484 #endif
   486   virtual uint size_of() const { return sizeof(*this); }
   488   // Assumes that "this" is an argument to a safepoint node "s", and that
   489   // "new_call" is being created to correspond to "s".  But the difference
   490   // between the start index of the jvmstates of "new_call" and "s" is
   491   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
   492   // corresponds appropriately to "this" in "new_call".  Assumes that
   493   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
   494   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
   495   SafePointScalarObjectNode* clone(Dict* sosn_map) const;
   497 #ifndef PRODUCT
   498   virtual void              dump_spec(outputStream *st) const;
   499 #endif
   500 };
   503 // Simple container for the outgoing projections of a call.  Useful
   504 // for serious surgery on calls.
   505 class CallProjections : public StackObj {
   506 public:
   507   Node* fallthrough_proj;
   508   Node* fallthrough_catchproj;
   509   Node* fallthrough_memproj;
   510   Node* fallthrough_ioproj;
   511   Node* catchall_catchproj;
   512   Node* catchall_memproj;
   513   Node* catchall_ioproj;
   514   Node* resproj;
   515   Node* exobj;
   516 };
   518 class CallGenerator;
   520 //------------------------------CallNode---------------------------------------
   521 // Call nodes now subsume the function of debug nodes at callsites, so they
   522 // contain the functionality of a full scope chain of debug nodes.
   523 class CallNode : public SafePointNode {
   524   friend class VMStructs;
   525 public:
   526   const TypeFunc *_tf;        // Function type
   527   address      _entry_point;  // Address of method being called
   528   float        _cnt;          // Estimate of number of times called
   529   CallGenerator* _generator;  // corresponding CallGenerator for some late inline calls
   531   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
   532     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
   533       _tf(tf),
   534       _entry_point(addr),
   535       _cnt(COUNT_UNKNOWN),
   536       _generator(NULL)
   537   {
   538     init_class_id(Class_Call);
   539   }
   541   const TypeFunc* tf()         const { return _tf; }
   542   const address  entry_point() const { return _entry_point; }
   543   const float    cnt()         const { return _cnt; }
   544   CallGenerator* generator()   const { return _generator; }
   546   void set_tf(const TypeFunc* tf)       { _tf = tf; }
   547   void set_entry_point(address p)       { _entry_point = p; }
   548   void set_cnt(float c)                 { _cnt = c; }
   549   void set_generator(CallGenerator* cg) { _generator = cg; }
   551   virtual const Type *bottom_type() const;
   552   virtual const Type *Value( PhaseTransform *phase ) const;
   553   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   554   virtual Node *Identity( PhaseTransform *phase ) { return this; }
   555   virtual uint        cmp( const Node &n ) const;
   556   virtual uint        size_of() const = 0;
   557   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   558   virtual Node       *match( const ProjNode *proj, const Matcher *m );
   559   virtual uint        ideal_reg() const { return NotAMachineReg; }
   560   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
   561   // for some macro nodes whose expansion does not have a safepoint on the fast path.
   562   virtual bool        guaranteed_safepoint()  { return true; }
   563   // For macro nodes, the JVMState gets modified during expansion. If calls
   564   // use MachConstantBase, it gets modified during matching. So when cloning
   565   // the node the JVMState must be cloned. Default is not to clone.
   566   virtual void clone_jvms(Compile* C) {
   567     if (C->needs_clone_jvms() && jvms() != NULL) {
   568       set_jvms(jvms()->clone_deep(C));
   569       jvms()->set_map_deep(this);
   570     }
   571   }
   573   // Returns true if the call may modify n
   574   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase);
   575   // Does this node have a use of n other than in debug information?
   576   bool                has_non_debug_use(Node *n);
   577   // Returns the unique CheckCastPP of a call
   578   // or result projection is there are several CheckCastPP
   579   // or returns NULL if there is no one.
   580   Node *result_cast();
   581   // Does this node returns pointer?
   582   bool returns_pointer() const {
   583     const TypeTuple *r = tf()->range();
   584     return (r->cnt() > TypeFunc::Parms &&
   585             r->field_at(TypeFunc::Parms)->isa_ptr());
   586   }
   588   // Collect all the interesting edges from a call for use in
   589   // replacing the call by something else.  Used by macro expansion
   590   // and the late inlining support.
   591   void extract_projections(CallProjections* projs, bool separate_io_proj);
   593   virtual uint match_edge(uint idx) const;
   595 #ifndef PRODUCT
   596   virtual void        dump_req(outputStream *st = tty) const;
   597   virtual void        dump_spec(outputStream *st) const;
   598 #endif
   599 };
   602 //------------------------------CallJavaNode-----------------------------------
   603 // Make a static or dynamic subroutine call node using Java calling
   604 // convention.  (The "Java" calling convention is the compiler's calling
   605 // convention, as opposed to the interpreter's or that of native C.)
   606 class CallJavaNode : public CallNode {
   607   friend class VMStructs;
   608 protected:
   609   virtual uint cmp( const Node &n ) const;
   610   virtual uint size_of() const; // Size is bigger
   612   bool    _optimized_virtual;
   613   bool    _method_handle_invoke;
   614   ciMethod* _method;            // Method being direct called
   615 public:
   616   const int       _bci;         // Byte Code Index of call byte code
   617   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
   618     : CallNode(tf, addr, TypePtr::BOTTOM),
   619       _method(method), _bci(bci),
   620       _optimized_virtual(false),
   621       _method_handle_invoke(false)
   622   {
   623     init_class_id(Class_CallJava);
   624   }
   626   virtual int   Opcode() const;
   627   ciMethod* method() const                { return _method; }
   628   void  set_method(ciMethod *m)           { _method = m; }
   629   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
   630   bool  is_optimized_virtual() const      { return _optimized_virtual; }
   631   void  set_method_handle_invoke(bool f)  { _method_handle_invoke = f; }
   632   bool  is_method_handle_invoke() const   { return _method_handle_invoke; }
   634 #ifndef PRODUCT
   635   virtual void  dump_spec(outputStream *st) const;
   636 #endif
   637 };
   639 //------------------------------CallStaticJavaNode-----------------------------
   640 // Make a direct subroutine call using Java calling convention (for static
   641 // calls and optimized virtual calls, plus calls to wrappers for run-time
   642 // routines); generates static stub.
   643 class CallStaticJavaNode : public CallJavaNode {
   644   virtual uint cmp( const Node &n ) const;
   645   virtual uint size_of() const; // Size is bigger
   646 public:
   647   CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci)
   648     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
   649     init_class_id(Class_CallStaticJava);
   650     if (C->eliminate_boxing() && (method != NULL) && method->is_boxing_method()) {
   651       init_flags(Flag_is_macro);
   652       C->add_macro_node(this);
   653     }
   654     _is_scalar_replaceable = false;
   655     _is_non_escaping = false;
   656   }
   657   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
   658                      const TypePtr* adr_type)
   659     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
   660     init_class_id(Class_CallStaticJava);
   661     // This node calls a runtime stub, which often has narrow memory effects.
   662     _adr_type = adr_type;
   663     _is_scalar_replaceable = false;
   664     _is_non_escaping = false;
   665   }
   666   const char *_name;      // Runtime wrapper name
   668   // Result of Escape Analysis
   669   bool _is_scalar_replaceable;
   670   bool _is_non_escaping;
   672   // If this is an uncommon trap, return the request code, else zero.
   673   int uncommon_trap_request() const;
   674   static int extract_uncommon_trap_request(const Node* call);
   676   bool is_boxing_method() const {
   677     return is_macro() && (method() != NULL) && method()->is_boxing_method();
   678   }
   679   // Later inlining modifies the JVMState, so we need to clone it
   680   // when the call node is cloned (because it is macro node).
   681   virtual void  clone_jvms(Compile* C) {
   682     if ((jvms() != NULL) && is_boxing_method()) {
   683       set_jvms(jvms()->clone_deep(C));
   684       jvms()->set_map_deep(this);
   685     }
   686   }
   688   virtual int         Opcode() const;
   689 #ifndef PRODUCT
   690   virtual void        dump_spec(outputStream *st) const;
   691 #endif
   692 };
   694 //------------------------------CallDynamicJavaNode----------------------------
   695 // Make a dispatched call using Java calling convention.
   696 class CallDynamicJavaNode : public CallJavaNode {
   697   virtual uint cmp( const Node &n ) const;
   698   virtual uint size_of() const; // Size is bigger
   699 public:
   700   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
   701     init_class_id(Class_CallDynamicJava);
   702   }
   704   int _vtable_index;
   705   virtual int   Opcode() const;
   706 #ifndef PRODUCT
   707   virtual void  dump_spec(outputStream *st) const;
   708 #endif
   709 };
   711 //------------------------------CallRuntimeNode--------------------------------
   712 // Make a direct subroutine call node into compiled C++ code.
   713 class CallRuntimeNode : public CallNode {
   714   virtual uint cmp( const Node &n ) const;
   715   virtual uint size_of() const; // Size is bigger
   716 public:
   717   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
   718                   const TypePtr* adr_type)
   719     : CallNode(tf, addr, adr_type),
   720       _name(name)
   721   {
   722     init_class_id(Class_CallRuntime);
   723   }
   725   const char *_name;            // Printable name, if _method is NULL
   726   virtual int   Opcode() const;
   727   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   729 #ifndef PRODUCT
   730   virtual void  dump_spec(outputStream *st) const;
   731 #endif
   732 };
   734 //------------------------------CallLeafNode-----------------------------------
   735 // Make a direct subroutine call node into compiled C++ code, without
   736 // safepoints
   737 class CallLeafNode : public CallRuntimeNode {
   738 public:
   739   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
   740                const TypePtr* adr_type)
   741     : CallRuntimeNode(tf, addr, name, adr_type)
   742   {
   743     init_class_id(Class_CallLeaf);
   744   }
   745   virtual int   Opcode() const;
   746   virtual bool        guaranteed_safepoint()  { return false; }
   747 #ifndef PRODUCT
   748   virtual void  dump_spec(outputStream *st) const;
   749 #endif
   750 };
   752 //------------------------------CallLeafNoFPNode-------------------------------
   753 // CallLeafNode, not using floating point or using it in the same manner as
   754 // the generated code
   755 class CallLeafNoFPNode : public CallLeafNode {
   756 public:
   757   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
   758                    const TypePtr* adr_type)
   759     : CallLeafNode(tf, addr, name, adr_type)
   760   {
   761   }
   762   virtual int   Opcode() const;
   763 };
   766 //------------------------------Allocate---------------------------------------
   767 // High-level memory allocation
   768 //
   769 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
   770 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
   771 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
   772 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
   773 //  order to differentiate the uses of the projection on the normal control path from
   774 //  those on the exception return path.
   775 //
   776 class AllocateNode : public CallNode {
   777 public:
   778   enum {
   779     // Output:
   780     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
   781     // Inputs:
   782     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
   783     KlassNode,                        // type (maybe dynamic) of the obj.
   784     InitialTest,                      // slow-path test (may be constant)
   785     ALength,                          // array length (or TOP if none)
   786     ParmLimit
   787   };
   789   static const TypeFunc* alloc_type(const Type* t) {
   790     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
   791     fields[AllocSize]   = TypeInt::POS;
   792     fields[KlassNode]   = TypeInstPtr::NOTNULL;
   793     fields[InitialTest] = TypeInt::BOOL;
   794     fields[ALength]     = t;  // length (can be a bad length)
   796     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
   798     // create result type (range)
   799     fields = TypeTuple::fields(1);
   800     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   802     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   804     return TypeFunc::make(domain, range);
   805   }
   807   // Result of Escape Analysis
   808   bool _is_scalar_replaceable;
   809   bool _is_non_escaping;
   811   virtual uint size_of() const; // Size is bigger
   812   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   813                Node *size, Node *klass_node, Node *initial_test);
   814   // Expansion modifies the JVMState, so we need to clone it
   815   virtual void  clone_jvms(Compile* C) {
   816     if (jvms() != NULL) {
   817       set_jvms(jvms()->clone_deep(C));
   818       jvms()->set_map_deep(this);
   819     }
   820   }
   821   virtual int Opcode() const;
   822   virtual uint ideal_reg() const { return Op_RegP; }
   823   virtual bool        guaranteed_safepoint()  { return false; }
   825   // allocations do not modify their arguments
   826   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;}
   828   // Pattern-match a possible usage of AllocateNode.
   829   // Return null if no allocation is recognized.
   830   // The operand is the pointer produced by the (possible) allocation.
   831   // It must be a projection of the Allocate or its subsequent CastPP.
   832   // (Note:  This function is defined in file graphKit.cpp, near
   833   // GraphKit::new_instance/new_array, whose output it recognizes.)
   834   // The 'ptr' may not have an offset unless the 'offset' argument is given.
   835   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
   837   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
   838   // an offset, which is reported back to the caller.
   839   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
   840   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
   841                                         intptr_t& offset);
   843   // Dig the klass operand out of a (possible) allocation site.
   844   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
   845     AllocateNode* allo = Ideal_allocation(ptr, phase);
   846     return (allo == NULL) ? NULL : allo->in(KlassNode);
   847   }
   849   // Conservatively small estimate of offset of first non-header byte.
   850   int minimum_header_size() {
   851     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
   852                                 instanceOopDesc::base_offset_in_bytes();
   853   }
   855   // Return the corresponding initialization barrier (or null if none).
   856   // Walks out edges to find it...
   857   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
   858   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
   859   InitializeNode* initialization();
   861   // Convenience for initialization->maybe_set_complete(phase)
   862   bool maybe_set_complete(PhaseGVN* phase);
   863 };
   865 //------------------------------AllocateArray---------------------------------
   866 //
   867 // High-level array allocation
   868 //
   869 class AllocateArrayNode : public AllocateNode {
   870 public:
   871   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   872                     Node* size, Node* klass_node, Node* initial_test,
   873                     Node* count_val
   874                     )
   875     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
   876                    initial_test)
   877   {
   878     init_class_id(Class_AllocateArray);
   879     set_req(AllocateNode::ALength,        count_val);
   880   }
   881   virtual int Opcode() const;
   882   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   884   // Dig the length operand out of a array allocation site.
   885   Node* Ideal_length() {
   886     return in(AllocateNode::ALength);
   887   }
   889   // Dig the length operand out of a array allocation site and narrow the
   890   // type with a CastII, if necesssary
   891   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
   893   // Pattern-match a possible usage of AllocateArrayNode.
   894   // Return null if no allocation is recognized.
   895   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
   896     AllocateNode* allo = Ideal_allocation(ptr, phase);
   897     return (allo == NULL || !allo->is_AllocateArray())
   898            ? NULL : allo->as_AllocateArray();
   899   }
   900 };
   902 //------------------------------AbstractLockNode-----------------------------------
   903 class AbstractLockNode: public CallNode {
   904 private:
   905   enum {
   906     Regular = 0,  // Normal lock
   907     NonEscObj,    // Lock is used for non escaping object
   908     Coarsened,    // Lock was coarsened
   909     Nested        // Nested lock
   910   } _kind;
   911 #ifndef PRODUCT
   912   NamedCounter* _counter;
   913 #endif
   915 protected:
   916   // helper functions for lock elimination
   917   //
   919   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
   920                             GrowableArray<AbstractLockNode*> &lock_ops);
   921   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
   922                                        GrowableArray<AbstractLockNode*> &lock_ops);
   923   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
   924                                GrowableArray<AbstractLockNode*> &lock_ops);
   925   LockNode *find_matching_lock(UnlockNode* unlock);
   927   // Update the counter to indicate that this lock was eliminated.
   928   void set_eliminated_lock_counter() PRODUCT_RETURN;
   930 public:
   931   AbstractLockNode(const TypeFunc *tf)
   932     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
   933       _kind(Regular)
   934   {
   935 #ifndef PRODUCT
   936     _counter = NULL;
   937 #endif
   938   }
   939   virtual int Opcode() const = 0;
   940   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
   941   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
   942   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
   943   void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
   945   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
   947   virtual uint size_of() const { return sizeof(*this); }
   949   bool is_eliminated()  const { return (_kind != Regular); }
   950   bool is_non_esc_obj() const { return (_kind == NonEscObj); }
   951   bool is_coarsened()   const { return (_kind == Coarsened); }
   952   bool is_nested()      const { return (_kind == Nested); }
   954   void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
   955   void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
   956   void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
   958   // locking does not modify its arguments
   959   virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;}
   961 #ifndef PRODUCT
   962   void create_lock_counter(JVMState* s);
   963   NamedCounter* counter() const { return _counter; }
   964 #endif
   965 };
   967 //------------------------------Lock---------------------------------------
   968 // High-level lock operation
   969 //
   970 // This is a subclass of CallNode because it is a macro node which gets expanded
   971 // into a code sequence containing a call.  This node takes 3 "parameters":
   972 //    0  -  object to lock
   973 //    1 -   a BoxLockNode
   974 //    2 -   a FastLockNode
   975 //
   976 class LockNode : public AbstractLockNode {
   977 public:
   979   static const TypeFunc *lock_type() {
   980     // create input type (domain)
   981     const Type **fields = TypeTuple::fields(3);
   982     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   983     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
   984     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
   985     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
   987     // create result type (range)
   988     fields = TypeTuple::fields(0);
   990     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   992     return TypeFunc::make(domain,range);
   993   }
   995   virtual int Opcode() const;
   996   virtual uint size_of() const; // Size is bigger
   997   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   998     init_class_id(Class_Lock);
   999     init_flags(Flag_is_macro);
  1000     C->add_macro_node(this);
  1002   virtual bool        guaranteed_safepoint()  { return false; }
  1004   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  1005   // Expansion modifies the JVMState, so we need to clone it
  1006   virtual void  clone_jvms(Compile* C) {
  1007     if (jvms() != NULL) {
  1008       set_jvms(jvms()->clone_deep(C));
  1009       jvms()->set_map_deep(this);
  1013   bool is_nested_lock_region(); // Is this Lock nested?
  1014 };
  1016 //------------------------------Unlock---------------------------------------
  1017 // High-level unlock operation
  1018 class UnlockNode : public AbstractLockNode {
  1019 public:
  1020   virtual int Opcode() const;
  1021   virtual uint size_of() const; // Size is bigger
  1022   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
  1023     init_class_id(Class_Unlock);
  1024     init_flags(Flag_is_macro);
  1025     C->add_macro_node(this);
  1027   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  1028   // unlock is never a safepoint
  1029   virtual bool        guaranteed_safepoint()  { return false; }
  1030 };
  1032 #endif // SHARE_VM_OPTO_CALLNODE_HPP

mercurial