src/cpu/mips/vm/mips_64.ad

Wed, 22 Mar 2017 07:13:07 -0400

author
fujie
date
Wed, 22 Mar 2017 07:13:07 -0400
changeset 383
d99ee21cd69f
parent 381
5ed96f1a7d5a
child 384
2d935408fc69
permissions
-rw-r--r--

[C2] Redefine memory operands for MIPS.

     1 //
     2 // Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // Copyright (c) 2015, 2016, Loongson Technology. All rights reserved.
     4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5 //
     6 // This code is free software; you can redistribute it and/or modify it
     7 // under the terms of the GNU General Public License version 2 only, as
     8 // published by the Free Software Foundation.
     9 //
    10 // This code is distributed in the hope that it will be useful, but WITHOUT
    11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13 // version 2 for more details (a copy is included in the LICENSE file that
    14 // accompanied this code).
    15 //
    16 // You should have received a copy of the GNU General Public License version
    17 // 2 along with this work; if not, write to the Free Software Foundation,
    18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19 //
    20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21 // or visit www.oracle.com if you need additional information or have any
    22 // questions.
    23 //
    24 //
    26 // GodSon3 Architecture Description File
    28 //----------REGISTER DEFINITION BLOCK------------------------------------------
    29 // This information is used by the matcher and the register allocator to
    30 // describe individual registers and classes of registers within the target
    31 // archtecture.
    33 // format:
    34 // reg_def name (call convention, c-call convention, ideal type, encoding);
    35 // 		call convention : 
    36 //			NS  = No-Save
    37 //			SOC = Save-On-Call
    38 //			SOE = Save-On-Entry
    39 //			AS  = Always-Save
    40 //		ideal type :
    41 //			see opto/opcodes.hpp for more info
    42 // reg_class name (reg, ...);
    43 // alloc_class name (reg, ...); 
    44 register %{
    46 // General Registers
    47 // Integer Registers
    48 	reg_def R0	    ( NS,  NS, 	Op_RegI,  0, VMRegImpl::Bad());
    49 	reg_def AT		( NS,  NS, 	Op_RegI,  1, AT->as_VMReg());
    50 	reg_def AT_H    ( NS,  NS,  Op_RegI,  1, AT->as_VMReg()->next());
    51 	reg_def V0		(SOC, SOC,	Op_RegI,  2, V0->as_VMReg());
    52 	reg_def V0_H	(SOC, SOC,	Op_RegI,  2, V0->as_VMReg()->next());
    53 	reg_def V1		(SOC, SOC,	Op_RegI,  3, V1->as_VMReg());
    54 	reg_def V1_H	(SOC, SOC,	Op_RegI,  3, V1->as_VMReg()->next());
    55 	reg_def A0		(SOC, SOC,	Op_RegI,  4, A0->as_VMReg());
    56 	reg_def A0_H	(SOC, SOC,	Op_RegI,  4, A0->as_VMReg()->next());
    57 	reg_def A1		(SOC, SOC,	Op_RegI,  5, A1->as_VMReg());
    58 	reg_def A1_H	(SOC, SOC,	Op_RegI,  5, A1->as_VMReg()->next());
    59 	reg_def A2		(SOC, SOC,	Op_RegI,  6, A2->as_VMReg());
    60 	reg_def A2_H	(SOC, SOC,	Op_RegI,  6, A2->as_VMReg()->next());
    61 	reg_def A3		(SOC, SOC,	Op_RegI,  7, A3->as_VMReg());
    62 	reg_def A3_H	(SOC, SOC,	Op_RegI,  7, A3->as_VMReg()->next());
    63 	reg_def A4		(SOC, SOC,	Op_RegI,  8, A4->as_VMReg());
    64 	reg_def A4_H	(SOC, SOC,	Op_RegI,  8, A4->as_VMReg()->next());
    65 	reg_def A5		(SOC, SOC,	Op_RegI,  9, A5->as_VMReg());
    66 	reg_def A5_H	(SOC, SOC,	Op_RegI,  9, A5->as_VMReg()->next());
    67 	reg_def A6		(SOC, SOC,	Op_RegI,  10, A6->as_VMReg());
    68 	reg_def A6_H	(SOC, SOC,	Op_RegI,  10, A6->as_VMReg()->next());
    69 	reg_def A7		(SOC, SOC,	Op_RegI,  11, A7->as_VMReg());
    70 	reg_def A7_H	(SOC, SOC,	Op_RegI,  11, A7->as_VMReg()->next());
    71 	reg_def T0		(SOC, SOC,	Op_RegI,  12, T0->as_VMReg());
    72 	reg_def T0_H	(SOC, SOC,	Op_RegI,  12, T0->as_VMReg()->next());
    73 	reg_def T1		(SOC, SOC,	Op_RegI,  13, T1->as_VMReg());
    74 	reg_def T1_H	(SOC, SOC,	Op_RegI,  13, T1->as_VMReg()->next());
    75 	reg_def T2		(SOC, SOC,	Op_RegI,  14, T2->as_VMReg());
    76 	reg_def T2_H	(SOC, SOC,	Op_RegI,  14, T2->as_VMReg()->next());
    77 	reg_def T3		(SOC, SOC,	Op_RegI,  15, T3->as_VMReg());
    78 	reg_def T3_H	(SOC, SOC,	Op_RegI,  15, T3->as_VMReg()->next());
    79 	reg_def S0		(SOC, SOE,	Op_RegI,  16, S0->as_VMReg());
    80 	reg_def S0_H	(SOC, SOE,	Op_RegI,  16, S0->as_VMReg()->next());
    81 	reg_def S1		(SOC, SOE,	Op_RegI,  17, S1->as_VMReg());
    82 	reg_def S1_H	(SOC, SOE,	Op_RegI,  17, S1->as_VMReg()->next());
    83 	reg_def S2		(SOC, SOE,	Op_RegI,  18, S2->as_VMReg());
    84 	reg_def S2_H	(SOC, SOE,	Op_RegI,  18, S2->as_VMReg()->next());
    85 	reg_def S3		(SOC, SOE,	Op_RegI,  19, S3->as_VMReg());
    86 	reg_def S3_H	(SOC, SOE,	Op_RegI,  19, S3->as_VMReg()->next());
    87 	reg_def S4		(SOC, SOE,	Op_RegI,  20, S4->as_VMReg());
    88 	reg_def S4_H	(SOC, SOE,	Op_RegI,  20, S4->as_VMReg()->next());
    89 	reg_def S5		(SOC, SOE,	Op_RegI,  21, S5->as_VMReg());
    90 	reg_def S5_H	(SOC, SOE,	Op_RegI,  21, S5->as_VMReg()->next());
    91 	reg_def S6		(SOC, SOE,	Op_RegI,  22, S6->as_VMReg());
    92 	reg_def S6_H	(SOC, SOE,	Op_RegI,  22, S6->as_VMReg()->next());
    93 	reg_def S7		(SOC, SOE,	Op_RegI,  23, S7->as_VMReg());
    94 	reg_def S7_H	(SOC, SOE,	Op_RegI,  23, S7->as_VMReg()->next());
    95 	reg_def T8		(SOC, SOC,	Op_RegI,  24, T8->as_VMReg());
    96 	reg_def T8_H	(SOC, SOC,	Op_RegI,  24, T8->as_VMReg()->next());
    97 	reg_def T9		(SOC, SOC,	Op_RegI,  25, T9->as_VMReg());
    98 	reg_def T9_H	(SOC, SOC,	Op_RegI,  25, T9->as_VMReg()->next());
   100 // Special Registers
   101 	reg_def K0		( NS,  NS,	Op_RegI, 26, K0->as_VMReg());
   102 	reg_def K1		( NS,  NS,	Op_RegI, 27, K1->as_VMReg());
   103 	reg_def GP		( NS,  NS,	Op_RegI, 28, GP->as_VMReg());
   104 	reg_def GP_H	( NS,  NS,	Op_RegI, 28, GP->as_VMReg()->next());
   105 	reg_def SP		( NS,  NS,	Op_RegI, 29, SP->as_VMReg());
   106 	reg_def SP_H	( NS,  NS,	Op_RegI, 29, SP->as_VMReg()->next());
   107 	reg_def FP		( NS,  NS,	Op_RegI, 30, FP->as_VMReg());
   108 	reg_def FP_H	( NS,  NS,	Op_RegI, 30, FP->as_VMReg()->next());
   109 	reg_def RA		( NS,  NS,	Op_RegI, 31, RA->as_VMReg());
   110 	reg_def RA_H	( NS,  NS,	Op_RegI, 31, RA->as_VMReg()->next());
   112 // Floating registers. 
   113 reg_def F0          ( SOC, SOC, Op_RegF, 0, F0->as_VMReg());
   114 reg_def F0_H        ( SOC, SOC, Op_RegF, 0, F0->as_VMReg()->next());
   115 reg_def F1          ( SOC, SOC, Op_RegF, 1, F1->as_VMReg());
   116 reg_def F1_H        ( SOC, SOC, Op_RegF, 1, F1->as_VMReg()->next());
   117 reg_def F2          ( SOC, SOC, Op_RegF, 2, F2->as_VMReg());
   118 reg_def F2_H        ( SOC, SOC, Op_RegF, 2, F2->as_VMReg()->next());
   119 reg_def F3          ( SOC, SOC, Op_RegF, 3, F3->as_VMReg());
   120 reg_def F3_H        ( SOC, SOC, Op_RegF, 3, F3->as_VMReg()->next());
   121 reg_def F4          ( SOC, SOC, Op_RegF, 4, F4->as_VMReg());
   122 reg_def F4_H        ( SOC, SOC, Op_RegF, 4, F4->as_VMReg()->next());
   123 reg_def F5          ( SOC, SOC, Op_RegF, 5, F5->as_VMReg());
   124 reg_def F5_H        ( SOC, SOC, Op_RegF, 5, F5->as_VMReg()->next());
   125 reg_def F6          ( SOC, SOC, Op_RegF, 6, F6->as_VMReg());
   126 reg_def F6_H        ( SOC, SOC, Op_RegF, 6, F6->as_VMReg()->next());
   127 reg_def F7          ( SOC, SOC, Op_RegF, 7, F7->as_VMReg());
   128 reg_def F7_H        ( SOC, SOC, Op_RegF, 7, F7->as_VMReg()->next());
   129 reg_def F8          ( SOC, SOC, Op_RegF, 8, F8->as_VMReg());
   130 reg_def F8_H        ( SOC, SOC, Op_RegF, 8, F8->as_VMReg()->next());
   131 reg_def F9          ( SOC, SOC, Op_RegF, 9, F9->as_VMReg());
   132 reg_def F9_H        ( SOC, SOC, Op_RegF, 9, F9->as_VMReg()->next());
   133 reg_def F10         ( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   134 reg_def F10_H       ( SOC, SOC, Op_RegF, 10, F10->as_VMReg()->next());
   135 reg_def F11         ( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   136 reg_def F11_H       ( SOC, SOC, Op_RegF, 11, F11->as_VMReg()->next());
   137 reg_def F12         ( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   138 reg_def F12_H       ( SOC, SOC, Op_RegF, 12, F12->as_VMReg()->next());
   139 reg_def F13         ( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   140 reg_def F13_H       ( SOC, SOC, Op_RegF, 13, F13->as_VMReg()->next());
   141 reg_def F14         ( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   142 reg_def F14_H       ( SOC, SOC, Op_RegF, 14, F14->as_VMReg()->next());
   143 reg_def F15         ( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   144 reg_def F15_H       ( SOC, SOC, Op_RegF, 15, F15->as_VMReg()->next());
   145 reg_def F16         ( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   146 reg_def F16_H       ( SOC, SOC, Op_RegF, 16, F16->as_VMReg()->next());
   147 reg_def F17         ( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   148 reg_def F17_H       ( SOC, SOC, Op_RegF, 17, F17->as_VMReg()->next());
   149 reg_def F18         ( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   150 reg_def F18_H       ( SOC, SOC, Op_RegF, 18, F18->as_VMReg()->next());
   151 reg_def F19         ( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   152 reg_def F19_H       ( SOC, SOC, Op_RegF, 19, F19->as_VMReg()->next());
   153 reg_def F20         ( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   154 reg_def F20_H       ( SOC, SOC, Op_RegF, 20, F20->as_VMReg()->next());
   155 reg_def F21         ( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   156 reg_def F21_H       ( SOC, SOC, Op_RegF, 21, F21->as_VMReg()->next());
   157 reg_def F22         ( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   158 reg_def F22_H       ( SOC, SOC, Op_RegF, 22, F22->as_VMReg()->next());
   159 reg_def F23         ( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   160 reg_def F23_H       ( SOC, SOC, Op_RegF, 23, F23->as_VMReg()->next());
   161 reg_def F24         ( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   162 reg_def F24_H       ( SOC, SOC, Op_RegF, 24, F24->as_VMReg()->next());
   163 reg_def F25         ( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   164 reg_def F25_H       ( SOC, SOC, Op_RegF, 25, F25->as_VMReg()->next());
   165 reg_def F26         ( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   166 reg_def F26_H       ( SOC, SOC, Op_RegF, 26, F26->as_VMReg()->next());
   167 reg_def F27         ( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   168 reg_def F27_H       ( SOC, SOC, Op_RegF, 27, F27->as_VMReg()->next());
   169 reg_def F28         ( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   170 reg_def F28_H       ( SOC, SOC, Op_RegF, 28, F28->as_VMReg()->next());
   171 reg_def F29         ( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   172 reg_def F29_H       ( SOC, SOC, Op_RegF, 29, F29->as_VMReg()->next());
   173 reg_def F30         ( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   174 reg_def F30_H       ( SOC, SOC, Op_RegF, 30, F30->as_VMReg()->next());
   175 reg_def F31         ( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   176 reg_def F31_H       ( SOC, SOC, Op_RegF, 31, F31->as_VMReg()->next());
   179 // ----------------------------
   180 // Special Registers
   181 // Condition Codes Flag Registers
   182 reg_def MIPS_FLAG (SOC, SOC,  Op_RegFlags, 1, as_Register(1)->as_VMReg());
   183 //S6 is used for get_thread(S6)
   184 //S5 is uesd for heapbase of compressed oop
   185 alloc_class chunk0(  
   186                      S7, S7_H,
   187                      S0, S0_H,
   188                      S1, S1_H,
   189                      S2, S2_H,
   190                      S4, S4_H,
   191                      S5, S5_H,
   192                      S6, S6_H,
   193                      S3, S3_H,
   194                      T2, T2_H,
   195                      T3, T3_H,
   196                      T8, T8_H,
   197                      T9, T9_H,
   198                      T1, T1_H, // inline_cache_reg
   199                      V1, V1_H,
   200                      A7, A7_H,
   201                      A6, A6_H,
   202                      A5, A5_H,
   203                      A4, A4_H,
   204                      V0, V0_H,
   205                      A3, A3_H,
   206                      A2, A2_H,
   207                      A1, A1_H,
   208                      A0, A0_H,
   209                      T0, T0_H,
   210                      GP, GP_H 
   211                      RA, RA_H,
   212                      SP, SP_H, // stack_pointer
   213                      FP, FP_H  // frame_pointer
   214                  );
   216 alloc_class chunk1(  F0, F0_H,
   217                      F1, F1_H,
   218                      F2, F2_H,
   219                      F3, F3_H,
   220                      F4, F4_H,
   221                      F5, F5_H,
   222                      F6, F6_H,
   223                      F7, F7_H,
   224                      F8, F8_H,
   225                      F9, F9_H,
   226                      F10, F10_H,
   227                      F11, F11_H,
   228                      F20, F20_H,
   229                      F21, F21_H,
   230                      F22, F22_H,
   231                      F23, F23_H,
   232                      F24, F24_H,
   233                      F25, F25_H,
   234                      F26, F26_H,
   235                      F27, F27_H,
   236                      F28, F28_H,
   237                      F19, F19_H,
   238                      F18, F18_H,
   239                      F17, F17_H,
   240                      F16, F16_H,
   241                      F15, F15_H,
   242                      F14, F14_H,
   243                      F13, F13_H,
   244                      F12, F12_H,
   245                      F29, F29_H,
   246                      F30, F30_H,
   247                      F31, F31_H);
   249 alloc_class chunk2(MIPS_FLAG);
   251 reg_class s_reg( S0, S1, S2, S3, S4, S5, S6, S7 );
   252 reg_class s0_reg( S0 );
   253 reg_class s1_reg( S1 );
   254 reg_class s2_reg( S2 );
   255 reg_class s3_reg( S3 );
   256 reg_class s4_reg( S4 );
   257 reg_class s5_reg( S5 );
   258 reg_class s6_reg( S6 );
   259 reg_class s7_reg( S7 );
   261 reg_class t_reg( T0, T1, T2, T3, T8, T9 );
   262 reg_class t0_reg( T0 );
   263 reg_class t1_reg( T1 );
   264 reg_class t2_reg( T2 );
   265 reg_class t3_reg( T3 );
   266 reg_class t8_reg( T8 );
   267 reg_class t9_reg( T9 );
   269 reg_class a_reg( A0, A1, A2, A3, A4, A5, A6, A7 );
   270 reg_class a0_reg( A0 );
   271 reg_class a1_reg( A1 );
   272 reg_class a2_reg( A2 );
   273 reg_class a3_reg( A3 );
   274 reg_class a4_reg( A4 );
   275 reg_class a5_reg( A5 );
   276 reg_class a6_reg( A6 );
   277 reg_class a7_reg( A7 );
   279 reg_class v0_reg( V0 );
   280 reg_class v1_reg( V1 );
   282 reg_class sp_reg( SP, SP_H );
   283 reg_class fp_reg( FP, FP_H );
   285 reg_class mips_flags(MIPS_FLAG);
   287 reg_class v0_long_reg( V0, V0_H );
   288 reg_class v1_long_reg( V1, V1_H );
   289 reg_class a0_long_reg( A0, A0_H );
   290 reg_class a1_long_reg( A1, A1_H );
   291 reg_class a2_long_reg( A2, A2_H );
   292 reg_class a3_long_reg( A3, A3_H );
   293 reg_class a4_long_reg( A4, A4_H );
   294 reg_class a5_long_reg( A5, A5_H );
   295 reg_class a6_long_reg( A6, A6_H );
   296 reg_class a7_long_reg( A7, A7_H );
   297 reg_class t0_long_reg( T0, T0_H );
   298 reg_class t1_long_reg( T1, T1_H );
   299 reg_class t2_long_reg( T2, T2_H );
   300 reg_class t3_long_reg( T3, T3_H );
   301 reg_class t8_long_reg( T8, T8_H );
   302 reg_class t9_long_reg( T9, T9_H );
   303 reg_class s0_long_reg( S0, S0_H );
   304 reg_class s1_long_reg( S1, S1_H );
   305 reg_class s2_long_reg( S2, S2_H );
   306 reg_class s3_long_reg( S3, S3_H );
   307 reg_class s4_long_reg( S4, S4_H );
   308 reg_class s5_long_reg( S5, S5_H );
   309 reg_class s6_long_reg( S6, S6_H );
   310 reg_class s7_long_reg( S7, S7_H );
   312 reg_class int_reg( S7, S0, S1, S2, S4, S3, T8, T2, T3, T1, V1, A7, A6, A5, A4, V0, A3, A2, A1, A0, T0 );
   314 reg_class no_Ax_int_reg( S7, S0, S1, S2, S4, S3, T8, T2, T3, T1, V1, V0, T0 );
   316 reg_class p_reg( 
   317                  S7, S7_H,
   318                  S0, S0_H,
   319                  S1, S1_H,
   320                  S2, S2_H,
   321                  S4, S4_H,
   322                  S3, S3_H,
   323                  T8, T8_H,
   324                  T2, T2_H,
   325                  T3, T3_H,
   326                  T1, T1_H,
   327                  A7, A7_H,
   328                  A6, A6_H,
   329                  A5, A5_H,
   330                  A4, A4_H,
   331                  A3, A3_H,
   332                  A2, A2_H,
   333                  A1, A1_H,
   334                  A0, A0_H,
   335                  T0, T0_H
   336                );
   338 reg_class no_T8_p_reg( 
   339                  S7, S7_H,
   340                  S0, S0_H,
   341                  S1, S1_H,
   342                  S2, S2_H,
   343                  S4, S4_H,
   344                  S3, S3_H,
   345                  T2, T2_H,
   346                  T3, T3_H,
   347                  T1, T1_H,
   348                  A7, A7_H,
   349                  A6, A6_H,
   350                  A5, A5_H,
   351                  A4, A4_H,
   352                  A3, A3_H,
   353                  A2, A2_H,
   354                  A1, A1_H,
   355                  A0, A0_H,
   356                  T0, T0_H
   357                );
   359 reg_class long_reg( 
   360                     S7, S7_H,
   361                     S0, S0_H,
   362                     S1, S1_H,
   363                     S2, S2_H,
   364                     S4, S4_H,
   365                     S3, S3_H,
   366                     T8, T8_H,
   367                     T2, T2_H,
   368                     T3, T3_H,
   369                     T1, T1_H,
   370                     A7, A7_H,
   371                     A6, A6_H,
   372                     A5, A5_H,
   373                     A4, A4_H,
   374                     A3, A3_H,
   375                     A2, A2_H,
   376                     A1, A1_H,
   377                     A0, A0_H,
   378                     T0, T0_H
   379                   );
   382 // Floating point registers.
   383 // 2012/8/23 Fu: F30/F31 are used as temporary registers in D2I
   384 // 2016/12/1 aoqi: F31 are not used as temporary registers in D2I
   385 reg_class flt_reg( F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17 F18, F19, F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F31);
   386 reg_class dbl_reg( F0, F0_H,
   387                    F1, F1_H,
   388                    F2, F2_H,
   389                    F3, F3_H,
   390                    F4, F4_H,
   391                    F5, F5_H,
   392                    F6, F6_H,
   393                    F7, F7_H,
   394                    F8, F8_H,
   395                    F9, F9_H,
   396                    F10, F10_H, 
   397                    F11, F11_H, 
   398                    F12, F12_H, 
   399                    F13, F13_H, 
   400                    F14, F14_H, 
   401                    F15, F15_H, 
   402                    F16, F16_H, 
   403                    F17, F17_H, 
   404                    F18, F18_H, 
   405                    F19, F19_H, 
   406                    F20, F20_H, 
   407                    F21, F21_H, 
   408                    F22, F22_H, 
   409                    F23, F23_H, 
   410                    F24, F24_H, 
   411                    F25, F25_H, 
   412                    F26, F26_H, 
   413                    F27, F27_H, 
   414                    F28, F28_H, 
   415                    F29, F29_H, 
   416                    F31, F31_H);
   418 reg_class flt_arg0( F12 );
   419 reg_class dbl_arg0( F12, F12_H );
   420 reg_class dbl_arg1( F14, F14_H );
   422 %} 
   424 //----------DEFINITION BLOCK---------------------------------------------------
   425 // Define name --> value mappings to inform the ADLC of an integer valued name
   426 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   427 // Format:
   428 //        int_def  <name>         ( <int_value>, <expression>);
   429 // Generated Code in ad_<arch>.hpp
   430 //        #define  <name>   (<expression>)
   431 //        // value == <int_value>
   432 // Generated code in ad_<arch>.cpp adlc_verification()
   433 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   434 //
   435 definitions %{
   436 	int_def DEFAULT_COST      (    100,     100);
   437 	int_def HUGE_COST         (1000000, 1000000);
   439 	// Memory refs are twice as expensive as run-of-the-mill.
   440 	int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   442 	// Branches are even more expensive.
   443 	int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   444 	// we use jr instruction to construct call, so more expensive
   445 	// by yjl 2/28/2006
   446 	int_def CALL_COST         (    500, DEFAULT_COST * 5);
   447 /*
   448         int_def EQUAL             (   1, 1  );
   449         int_def NOT_EQUAL         (   2, 2  );
   450         int_def GREATER           (   3, 3  );
   451         int_def GREATER_EQUAL     (   4, 4  );
   452         int_def LESS              (   5, 5  );
   453         int_def LESS_EQUAL        (   6, 6  );
   454 */
   455 %}
   459 //----------SOURCE BLOCK-------------------------------------------------------
   460 // This is a block of C++ code which provides values, functions, and
   461 // definitions necessary in the rest of the architecture description
   463 source_hpp %{
   464 // Header information of the source block.
   465 // Method declarations/definitions which are used outside
   466 // the ad-scope can conveniently be defined here.
   467 //
   468 // To keep related declarations/definitions/uses close together,
   469 // we switch between source %{ }% and source_hpp %{ }% freely as needed.
   471 class CallStubImpl {
   473   //--------------------------------------------------------------
   474   //---<  Used for optimization in Compile::shorten_branches  >---
   475   //--------------------------------------------------------------
   477  public:
   478   // Size of call trampoline stub.
   479   static uint size_call_trampoline() {
   480     return 0; // no call trampolines on this platform
   481   }
   483   // number of relocations needed by a call trampoline stub
   484   static uint reloc_call_trampoline() { 
   485     return 0; // no call trampolines on this platform
   486   }
   487 };
   489 class HandlerImpl {
   491  public:
   493   static int emit_exception_handler(CodeBuffer &cbuf);
   494   static int emit_deopt_handler(CodeBuffer& cbuf);
   496   static uint size_exception_handler() {
   497     // NativeCall instruction size is the same as NativeJump.
   498     // exception handler starts out as jump and can be patched to
   499     // a call be deoptimization.  (4932387)
   500     // Note that this value is also credited (in output.cpp) to
   501     // the size of the code section.
   502 //    return NativeJump::instruction_size;
   503     int size = NativeCall::instruction_size;
   504     return round_to(size, 16);
   505   }
   507 #ifdef _LP64
   508   static uint size_deopt_handler() {
   509     int size = NativeCall::instruction_size;
   510     return round_to(size, 16);
   511   }
   512 #else
   513   static uint size_deopt_handler() {
   514     // NativeCall instruction size is the same as NativeJump.
   515     // exception handler starts out as jump and can be patched to
   516     // a call be deoptimization.  (4932387)
   517     // Note that this value is also credited (in output.cpp) to
   518     // the size of the code section.
   519     return 5 + NativeJump::instruction_size; // pushl(); jmp;
   520   }
   521 #endif
   522 };
   524 %} // end source_hpp
   526 source %{
   528 #define   NO_INDEX    0
   529 #define   RELOC_IMM64    Assembler::imm_operand
   530 #define   RELOC_DISP32   Assembler::disp32_operand
   533 #define __ _masm.
   536 // Emit exception handler code.
   537 // Stuff framesize into a register and call a VM stub routine.
   538 int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
   539 /*
   540   // Note that the code buffer's insts_mark is always relative to insts.
   541   // That's why we must use the macroassembler to generate a handler.
   542   MacroAssembler _masm(&cbuf);
   543   address base = __ start_a_stub(size_exception_handler());
   544   if (base == NULL)  return 0;  // CodeBuffer::expand failed
   545   int offset = __ offset();
   546   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
   547   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
   548   __ end_a_stub();
   549   return offset;
   550 */
   551   // Note that the code buffer's insts_mark is always relative to insts.
   552   // That's why we must use the macroassembler to generate a handler.
   553   MacroAssembler _masm(&cbuf);
   554   address base =
   555   __ start_a_stub(size_exception_handler());
   556   if (base == NULL)  return 0;  // CodeBuffer::expand failed
   557   int offset = __ offset();
   559   __ block_comment("; emit_exception_handler");
   561   /* 2012/9/25 FIXME Jin: According to X86, we should use direct jumpt.
   562  *    *  However, this will trigger an assert after the 40th method:
   563  *       *
   564  *          *        39   b   java.lang.Throwable::<init> (25 bytes)
   565  *             *       ---   ns  java.lang.Throwable::fillInStackTrace
   566  *                *        40  !b   java.net.URLClassLoader::findClass (29 bytes)
   567  *                   *       /vm/opto/runtime.cpp, 900 , assert(caller.is_compiled_frame(),"must be")
   568  *                      *        40   made not entrant  (2)  java.net.URLClassLoader::findClass (29 bytes)
   569  *                         *
   570  *                            *  If we change from JR to JALR, the assert will disappear, but WebClient will
   571  *                               *  fail  after the 403th method with unknown reason.
   572  *                                  */
   573   cbuf.set_insts_mark();
   574   __ relocate(relocInfo::runtime_call_type);
   576   __ patchable_set48(T9, (long)OptoRuntime::exception_blob()->entry_point());
   577   __ jr(T9);
   578   __ delayed()->nop();
   579   __ align(16);
   580   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
   581   __ end_a_stub();
   582   return offset;
   583 }
   585 // Emit deopt handler code.
   586 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
   587   // Note that the code buffer's insts_mark is always relative to insts.
   588   // That's why we must use the macroassembler to generate a handler.
   589   MacroAssembler _masm(&cbuf);
   590   address base =
   591   __ start_a_stub(size_deopt_handler());
   593   // FIXME
   594   if (base == NULL)  return 0;  // CodeBuffer::expand failed
   595   int offset = __ offset();
   597   __ block_comment("; emit_deopt_handler");
   599   cbuf.set_insts_mark();
   600   __ relocate(relocInfo::runtime_call_type);
   602   __ patchable_set48(T9, (long)SharedRuntime::deopt_blob()->unpack());
   603   __ jalr(T9);
   604   __ delayed()->nop();
   605   __ align(16);
   606   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
   607   __ end_a_stub();
   608   return offset;
   609 }
   612 const bool Matcher::match_rule_supported(int opcode) {
   613   if (!has_match_rule(opcode))
   614     return false;
   616   switch (opcode) {
   617     //Op_CountLeadingZerosI Op_CountLeadingZerosL can be deleted, all MIPS CPUs support clz & dclz.
   618     case Op_CountLeadingZerosI:
   619     case Op_CountLeadingZerosL:
   620       if (!UseCountLeadingZerosInstruction)
   621         return false;
   622       break;
   623     case Op_CountTrailingZerosI:
   624     case Op_CountTrailingZerosL:
   625       if (!UseCountTrailingZerosInstruction)
   626         return false;
   627       break;
   628   }
   630   return true;  // Per default match rules are supported.
   631 }
   633 //FIXME
   634 // emit call stub, compiled java to interpreter
   635 void emit_java_to_interp(CodeBuffer &cbuf ) {
   636   // Stub is fixed up when the corresponding call is converted from calling
   637   // compiled code to calling interpreted code.
   638   // mov rbx,0
   639   // jmp -1
   641   address mark = cbuf.insts_mark();  // get mark within main instrs section
   643   // Note that the code buffer's insts_mark is always relative to insts.
   644   // That's why we must use the macroassembler to generate a stub.
   645   MacroAssembler _masm(&cbuf);
   647   address base =
   648   __ start_a_stub(Compile::MAX_stubs_size);
   649   if (base == NULL)  return;  // CodeBuffer::expand failed
   650   // static stub relocation stores the instruction address of the call
   652   __ relocate(static_stub_Relocation::spec(mark), 0);
   654   /* 2012/10/29 Jin: Rmethod contains methodOop, it should be relocated for GC */
   655 /*
   656   int oop_index = __ oop_recorder()->allocate_index(NULL);
   657   RelocationHolder rspec = oop_Relocation::spec(oop_index);
   658   __ relocate(rspec);
   659 */
   661   // static stub relocation also tags the methodOop in the code-stream.
   662   __ patchable_set48(S3, (long)0);
   663   // This is recognized as unresolved by relocs/nativeInst/ic code
   665   __ relocate(relocInfo::runtime_call_type);
   667   cbuf.set_insts_mark();
   668   address call_pc = (address)-1;
   669   __ patchable_set48(AT, (long)call_pc);
   670   __ jr(AT);
   671   __ nop();
   672   __ align(16);
   673   __ end_a_stub();
   674   // Update current stubs pointer and restore code_end.
   675 }
   677 // size of call stub, compiled java to interpretor
   678 uint size_java_to_interp() {
   679   int size = 4 * 4 + NativeCall::instruction_size; // sizeof(li48) + NativeCall::instruction_size
   680   return round_to(size, 16);
   681 }
   683 // relocation entries for call stub, compiled java to interpreter
   684 uint reloc_java_to_interp() {
   685   return 16;  //  in emit_java_to_interp +  in Java_Static_Call
   686 }
   688 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
   689   if( Assembler::is_simm16(offset) ) return true;
   690   else {
   691      assert(false, "Not implemented yet !" );
   692      Unimplemented();
   693   }
   694 }
   697 // No additional cost for CMOVL.
   698 const int Matcher::long_cmove_cost() { return 0; }
   700 // No CMOVF/CMOVD with SSE2
   701 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
   703 // Does the CPU require late expand (see block.cpp for description of late expand)?
   704 const bool Matcher::require_postalloc_expand = false;
   706 // Should the Matcher clone shifts on addressing modes, expecting them
   707 // to be subsumed into complex addressing expressions or compute them
   708 // into registers?  True for Intel but false for most RISCs
   709 const bool Matcher::clone_shift_expressions = false;
   711 // Do we need to mask the count passed to shift instructions or does
   712 // the cpu only look at the lower 5/6 bits anyway?
   713 const bool Matcher::need_masked_shift_count = false;
   715 bool Matcher::narrow_oop_use_complex_address() {
   716   NOT_LP64(ShouldNotCallThis());
   717   assert(UseCompressedOops, "only for compressed oops code");
   718   return false;
   719 }
   721 bool Matcher::narrow_klass_use_complex_address() {
   722   NOT_LP64(ShouldNotCallThis());
   723   assert(UseCompressedClassPointers, "only for compressed klass code");
   724   return false;
   725 }
   727 // This is UltraSparc specific, true just means we have fast l2f conversion
   728 const bool Matcher::convL2FSupported(void) {
   729   return true;
   730 }
   732 // Max vector size in bytes. 0 if not supported.
   733 const int Matcher::vector_width_in_bytes(BasicType bt) {
   734   assert(MaxVectorSize == 8, "");
   735   return 8;
   736 }
   738 // Vector ideal reg
   739 const int Matcher::vector_ideal_reg(int size) {
   740   assert(MaxVectorSize == 8, "");
   741   switch(size) {
   742     case  8: return Op_VecD;
   743   }
   744   ShouldNotReachHere();
   745   return 0;
   746 }
   748 // Only lowest bits of xmm reg are used for vector shift count.
   749 const int Matcher::vector_shift_count_ideal_reg(int size) {
   750   fatal("vector shift is not supported");
   751   return Node::NotAMachineReg;
   752 }
   754 // Limits on vector size (number of elements) loaded into vector.
   755 const int Matcher::max_vector_size(const BasicType bt) {
   756   assert(is_java_primitive(bt), "only primitive type vectors");
   757   return vector_width_in_bytes(bt)/type2aelembytes(bt);
   758 }
   760 const int Matcher::min_vector_size(const BasicType bt) {
   761   return max_vector_size(bt); // Same as max.
   762 }
   764 // MIPS supports misaligned vectors store/load? FIXME
   765 const bool Matcher::misaligned_vectors_ok() {
   766   return false;
   767   //return !AlignVector; // can be changed by flag
   768 }
   770 // Register for DIVI projection of divmodI
   771 RegMask Matcher::divI_proj_mask() {
   772   ShouldNotReachHere();
   773   return RegMask();
   774 }
   776 // Register for MODI projection of divmodI
   777 RegMask Matcher::modI_proj_mask() {
   778   ShouldNotReachHere();
   779   return RegMask();
   780 }
   782 // Register for DIVL projection of divmodL
   783 RegMask Matcher::divL_proj_mask() {
   784   ShouldNotReachHere();
   785   return RegMask();
   786 }
   788 int Matcher::regnum_to_fpu_offset(int regnum) {
   789   return regnum - 32; // The FP registers are in the second chunk
   790 }
   793 const bool Matcher::isSimpleConstant64(jlong value) {
   794   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
   795   return true;
   796 }
   799 // Return whether or not this register is ever used as an argument.  This
   800 // function is used on startup to build the trampoline stubs in generateOptoStub.
   801 // Registers not mentioned will be killed by the VM call in the trampoline, and
   802 // arguments in those registers not be available to the callee.
   803 bool Matcher::can_be_java_arg( int reg ) {
   804   /* Refer to: [sharedRuntime_mips_64.cpp] SharedRuntime::java_calling_convention() */
   805   if (    reg == T0_num || reg == T0_H_num
   806 	   || reg == A0_num || reg == A0_H_num 
   807        || reg == A1_num || reg == A1_H_num 
   808        || reg == A2_num || reg == A2_H_num 
   809        || reg == A3_num || reg == A3_H_num 
   810        || reg == A4_num || reg == A4_H_num 
   811        || reg == A5_num || reg == A5_H_num 
   812        || reg == A6_num || reg == A6_H_num 
   813        || reg == A7_num || reg == A7_H_num )
   814     return true;
   816   if (    reg == F12_num || reg == F12_H_num
   817        || reg == F13_num || reg == F13_H_num 
   818        || reg == F14_num || reg == F14_H_num 
   819        || reg == F15_num || reg == F15_H_num 
   820        || reg == F16_num || reg == F16_H_num 
   821        || reg == F17_num || reg == F17_H_num 
   822        || reg == F18_num || reg == F18_H_num 
   823        || reg == F19_num || reg == F19_H_num )
   824     return true;
   826   return false;
   827 }
   829 bool Matcher::is_spillable_arg( int reg ) {
   830   return can_be_java_arg(reg);
   831 }
   833 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
   834   return false;
   835 }
   837 // Register for MODL projection of divmodL
   838 RegMask Matcher::modL_proj_mask() {
   839   ShouldNotReachHere();
   840   return RegMask();
   841 }
   843 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
   844   return FP_REG_mask();
   845 }
   847 // MIPS doesn't support AES intrinsics
   848 const bool Matcher::pass_original_key_for_aes() {
   849   return false;
   850 }
   852 int CallLeafNoFPDirectNode::compute_padding(int current_offset) const {
   853   //lui
   854   //ori
   855   //dsll
   856   //ori
   858   //jalr
   859   //nop
   861   return round_to(current_offset, alignment_required()) - current_offset;
   862 }
   864 int CallLeafDirectNode::compute_padding(int current_offset) const {
   865   //lui
   866   //ori
   867   //dsll
   868   //ori
   870   //jalr
   871   //nop
   873   return round_to(current_offset, alignment_required()) - current_offset;
   874 }
   876 int CallRuntimeDirectNode::compute_padding(int current_offset) const {
   877   //lui
   878   //ori
   879   //dsll
   880   //ori
   882   //jalr
   883   //nop
   885   return round_to(current_offset, alignment_required()) - current_offset;
   886 }
   888 // If CPU can load and store mis-aligned doubles directly then no fixup is
   889 // needed.  Else we split the double into 2 integer pieces and move it
   890 // piece-by-piece.  Only happens when passing doubles into C code as the
   891 // Java calling convention forces doubles to be aligned.
   892 const bool Matcher::misaligned_doubles_ok = false;
   893 // Do floats take an entire double register or just half?
   894 //const bool Matcher::float_in_double = true;
   895 bool Matcher::float_in_double() { return false; }
   896 // Threshold size for cleararray.
   897 const int Matcher::init_array_short_size = 8 * BytesPerLong;
   898 // Do ints take an entire long register or just half?
   899 const bool Matcher::int_in_long = true;
   900 // Is it better to copy float constants, or load them directly from memory?
   901 // Intel can load a float constant from a direct address, requiring no
   902 // extra registers.  Most RISCs will have to materialize an address into a
   903 // register first, so they would do better to copy the constant from stack.
   904 const bool Matcher::rematerialize_float_constants = false;
   905 // Advertise here if the CPU requires explicit rounding operations
   906 // to implement the UseStrictFP mode.
   907 const bool Matcher::strict_fp_requires_explicit_rounding = false;
   908 // The ecx parameter to rep stos for the ClearArray node is in dwords.
   909 const bool Matcher::init_array_count_is_in_bytes = false;
   912 // Indicate if the safepoint node needs the polling page as an input.
   913 // Since MIPS doesn't have absolute addressing, it needs.
   914 bool SafePointNode::needs_polling_address_input() {
   915   return false;
   916 }
   918 // !!!!! Special hack to get all type of calls to specify the byte offset
   919 //       from the start of the call to the point where the return address
   920 //       will point.
   921 int MachCallStaticJavaNode::ret_addr_offset() {
   922   //lui
   923   //ori
   924   //nop
   925   //nop
   926   //jalr
   927   //nop
   928   return 24; 
   929 }
   931 int MachCallDynamicJavaNode::ret_addr_offset() {
   932   //lui IC_Klass,
   933   //ori IC_Klass,
   934   //dsll IC_Klass
   935   //ori IC_Klass
   937   //lui T9
   938   //ori T9
   939   //nop
   940   //nop
   941   //jalr T9
   942   //nop
   943   return 4 * 4 + 4 * 6; 
   944 }
   946 //=============================================================================
   948 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
   949 enum RC { rc_bad, rc_int, rc_float, rc_stack };
   950 static enum RC rc_class( OptoReg::Name reg ) {
   951   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   952   if (OptoReg::is_stack(reg)) return rc_stack;
   953   VMReg r = OptoReg::as_VMReg(reg);
   954   if (r->is_Register()) return rc_int;
   955   assert(r->is_FloatRegister(), "must be");
   956   return rc_float;
   957 }
   959 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   960   // Get registers to move
   961   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   962   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   963   OptoReg::Name dst_second = ra_->get_reg_second(this );
   964   OptoReg::Name dst_first = ra_->get_reg_first(this );
   966   enum RC src_second_rc = rc_class(src_second);
   967   enum RC src_first_rc = rc_class(src_first);
   968   enum RC dst_second_rc = rc_class(dst_second);
   969   enum RC dst_first_rc = rc_class(dst_first);
   971   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
   973   // Generate spill code!
   974   int size = 0;
   976   if( src_first == dst_first && src_second == dst_second )
   977     return 0;            // Self copy, no move
   979   if (src_first_rc == rc_stack) {
   980     // mem ->
   981     if (dst_first_rc == rc_stack) {
   982       // mem -> mem
   983       assert(src_second != dst_first, "overlap");
   984       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
   985           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
   986         // 64-bit
   987         int src_offset = ra_->reg2offset(src_first);
   988         int dst_offset = ra_->reg2offset(dst_first);
   989         if (cbuf) {
   990           MacroAssembler _masm(cbuf);
   991           __ ld(AT, Address(SP, src_offset));
   992           __ sd(AT, Address(SP, dst_offset));
   993 #ifndef PRODUCT
   994         } else {
   995 			if(!do_size){
   996 				if (size != 0) st->print("\n\t");
   997 				st->print("ld    AT, [SP + #%d]\t# 64-bit mem-mem spill 1\n\t"
   998 						  "sd    AT, [SP + #%d]",
   999 						  src_offset, dst_offset);
  1001 #endif
  1003 		size += 8;
  1004       } else {
  1005         // 32-bit
  1006         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1007         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1008         // No pushl/popl, so:
  1009         int src_offset = ra_->reg2offset(src_first);
  1010         int dst_offset = ra_->reg2offset(dst_first);
  1011         if (cbuf) {
  1012           MacroAssembler _masm(cbuf);
  1013           __ lw(AT, Address(SP, src_offset));
  1014           __ sw(AT, Address(SP, dst_offset));
  1015 #ifndef PRODUCT
  1016         } else {
  1017 			if(!do_size){
  1018 				if (size != 0) st->print("\n\t");
  1019 				st->print("lw    AT, [SP + #%d] spill 2\n\t"
  1020 						  "sw    AT, [SP + #%d]\n\t",
  1021 						  src_offset, dst_offset);
  1023 #endif
  1025 		size += 8;
  1027       return size;
  1028     } else if (dst_first_rc == rc_int) {
  1029       // mem -> gpr
  1030       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1031           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1032         // 64-bit
  1033         int offset = ra_->reg2offset(src_first);
  1034         if (cbuf) {
  1035           MacroAssembler _masm(cbuf);
  1036           __ ld(as_Register(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1037 #ifndef PRODUCT
  1038         } else {
  1039 			if(!do_size){
  1040 				if (size != 0) st->print("\n\t");
  1041 				st->print("ld    %s, [SP + #%d]\t# spill 3",
  1042 						  Matcher::regName[dst_first],
  1043 						  offset);
  1045 #endif
  1047 		size += 4;
  1048       } else {
  1049         // 32-bit
  1050         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1051         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1052         int offset = ra_->reg2offset(src_first);
  1053         if (cbuf) {
  1054           MacroAssembler _masm(cbuf);
  1055           if (this->ideal_reg() == Op_RegI)
  1056             __ lw(as_Register(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1057           else
  1058             __ lwu(as_Register(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1059 #ifndef PRODUCT
  1060         } else {
  1061 			if(!do_size){
  1062 				if (size != 0) st->print("\n\t");
  1063           if (this->ideal_reg() == Op_RegI)
  1064 				st->print("lw    %s, [SP + #%d]\t# spill 4",
  1065 						   Matcher::regName[dst_first],
  1066 						   offset);
  1067 		  else
  1068 				st->print("lwu    %s, [SP + #%d]\t# spill 5",
  1069 						   Matcher::regName[dst_first],
  1070 						   offset);
  1072 #endif
  1074 		size += 4;
  1076       return size;
  1077     } else if (dst_first_rc == rc_float) {
  1078       // mem-> xmm
  1079       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1080           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1081         // 64-bit
  1082         int offset = ra_->reg2offset(src_first);
  1083         if (cbuf) {
  1084           MacroAssembler _masm(cbuf);
  1085           __ ldc1( as_FloatRegister(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1086 #ifndef PRODUCT
  1087         } else {
  1088 			if(!do_size){
  1089 				if (size != 0) st->print("\n\t");
  1090 				st->print("ldc1  %s, [SP + #%d]\t# spill 6",
  1091 						  Matcher::regName[dst_first],
  1092 						  offset);
  1094 #endif
  1096 		size += 4;
  1097       } else {
  1098         // 32-bit
  1099         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1100         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1101         int offset = ra_->reg2offset(src_first);
  1102         if (cbuf) {
  1103           MacroAssembler _masm(cbuf);
  1104           __ lwc1( as_FloatRegister(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1105 #ifndef PRODUCT
  1106         } else {
  1107 			if(!do_size){
  1108 				if (size != 0) st->print("\n\t");
  1109 				st->print("lwc1   %s, [SP + #%d]\t# spill 7",
  1110 						  Matcher::regName[dst_first],
  1111 						  offset);
  1113 #endif
  1115 		size += 4;
  1117       return size;
  1119   } else if (src_first_rc == rc_int) {
  1120     // gpr ->
  1121     if (dst_first_rc == rc_stack) {
  1122       // gpr -> mem
  1123       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1124           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1125         // 64-bit
  1126         int offset = ra_->reg2offset(dst_first);
  1127         if (cbuf) {
  1128           MacroAssembler _masm(cbuf);
  1129           __ sd(as_Register(Matcher::_regEncode[src_first]), Address(SP, offset));
  1130 #ifndef PRODUCT
  1131         } else {
  1132 			if(!do_size){
  1133 				if (size != 0) st->print("\n\t");
  1134 				st->print("sd    %s, [SP + #%d] # spill 8",
  1135 						  Matcher::regName[src_first],
  1136 						  offset);
  1138 #endif
  1140 		size += 4;
  1141       } else {
  1142         // 32-bit
  1143         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1144         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1145         int offset = ra_->reg2offset(dst_first);
  1146         if (cbuf) {
  1147           MacroAssembler _masm(cbuf);
  1148           __ sw(as_Register(Matcher::_regEncode[src_first]), Address(SP, offset));
  1149 #ifndef PRODUCT
  1150         } else {
  1151 			if(!do_size){
  1152 				if (size != 0) st->print("\n\t");
  1153 				st->print("sw    %s, [SP + #%d]\t# spill 9",
  1154 						Matcher::regName[src_first], offset);
  1156 #endif
  1158 		size += 4;
  1160       return size;
  1161     } else if (dst_first_rc == rc_int) {
  1162       // gpr -> gpr
  1163       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1164           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1165         // 64-bit
  1166         if (cbuf) {
  1167           MacroAssembler _masm(cbuf);
  1168           __ move(as_Register(Matcher::_regEncode[dst_first]),
  1169                   as_Register(Matcher::_regEncode[src_first]));
  1170 #ifndef PRODUCT
  1171         } else {
  1172 			if(!do_size){
  1173 				if (size != 0) st->print("\n\t");
  1174 				st->print("move(64bit)    %s <-- %s\t# spill 10",
  1175 						  Matcher::regName[dst_first],
  1176 						  Matcher::regName[src_first]);
  1178 #endif
  1180 		size += 4;
  1181         return size;
  1182       } else {
  1183         // 32-bit
  1184         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1185         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1186         if (cbuf) {
  1187           MacroAssembler _masm(cbuf);
  1188           if (this->ideal_reg() == Op_RegI)
  1189               __ move_u32(as_Register(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
  1190           else
  1191               __ daddu(as_Register(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]), R0);
  1193 #ifndef PRODUCT
  1194         } else {
  1195 			if(!do_size){
  1196 				if (size != 0) st->print("\n\t");
  1197 				st->print("move(32-bit)    %s <-- %s\t# spill 11",
  1198 						  Matcher::regName[dst_first],
  1199 						  Matcher::regName[src_first]);
  1201 #endif
  1203 		size += 4;	
  1204         return size;
  1206     } else if (dst_first_rc == rc_float) {
  1207       // gpr -> xmm
  1208       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1209           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1210         // 64-bit
  1211         if (cbuf) {
  1212           MacroAssembler _masm(cbuf);
  1213           __ dmtc1(as_Register(Matcher::_regEncode[src_first]), as_FloatRegister(Matcher::_regEncode[dst_first]));
  1214 #ifndef PRODUCT
  1215         } else {
  1216 			if(!do_size){
  1217 				if (size != 0) st->print("\n\t");
  1218 				st->print("dmtc1   %s, %s\t# spill 12",
  1219 						  Matcher::regName[dst_first],
  1220 						  Matcher::regName[src_first]);
  1222 #endif
  1224 		size += 4;
  1225       } else {
  1226         // 32-bit
  1227         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1228         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1229         if (cbuf) {
  1230           MacroAssembler _masm(cbuf);
  1231           __ mtc1( as_Register(Matcher::_regEncode[src_first]), as_FloatRegister(Matcher::_regEncode[dst_first]) );
  1232 #ifndef PRODUCT
  1233         } else {
  1234 			if(!do_size){
  1235 				if (size != 0) st->print("\n\t");
  1236 				st->print("mtc1   %s, %s\t# spill 13",
  1237 						  Matcher::regName[dst_first],
  1238 						  Matcher::regName[src_first]);
  1240 #endif
  1242 		size += 4;
  1244       return size;
  1246   } else if (src_first_rc == rc_float) {
  1247     // xmm ->
  1248     if (dst_first_rc == rc_stack) {
  1249       // xmm -> mem
  1250       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1251           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1252         // 64-bit
  1253         int offset = ra_->reg2offset(dst_first);
  1254         if (cbuf) {
  1255           MacroAssembler _masm(cbuf);
  1256           __ sdc1( as_FloatRegister(Matcher::_regEncode[src_first]), Address(SP, offset) );
  1257 #ifndef PRODUCT
  1258         } else {
  1259 			if(!do_size){
  1260 				if (size != 0) st->print("\n\t");
  1261 				st->print("sdc1   %s, [SP + #%d]\t# spill 14",
  1262 						  Matcher::regName[src_first],
  1263 						  offset);
  1265 #endif
  1267 		size += 4;
  1268       } else {
  1269         // 32-bit
  1270         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1271         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1272         int offset = ra_->reg2offset(dst_first);
  1273         if (cbuf) {
  1274           MacroAssembler _masm(cbuf);
  1275           __ swc1(as_FloatRegister(Matcher::_regEncode[src_first]), Address(SP, offset));
  1276 #ifndef PRODUCT
  1277         } else {
  1278 			if(!do_size){
  1279 				if (size != 0) st->print("\n\t");
  1280 				st->print("swc1   %s, [SP + #%d]\t# spill 15",
  1281 						Matcher::regName[src_first],
  1282 						offset);
  1284 #endif
  1286 		size += 4;
  1288       return size;
  1289     } else if (dst_first_rc == rc_int) {
  1290       // xmm -> gpr
  1291       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1292           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1293         // 64-bit
  1294         if (cbuf) {
  1295           MacroAssembler _masm(cbuf);
  1296           __ dmfc1( as_Register(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1297 #ifndef PRODUCT
  1298         } else {
  1299 			if(!do_size){
  1300 				if (size != 0) st->print("\n\t");
  1301 				st->print("dmfc1   %s, %s\t# spill 16",
  1302 						  Matcher::regName[dst_first],
  1303 						  Matcher::regName[src_first]);
  1305 #endif
  1307 		size += 4;
  1308       } else {
  1309         // 32-bit
  1310         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1311         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1312         if (cbuf) {
  1313           MacroAssembler _masm(cbuf);
  1314           __ mfc1( as_Register(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1315 #ifndef PRODUCT
  1316         } else {
  1317 			if(!do_size){
  1318 				if (size != 0) st->print("\n\t");
  1319 				st->print("mfc1   %s, %s\t# spill 17",
  1320 						  Matcher::regName[dst_first],
  1321 						  Matcher::regName[src_first]);
  1323 #endif
  1325 		size += 4;
  1327       return size;
  1328     } else if (dst_first_rc == rc_float) {
  1329       // xmm -> xmm
  1330       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1331           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1332         // 64-bit
  1333         if (cbuf) {
  1334           MacroAssembler _masm(cbuf);
  1335           __ mov_d( as_FloatRegister(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1336 #ifndef PRODUCT
  1337         } else {
  1338 			if(!do_size){
  1339 				if (size != 0) st->print("\n\t");
  1340 				st->print("mov_d  %s <-- %s\t# spill 18",
  1341 						  Matcher::regName[dst_first],
  1342 						  Matcher::regName[src_first]);
  1344 #endif
  1346 		size += 4;
  1347       } else {
  1348         // 32-bit
  1349         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1350         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1351         if (cbuf) {
  1352           MacroAssembler _masm(cbuf);
  1353           __ mov_s( as_FloatRegister(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1354 #ifndef PRODUCT
  1355         } else {
  1356 			if(!do_size){
  1357 				if (size != 0) st->print("\n\t");
  1358 				st->print("mov_s  %s <-- %s\t# spill 19",
  1359 						  Matcher::regName[dst_first],
  1360 						  Matcher::regName[src_first]);
  1362 #endif
  1364 		size += 4;
  1366       return size;
  1370   assert(0," foo ");
  1371   Unimplemented();
  1372   return size;
  1376 #ifndef PRODUCT
  1377 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1378   implementation( NULL, ra_, false, st );
  1380 #endif
  1382 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1383   implementation( &cbuf, ra_, false, NULL );
  1386 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1387   return implementation( NULL, ra_, true, NULL );
  1390 //=============================================================================
  1393 #ifndef PRODUCT
  1394 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1395   st->print("INT3");
  1397 #endif
  1399 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc* ra_) const {
  1400   MacroAssembler _masm(&cbuf);
  1401   __ int3();
  1404 uint MachBreakpointNode::size(PhaseRegAlloc* ra_) const {
  1405   return MachNode::size(ra_);
  1409 //=============================================================================
  1410 #ifndef PRODUCT
  1411 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1412   Compile *C = ra_->C;
  1413   int framesize = C->frame_size_in_bytes();
  1415   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1417   st->print("daddiu   SP, SP, %d # Rlease stack @ MachEpilogNode",framesize);
  1418   st->cr(); st->print("\t");
  1419   if (UseLoongsonISA) {
  1420      st->print("gslq  RA, FP, SP, %d # Restore FP & RA @ MachEpilogNode", -wordSize*2);
  1421   } else {
  1422      st->print("ld    RA, SP, %d # Restore RA @ MachEpilogNode", -wordSize);
  1423      st->cr(); st->print("\t");
  1424      st->print("ld    FP, SP, %d # Restore FP @ MachEpilogNode", -wordSize*2);
  1427   if( do_polling() && C->is_method_compilation() ) {
  1428     st->print("Poll Safepoint # MachEpilogNode");
  1431 #endif
  1433 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1434   Compile *C = ra_->C;
  1435   MacroAssembler _masm(&cbuf);
  1436   int framesize = C->frame_size_in_bytes();
  1438   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1440   __ daddiu(SP, SP, framesize);
  1442   if (UseLoongsonISA) {
  1443     __ gslq(RA, FP, SP, -wordSize*2);
  1444   } else {
  1445     __ ld(RA, SP, -wordSize );
  1446     __ ld(FP, SP, -wordSize*2 );
  1449   if( do_polling() && C->is_method_compilation() ) {
  1450     __ set64(AT, (long)os::get_polling_page());
  1451     __ relocate(relocInfo::poll_return_type);
  1452     __ lw(AT, AT, 0);
  1456 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1457   return MachNode::size(ra_); // too many variables; just compute it the hard way  fujie debug
  1460 int MachEpilogNode::reloc() const {
  1461   return 0; // a large enough number
  1464 const Pipeline * MachEpilogNode::pipeline() const {
  1465   return MachNode::pipeline_class();
  1468 int MachEpilogNode::safepoint_offset() const { return 0; }
  1470 //=============================================================================
  1472 #ifndef PRODUCT
  1473 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1474   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1475   int reg = ra_->get_reg_first(this);
  1476   st->print("ADDI %s, SP, %d   @BoxLockNode",Matcher::regName[reg],offset);
  1478 #endif
  1481 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1482   return 4;
  1485 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1486   MacroAssembler _masm(&cbuf);
  1487   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1488   int reg = ra_->get_encode(this);
  1490   __ addi(as_Register(reg), SP, offset);
  1491 /*
  1492   if( offset >= 128 ) {
  1493     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1494     emit_rm(cbuf, 0x2, reg, 0x04);
  1495     emit_rm(cbuf, 0x0, 0x04, SP_enc);
  1496     emit_d32(cbuf, offset);
  1498   else {
  1499     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1500     emit_rm(cbuf, 0x1, reg, 0x04);
  1501     emit_rm(cbuf, 0x0, 0x04, SP_enc);
  1502     emit_d8(cbuf, offset);
  1504 */
  1508 //static int sizeof_FFree_Float_Stack_All = -1;
  1510 int MachCallRuntimeNode::ret_addr_offset() {
  1511   //lui
  1512   //ori
  1513   //dsll
  1514   //ori
  1515   //jalr
  1516   //nop
  1517   assert(NativeCall::instruction_size == 24, "in MachCallRuntimeNode::ret_addr_offset()");
  1518   return NativeCall::instruction_size;
  1519 //  return 16;
  1526 //=============================================================================
  1527 #ifndef PRODUCT
  1528 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1529   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1531 #endif
  1533 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1534   MacroAssembler _masm(&cbuf);
  1535   int i = 0;
  1536   for(i = 0; i < _count; i++)
  1537      __ nop();
  1540 uint MachNopNode::size(PhaseRegAlloc *) const {
  1541   return 4 * _count; 
  1543 const Pipeline* MachNopNode::pipeline() const {
  1544   return MachNode::pipeline_class();
  1547 //=============================================================================
  1549 //=============================================================================
  1550 #ifndef PRODUCT
  1551 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1552   st->print_cr("load_klass(T9, T0)");
  1553   st->print_cr("\tbeq(T9, iCache, L)");
  1554   st->print_cr("\tnop");
  1555   st->print_cr("\tjmp(SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type)");
  1556   st->print_cr("\tnop");
  1557   st->print_cr("\tnop");
  1558   st->print_cr("    L:");
  1560 #endif
  1563 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1564   MacroAssembler _masm(&cbuf);
  1565 #ifdef ASSERT
  1566   //uint code_size = cbuf.code_size();
  1567 #endif
  1568   int  ic_reg = Matcher::inline_cache_reg_encode();
  1569   Label L;
  1570   Register receiver = T0;
  1571   Register   iCache = as_Register(ic_reg);
  1572   __ load_klass(T9, receiver);
  1573   __ beq(T9, iCache, L);
  1574   __ nop();
  1576   __ relocate(relocInfo::runtime_call_type);
  1577   __ patchable_set48(T9, (long)SharedRuntime::get_ic_miss_stub());
  1578   __ jr(T9);
  1579   __ nop();
  1581   /* WARNING these NOPs are critical so that verified entry point is properly
  1582    *      8 bytes aligned for patching by NativeJump::patch_verified_entry() */
  1583   __ align(CodeEntryAlignment);
  1584   __ bind(L);
  1587 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1588   return MachNode::size(ra_); 
  1593 //=============================================================================
  1595 const RegMask& MachConstantBaseNode::_out_RegMask = P_REG_mask();
  1597 int Compile::ConstantTable::calculate_table_base_offset() const {
  1598   return 0;  // absolute addressing, no offset
  1601 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
  1602 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
  1603   ShouldNotReachHere();
  1606 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1607   Compile* C = ra_->C;
  1608   Compile::ConstantTable& constant_table = C->constant_table();
  1609   MacroAssembler _masm(&cbuf);
  1611   Register Rtoc = as_Register(ra_->get_encode(this));
  1612   CodeSection* consts_section = __ code()->consts();
  1613   int consts_size = consts_section->align_at_start(consts_section->size());
  1614   assert(constant_table.size() == consts_size, "must be equal");
  1616   if (consts_section->size()) {
  1617     // Materialize the constant table base.
  1618     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1619     // RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1620     __ relocate(relocInfo::internal_pc_type);
  1621     __ patchable_set48(Rtoc, (long)baseaddr);
  1625 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
  1626   // patchable_set48 (4 insts)
  1627   return 4 * 4;
  1630 #ifndef PRODUCT
  1631 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1632   Register r = as_Register(ra_->get_encode(this));
  1633   st->print("patchable_set48    %s, &constanttable (constant table base) @ MachConstantBaseNode", r->name());
  1635 #endif
  1638 //=============================================================================
  1639 #ifndef PRODUCT
  1640 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1641   Compile* C = ra_->C;
  1643   int framesize = C->frame_size_in_bytes();
  1644   int bangsize = C->bang_size_in_bytes();
  1645   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1647   // Calls to C2R adapters often do not accept exceptional returns.
  1648   // We require that their callers must bang for them.  But be careful, because
  1649   // some VM calls (such as call site linkage) can use several kilobytes of
  1650   // stack.  But the stack safety zone should account for that.
  1651   // See bugs 4446381, 4468289, 4497237.
  1652   if (C->need_stack_bang(bangsize)) {
  1653     st->print_cr("# stack bang"); st->print("\t");
  1655     if (UseLoongsonISA) {
  1656        st->print("gssq     RA, FP, %d(SP)  @ MachPrologNode\n\t", -wordSize*2);
  1657     } else {
  1658        st->print("sd       RA, %d(SP)  @ MachPrologNode\n\t", -wordSize);
  1659        st->print("sd       FP, %d(SP)  @ MachPrologNode\n\t", -wordSize*2);
  1661     st->print("daddiu   FP, SP, -%d \n\t", wordSize*2);
  1662     st->print("daddiu   SP, SP, -%d \t",framesize);
  1664 #endif
  1667 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1668   Compile* C = ra_->C;
  1669   MacroAssembler _masm(&cbuf);
  1671   int framesize = C->frame_size_in_bytes();
  1672   int bangsize = C->bang_size_in_bytes();
  1674 //  __ verified_entry(framesize, C->need_stack_bang(bangsize)?bangsize:0, false);
  1676   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1678   if (C->need_stack_bang(framesize)) {
  1679     __ generate_stack_overflow_check(framesize);
  1682   if (UseLoongsonISA) {
  1683      __ gssq(RA, FP, SP, -wordSize*2); 
  1684   } else {
  1685      __ sd(RA, SP, -wordSize);
  1686      __ sd(FP, SP, -wordSize*2);
  1688   __ daddiu(FP, SP, -wordSize*2);
  1689   __ daddiu(SP, SP, -framesize);
  1690   __ nop(); /* 2013.10.22 Jin: Make enough room for patch_verified_entry() */
  1691   __ nop();
  1693   C->set_frame_complete(cbuf.insts_size());
  1694   if (C->has_mach_constant_base_node()) {
  1695 	  // NOTE: We set the table base offset here because users might be
  1696 	  // emitted before MachConstantBaseNode.
  1697 	  Compile::ConstantTable& constant_table = C->constant_table();
  1698 	  constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1704 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1705 //fprintf(stderr, "\nPrologNode::size(ra_)= %d \n", MachNode::size(ra_));//fujie debug
  1706   return MachNode::size(ra_); // too many variables; just compute it the hard way
  1709 int MachPrologNode::reloc() const {
  1710   return 0; // a large enough number
  1713 %}
  1715 //----------ENCODING BLOCK-----------------------------------------------------
  1716 // This block specifies the encoding classes used by the compiler to output
  1717 // byte streams.  Encoding classes generate functions which are called by
  1718 // Machine Instruction Nodes in order to generate the bit encoding of the
  1719 // instruction.  Operands specify their base encoding interface with the
  1720 // interface keyword.  There are currently supported four interfaces,
  1721 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1722 // operand to generate a function which returns its register number when
  1723 // queried.   CONST_INTER causes an operand to generate a function which
  1724 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1725 // operand to generate four functions which return the Base Register, the
  1726 // Index Register, the Scale Value, and the Offset Value of the operand when
  1727 // queried.  COND_INTER causes an operand to generate six functions which
  1728 // return the encoding code (ie - encoding bits for the instruction)
  1729 // associated with each basic boolean condition for a conditional instruction.
  1730 // Instructions specify two basic values for encoding.  They use the
  1731 // ins_encode keyword to specify their encoding class (which must be one of
  1732 // the class names specified in the encoding block), and they use the
  1733 // opcode keyword to specify, in order, their primary, secondary, and
  1734 // tertiary opcode.  Only the opcode sections which a particular instruction
  1735 // needs for encoding need to be specified.
  1736 encode %{
  1737 /*
  1738 Alias:
  1739 1044   b   java.io.ObjectInputStream::readHandle (130 bytes)
  1740     118   B14: #    B19 B15 <- B13  Freq: 0.899955
  1741     118     add    S1, S2, V0 #@addP_reg_reg
  1742     11c     lb   S0, [S1 + #-8257524] #@loadB
  1743     120     BReq   S0, #3, B19 #@branchConI_reg_imm  P=0.100000 C=-1.000000
  1744 */
  1745   //Load byte signed
  1746   enc_class load_B_enc (mRegI dst, memory mem) %{
  1747      MacroAssembler _masm(&cbuf);
  1748      int  dst = $dst$$reg;
  1749      int  base = $mem$$base;
  1750      int  index = $mem$$index;
  1751      int  scale = $mem$$scale;
  1752      int  disp = $mem$$disp;
  1754      if( index != 0 ) {
  1755         if( Assembler::is_simm16(disp) ) { 
  1756            if( UseLoongsonISA ) {
  1757               if (scale == 0) {
  1758                  __ gslbx(as_Register(dst), as_Register(base), as_Register(index), disp);
  1759               } else {
  1760                  __ dsll(AT, as_Register(index), scale);
  1761                  __ gslbx(as_Register(dst), as_Register(base), AT, disp);
  1763            } else {
  1764               if (scale == 0) {
  1765                  __ addu(AT, as_Register(base), as_Register(index));
  1766               } else {
  1767                  __ dsll(AT, as_Register(index), scale);
  1768                  __ addu(AT, as_Register(base), AT);
  1770               __ lb(as_Register(dst), AT, disp);
  1772         } else {
  1773            if (scale == 0) {
  1774               __ addu(AT, as_Register(base), as_Register(index));
  1775            } else {
  1776               __ dsll(AT, as_Register(index), scale);
  1777               __ addu(AT, as_Register(base), AT);
  1779            __ move(T9, disp);
  1780            if( UseLoongsonISA ) {
  1781               __ gslbx(as_Register(dst), AT, T9, 0);
  1782            } else {
  1783               __ addu(AT, AT, T9); 
  1784               __ lb(as_Register(dst), AT, 0);
  1787      } else {
  1788         if( Assembler::is_simm16(disp) ) { 
  1789            __ lb(as_Register(dst), as_Register(base), disp);
  1790         } else {
  1791            __ move(T9, disp);   
  1792            if( UseLoongsonISA ) {
  1793               __ gslbx(as_Register(dst), as_Register(base), T9, 0);
  1794            } else {
  1795               __ addu(AT, as_Register(base), T9); 
  1796               __ lb(as_Register(dst), AT, 0);
  1800   %}
  1802   //Load byte unsigned
  1803   enc_class load_UB_enc (mRegI dst, memory mem) %{
  1804      MacroAssembler _masm(&cbuf);
  1805      int  dst = $dst$$reg;
  1806      int  base = $mem$$base;
  1807      int  index = $mem$$index;
  1808      int  scale = $mem$$scale;
  1809      int  disp = $mem$$disp;
  1811      if( index != 0 ) {
  1812         if (scale == 0) {
  1813            __ daddu(AT, as_Register(base), as_Register(index));
  1814         } else {
  1815            __ dsll(AT, as_Register(index), scale);
  1816            __ daddu(AT, as_Register(base), AT);
  1818         if( Assembler::is_simm16(disp) ) { 
  1819            __ lbu(as_Register(dst), AT, disp);
  1820         } else {
  1821            __ move(T9, disp);
  1822            __ daddu(AT, AT, T9); 
  1823            __ lbu(as_Register(dst), AT, 0);
  1825      } else {
  1826         if( Assembler::is_simm16(disp) ) { 
  1827            __ lbu(as_Register(dst), as_Register(base), disp);
  1828         } else {
  1829            __ move(T9, disp);   
  1830            __ daddu(AT, as_Register(base), T9); 
  1831            __ lbu(as_Register(dst), AT, 0);
  1834   %}
  1836   enc_class store_B_reg_enc (memory mem, mRegI src) %{
  1837      MacroAssembler _masm(&cbuf);
  1838      int  src = $src$$reg;
  1839      int  base = $mem$$base;
  1840      int  index = $mem$$index;
  1841      int  scale = $mem$$scale;
  1842      int  disp = $mem$$disp;
  1844      if( index != 0 ) {
  1845         if (scale == 0) {
  1846            if( Assembler::is_simm(disp, 8) ) { 
  1847               if (UseLoongsonISA) {
  1848                  __ gssbx(as_Register(src), as_Register(base), as_Register(index), disp);
  1849               } else {
  1850                  __ addu(AT, as_Register(base), as_Register(index));
  1851                  __ sb(as_Register(src), AT, disp);
  1853            } else if( Assembler::is_simm16(disp) ) { 
  1854               __ addu(AT, as_Register(base), as_Register(index));
  1855               __ sb(as_Register(src), AT, disp);
  1856            } else {
  1857               __ addu(AT, as_Register(base), as_Register(index));
  1858               __ move(T9, disp);
  1859               if (UseLoongsonISA) {
  1860                  __ gssbx(as_Register(src), AT, T9, 0);
  1861               } else {
  1862                  __ addu(AT, AT, T9); 
  1863                  __ sb(as_Register(src), AT, 0);
  1866         } else {
  1867            __ dsll(AT, as_Register(index), scale);
  1868            if( Assembler::is_simm(disp, 8) ) { 
  1869               if (UseLoongsonISA) {
  1870                  __ gssbx(as_Register(src), AT, as_Register(base), disp);
  1871               } else {
  1872                  __ addu(AT, as_Register(base), AT);
  1873                  __ sb(as_Register(src), AT, disp);
  1875            } else if( Assembler::is_simm16(disp) ) { 
  1876               __ addu(AT, as_Register(base), AT);
  1877               __ sb(as_Register(src), AT, disp);
  1878            } else {
  1879               __ addu(AT, as_Register(base), AT);
  1880               __ move(T9, disp);
  1881               if (UseLoongsonISA) {
  1882                  __ gssbx(as_Register(src), AT, T9, 0);
  1883               } else {
  1884                  __ addu(AT, AT, T9); 
  1885                  __ sb(as_Register(src), AT, 0);
  1889      } else {
  1890         if( Assembler::is_simm16(disp) ) { 
  1891            __ sb(as_Register(src), as_Register(base), disp);
  1892         } else {
  1893            __ move(T9, disp);   
  1894            if (UseLoongsonISA) {
  1895               __ gssbx(as_Register(src), as_Register(base), T9, 0);
  1896            } else {
  1897               __ addu(AT, as_Register(base), T9); 
  1898               __ sb(as_Register(src), AT, 0);
  1902   %}
  1904   enc_class store_B_immI_enc (memory mem, immI8 src) %{
  1905      MacroAssembler _masm(&cbuf);
  1906      int  base = $mem$$base;
  1907      int  index = $mem$$index;
  1908      int  scale = $mem$$scale;
  1909      int  disp = $mem$$disp;
  1910      int value = $src$$constant;
  1912      if( index != 0 ) {
  1913         if (!UseLoongsonISA) {
  1914            if (scale == 0) {
  1915               __ daddu(AT, as_Register(base), as_Register(index));
  1916            } else {
  1917               __ dsll(AT, as_Register(index), scale);
  1918               __ daddu(AT, as_Register(base), AT);
  1920            if( Assembler::is_simm16(disp) ) { 
  1921               if (value == 0) {
  1922                  __ sb(R0, AT, disp);
  1923               } else {
  1924                  __ move(T9, value);
  1925                  __ sb(T9, AT, disp);
  1927            } else {
  1928               if (value == 0) {
  1929                  __ move(T9, disp);
  1930                  __ daddu(AT, AT, T9); 
  1931                  __ sb(R0, AT, 0);
  1932               } else {
  1933                  __ move(T9, disp);
  1934                  __ daddu(AT, AT, T9); 
  1935                  __ move(T9, value);
  1936                  __ sb(T9, AT, 0);
  1939         } else {
  1941            if (scale == 0) {
  1942               if( Assembler::is_simm(disp, 8) ) { 
  1943                  if (value == 0) {
  1944                     __ gssbx(R0, as_Register(base), as_Register(index), disp);
  1945                  } else {
  1946                     __ move(T9, value);
  1947                     __ gssbx(T9, as_Register(base), as_Register(index), disp);
  1949               } else if( Assembler::is_simm16(disp) ) { 
  1950                  __ daddu(AT, as_Register(base), as_Register(index));
  1951                  if (value == 0) {
  1952                     __ sb(R0, AT, disp);
  1953                  } else {
  1954                     __ move(T9, value);
  1955                     __ sb(T9, AT, disp);
  1957               } else {
  1958                  if (value == 0) {
  1959                     __ daddu(AT, as_Register(base), as_Register(index));
  1960                     __ move(T9, disp);
  1961                     __ gssbx(R0, AT, T9, 0);
  1962                  } else {
  1963                     __ move(AT, disp);
  1964                     __ move(T9, value);
  1965                     __ daddu(AT, as_Register(base), AT);
  1966                     __ gssbx(T9, AT, as_Register(index), 0);
  1970            } else {
  1972               if( Assembler::is_simm(disp, 8) ) { 
  1973                  __ dsll(AT, as_Register(index), scale);
  1974                  if (value == 0) {
  1975                     __ gssbx(R0, as_Register(base), AT, disp);
  1976                  } else {
  1977                     __ move(T9, value);
  1978                     __ gssbx(T9, as_Register(base), AT, disp);
  1980               } else if( Assembler::is_simm16(disp) ) { 
  1981                  __ dsll(AT, as_Register(index), scale);
  1982                  __ daddu(AT, as_Register(base), AT);
  1983                  if (value == 0) {
  1984                     __ sb(R0, AT, disp);
  1985                  } else {
  1986                     __ move(T9, value);
  1987                     __ sb(T9, AT, disp);
  1989               } else {
  1990                  __ dsll(AT, as_Register(index), scale);
  1991                  if (value == 0) {
  1992                     __ daddu(AT, as_Register(base), AT);
  1993                     __ move(T9, disp);
  1994                     __ gssbx(R0, AT, T9, 0);
  1995                  } else {
  1996                     __ move(T9, disp);
  1997                     __ daddu(AT, AT, T9); 
  1998                     __ move(T9, value);
  1999                     __ gssbx(T9, as_Register(base), AT, 0);
  2004      } else {
  2005         if( Assembler::is_simm16(disp) ) { 
  2006            if (value == 0) {
  2007               __ sb(R0, as_Register(base), disp);
  2008            } else {
  2009               __ move(AT, value);
  2010               __ sb(AT, as_Register(base), disp);
  2012         } else {
  2013            if (value == 0) {
  2014               __ move(T9, disp);   
  2015               if (UseLoongsonISA) {
  2016                 __ gssbx(R0, as_Register(base), T9, 0);
  2017               } else {
  2018                 __ daddu(AT, as_Register(base), T9); 
  2019                 __ sb(R0, AT, 0);
  2021            } else {
  2022               __ move(T9, disp);   
  2023               if (UseLoongsonISA) {
  2024                 __ move(AT, value);
  2025                 __ gssbx(AT, as_Register(base), T9, 0);
  2026               } else {
  2027                 __ daddu(AT, as_Register(base), T9); 
  2028                 __ move(T9, value);
  2029                 __ sb(T9, AT, 0);
  2034   %}
  2037   enc_class store_B_immI_enc_sync (memory mem, immI8 src) %{
  2038      MacroAssembler _masm(&cbuf);
  2039      int  base = $mem$$base;
  2040      int  index = $mem$$index;
  2041      int  scale = $mem$$scale;
  2042      int  disp = $mem$$disp;
  2043      int value = $src$$constant;
  2045      if( index != 0 ) {
  2046 		 if ( UseLoongsonISA ) {
  2047 			if ( Assembler::is_simm(disp,8) ) {
  2048 				if ( scale == 0 ) {
  2049 					if ( value == 0 ) {
  2050 						__ gssbx(R0, as_Register(base), as_Register(index), disp);
  2051 					} else {
  2052 						__ move(AT, value);
  2053 						__ gssbx(AT, as_Register(base), as_Register(index), disp);
  2055 				} else {
  2056 					__ dsll(AT, as_Register(index), scale);
  2057 					if ( value == 0 ) {
  2058 						__ gssbx(R0, as_Register(base), AT, disp);
  2059 					} else {
  2060 						__ move(T9, value);
  2061 						__ gssbx(T9, as_Register(base), AT, disp);
  2064 			} else if ( Assembler::is_simm16(disp) ) {
  2065 				if ( scale == 0 ) {
  2066 					__ daddu(AT, as_Register(base), as_Register(index));
  2067 					if ( value == 0 ){
  2068 						__ sb(R0, AT, disp);
  2069 					} else {
  2070 						__ move(T9, value);
  2071 						__ sb(T9, AT, disp);
  2073 				} else {
  2074 					__ dsll(AT, as_Register(index), scale);
  2075 					__ daddu(AT, as_Register(base), AT);
  2076 					if ( value == 0 ) {
  2077 						__ sb(R0, AT, disp);
  2078 					} else {
  2079 						__ move(T9, value);
  2080 						__ sb(T9, AT, disp);
  2083 			} else {
  2084 				if ( scale == 0 ) {
  2085 					__ move(AT, disp);
  2086 					__ daddu(AT, as_Register(index), AT);
  2087 					if ( value == 0 ) {
  2088 						__ gssbx(R0, as_Register(base), AT, 0);
  2089 					} else {
  2090 						__ move(T9, value);
  2091 						__ gssbx(T9, as_Register(base), AT, 0);
  2093 				} else {
  2094 					__ dsll(AT, as_Register(index), scale);
  2095 					__ move(T9, disp);
  2096 					__ daddu(AT, AT, T9);
  2097 					if ( value == 0 ) {
  2098 						__ gssbx(R0, as_Register(base), AT, 0);
  2099 					} else {
  2100 						__ move(T9, value);
  2101 						__ gssbx(T9, as_Register(base), AT, 0);
  2105 		 } else { //not use loongson isa
  2106 		    if (scale == 0) {
  2107 			   __ daddu(AT, as_Register(base), as_Register(index));
  2108 		    } else {
  2109 			   __ dsll(AT, as_Register(index), scale);
  2110 			   __ daddu(AT, as_Register(base), AT);
  2112 		    if( Assembler::is_simm16(disp) ) { 
  2113 			   if (value == 0) {
  2114 			      __ sb(R0, AT, disp);
  2115 			   } else {
  2116 		          __ move(T9, value);
  2117 				  __ sb(T9, AT, disp);
  2119 			} else {
  2120 		       if (value == 0) {
  2121 	              __ move(T9, disp);
  2122 				  __ daddu(AT, AT, T9); 
  2123 			      __ sb(R0, AT, 0);
  2124 		       } else {
  2125 	              __ move(T9, disp);
  2126 				  __ daddu(AT, AT, T9); 
  2127 			      __ move(T9, value);
  2128 		          __ sb(T9, AT, 0);
  2132      } else {
  2133 		 if ( UseLoongsonISA ){
  2134 			if ( Assembler::is_simm16(disp) ){
  2135 				if ( value == 0 ) {
  2136 					__ sb(R0, as_Register(base), disp);
  2137 				} else {
  2138 					__ move(AT, value);
  2139 					__ sb(AT, as_Register(base), disp);
  2141 			} else {
  2142 				__ move(AT, disp);
  2143 				if ( value == 0 ) {
  2144 					__ gssbx(R0, as_Register(base), AT, 0);
  2145 				} else {
  2146 					__ move(T9, value);
  2147 					__ gssbx(T9, as_Register(base), AT, 0);
  2150 		 } else {
  2151 		    if( Assembler::is_simm16(disp) ) { 
  2152 	           if (value == 0) {
  2153 			      __ sb(R0, as_Register(base), disp);
  2154 		       } else {
  2155 	              __ move(AT, value);
  2156 				  __ sb(AT, as_Register(base), disp);
  2158 		    } else {
  2159 	           if (value == 0) {
  2160 				  __ move(T9, disp);   
  2161 			      __ daddu(AT, as_Register(base), T9); 
  2162 		          __ sb(R0, AT, 0);
  2163 	           } else {
  2164 				  __ move(T9, disp);   
  2165 			      __ daddu(AT, as_Register(base), T9); 
  2166 		          __ move(T9, value);
  2167 	              __ sb(T9, AT, 0);
  2173      __ sync();
  2174   %}
  2176   // Load Short (16bit signed)
  2177   enc_class load_S_enc (mRegI dst, memory mem) %{
  2178      MacroAssembler _masm(&cbuf);
  2179      int  dst = $dst$$reg;
  2180      int  base = $mem$$base;
  2181      int  index = $mem$$index;
  2182      int  scale = $mem$$scale;
  2183      int  disp = $mem$$disp;
  2185      if( index != 0 ) {
  2186 		 if ( UseLoongsonISA ) {
  2187 			if ( Assembler::is_simm(disp, 8) ) {
  2188 				if (scale == 0) {
  2189 					__ gslhx(as_Register(dst), as_Register(base), as_Register(index), disp);
  2190 				} else {
  2191 					__ dsll(AT, as_Register(index), scale);
  2192 					__ gslhx(as_Register(dst), as_Register(base), AT, disp);
  2194 			} else if ( Assembler::is_simm16(disp) ) {
  2195 				if (scale == 0) {
  2196 					__ daddu(AT, as_Register(base), as_Register(index));
  2197 					__ lh(as_Register(dst), AT, disp);
  2198 				} else {
  2199 					__ dsll(AT, as_Register(index), scale);
  2200 					__ daddu(AT, as_Register(base), AT);
  2201 					__ lh(as_Register(dst), AT, disp);
  2203 			} else {
  2204 				if (scale == 0) {
  2205 					__ move(AT, disp);
  2206 					__ daddu(AT, as_Register(index), AT);
  2207 					__ gslhx(as_Register(dst), as_Register(base), AT, 0);
  2208 				} else {
  2209 					__ dsll(AT, as_Register(index), scale);
  2210 					__ move(T9, disp);
  2211 					__ daddu(AT, AT, T9);
  2212 					__ gslhx(as_Register(dst), as_Register(base), AT, 0);
  2215 		 } else { // not use loongson isa
  2216 		    if (scale == 0) {
  2217 			   __ daddu(AT, as_Register(base), as_Register(index));
  2218 		    } else {
  2219 			   __ dsll(AT, as_Register(index), scale);
  2220 		       __ daddu(AT, as_Register(base), AT);
  2222 		    if( Assembler::is_simm16(disp) ) { 
  2223 		       __ lh(as_Register(dst), AT, disp);
  2224 	        } else {
  2225 	           __ move(T9, disp);
  2226 			   __ daddu(AT, AT, T9); 
  2227 		       __ lh(as_Register(dst), AT, 0);
  2230      } else { // index is 0
  2231 		 if ( UseLoongsonISA ) {
  2232 			if ( Assembler::is_simm16(disp) ) {
  2233 				__ lh(as_Register(dst), as_Register(base), disp);
  2234 			} else {
  2235 				__ move(T9, disp);
  2236 				__ gslhx(as_Register(dst), as_Register(base), T9, 0);
  2238 		 } else { //not use loongson isa
  2239 		    if( Assembler::is_simm16(disp) ) { 
  2240 			   __ lh(as_Register(dst), as_Register(base), disp);
  2241 		    } else {
  2242 	           __ move(T9, disp);   
  2243 			   __ daddu(AT, as_Register(base), T9); 
  2244 		       __ lh(as_Register(dst), AT, 0);
  2248   %}
  2250   // Load Char (16bit unsigned)
  2251   enc_class load_C_enc (mRegI dst, memory mem) %{
  2252      MacroAssembler _masm(&cbuf);
  2253      int  dst = $dst$$reg;
  2254      int  base = $mem$$base;
  2255      int  index = $mem$$index;
  2256      int  scale = $mem$$scale;
  2257      int  disp = $mem$$disp;
  2259      if( index != 0 ) {
  2260         if (scale == 0) {
  2261            __ daddu(AT, as_Register(base), as_Register(index));
  2262         } else {
  2263            __ dsll(AT, as_Register(index), scale);
  2264            __ daddu(AT, as_Register(base), AT);
  2266         if( Assembler::is_simm16(disp) ) { 
  2267            __ lhu(as_Register(dst), AT, disp);
  2268         } else {
  2269            __ move(T9, disp);
  2270            __ addu(AT, AT, T9); 
  2271            __ lhu(as_Register(dst), AT, 0);
  2273      } else {
  2274         if( Assembler::is_simm16(disp) ) { 
  2275            __ lhu(as_Register(dst), as_Register(base), disp);
  2276         } else {
  2277            __ move(T9, disp);   
  2278            __ daddu(AT, as_Register(base), T9); 
  2279            __ lhu(as_Register(dst), AT, 0);
  2282   %}
  2284   // Store Char (16bit unsigned)
  2285   enc_class store_C_reg_enc (memory mem, mRegI src) %{
  2286      MacroAssembler _masm(&cbuf);
  2287      int  src = $src$$reg;
  2288      int  base = $mem$$base;
  2289      int  index = $mem$$index;
  2290      int  scale = $mem$$scale;
  2291      int  disp = $mem$$disp;
  2293      if( index != 0 ) {
  2294         if( Assembler::is_simm16(disp) ) { 
  2295            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  2296               if (scale == 0) {
  2297                  __ gsshx(as_Register(src), as_Register(base), as_Register(index), disp);
  2298               } else {
  2299                  __ dsll(AT, as_Register(index), scale);
  2300                  __ gsshx(as_Register(src), as_Register(base), AT, disp);
  2302            } else {
  2303               if (scale == 0) {
  2304                  __ addu(AT, as_Register(base), as_Register(index));
  2305               } else {
  2306                  __ dsll(AT, as_Register(index), scale);
  2307                  __ addu(AT, as_Register(base), AT);
  2309               __ sh(as_Register(src), AT, disp);
  2311         } else {
  2312            if (scale == 0) {
  2313               __ addu(AT, as_Register(base), as_Register(index));
  2314            } else {
  2315               __ dsll(AT, as_Register(index), scale);
  2316               __ addu(AT, as_Register(base), AT);
  2318            __ move(T9, disp);
  2319            if( UseLoongsonISA ) {
  2320               __ gsshx(as_Register(src), AT, T9, 0);
  2321            } else {
  2322               __ addu(AT, AT, T9); 
  2323               __ sh(as_Register(src), AT, 0);
  2326      } else {
  2327         if( Assembler::is_simm16(disp) ) { 
  2328            __ sh(as_Register(src), as_Register(base), disp);
  2329         } else {
  2330            __ move(T9, disp);   
  2331            if( UseLoongsonISA ) {
  2332               __ gsshx(as_Register(src), as_Register(base), T9, 0);
  2333            } else {
  2334               __ addu(AT, as_Register(base), T9); 
  2335               __ sh(as_Register(src), AT, 0);
  2339   %}
  2341   enc_class store_C0_enc (memory mem) %{
  2342      MacroAssembler _masm(&cbuf);
  2343      int  base = $mem$$base;
  2344      int  index = $mem$$index;
  2345      int  scale = $mem$$scale;
  2346      int  disp = $mem$$disp;
  2348      if( index != 0 ) {
  2349         if( Assembler::is_simm16(disp) ) { 
  2350            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  2351               if (scale == 0) {
  2352                  __ gsshx(R0, as_Register(base), as_Register(index), disp);
  2353               } else {
  2354                  __ dsll(AT, as_Register(index), scale);
  2355                  __ gsshx(R0, as_Register(base), AT, disp);
  2357            } else {
  2358               if (scale == 0) {
  2359                  __ addu(AT, as_Register(base), as_Register(index));
  2360               } else {
  2361                  __ dsll(AT, as_Register(index), scale);
  2362                  __ addu(AT, as_Register(base), AT);
  2364               __ sh(R0, AT, disp);
  2366         } else {
  2367            if (scale == 0) {
  2368               __ addu(AT, as_Register(base), as_Register(index));
  2369            } else {
  2370               __ dsll(AT, as_Register(index), scale);
  2371               __ addu(AT, as_Register(base), AT);
  2373            __ move(T9, disp);
  2374            if( UseLoongsonISA ) {
  2375               __ gsshx(R0, AT, T9, 0);
  2376            } else {
  2377               __ addu(AT, AT, T9); 
  2378               __ sh(R0, AT, 0);
  2381      } else {
  2382         if( Assembler::is_simm16(disp) ) { 
  2383            __ sh(R0, as_Register(base), disp);
  2384         } else {
  2385            __ move(T9, disp);   
  2386            if( UseLoongsonISA ) {
  2387               __ gsshx(R0, as_Register(base), T9, 0);
  2388            } else {
  2389               __ addu(AT, as_Register(base), T9); 
  2390               __ sh(R0, AT, 0);
  2394   %}
  2396   enc_class load_I_enc (mRegI dst, memory mem) %{
  2397      MacroAssembler _masm(&cbuf);
  2398      int  dst = $dst$$reg;
  2399      int  base = $mem$$base;
  2400      int  index = $mem$$index;
  2401      int  scale = $mem$$scale;
  2402      int  disp = $mem$$disp;
  2404      if( index != 0 ) {
  2405         if( Assembler::is_simm16(disp) ) { 
  2406            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  2407               if (scale == 0) {
  2408                  __ gslwx(as_Register(dst), as_Register(base), as_Register(index), disp);
  2409               } else {
  2410                  __ dsll(AT, as_Register(index), scale);
  2411                  __ gslwx(as_Register(dst), as_Register(base), AT, disp);
  2413            } else {
  2414               if (scale == 0) {
  2415                  __ addu(AT, as_Register(base), as_Register(index));
  2416               } else {
  2417                  __ dsll(AT, as_Register(index), scale);
  2418                  __ addu(AT, as_Register(base), AT);
  2420               __ lw(as_Register(dst), AT, disp);
  2422         } else {
  2423            if (scale == 0) {
  2424               __ addu(AT, as_Register(base), as_Register(index));
  2425            } else {
  2426               __ dsll(AT, as_Register(index), scale);
  2427               __ addu(AT, as_Register(base), AT);
  2429            __ move(T9, disp);
  2430            if( UseLoongsonISA ) {
  2431               __ gslwx(as_Register(dst), AT, T9, 0);
  2432            } else {
  2433               __ addu(AT, AT, T9); 
  2434               __ lw(as_Register(dst), AT, 0);
  2437      } else {
  2438         if( Assembler::is_simm16(disp) ) { 
  2439            __ lw(as_Register(dst), as_Register(base), disp);
  2440         } else {
  2441            __ move(T9, disp);   
  2442            if( UseLoongsonISA ) {
  2443               __ gslwx(as_Register(dst), as_Register(base), T9, 0);
  2444            } else {
  2445               __ addu(AT, as_Register(base), T9); 
  2446               __ lw(as_Register(dst), AT, 0);
  2450   %}
  2452   enc_class store_I_reg_enc (memory mem, mRegI src) %{
  2453      MacroAssembler _masm(&cbuf);
  2454      int  src = $src$$reg;
  2455      int  base = $mem$$base;
  2456      int  index = $mem$$index;
  2457      int  scale = $mem$$scale;
  2458      int  disp = $mem$$disp;
  2460      if( index != 0 ) {
  2461         if( Assembler::is_simm16(disp) ) { 
  2462            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  2463               if (scale == 0) {
  2464                  __ gsswx(as_Register(src), as_Register(base), as_Register(index), disp);
  2465               } else {
  2466                  __ dsll(AT, as_Register(index), scale);
  2467                  __ gsswx(as_Register(src), as_Register(base), AT, disp);
  2469            } else {
  2470               if (scale == 0) {
  2471                  __ addu(AT, as_Register(base), as_Register(index));
  2472               } else {
  2473                  __ dsll(AT, as_Register(index), scale);
  2474                  __ addu(AT, as_Register(base), AT);
  2476               __ sw(as_Register(src), AT, disp);
  2478         } else {
  2479            if (scale == 0) {
  2480               __ addu(AT, as_Register(base), as_Register(index));
  2481            } else {
  2482               __ dsll(AT, as_Register(index), scale);
  2483               __ addu(AT, as_Register(base), AT);
  2485            __ move(T9, disp);
  2486            if( UseLoongsonISA ) {
  2487               __ gsswx(as_Register(src), AT, T9, 0);
  2488            } else {
  2489               __ addu(AT, AT, T9); 
  2490               __ sw(as_Register(src), AT, 0);
  2493      } else {
  2494         if( Assembler::is_simm16(disp) ) { 
  2495            __ sw(as_Register(src), as_Register(base), disp);
  2496         } else {
  2497            __ move(T9, disp);   
  2498            if( UseLoongsonISA ) {
  2499               __ gsswx(as_Register(src), as_Register(base), T9, 0);
  2500            } else {
  2501               __ addu(AT, as_Register(base), T9); 
  2502               __ sw(as_Register(src), AT, 0);
  2506   %}
  2508   enc_class store_I_immI_enc (memory mem, immI src) %{
  2509      MacroAssembler _masm(&cbuf);
  2510      int  base = $mem$$base;
  2511      int  index = $mem$$index;
  2512      int  scale = $mem$$scale;
  2513      int  disp = $mem$$disp;
  2514      int value = $src$$constant;
  2516      if( index != 0 ) {
  2517         if ( UseLoongsonISA ) {
  2518            if ( Assembler::is_simm(disp, 8) ) {
  2519               if ( scale == 0 ) {
  2520                  if ( value == 0 ) {
  2521                     __ gsswx(R0, as_Register(base), as_Register(index), disp);
  2522                  } else {
  2523                     __ move(T9, value);
  2524                     __ gsswx(T9, as_Register(base), as_Register(index), disp);
  2526               } else {
  2527                  __ dsll(AT, as_Register(index), scale);
  2528                  if ( value == 0 ) {
  2529                     __ gsswx(R0, as_Register(base), AT, disp);
  2530                  } else {
  2531                     __ move(T9, value);
  2532                     __ gsswx(T9, as_Register(base), AT, disp);
  2535            } else if ( Assembler::is_simm16(disp) ) {
  2536                 if ( scale == 0 ) {
  2537                    __ daddu(AT, as_Register(base), as_Register(index));
  2538                    if ( value == 0 ) {
  2539                       __ sw(R0, AT, disp);
  2540                    } else {
  2541                       __ move(T9, value);
  2542 					  __ sw(T9, AT, disp);
  2544                 } else {
  2545 				   __ dsll(AT, as_Register(index), scale);
  2546                    __ daddu(AT, as_Register(base), AT);
  2547                    if ( value == 0 ) {
  2548                       __ sw(R0, AT, disp);
  2549                    } else {
  2550                       __ move(T9, value);
  2551                       __ sw(T9, AT, disp);
  2554 			} else {
  2555                  if ( scale == 0 ) {
  2556                     __ move(T9, disp);
  2557                     __ daddu(AT, as_Register(index), T9);
  2558                     if ( value ==0 ) {
  2559                        __ gsswx(R0, as_Register(base), AT, 0);
  2560                     } else {
  2561                        __ move(T9, value);
  2562                        __ gsswx(T9, as_Register(base), AT, 0);
  2564                  } else {
  2565                       __ dsll(AT, as_Register(index), scale);
  2566 					  __ move(T9, disp);
  2567 					  __ daddu(AT, AT, T9);
  2568                       if ( value == 0 ) {
  2569                          __ gsswx(R0, as_Register(base), AT, 0);
  2570 					  } else {
  2571 						 __ move(T9, value);
  2572 						 __ gsswx(T9, as_Register(base), AT, 0);
  2576 		} else { //not use loongson isa
  2577              if (scale == 0) {
  2578                 __ daddu(AT, as_Register(base), as_Register(index));
  2579              } else {
  2580                 __ dsll(AT, as_Register(index), scale);
  2581 			    __ daddu(AT, as_Register(base), AT);
  2583 	         if( Assembler::is_simm16(disp) ) { 
  2584                 if (value == 0) {
  2585                    __ sw(R0, AT, disp);
  2586                 } else {
  2587 		           __ move(T9, value);
  2588 			       __ sw(T9, AT, disp);
  2590 		     } else {
  2591                 if (value == 0) {
  2592 				   __ move(T9, disp);
  2593 			       __ daddu(AT, AT, T9); 
  2594 			       __ sw(R0, AT, 0);
  2595 			    } else {
  2596 			       __ move(T9, disp);
  2597 			       __ daddu(AT, AT, T9); 
  2598 			       __ move(T9, value);
  2599 			       __ sw(T9, AT, 0);
  2603      } else {
  2604 		 if ( UseLoongsonISA ) {
  2605 			if ( Assembler::is_simm16(disp) ) {
  2606 				if ( value == 0 ) {
  2607 					__ sw(R0, as_Register(base), disp);
  2608 				} else {
  2609 					__ move(AT, value);
  2610 					__ sw(AT, as_Register(base), disp);
  2612 			} else {
  2613 				__ move(T9, disp);
  2614 				if ( value == 0 ) {
  2615 					__ gsswx(R0, as_Register(base), T9, 0);
  2616 				} else {
  2617 					__ move(AT, value);
  2618 					__ gsswx(AT, as_Register(base), T9, 0);
  2621 		 } else {
  2622 		    if( Assembler::is_simm16(disp) ) { 
  2623 			   if (value == 0) {
  2624 		          __ sw(R0, as_Register(base), disp);
  2625 	           } else {
  2626 	              __ move(AT, value);
  2627 				  __ sw(AT, as_Register(base), disp);
  2629 		    } else {
  2630 	           if (value == 0) {
  2631 	              __ move(T9, disp);   
  2632 				  __ daddu(AT, as_Register(base), T9); 
  2633 			      __ sw(R0, AT, 0);
  2634 		      } else {
  2635 			      __ move(T9, disp);   
  2636 		          __ daddu(AT, as_Register(base), T9); 
  2637 				  __ move(T9, value);
  2638 			      __ sw(T9, AT, 0);
  2643   %}
  2645   enc_class load_N_enc (mRegN dst, memory mem) %{
  2646      MacroAssembler _masm(&cbuf);
  2647      int  dst = $dst$$reg;
  2648      int  base = $mem$$base;
  2649      int  index = $mem$$index;
  2650      int  scale = $mem$$scale;
  2651      int  disp = $mem$$disp;
  2652 	 relocInfo::relocType disp_reloc = $mem->disp_reloc();
  2653 	 assert(disp_reloc == relocInfo::none, "cannot have disp");
  2655      if( index != 0 ) {
  2656         if (scale == 0) {
  2657            __ daddu(AT, as_Register(base), as_Register(index));
  2658         } else {
  2659            __ dsll(AT, as_Register(index), scale);
  2660            __ daddu(AT, as_Register(base), AT);
  2662         if( Assembler::is_simm16(disp) ) { 
  2663            __ lwu(as_Register(dst), AT, disp);
  2664         } else {
  2665            __ set64(T9, disp);
  2666            __ daddu(AT, AT, T9);
  2667            __ lwu(as_Register(dst), AT, 0);
  2669      } else {
  2670         if( Assembler::is_simm16(disp) ) { 
  2671            __ lwu(as_Register(dst), as_Register(base), disp);
  2672         } else {
  2673            __ set64(T9, disp);   
  2674            __ daddu(AT, as_Register(base), T9);
  2675            __ lwu(as_Register(dst), AT, 0);
  2679   %}
  2682   enc_class load_P_enc (mRegP dst, memory mem) %{
  2683      MacroAssembler _masm(&cbuf);
  2684      int  dst = $dst$$reg;
  2685      int  base = $mem$$base;
  2686      int  index = $mem$$index;
  2687      int  scale = $mem$$scale;
  2688      int  disp = $mem$$disp;
  2689 	 relocInfo::relocType disp_reloc = $mem->disp_reloc();
  2690 	 assert(disp_reloc == relocInfo::none, "cannot have disp");
  2692      if( index != 0 ) {
  2693         if ( UseLoongsonISA ) {
  2694            if ( Assembler::is_simm(disp, 8) ) {
  2695               if ( scale != 0 ) {
  2696                  __ dsll(AT, as_Register(index), scale);
  2697                  __ gsldx(as_Register(dst), as_Register(base), AT, disp);
  2698               } else {
  2699                  __ gsldx(as_Register(dst), as_Register(base), as_Register(index), disp);
  2701            } else if ( Assembler::is_simm16(disp) ){
  2702               if ( scale != 0 ) {
  2703                  __ dsll(AT, as_Register(index), scale);
  2704                  __ daddu(AT, AT, as_Register(base));
  2705               } else {
  2706                  __ daddu(AT, as_Register(index), as_Register(base));
  2708               __ ld(as_Register(dst), AT, disp);
  2709            } else {
  2710                 if ( scale != 0 ) {
  2711                    __ dsll(AT, as_Register(index), scale);
  2712                    __ move(T9, disp);
  2713                    __ daddu(AT, AT, T9);
  2714                 } else {
  2715                    __ move(T9, disp);
  2716                    __ daddu(AT, as_Register(index), T9);
  2718                 __ gsldx(as_Register(dst), as_Register(base), AT, 0);
  2720 	    } else { //not use loongson isa
  2721              if (scale == 0) {
  2722                 __ daddu(AT, as_Register(base), as_Register(index));
  2723              } else {
  2724                 __ dsll(AT, as_Register(index), scale);
  2725                 __ daddu(AT, as_Register(base), AT);
  2727              if( Assembler::is_simm16(disp) ) { 
  2728                 __ ld(as_Register(dst), AT, disp);
  2729              } else {
  2730                 __ set64(T9, disp);
  2731                 __ daddu(AT, AT, T9);
  2732                 __ ld(as_Register(dst), AT, 0);
  2735      } else {
  2736 	      if ( UseLoongsonISA ) {
  2737 	         if ( Assembler::is_simm16(disp) ){
  2738 	            __ ld(as_Register(dst), as_Register(base), disp);
  2739 	         } else {
  2740 	            __ set64(T9, disp);
  2741  	            __ gsldx(as_Register(dst), as_Register(base), T9, 0);
  2743 	      } else { //not use loongson isa
  2744 	         if( Assembler::is_simm16(disp) ) { 
  2745                 __ ld(as_Register(dst), as_Register(base), disp);
  2746              } else {
  2747                 __ set64(T9, disp);   
  2748                 __ daddu(AT, as_Register(base), T9);
  2749                 __ ld(as_Register(dst), AT, 0);
  2753 //     if( disp_reloc != relocInfo::none) __ ld(as_Register(dst), as_Register(dst), 0);
  2754   %}
  2756   enc_class store_P_reg_enc (memory mem, mRegP src) %{
  2757      MacroAssembler _masm(&cbuf);
  2758      int  src = $src$$reg;
  2759      int  base = $mem$$base;
  2760      int  index = $mem$$index;
  2761      int  scale = $mem$$scale;
  2762      int  disp = $mem$$disp;
  2764      if( index != 0 ) {
  2765 	    if ( UseLoongsonISA ){
  2766 	       if ( Assembler::is_simm(disp, 8) ) {
  2767 	          if ( scale == 0 ) {
  2768 		         __ gssdx(as_Register(src), as_Register(base), as_Register(index), disp);
  2769 	          } else {
  2770 		         __ dsll(AT, as_Register(index), scale);
  2771         	     __ gssdx(as_Register(src), as_Register(base), AT, disp);
  2773 	       } else if ( Assembler::is_simm16(disp) ) {
  2774 	          if ( scale == 0 ) {
  2775 		         __ daddu(AT, as_Register(base), as_Register(index));
  2776 	          } else {
  2777                  __ dsll(AT, as_Register(index), scale);
  2778                  __ daddu(AT, as_Register(base), AT);
  2780               __ sd(as_Register(src), AT, disp);
  2781 	       } else {
  2782 	          if ( scale == 0 ) { 
  2783                  __ move(T9, disp);
  2784                  __ daddu(AT, as_Register(index), T9);
  2785               } else {
  2786                  __ dsll(AT, as_Register(index), scale);
  2787                  __ move(T9, disp);
  2788                  __ daddu(AT, AT, T9);
  2790               __ gssdx(as_Register(src), as_Register(base), AT, 0); 
  2792 	    } else { //not use loongson isa
  2793            if (scale == 0) {
  2794               __ daddu(AT, as_Register(base), as_Register(index));
  2795            } else {
  2796               __ dsll(AT, as_Register(index), scale);
  2797               __ daddu(AT, as_Register(base), AT);
  2799            if( Assembler::is_simm16(disp) ) { 
  2800               __ sd(as_Register(src), AT, disp);
  2801            } else {
  2802               __ move(T9, disp);
  2803               __ daddu(AT, AT, T9); 
  2804               __ sd(as_Register(src), AT, 0);
  2807      } else {
  2808           if ( UseLoongsonISA ) {
  2809              if ( Assembler::is_simm16(disp) ) {
  2810 	            __ sd(as_Register(src), as_Register(base), disp);
  2811 	         } else {
  2812 	            __ move(T9, disp);
  2813                 __ gssdx(as_Register(src), as_Register(base), T9, 0);
  2815 	      } else {
  2816              if( Assembler::is_simm16(disp) ) { 
  2817                  __ sd(as_Register(src), as_Register(base), disp);
  2818              } else {
  2819                  __ move(T9, disp);   
  2820                  __ daddu(AT, as_Register(base), T9); 
  2821                  __ sd(as_Register(src), AT, 0);
  2825   %}
  2827   enc_class store_N_reg_enc (memory mem, mRegN src) %{
  2828      MacroAssembler _masm(&cbuf);
  2829      int  src = $src$$reg;
  2830      int  base = $mem$$base;
  2831      int  index = $mem$$index;
  2832      int  scale = $mem$$scale;
  2833      int  disp = $mem$$disp;
  2835      if( index != 0 ) {
  2836         if ( UseLoongsonISA ){
  2837 	       if ( Assembler::is_simm(disp, 8) ) {
  2838               if ( scale == 0 ) {
  2839 	             __ gsswx(as_Register(src), as_Register(base), as_Register(index), disp);
  2840 	          } else {
  2841                  __ dsll(AT, as_Register(index), scale);
  2842                  __ gsswx(as_Register(src), as_Register(base), AT, disp);
  2844 	       } else if ( Assembler::is_simm16(disp) ) {
  2845               if ( scale == 0 ) {
  2846                  __ daddu(AT, as_Register(base), as_Register(index));
  2847 	          } else {
  2848 		         __ dsll(AT, as_Register(index), scale);
  2849 		         __ daddu(AT, as_Register(base), AT);
  2851  	          __ sw(as_Register(src), AT, disp);
  2852 	       } else {
  2853 	          if ( scale == 0 ) {
  2854 	             __ move(T9, disp);
  2855                  __ daddu(AT, as_Register(index), T9);
  2856 	          } else {
  2857                  __ dsll(AT, as_Register(index), scale);
  2858 	 	         __ move(T9, disp);
  2859                  __ daddu(AT, AT, T9);
  2861 	          __ gsswx(as_Register(src), as_Register(base), AT, 0);
  2863 	    } else { //not use loongson isa
  2864 	       if (scale == 0) {
  2865               __ daddu(AT, as_Register(base), as_Register(index));
  2866            } else {
  2867               __ dsll(AT, as_Register(index), scale);
  2868               __ daddu(AT, as_Register(base), AT);
  2870            if( Assembler::is_simm16(disp) ) { 
  2871               __ sw(as_Register(src), AT, disp);
  2872            } else {
  2873               __ move(T9, disp);
  2874               __ daddu(AT, AT, T9);
  2875               __ sw(as_Register(src), AT, 0);
  2878      } else {
  2879         if ( UseLoongsonISA ) {
  2880            if ( Assembler::is_simm16(disp) ) {
  2881 	          __ sw(as_Register(src), as_Register(base), disp);
  2882 	       } else {
  2883 	          __ move(T9, disp);
  2884 	          __ gsswx(as_Register(src), as_Register(base), T9, 0);
  2886  	    } else {
  2887            if( Assembler::is_simm16(disp) ) { 
  2888               __ sw(as_Register(src), as_Register(base), disp);
  2889            } else {
  2890               __ move(T9, disp);   
  2891               __ daddu(AT, as_Register(base), T9); 
  2892               __ sw(as_Register(src), AT, 0);
  2896   %}
  2898   enc_class store_P_immP0_enc (memory mem) %{
  2899      MacroAssembler _masm(&cbuf);
  2900      int  base = $mem$$base;
  2901      int  index = $mem$$index;
  2902      int  scale = $mem$$scale;
  2903      int  disp = $mem$$disp;
  2905      if( index != 0 ) {
  2906         if (scale == 0) {
  2907            if( Assembler::is_simm16(disp) ) { 
  2908               if (UseLoongsonISA && Assembler::is_simm(disp, 8)) {
  2909                 __ gssdx(R0, as_Register(base), as_Register(index), disp);
  2910               } else {
  2911                 __ daddu(AT, as_Register(base), as_Register(index));
  2912                 __ sd(R0, AT, disp);
  2914            } else {
  2915               __ daddu(AT, as_Register(base), as_Register(index));
  2916               __ move(T9, disp);
  2917               if(UseLoongsonISA) {
  2918                 __ gssdx(R0, AT, T9, 0);
  2919               } else {
  2920                 __ daddu(AT, AT, T9); 
  2921                 __ sd(R0, AT, 0);
  2924         } else {
  2925            __ dsll(AT, as_Register(index), scale);
  2926            if( Assembler::is_simm16(disp) ) { 
  2927               if (UseLoongsonISA && Assembler::is_simm(disp, 8)) {
  2928                 __ gssdx(R0, as_Register(base), AT, disp);
  2929               } else {
  2930                 __ daddu(AT, as_Register(base), AT);
  2931                 __ sd(R0, AT, disp);
  2933            } else {
  2934               __ daddu(AT, as_Register(base), AT);
  2935               __ move(T9, disp);
  2936               if (UseLoongsonISA) {
  2937                 __ gssdx(R0, AT, T9, 0);
  2938               } else {
  2939                 __ daddu(AT, AT, T9); 
  2940                 __ sd(R0, AT, 0);
  2944      } else {
  2945         if( Assembler::is_simm16(disp) ) { 
  2946            __ sd(R0, as_Register(base), disp);
  2947         } else {
  2948            __ move(T9, disp);   
  2949            if (UseLoongsonISA) {
  2950              __ gssdx(R0, as_Register(base), T9, 0);
  2951            } else {
  2952              __ daddu(AT, as_Register(base), T9); 
  2953              __ sd(R0, AT, 0);
  2957   %}
  2960   enc_class storeImmN0_enc(memory mem, ImmN0 src) %{
  2961      MacroAssembler _masm(&cbuf);
  2962      int  base = $mem$$base;
  2963      int  index = $mem$$index;
  2964      int  scale = $mem$$scale;
  2965      int  disp = $mem$$disp;
  2967 	 if(index!=0){
  2968                  if (scale == 0) {
  2969                     __ daddu(AT, as_Register(base), as_Register(index));
  2970                  } else {
  2971                     __ dsll(AT, as_Register(index), scale);
  2972                     __ daddu(AT, as_Register(base), AT);
  2975 		 if( Assembler::is_simm16(disp) ) { 
  2976 			 __ sw(R0, AT, disp);
  2977 		 } else {
  2978 			 __ move(T9, disp);
  2979 			 __ daddu(AT, AT, T9); 
  2980 			 __ sw(R0, AT, 0);
  2983      else {
  2984 		 if( Assembler::is_simm16(disp) ) { 
  2985 			 __ sw(R0, as_Register(base), disp);
  2986 		 } else {
  2987 			 __ move(T9, disp);
  2988 			 __ daddu(AT, as_Register(base), T9); 
  2989 			 __ sw(R0, AT, 0);
  2992   %} 
  2994   enc_class load_L_enc (mRegL dst, memory mem) %{
  2995      MacroAssembler _masm(&cbuf);
  2996      int  base = $mem$$base;
  2997      int  index = $mem$$index;
  2998      int  scale = $mem$$scale;
  2999      int  disp = $mem$$disp;
  3000      Register  dst_reg = as_Register($dst$$reg);
  3002      /*********************2013/03/27**************************
  3003       * Jin: $base may contain a null object.
  3004       * Server JIT force the exception_offset to be the pos of 
  3005       * the first instruction.
  3006       * I insert such a 'null_check' at the beginning.
  3007       *******************************************************/
  3009      __ lw(AT, as_Register(base), 0);
  3011      /*********************2012/10/04**************************
  3012       * Error case found in SortTest
  3013       * 337   b   java.util.Arrays::sort1 (401 bytes)
  3014       * B73:
  3015       *       d34     lw    T4.lo, [T4 + #16]   #@loadL-lo
  3016       *               lw    T4.hi, [T4 + #16]+4 #@loadL-hi
  3018       * The original instructions generated here are :
  3019       *       __ lw(dst_lo, as_Register(base), disp);
  3020       *       __ lw(dst_hi, as_Register(base), disp + 4);
  3021       *******************************************************/
  3023      if( index != 0 ) {
  3024         if (scale == 0) {
  3025            __ daddu(AT, as_Register(base), as_Register(index));
  3026         } else {
  3027            __ dsll(AT, as_Register(index), scale);
  3028            __ daddu(AT, as_Register(base), AT);
  3030         if( Assembler::is_simm16(disp) ) { 
  3031            __ ld(dst_reg, AT, disp);
  3032         } else {
  3033            __ move(T9, disp);
  3034            __ daddu(AT, AT, T9); 
  3035            __ ld(dst_reg, AT, 0);
  3037      } else {
  3038         if( Assembler::is_simm16(disp) ) { 
  3039            __ move(AT, as_Register(base));
  3040            __ ld(dst_reg, AT, disp);
  3041         } else {
  3042            __ move(T9, disp);   
  3043            __ daddu(AT, as_Register(base), T9); 
  3044            __ ld(dst_reg, AT, 0);
  3047   %}
  3049   enc_class store_L_reg_enc (memory mem, mRegL src) %{
  3050      MacroAssembler _masm(&cbuf);
  3051      int  base = $mem$$base;
  3052      int  index = $mem$$index;
  3053      int  scale = $mem$$scale;
  3054      int  disp = $mem$$disp;
  3055      Register  src_reg = as_Register($src$$reg);
  3057      if( index != 0 ) {
  3058         if (scale == 0) {
  3059            __ daddu(AT, as_Register(base), as_Register(index));
  3060         } else {
  3061            __ dsll(AT, as_Register(index), scale);
  3062            __ daddu(AT, as_Register(base), AT);
  3064         if( Assembler::is_simm16(disp) ) { 
  3065            __ sd(src_reg, AT, disp);
  3066         } else {
  3067            __ move(T9, disp);
  3068            __ daddu(AT, AT, T9); 
  3069            __ sd(src_reg, AT, 0);
  3071      } else {
  3072         if( Assembler::is_simm16(disp) ) { 
  3073            __ move(AT, as_Register(base));
  3074            __ sd(src_reg, AT, disp);
  3075         } else {
  3076            __ move(T9, disp);   
  3077            __ daddu(AT, as_Register(base), T9); 
  3078            __ sd(src_reg, AT, 0);
  3081   %}
  3083   enc_class store_L_immL0_enc (memory mem, immL0 src) %{
  3084      MacroAssembler _masm(&cbuf);
  3085      int  base = $mem$$base;
  3086      int  index = $mem$$index;
  3087      int  scale = $mem$$scale;
  3088      int  disp = $mem$$disp;
  3090      if( index != 0 ) {
  3091         if (scale == 0) {
  3092            __ daddu(AT, as_Register(base), as_Register(index));
  3093         } else {
  3094            __ dsll(AT, as_Register(index), scale);
  3095            __ daddu(AT, as_Register(base), AT);
  3097         if( Assembler::is_simm16(disp) ) { 
  3098            __ sd(R0, AT, disp);
  3099         } else {
  3100            __ move(T9, disp);
  3101            __ addu(AT, AT, T9); 
  3102            __ sd(R0, AT, 0);
  3104      } else {
  3105         if( Assembler::is_simm16(disp) ) { 
  3106            __ move(AT, as_Register(base));
  3107            __ sd(R0, AT, disp);
  3108         } else {
  3109            __ move(T9, disp);   
  3110            __ addu(AT, as_Register(base), T9); 
  3111            __ sd(R0, AT, 0);
  3114   %}
  3116   enc_class load_F_enc (regF dst, memory mem) %{
  3117      MacroAssembler _masm(&cbuf);
  3118      int  base = $mem$$base;
  3119      int  index = $mem$$index;
  3120      int  scale = $mem$$scale;
  3121      int  disp = $mem$$disp;
  3122      FloatRegister dst = $dst$$FloatRegister;
  3124      if( index != 0 ) {
  3125         if( Assembler::is_simm16(disp) ) { 
  3126            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3127               if (scale == 0) {
  3128                  __ gslwxc1(dst, as_Register(base), as_Register(index), disp);
  3129               } else {
  3130                  __ dsll(AT, as_Register(index), scale);
  3131                  __ gslwxc1(dst, as_Register(base), AT, disp);
  3133            } else {
  3134               if (scale == 0) {
  3135                  __ daddu(AT, as_Register(base), as_Register(index));
  3136               } else {
  3137                  __ dsll(AT, as_Register(index), scale);
  3138                  __ daddu(AT, as_Register(base), AT);
  3140               __ lwc1(dst, AT, disp);
  3142         } else {
  3143            if (scale == 0) {
  3144               __ daddu(AT, as_Register(base), as_Register(index));
  3145            } else {
  3146               __ dsll(AT, as_Register(index), scale);
  3147               __ daddu(AT, as_Register(base), AT);
  3149            __ move(T9, disp);
  3150            if( UseLoongsonISA ) {
  3151               __ gslwxc1(dst, AT, T9, 0);
  3152            } else {
  3153               __ daddu(AT, AT, T9); 
  3154               __ lwc1(dst, AT, 0);
  3157      } else {
  3158         if( Assembler::is_simm16(disp) ) { 
  3159            __ lwc1(dst, as_Register(base), disp);
  3160         } else {
  3161            __ move(T9, disp);   
  3162            if( UseLoongsonISA ) {
  3163               __ gslwxc1(dst, as_Register(base), T9, 0);
  3164            } else {
  3165               __ daddu(AT, as_Register(base), T9); 
  3166               __ lwc1(dst, AT, 0);
  3170   %}
  3172   enc_class store_F_reg_enc (memory mem, regF src) %{
  3173      MacroAssembler _masm(&cbuf);
  3174      int  base = $mem$$base;
  3175      int  index = $mem$$index;
  3176      int  scale = $mem$$scale;
  3177      int  disp = $mem$$disp;
  3178      FloatRegister src = $src$$FloatRegister;
  3180      if( index != 0 ) {
  3181         if( Assembler::is_simm16(disp) ) { 
  3182            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3183               if (scale == 0) {
  3184                  __ gsswxc1(src, as_Register(base), as_Register(index), disp);
  3185               } else {
  3186                  __ dsll(AT, as_Register(index), scale);
  3187                  __ gsswxc1(src, as_Register(base), AT, disp);
  3189            } else {
  3190               if (scale == 0) {
  3191                  __ daddu(AT, as_Register(base), as_Register(index));
  3192               } else {
  3193                  __ dsll(AT, as_Register(index), scale);
  3194                  __ daddu(AT, as_Register(base), AT);
  3196               __ swc1(src, AT, disp);
  3198         } else {
  3199            if (scale == 0) {
  3200               __ daddu(AT, as_Register(base), as_Register(index));
  3201            } else {
  3202               __ dsll(AT, as_Register(index), scale);
  3203               __ daddu(AT, as_Register(base), AT);
  3205            __ move(T9, disp);
  3206            if( UseLoongsonISA ) {
  3207               __ gsswxc1(src, AT, T9, 0);
  3208            } else {
  3209               __ daddu(AT, AT, T9); 
  3210               __ swc1(src, AT, 0);
  3213      } else {
  3214         if( Assembler::is_simm16(disp) ) { 
  3215            __ swc1(src, as_Register(base), disp);
  3216         } else {
  3217            __ move(T9, disp);   
  3218            if( UseLoongsonISA ) {
  3219               __ gslwxc1(src, as_Register(base), T9, 0);
  3220            } else {
  3221               __ daddu(AT, as_Register(base), T9); 
  3222               __ swc1(src, AT, 0);
  3226   %}
  3228   enc_class load_D_enc (regD dst, memory mem) %{
  3229      MacroAssembler _masm(&cbuf);
  3230      int  base = $mem$$base;
  3231      int  index = $mem$$index;
  3232      int  scale = $mem$$scale;
  3233      int  disp = $mem$$disp;
  3234      FloatRegister dst_reg = as_FloatRegister($dst$$reg);
  3236      if( index != 0 ) {
  3237         if( Assembler::is_simm16(disp) ) { 
  3238            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3239               if (scale == 0) {
  3240                  __ gsldxc1(dst_reg, as_Register(base), as_Register(index), disp);
  3241               } else {
  3242                  __ dsll(AT, as_Register(index), scale);
  3243                  __ gsldxc1(dst_reg, as_Register(base), AT, disp);
  3245            } else {
  3246               if (scale == 0) {
  3247                  __ daddu(AT, as_Register(base), as_Register(index));
  3248               } else {
  3249                  __ dsll(AT, as_Register(index), scale);
  3250                  __ daddu(AT, as_Register(base), AT);
  3252               __ ldc1(dst_reg, AT, disp);
  3254         } else {
  3255            if (scale == 0) {
  3256               __ daddu(AT, as_Register(base), as_Register(index));
  3257            } else {
  3258               __ dsll(AT, as_Register(index), scale);
  3259               __ daddu(AT, as_Register(base), AT);
  3261            __ move(T9, disp);
  3262            if( UseLoongsonISA ) {
  3263               __ gsldxc1(dst_reg, AT, T9, 0);
  3264            } else {
  3265               __ addu(AT, AT, T9); 
  3266               __ ldc1(dst_reg, AT, 0);
  3269      } else {
  3270         if( Assembler::is_simm16(disp) ) { 
  3271            __ ldc1(dst_reg, as_Register(base), disp);
  3272         } else {
  3273            __ move(T9, disp);   
  3274            if( UseLoongsonISA ) {
  3275               __ gsldxc1(dst_reg, as_Register(base), T9, 0);
  3276            } else {
  3277               __ addu(AT, as_Register(base), T9); 
  3278               __ ldc1(dst_reg, AT, 0);
  3282   %}
  3284   enc_class store_D_reg_enc (memory mem, regD src) %{
  3285      MacroAssembler _masm(&cbuf);
  3286      int  base = $mem$$base;
  3287      int  index = $mem$$index;
  3288      int  scale = $mem$$scale;
  3289      int  disp = $mem$$disp;
  3290      FloatRegister src_reg = as_FloatRegister($src$$reg);
  3292      if( index != 0 ) {
  3293         if( Assembler::is_simm16(disp) ) { 
  3294            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3295               if (scale == 0) {
  3296                  __ gssdxc1(src_reg, as_Register(base), as_Register(index), disp);
  3297               } else {
  3298                  __ dsll(AT, as_Register(index), scale);
  3299                  __ gssdxc1(src_reg, as_Register(base), AT, disp);
  3301            } else {
  3302               if (scale == 0) {
  3303                  __ daddu(AT, as_Register(base), as_Register(index));
  3304               } else {
  3305                  __ dsll(AT, as_Register(index), scale);
  3306                  __ daddu(AT, as_Register(base), AT);
  3308               __ sdc1(src_reg, AT, disp);
  3310         } else {
  3311            if (scale == 0) {
  3312               __ daddu(AT, as_Register(base), as_Register(index));
  3313            } else {
  3314               __ dsll(AT, as_Register(index), scale);
  3315               __ daddu(AT, as_Register(base), AT);
  3317            __ move(T9, disp);
  3318            if( UseLoongsonISA ) {
  3319               __ gssdxc1(src_reg, AT, T9, 0);
  3320            } else {
  3321               __ addu(AT, AT, T9); 
  3322               __ sdc1(src_reg, AT, 0);
  3325      } else {
  3326         if( Assembler::is_simm16(disp) ) { 
  3327            __ sdc1(src_reg, as_Register(base), disp);
  3328         } else {
  3329            __ move(T9, disp);   
  3330            if( UseLoongsonISA ) {
  3331               __ gssdxc1(src_reg, as_Register(base), T9, 0);
  3332            } else {
  3333               __ addu(AT, as_Register(base), T9); 
  3334               __ sdc1(src_reg, AT, 0);
  3338   %}
  3340   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  3341       MacroAssembler _masm(&cbuf);
  3342     // This is the instruction starting address for relocation info.
  3343     __ block_comment("Java_To_Runtime");
  3344     cbuf.set_insts_mark();
  3345     __ relocate(relocInfo::runtime_call_type);
  3347     __ patchable_call((address)$meth$$method);
  3348     %}
  3350   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  3351     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  3352     // who we intended to call.
  3353     MacroAssembler _masm(&cbuf);
  3354     cbuf.set_insts_mark();
  3356     if ( !_method ) {
  3357       __ relocate(relocInfo::runtime_call_type);
  3358     } else if(_optimized_virtual) {
  3359       __ relocate(relocInfo::opt_virtual_call_type);
  3360     } else {
  3361       __ relocate(relocInfo::static_call_type);
  3364     __ patchable_call((address)($meth$$method));
  3365     if( _method ) {  // Emit stub for static call
  3366       emit_java_to_interp(cbuf);
  3368   %}
  3371 /*
  3372  * [Ref: LIR_Assembler::ic_call() ]
  3373  */
  3374 enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  3375     MacroAssembler _masm(&cbuf);
  3376 	__ block_comment("Java_Dynamic_Call");
  3377 	__ ic_call((address)$meth$$method);
  3378   %}
  3381   enc_class Set_Flags_After_Fast_Lock_Unlock(FlagsReg cr) %{
  3382     Register flags = $cr$$Register;
  3383     Label  L;
  3385     MacroAssembler _masm(&cbuf);
  3387     __ addu(flags, R0, R0);    
  3388     __ beq(AT, R0, L);
  3389     __ delayed()->nop();
  3390     __ move(flags, 0xFFFFFFFF);
  3391     __ bind(L);
  3392   %}
  3394   enc_class enc_PartialSubtypeCheck(mRegP result, mRegP sub, mRegP super, mRegI tmp) %{
  3395     Register result = $result$$Register;
  3396     Register sub    = $sub$$Register;
  3397     Register super  = $super$$Register;
  3398     Register length = $tmp$$Register;
  3399     Register tmp    = T9;
  3400     Label miss;
  3402     /* 2012/9/28 Jin: result may be the same as sub
  3403      *    47c   B40: #    B21 B41 <- B20  Freq: 0.155379
  3404      *    47c     partialSubtypeCheck result=S1, sub=S1, super=S3, length=S0
  3405      *    4bc     mov   S2, NULL #@loadConP
  3406      *    4c0     beq   S1, S2, B21 #@branchConP  P=0.999999 C=-1.000000
  3407     */
  3408     MacroAssembler _masm(&cbuf);
  3409     Label done;
  3410     __ check_klass_subtype_slow_path(sub, super, length, tmp,
  3411                                      NULL, &miss,
  3412                                      /*set_cond_codes:*/ true);
  3413     /* 2013/7/22 Jin: Refer to X86_64's RDI */
  3414     __ move(result, 0);
  3415     __ b(done);
  3416     __ nop();
  3418     __ bind(miss);
  3419     __ move(result, 1);
  3420     __ bind(done);
  3421   %}
  3423 %}
  3426 //---------MIPS FRAME--------------------------------------------------------------
  3427 // Definition of frame structure and management information.
  3428 //
  3429 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3430 //                             |   (to get allocators register number
  3431 //  G  Owned by    |        |  v    add SharedInfo::stack0)
  3432 //  r   CALLER     |        |
  3433 //  o     |        +--------+      pad to even-align allocators stack-slot 
  3434 //  w     V        |  pad0  |        numbers; owned by CALLER
  3435 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3436 //  h     ^        |   in   |  5   
  3437 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3438 //  |     |    old |        |  3
  3439 //  |     |     SP-+--------+----> Matcher::_old_SP, even aligned
  3440 //  v     |        |  ret   |  3   return address
  3441 //     Owned by    +--------+
  3442 //      Self       |  pad2  |  2   pad to align old SP
  3443 //        |        +--------+  1
  3444 //        |        | locks  |  0
  3445 //        |        +--------+----> SharedInfo::stack0, even aligned  
  3446 //        |        |  pad1  | 11   pad to align new SP
  3447 //        |        +--------+
  3448 //        |        |        | 10
  3449 //        |        | spills |  9   spills
  3450 //        V        |        |  8   (pad0 slot for callee)
  3451 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3452 //        ^        |  out   |  7   
  3453 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3454 //   Owned by  new |				|
  3455 //		Callee    SP-+--------+----> Matcher::_new_SP, even aligned
  3456 //           			 |        |
  3457 //
  3458 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is 
  3459 //         known from SELF's arguments and the Java calling convention.
  3460 //         Region 6-7 is determined per call site.
  3461 // Note 2: If the calling convention leaves holes in the incoming argument 
  3462 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3463 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3464 //         incoming area, as the Java calling convention is completely under
  3465 //         the control of the AD file.  Doubles can be sorted and packed to
  3466 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3467 //         varargs C calling conventions.
  3468 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is 
  3469 //         even aligned with pad0 as needed.
  3470 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3471 //         region 6-11 is even aligned; it may be padded out more so that
  3472 //         the region from SP to FP meets the minimum stack alignment.
  3473 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
  3474 //         alignment.  Region 11, pad1, may be dynamically extended so that
  3475 //         SP meets the minimum alignment.
  3478 frame %{
  3480   stack_direction(TOWARDS_LOW);
  3482   // These two registers define part of the calling convention 
  3483   // between compiled code and the interpreter.
  3484 	// SEE StartI2CNode::calling_convention & StartC2INode::calling_convention & StartOSRNode::calling_convention 
  3485 	// for more information. by yjl 3/16/2006
  3487   inline_cache_reg(T1);                // Inline Cache Register
  3488   interpreter_method_oop_reg(S3);      // Method Oop Register when calling interpreter
  3489  /*
  3490   inline_cache_reg(T1);          // Inline Cache Register or methodOop for I2C
  3491   interpreter_arg_ptr_reg(A0);         // Argument pointer for I2C adapters
  3492 */
  3494   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3495   cisc_spilling_operand_name(indOffset32);  
  3497   // Number of stack slots consumed by locking an object
  3498 	// generate Compile::sync_stack_slots
  3499 #ifdef _LP64
  3500   sync_stack_slots(2);
  3501 #else
  3502   sync_stack_slots(1);
  3503 #endif
  3505   frame_pointer(SP);
  3507   // Interpreter stores its frame pointer in a register which is 
  3508   // stored to the stack by I2CAdaptors.
  3509   // I2CAdaptors convert from interpreted java to compiled java.
  3511   interpreter_frame_pointer(FP);
  3513 	// generate Matcher::stack_alignment
  3514   stack_alignment(StackAlignmentInBytes);  //wordSize = sizeof(char*);            
  3516   // Number of stack slots between incoming argument block and the start of 
  3517   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3518   // EPILOG must remove this many slots.  Intel needs one slot for
  3519   // return address.
  3520 	// generate Matcher::in_preserve_stack_slots
  3521   //in_preserve_stack_slots(VerifyStackAtCalls + 2);  //Now VerifyStackAtCalls is defined as false ! Leave one stack slot for ra and fp
  3522   in_preserve_stack_slots(4);  //Now VerifyStackAtCalls is defined as false ! Leave two stack slots for ra and fp
  3524   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3525   // for calls to C.  Supports the var-args backing area for register parms.
  3526   varargs_C_out_slots_killed(0);
  3528   // The after-PROLOG location of the return address.  Location of
  3529   // return address specifies a type (REG or STACK) and a number
  3530   // representing the register number (i.e. - use a register name) or
  3531   // stack slot.
  3532   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  3533   // Otherwise, it is above the locks and verification slot and alignment word
  3534   //return_addr(STACK -1+ round_to(1+VerifyStackAtCalls+Compile::current()->sync()*Compile::current()->sync_stack_slots(),WordsPerLong));
  3535   return_addr(REG RA);
  3537   // Body of function which returns an integer array locating
  3538   // arguments either in registers or in stack slots.  Passed an array
  3539   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3540   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3541   // arguments for a CALLEE.  Incoming stack arguments are
  3542   // automatically biased by the preserve_stack_slots field above.
  3545 	// will generated to Matcher::calling_convention(OptoRegPair *sig, uint length, bool is_outgoing)
  3546 	// StartNode::calling_convention call this. by yjl 3/16/2006
  3547   calling_convention %{           
  3548     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3549   %}
  3554   // Body of function which returns an integer array locating
  3555   // arguments either in registers or in stack slots.  Passed an array
  3556   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3557   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3558   // arguments for a CALLEE.  Incoming stack arguments are
  3559   // automatically biased by the preserve_stack_slots field above.
  3562 	// SEE CallRuntimeNode::calling_convention for more information. by yjl 3/16/2006
  3563   c_calling_convention %{          
  3564    (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  3565   %}
  3568   // Location of C & interpreter return values
  3569 	// register(s) contain(s) return value for Op_StartI2C and Op_StartOSR. 
  3570 	// SEE Matcher::match. by yjl 3/16/2006
  3571   c_return_value %{
  3572     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3573                                /* -- , -- , Op_RegN, Op_RegI, Op_RegP, Op_RegF, Op_RegD, Op_RegL */
  3574     static int lo[Op_RegL+1] = { 0, 0, V0_num,       V0_num,       V0_num,       F0_num,       F0_num,    V0_num };
  3575     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, V0_H_num,     OptoReg::Bad, F0_H_num,  V0_H_num };
  3576     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3577   %}
  3579   // Location of return values
  3580 	// register(s) contain(s) return value for Op_StartC2I and Op_Start. 
  3581 	// SEE Matcher::match. by yjl 3/16/2006
  3583   return_value %{
  3584     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3585                                /* -- , -- , Op_RegN, Op_RegI, Op_RegP, Op_RegF, Op_RegD, Op_RegL */
  3586     static int lo[Op_RegL+1] = { 0, 0, V0_num,       V0_num,       V0_num,       F0_num,       F0_num,     V0_num };
  3587     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, V0_H_num,     OptoReg::Bad, F0_H_num,   V0_H_num};
  3588     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3589   %}
  3591 %}
  3593 //----------ATTRIBUTES---------------------------------------------------------
  3594 //----------Operand Attributes-------------------------------------------------
  3595 op_attrib op_cost(0);        // Required cost attribute
  3597 //----------Instruction Attributes---------------------------------------------
  3598 ins_attrib ins_cost(100);       // Required cost attribute
  3599 ins_attrib ins_size(32);         // Required size attribute (in bits)
  3600 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
  3601 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3602                                 // non-matching short branch variant of some
  3603                                                             // long branch?
  3604 ins_attrib ins_alignment(4);    // Required alignment attribute (must be a power of 2)
  3605                                 // specifies the alignment that some part of the instruction (not
  3606                                 // necessarily the start) requires.  If > 1, a compute_padding()
  3607                                 // function must be provided for the instruction
  3609 //----------OPERANDS-----------------------------------------------------------
  3610 // Operand definitions must precede instruction definitions for correct parsing
  3611 // in the ADLC because operands constitute user defined types which are used in
  3612 // instruction definitions.
  3614 // Vectors
  3615 operand vecD() %{
  3616   constraint(ALLOC_IN_RC(dbl_reg));
  3617   match(VecD);
  3619   format %{ %}
  3620   interface(REG_INTER);
  3621 %}
  3623 // Flags register, used as output of compare instructions
  3624 operand FlagsReg() %{
  3625   constraint(ALLOC_IN_RC(mips_flags));
  3626   match(RegFlags);
  3628   format %{ "EFLAGS" %}
  3629   interface(REG_INTER);
  3630 %}
  3632 //----------Simple Operands----------------------------------------------------
  3633 //TODO: Should we need to define some more special immediate number ?
  3634 // Immediate Operands
  3635 // Integer Immediate
  3636 operand immI() %{
  3637   match(ConI);
  3638   //TODO: should not match immI8 here LEE
  3639   match(immI8);
  3641   op_cost(20);
  3642   format %{ %}
  3643   interface(CONST_INTER);
  3644 %}
  3646 // Long Immediate 8-bit
  3647 operand immL8()
  3648 %{
  3649   predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
  3650   match(ConL);
  3652   op_cost(5);
  3653   format %{ %}
  3654   interface(CONST_INTER);
  3655 %}
  3657 // Constant for test vs zero
  3658 operand immI0() %{
  3659   predicate(n->get_int() == 0);
  3660   match(ConI);
  3662   op_cost(0);
  3663   format %{ %}
  3664   interface(CONST_INTER);
  3665 %}
  3667 // Constant for increment
  3668 operand immI1() %{
  3669   predicate(n->get_int() == 1);
  3670   match(ConI);
  3672   op_cost(0);
  3673   format %{ %}
  3674   interface(CONST_INTER);
  3675 %}
  3677 // Constant for decrement
  3678 operand immI_M1() %{
  3679   predicate(n->get_int() == -1);
  3680   match(ConI);
  3682   op_cost(0);
  3683   format %{ %}
  3684   interface(CONST_INTER);
  3685 %}
  3687 operand immI_MaxI() %{
  3688   predicate(n->get_int() == 2147483647);
  3689   match(ConI);
  3691   op_cost(0);
  3692   format %{ %}
  3693   interface(CONST_INTER);
  3694 %}
  3696 // Valid scale values for addressing modes
  3697 operand immI2() %{
  3698   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  3699   match(ConI);
  3701   format %{ %}
  3702   interface(CONST_INTER);
  3703 %}
  3705 operand immI8() %{
  3706   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  3707   match(ConI);
  3709   op_cost(5);
  3710   format %{ %}
  3711   interface(CONST_INTER);
  3712 %}
  3714 operand immI16() %{
  3715   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  3716   match(ConI);
  3718   op_cost(10);
  3719   format %{ %}
  3720   interface(CONST_INTER);
  3721 %}
  3723 // Constant for long shifts
  3724 operand immI_32() %{
  3725   predicate( n->get_int() == 32 );
  3726   match(ConI);
  3728   op_cost(0);
  3729   format %{ %}
  3730   interface(CONST_INTER);
  3731 %}
  3733 operand immI_63() %{
  3734   predicate( n->get_int() == 63 );
  3735   match(ConI);
  3737   op_cost(0);
  3738   format %{ %}
  3739   interface(CONST_INTER);
  3740 %}
  3742 operand immI_0_31() %{
  3743   predicate( n->get_int() >= 0 && n->get_int() <= 31 );
  3744   match(ConI);
  3746   op_cost(0);
  3747   format %{ %}
  3748   interface(CONST_INTER);
  3749 %}
  3751 // Operand for non-negtive integer mask
  3752 operand immI_nonneg_mask() %{
  3753   predicate( (n->get_int() >= 0) && (Assembler::is_int_mask(n->get_int()) != -1) );
  3754   match(ConI);
  3756   op_cost(0);
  3757   format %{ %}
  3758   interface(CONST_INTER);
  3759 %}
  3761 operand immI_32_63() %{
  3762   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  3763   match(ConI);
  3764   op_cost(0);
  3766   format %{ %}
  3767   interface(CONST_INTER);
  3768 %}
  3770 operand immI16_sub() %{
  3771   predicate((-32767 <= n->get_int()) && (n->get_int() <= 32768));
  3772   match(ConI);
  3774   op_cost(10);
  3775   format %{ %}
  3776   interface(CONST_INTER);
  3777 %}
  3779 operand immI_0_32767() %{
  3780   predicate( n->get_int() >= 0 && n->get_int() <= 32767 );
  3781   match(ConI);
  3782   op_cost(0);
  3784   format %{ %}
  3785   interface(CONST_INTER);
  3786 %}
  3788 operand immI_0_65535() %{
  3789   predicate( n->get_int() >= 0 && n->get_int() <= 65535 );
  3790   match(ConI);
  3791   op_cost(0);
  3793   format %{ %}
  3794   interface(CONST_INTER);
  3795 %}
  3797 operand immI_1() %{
  3798   predicate( n->get_int() == 1 );
  3799   match(ConI);
  3801   op_cost(0);
  3802   format %{ %}
  3803   interface(CONST_INTER);
  3804 %}
  3806 operand immI_2() %{
  3807   predicate( n->get_int() == 2 );
  3808   match(ConI);
  3810   op_cost(0);
  3811   format %{ %}
  3812   interface(CONST_INTER);
  3813 %}
  3815 operand immI_3() %{
  3816   predicate( n->get_int() == 3 );
  3817   match(ConI);
  3819   op_cost(0);
  3820   format %{ %}
  3821   interface(CONST_INTER);
  3822 %}
  3824 operand immI_7() %{
  3825   predicate( n->get_int() == 7 );
  3826   match(ConI);
  3828   format %{ %}
  3829   interface(CONST_INTER);
  3830 %}
  3832 // Immediates for special shifts (sign extend)
  3834 // Constants for increment
  3835 operand immI_16() %{
  3836   predicate( n->get_int() == 16 );
  3837   match(ConI);
  3839   format %{ %}
  3840   interface(CONST_INTER);
  3841 %}
  3843 operand immI_24() %{
  3844   predicate( n->get_int() == 24 );
  3845   match(ConI);
  3847   format %{ %}
  3848   interface(CONST_INTER);
  3849 %}
  3851 // Constant for byte-wide masking
  3852 operand immI_255() %{
  3853   predicate( n->get_int() == 255 );
  3854   match(ConI);
  3856   op_cost(0);
  3857   format %{ %}
  3858   interface(CONST_INTER);
  3859 %}
  3861 operand immI_65535() %{
  3862   predicate( n->get_int() == 65535 );
  3863   match(ConI);
  3865   op_cost(5);
  3866   format %{ %}
  3867   interface(CONST_INTER);
  3868 %}
  3870 operand immI_65536() %{
  3871   predicate( n->get_int() == 65536 );
  3872   match(ConI);
  3874   op_cost(5);
  3875   format %{ %}
  3876   interface(CONST_INTER);
  3877 %}
  3879 operand immI_M65536() %{
  3880   predicate( n->get_int() == -65536 );
  3881   match(ConI);
  3883   op_cost(5);
  3884   format %{ %}
  3885   interface(CONST_INTER);
  3886 %}
  3888 // Pointer Immediate
  3889 operand immP() %{
  3890   match(ConP);
  3892   op_cost(10);
  3893   format %{ %}
  3894   interface(CONST_INTER);
  3895 %}
  3897 // NULL Pointer Immediate
  3898 operand immP0() %{
  3899   predicate( n->get_ptr() == 0 );
  3900   match(ConP);
  3901   op_cost(0);
  3903   format %{ %}
  3904   interface(CONST_INTER);
  3905 %}
  3907 // Pointer Immediate: 64-bit
  3908 operand immP_set() %{
  3909   match(ConP);
  3911   op_cost(5);
  3912   // formats are generated automatically for constants and base registers
  3913   format %{ %}
  3914   interface(CONST_INTER);
  3915 %}
  3917 // Pointer Immediate: 64-bit
  3918 operand immP_load() %{
  3919   predicate(n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set64(n->get_ptr()) > 3));
  3920   match(ConP);
  3922   op_cost(5);
  3923   // formats are generated automatically for constants and base registers
  3924   format %{ %}
  3925   interface(CONST_INTER);
  3926 %}
  3928 // Pointer Immediate: 64-bit
  3929 operand immP_no_oop_cheap() %{
  3930   predicate(!n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set64(n->get_ptr()) <= 3));
  3931   match(ConP);
  3933   op_cost(5);
  3934   // formats are generated automatically for constants and base registers
  3935   format %{ %}
  3936   interface(CONST_INTER);
  3937 %}
  3939 // Pointer for polling page 
  3940 operand immP_poll() %{
  3941   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3942   match(ConP);
  3943   op_cost(5);
  3945   format %{ %}
  3946   interface(CONST_INTER);
  3947 %}
  3949 // Pointer Immediate
  3950 operand immN() %{
  3951   match(ConN);
  3953   op_cost(10);
  3954   format %{ %}
  3955   interface(CONST_INTER);
  3956 %}
  3958 operand immNKlass() %{
  3959   match(ConNKlass);
  3961   op_cost(10);
  3962   format %{ %}
  3963   interface(CONST_INTER);
  3964 %}
  3966 // NULL Pointer Immediate
  3967 operand immN0() %{
  3968   predicate(n->get_narrowcon() == 0);
  3969   match(ConN);
  3971   op_cost(5);
  3972   format %{ %}
  3973   interface(CONST_INTER);
  3974 %}
  3976 // Long Immediate
  3977 operand immL() %{
  3978   match(ConL);
  3980   op_cost(20);
  3981   format %{ %}
  3982   interface(CONST_INTER);
  3983 %}
  3985 // Long Immediate zero
  3986 operand immL0() %{
  3987   predicate( n->get_long() == 0L );
  3988   match(ConL);
  3989   op_cost(0);
  3991   format %{ %}
  3992   interface(CONST_INTER);
  3993 %}
  3995 operand immL7() %{
  3996   predicate( n->get_long() == 7L );
  3997   match(ConL);
  3998   op_cost(0);
  4000   format %{ %}
  4001   interface(CONST_INTER);
  4002 %}
  4004 operand immL_M1() %{
  4005   predicate( n->get_long() == -1L );
  4006   match(ConL);
  4007   op_cost(0);
  4009   format %{ %}
  4010   interface(CONST_INTER);
  4011 %}
  4013 // bit 0..2 zero
  4014 operand immL_M8() %{
  4015   predicate( n->get_long() == -8L );
  4016   match(ConL);
  4017   op_cost(0);
  4019   format %{ %}
  4020   interface(CONST_INTER);
  4021 %}
  4023 // bit 2 zero
  4024 operand immL_M5() %{
  4025   predicate( n->get_long() == -5L );
  4026   match(ConL);
  4027   op_cost(0);
  4029   format %{ %}
  4030   interface(CONST_INTER);
  4031 %}
  4033 // bit 1..2 zero
  4034 operand immL_M7() %{
  4035   predicate( n->get_long() == -7L );
  4036   match(ConL);
  4037   op_cost(0);
  4039   format %{ %}
  4040   interface(CONST_INTER);
  4041 %}
  4043 // bit 0..1 zero
  4044 operand immL_M4() %{
  4045   predicate( n->get_long() == -4L );
  4046   match(ConL);
  4047   op_cost(0);
  4049   format %{ %}
  4050   interface(CONST_INTER);
  4051 %}
  4053 // bit 3..6 zero
  4054 operand immL_M121() %{
  4055   predicate( n->get_long() == -121L );
  4056   match(ConL);
  4057   op_cost(0);
  4059   format %{ %}
  4060   interface(CONST_INTER);
  4061 %}
  4063 // Long immediate from 0 to 127.
  4064 // Used for a shorter form of long mul by 10.
  4065 operand immL_127() %{
  4066   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  4067   match(ConL);
  4068   op_cost(0);
  4070   format %{ %}
  4071   interface(CONST_INTER);
  4072 %}
  4074 // Operand for non-negtive long mask
  4075 operand immL_nonneg_mask() %{
  4076   predicate( (n->get_long() >= 0) && (Assembler::is_jlong_mask(n->get_long()) != -1) );
  4077   match(ConL);
  4079   op_cost(0);
  4080   format %{ %}
  4081   interface(CONST_INTER);
  4082 %}
  4084 operand immL_0_65535() %{
  4085   predicate( n->get_long() >= 0 && n->get_long() <= 65535 );
  4086   match(ConL);
  4087   op_cost(0);
  4089   format %{ %}
  4090   interface(CONST_INTER);
  4091 %}
  4093 // Long Immediate: cheap (materialize in <= 3 instructions)
  4094 operand immL_cheap() %{
  4095   predicate(MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  4096   match(ConL);
  4097   op_cost(0);
  4099   format %{ %}
  4100   interface(CONST_INTER);
  4101 %}
  4103 // Long Immediate: expensive (materialize in > 3 instructions)
  4104 operand immL_expensive() %{
  4105   predicate(MacroAssembler::insts_for_set64(n->get_long()) > 3);
  4106   match(ConL);
  4107   op_cost(0);
  4109   format %{ %}
  4110   interface(CONST_INTER);
  4111 %}
  4113 operand immL16() %{
  4114   predicate((-32768 <= n->get_long()) && (n->get_long() <= 32767));
  4115   match(ConL);
  4117   op_cost(10);
  4118   format %{ %}
  4119   interface(CONST_INTER);
  4120 %}
  4122 operand immL16_sub() %{
  4123   predicate((-32767 <= n->get_long()) && (n->get_long() <= 32768));
  4124   match(ConL);
  4126   op_cost(10);
  4127   format %{ %}
  4128   interface(CONST_INTER);
  4129 %}
  4131 // Long Immediate: low 32-bit mask
  4132 operand immL_32bits() %{
  4133   predicate(n->get_long() == 0xFFFFFFFFL);
  4134   match(ConL);
  4135   op_cost(20);
  4137   format %{ %}
  4138   interface(CONST_INTER);
  4139 %}
  4141 // Long Immediate 32-bit signed
  4142 operand immL32()
  4143 %{
  4144   predicate(n->get_long() == (int) (n->get_long()));
  4145   match(ConL);
  4147   op_cost(15);
  4148   format %{ %}
  4149   interface(CONST_INTER);
  4150 %}
  4153 //single-precision floating-point zero
  4154 operand immF0() %{
  4155   predicate(jint_cast(n->getf()) == 0);
  4156   match(ConF);
  4158   op_cost(5);
  4159   format %{ %}
  4160   interface(CONST_INTER);
  4161 %}
  4163 //single-precision floating-point immediate
  4164 operand immF() %{
  4165   match(ConF);
  4167   op_cost(20);
  4168   format %{ %}
  4169   interface(CONST_INTER);
  4170 %}
  4172 //double-precision floating-point zero 
  4173 operand immD0() %{
  4174   predicate(jlong_cast(n->getd()) == 0);
  4175   match(ConD);
  4177   op_cost(5);
  4178   format %{ %}
  4179   interface(CONST_INTER);
  4180 %}
  4182 //double-precision floating-point immediate
  4183 operand immD() %{
  4184   match(ConD);
  4186   op_cost(20);
  4187   format %{ %}
  4188   interface(CONST_INTER);
  4189 %}
  4191 // Register Operands
  4192 // Integer Register
  4193 operand mRegI() %{
  4194   constraint(ALLOC_IN_RC(int_reg));
  4195   match(RegI);
  4197   format %{ %}
  4198   interface(REG_INTER);
  4199 %}
  4201 operand no_Ax_mRegI() %{
  4202   constraint(ALLOC_IN_RC(no_Ax_int_reg));
  4203   match(RegI);
  4204   match(mRegI);
  4206   format %{  %}
  4207   interface(REG_INTER);
  4208 %} 
  4210 operand mS0RegI() %{
  4211   constraint(ALLOC_IN_RC(s0_reg));
  4212   match(RegI);
  4213   match(mRegI);
  4215   format %{ "S0" %}
  4216   interface(REG_INTER);
  4217 %}
  4219 operand mS1RegI() %{
  4220   constraint(ALLOC_IN_RC(s1_reg));
  4221   match(RegI);
  4222   match(mRegI);
  4224   format %{ "S1" %}
  4225   interface(REG_INTER);
  4226 %}
  4228 operand mS2RegI() %{
  4229   constraint(ALLOC_IN_RC(s2_reg));
  4230   match(RegI);
  4231   match(mRegI);
  4233   format %{ "S2" %}
  4234   interface(REG_INTER);
  4235 %}
  4237 operand mS3RegI() %{
  4238   constraint(ALLOC_IN_RC(s3_reg));
  4239   match(RegI);
  4240   match(mRegI);
  4242   format %{ "S3" %}
  4243   interface(REG_INTER);
  4244 %}
  4246 operand mS4RegI() %{
  4247   constraint(ALLOC_IN_RC(s4_reg));
  4248   match(RegI);
  4249   match(mRegI);
  4251   format %{ "S4" %}
  4252   interface(REG_INTER);
  4253 %}
  4255 operand mS5RegI() %{
  4256   constraint(ALLOC_IN_RC(s5_reg));
  4257   match(RegI);
  4258   match(mRegI);
  4260   format %{ "S5" %}
  4261   interface(REG_INTER);
  4262 %}
  4264 operand mS6RegI() %{
  4265   constraint(ALLOC_IN_RC(s6_reg));
  4266   match(RegI);
  4267   match(mRegI);
  4269   format %{ "S6" %}
  4270   interface(REG_INTER);
  4271 %}
  4273 operand mS7RegI() %{
  4274   constraint(ALLOC_IN_RC(s7_reg));
  4275   match(RegI);
  4276   match(mRegI);
  4278   format %{ "S7" %}
  4279   interface(REG_INTER);
  4280 %}
  4283 operand mT0RegI() %{
  4284   constraint(ALLOC_IN_RC(t0_reg));
  4285   match(RegI);
  4286   match(mRegI);
  4288   format %{ "T0" %}
  4289   interface(REG_INTER);
  4290 %}
  4292 operand mT1RegI() %{
  4293   constraint(ALLOC_IN_RC(t1_reg));
  4294   match(RegI);
  4295   match(mRegI);
  4297   format %{ "T1" %}
  4298   interface(REG_INTER);
  4299 %}
  4301 operand mT2RegI() %{
  4302   constraint(ALLOC_IN_RC(t2_reg));
  4303   match(RegI);
  4304   match(mRegI);
  4306   format %{ "T2" %}
  4307   interface(REG_INTER);
  4308 %}
  4310 operand mT3RegI() %{
  4311   constraint(ALLOC_IN_RC(t3_reg));
  4312   match(RegI);
  4313   match(mRegI);
  4315   format %{ "T3" %}
  4316   interface(REG_INTER);
  4317 %}
  4319 operand mT8RegI() %{
  4320   constraint(ALLOC_IN_RC(t8_reg));
  4321   match(RegI);
  4322   match(mRegI);
  4324   format %{ "T8" %}
  4325   interface(REG_INTER);
  4326 %}
  4328 operand mT9RegI() %{
  4329   constraint(ALLOC_IN_RC(t9_reg));
  4330   match(RegI);
  4331   match(mRegI);
  4333   format %{ "T9" %}
  4334   interface(REG_INTER);
  4335 %}
  4337 operand mA0RegI() %{
  4338   constraint(ALLOC_IN_RC(a0_reg));
  4339   match(RegI);
  4340   match(mRegI);
  4342   format %{ "A0" %}
  4343   interface(REG_INTER);
  4344 %}
  4346 operand mA1RegI() %{
  4347   constraint(ALLOC_IN_RC(a1_reg));
  4348   match(RegI);
  4349   match(mRegI);
  4351   format %{ "A1" %}
  4352   interface(REG_INTER);
  4353 %}
  4355 operand mA2RegI() %{
  4356   constraint(ALLOC_IN_RC(a2_reg));
  4357   match(RegI);
  4358   match(mRegI);
  4360   format %{ "A2" %}
  4361   interface(REG_INTER);
  4362 %}
  4364 operand mA3RegI() %{
  4365   constraint(ALLOC_IN_RC(a3_reg));
  4366   match(RegI);
  4367   match(mRegI);
  4369   format %{ "A3" %}
  4370   interface(REG_INTER);
  4371 %}
  4373 operand mA4RegI() %{
  4374   constraint(ALLOC_IN_RC(a4_reg));
  4375   match(RegI);
  4376   match(mRegI);
  4378   format %{ "A4" %}
  4379   interface(REG_INTER);
  4380 %}
  4382 operand mA5RegI() %{
  4383   constraint(ALLOC_IN_RC(a5_reg));
  4384   match(RegI);
  4385   match(mRegI);
  4387   format %{ "A5" %}
  4388   interface(REG_INTER);
  4389 %}
  4391 operand mA6RegI() %{
  4392   constraint(ALLOC_IN_RC(a6_reg));
  4393   match(RegI);
  4394   match(mRegI);
  4396   format %{ "A6" %}
  4397   interface(REG_INTER);
  4398 %}
  4400 operand mA7RegI() %{
  4401   constraint(ALLOC_IN_RC(a7_reg));
  4402   match(RegI);
  4403   match(mRegI);
  4405   format %{ "A7" %}
  4406   interface(REG_INTER);
  4407 %}
  4409 operand mV0RegI() %{
  4410   constraint(ALLOC_IN_RC(v0_reg));
  4411   match(RegI);
  4412   match(mRegI);
  4414   format %{ "V0" %}
  4415   interface(REG_INTER);
  4416 %}
  4418 operand mV1RegI() %{
  4419   constraint(ALLOC_IN_RC(v1_reg));
  4420   match(RegI);
  4421   match(mRegI);
  4423   format %{ "V1" %}
  4424   interface(REG_INTER);
  4425 %}
  4427 operand mRegN() %{
  4428   constraint(ALLOC_IN_RC(int_reg));
  4429   match(RegN);
  4431   format %{ %}
  4432   interface(REG_INTER);
  4433 %}
  4435 operand t0_RegN() %{
  4436   constraint(ALLOC_IN_RC(t0_reg));
  4437   match(RegN);
  4438   match(mRegN);
  4440   format %{ %}
  4441   interface(REG_INTER);
  4442 %}
  4444 operand t1_RegN() %{
  4445   constraint(ALLOC_IN_RC(t1_reg));
  4446   match(RegN);
  4447   match(mRegN);
  4449   format %{ %}
  4450   interface(REG_INTER);
  4451 %}
  4453 operand t2_RegN() %{
  4454   constraint(ALLOC_IN_RC(t2_reg));
  4455   match(RegN);
  4456   match(mRegN);
  4458   format %{ %}
  4459   interface(REG_INTER);
  4460 %}
  4462 operand t3_RegN() %{
  4463   constraint(ALLOC_IN_RC(t3_reg));
  4464   match(RegN);
  4465   match(mRegN);
  4467   format %{ %}
  4468   interface(REG_INTER);
  4469 %}
  4471 operand t8_RegN() %{
  4472   constraint(ALLOC_IN_RC(t8_reg));
  4473   match(RegN);
  4474   match(mRegN);
  4476   format %{ %}
  4477   interface(REG_INTER);
  4478 %}
  4480 operand t9_RegN() %{
  4481   constraint(ALLOC_IN_RC(t9_reg));
  4482   match(RegN);
  4483   match(mRegN);
  4485   format %{ %}
  4486   interface(REG_INTER);
  4487 %}
  4489 operand a0_RegN() %{
  4490   constraint(ALLOC_IN_RC(a0_reg));
  4491   match(RegN);
  4492   match(mRegN);
  4494   format %{ %}
  4495   interface(REG_INTER);
  4496 %}
  4498 operand a1_RegN() %{
  4499   constraint(ALLOC_IN_RC(a1_reg));
  4500   match(RegN);
  4501   match(mRegN);
  4503   format %{ %}
  4504   interface(REG_INTER);
  4505 %}
  4507 operand a2_RegN() %{
  4508   constraint(ALLOC_IN_RC(a2_reg));
  4509   match(RegN);
  4510   match(mRegN);
  4512   format %{ %}
  4513   interface(REG_INTER);
  4514 %}
  4516 operand a3_RegN() %{
  4517   constraint(ALLOC_IN_RC(a3_reg));
  4518   match(RegN);
  4519   match(mRegN);
  4521   format %{ %}
  4522   interface(REG_INTER);
  4523 %}
  4525 operand a4_RegN() %{
  4526   constraint(ALLOC_IN_RC(a4_reg));
  4527   match(RegN);
  4528   match(mRegN);
  4530   format %{ %}
  4531   interface(REG_INTER);
  4532 %}
  4534 operand a5_RegN() %{
  4535   constraint(ALLOC_IN_RC(a5_reg));
  4536   match(RegN);
  4537   match(mRegN);
  4539   format %{ %}
  4540   interface(REG_INTER);
  4541 %}
  4543 operand a6_RegN() %{
  4544   constraint(ALLOC_IN_RC(a6_reg));
  4545   match(RegN);
  4546   match(mRegN);
  4548   format %{ %}
  4549   interface(REG_INTER);
  4550 %}
  4552 operand a7_RegN() %{
  4553   constraint(ALLOC_IN_RC(a7_reg));
  4554   match(RegN);
  4555   match(mRegN);
  4557   format %{ %}
  4558   interface(REG_INTER);
  4559 %}
  4561 operand s0_RegN() %{
  4562   constraint(ALLOC_IN_RC(s0_reg));
  4563   match(RegN);
  4564   match(mRegN);
  4566   format %{ %}
  4567   interface(REG_INTER);
  4568 %}
  4570 operand s1_RegN() %{
  4571   constraint(ALLOC_IN_RC(s1_reg));
  4572   match(RegN);
  4573   match(mRegN);
  4575   format %{ %}
  4576   interface(REG_INTER);
  4577 %}
  4579 operand s2_RegN() %{
  4580   constraint(ALLOC_IN_RC(s2_reg));
  4581   match(RegN);
  4582   match(mRegN);
  4584   format %{ %}
  4585   interface(REG_INTER);
  4586 %}
  4588 operand s3_RegN() %{
  4589   constraint(ALLOC_IN_RC(s3_reg));
  4590   match(RegN);
  4591   match(mRegN);
  4593   format %{ %}
  4594   interface(REG_INTER);
  4595 %}
  4597 operand s4_RegN() %{
  4598   constraint(ALLOC_IN_RC(s4_reg));
  4599   match(RegN);
  4600   match(mRegN);
  4602   format %{ %}
  4603   interface(REG_INTER);
  4604 %}
  4606 operand s5_RegN() %{
  4607   constraint(ALLOC_IN_RC(s5_reg));
  4608   match(RegN);
  4609   match(mRegN);
  4611   format %{ %}
  4612   interface(REG_INTER);
  4613 %}
  4615 operand s6_RegN() %{
  4616   constraint(ALLOC_IN_RC(s6_reg));
  4617   match(RegN);
  4618   match(mRegN);
  4620   format %{ %}
  4621   interface(REG_INTER);
  4622 %}
  4624 operand s7_RegN() %{
  4625   constraint(ALLOC_IN_RC(s7_reg));
  4626   match(RegN);
  4627   match(mRegN);
  4629   format %{ %}
  4630   interface(REG_INTER);
  4631 %}
  4633 operand v0_RegN() %{
  4634   constraint(ALLOC_IN_RC(v0_reg));
  4635   match(RegN);
  4636   match(mRegN);
  4638   format %{ %}
  4639   interface(REG_INTER);
  4640 %}
  4642 operand v1_RegN() %{
  4643   constraint(ALLOC_IN_RC(v1_reg));
  4644   match(RegN);
  4645   match(mRegN);
  4647   format %{ %}
  4648   interface(REG_INTER);
  4649 %}
  4651 // Pointer Register
  4652 operand mRegP() %{
  4653   constraint(ALLOC_IN_RC(p_reg));
  4654   match(RegP);
  4656   format %{  %}
  4657   interface(REG_INTER);
  4658 %} 
  4660 operand no_T8_mRegP() %{
  4661   constraint(ALLOC_IN_RC(no_T8_p_reg));
  4662   match(RegP);
  4663   match(mRegP);
  4665   format %{  %}
  4666   interface(REG_INTER);
  4667 %} 
  4669 operand s0_RegP()
  4670 %{
  4671   constraint(ALLOC_IN_RC(s0_long_reg));
  4672   match(RegP);
  4673   match(mRegP);
  4674   match(no_T8_mRegP);
  4676   format %{ %}
  4677   interface(REG_INTER);
  4678 %}
  4680 operand s1_RegP()
  4681 %{
  4682   constraint(ALLOC_IN_RC(s1_long_reg));
  4683   match(RegP);
  4684   match(mRegP);
  4685   match(no_T8_mRegP);
  4687   format %{ %}
  4688   interface(REG_INTER);
  4689 %}
  4691 operand s2_RegP()
  4692 %{
  4693   constraint(ALLOC_IN_RC(s2_long_reg));
  4694   match(RegP);
  4695   match(mRegP);
  4696   match(no_T8_mRegP);
  4698   format %{ %}
  4699   interface(REG_INTER);
  4700 %}
  4702 operand s3_RegP()
  4703 %{
  4704   constraint(ALLOC_IN_RC(s3_long_reg));
  4705   match(RegP);
  4706   match(mRegP);
  4707   match(no_T8_mRegP);
  4709   format %{ %}
  4710   interface(REG_INTER);
  4711 %}
  4713 operand s4_RegP()
  4714 %{
  4715   constraint(ALLOC_IN_RC(s4_long_reg));
  4716   match(RegP);
  4717   match(mRegP);
  4718   match(no_T8_mRegP);
  4720   format %{ %}
  4721   interface(REG_INTER);
  4722 %}
  4724 operand s5_RegP()
  4725 %{
  4726   constraint(ALLOC_IN_RC(s5_long_reg));
  4727   match(RegP);
  4728   match(mRegP);
  4729   match(no_T8_mRegP);
  4731   format %{ %}
  4732   interface(REG_INTER);
  4733 %}
  4735 operand s6_RegP()
  4736 %{
  4737   constraint(ALLOC_IN_RC(s6_long_reg));
  4738   match(RegP);
  4739   match(mRegP);
  4740   match(no_T8_mRegP);
  4742   format %{ %}
  4743   interface(REG_INTER);
  4744 %}
  4746 operand s7_RegP()
  4747 %{
  4748   constraint(ALLOC_IN_RC(s7_long_reg));
  4749   match(RegP);
  4750   match(mRegP);
  4751   match(no_T8_mRegP);
  4753   format %{ %}
  4754   interface(REG_INTER);
  4755 %}
  4757 operand t0_RegP()
  4758 %{
  4759   constraint(ALLOC_IN_RC(t0_long_reg));
  4760   match(RegP);
  4761   match(mRegP);
  4762   match(no_T8_mRegP);
  4764   format %{ %}
  4765   interface(REG_INTER);
  4766 %}
  4768 operand t1_RegP()
  4769 %{
  4770   constraint(ALLOC_IN_RC(t1_long_reg));
  4771   match(RegP);
  4772   match(mRegP);
  4773   match(no_T8_mRegP);
  4775   format %{ %}
  4776   interface(REG_INTER);
  4777 %}
  4779 operand t2_RegP()
  4780 %{
  4781   constraint(ALLOC_IN_RC(t2_long_reg));
  4782   match(RegP);
  4783   match(mRegP);
  4784   match(no_T8_mRegP);
  4786   format %{ %}
  4787   interface(REG_INTER);
  4788 %}
  4790 operand t3_RegP()
  4791 %{
  4792   constraint(ALLOC_IN_RC(t3_long_reg));
  4793   match(RegP);
  4794   match(mRegP);
  4795   match(no_T8_mRegP);
  4797   format %{ %}
  4798   interface(REG_INTER);
  4799 %}
  4801 operand t8_RegP()
  4802 %{
  4803   constraint(ALLOC_IN_RC(t8_long_reg));
  4804   match(RegP);
  4805   match(mRegP);
  4807   format %{ %}
  4808   interface(REG_INTER);
  4809 %}
  4811 operand t9_RegP()
  4812 %{
  4813   constraint(ALLOC_IN_RC(t9_long_reg));
  4814   match(RegP);
  4815   match(mRegP);
  4816   match(no_T8_mRegP);
  4818   format %{ %}
  4819   interface(REG_INTER);
  4820 %}
  4822 operand a0_RegP()
  4823 %{
  4824   constraint(ALLOC_IN_RC(a0_long_reg));
  4825   match(RegP);
  4826   match(mRegP);
  4827   match(no_T8_mRegP);
  4829   format %{ %}
  4830   interface(REG_INTER);
  4831 %}
  4833 operand a1_RegP()
  4834 %{
  4835   constraint(ALLOC_IN_RC(a1_long_reg));
  4836   match(RegP);
  4837   match(mRegP);
  4838   match(no_T8_mRegP);
  4840   format %{ %}
  4841   interface(REG_INTER);
  4842 %}
  4844 operand a2_RegP()
  4845 %{
  4846   constraint(ALLOC_IN_RC(a2_long_reg));
  4847   match(RegP);
  4848   match(mRegP);
  4849   match(no_T8_mRegP);
  4851   format %{ %}
  4852   interface(REG_INTER);
  4853 %}
  4855 operand a3_RegP()
  4856 %{
  4857   constraint(ALLOC_IN_RC(a3_long_reg));
  4858   match(RegP);
  4859   match(mRegP);
  4860   match(no_T8_mRegP);
  4862   format %{ %}
  4863   interface(REG_INTER);
  4864 %}
  4866 operand a4_RegP()
  4867 %{
  4868   constraint(ALLOC_IN_RC(a4_long_reg));
  4869   match(RegP);
  4870   match(mRegP);
  4871   match(no_T8_mRegP);
  4873   format %{ %}
  4874   interface(REG_INTER);
  4875 %}
  4878 operand a5_RegP()
  4879 %{
  4880   constraint(ALLOC_IN_RC(a5_long_reg));
  4881   match(RegP);
  4882   match(mRegP);
  4883   match(no_T8_mRegP);
  4885   format %{ %}
  4886   interface(REG_INTER);
  4887 %}
  4889 operand a6_RegP()
  4890 %{
  4891   constraint(ALLOC_IN_RC(a6_long_reg));
  4892   match(RegP);
  4893   match(mRegP);
  4894   match(no_T8_mRegP);
  4896   format %{ %}
  4897   interface(REG_INTER);
  4898 %}
  4900 operand a7_RegP()
  4901 %{
  4902   constraint(ALLOC_IN_RC(a7_long_reg));
  4903   match(RegP);
  4904   match(mRegP);
  4905   match(no_T8_mRegP);
  4907   format %{ %}
  4908   interface(REG_INTER);
  4909 %}
  4911 operand v0_RegP()
  4912 %{
  4913   constraint(ALLOC_IN_RC(v0_long_reg));
  4914   match(RegP);
  4915   match(mRegP);
  4916   match(no_T8_mRegP);
  4918   format %{ %}
  4919   interface(REG_INTER);
  4920 %}
  4922 operand v1_RegP()
  4923 %{
  4924   constraint(ALLOC_IN_RC(v1_long_reg));
  4925   match(RegP);
  4926   match(mRegP);
  4927   match(no_T8_mRegP);
  4929   format %{ %}
  4930   interface(REG_INTER);
  4931 %}
  4933 /*
  4934 operand mSPRegP(mRegP reg) %{
  4935   constraint(ALLOC_IN_RC(sp_reg));
  4936   match(reg);
  4938   format %{ "SP"  %}
  4939   interface(REG_INTER);
  4940 %}
  4942 operand mFPRegP(mRegP reg) %{
  4943   constraint(ALLOC_IN_RC(fp_reg));
  4944   match(reg);
  4946   format %{ "FP"  %}
  4947   interface(REG_INTER);
  4948 %}
  4949 */
  4951 operand mRegL() %{
  4952   constraint(ALLOC_IN_RC(long_reg));
  4953   match(RegL);
  4955   format %{ %}
  4956   interface(REG_INTER);
  4957 %}
  4959 operand v0RegL() %{
  4960   constraint(ALLOC_IN_RC(v0_long_reg));
  4961   match(RegL);
  4962   match(mRegL);
  4964   format %{ %}
  4965   interface(REG_INTER);
  4966 %}
  4968 operand v1RegL() %{
  4969   constraint(ALLOC_IN_RC(v1_long_reg));
  4970   match(RegL);
  4971   match(mRegL);
  4973   format %{ %}
  4974   interface(REG_INTER);
  4975 %}
  4977 operand a0RegL() %{
  4978   constraint(ALLOC_IN_RC(a0_long_reg));
  4979   match(RegL);
  4980   match(mRegL);
  4982   format %{ "A0" %}
  4983   interface(REG_INTER);
  4984 %}
  4986 operand a1RegL() %{
  4987   constraint(ALLOC_IN_RC(a1_long_reg));
  4988   match(RegL);
  4989   match(mRegL);
  4991   format %{ %}
  4992   interface(REG_INTER);
  4993 %}
  4995 operand a2RegL() %{
  4996   constraint(ALLOC_IN_RC(a2_long_reg));
  4997   match(RegL);
  4998   match(mRegL);
  5000   format %{ %}
  5001   interface(REG_INTER);
  5002 %}
  5004 operand a3RegL() %{
  5005   constraint(ALLOC_IN_RC(a3_long_reg));
  5006   match(RegL);
  5007   match(mRegL);
  5009   format %{ %}
  5010   interface(REG_INTER);
  5011 %}
  5013 operand t0RegL() %{
  5014   constraint(ALLOC_IN_RC(t0_long_reg));
  5015   match(RegL);
  5016   match(mRegL);
  5018   format %{ %}
  5019   interface(REG_INTER);
  5020 %}
  5022 operand t1RegL() %{
  5023   constraint(ALLOC_IN_RC(t1_long_reg));
  5024   match(RegL);
  5025   match(mRegL);
  5027   format %{ %}
  5028   interface(REG_INTER);
  5029 %}
  5031 operand t2RegL() %{
  5032   constraint(ALLOC_IN_RC(t2_long_reg));
  5033   match(RegL);
  5034   match(mRegL);
  5036   format %{ %}
  5037   interface(REG_INTER);
  5038 %}
  5040 operand t3RegL() %{
  5041   constraint(ALLOC_IN_RC(t3_long_reg));
  5042   match(RegL);
  5043   match(mRegL);
  5045   format %{ %}
  5046   interface(REG_INTER);
  5047 %}
  5049 operand t8RegL() %{
  5050   constraint(ALLOC_IN_RC(t8_long_reg));
  5051   match(RegL);
  5052   match(mRegL);
  5054   format %{ %}
  5055   interface(REG_INTER);
  5056 %}
  5058 operand a4RegL() %{
  5059   constraint(ALLOC_IN_RC(a4_long_reg));
  5060   match(RegL);
  5061   match(mRegL);
  5063   format %{ %}
  5064   interface(REG_INTER);
  5065 %}
  5067 operand a5RegL() %{
  5068   constraint(ALLOC_IN_RC(a5_long_reg));
  5069   match(RegL);
  5070   match(mRegL);
  5072   format %{ %}
  5073   interface(REG_INTER);
  5074 %}
  5076 operand a6RegL() %{
  5077   constraint(ALLOC_IN_RC(a6_long_reg));
  5078   match(RegL);
  5079   match(mRegL);
  5081   format %{ %}
  5082   interface(REG_INTER);
  5083 %}
  5085 operand a7RegL() %{
  5086   constraint(ALLOC_IN_RC(a7_long_reg));
  5087   match(RegL);
  5088   match(mRegL);
  5090   format %{ %}
  5091   interface(REG_INTER);
  5092 %}
  5094 operand s0RegL() %{
  5095   constraint(ALLOC_IN_RC(s0_long_reg));
  5096   match(RegL);
  5097   match(mRegL);
  5099   format %{ %}
  5100   interface(REG_INTER);
  5101 %}
  5103 operand s1RegL() %{
  5104   constraint(ALLOC_IN_RC(s1_long_reg));
  5105   match(RegL);
  5106   match(mRegL);
  5108   format %{ %}
  5109   interface(REG_INTER);
  5110 %}
  5112 operand s2RegL() %{
  5113   constraint(ALLOC_IN_RC(s2_long_reg));
  5114   match(RegL);
  5115   match(mRegL);
  5117   format %{ %}
  5118   interface(REG_INTER);
  5119 %}
  5121 operand s3RegL() %{
  5122   constraint(ALLOC_IN_RC(s3_long_reg));
  5123   match(RegL);
  5124   match(mRegL);
  5126   format %{ %}
  5127   interface(REG_INTER);
  5128 %}
  5130 operand s4RegL() %{
  5131   constraint(ALLOC_IN_RC(s4_long_reg));
  5132   match(RegL);
  5133   match(mRegL);
  5135   format %{ %}
  5136   interface(REG_INTER);
  5137 %}
  5139 operand s7RegL() %{
  5140   constraint(ALLOC_IN_RC(s7_long_reg));
  5141   match(RegL);
  5142   match(mRegL);
  5144   format %{ %}
  5145   interface(REG_INTER);
  5146 %}
  5148 // Floating register operands
  5149 operand regF() %{
  5150   constraint(ALLOC_IN_RC(flt_reg));
  5151   match(RegF);
  5153   format %{ %}
  5154   interface(REG_INTER);
  5155 %}
  5157 //Double Precision Floating register operands
  5158 operand regD() %{
  5159   constraint(ALLOC_IN_RC(dbl_reg));
  5160   match(RegD);
  5162   format %{ %}
  5163   interface(REG_INTER);
  5164 %}
  5166 //----------Memory Operands----------------------------------------------------
  5167 operand baseOffset16(mRegP reg, immL16 off)
  5168 %{
  5169   constraint(ALLOC_IN_RC(p_reg));
  5170   match(AddP reg off);
  5172   op_cost(5);
  5173   format %{ "[$reg + $off (16-bit)] @ baseOffset16" %}
  5174   interface(MEMORY_INTER) %{
  5175     base($reg);
  5176     index(0x0);
  5177     scale(0x0);
  5178     disp($off);
  5179   %}
  5180 %}
  5182 operand gsBaseIndexOffset8(mRegP base, mRegL index, immL8 off)
  5183 %{
  5184   predicate(UseLoongsonISA);
  5185   constraint(ALLOC_IN_RC(p_reg));
  5186   match(AddP (AddP base index) off);
  5188   op_cost(5);
  5189   format %{ "[$base + $index + $off (8-bit)] @ gsBaseIndexOffset8" %}
  5190   interface(MEMORY_INTER) %{
  5191     base($base);
  5192     index($index);
  5193     scale(0x0);
  5194     disp($off);
  5195   %}
  5196 %}
  5198 operand gsBaseIndexI2LOffset8(mRegP base, mRegI index, immL8 off)
  5199 %{
  5200   predicate(UseLoongsonISA);
  5201   constraint(ALLOC_IN_RC(p_reg));
  5202   match(AddP (AddP base (ConvI2L index)) off);
  5204   op_cost(5);
  5205   format %{ "[$base + $index + $off (8-bit)] @ gsBaseIndexI2LOffset8" %}
  5206   interface(MEMORY_INTER) %{
  5207     base($base);
  5208     index($index);
  5209     scale(0x0);
  5210     disp($off);
  5211   %}
  5212 %}
  5214 operand gsBaseIndexOffset0(mRegP addr, mRegL index) %{
  5215   predicate(UseLoongsonISA);
  5216   constraint(ALLOC_IN_RC(p_reg));
  5217   match(AddP addr index);
  5219   op_cost(10);
  5220   format %{"[$addr + $index] @ gsBaseIndexOffset0" %}
  5221   interface(MEMORY_INTER) %{
  5222     base($addr);
  5223     index($index);
  5224     scale(0x0);
  5225     disp(0x0);
  5226   %}
  5227 %}
  5229 operand baseOffset0(mRegP reg) %{
  5230   constraint(ALLOC_IN_RC(p_reg));
  5231   op_cost(10);
  5232   match(reg);
  5234   format %{ "[$reg] @ baseOffset0" %}
  5235   interface(MEMORY_INTER) %{
  5236     base($reg);
  5237     index(0x0);
  5238     scale(0x0);
  5239     disp(0x0);
  5240   %}
  5241 %}
  5243 operand baseOffset16Narrow(mRegN reg, immL16 off)
  5244 %{
  5245   predicate(Universe::narrow_oop_base() == 0 && Universe::narrow_oop_shift() == 0);
  5246   constraint(ALLOC_IN_RC(p_reg));
  5247   match(AddP (DecodeN reg) off);
  5249   op_cost(5);
  5250   format %{ "[$reg + $off (16-bit)] @ baseOffset16Narrow" %}
  5251   interface(MEMORY_INTER) %{
  5252     base($reg);
  5253     index(0x0);
  5254     scale(0x0);
  5255     disp($off);
  5256   %}
  5257 %}
  5259 operand gsBaseIndexOffset8Narrow(mRegN reg, mRegL lreg, immL8 off)
  5260 %{
  5261   predicate(UseLoongsonISA && Universe::narrow_oop_base() == 0 && Universe::narrow_oop_shift() == 0);
  5262   constraint(ALLOC_IN_RC(p_reg));
  5263   match(AddP (AddP (DecodeN reg) lreg) off);
  5265   op_cost(5);
  5266   format %{"[$reg + $off + $lreg] @ gsBaseIndexOffset8Narrow" %}
  5267   interface(MEMORY_INTER) %{
  5268     base($reg);
  5269     index($lreg);
  5270     scale(0x0);
  5271     disp($off);
  5272   %}
  5273 %}
  5275 operand baseOffset0Narrow(mRegN reg)
  5276 %{
  5277   predicate(Universe::narrow_oop_base() == 0 && Universe::narrow_oop_shift() == 0);
  5278   constraint(ALLOC_IN_RC(p_reg));
  5279   match(DecodeN reg);
  5281   op_cost(10);
  5282   format %{ "[$reg] @ baseOffset0Narrow" %}
  5283   interface(MEMORY_INTER) %{
  5284     base($reg);
  5285     index(0x0);
  5286     scale(0x0);
  5287     disp(0x0);
  5288   %}
  5289 %}
  5291 operand baseOffset16NarrowKlass(mRegN reg, immL16 off)
  5292 %{
  5293   predicate(Universe::narrow_klass_base() == 0 && Universe::narrow_klass_shift() == 0);
  5294   constraint(ALLOC_IN_RC(p_reg));
  5295   match(AddP (DecodeNKlass reg) off);
  5297   op_cost(5);
  5298   format %{ "[$reg + $off (16-bit)] @ baseOffset16NarrowKlass" %}
  5299   interface(MEMORY_INTER) %{
  5300     base($reg);
  5301     index(0x0);
  5302     scale(0x0);
  5303     disp($off);
  5304   %}
  5305 %}
  5307 operand baseOffset0NarrowKlass(mRegN reg)
  5308 %{
  5309   predicate(Universe::narrow_klass_base() == 0 && Universe::narrow_klass_shift() == 0);
  5310   constraint(ALLOC_IN_RC(p_reg));
  5311   match(DecodeNKlass reg);
  5313   op_cost(10);
  5314   format %{ "[$reg] @ baseOffset0NarrowKlass" %}
  5315   interface(MEMORY_INTER) %{
  5316     base($reg);
  5317     index(0x0);
  5318     scale(0x0);
  5319     disp(0x0);
  5320   %}
  5321 %}
  5323 operand gsBaseIndexOffset8NarrowKlass(mRegN reg, mRegL lreg, immL8 off)
  5324 %{
  5325   predicate(UseLoongsonISA && Universe::narrow_klass_base() == 0 && Universe::narrow_klass_shift() == 0);
  5326   constraint(ALLOC_IN_RC(p_reg));
  5327   match(AddP (AddP (DecodeNKlass reg) lreg) off);
  5329   op_cost(5);
  5330   format %{"[$reg + $off + $lreg] @ gsBaseIndexOffset8NarrowKlass" %}
  5331   interface(MEMORY_INTER) %{
  5332     base($reg);
  5333     index($lreg);
  5334     scale(0x0);
  5335     disp($off);
  5336   %}
  5337 %}
  5339 operand gsBaseIndexOffset0NarrowKlass(mRegN reg, mRegL lreg)
  5340 %{
  5341   predicate(UseLoongsonISA && Universe::narrow_klass_base() == 0 && Universe::narrow_klass_shift() == 0);
  5342   constraint(ALLOC_IN_RC(p_reg));
  5343   match(AddP (DecodeNKlass reg) lreg);
  5345   op_cost(10);
  5346   format %{"[$reg + $lreg] @ gsBaseIndexOffset0NarrowKlass" %}
  5347   interface(MEMORY_INTER) %{
  5348     base($reg);
  5349     index($lreg);
  5350     scale(0x0);
  5351     disp(0x0);
  5352   %}
  5353 %}
  5356 //------------------------OPERAND CLASSES--------------------------------------
  5357 opclass memory(
  5358   baseOffset16,
  5359   gsBaseIndexOffset8,
  5360   gsBaseIndexI2LOffset8,
  5361   gsBaseIndexOffset0,
  5362   baseOffset0,
  5364   baseOffset16Narrow,
  5365   gsBaseIndexOffset8Narrow,
  5366   baseOffset0Narrow,
  5368   baseOffset16NarrowKlass,
  5369   baseOffset0NarrowKlass,
  5370   gsBaseIndexOffset8NarrowKlass,
  5371   gsBaseIndexOffset0NarrowKlass
  5372 );
  5376 //----------Conditional Branch Operands----------------------------------------
  5377 // Comparison Op  - This is the operation of the comparison, and is limited to
  5378 //                  the following set of codes:
  5379 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  5380 //
  5381 // Other attributes of the comparison, such as unsignedness, are specified
  5382 // by the comparison instruction that sets a condition code flags register.
  5383 // That result is represented by a flags operand whose subtype is appropriate
  5384 // to the unsignedness (etc.) of the comparison.
  5385 //
  5386 // Later, the instruction which matches both the Comparison Op (a Bool) and
  5387 // the flags (produced by the Cmp) specifies the coding of the comparison op
  5388 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  5390 // Comparision Code
  5391 operand cmpOp() %{
  5392   match(Bool);
  5394   format %{ "" %}
  5395   interface(COND_INTER) %{
  5396     equal(0x01);
  5397     not_equal(0x02);
  5398     greater(0x03);
  5399     greater_equal(0x04);
  5400     less(0x05);
  5401     less_equal(0x06);
  5402     overflow(0x7);
  5403     no_overflow(0x8);
  5404   %}
  5405 %}
  5408 // Comparision Code
  5409 // Comparison Code, unsigned compare.  Used by FP also, with
  5410 // C2 (unordered) turned into GT or LT already.  The other bits
  5411 // C0 and C3 are turned into Carry & Zero flags.
  5412 operand cmpOpU() %{
  5413   match(Bool);
  5415   format %{ "" %}
  5416   interface(COND_INTER) %{
  5417     equal(0x01);
  5418     not_equal(0x02);
  5419     greater(0x03);
  5420     greater_equal(0x04);
  5421     less(0x05);
  5422     less_equal(0x06);
  5423     overflow(0x7);
  5424     no_overflow(0x8);
  5425   %}
  5426 %}
  5429 //----------Special Memory Operands--------------------------------------------
  5430 // Stack Slot Operand - This operand is used for loading and storing temporary
  5431 //                      values on the stack where a match requires a value to
  5432 //                      flow through memory.
  5433 operand stackSlotP(sRegP reg) %{
  5434   constraint(ALLOC_IN_RC(stack_slots));
  5435   // No match rule because this operand is only generated in matching
  5436   op_cost(50);
  5437   format %{ "[$reg]" %}
  5438   interface(MEMORY_INTER) %{
  5439     base(0x1d);  // SP
  5440     index(0x0);  // No Index
  5441     scale(0x0);  // No Scale
  5442     disp($reg);  // Stack Offset
  5443   %}
  5444 %}
  5446 operand stackSlotI(sRegI reg) %{
  5447   constraint(ALLOC_IN_RC(stack_slots));
  5448   // No match rule because this operand is only generated in matching
  5449   op_cost(50);
  5450   format %{ "[$reg]" %}
  5451   interface(MEMORY_INTER) %{
  5452     base(0x1d);  // SP
  5453     index(0x0);  // No Index
  5454     scale(0x0);  // No Scale
  5455     disp($reg);  // Stack Offset
  5456   %}
  5457 %}
  5459 operand stackSlotF(sRegF reg) %{
  5460   constraint(ALLOC_IN_RC(stack_slots));
  5461   // No match rule because this operand is only generated in matching
  5462   op_cost(50);
  5463   format %{ "[$reg]" %}
  5464   interface(MEMORY_INTER) %{
  5465     base(0x1d);  // SP
  5466     index(0x0);  // No Index
  5467     scale(0x0);  // No Scale
  5468     disp($reg);  // Stack Offset
  5469   %}
  5470 %}
  5472 operand stackSlotD(sRegD reg) %{
  5473   constraint(ALLOC_IN_RC(stack_slots));
  5474   // No match rule because this operand is only generated in matching
  5475   op_cost(50);
  5476   format %{ "[$reg]" %}
  5477   interface(MEMORY_INTER) %{
  5478     base(0x1d);  // SP
  5479     index(0x0);  // No Index
  5480     scale(0x0);  // No Scale
  5481     disp($reg);  // Stack Offset
  5482   %}
  5483 %}
  5485 operand stackSlotL(sRegL reg) %{
  5486   constraint(ALLOC_IN_RC(stack_slots));
  5487   // No match rule because this operand is only generated in matching
  5488   op_cost(50);
  5489   format %{ "[$reg]" %}
  5490   interface(MEMORY_INTER) %{
  5491     base(0x1d);  // SP
  5492     index(0x0);  // No Index
  5493     scale(0x0);  // No Scale
  5494     disp($reg);  // Stack Offset
  5495   %}
  5496 %}
  5498 //----------PIPELINE-----------------------------------------------------------
  5499 // Rules which define the behavior of the target architectures pipeline.
  5501 pipeline %{
  5503 //----------ATTRIBUTES---------------------------------------------------------
  5504 attributes %{
  5505  	fixed_size_instructions;        	// Fixed size instructions
  5506  	branch_has_delay_slot;			// branch have delay slot in gs2
  5507  	max_instructions_per_bundle = 1;   	// 1 instruction per bundle
  5508  	max_bundles_per_cycle = 4;       	// Up to 4 bundles per cycle
  5509         bundle_unit_size=4;
  5510  	instruction_unit_size = 4;         	// An instruction is 4 bytes long
  5511  	instruction_fetch_unit_size = 16;  	// The processor fetches one line
  5512  	instruction_fetch_units = 1;       	// of 16 bytes
  5514  	// List of nop instructions
  5515  	nops( MachNop );
  5516  %}
  5518  //----------RESOURCES----------------------------------------------------------
  5519  // Resources are the functional units available to the machine
  5521  resources(D1, D2, D3, D4, DECODE = D1 | D2 | D3| D4,  ALU1, ALU2,  ALU = ALU1 | ALU2,  FPU1, FPU2, FPU = FPU1 | FPU2,  MEM,  BR); 
  5523  //----------PIPELINE DESCRIPTION-----------------------------------------------
  5524  // Pipeline Description specifies the stages in the machine's pipeline
  5526  // IF: fetch
  5527  // ID: decode
  5528  // RD: read 
  5529  // CA: caculate 
  5530  // WB: write back 
  5531  // CM: commit 
  5533  pipe_desc(IF, ID, RD, CA, WB, CM);
  5536  //----------PIPELINE CLASSES---------------------------------------------------
  5537  // Pipeline Classes describe the stages in which input and output are
  5538  // referenced by the hardware pipeline.
  5540  //No.1 Integer ALU reg-reg operation : dst <-- reg1 op reg2  
  5541  pipe_class ialu_regI_regI(mRegI dst, mRegI src1, mRegI src2) %{
  5542         single_instruction;
  5543  	src1   : RD(read);
  5544  	src2   : RD(read);
  5545         dst    : WB(write)+1;
  5546         DECODE : ID;
  5547  	ALU    : CA;
  5548  %}
  5550  //No.19 Integer mult operation : dst <-- reg1 mult reg2  
  5551  pipe_class ialu_mult(mRegI dst, mRegI src1, mRegI src2) %{
  5552  	src1   : RD(read);
  5553  	src2   : RD(read);
  5554         dst    : WB(write)+5;
  5555         DECODE : ID;
  5556  	ALU2   : CA;
  5557  %}
  5559  pipe_class mulL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
  5560  	src1   : RD(read);
  5561  	src2   : RD(read);
  5562         dst    : WB(write)+10;
  5563         DECODE : ID;
  5564  	ALU2   : CA;
  5565  %}
  5567  //No.19 Integer div operation : dst <-- reg1 div reg2  
  5568  pipe_class ialu_div(mRegI dst, mRegI src1, mRegI src2) %{
  5569  	src1   : RD(read);
  5570  	src2   : RD(read);
  5571         dst    : WB(write)+10;
  5572         DECODE : ID;
  5573  	ALU2   : CA;
  5574  %}
  5576  //No.19 Integer mod operation : dst <-- reg1 mod reg2  
  5577  pipe_class ialu_mod(mRegI dst, mRegI src1, mRegI src2) %{
  5578         instruction_count(2);
  5579  	src1   : RD(read);
  5580  	src2   : RD(read);
  5581         dst    : WB(write)+10;
  5582         DECODE : ID;
  5583  	ALU2   : CA;
  5584  %}
  5586  //No.15 Long ALU reg-reg operation : dst <-- reg1 op reg2  
  5587  pipe_class ialu_regL_regL(mRegL dst, mRegL src1, mRegL src2) %{
  5588         instruction_count(2);
  5589  	src1   : RD(read);
  5590  	src2   : RD(read);
  5591         dst    : WB(write);
  5592         DECODE : ID;
  5593  	ALU    : CA;
  5594  %}
  5596  //No.18 Long ALU reg-imm16 operation : dst <-- reg1 op imm16 
  5597  pipe_class ialu_regL_imm16(mRegL dst, mRegL src) %{
  5598         instruction_count(2);
  5599  	src    : RD(read);
  5600         dst    : WB(write);
  5601         DECODE : ID;
  5602  	ALU    : CA;
  5603  %}
  5605  //no.16 load Long from memory :                     
  5606  pipe_class ialu_loadL(mRegL dst, memory mem) %{
  5607  	instruction_count(2);
  5608  	mem    : RD(read);
  5609  	dst    : WB(write)+5;
  5610         DECODE : ID;
  5611  	MEM    : RD;
  5612  %}
  5614  //No.17 Store Long to Memory :                     
  5615  pipe_class ialu_storeL(mRegL src, memory mem) %{
  5616  	instruction_count(2);
  5617  	mem    : RD(read);
  5618  	src    : RD(read);
  5619         DECODE : ID;
  5620  	MEM    : RD;
  5621  %}
  5623  //No.2 Integer ALU reg-imm16 operation : dst <-- reg1 op imm16  
  5624  pipe_class ialu_regI_imm16(mRegI dst, mRegI src) %{
  5625         single_instruction;
  5626  	src    : RD(read);
  5627         dst    : WB(write);
  5628         DECODE : ID;
  5629  	ALU    : CA;
  5630  %}
  5632  //No.3 Integer move operation : dst <-- reg  
  5633  pipe_class ialu_regI_mov(mRegI dst, mRegI src) %{
  5634  	src    : RD(read);
  5635         dst    : WB(write);
  5636         DECODE : ID;
  5637  	ALU    : CA;
  5638  %}
  5640  //No.4 No instructions : do nothing 
  5641  pipe_class empty( ) %{
  5642         instruction_count(0);
  5643  %}
  5645  //No.5 UnConditional branch :
  5646  pipe_class pipe_jump( label labl ) %{
  5647         multiple_bundles;
  5648         DECODE : ID;
  5649 	BR     : RD;
  5650  %}
  5652  //No.6 ALU Conditional branch :
  5653  pipe_class pipe_alu_branch(mRegI src1, mRegI src2, label labl ) %{
  5654         multiple_bundles;
  5655         src1   : RD(read);
  5656         src2   : RD(read);
  5657         DECODE : ID;
  5658 	BR     : RD;
  5659  %}
  5661  //no.7 load integer from memory :                     
  5662  pipe_class ialu_loadI(mRegI dst, memory mem) %{
  5663  	mem    : RD(read);
  5664  	dst    : WB(write)+3;
  5665         DECODE : ID;
  5666  	MEM    : RD;
  5667  %}
  5669  //No.8 Store Integer to Memory :                     
  5670  pipe_class ialu_storeI(mRegI src, memory mem) %{
  5671  	mem    : RD(read);
  5672  	src    : RD(read);
  5673         DECODE : ID;
  5674  	MEM    : RD;
  5675  %}
  5678  //No.10 Floating FPU reg-reg operation : dst <-- reg1 op reg2  
  5679  pipe_class fpu_regF_regF(regF dst, regF src1, regF src2) %{
  5680  	src1   : RD(read);
  5681  	src2   : RD(read);
  5682         dst    : WB(write);
  5683         DECODE : ID;
  5684  	FPU    : CA;
  5685  %}
  5687  //No.22 Floating div operation : dst <-- reg1 div reg2  
  5688  pipe_class fpu_div(regF dst, regF src1, regF src2) %{
  5689  	src1   : RD(read);
  5690  	src2   : RD(read);
  5691         dst    : WB(write);
  5692         DECODE : ID;
  5693  	FPU2   : CA;
  5694  %}
  5696  pipe_class fcvt_I2D(regD dst, mRegI src) %{
  5697  	src    : RD(read);
  5698         dst    : WB(write);
  5699         DECODE : ID;
  5700  	FPU1   : CA;
  5701  %}
  5703  pipe_class fcvt_D2I(mRegI dst, regD src) %{
  5704  	src    : RD(read);
  5705         dst    : WB(write);
  5706         DECODE : ID;
  5707  	FPU1   : CA;
  5708  %}
  5710  pipe_class pipe_mfc1(mRegI dst, regD src) %{
  5711  	src    : RD(read);
  5712         dst    : WB(write);
  5713         DECODE : ID;
  5714  	MEM    : RD;
  5715  %}
  5717  pipe_class pipe_mtc1(regD dst, mRegI src) %{
  5718  	src    : RD(read);
  5719         dst    : WB(write);
  5720         DECODE : ID;
  5721  	MEM    : RD(5);
  5722  %}
  5724  //No.23 Floating sqrt operation : dst <-- reg1 sqrt reg2  
  5725  pipe_class fpu_sqrt(regF dst, regF src1, regF src2) %{
  5726         multiple_bundles;
  5727  	src1   : RD(read);
  5728  	src2   : RD(read);
  5729         dst    : WB(write);
  5730         DECODE : ID;
  5731  	FPU2   : CA;
  5732  %}
  5734  //No.11 Load Floating from Memory :                     
  5735  pipe_class fpu_loadF(regF dst, memory mem) %{
  5736         instruction_count(1);
  5737  	mem    : RD(read);
  5738  	dst    : WB(write)+3;
  5739         DECODE : ID;
  5740  	MEM    : RD;
  5741  %}
  5743  //No.12 Store Floating to Memory :                     
  5744  pipe_class fpu_storeF(regF src, memory mem) %{
  5745         instruction_count(1);
  5746  	mem    : RD(read);
  5747  	src    : RD(read);
  5748         DECODE : ID;
  5749  	MEM    : RD;
  5750  %}
  5752  //No.13 FPU Conditional branch :
  5753  pipe_class pipe_fpu_branch(regF src1, regF src2, label labl ) %{
  5754         multiple_bundles;
  5755         src1   : RD(read);
  5756         src2   : RD(read);
  5757         DECODE : ID;
  5758 	BR     : RD;
  5759  %}
  5761 //No.14 Floating FPU reg operation : dst <-- op reg  
  5762  pipe_class fpu1_regF(regF dst, regF src) %{
  5763  	src    : RD(read);
  5764         dst    : WB(write);
  5765         DECODE : ID;
  5766  	FPU    : CA;
  5767  %}
  5769  pipe_class long_memory_op() %{
  5770 	instruction_count(10); multiple_bundles; force_serialization;
  5771 	fixed_latency(30);
  5772  %}
  5774  pipe_class simple_call() %{
  5775 	instruction_count(10); multiple_bundles; force_serialization;
  5776 	fixed_latency(200);
  5777 	BR     : RD;
  5778  %}
  5780  pipe_class call() %{
  5781 	instruction_count(10); multiple_bundles; force_serialization;
  5782 	fixed_latency(200);
  5783  %}
  5785  //FIXME:
  5786  //No.9 Piple slow : for multi-instructions 
  5787  pipe_class pipe_slow(  ) %{
  5788 	instruction_count(20);
  5789         force_serialization;
  5790         multiple_bundles;
  5791 	fixed_latency(50);
  5792  %}
  5794 %}
  5798 //----------INSTRUCTIONS-------------------------------------------------------
  5799 // 
  5800 // match      -- States which machine-independent subtree may be replaced 
  5801 //               by this instruction.
  5802 // ins_cost   -- The estimated cost of this instruction is used by instruction
  5803 //               selection to identify a minimum cost tree of machine 
  5804 //               instructions that matches a tree of machine-independent 
  5805 //               instructions.
  5806 // format     -- A string providing the disassembly for this instruction.
  5807 //               The value of an instruction's operand may be inserted 
  5808 //               by referring to it with a '$' prefix.
  5809 // opcode     -- Three instruction opcodes may be provided.  These are referred 
  5810 //               to within an encode class as $primary, $secondary, and $tertiary
  5811 //               respectively.  The primary opcode is commonly used to 
  5812 //               indicate the type of machine instruction, while secondary 
  5813 //               and tertiary are often used for prefix options or addressing 
  5814 //               modes.
  5815 // ins_encode -- A list of encode classes with parameters. The encode class
  5816 //               name must have been defined in an 'enc_class' specification
  5817 //               in the encode section of the architecture description.
  5820 // Load Integer
  5821 instruct loadI(mRegI dst, memory mem) %{
  5822   match(Set dst (LoadI mem));
  5824   ins_cost(125);
  5825   format %{ "lw    $dst, $mem 	#@loadI" %}
  5826   ins_encode (load_I_enc(dst, mem));
  5827   ins_pipe( ialu_loadI );
  5828 %}
  5830 instruct loadI_convI2L(mRegL dst, memory mem) %{
  5831   match(Set dst (ConvI2L (LoadI mem)));
  5833   ins_cost(125);
  5834   format %{ "lw    $dst, $mem 	#@loadI_convI2L" %}
  5835   ins_encode (load_I_enc(dst, mem));
  5836   ins_pipe( ialu_loadI );
  5837 %}
  5839 // Load Integer (32 bit signed) to Byte (8 bit signed)
  5840 instruct loadI2B(mRegI dst, memory mem, immI_24 twentyfour) %{
  5841   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5843   ins_cost(125);
  5844   format %{ "lb  $dst, $mem\t# int -> byte #@loadI2B" %}
  5845   ins_encode(load_B_enc(dst, mem));
  5846   ins_pipe(ialu_loadI);
  5847 %}
  5849 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  5850 instruct loadI2UB(mRegI dst, memory mem, immI_255 mask) %{
  5851   match(Set dst (AndI (LoadI mem) mask));
  5853   ins_cost(125);
  5854   format %{ "lbu  $dst, $mem\t# int -> ubyte #@loadI2UB" %}
  5855   ins_encode(load_UB_enc(dst, mem));
  5856   ins_pipe(ialu_loadI);
  5857 %}
  5859 // Load Integer (32 bit signed) to Short (16 bit signed)
  5860 instruct loadI2S(mRegI dst, memory mem, immI_16 sixteen) %{
  5861   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5863   ins_cost(125);
  5864   format %{ "lh  $dst, $mem\t# int -> short #@loadI2S" %}
  5865   ins_encode(load_S_enc(dst, mem));
  5866   ins_pipe(ialu_loadI);
  5867 %}
  5869 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  5870 instruct loadI2US(mRegI dst, memory mem, immI_65535 mask) %{
  5871   match(Set dst (AndI (LoadI mem) mask));
  5873   ins_cost(125);
  5874   format %{ "lhu  $dst, $mem\t# int -> ushort/char #@loadI2US" %}
  5875   ins_encode(load_C_enc(dst, mem));
  5876   ins_pipe(ialu_loadI);
  5877 %}
  5879 // Load Long.
  5880 instruct loadL(mRegL dst, memory mem) %{
  5881 //  predicate(!((LoadLNode*)n)->require_atomic_access());
  5882   match(Set dst (LoadL mem));
  5884   ins_cost(250);
  5885   format %{ "ld    $dst, $mem   #@loadL" %}
  5886   ins_encode(load_L_enc(dst, mem));
  5887   ins_pipe( ialu_loadL );
  5888 %}
  5890 // Load Long - UNaligned
  5891 instruct loadL_unaligned(mRegL dst, memory mem) %{
  5892   match(Set dst (LoadL_unaligned mem));
  5894   // FIXME: Jin: Need more effective ldl/ldr
  5895   ins_cost(450);
  5896   format %{ "ld    $dst, $mem   #@loadL_unaligned\n\t" %}
  5897   ins_encode(load_L_enc(dst, mem));
  5898   ins_pipe( ialu_loadL );
  5899 %}
  5901 // Store Long
  5902 instruct storeL_reg(memory mem, mRegL src) %{
  5903   match(Set mem (StoreL mem src));
  5905   ins_cost(200);
  5906   format %{ "sd    $mem,   $src #@storeL_reg\n" %}
  5907   ins_encode(store_L_reg_enc(mem, src));
  5908   ins_pipe( ialu_storeL );
  5909 %}
  5912 instruct storeL_immL0(memory mem, immL0 zero) %{
  5913   match(Set mem (StoreL mem zero));
  5915   ins_cost(180);
  5916   format %{ "sd    $mem,   zero #@storeL_immL0" %}
  5917   ins_encode(store_L_immL0_enc(mem, zero));
  5918   ins_pipe( ialu_storeL );
  5919 %}
  5921 // Load Compressed Pointer
  5922 instruct loadN(mRegN dst, memory mem)
  5923 %{
  5924    match(Set dst (LoadN mem));
  5926    ins_cost(125); // XXX
  5927    format %{ "lwu    $dst, $mem\t# compressed ptr @ loadN" %}
  5928    ins_encode (load_N_enc(dst, mem));
  5929    ins_pipe( ialu_loadI ); // XXX
  5930 %}
  5932 instruct loadN2P(mRegP dst, memory mem)
  5933 %{
  5934    match(Set dst (DecodeN (LoadN mem)));
  5935    predicate(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0);
  5937    ins_cost(125); // XXX
  5938    format %{ "lwu    $dst, $mem\t# @ loadN2P" %}
  5939    ins_encode (load_N_enc(dst, mem));
  5940    ins_pipe( ialu_loadI ); // XXX
  5941 %}
  5943 // Load Pointer
  5944 instruct loadP(mRegP dst, memory mem) %{
  5945   match(Set dst (LoadP mem));
  5947   ins_cost(125);
  5948   format %{ "ld    $dst, $mem #@loadP" %}
  5949   ins_encode (load_P_enc(dst, mem));
  5950   ins_pipe( ialu_loadI );
  5951 %}
  5953 // Load Klass Pointer
  5954 instruct loadKlass(mRegP dst, memory mem) %{
  5955   match(Set dst (LoadKlass mem));
  5957   ins_cost(125);
  5958   format %{ "MOV    $dst,$mem @ loadKlass" %}
  5959   ins_encode (load_P_enc(dst, mem));
  5960   ins_pipe( ialu_loadI );
  5961 %}
  5963 // Load narrow Klass Pointer
  5964 instruct loadNKlass(mRegN dst, memory mem)
  5965 %{
  5966   match(Set dst (LoadNKlass mem));
  5968   ins_cost(125); // XXX
  5969   format %{ "lwu    $dst, $mem\t# compressed klass ptr @ loadNKlass" %}
  5970   ins_encode (load_N_enc(dst, mem));
  5971   ins_pipe( ialu_loadI ); // XXX
  5972 %}
  5974 instruct loadN2PKlass(mRegP dst, memory mem)
  5975 %{
  5976   match(Set dst (DecodeNKlass (LoadNKlass mem)));
  5977   predicate(Universe::narrow_klass_base() == NULL && Universe::narrow_klass_shift() == 0);
  5979   ins_cost(125); // XXX
  5980   format %{ "lwu    $dst, $mem\t# compressed klass ptr @ loadN2PKlass" %}
  5981   ins_encode (load_N_enc(dst, mem));
  5982   ins_pipe( ialu_loadI ); // XXX
  5983 %}
  5985 // Load Constant
  5986 instruct loadConI(mRegI dst, immI src) %{
  5987   match(Set dst src);
  5989   ins_cost(150);
  5990   format %{ "mov    $dst, $src #@loadConI" %}
  5991   ins_encode %{
  5992     Register dst = $dst$$Register;
  5993     int    value = $src$$constant;
  5994     __ move(dst, value);
  5995   %}
  5996   ins_pipe( ialu_regI_regI );
  5997 %}
  6000 instruct loadConL_set64(mRegL dst, immL src) %{
  6001   match(Set dst src);
  6002   ins_cost(120);
  6003   format %{ "li   $dst, $src @ loadConL_set64" %}
  6004   ins_encode %{
  6005     __ set64($dst$$Register, $src$$constant);
  6006   %}
  6007   ins_pipe(ialu_regL_regL);
  6008 %}
  6010 /*
  6011 // Load long value from constant table (predicated by immL_expensive).
  6012 instruct loadConL_load(mRegL dst, immL_expensive src) %{
  6013   match(Set dst src);
  6014   ins_cost(150);
  6015   format %{ "ld  $dst, $constantoffset[$constanttablebase] # load long $src from table @ loadConL_ldx" %}
  6016   ins_encode %{
  6017     int con_offset = $constantoffset($src);
  6019     if (Assembler::is_simm16(con_offset)) {
  6020        __ ld($dst$$Register, $constanttablebase, con_offset);
  6021     } else {
  6022        __ set64(AT, con_offset);
  6023        if (UseLoongsonISA) {
  6024           __ gsldx($dst$$Register, $constanttablebase, AT, 0);
  6025        } else {
  6026           __ daddu(AT, $constanttablebase, AT);
  6027           __ ld($dst$$Register, AT, 0);
  6030   %}
  6031   ins_pipe(ialu_loadI);
  6032 %}
  6033 */
  6035 instruct loadConL16(mRegL dst, immL16 src) %{
  6036   match(Set dst src);
  6037   ins_cost(105);
  6038   format %{ "mov    $dst, $src #@loadConL16" %}
  6039   ins_encode %{
  6040     Register dst_reg = as_Register($dst$$reg);
  6041     int      value   = $src$$constant;
  6042     __ daddiu(dst_reg, R0, value);
  6043   %}
  6044   ins_pipe( ialu_regL_regL );
  6045 %}
  6048 instruct loadConL0(mRegL dst, immL0 src) %{
  6049   match(Set dst src);
  6050   ins_cost(100);
  6051   format %{ "mov    $dst, zero #@loadConL0" %}
  6052   ins_encode %{
  6053     Register dst_reg = as_Register($dst$$reg);
  6054     __ daddu(dst_reg, R0, R0);
  6055   %}
  6056   ins_pipe( ialu_regL_regL );
  6057 %}
  6059 // Load Range
  6060 instruct loadRange(mRegI dst, memory mem) %{
  6061   match(Set dst (LoadRange mem));
  6063   ins_cost(125);
  6064   format %{ "MOV    $dst,$mem @ loadRange" %}
  6065   ins_encode(load_I_enc(dst, mem));
  6066   ins_pipe( ialu_loadI );
  6067 %}
  6070 instruct storeP(memory mem, mRegP src ) %{
  6071   match(Set mem (StoreP mem src));
  6073   ins_cost(125);
  6074   format %{ "sd    $src, $mem #@storeP" %}
  6075   ins_encode(store_P_reg_enc(mem, src));
  6076   ins_pipe( ialu_storeI );
  6077 %}
  6079 // Store NULL Pointer, mark word, or other simple pointer constant.
  6080 instruct storeImmP0(memory mem, immP0 zero) %{
  6081   match(Set mem (StoreP mem zero));
  6083   ins_cost(125);
  6084   format %{ "mov    $mem, $zero #@storeImmP0" %}
  6085   ins_encode(store_P_immP0_enc(mem));
  6086   ins_pipe( ialu_storeI );
  6087 %}
  6089 // Store Byte Immediate
  6090 instruct storeImmB(memory mem, immI8 src) %{
  6091   match(Set mem (StoreB mem src));
  6093   ins_cost(150);
  6094   format %{ "movb   $mem, $src #@storeImmB" %}
  6095   ins_encode(store_B_immI_enc(mem, src));
  6096   ins_pipe( ialu_storeI );
  6097 %}
  6099 // Store Compressed Pointer
  6100 instruct storeN(memory mem, mRegN src)
  6101 %{
  6102   match(Set mem (StoreN mem src));
  6104   ins_cost(125); // XXX
  6105   format %{ "sw    $mem, $src\t# compressed ptr @ storeN" %}
  6106   ins_encode(store_N_reg_enc(mem, src)); 
  6107   ins_pipe( ialu_storeI );
  6108 %}
  6110 instruct storeP2N(memory mem, mRegP src)
  6111 %{
  6112   match(Set mem (StoreN mem (EncodeP src)));
  6113   predicate(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0);
  6115   ins_cost(125); // XXX
  6116   format %{ "sw    $mem, $src\t# @ storeP2N" %}
  6117   ins_encode(store_N_reg_enc(mem, src)); 
  6118   ins_pipe( ialu_storeI );
  6119 %}
  6121 instruct storeNKlass(memory mem, mRegN src)
  6122 %{
  6123   match(Set mem (StoreNKlass mem src));
  6125   ins_cost(125); // XXX
  6126   format %{ "sw    $mem, $src\t# compressed klass ptr @ storeNKlass" %}
  6127   ins_encode(store_N_reg_enc(mem, src));
  6128   ins_pipe( ialu_storeI );
  6129 %}
  6131 instruct storeP2NKlass(memory mem, mRegP src)
  6132 %{
  6133   match(Set mem (StoreNKlass mem (EncodePKlass src)));
  6134   predicate(Universe::narrow_klass_base() == NULL && Universe::narrow_klass_shift() == 0);
  6136   ins_cost(125); // XXX
  6137   format %{ "sw    $mem, $src\t# @ storeP2NKlass" %}
  6138   ins_encode(store_N_reg_enc(mem, src));
  6139   ins_pipe( ialu_storeI );
  6140 %}
  6142 instruct storeImmN0(memory mem, immN0 zero)
  6143 %{
  6144   match(Set mem (StoreN mem zero));
  6146   ins_cost(125); // XXX
  6147   format %{ "storeN0    $mem, R12\t# compressed ptr" %}
  6148   ins_encode(storeImmN0_enc(mem, zero));
  6149   ins_pipe( ialu_storeI );
  6150 %}
  6152 // Store Byte
  6153 instruct storeB(memory mem, mRegI src) %{
  6154   match(Set mem (StoreB mem src));
  6156   ins_cost(125);
  6157   format %{ "sb    $src, $mem #@storeB" %}
  6158   ins_encode(store_B_reg_enc(mem, src));
  6159   ins_pipe( ialu_storeI );
  6160 %}
  6162 instruct storeB_convL2I(memory mem, mRegL src) %{
  6163   match(Set mem (StoreB mem (ConvL2I src)));
  6165   ins_cost(125);
  6166   format %{ "sb    $src, $mem #@storeB_convL2I" %}
  6167   ins_encode(store_B_reg_enc(mem, src));
  6168   ins_pipe( ialu_storeI );
  6169 %}
  6171 // Load Byte (8bit signed)
  6172 instruct loadB(mRegI dst, memory mem) %{
  6173   match(Set dst (LoadB mem));
  6175   ins_cost(125);
  6176   format %{ "lb   $dst, $mem #@loadB" %}
  6177   ins_encode(load_B_enc(dst, mem));
  6178   ins_pipe( ialu_loadI );
  6179 %}
  6181 instruct loadB_convI2L(mRegL dst, memory mem) %{
  6182   match(Set dst (ConvI2L (LoadB mem)));
  6184   ins_cost(125);
  6185   format %{ "lb   $dst, $mem #@loadB_convI2L" %}
  6186   ins_encode(load_B_enc(dst, mem));
  6187   ins_pipe( ialu_loadI );
  6188 %}
  6190 // Load Byte (8bit UNsigned)
  6191 instruct loadUB(mRegI dst, memory mem) %{
  6192   match(Set dst (LoadUB mem));
  6194   ins_cost(125);
  6195   format %{ "lbu   $dst, $mem #@loadUB" %}
  6196   ins_encode(load_UB_enc(dst, mem));
  6197   ins_pipe( ialu_loadI );
  6198 %}
  6200 instruct loadUB_convI2L(mRegL dst, memory mem) %{
  6201   match(Set dst (ConvI2L (LoadUB mem)));
  6203   ins_cost(125);
  6204   format %{ "lbu   $dst, $mem #@loadUB_convI2L" %}
  6205   ins_encode(load_UB_enc(dst, mem));
  6206   ins_pipe( ialu_loadI );
  6207 %}
  6209 // Load Short (16bit signed)
  6210 instruct loadS(mRegI dst, memory mem) %{
  6211   match(Set dst (LoadS mem));
  6213   ins_cost(125);
  6214   format %{ "lh   $dst, $mem #@loadS" %}
  6215   ins_encode(load_S_enc(dst, mem));
  6216   ins_pipe( ialu_loadI );
  6217 %}
  6219 // Load Short (16 bit signed) to Byte (8 bit signed)
  6220 instruct loadS2B(mRegI dst, memory mem, immI_24 twentyfour) %{
  6221   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  6223   ins_cost(125);
  6224   format %{ "lb $dst, $mem\t# short -> byte #@loadS2B" %}
  6225   ins_encode(load_B_enc(dst, mem));
  6226   ins_pipe(ialu_loadI);
  6227 %}
  6229 instruct loadS_convI2L(mRegL dst, memory mem) %{
  6230   match(Set dst (ConvI2L (LoadS mem)));
  6232   ins_cost(125);
  6233   format %{ "lh   $dst, $mem #@loadS_convI2L" %}
  6234   ins_encode(load_S_enc(dst, mem));
  6235   ins_pipe( ialu_loadI );
  6236 %}
  6238 // Store Integer Immediate
  6239 instruct storeImmI(memory mem, immI src) %{
  6240   match(Set mem (StoreI mem src));
  6242   ins_cost(150);
  6243   format %{ "mov    $mem, $src #@storeImmI" %}
  6244   ins_encode(store_I_immI_enc(mem, src));
  6245   ins_pipe( ialu_storeI );
  6246 %}
  6248 // Store Integer
  6249 instruct storeI(memory mem, mRegI src) %{
  6250   match(Set mem (StoreI mem src));
  6252   ins_cost(125);
  6253   format %{ "sw    $mem, $src #@storeI" %}
  6254   ins_encode(store_I_reg_enc(mem, src));
  6255   ins_pipe( ialu_storeI );
  6256 %}
  6258 instruct storeI_convL2I(memory mem, mRegL src) %{
  6259   match(Set mem (StoreI mem (ConvL2I src)));
  6261   ins_cost(125);
  6262   format %{ "sw    $mem, $src #@storeI_convL2I" %}
  6263   ins_encode(store_I_reg_enc(mem, src));
  6264   ins_pipe( ialu_storeI );
  6265 %}
  6267 // Load Float
  6268 instruct loadF(regF dst, memory mem) %{
  6269   match(Set dst (LoadF mem));
  6271   ins_cost(150);
  6272   format %{ "loadF $dst, $mem #@loadF" %}
  6273   ins_encode(load_F_enc(dst, mem));
  6274   ins_pipe( ialu_loadI );
  6275 %}
  6277 instruct loadConP_general(mRegP dst, immP src) %{
  6278   match(Set dst src);
  6280   ins_cost(120);
  6281   format %{ "li   $dst, $src #@loadConP_general" %}
  6283   ins_encode %{
  6284     Register dst = $dst$$Register;
  6285     long* value = (long*)$src$$constant;
  6287     if($src->constant_reloc() == relocInfo::metadata_type){
  6288     	int klass_index = __ oop_recorder()->find_index((Klass*)value);
  6289     	RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6291     	__ relocate(rspec);
  6292     	__ patchable_set48(dst, (long)value);
  6293     }else if($src->constant_reloc() == relocInfo::oop_type){
  6294     	int oop_index = __ oop_recorder()->find_index((jobject)value);
  6295     	RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6297     	__ relocate(rspec);
  6298     	__ patchable_set48(dst, (long)value);
  6299     } else if ($src->constant_reloc() == relocInfo::none) {
  6300         __ set64(dst, (long)value);
  6302   %}
  6304   ins_pipe( ialu_regI_regI );
  6305 %}
  6307 /*
  6308 instruct loadConP_load(mRegP dst, immP_load src) %{
  6309   match(Set dst src);
  6311   ins_cost(100);
  6312   format %{ "ld     $dst, [$constanttablebase + $constantoffset] load from constant table: ptr=$src @ loadConP_load" %}
  6314   ins_encode %{
  6316     int con_offset = $constantoffset($src);
  6318     if (Assembler::is_simm16(con_offset)) {
  6319        __ ld($dst$$Register, $constanttablebase, con_offset);
  6320     } else {
  6321        __ set64(AT, con_offset);
  6322        if (UseLoongsonISA) {
  6323           __ gsldx($dst$$Register, $constanttablebase, AT, 0);
  6324        } else {
  6325           __ daddu(AT, $constanttablebase, AT);
  6326           __ ld($dst$$Register, AT, 0);
  6329   %}
  6331   ins_pipe(ialu_loadI);
  6332 %}
  6333 */
  6335 instruct loadConP_no_oop_cheap(mRegP dst, immP_no_oop_cheap src) %{
  6336   match(Set dst src);
  6338   ins_cost(80);
  6339   format %{ "li    $dst, $src @ loadConP_no_oop_cheap" %}
  6341   ins_encode %{
  6342     __ set64($dst$$Register, $src$$constant);
  6343   %}
  6345   ins_pipe(ialu_regI_regI);
  6346 %}
  6349 instruct loadConP_poll(mRegP dst, immP_poll src) %{
  6350   match(Set dst src);
  6352   ins_cost(50);
  6353   format %{ "li   $dst, $src #@loadConP_poll" %}
  6355   ins_encode %{
  6356     Register dst = $dst$$Register;
  6357     intptr_t value = (intptr_t)$src$$constant;
  6359     __ set64(dst, (jlong)value);
  6360   %}
  6362   ins_pipe( ialu_regI_regI );
  6363 %}
  6365 instruct loadConP0(mRegP dst, immP0 src)
  6366 %{
  6367   match(Set dst src); 
  6369   ins_cost(50);
  6370   format %{ "mov    $dst, R0\t# ptr" %}
  6371   ins_encode %{
  6372      Register dst_reg = $dst$$Register;
  6373      __ daddu(dst_reg, R0, R0);
  6374   %}
  6375   ins_pipe( ialu_regI_regI );
  6376 %}
  6378 instruct loadConN0(mRegN dst, immN0 src) %{
  6379   match(Set dst src);
  6380   format %{ "move    $dst, R0\t# compressed NULL ptr" %}
  6381   ins_encode %{
  6382     __ move($dst$$Register, R0);
  6383   %}
  6384   ins_pipe( ialu_regI_regI );
  6385 %}
  6387 instruct loadConN(mRegN dst, immN src) %{
  6388   match(Set dst src);
  6390   ins_cost(125);
  6391   format %{ "li    $dst, $src\t# compressed ptr @ loadConN" %}
  6392   ins_encode %{
  6393     Register dst = $dst$$Register;
  6394     __ set_narrow_oop(dst, (jobject)$src$$constant);
  6395   %}
  6396   ins_pipe( ialu_regI_regI ); // XXX
  6397 %}
  6399 instruct loadConNKlass(mRegN dst, immNKlass src) %{
  6400   match(Set dst src);
  6402   ins_cost(125);
  6403   format %{ "li    $dst, $src\t# compressed klass ptr @ loadConNKlass" %}
  6404   ins_encode %{
  6405     Register dst = $dst$$Register;
  6406     __ set_narrow_klass(dst, (Klass*)$src$$constant);
  6407   %}
  6408   ins_pipe( ialu_regI_regI ); // XXX
  6409 %}
  6411 //FIXME
  6412 // Tail Call; Jump from runtime stub to Java code.
  6413 // Also known as an 'interprocedural jump'.
  6414 // Target of jump will eventually return to caller.
  6415 // TailJump below removes the return address.
  6416 instruct TailCalljmpInd(mRegP jump_target, mRegP method_oop) %{
  6417   match(TailCall jump_target method_oop );
  6418   ins_cost(300);
  6419   format %{ "JMP    $jump_target \t# @TailCalljmpInd" %}
  6421   ins_encode %{
  6422     Register target = $jump_target$$Register;
  6423     Register    oop = $method_oop$$Register;
  6425     /* 2012/10/12 Jin: RA will be used in generate_forward_exception() */
  6426     __ push(RA);
  6428     __ move(S3, oop);
  6429     __ jr(target);
  6430     __ nop();
  6431   %}
  6433   ins_pipe( pipe_jump );
  6434 %}
  6436 // Create exception oop: created by stack-crawling runtime code.
  6437 // Created exception is now available to this handler, and is setup
  6438 // just prior to jumping to this handler.  No code emitted.
  6439 instruct CreateException( a0_RegP ex_oop )
  6440 %{
  6441   match(Set ex_oop (CreateEx));
  6443   // use the following format syntax
  6444   format %{ "# exception oop is in A0; no code emitted @CreateException" %}
  6445   ins_encode %{
  6446     /* Jin: X86 leaves this function empty */
  6447     __ block_comment("CreateException is empty in X86/MIPS");
  6448   %}
  6449   ins_pipe( empty );
  6450 //  ins_pipe( pipe_jump );
  6451 %}
  6454 /* 2012/9/14 Jin: The mechanism of exception handling is clear now.
  6456 - Common try/catch:
  6457  2012/9/14 Jin: [stubGenerator_mips.cpp] generate_forward_exception()
  6458                     |- V0, V1 are created
  6459                     |- T9 <= SharedRuntime::exception_handler_for_return_address
  6460                     `- jr T9
  6461                          `- the caller's exception_handler
  6462                                `- jr OptoRuntime::exception_blob
  6463                                       `- here
  6464 - Rethrow(e.g. 'unwind'):
  6465   * The callee:
  6466      |- an exception is triggered during execution
  6467      `- exits the callee method through RethrowException node
  6468           |- The callee pushes exception_oop(T0) and exception_pc(RA)
  6469           `- The callee jumps to OptoRuntime::rethrow_stub()
  6470   * In OptoRuntime::rethrow_stub:
  6471      |- The VM calls _rethrow_Java to determine the return address in the caller method
  6472      `- exits the stub with tailjmpInd
  6473           |- pops exception_oop(V0) and exception_pc(V1)
  6474           `- jumps to the return address(usually an exception_handler)
  6475   * The caller:
  6476      `- continues processing the exception_blob with V0/V1
  6477 */
  6479 /*
  6480 Disassembling OptoRuntime::rethrow_stub()
  6482 ; locals
  6483    0x2d3bf320: addiu sp, sp, 0xfffffff8
  6484    0x2d3bf324: sw ra, 0x4(sp)
  6485    0x2d3bf328: sw fp, 0x0(sp)
  6486    0x2d3bf32c: addu fp, sp, zero
  6487    0x2d3bf330: addiu sp, sp, 0xfffffff0
  6488    0x2d3bf334: sw ra, 0x8(sp)
  6489    0x2d3bf338: sw t0, 0x4(sp)
  6490    0x2d3bf33c: sw sp, 0x0(sp)
  6492 ; get_thread(S2)
  6493    0x2d3bf340: addu s2, sp, zero
  6494    0x2d3bf344: srl s2, s2, 12
  6495    0x2d3bf348: sll s2, s2, 2
  6496    0x2d3bf34c: lui at, 0x2c85
  6497    0x2d3bf350: addu at, at, s2
  6498    0x2d3bf354: lw s2, 0xffffcc80(at)
  6500    0x2d3bf358: lw s0, 0x0(sp)
  6501    0x2d3bf35c: sw s0, 0x118(s2)		// last_sp -> threa
  6502    0x2d3bf360: sw s2, 0xc(sp)
  6504 ; OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc)
  6505    0x2d3bf364: lw a0, 0x4(sp)
  6506    0x2d3bf368: lw a1, 0xc(sp)
  6507    0x2d3bf36c: lw a2, 0x8(sp)
  6508   ;; Java_To_Runtime
  6509    0x2d3bf370: lui t9, 0x2c34
  6510    0x2d3bf374: addiu t9, t9, 0xffff8a48
  6511    0x2d3bf378: jalr t9
  6512    0x2d3bf37c: nop
  6514    0x2d3bf380: addu s3, v0, zero		 ; S3: SharedRuntime::raw_exception_handler_for_return_address()
  6516    0x2d3bf384: lw s0, 0xc(sp)
  6517    0x2d3bf388: sw zero, 0x118(s0)
  6518    0x2d3bf38c: sw zero, 0x11c(s0)
  6519    0x2d3bf390: lw s1, 0x144(s0)			; ex_oop: S1
  6520    0x2d3bf394: addu s2, s0, zero
  6521    0x2d3bf398: sw zero, 0x144(s2)
  6522    0x2d3bf39c: lw s0, 0x4(s2)
  6523    0x2d3bf3a0: addiu s4, zero, 0x0
  6524    0x2d3bf3a4: bne s0, s4, 0x2d3bf3d4
  6525    0x2d3bf3a8: nop
  6526    0x2d3bf3ac: addiu sp, sp, 0x10
  6527    0x2d3bf3b0: addiu sp, sp, 0x8
  6528    0x2d3bf3b4: lw ra, 0xfffffffc(sp)
  6529    0x2d3bf3b8: lw fp, 0xfffffff8(sp)
  6530    0x2d3bf3bc: lui at, 0x2b48
  6531    0x2d3bf3c0: lw at, 0x100(at)
  6533 ; tailjmpInd: Restores exception_oop & exception_pc
  6534    0x2d3bf3c4: addu v1, ra, zero
  6535    0x2d3bf3c8: addu v0, s1, zero
  6536    0x2d3bf3cc: jr s3
  6537    0x2d3bf3d0: nop
  6538 ; Exception:
  6539    0x2d3bf3d4: lui s1, 0x2cc8		; generate_forward_exception()
  6540    0x2d3bf3d8: addiu s1, s1, 0x40
  6541    0x2d3bf3dc: addiu s2, zero, 0x0
  6542    0x2d3bf3e0: addiu sp, sp, 0x10
  6543    0x2d3bf3e4: addiu sp, sp, 0x8
  6544    0x2d3bf3e8: lw ra, 0xfffffffc(sp)
  6545    0x2d3bf3ec: lw fp, 0xfffffff8(sp)
  6546    0x2d3bf3f0: lui at, 0x2b48
  6547    0x2d3bf3f4: lw at, 0x100(at)
  6548 ; TailCalljmpInd 
  6549               __ push(RA);		; to be used in generate_forward_exception()
  6550    0x2d3bf3f8: addu t7, s2, zero
  6551    0x2d3bf3fc: jr s1
  6552    0x2d3bf400: nop
  6553 */
  6554 // Rethrow exception:
  6555 // The exception oop will come in the first argument position.
  6556 // Then JUMP (not call) to the rethrow stub code.
  6557 instruct RethrowException()
  6558 %{
  6559   match(Rethrow);
  6561   // use the following format syntax
  6562   format %{ "JMP    rethrow_stub #@RethrowException" %}
  6563   ins_encode %{
  6564     __ block_comment("@ RethrowException");
  6566     cbuf.set_insts_mark();
  6567     cbuf.relocate(cbuf.insts_mark(), runtime_call_Relocation::spec());
  6569     // call OptoRuntime::rethrow_stub to get the exception handler in parent method
  6570     __ patchable_set48(T9, (jlong)OptoRuntime::rethrow_stub());
  6571     __ jr(T9);
  6572     __ nop();
  6573   %}
  6574   ins_pipe( pipe_jump );
  6575 %}
  6577 instruct branchConP_zero(cmpOpU cmp, mRegP op1, immP0 zero, label labl) %{
  6578   match(If cmp (CmpP op1 zero));
  6579   effect(USE labl);
  6581   ins_cost(180);
  6582   format %{ "b$cmp   $op1, R0, $labl #@branchConP_zero" %}
  6584   ins_encode %{
  6585     Register op1 = $op1$$Register;
  6586     Register op2 = R0;
  6587     Label    &L  = *($labl$$label);
  6588     int     flag = $cmp$$cmpcode;
  6590     switch(flag)
  6592       case 0x01: //equal
  6593 	if (&L)
  6594         	__ beq(op1, op2, L); 
  6595 	else 
  6596         	__ beq(op1, op2, (int)0); 
  6597         break;
  6598       case 0x02: //not_equal
  6599 	if (&L)
  6600         	__ bne(op1, op2, L); 
  6601 	else
  6602         	__ bne(op1, op2, (int)0); 
  6603         break;
  6604 /*
  6605       case 0x03: //above
  6606         __ sltu(AT, op2, op1);
  6607         if(&L)
  6608         	__ bne(R0, AT, L); 
  6609         else
  6610                 __ bne(R0, AT, (int)0);
  6611         break;
  6612       case 0x04: //above_equal
  6613         __ sltu(AT, op1, op2);
  6614         if(&L)
  6615        	        __ beq(AT, R0, L);
  6616         else
  6617        	        __ beq(AT, R0, (int)0);
  6618         break;
  6619       case 0x05: //below
  6620         __ sltu(AT, op1, op2);
  6621         if(&L)
  6622       		 __ bne(R0, AT, L); 
  6623         else
  6624         	 __ bne(R0, AT, (int)0);
  6625         break;
  6626       case 0x06: //below_equal
  6627         __ sltu(AT, op2, op1);
  6628         if(&L)
  6629         	__ beq(AT, R0, L);
  6630         else
  6631         	__ beq(AT, R0, (int)0);
  6632        break;
  6633 */
  6634       default:
  6635           Unimplemented();
  6637     __ nop();
  6638   %}
  6640   ins_pc_relative(1);
  6641   ins_pipe( pipe_alu_branch );
  6642 %}
  6644 instruct branchConN2P_zero(cmpOpU cmp, mRegN op1, immP0 zero, label labl) %{
  6645   match(If cmp (CmpP (DecodeN op1) zero));
  6646   predicate(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0);
  6647   effect(USE labl);
  6649   ins_cost(180);
  6650   format %{ "b$cmp   $op1, R0, $labl #@branchConN2P_zero" %}
  6652   ins_encode %{
  6653     Register op1 = $op1$$Register;
  6654     Register op2 = R0;
  6655     Label    &L  = *($labl$$label);
  6656     int     flag = $cmp$$cmpcode;
  6658     switch(flag)
  6660       case 0x01: //equal
  6661 	if (&L)
  6662         	__ beq(op1, op2, L); 
  6663 	else 
  6664         	__ beq(op1, op2, (int)0); 
  6665         break;
  6666       case 0x02: //not_equal
  6667 	if (&L)
  6668         	__ bne(op1, op2, L); 
  6669 	else
  6670         	__ bne(op1, op2, (int)0); 
  6671         break;
  6672       default:
  6673           Unimplemented();
  6675     __ nop();
  6676   %}
  6678   ins_pc_relative(1);
  6679   ins_pipe( pipe_alu_branch );
  6680 %}
  6683 instruct branchConP(cmpOpU cmp, mRegP op1, mRegP op2, label labl) %{
  6684   match(If cmp (CmpP op1 op2));
  6685 //  predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  6686   effect(USE labl);
  6688   ins_cost(200);
  6689   format %{ "b$cmp   $op1, $op2, $labl #@branchConP" %}
  6691   ins_encode %{
  6692     Register op1 = $op1$$Register;
  6693     Register op2 = $op2$$Register;
  6694     Label    &L  = *($labl$$label);
  6695     int     flag = $cmp$$cmpcode;
  6697     switch(flag)
  6699       case 0x01: //equal
  6700 	if (&L)
  6701         	__ beq(op1, op2, L); 
  6702 	else 
  6703         	__ beq(op1, op2, (int)0); 
  6704         break;
  6705       case 0x02: //not_equal
  6706 	if (&L)
  6707         	__ bne(op1, op2, L); 
  6708 	else
  6709         	__ bne(op1, op2, (int)0); 
  6710         break;
  6711       case 0x03: //above
  6712         __ sltu(AT, op2, op1);
  6713         if(&L)
  6714         	__ bne(R0, AT, L); 
  6715         else
  6716                 __ bne(R0, AT, (int)0);
  6717         break;
  6718       case 0x04: //above_equal
  6719         __ sltu(AT, op1, op2);
  6720         if(&L)
  6721        	        __ beq(AT, R0, L);
  6722         else
  6723        	        __ beq(AT, R0, (int)0);
  6724         break;
  6725       case 0x05: //below
  6726         __ sltu(AT, op1, op2);
  6727         if(&L)
  6728       		 __ bne(R0, AT, L); 
  6729         else
  6730         	 __ bne(R0, AT, (int)0);
  6731         break;
  6732       case 0x06: //below_equal
  6733         __ sltu(AT, op2, op1);
  6734         if(&L)
  6735         	__ beq(AT, R0, L);
  6736         else
  6737         	__ beq(AT, R0, (int)0);
  6738        break;
  6739       default:
  6740           Unimplemented();
  6742     __ nop();
  6743   %}
  6745   ins_pc_relative(1);
  6746   ins_pipe( pipe_alu_branch );
  6747 %}
  6749 instruct cmpN_null_branch(cmpOp cmp, mRegN op1, immN0 null, label labl) %{
  6750   match(If cmp (CmpN op1 null));
  6751   effect(USE labl);
  6753   ins_cost(180);
  6754   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  6755             "BP$cmp   $labl @ cmpN_null_branch" %}
  6756   ins_encode %{
  6757     Register op1 = $op1$$Register;
  6758     Register op2 = R0;
  6759     Label    &L  = *($labl$$label);
  6760     int     flag = $cmp$$cmpcode;
  6762     switch(flag)
  6764 		case 0x01: //equal
  6765 			if (&L)
  6766 				__ beq(op1, op2, L); 
  6767 			else 
  6768 				__ beq(op1, op2, (int)0); 
  6769 			break;
  6770 		case 0x02: //not_equal
  6771 			if (&L)
  6772 				__ bne(op1, op2, L); 
  6773 			else
  6774 				__ bne(op1, op2, (int)0); 
  6775 			break;
  6776 		default:
  6777           Unimplemented();
  6779     __ nop();
  6780   %}
  6781 //TODO: pipe_branchP or create pipe_branchN LEE
  6782   ins_pc_relative(1);
  6783   ins_pipe( pipe_alu_branch );
  6784 %}
  6786 instruct cmpN_reg_branch(cmpOp cmp, mRegN op1, mRegN op2, label labl) %{
  6787   match(If cmp (CmpN op1 op2));
  6788   effect(USE labl);
  6790   ins_cost(180);
  6791   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  6792             "BP$cmp   $labl" %}
  6793   ins_encode %{
  6794     Register op1_reg = $op1$$Register;
  6795     Register op2_reg = $op2$$Register;
  6796     Label    &L  = *($labl$$label);
  6797     int     flag = $cmp$$cmpcode;
  6799     switch(flag)
  6801 		case 0x01: //equal
  6802 			if (&L)
  6803 				__ beq(op1_reg, op2_reg, L); 
  6804 			else 
  6805 				__ beq(op1_reg, op2_reg, (int)0); 
  6806 			break;
  6807 		case 0x02: //not_equal
  6808 			if (&L)
  6809 				__ bne(op1_reg, op2_reg, L); 
  6810 			else
  6811 				__ bne(op1_reg, op2_reg, (int)0); 
  6812 			break;
  6813 		case 0x03: //above
  6814 			__ sltu(AT, op2_reg, op1_reg);
  6815 			if(&L)
  6816 				__ bne(R0, AT, L); 
  6817 			else
  6818 				__ bne(R0, AT, (int)0);
  6819 			break;
  6820 		case 0x04: //above_equal
  6821 			__ sltu(AT, op1_reg, op2_reg);
  6822 			if(&L)
  6823 				__ beq(AT, R0, L);
  6824 			else
  6825 				__ beq(AT, R0, (int)0);
  6826 			break;
  6827 		case 0x05: //below
  6828 			__ sltu(AT, op1_reg, op2_reg);
  6829 			if(&L)
  6830 				__ bne(R0, AT, L); 
  6831 			else
  6832 				__ bne(R0, AT, (int)0);
  6833 			break;
  6834 		case 0x06: //below_equal
  6835 			__ sltu(AT, op2_reg, op1_reg);
  6836 			if(&L)
  6837 				__ beq(AT, R0, L);
  6838 			else
  6839 				__ beq(AT, R0, (int)0);
  6840 			break;
  6841 		default:
  6842           Unimplemented();
  6844     __ nop();
  6845   %}
  6846   ins_pc_relative(1);
  6847   ins_pipe( pipe_alu_branch );
  6848 %}
  6850 instruct branchConIU_reg_reg(cmpOpU cmp, mRegI src1, mRegI src2, label labl) %{
  6851   match( If cmp (CmpU src1 src2) );
  6852   effect(USE labl);
  6853   format %{ "BR$cmp   $src1, $src2, $labl #@branchConIU_reg_reg" %}
  6855   ins_encode %{
  6856     Register op1 = $src1$$Register;
  6857     Register op2 = $src2$$Register;
  6858     Label     &L = *($labl$$label);
  6859     int     flag = $cmp$$cmpcode;
  6861     switch(flag)
  6863       case 0x01: //equal
  6864 	if (&L)
  6865         	__ beq(op1, op2, L); 
  6866 	else 
  6867         	__ beq(op1, op2, (int)0); 
  6868         break;
  6869       case 0x02: //not_equal
  6870 	if (&L)
  6871         	__ bne(op1, op2, L); 
  6872 	else
  6873         	__ bne(op1, op2, (int)0); 
  6874         break;
  6875       case 0x03: //above
  6876         __ sltu(AT, op2, op1);
  6877         if(&L)
  6878         	__ bne(AT, R0, L); 
  6879         else
  6880                 __ bne(AT, R0, (int)0);
  6881         break;
  6882       case 0x04: //above_equal
  6883         __ sltu(AT, op1, op2);
  6884         if(&L)
  6885         	__ beq(AT, R0, L);
  6886         else
  6887                 __ beq(AT, R0, (int)0);
  6888         break;
  6889       case 0x05: //below
  6890         __ sltu(AT, op1, op2);
  6891         if(&L)
  6892       		 __ bne(AT, R0, L); 
  6893         else
  6894         	 __ bne(AT, R0, (int)0);
  6895         break;
  6896       case 0x06: //below_equal
  6897         __ sltu(AT, op2, op1);
  6898         if(&L)
  6899         	__ beq(AT, R0, L);
  6900         else
  6901         	__ beq(AT, R0, (int)0);
  6902         break;
  6903       default:
  6904           Unimplemented();
  6906     __ nop();
  6907   %}
  6909   ins_pc_relative(1);
  6910   ins_pipe( pipe_alu_branch );
  6911 %}
  6914 instruct branchConIU_reg_imm(cmpOpU cmp, mRegI src1, immI src2, label labl) %{
  6915   match( If cmp (CmpU src1 src2) );
  6916   effect(USE labl);
  6917   format %{ "BR$cmp   $src1, $src2, $labl #@branchConIU_reg_imm" %}
  6919   ins_encode %{
  6920     Register op1 = $src1$$Register;
  6921     int      val = $src2$$constant;
  6922     Label     &L = *($labl$$label);
  6923     int     flag = $cmp$$cmpcode;
  6925     __ move(AT, val);
  6926     switch(flag)
  6928       case 0x01: //equal
  6929 	if (&L)
  6930         	__ beq(op1, AT, L); 
  6931 	else 
  6932         	__ beq(op1, AT, (int)0); 
  6933         break;
  6934       case 0x02: //not_equal
  6935 	if (&L)
  6936         	__ bne(op1, AT, L); 
  6937 	else
  6938         	__ bne(op1, AT, (int)0); 
  6939         break;
  6940       case 0x03: //above
  6941         __ sltu(AT, AT, op1);
  6942         if(&L)
  6943         	__ bne(R0, AT, L); 
  6944         else
  6945                 __ bne(R0, AT, (int)0);
  6946         break;
  6947       case 0x04: //above_equal
  6948         __ sltu(AT, op1, AT);
  6949         if(&L)
  6950         	__ beq(AT, R0, L);
  6951         else
  6952                 __ beq(AT, R0, (int)0);
  6953         break;
  6954       case 0x05: //below
  6955         __ sltu(AT, op1, AT);
  6956         if(&L)
  6957       		 __ bne(R0, AT, L); 
  6958         else
  6959         	 __ bne(R0, AT, (int)0);
  6960         break;
  6961       case 0x06: //below_equal
  6962         __ sltu(AT, AT, op1);
  6963         if(&L)
  6964         	__ beq(AT, R0, L);
  6965         else
  6966         	__ beq(AT, R0, (int)0);
  6967        break;
  6968       default:
  6969           Unimplemented();
  6971     __ nop();
  6972   %}
  6974   ins_pc_relative(1);
  6975   ins_pipe( pipe_alu_branch );
  6976 %}
  6978 instruct branchConI_reg_reg(cmpOp cmp, mRegI src1, mRegI src2, label labl) %{
  6979   match( If cmp (CmpI src1 src2) );
  6980   effect(USE labl);
  6981   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_reg" %}
  6983   ins_encode %{
  6984     Register op1 = $src1$$Register;
  6985     Register op2 = $src2$$Register;
  6986     Label     &L = *($labl$$label);
  6987     int     flag = $cmp$$cmpcode;
  6989     switch(flag)
  6991       case 0x01: //equal
  6992 	if (&L)
  6993         	__ beq(op1, op2, L); 
  6994 	else 
  6995         	__ beq(op1, op2, (int)0); 
  6996         break;
  6997       case 0x02: //not_equal
  6998 	if (&L)
  6999         	__ bne(op1, op2, L); 
  7000 	else
  7001         	__ bne(op1, op2, (int)0); 
  7002         break;
  7003       case 0x03: //above
  7004         __ slt(AT, op2, op1);
  7005         if(&L)
  7006         	__ bne(R0, AT, L); 
  7007         else
  7008                 __ bne(R0, AT, (int)0);
  7009         break;
  7010       case 0x04: //above_equal
  7011         __ slt(AT, op1, op2);
  7012         if(&L)
  7013         	__ beq(AT, R0, L);
  7014         else
  7015                 __ beq(AT, R0, (int)0);
  7016         break;
  7017       case 0x05: //below
  7018         __ slt(AT, op1, op2);
  7019         if(&L)
  7020       		 __ bne(R0, AT, L); 
  7021         else
  7022         	 __ bne(R0, AT, (int)0);
  7023         break;
  7024       case 0x06: //below_equal
  7025         __ slt(AT, op2, op1);
  7026         if(&L)
  7027         	__ beq(AT, R0, L);
  7028         else
  7029         	__ beq(AT, R0, (int)0);
  7030        break;
  7031       default:
  7032           Unimplemented();
  7034     __ nop();
  7035   %}
  7037   ins_pc_relative(1);
  7038   ins_pipe( pipe_alu_branch );
  7039 %}
  7041 instruct branchConI_reg_imm0(cmpOp cmp, mRegI src1, immI0 src2, label labl) %{
  7042   match( If cmp (CmpI src1 src2) );
  7043   effect(USE labl);
  7044   ins_cost(170);
  7045   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_imm0" %}
  7047   ins_encode %{
  7048     Register op1 = $src1$$Register;
  7049 //    int      val = $src2$$constant;
  7050     Label     &L =  *($labl$$label);
  7051     int     flag = $cmp$$cmpcode;
  7053     //__ move(AT, val);
  7054     switch(flag)
  7056       case 0x01: //equal
  7057 	if (&L)
  7058         	__ beq(op1, R0, L); 
  7059 	else 
  7060         	__ beq(op1, R0, (int)0); 
  7061         break;
  7062       case 0x02: //not_equal
  7063 	if (&L)
  7064         	__ bne(op1, R0, L); 
  7065 	else
  7066         	__ bne(op1, R0, (int)0); 
  7067         break;
  7068       case 0x03: //greater
  7069         if(&L)
  7070                __ bgtz(op1, L);
  7071         else
  7072                __ bgtz(op1, (int)0);
  7073         break;
  7074       case 0x04: //greater_equal
  7075         if(&L)
  7076                __ bgez(op1, L);
  7077         else
  7078                __ bgez(op1, (int)0);
  7079         break;
  7080       case 0x05: //less
  7081         if(&L)
  7082                 __ bltz(op1, L);
  7083         else
  7084                 __ bltz(op1, (int)0);
  7085         break;
  7086       case 0x06: //less_equal
  7087         if(&L)
  7088                __ blez(op1, L);
  7089         else
  7090                __ blez(op1, (int)0);
  7091        break;
  7092       default:
  7093           Unimplemented();
  7095     __ nop();
  7096   %}
  7098   ins_pc_relative(1);
  7099   ins_pipe( pipe_alu_branch );
  7100 %}
  7103 instruct branchConI_reg_imm(cmpOp cmp, mRegI src1, immI src2, label labl) %{
  7104   match( If cmp (CmpI src1 src2) );
  7105   effect(USE labl);
  7106   ins_cost(200);
  7107   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_imm" %}
  7109   ins_encode %{
  7110     Register op1 = $src1$$Register;
  7111     int      val = $src2$$constant;
  7112     Label     &L =  *($labl$$label);
  7113     int     flag = $cmp$$cmpcode;
  7115     __ move(AT, val);
  7116     switch(flag)
  7118       case 0x01: //equal
  7119 	if (&L)
  7120         	__ beq(op1, AT, L); 
  7121 	else 
  7122         	__ beq(op1, AT, (int)0); 
  7123         break;
  7124       case 0x02: //not_equal
  7125 	if (&L)
  7126         	__ bne(op1, AT, L); 
  7127 	else
  7128         	__ bne(op1, AT, (int)0); 
  7129         break;
  7130       case 0x03: //greater
  7131         __ slt(AT, AT, op1);
  7132         if(&L)
  7133         	__ bne(R0, AT, L); 
  7134         else
  7135                 __ bne(R0, AT, (int)0);
  7136         break;
  7137       case 0x04: //greater_equal
  7138         __ slt(AT, op1, AT);
  7139         if(&L)
  7140         	__ beq(AT, R0, L);
  7141         else
  7142                 __ beq(AT, R0, (int)0);
  7143         break;
  7144       case 0x05: //less
  7145         __ slt(AT, op1, AT);
  7146         if(&L)
  7147       		 __ bne(R0, AT, L); 
  7148         else
  7149         	 __ bne(R0, AT, (int)0);
  7150         break;
  7151       case 0x06: //less_equal
  7152         __ slt(AT, AT, op1);
  7153         if(&L)
  7154         	__ beq(AT, R0, L);
  7155         else
  7156         	__ beq(AT, R0, (int)0);
  7157        break;
  7158       default:
  7159           Unimplemented();
  7161     __ nop();
  7162   %}
  7164   ins_pc_relative(1);
  7165   ins_pipe( pipe_alu_branch );
  7166 %}
  7168 instruct branchConIU_reg_imm0(cmpOpU cmp, mRegI src1, immI0 zero, label labl) %{
  7169   match( If cmp (CmpU src1 zero) );
  7170   effect(USE labl);
  7171   format %{ "BR$cmp   $src1, zero, $labl #@branchConIU_reg_imm0" %}
  7173   ins_encode %{
  7174     Register op1 = $src1$$Register;
  7175     Label     &L = *($labl$$label);
  7176     int     flag = $cmp$$cmpcode;
  7178     switch(flag)
  7180       case 0x01: //equal
  7181        if (&L)
  7182                __ beq(op1, R0, L); 
  7183        else 
  7184                __ beq(op1, R0, (int)0); 
  7185         break;
  7186       case 0x02: //not_equal
  7187        if (&L)
  7188                __ bne(op1, R0, L); 
  7189        else
  7190                __ bne(op1, R0, (int)0); 
  7191         break;
  7192       case 0x03: //above
  7193         if(&L)
  7194                __ bne(R0, op1, L); 
  7195         else
  7196                 __ bne(R0, op1, (int)0);
  7197         break;
  7198       case 0x04: //above_equal
  7199         if(&L)
  7200                __ beq(R0, R0, L);
  7201         else
  7202                 __ beq(R0, R0, (int)0);
  7203         break;
  7204       case 0x05: //below
  7205         return;
  7206         break;
  7207       case 0x06: //below_equal
  7208         if(&L)
  7209                __ beq(op1, R0, L);
  7210         else
  7211                __ beq(op1, R0, (int)0);
  7212        break;
  7213       default:
  7214           Unimplemented();
  7216     __ nop();
  7217   %}
  7219   ins_pc_relative(1);
  7220   ins_pipe( pipe_alu_branch );
  7221 %}
  7224 instruct branchConIU_reg_immI16(cmpOpU cmp, mRegI src1, immI16 src2, label labl) %{
  7225   match( If cmp (CmpU src1 src2) );
  7226   effect(USE labl);
  7227   ins_cost(180);
  7228   format %{ "BR$cmp   $src1, $src2, $labl #@branchConIU_reg_immI16" %}
  7230   ins_encode %{
  7231     Register op1 = $src1$$Register;
  7232     int      val = $src2$$constant;
  7233     Label     &L = *($labl$$label);
  7234     int     flag = $cmp$$cmpcode;
  7236     switch(flag)
  7238       case 0x01: //equal
  7239         __ move(AT, val);
  7240        if (&L)
  7241                __ beq(op1, AT, L); 
  7242        else 
  7243                __ beq(op1, AT, (int)0); 
  7244         break;
  7245       case 0x02: //not_equal
  7246         __ move(AT, val);
  7247        if (&L)
  7248                __ bne(op1, AT, L); 
  7249        else
  7250                __ bne(op1, AT, (int)0); 
  7251         break;
  7252       case 0x03: //above
  7253         __ move(AT, val);
  7254         __ sltu(AT, AT, op1);
  7255         if(&L)
  7256                __ bne(R0, AT, L); 
  7257         else
  7258                 __ bne(R0, AT, (int)0);
  7259         break;
  7260       case 0x04: //above_equal
  7261         __ sltiu(AT, op1, val);
  7262         if(&L)
  7263                __ beq(AT, R0, L);
  7264         else
  7265                 __ beq(AT, R0, (int)0);
  7266         break;
  7267       case 0x05: //below
  7268         __ sltiu(AT, op1, val);
  7269         if(&L)
  7270                 __ bne(R0, AT, L); 
  7271         else
  7272                 __ bne(R0, AT, (int)0);
  7273         break;
  7274       case 0x06: //below_equal
  7275         __ move(AT, val);
  7276         __ sltu(AT, AT, op1);
  7277         if(&L)
  7278                __ beq(AT, R0, L);
  7279         else
  7280                __ beq(AT, R0, (int)0);
  7281        break;
  7282       default:
  7283           Unimplemented();
  7285     __ nop();
  7286   %}
  7288   ins_pc_relative(1);
  7289   ins_pipe( pipe_alu_branch );
  7290 %}
  7293 instruct branchConL_regL_regL(cmpOp cmp, mRegL src1, mRegL src2, label labl) %{
  7294   match( If cmp (CmpL src1 src2) );
  7295   effect(USE labl);
  7296   format %{ "BR$cmp   $src1, $src2, $labl #@branchConL_regL_regL" %}
  7297   ins_cost(250);
  7299   ins_encode %{
  7300     Register opr1_reg = as_Register($src1$$reg);
  7301     Register opr2_reg = as_Register($src2$$reg);
  7303     Label   &target = *($labl$$label);
  7304     int     flag = $cmp$$cmpcode;
  7306     switch(flag)
  7308       case 0x01: //equal
  7309         if (&target) 
  7310 			__ beq(opr1_reg, opr2_reg, target);
  7311         else
  7312 			__ beq(opr1_reg, opr2_reg, (int)0);
  7313         __ delayed()->nop();
  7314         break;
  7316       case 0x02: //not_equal
  7317         if(&target)
  7318            __ bne(opr1_reg, opr2_reg, target);
  7319         else
  7320            __ bne(opr1_reg, opr2_reg, (int)0);
  7321         __ delayed()->nop();
  7322         break;
  7324       case 0x03: //greater
  7325         __ slt(AT, opr2_reg, opr1_reg);
  7326         if(&target)
  7327            __ bne(AT, R0, target);
  7328         else
  7329            __ bne(AT, R0, (int)0);
  7330         __ delayed()->nop();
  7331         break;
  7333       case 0x04: //greater_equal
  7334         __ slt(AT, opr1_reg, opr2_reg);
  7335         if(&target)
  7336            __ beq(AT, R0, target);
  7337         else
  7338            __ beq(AT, R0, (int)0);
  7339         __ delayed()->nop();
  7341         break;
  7343       case 0x05: //less
  7344         __ slt(AT, opr1_reg, opr2_reg);
  7345         if(&target)
  7346            __ bne(AT, R0, target);
  7347         else
  7348            __ bne(AT, R0, (int)0);
  7349         __ delayed()->nop();
  7351         break;
  7353       case 0x06: //less_equal
  7354        __ slt(AT, opr2_reg, opr1_reg);
  7356        if(&target)
  7357           __ beq(AT, R0, target);
  7358        else
  7359           __ beq(AT, R0, (int)0);
  7360        __ delayed()->nop();
  7362        break;
  7364       default:
  7365           Unimplemented();
  7367   %}
  7370   ins_pc_relative(1);
  7371   ins_pipe( pipe_alu_branch );
  7372 %}
  7374 instruct branchConL_reg_immL16_sub(cmpOp cmp, mRegL src1, immL16_sub src2, label labl) %{
  7375   match( If cmp (CmpL src1 src2) );
  7376   effect(USE labl);
  7377   ins_cost(180);
  7378   format %{ "BR$cmp   $src1, $src2, $labl #@branchConL_reg_immL16_sub" %}
  7380   ins_encode %{
  7381     Register op1 = $src1$$Register;
  7382     int      val = $src2$$constant;
  7383     Label     &L =  *($labl$$label);
  7384     int     flag = $cmp$$cmpcode;
  7386     __ daddiu(AT, op1, -1 * val);
  7387     switch(flag)
  7389       case 0x01: //equal
  7390        if (&L)
  7391                __ beq(R0, AT, L); 
  7392        else 
  7393                __ beq(R0, AT, (int)0); 
  7394         break;
  7395       case 0x02: //not_equal
  7396        if (&L)
  7397                __ bne(R0, AT, L); 
  7398        else
  7399                __ bne(R0, AT, (int)0); 
  7400         break;
  7401       case 0x03: //greater
  7402         if(&L)
  7403                __ bgtz(AT, L); 
  7404         else
  7405                 __ bgtz(AT, (int)0);
  7406         break;
  7407       case 0x04: //greater_equal
  7408         if(&L)
  7409                __ bgez(AT, L);
  7410         else
  7411                 __ bgez(AT, (int)0);
  7412         break;
  7413       case 0x05: //less
  7414         if(&L)
  7415                 __ bltz(AT, L); 
  7416         else
  7417                 __ bltz(AT, (int)0);
  7418         break;
  7419       case 0x06: //less_equal
  7420         if(&L)
  7421                __ blez(AT, L);
  7422         else
  7423                __ blez(AT, (int)0);
  7424        break;
  7425       default:
  7426           Unimplemented();
  7428     __ nop();
  7429   %}
  7431   ins_pc_relative(1);
  7432   ins_pipe( pipe_alu_branch );
  7433 %}
  7436 instruct branchConI_reg_imm16_sub(cmpOp cmp, mRegI src1, immI16_sub src2, label labl) %{
  7437   match( If cmp (CmpI src1 src2) );
  7438   effect(USE labl);
  7439   ins_cost(180);
  7440   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_imm16_sub" %}
  7442   ins_encode %{
  7443     Register op1 = $src1$$Register;
  7444     int      val = $src2$$constant;
  7445     Label     &L =  *($labl$$label);
  7446     int     flag = $cmp$$cmpcode;
  7448     __ addiu32(AT, op1, -1 * val);
  7449     switch(flag)
  7451       case 0x01: //equal
  7452        if (&L)
  7453                __ beq(R0, AT, L); 
  7454        else 
  7455                __ beq(R0, AT, (int)0); 
  7456         break;
  7457       case 0x02: //not_equal
  7458        if (&L)
  7459                __ bne(R0, AT, L); 
  7460        else
  7461                __ bne(R0, AT, (int)0); 
  7462         break;
  7463       case 0x03: //greater
  7464         if(&L)
  7465                __ bgtz(AT, L); 
  7466         else
  7467                 __ bgtz(AT, (int)0);
  7468         break;
  7469       case 0x04: //greater_equal
  7470         if(&L)
  7471                __ bgez(AT, L);
  7472         else
  7473                 __ bgez(AT, (int)0);
  7474         break;
  7475       case 0x05: //less
  7476         if(&L)
  7477                 __ bltz(AT, L); 
  7478         else
  7479                 __ bltz(AT, (int)0);
  7480         break;
  7481       case 0x06: //less_equal
  7482         if(&L)
  7483                __ blez(AT, L);
  7484         else
  7485                __ blez(AT, (int)0);
  7486        break;
  7487       default:
  7488           Unimplemented();
  7490     __ nop();
  7491   %}
  7493   ins_pc_relative(1);
  7494   ins_pipe( pipe_alu_branch );
  7495 %}
  7497 instruct branchConL_regL_immL0(cmpOp cmp, mRegL src1, immL0 zero, label labl) %{
  7498   match( If cmp (CmpL src1 zero) );
  7499   effect(USE labl);
  7500   format %{ "BR$cmp   $src1, zero, $labl #@branchConL_regL_immL0" %}
  7501   ins_cost(150);
  7503   ins_encode %{
  7504     Register opr1_reg = as_Register($src1$$reg);
  7505     Label   &target = *($labl$$label);
  7506     int     flag = $cmp$$cmpcode;
  7508     switch(flag)
  7510       case 0x01: //equal
  7511         if (&target) 
  7512            __ beq(opr1_reg, R0, target);
  7513         else
  7514            __ beq(opr1_reg, R0, int(0));
  7515         break;
  7517       case 0x02: //not_equal
  7518         if(&target)
  7519            __ bne(opr1_reg, R0, target);
  7520         else
  7521            __ bne(opr1_reg, R0, (int)0);
  7522         break;
  7524       case 0x03: //greater
  7525         if(&target)
  7526            __ bgtz(opr1_reg, target);
  7527         else
  7528            __ bgtz(opr1_reg, (int)0);
  7529        break;
  7531       case 0x04: //greater_equal
  7532         if(&target)
  7533            __ bgez(opr1_reg, target);
  7534         else
  7535            __ bgez(opr1_reg, (int)0);
  7536         break;
  7538       case 0x05: //less
  7539         __ slt(AT, opr1_reg, R0);
  7540         if(&target)
  7541            __ bne(AT, R0, target);
  7542         else
  7543            __ bne(AT, R0, (int)0);
  7544         break;
  7546       case 0x06: //less_equal
  7547         if (&target) 
  7548            __ blez(opr1_reg, target);
  7549         else
  7550            __ blez(opr1_reg, int(0));
  7551         break;
  7553       default:
  7554           Unimplemented();
  7556 	__ delayed()->nop();
  7557   %}
  7560   ins_pc_relative(1);
  7561   ins_pipe( pipe_alu_branch );
  7562 %}
  7565 //FIXME
  7566 instruct branchConF_reg_reg(cmpOp cmp, regF src1, regF src2, label labl) %{
  7567   match( If cmp (CmpF src1 src2) );
  7568   effect(USE labl);
  7569   format %{ "BR$cmp   $src1, $src2, $labl #@branchConF_reg_reg" %}
  7571   ins_encode %{
  7572     FloatRegister reg_op1 = $src1$$FloatRegister;
  7573     FloatRegister reg_op2 = $src2$$FloatRegister;
  7574     Label     &L =  *($labl$$label);
  7575     int     flag = $cmp$$cmpcode;
  7577     switch(flag)
  7579       case 0x01: //equal
  7580         __ c_eq_s(reg_op1, reg_op2);
  7581 	if (&L)
  7582                 __ bc1t(L);
  7583 	else 
  7584                 __ bc1t((int)0);
  7585         break;
  7586       case 0x02: //not_equal
  7587         __ c_eq_s(reg_op1, reg_op2);
  7588 	if (&L)
  7589                 __ bc1f(L);
  7590 	else
  7591                 __ bc1f((int)0);
  7592         break;
  7593       case 0x03: //greater
  7594         __ c_ule_s(reg_op1, reg_op2);
  7595         if(&L)
  7596                 __ bc1f(L);
  7597         else
  7598                 __ bc1f((int)0);
  7599         break;
  7600       case 0x04: //greater_equal
  7601         __ c_ult_s(reg_op1, reg_op2);
  7602         if(&L)
  7603                 __ bc1f(L);
  7604         else
  7605                 __ bc1f((int)0);
  7606         break;
  7607       case 0x05: //less
  7608         __ c_ult_s(reg_op1, reg_op2);
  7609         if(&L)
  7610                 __ bc1t(L);
  7611         else
  7612                 __ bc1t((int)0);
  7613         break;
  7614       case 0x06: //less_equal
  7615         __ c_ule_s(reg_op1, reg_op2);
  7616         if(&L)
  7617                 __ bc1t(L);
  7618         else
  7619                 __ bc1t((int)0);
  7620        break;
  7621       default:
  7622           Unimplemented();
  7624     __ nop();
  7625   %}
  7627   ins_pc_relative(1);
  7628   ins_pipe(pipe_slow);
  7629 %}
  7631 instruct branchConD_reg_reg(cmpOp cmp, regD src1, regD src2, label labl) %{
  7632   match( If cmp (CmpD src1 src2) );
  7633   effect(USE labl);
  7634   format %{ "BR$cmp   $src1, $src2, $labl #@branchConD_reg_reg" %}
  7636   ins_encode %{
  7637     FloatRegister reg_op1 = $src1$$FloatRegister;
  7638     FloatRegister reg_op2 = $src2$$FloatRegister;
  7639     Label     &L =  *($labl$$label);
  7640     int     flag = $cmp$$cmpcode;
  7642     switch(flag)
  7644       case 0x01: //equal
  7645         __ c_eq_d(reg_op1, reg_op2);
  7646 	if (&L)
  7647                 __ bc1t(L);
  7648 	else 
  7649                 __ bc1t((int)0);
  7650         break;
  7651       case 0x02: //not_equal
  7652 //2016/4/19 aoqi: c_ueq_d cannot distinguish NaN from equal. Double.isNaN(Double) is implemented by 'f != f', so the use of c_ueq_d causes bugs.
  7653         __ c_eq_d(reg_op1, reg_op2);
  7654 	if (&L)
  7655                 __ bc1f(L);
  7656 	else
  7657                 __ bc1f((int)0);
  7658         break;
  7659       case 0x03: //greater
  7660         __ c_ule_d(reg_op1, reg_op2);
  7661         if(&L)
  7662                 __ bc1f(L);
  7663         else
  7664                 __ bc1f((int)0);
  7665         break;
  7666       case 0x04: //greater_equal
  7667         __ c_ult_d(reg_op1, reg_op2);
  7668         if(&L)
  7669                 __ bc1f(L);
  7670         else
  7671                 __ bc1f((int)0);
  7672         break;
  7673       case 0x05: //less
  7674         __ c_ult_d(reg_op1, reg_op2);
  7675         if(&L)
  7676                 __ bc1t(L);
  7677         else
  7678                 __ bc1t((int)0);
  7679         break;
  7680       case 0x06: //less_equal
  7681         __ c_ule_d(reg_op1, reg_op2);
  7682         if(&L)
  7683                 __ bc1t(L);
  7684         else
  7685                 __ bc1t((int)0);
  7686        break;
  7687       default:
  7688           Unimplemented();
  7690     __ nop();
  7691   %}
  7693   ins_pc_relative(1);
  7694   ins_pipe(pipe_slow);
  7695 %}
  7698 // Call Runtime Instruction
  7699 instruct CallRuntimeDirect(method meth) %{
  7700   match(CallRuntime );
  7701   effect(USE meth);
  7703   ins_cost(300);
  7704   format %{ "CALL,runtime #@CallRuntimeDirect" %}
  7705   ins_encode( Java_To_Runtime( meth ) );
  7706   ins_pipe( pipe_slow );
  7707   ins_alignment(16);
  7708 %}
  7712 //------------------------MemBar Instructions-------------------------------
  7713 //Memory barrier flavors
  7715 instruct membar_acquire() %{
  7716   match(MemBarAcquire);
  7717   ins_cost(0);
  7719   size(0);
  7720   format %{ "MEMBAR-acquire (empty) @ membar_acquire" %}
  7721   ins_encode();
  7722   ins_pipe(empty);
  7723 %}
  7725 instruct load_fence() %{
  7726   match(LoadFence);
  7727   ins_cost(400);
  7729   format %{ "MEMBAR @ load_fence" %}
  7730   ins_encode %{
  7731     __ sync(); 
  7732   %}
  7733   ins_pipe(pipe_slow);
  7734 %}
  7736 instruct membar_acquire_lock()
  7737 %{
  7738   match(MemBarAcquireLock);
  7739   ins_cost(0);
  7741   size(0);
  7742   format %{ "MEMBAR-acquire (acquire as part of CAS in prior FastLock so empty encoding) @ membar_acquire_lock" %}
  7743   ins_encode();
  7744   ins_pipe(empty);
  7745 %}
  7747 instruct membar_release() %{
  7748   match(MemBarRelease);
  7749   ins_cost(0);
  7751   size(0);
  7752   format %{ "MEMBAR-release (empty) @ membar_release" %}
  7753   ins_encode();
  7754   ins_pipe(empty);
  7755 %}
  7757 instruct store_fence() %{
  7758   match(StoreFence);
  7759   ins_cost(400);
  7761   format %{ "MEMBAR @ store_fence" %}
  7763   ins_encode %{
  7764     __ sync(); 
  7765   %}
  7767   ins_pipe(pipe_slow);
  7768 %}
  7770 instruct membar_release_lock()
  7771 %{
  7772   match(MemBarReleaseLock);
  7773   ins_cost(0);
  7775   size(0);
  7776   format %{ "MEMBAR-release-lock (release in FastUnlock so empty) @ membar_release_lock" %}
  7777   ins_encode();
  7778   ins_pipe(empty);
  7779 %}
  7782 instruct membar_volatile() %{
  7783   match(MemBarVolatile);
  7784   ins_cost(400);
  7786   format %{ "MEMBAR-volatile" %}
  7787   ins_encode %{
  7788     if( !os::is_MP() ) return;     // Not needed on single CPU
  7789     __ sync();
  7791   %}
  7792   ins_pipe(pipe_slow);
  7793 %}
  7795 instruct unnecessary_membar_volatile() %{
  7796   match(MemBarVolatile);
  7797   predicate(Matcher::post_store_load_barrier(n));
  7798   ins_cost(0);
  7800   size(0);
  7801   format %{ "MEMBAR-volatile (unnecessary so empty encoding) @ unnecessary_membar_volatile" %}
  7802   ins_encode( );
  7803   ins_pipe(empty);
  7804 %}
  7806 instruct membar_storestore() %{
  7807   match(MemBarStoreStore);
  7809   ins_cost(0);
  7810   size(0);
  7811   format %{ "MEMBAR-storestore (empty encoding) @ membar_storestore" %}
  7812   ins_encode( );
  7813   ins_pipe(empty);
  7814 %}
  7816 //----------Move Instructions--------------------------------------------------
  7817 instruct castX2P(mRegP dst, mRegL src) %{
  7818   match(Set dst (CastX2P src));
  7819   format %{ "castX2P  $dst, $src @ castX2P" %}
  7820   ins_encode %{
  7821     Register src = $src$$Register;
  7822     Register dst = $dst$$Register;
  7824 	if(src != dst)
  7825 		__ move(dst, src);
  7826   %}
  7827   ins_cost(10);
  7828   ins_pipe( ialu_regI_mov );
  7829 %}
  7831 instruct castP2X(mRegL dst, mRegP src ) %{
  7832   match(Set dst (CastP2X src));
  7834   format %{ "mov    $dst, $src\t  #@castP2X" %}
  7835   ins_encode %{
  7836     Register src = $src$$Register;
  7837     Register dst = $dst$$Register;
  7839 	if(src != dst)
  7840 		__ move(dst, src);    
  7841   %}
  7842   ins_pipe( ialu_regI_mov );
  7843 %}
  7845 instruct MoveF2I_reg_reg(mRegI dst, regF src) %{
  7846   match(Set dst (MoveF2I src));
  7847   effect(DEF dst, USE src);
  7848   ins_cost(85);
  7849   format %{ "MoveF2I   $dst, $src @ MoveF2I_reg_reg" %}
  7850   ins_encode %{
  7851     Register dst = as_Register($dst$$reg);
  7852     FloatRegister src = as_FloatRegister($src$$reg);
  7854     __ mfc1(dst, src);
  7855   %}
  7856   ins_pipe( pipe_slow );
  7857 %}
  7859 instruct MoveI2F_reg_reg(regF dst, mRegI src) %{
  7860   match(Set dst (MoveI2F src));
  7861   effect(DEF dst, USE src);
  7862   ins_cost(85);
  7863   format %{ "MoveI2F   $dst, $src @ MoveI2F_reg_reg" %}
  7864   ins_encode %{
  7865     Register src = as_Register($src$$reg);
  7866     FloatRegister dst = as_FloatRegister($dst$$reg);
  7868     __ mtc1(src, dst);
  7869   %}
  7870   ins_pipe( pipe_slow );
  7871 %}
  7873 instruct MoveD2L_reg_reg(mRegL dst, regD src) %{
  7874   match(Set dst (MoveD2L src));
  7875   effect(DEF dst, USE src);
  7876   ins_cost(85);
  7877   format %{ "MoveD2L   $dst, $src @ MoveD2L_reg_reg" %}
  7878   ins_encode %{
  7879     Register dst = as_Register($dst$$reg);
  7880     FloatRegister src = as_FloatRegister($src$$reg);
  7882     __ dmfc1(dst, src);
  7883   %}
  7884   ins_pipe( pipe_slow );
  7885 %}
  7887 instruct MoveL2D_reg_reg(regD dst, mRegL src) %{
  7888   match(Set dst (MoveL2D src));
  7889   effect(DEF dst, USE src);
  7890   ins_cost(85);
  7891   format %{ "MoveL2D   $dst, $src @ MoveL2D_reg_reg" %}
  7892   ins_encode %{
  7893     FloatRegister dst = as_FloatRegister($dst$$reg);
  7894     Register src = as_Register($src$$reg);
  7896     __ dmtc1(src, dst);
  7897   %}
  7898   ins_pipe( pipe_slow );
  7899 %}
  7901 //----------Conditional Move---------------------------------------------------
  7902 // Conditional move
  7903 instruct cmovI_cmpI_reg_reg(mRegI dst, mRegI src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  7904   match(Set dst (CMoveI (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  7905   ins_cost(80);
  7906   format %{
  7907              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpI_reg_reg\n"
  7908              "\tCMOV  $dst,$src \t @cmovI_cmpI_reg_reg"
  7909          %}
  7911   ins_encode %{
  7912     Register op1 = $tmp1$$Register;
  7913     Register op2 = $tmp2$$Register;
  7914     Register dst = $dst$$Register;
  7915     Register src = $src$$Register;
  7916     int     flag = $cop$$cmpcode;
  7918     switch(flag)
  7920       case 0x01: //equal
  7921         __ subu32(AT, op1, op2);
  7922         __ movz(dst, src, AT);
  7923         break;
  7925       case 0x02: //not_equal
  7926         __ subu32(AT, op1, op2);
  7927         __ movn(dst, src, AT);
  7928         break;
  7930       case 0x03: //great
  7931         __ slt(AT, op2, op1);
  7932         __ movn(dst, src, AT);
  7933         break;
  7935       case 0x04: //great_equal
  7936         __ slt(AT, op1, op2);
  7937         __ movz(dst, src, AT);
  7938         break;
  7940       case 0x05: //less
  7941         __ slt(AT, op1, op2);
  7942         __ movn(dst, src, AT);
  7943         break;
  7945       case 0x06: //less_equal
  7946         __ slt(AT, op2, op1);
  7947         __ movz(dst, src, AT);
  7948        break;
  7950       default:
  7951           Unimplemented();
  7953   %}
  7955   ins_pipe( pipe_slow );
  7956 %}
  7958 instruct cmovI_cmpP_reg_reg(mRegI dst, mRegI src, mRegP tmp1, mRegP tmp2, cmpOpU cop ) %{
  7959   match(Set dst (CMoveI (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  7960   ins_cost(80);
  7961   format %{
  7962              "CMPU$cop $tmp1,$tmp2\t @cmovI_cmpP_reg_reg\n\t"
  7963              "CMOV $dst,$src\t @cmovI_cmpP_reg_reg"
  7964          %}
  7965   ins_encode %{
  7966     Register op1 = $tmp1$$Register;
  7967     Register op2 = $tmp2$$Register;
  7968     Register dst = $dst$$Register;
  7969     Register src = $src$$Register;
  7970     int     flag = $cop$$cmpcode;
  7972     switch(flag)
  7974       case 0x01: //equal
  7975         __ subu(AT, op1, op2);
  7976         __ movz(dst, src, AT);
  7977         break;
  7979       case 0x02: //not_equal
  7980         __ subu(AT, op1, op2);
  7981         __ movn(dst, src, AT);
  7982         break;
  7984       case 0x03: //above
  7985         __ sltu(AT, op2, op1);
  7986         __ movn(dst, src, AT);
  7987         break;
  7989       case 0x04: //above_equal
  7990         __ sltu(AT, op1, op2);
  7991         __ movz(dst, src, AT);
  7992         break;
  7994       case 0x05: //below
  7995         __ sltu(AT, op1, op2);
  7996         __ movn(dst, src, AT);
  7997         break;
  7999       case 0x06: //below_equal
  8000         __ sltu(AT, op2, op1);
  8001         __ movz(dst, src, AT);
  8002        break;
  8004       default:
  8005           Unimplemented();
  8007   %}
  8009   ins_pipe( pipe_slow );
  8010 %}
  8012 instruct cmovI_cmpN_reg_reg(mRegI dst, mRegI src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8013   match(Set dst (CMoveI (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8014   ins_cost(80);
  8015   format %{
  8016              "CMPU$cop $tmp1,$tmp2\t @cmovI_cmpN_reg_reg\n\t"
  8017              "CMOV $dst,$src\t @cmovI_cmpN_reg_reg"
  8018          %}
  8019   ins_encode %{
  8020     Register op1 = $tmp1$$Register;
  8021     Register op2 = $tmp2$$Register;
  8022     Register dst = $dst$$Register;
  8023     Register src = $src$$Register;
  8024     int     flag = $cop$$cmpcode;
  8026     switch(flag)
  8028       case 0x01: //equal
  8029         __ subu32(AT, op1, op2);
  8030         __ movz(dst, src, AT);
  8031         break;
  8033       case 0x02: //not_equal
  8034         __ subu32(AT, op1, op2);
  8035         __ movn(dst, src, AT);
  8036         break;
  8038       case 0x03: //above
  8039         __ sltu(AT, op2, op1);
  8040         __ movn(dst, src, AT);
  8041         break;
  8043       case 0x04: //above_equal
  8044         __ sltu(AT, op1, op2);
  8045         __ movz(dst, src, AT);
  8046         break;
  8048       case 0x05: //below
  8049         __ sltu(AT, op1, op2);
  8050         __ movn(dst, src, AT);
  8051         break;
  8053       case 0x06: //below_equal
  8054         __ sltu(AT, op2, op1);
  8055         __ movz(dst, src, AT);
  8056        break;
  8058       default:
  8059           Unimplemented();
  8061   %}
  8063   ins_pipe( pipe_slow );
  8064 %}
  8066 instruct cmovP_cmpN_reg_reg(mRegP dst, mRegP src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8067   match(Set dst (CMoveP (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8068   ins_cost(80);
  8069   format %{
  8070              "CMPU$cop $tmp1,$tmp2\t @cmovP_cmpN_reg_reg\n\t"
  8071              "CMOV $dst,$src\t @cmovP_cmpN_reg_reg"
  8072          %}
  8073   ins_encode %{
  8074     Register op1 = $tmp1$$Register;
  8075     Register op2 = $tmp2$$Register;
  8076     Register dst = $dst$$Register;
  8077     Register src = $src$$Register;
  8078     int     flag = $cop$$cmpcode;
  8080     switch(flag)
  8082       case 0x01: //equal
  8083         __ subu32(AT, op1, op2);
  8084         __ movz(dst, src, AT);
  8085         break;
  8087       case 0x02: //not_equal
  8088         __ subu32(AT, op1, op2);
  8089         __ movn(dst, src, AT);
  8090         break;
  8092       case 0x03: //above
  8093         __ sltu(AT, op2, op1);
  8094         __ movn(dst, src, AT);
  8095         break;
  8097       case 0x04: //above_equal
  8098         __ sltu(AT, op1, op2);
  8099         __ movz(dst, src, AT);
  8100         break;
  8102       case 0x05: //below
  8103         __ sltu(AT, op1, op2);
  8104         __ movn(dst, src, AT);
  8105         break;
  8107       case 0x06: //below_equal
  8108         __ sltu(AT, op2, op1);
  8109         __ movz(dst, src, AT);
  8110        break;
  8112       default:
  8113           Unimplemented();
  8115   %}
  8117   ins_pipe( pipe_slow );
  8118 %}
  8120 instruct cmovN_cmpP_reg_reg(mRegN dst, mRegN src, mRegP tmp1, mRegP tmp2, cmpOpU cop ) %{
  8121   match(Set dst (CMoveN (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  8122   ins_cost(80);
  8123   format %{
  8124              "CMPU$cop $tmp1,$tmp2\t @cmovN_cmpP_reg_reg\n\t"
  8125              "CMOV $dst,$src\t @cmovN_cmpP_reg_reg"
  8126          %}
  8127   ins_encode %{
  8128     Register op1 = $tmp1$$Register;
  8129     Register op2 = $tmp2$$Register;
  8130     Register dst = $dst$$Register;
  8131     Register src = $src$$Register;
  8132     int     flag = $cop$$cmpcode;
  8134     switch(flag)
  8136       case 0x01: //equal
  8137         __ subu(AT, op1, op2);
  8138         __ movz(dst, src, AT);
  8139         break;
  8141       case 0x02: //not_equal
  8142         __ subu(AT, op1, op2);
  8143         __ movn(dst, src, AT);
  8144         break;
  8146       case 0x03: //above
  8147         __ sltu(AT, op2, op1);
  8148         __ movn(dst, src, AT);
  8149         break;
  8151       case 0x04: //above_equal
  8152         __ sltu(AT, op1, op2);
  8153         __ movz(dst, src, AT);
  8154         break;
  8156       case 0x05: //below
  8157         __ sltu(AT, op1, op2);
  8158         __ movn(dst, src, AT);
  8159         break;
  8161       case 0x06: //below_equal
  8162         __ sltu(AT, op2, op1);
  8163         __ movz(dst, src, AT);
  8164        break;
  8166       default:
  8167           Unimplemented();
  8169   %}
  8171   ins_pipe( pipe_slow );
  8172 %}
  8174 instruct cmovP_cmpD_reg_reg(mRegP dst, mRegP src, regD tmp1, regD tmp2, cmpOp cop ) %{
  8175   match(Set dst (CMoveP (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  8176   ins_cost(80);
  8177   format %{
  8178              "CMP$cop  $tmp1, $tmp2\t  @cmovP_cmpD_reg_reg\n"
  8179              "\tCMOV  $dst,$src \t @cmovP_cmpD_reg_reg"
  8180          %}
  8181   ins_encode %{
  8182     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  8183     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  8184     Register dst = as_Register($dst$$reg);
  8185     Register src = as_Register($src$$reg);
  8187     int     flag = $cop$$cmpcode;
  8189     switch(flag)
  8191       case 0x01: //equal
  8192         __ c_eq_d(reg_op1, reg_op2);
  8193         __ movt(dst, src);
  8194         break;
  8195       case 0x02: //not_equal
  8196         __ c_eq_d(reg_op1, reg_op2);
  8197         __ movf(dst, src);
  8198         break;
  8199       case 0x03: //greater
  8200         __ c_ole_d(reg_op1, reg_op2);
  8201         __ movf(dst, src);
  8202         break;
  8203       case 0x04: //greater_equal
  8204         __ c_olt_d(reg_op1, reg_op2);
  8205         __ movf(dst, src);
  8206         break;
  8207       case 0x05: //less
  8208         __ c_ult_d(reg_op1, reg_op2);
  8209         __ movt(dst, src);
  8210         break;
  8211       case 0x06: //less_equal
  8212         __ c_ule_d(reg_op1, reg_op2);
  8213         __ movt(dst, src);
  8214         break;
  8215       default:
  8216           Unimplemented();
  8218   %}
  8220   ins_pipe( pipe_slow );
  8221 %}
  8224 instruct cmovN_cmpN_reg_reg(mRegN dst, mRegN src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8225   match(Set dst (CMoveN (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8226   ins_cost(80);
  8227   format %{
  8228              "CMPU$cop $tmp1,$tmp2\t @cmovN_cmpN_reg_reg\n\t"
  8229              "CMOV $dst,$src\t @cmovN_cmpN_reg_reg"
  8230          %}
  8231   ins_encode %{
  8232     Register op1 = $tmp1$$Register;
  8233     Register op2 = $tmp2$$Register;
  8234     Register dst = $dst$$Register;
  8235     Register src = $src$$Register;
  8236     int     flag = $cop$$cmpcode;
  8238     switch(flag)
  8240       case 0x01: //equal
  8241         __ subu32(AT, op1, op2);
  8242         __ movz(dst, src, AT);
  8243         break;
  8245       case 0x02: //not_equal
  8246         __ subu32(AT, op1, op2);
  8247         __ movn(dst, src, AT);
  8248         break;
  8250       case 0x03: //above
  8251         __ sltu(AT, op2, op1);
  8252         __ movn(dst, src, AT);
  8253         break;
  8255       case 0x04: //above_equal
  8256         __ sltu(AT, op1, op2);
  8257         __ movz(dst, src, AT);
  8258         break;
  8260       case 0x05: //below
  8261         __ sltu(AT, op1, op2);
  8262         __ movn(dst, src, AT);
  8263         break;
  8265       case 0x06: //below_equal
  8266         __ sltu(AT, op2, op1);
  8267         __ movz(dst, src, AT);
  8268        break;
  8270       default:
  8271           Unimplemented();
  8273   %}
  8275   ins_pipe( pipe_slow );
  8276 %}
  8279 instruct cmovI_cmpU_reg_reg(mRegI dst, mRegI src, mRegI tmp1, mRegI tmp2, cmpOpU cop ) %{
  8280   match(Set dst (CMoveI (Binary cop (CmpU tmp1 tmp2)) (Binary dst src)));
  8281   ins_cost(80);
  8282   format %{
  8283              "CMPU$cop $tmp1,$tmp2\t @cmovI_cmpU_reg_reg\n\t"
  8284              "CMOV $dst,$src\t @cmovI_cmpU_reg_reg"
  8285          %}
  8286   ins_encode %{
  8287     Register op1 = $tmp1$$Register;
  8288     Register op2 = $tmp2$$Register;
  8289     Register dst = $dst$$Register;
  8290     Register src = $src$$Register;
  8291     int     flag = $cop$$cmpcode;
  8293     switch(flag)
  8295       case 0x01: //equal
  8296         __ subu(AT, op1, op2);
  8297         __ movz(dst, src, AT);
  8298         break;
  8300       case 0x02: //not_equal
  8301         __ subu(AT, op1, op2);
  8302         __ movn(dst, src, AT);
  8303         break;
  8305       case 0x03: //above
  8306         __ sltu(AT, op2, op1);
  8307         __ movn(dst, src, AT);
  8308         break;
  8310       case 0x04: //above_equal
  8311         __ sltu(AT, op1, op2);
  8312         __ movz(dst, src, AT);
  8313         break;
  8315       case 0x05: //below
  8316         __ sltu(AT, op1, op2);
  8317         __ movn(dst, src, AT);
  8318         break;
  8320       case 0x06: //below_equal
  8321         __ sltu(AT, op2, op1);
  8322         __ movz(dst, src, AT);
  8323        break;
  8325       default:
  8326           Unimplemented();
  8328   %}
  8330   ins_pipe( pipe_slow );
  8331 %}
  8333 instruct cmovI_cmpL_reg_reg(mRegI dst, mRegI src, mRegL tmp1, mRegL tmp2, cmpOp cop ) %{
  8334   match(Set dst (CMoveI (Binary cop (CmpL tmp1 tmp2)) (Binary dst src)));
  8335   ins_cost(80);
  8336   format %{
  8337              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpL_reg_reg\n"
  8338              "\tCMOV  $dst,$src \t @cmovI_cmpL_reg_reg"
  8339          %}
  8340   ins_encode %{
  8341     Register opr1 = as_Register($tmp1$$reg);
  8342     Register opr2 = as_Register($tmp2$$reg);
  8343     Register dst     = $dst$$Register;
  8344     Register src     = $src$$Register;
  8345     int     flag = $cop$$cmpcode;
  8347     switch(flag)
  8349       case 0x01: //equal
  8350         __ subu(AT, opr1, opr2);
  8351         __ movz(dst, src, AT);
  8352         break;
  8354       case 0x02: //not_equal
  8355         __ subu(AT, opr1, opr2);
  8356         __ movn(dst, src, AT);
  8357         break;
  8359       case 0x03: //greater
  8360 	__ slt(AT, opr2, opr1);
  8361         __ movn(dst, src, AT);
  8362         break;
  8364       case 0x04: //greater_equal
  8365         __ slt(AT, opr1, opr2);
  8366         __ movz(dst, src, AT);
  8367         break;
  8369       case 0x05: //less
  8370         __ slt(AT, opr1, opr2);
  8371         __ movn(dst, src, AT);
  8372         break;
  8374       case 0x06: //less_equal
  8375         __ slt(AT, opr2, opr1);
  8376         __ movz(dst, src, AT);
  8377         break;
  8379       default:
  8380           Unimplemented();
  8382   %}
  8384   ins_pipe( pipe_slow );
  8385 %}
  8387 instruct cmovP_cmpL_reg_reg(mRegP dst, mRegP src, mRegL tmp1, mRegL tmp2, cmpOp cop ) %{
  8388   match(Set dst (CMoveP (Binary cop (CmpL tmp1 tmp2)) (Binary dst src)));
  8389   ins_cost(80);
  8390   format %{
  8391              "CMP$cop  $tmp1, $tmp2\t  @cmovP_cmpL_reg_reg\n"
  8392              "\tCMOV  $dst,$src \t @cmovP_cmpL_reg_reg"
  8393          %}
  8394   ins_encode %{
  8395     Register opr1 = as_Register($tmp1$$reg);
  8396     Register opr2 = as_Register($tmp2$$reg);
  8397     Register dst     = $dst$$Register;
  8398     Register src     = $src$$Register;
  8399     int     flag = $cop$$cmpcode;
  8401     switch(flag)
  8403       case 0x01: //equal
  8404         __ subu(AT, opr1, opr2);
  8405         __ movz(dst, src, AT);
  8406         break;
  8408       case 0x02: //not_equal
  8409         __ subu(AT, opr1, opr2);
  8410         __ movn(dst, src, AT);
  8411         break;
  8413       case 0x03: //greater
  8414         __ slt(AT, opr2, opr1);
  8415         __ movn(dst, src, AT);
  8416         break;
  8418       case 0x04: //greater_equal
  8419         __ slt(AT, opr1, opr2);
  8420         __ movz(dst, src, AT);
  8421         break;
  8423       case 0x05: //less
  8424         __ slt(AT, opr1, opr2);
  8425         __ movn(dst, src, AT);
  8426         break;
  8428       case 0x06: //less_equal
  8429         __ slt(AT, opr2, opr1);
  8430         __ movz(dst, src, AT);
  8431         break;
  8433       default:
  8434           Unimplemented();
  8436   %}
  8438   ins_pipe( pipe_slow );
  8439 %}
  8441 instruct cmovI_cmpD_reg_reg(mRegI dst, mRegI src, regD tmp1, regD tmp2, cmpOp cop ) %{
  8442   match(Set dst (CMoveI (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  8443   ins_cost(80);
  8444   format %{
  8445              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpD_reg_reg\n"
  8446              "\tCMOV  $dst,$src \t @cmovI_cmpD_reg_reg"
  8447          %}
  8448   ins_encode %{
  8449     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  8450     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  8451     Register dst = as_Register($dst$$reg);
  8452     Register src = as_Register($src$$reg);
  8454     int     flag = $cop$$cmpcode;
  8456     switch(flag)
  8458       case 0x01: //equal
  8459         __ c_eq_d(reg_op1, reg_op2);
  8460         __ movt(dst, src);
  8461         break;
  8462       case 0x02: //not_equal
  8463 //2016/4/19 aoqi: See instruct branchConD_reg_reg. The change in branchConD_reg_reg fixed a bug. It seems similar here, so I made thesame change.
  8464         __ c_eq_d(reg_op1, reg_op2);
  8465         __ movf(dst, src);
  8466         break;
  8467       case 0x03: //greater
  8468         __ c_ole_d(reg_op1, reg_op2);
  8469         __ movf(dst, src);
  8470         break;
  8471       case 0x04: //greater_equal
  8472         __ c_olt_d(reg_op1, reg_op2);
  8473         __ movf(dst, src);
  8474         break;
  8475       case 0x05: //less
  8476         __ c_ult_d(reg_op1, reg_op2);
  8477         __ movt(dst, src);
  8478         break;
  8479       case 0x06: //less_equal
  8480         __ c_ule_d(reg_op1, reg_op2);
  8481         __ movt(dst, src);
  8482         break;
  8483       default:
  8484           Unimplemented();
  8486   %}
  8488   ins_pipe( pipe_slow );
  8489 %}
  8492 instruct cmovP_cmpP_reg_reg(mRegP dst, mRegP src, mRegP tmp1, mRegP tmp2, cmpOpU cop ) %{
  8493   match(Set dst (CMoveP (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  8494   ins_cost(80);
  8495   format %{
  8496              "CMPU$cop $tmp1,$tmp2\t @cmovP_cmpP_reg_reg\n\t"
  8497              "CMOV $dst,$src\t @cmovP_cmpP_reg_reg"
  8498          %}
  8499   ins_encode %{
  8500     Register op1 = $tmp1$$Register;
  8501     Register op2 = $tmp2$$Register;
  8502     Register dst = $dst$$Register;
  8503     Register src = $src$$Register;
  8504     int     flag = $cop$$cmpcode;
  8506     switch(flag)
  8508       case 0x01: //equal
  8509         __ subu(AT, op1, op2);
  8510         __ movz(dst, src, AT);
  8511         break;
  8513       case 0x02: //not_equal
  8514         __ subu(AT, op1, op2);
  8515         __ movn(dst, src, AT);
  8516         break;
  8518       case 0x03: //above
  8519         __ sltu(AT, op2, op1);
  8520         __ movn(dst, src, AT);
  8521         break;
  8523       case 0x04: //above_equal
  8524         __ sltu(AT, op1, op2);
  8525         __ movz(dst, src, AT);
  8526         break;
  8528       case 0x05: //below
  8529         __ sltu(AT, op1, op2);
  8530         __ movn(dst, src, AT);
  8531         break;
  8533       case 0x06: //below_equal
  8534         __ sltu(AT, op2, op1);
  8535         __ movz(dst, src, AT);
  8536        break;
  8538       default:
  8539           Unimplemented();
  8541   %}
  8543   ins_pipe( pipe_slow );
  8544 %}
  8546 instruct cmovP_cmpI_reg_reg(mRegP dst, mRegP src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8547   match(Set dst (CMoveP (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8548   ins_cost(80);
  8549   format %{
  8550              "CMP$cop $tmp1,$tmp2\t @cmovP_cmpI_reg_reg\n\t"
  8551              "CMOV $dst,$src\t @cmovP_cmpI_reg_reg"
  8552          %}
  8553   ins_encode %{
  8554     Register op1 = $tmp1$$Register;
  8555     Register op2 = $tmp2$$Register;
  8556     Register dst = $dst$$Register;
  8557     Register src = $src$$Register;
  8558     int     flag = $cop$$cmpcode;
  8560     switch(flag)
  8562       case 0x01: //equal
  8563         __ subu32(AT, op1, op2);
  8564         __ movz(dst, src, AT);
  8565         break;
  8567       case 0x02: //not_equal
  8568         __ subu32(AT, op1, op2);
  8569         __ movn(dst, src, AT);
  8570         break;
  8572       case 0x03: //above
  8573         __ slt(AT, op2, op1);
  8574         __ movn(dst, src, AT);
  8575         break;
  8577       case 0x04: //above_equal
  8578         __ slt(AT, op1, op2);
  8579         __ movz(dst, src, AT);
  8580         break;
  8582       case 0x05: //below
  8583         __ slt(AT, op1, op2);
  8584         __ movn(dst, src, AT);
  8585         break;
  8587       case 0x06: //below_equal
  8588         __ slt(AT, op2, op1);
  8589         __ movz(dst, src, AT);
  8590        break;
  8592       default:
  8593           Unimplemented();
  8595   %}
  8597   ins_pipe( pipe_slow );
  8598 %}
  8600 instruct cmovN_cmpI_reg_reg(mRegN dst, mRegN src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8601   match(Set dst (CMoveN (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8602   ins_cost(80);
  8603   format %{
  8604              "CMP$cop $tmp1,$tmp2\t @cmovN_cmpI_reg_reg\n\t"
  8605              "CMOV $dst,$src\t @cmovN_cmpI_reg_reg"
  8606          %}
  8607   ins_encode %{
  8608     Register op1 = $tmp1$$Register;
  8609     Register op2 = $tmp2$$Register;
  8610     Register dst = $dst$$Register;
  8611     Register src = $src$$Register;
  8612     int     flag = $cop$$cmpcode;
  8614     switch(flag)
  8616       case 0x01: //equal
  8617         __ subu32(AT, op1, op2);
  8618         __ movz(dst, src, AT);
  8619         break;
  8621       case 0x02: //not_equal
  8622         __ subu32(AT, op1, op2);
  8623         __ movn(dst, src, AT);
  8624         break;
  8626       case 0x03: //above
  8627         __ slt(AT, op2, op1);
  8628         __ movn(dst, src, AT);
  8629         break;
  8631       case 0x04: //above_equal
  8632         __ slt(AT, op1, op2);
  8633         __ movz(dst, src, AT);
  8634         break;
  8636       case 0x05: //below
  8637         __ slt(AT, op1, op2);
  8638         __ movn(dst, src, AT);
  8639         break;
  8641       case 0x06: //below_equal
  8642         __ slt(AT, op2, op1);
  8643         __ movz(dst, src, AT);
  8644        break;
  8646       default:
  8647           Unimplemented();
  8649   %}
  8651   ins_pipe( pipe_slow );
  8652 %}
  8655 instruct cmovL_cmpI_reg_reg(mRegL dst, mRegL src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8656   match(Set dst (CMoveL (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8657   ins_cost(80);
  8658   format %{
  8659              "CMP$cop  $tmp1, $tmp2\t  @cmovL_cmpI_reg_reg\n"
  8660              "\tCMOV  $dst,$src \t @cmovL_cmpI_reg_reg"
  8661          %}
  8663   ins_encode %{
  8664     Register op1 = $tmp1$$Register;
  8665     Register op2 = $tmp2$$Register;
  8666     Register dst = as_Register($dst$$reg);
  8667     Register src = as_Register($src$$reg);
  8668     int     flag = $cop$$cmpcode;
  8670     switch(flag)
  8672       case 0x01: //equal
  8673         __ subu32(AT, op1, op2);
  8674         __ movz(dst, src, AT);
  8675         break;
  8677       case 0x02: //not_equal
  8678         __ subu32(AT, op1, op2);
  8679         __ movn(dst, src, AT);
  8680         break;
  8682       case 0x03: //great
  8683         __ slt(AT, op2, op1);
  8684         __ movn(dst, src, AT);
  8685         break;
  8687       case 0x04: //great_equal
  8688         __ slt(AT, op1, op2);
  8689         __ movz(dst, src, AT);
  8690         break;
  8692       case 0x05: //less
  8693         __ slt(AT, op1, op2);
  8694         __ movn(dst, src, AT);
  8695         break;
  8697       case 0x06: //less_equal
  8698         __ slt(AT, op2, op1);
  8699         __ movz(dst, src, AT);
  8700        break;
  8702       default:
  8703           Unimplemented();
  8705   %}
  8707   ins_pipe( pipe_slow );
  8708 %}
  8710 instruct cmovL_cmpL_reg_reg(mRegL dst, mRegL src, mRegL tmp1, mRegL tmp2, cmpOp cop ) %{
  8711   match(Set dst (CMoveL (Binary cop (CmpL tmp1 tmp2)) (Binary dst src)));
  8712   ins_cost(80);
  8713   format %{
  8714              "CMP$cop  $tmp1, $tmp2\t  @cmovL_cmpL_reg_reg\n"
  8715              "\tCMOV  $dst,$src \t @cmovL_cmpL_reg_reg"
  8716          %}
  8717   ins_encode %{
  8718     Register opr1 = as_Register($tmp1$$reg);
  8719     Register opr2 = as_Register($tmp2$$reg);
  8720     Register dst  = as_Register($dst$$reg);
  8721     Register src  = as_Register($src$$reg);
  8722     int     flag = $cop$$cmpcode;
  8724     switch(flag)
  8726       case 0x01: //equal
  8727         __ subu(AT, opr1, opr2);
  8728         __ movz(dst, src, AT);
  8729         break;
  8731       case 0x02: //not_equal
  8732         __ subu(AT, opr1, opr2);
  8733         __ movn(dst, src, AT);
  8734         break;
  8736       case 0x03: //greater
  8737         __ slt(AT, opr2, opr1);
  8738         __ movn(dst, src, AT);
  8739         break;
  8741       case 0x04: //greater_equal
  8742         __ slt(AT, opr1, opr2);
  8743         __ movz(dst, src, AT);
  8744         break;
  8746       case 0x05: //less
  8747         __ slt(AT, opr1, opr2);
  8748         __ movn(dst, src, AT);
  8749         break;
  8751       case 0x06: //less_equal
  8752        __ slt(AT, opr2, opr1);
  8753        __ movz(dst, src, AT);
  8754        break;
  8756       default:
  8757           Unimplemented();
  8759   %}
  8761   ins_pipe( pipe_slow );
  8762 %}
  8764 instruct cmovL_cmpN_reg_reg(mRegL dst, mRegL src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8765   match(Set dst (CMoveL (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8766   ins_cost(80);
  8767   format %{
  8768              "CMPU$cop $tmp1,$tmp2\t @cmovL_cmpN_reg_reg\n\t"
  8769              "CMOV $dst,$src\t @cmovL_cmpN_reg_reg"
  8770          %}
  8771   ins_encode %{
  8772     Register op1 = $tmp1$$Register;
  8773     Register op2 = $tmp2$$Register;
  8774     Register dst = $dst$$Register;
  8775     Register src = $src$$Register;
  8776     int     flag = $cop$$cmpcode;
  8778     switch(flag)
  8780       case 0x01: //equal
  8781         __ subu32(AT, op1, op2);
  8782         __ movz(dst, src, AT);
  8783         break;
  8785       case 0x02: //not_equal
  8786         __ subu32(AT, op1, op2);
  8787         __ movn(dst, src, AT);
  8788         break;
  8790       case 0x03: //above
  8791         __ sltu(AT, op2, op1);
  8792         __ movn(dst, src, AT);
  8793         break;
  8795       case 0x04: //above_equal
  8796         __ sltu(AT, op1, op2);
  8797         __ movz(dst, src, AT);
  8798         break;
  8800       case 0x05: //below
  8801         __ sltu(AT, op1, op2);
  8802         __ movn(dst, src, AT);
  8803         break;
  8805       case 0x06: //below_equal
  8806         __ sltu(AT, op2, op1);
  8807         __ movz(dst, src, AT);
  8808         break;
  8810       default:
  8811           Unimplemented();
  8813   %}
  8815   ins_pipe( pipe_slow );
  8816 %}
  8819 instruct cmovL_cmpD_reg_reg(mRegL dst, mRegL src, regD tmp1, regD tmp2, cmpOp cop ) %{
  8820   match(Set dst (CMoveL (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  8821   ins_cost(80);
  8822   format %{
  8823              "CMP$cop  $tmp1, $tmp2\t  @cmovL_cmpD_reg_reg\n"
  8824              "\tCMOV  $dst,$src \t @cmovL_cmpD_reg_reg"
  8825          %}
  8826   ins_encode %{
  8827     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  8828     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  8829     Register dst = as_Register($dst$$reg);
  8830     Register src = as_Register($src$$reg);
  8832     int     flag = $cop$$cmpcode;
  8834     switch(flag)
  8836       case 0x01: //equal
  8837         __ c_eq_d(reg_op1, reg_op2);
  8838         __ movt(dst, src);
  8839         break;
  8840       case 0x02: //not_equal
  8841         __ c_eq_d(reg_op1, reg_op2);
  8842         __ movf(dst, src);
  8843         break;
  8844       case 0x03: //greater
  8845         __ c_ole_d(reg_op1, reg_op2);
  8846         __ movf(dst, src);
  8847         break;
  8848       case 0x04: //greater_equal
  8849         __ c_olt_d(reg_op1, reg_op2);
  8850         __ movf(dst, src);
  8851         break;
  8852       case 0x05: //less
  8853         __ c_ult_d(reg_op1, reg_op2);
  8854         __ movt(dst, src);
  8855         break;
  8856       case 0x06: //less_equal
  8857         __ c_ule_d(reg_op1, reg_op2);
  8858         __ movt(dst, src);
  8859         break;
  8860       default:
  8861           Unimplemented();
  8863   %}
  8865   ins_pipe( pipe_slow );
  8866 %}
  8868 instruct cmovD_cmpD_reg_reg(regD dst, regD src, regD tmp1, regD tmp2, cmpOp cop ) %{
  8869   match(Set dst (CMoveD (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  8870   ins_cost(200);
  8871   format %{
  8872              "CMP$cop  $tmp1, $tmp2\t  @cmovD_cmpD_reg_reg\n"
  8873              "\tCMOV  $dst,$src \t @cmovD_cmpD_reg_reg"
  8874          %}
  8875   ins_encode %{
  8876     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  8877     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  8878     FloatRegister dst = as_FloatRegister($dst$$reg);
  8879     FloatRegister src = as_FloatRegister($src$$reg);
  8881     int     flag = $cop$$cmpcode;
  8883     Label L;
  8885     switch(flag)
  8887       case 0x01: //equal
  8888         __ c_eq_d(reg_op1, reg_op2);
  8889         __ bc1f(L);
  8890         __ nop();
  8891         __ mov_d(dst, src);
  8892         __ bind(L); 
  8893         break;
  8894       case 0x02: //not_equal
  8895 //2016/4/19 aoqi: See instruct branchConD_reg_reg. The change in branchConD_reg_reg fixed a bug. It seems similar here, so I made thesame change.
  8896         __ c_eq_d(reg_op1, reg_op2);
  8897         __ bc1t(L);
  8898         __ nop();
  8899         __ mov_d(dst, src);
  8900         __ bind(L); 
  8901         break;
  8902       case 0x03: //greater
  8903         __ c_ole_d(reg_op1, reg_op2);
  8904         __ bc1t(L);
  8905         __ nop();
  8906         __ mov_d(dst, src);
  8907         __ bind(L); 
  8908         break;
  8909       case 0x04: //greater_equal
  8910         __ c_olt_d(reg_op1, reg_op2);
  8911         __ bc1t(L);
  8912         __ nop();
  8913         __ mov_d(dst, src);
  8914         __ bind(L); 
  8915         break;
  8916       case 0x05: //less
  8917         __ c_ult_d(reg_op1, reg_op2);
  8918         __ bc1f(L);
  8919         __ nop();
  8920         __ mov_d(dst, src);
  8921         __ bind(L); 
  8922         break;
  8923       case 0x06: //less_equal
  8924         __ c_ule_d(reg_op1, reg_op2);
  8925         __ bc1f(L);
  8926         __ nop();
  8927         __ mov_d(dst, src);
  8928         __ bind(L); 
  8929         break;
  8930       default:
  8931           Unimplemented();
  8933   %}
  8935   ins_pipe( pipe_slow );
  8936 %}
  8938 instruct cmovF_cmpI_reg_reg(regF dst, regF src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8939   match(Set dst (CMoveF (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8940   ins_cost(200);
  8941   format %{
  8942              "CMP$cop  $tmp1, $tmp2\t  @cmovF_cmpI_reg_reg\n"
  8943              "\tCMOV  $dst, $src \t @cmovF_cmpI_reg_reg"
  8944          %}
  8946   ins_encode %{
  8947     Register op1 = $tmp1$$Register;
  8948     Register op2 = $tmp2$$Register;
  8949     FloatRegister dst = as_FloatRegister($dst$$reg);
  8950     FloatRegister src = as_FloatRegister($src$$reg);
  8951     int     flag = $cop$$cmpcode;
  8952     Label      L; 
  8954     switch(flag)
  8956       case 0x01: //equal
  8957        	__ bne(op1, op2, L); 
  8958         __ nop();
  8959         __ mov_s(dst, src);
  8960         __ bind(L);
  8961         break;
  8962       case 0x02: //not_equal
  8963        	__ beq(op1, op2, L); 
  8964         __ nop();
  8965         __ mov_s(dst, src);
  8966         __ bind(L);
  8967         break;
  8968       case 0x03: //great
  8969         __ slt(AT, op2, op1);
  8970        	__ beq(AT, R0, L);
  8971         __ nop();
  8972         __ mov_s(dst, src);
  8973         __ bind(L);
  8974         break;
  8975       case 0x04: //great_equal
  8976         __ slt(AT, op1, op2);
  8977         __ bne(AT, R0, L); 
  8978         __ nop();
  8979         __ mov_s(dst, src);
  8980         __ bind(L);
  8981         break;
  8982       case 0x05: //less
  8983         __ slt(AT, op1, op2);
  8984        	__ beq(AT, R0, L);
  8985         __ nop();
  8986         __ mov_s(dst, src);
  8987         __ bind(L);
  8988         break;
  8989       case 0x06: //less_equal
  8990         __ slt(AT, op2, op1);
  8991        	__ bne(AT, R0, L); 
  8992         __ nop();
  8993         __ mov_s(dst, src);
  8994         __ bind(L);
  8995        break;
  8996       default:
  8997           Unimplemented();
  8999   %}
  9001   ins_pipe( pipe_slow );
  9002 %}
  9004 instruct cmovD_cmpI_reg_reg(regD dst, regD src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  9005   match(Set dst (CMoveD (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  9006   ins_cost(200);
  9007   format %{
  9008              "CMP$cop  $tmp1, $tmp2\t  @cmovD_cmpI_reg_reg\n"
  9009              "\tCMOV  $dst, $src \t @cmovD_cmpI_reg_reg"
  9010          %}
  9012   ins_encode %{
  9013     Register op1 = $tmp1$$Register;
  9014     Register op2 = $tmp2$$Register;
  9015     FloatRegister dst = as_FloatRegister($dst$$reg);
  9016     FloatRegister src = as_FloatRegister($src$$reg);
  9017     int     flag = $cop$$cmpcode;
  9018     Label      L; 
  9020     switch(flag)
  9022       case 0x01: //equal
  9023        	__ bne(op1, op2, L); 
  9024         __ nop();
  9025         __ mov_d(dst, src);
  9026         __ bind(L);
  9027         break;
  9028       case 0x02: //not_equal
  9029        	__ beq(op1, op2, L); 
  9030         __ nop();
  9031         __ mov_d(dst, src);
  9032         __ bind(L);
  9033         break;
  9034       case 0x03: //great
  9035         __ slt(AT, op2, op1);
  9036        	__ beq(AT, R0, L);
  9037         __ nop();
  9038         __ mov_d(dst, src);
  9039         __ bind(L);
  9040         break;
  9041       case 0x04: //great_equal
  9042         __ slt(AT, op1, op2);
  9043         __ bne(AT, R0, L); 
  9044         __ nop();
  9045         __ mov_d(dst, src);
  9046         __ bind(L);
  9047         break;
  9048       case 0x05: //less
  9049         __ slt(AT, op1, op2);
  9050        	__ beq(AT, R0, L);
  9051         __ nop();
  9052         __ mov_d(dst, src);
  9053         __ bind(L);
  9054         break;
  9055       case 0x06: //less_equal
  9056         __ slt(AT, op2, op1);
  9057        	__ bne(AT, R0, L); 
  9058         __ nop();
  9059         __ mov_d(dst, src);
  9060         __ bind(L);
  9061        break;
  9062       default:
  9063           Unimplemented();
  9065   %}
  9067   ins_pipe( pipe_slow );
  9068 %}
  9070 instruct cmovD_cmpP_reg_reg(regD dst, regD src, mRegP tmp1, mRegP tmp2, cmpOp cop ) %{
  9071   match(Set dst (CMoveD (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  9072   ins_cost(200);
  9073   format %{
  9074              "CMP$cop  $tmp1, $tmp2\t  @cmovD_cmpP_reg_reg\n"
  9075              "\tCMOV  $dst, $src \t @cmovD_cmpP_reg_reg"
  9076          %}
  9078   ins_encode %{
  9079     Register op1 = $tmp1$$Register;
  9080     Register op2 = $tmp2$$Register;
  9081     FloatRegister dst = as_FloatRegister($dst$$reg);
  9082     FloatRegister src = as_FloatRegister($src$$reg);
  9083     int     flag = $cop$$cmpcode;
  9084     Label      L; 
  9086     switch(flag)
  9088       case 0x01: //equal
  9089        	__ bne(op1, op2, L); 
  9090         __ nop();
  9091         __ mov_d(dst, src);
  9092         __ bind(L);
  9093         break;
  9094       case 0x02: //not_equal
  9095        	__ beq(op1, op2, L); 
  9096         __ nop();
  9097         __ mov_d(dst, src);
  9098         __ bind(L);
  9099         break;
  9100       case 0x03: //great
  9101         __ slt(AT, op2, op1);
  9102        	__ beq(AT, R0, L);
  9103         __ nop();
  9104         __ mov_d(dst, src);
  9105         __ bind(L);
  9106         break;
  9107       case 0x04: //great_equal
  9108         __ slt(AT, op1, op2);
  9109         __ bne(AT, R0, L); 
  9110         __ nop();
  9111         __ mov_d(dst, src);
  9112         __ bind(L);
  9113         break;
  9114       case 0x05: //less
  9115         __ slt(AT, op1, op2);
  9116        	__ beq(AT, R0, L);
  9117         __ nop();
  9118         __ mov_d(dst, src);
  9119         __ bind(L);
  9120         break;
  9121       case 0x06: //less_equal
  9122         __ slt(AT, op2, op1);
  9123        	__ bne(AT, R0, L); 
  9124         __ nop();
  9125         __ mov_d(dst, src);
  9126         __ bind(L);
  9127        break;
  9128       default:
  9129           Unimplemented();
  9131   %}
  9133   ins_pipe( pipe_slow );
  9134 %}
  9136 //FIXME
  9137 instruct cmovI_cmpF_reg_reg(mRegI dst, mRegI src, regF tmp1, regF tmp2, cmpOp cop ) %{
  9138   match(Set dst (CMoveI (Binary cop (CmpF tmp1 tmp2)) (Binary dst src)));
  9139   ins_cost(80);
  9140   format %{
  9141              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpF_reg_reg\n"
  9142              "\tCMOV  $dst,$src \t @cmovI_cmpF_reg_reg"
  9143          %}
  9145   ins_encode %{
  9146     FloatRegister reg_op1 = $tmp1$$FloatRegister;
  9147     FloatRegister reg_op2 = $tmp2$$FloatRegister;
  9148     Register dst = $dst$$Register;
  9149     Register src = $src$$Register;
  9150     int     flag = $cop$$cmpcode;
  9152     switch(flag)
  9154       case 0x01: //equal
  9155         __ c_eq_s(reg_op1, reg_op2);
  9156         __ movt(dst, src);
  9157         break;
  9158       case 0x02: //not_equal
  9159         __ c_eq_s(reg_op1, reg_op2);
  9160         __ movf(dst, src);
  9161         break;
  9162       case 0x03: //greater
  9163         __ c_ole_s(reg_op1, reg_op2);
  9164         __ movf(dst, src);
  9165         break;
  9166       case 0x04: //greater_equal
  9167         __ c_olt_s(reg_op1, reg_op2);
  9168         __ movf(dst, src);
  9169         break;
  9170       case 0x05: //less
  9171         __ c_ult_s(reg_op1, reg_op2);
  9172         __ movt(dst, src);
  9173         break;
  9174       case 0x06: //less_equal
  9175         __ c_ule_s(reg_op1, reg_op2);
  9176         __ movt(dst, src);
  9177        break;
  9178       default:
  9179           Unimplemented();
  9181   %}
  9182   ins_pipe( pipe_slow );
  9183 %}
  9185 instruct cmovF_cmpF_reg_reg(regF dst, regF src, regF tmp1, regF tmp2, cmpOp cop ) %{
  9186   match(Set dst (CMoveF (Binary cop (CmpF tmp1 tmp2)) (Binary dst src)));
  9187   ins_cost(200);
  9188   format %{
  9189              "CMP$cop  $tmp1, $tmp2\t  @cmovF_cmpF_reg_reg\n"
  9190              "\tCMOV  $dst,$src \t @cmovF_cmpF_reg_reg"
  9191          %}
  9193   ins_encode %{
  9194     FloatRegister reg_op1 = $tmp1$$FloatRegister;
  9195     FloatRegister reg_op2 = $tmp2$$FloatRegister;
  9196     FloatRegister dst = $dst$$FloatRegister;
  9197     FloatRegister src = $src$$FloatRegister;
  9198     Label  L;
  9199     int    flag = $cop$$cmpcode;
  9201     switch(flag)
  9203       case 0x01: //equal
  9204         __ c_eq_s(reg_op1, reg_op2);
  9205         __ bc1f(L);
  9206         __ nop();
  9207         __ mov_s(dst, src);
  9208         __ bind(L);
  9209         break;
  9210       case 0x02: //not_equal
  9211         __ c_eq_s(reg_op1, reg_op2);
  9212         __ bc1t(L);
  9213         __ nop();
  9214         __ mov_s(dst, src);
  9215         __ bind(L);
  9216         break;
  9217       case 0x03: //greater
  9218         __ c_ole_s(reg_op1, reg_op2);
  9219         __ bc1t(L);
  9220         __ nop();
  9221         __ mov_s(dst, src);
  9222         __ bind(L);
  9223         break;
  9224       case 0x04: //greater_equal
  9225         __ c_olt_s(reg_op1, reg_op2);
  9226         __ bc1t(L);
  9227         __ nop();
  9228         __ mov_s(dst, src);
  9229         __ bind(L);
  9230         break;
  9231       case 0x05: //less
  9232         __ c_ult_s(reg_op1, reg_op2);
  9233         __ bc1f(L);
  9234         __ nop();
  9235         __ mov_s(dst, src);
  9236         __ bind(L);
  9237         break;
  9238       case 0x06: //less_equal
  9239         __ c_ule_s(reg_op1, reg_op2);
  9240         __ bc1f(L);
  9241         __ nop();
  9242         __ mov_s(dst, src);
  9243         __ bind(L);
  9244        break;
  9245       default:
  9246           Unimplemented();
  9248   %}
  9249   ins_pipe( pipe_slow );
  9250 %}
  9252 // Manifest a CmpL result in an integer register.  Very painful.
  9253 // This is the test to avoid.
  9254 instruct cmpL3_reg_reg(mRegI dst, mRegL src1, mRegL src2) %{
  9255   match(Set dst (CmpL3 src1 src2));
  9256   ins_cost(1000);
  9257   format %{ "cmpL3  $dst, $src1, $src2 @ cmpL3_reg_reg" %}
  9258   ins_encode %{
  9259     Register opr1 = as_Register($src1$$reg);
  9260     Register opr2 = as_Register($src2$$reg);
  9261     Register dst  = as_Register($dst$$reg);
  9263     Label Done;
  9265     __ subu(AT, opr1, opr2);
  9266     __ bltz(AT, Done);
  9267     __ delayed()->daddiu(dst, R0, -1);
  9269     __ move(dst, 1);
  9270     __ movz(dst, R0, AT);
  9272     __ bind(Done);
  9273   %}
  9274   ins_pipe( pipe_slow );
  9275 %}
  9277 //
  9278 // less_rsult     = -1 
  9279 // greater_result =  1
  9280 // equal_result   =  0 
  9281 // nan_result     = -1
  9282 //
  9283 instruct cmpF3_reg_reg(mRegI dst, regF src1, regF src2) %{
  9284   match(Set dst (CmpF3 src1 src2));
  9285   ins_cost(1000);
  9286   format %{ "cmpF3  $dst, $src1, $src2 @ cmpF3_reg_reg" %}
  9287   ins_encode %{
  9288     FloatRegister src1 = as_FloatRegister($src1$$reg);
  9289     FloatRegister src2 = as_FloatRegister($src2$$reg);
  9290     Register dst = as_Register($dst$$reg);
  9292     Label Done;
  9294     __ c_ult_s(src1, src2);
  9295     __ bc1t(Done);
  9296     __ delayed()->daddiu(dst, R0, -1);
  9298     __ c_eq_s(src1, src2);
  9299     __ move(dst, 1);
  9300     __ movt(dst, R0);
  9302     __ bind(Done);
  9303   %}
  9304   ins_pipe( pipe_slow );
  9305 %}
  9307 instruct cmpD3_reg_reg(mRegI dst, regD src1, regD src2) %{
  9308   match(Set dst (CmpD3 src1 src2));
  9309   ins_cost(1000);
  9310   format %{ "cmpD3  $dst, $src1, $src2 @ cmpD3_reg_reg" %}
  9311   ins_encode %{
  9312     FloatRegister src1 = as_FloatRegister($src1$$reg);
  9313     FloatRegister src2 = as_FloatRegister($src2$$reg);
  9314     Register dst = as_Register($dst$$reg);
  9316     Label Done;
  9318     __ c_ult_d(src1, src2);
  9319     __ bc1t(Done);
  9320     __ delayed()->daddiu(dst, R0, -1);
  9322     __ c_eq_d(src1, src2);
  9323     __ move(dst, 1);
  9324     __ movt(dst, R0);
  9326     __ bind(Done);
  9327   %}
  9328   ins_pipe( pipe_slow );
  9329 %}
  9331 instruct clear_array(mRegL cnt, mRegP base, Universe dummy) %{
  9332   match(Set dummy (ClearArray cnt base));
  9333   format %{ "CLEAR_ARRAY base = $base, cnt = $cnt # Clear doublewords" %}
  9334   ins_encode %{
  9335     //Assume cnt is the number of bytes in an array to be cleared,
  9336     //and base points to the starting address of the array.
  9337     Register base = $base$$Register;
  9338     Register num  = $cnt$$Register;
  9339     Label Loop, done;
  9341     /* 2012/9/21 Jin: according to X86, $cnt is caculated by doublewords(8 bytes) */
  9342     __ move(T9, num);	/* T9 = words */
  9343     __ beq(T9, R0, done);
  9344     __ nop();
  9345     __ move(AT, base);
  9347     __ bind(Loop);
  9348     __ sd(R0, Address(AT, 0));
  9349     __ daddi(AT, AT, wordSize);
  9350     __ daddi(T9, T9, -1);
  9351     __ bne(T9, R0, Loop);
  9352     __ delayed()->nop();
  9353     __ bind(done);
  9354   %}
  9355   ins_pipe( pipe_slow );
  9356 %}
  9358 instruct string_compare(a4_RegP str1, mA5RegI cnt1, a6_RegP str2,  mA7RegI cnt2, no_Ax_mRegI result) %{
  9359   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
  9360   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2);
  9362   format %{ "String Compare $str1[len: $cnt1], $str2[len: $cnt2] -> $result @ string_compare" %}
  9363   ins_encode %{
  9364     // Get the first character position in both strings
  9365     //         [8] char array, [12] offset, [16] count 
  9366     Register str1   = $str1$$Register;
  9367     Register str2   = $str2$$Register;
  9368     Register cnt1   = $cnt1$$Register;
  9369     Register cnt2   = $cnt2$$Register;
  9370     Register result = $result$$Register;
  9372     Label L, Loop, haveResult, done;
  9374    // compute the and difference of lengths (in result)
  9375    __ subu(result, cnt1, cnt2); // result holds the difference of two lengths
  9377    // compute the shorter length (in cnt1)
  9378    __ slt(AT, cnt2, cnt1);
  9379    __ movn(cnt1, cnt2, AT);
  9381    // Now the shorter length is in cnt1 and cnt2 can be used as a tmp register 
  9382    __ bind(Loop);                        // Loop begin
  9383    __ beq(cnt1, R0, done);
  9384    __ delayed()->lhu(AT, str1, 0);;
  9386    // compare current character
  9387    __ lhu(cnt2, str2, 0);
  9388    __ bne(AT, cnt2, haveResult);
  9389    __ delayed()->addi(str1, str1, 2);
  9390    __ addi(str2, str2, 2);
  9391    __ b(Loop);
  9392    __ delayed()->addi(cnt1, cnt1, -1);   // Loop end
  9394    __ bind(haveResult);
  9395    __ subu(result, AT, cnt2);
  9397    __ bind(done);
  9398   %}
  9400   ins_pipe( pipe_slow );
  9401 %}
  9403 // intrinsic optimization
  9404 instruct string_equals(a4_RegP str1, a5_RegP str2, mA6RegI cnt, mA7RegI temp, no_Ax_mRegI result) %{
  9405   match(Set result (StrEquals (Binary str1 str2) cnt));
  9406   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL temp);
  9408   format %{ "String Equal $str1, $str2, len:$cnt  tmp:$temp -> $result @ string_equals" %}
  9409   ins_encode %{
  9410     // Get the first character position in both strings
  9411     //         [8] char array, [12] offset, [16] count 
  9412     Register str1   = $str1$$Register;
  9413     Register str2   = $str2$$Register;
  9414     Register cnt    = $cnt$$Register;
  9415     Register tmp    = $temp$$Register;
  9416     Register result = $result$$Register;
  9418     Label    Loop, done;
  9421    __ beq(str1, str2, done);  // same char[] ?
  9422    __ daddiu(result, R0, 1);
  9424    __ bind(Loop);             // Loop begin
  9425    __ beq(cnt, R0, done);
  9426    __ daddiu(result, R0, 1); // count == 0
  9428    // compare current character
  9429    __ lhu(AT, str1, 0);;
  9430    __ lhu(tmp, str2, 0);
  9431    __ bne(AT, tmp, done);
  9432    __ delayed()->daddi(result, R0, 0);
  9433    __ addi(str1, str1, 2);
  9434    __ addi(str2, str2, 2);
  9435    __ b(Loop);
  9436    __ delayed()->addi(cnt, cnt, -1);  // Loop end
  9438    __ bind(done);
  9439   %}
  9441   ins_pipe( pipe_slow );
  9442 %}
  9444 //----------Arithmetic Instructions-------------------------------------------
  9445 //----------Addition Instructions---------------------------------------------
  9446 instruct addI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9447   match(Set dst (AddI src1 src2));
  9449   format %{ "add   $dst, $src1, $src2 #@addI_Reg_Reg" %}
  9450   ins_encode %{
  9451     Register  dst = $dst$$Register;
  9452     Register src1 = $src1$$Register;
  9453     Register src2 = $src2$$Register;
  9454     __ addu32(dst, src1, src2);
  9455   %}
  9456   ins_pipe( ialu_regI_regI );
  9457 %}
  9459 instruct addI_Reg_imm(mRegI dst, mRegI src1,  immI src2) %{
  9460   match(Set dst (AddI src1 src2));
  9462   format %{ "add    $dst, $src1, $src2 #@addI_Reg_imm" %}
  9463   ins_encode %{
  9464     Register  dst = $dst$$Register;
  9465     Register src1 = $src1$$Register;
  9466     int       imm = $src2$$constant;
  9468     if(Assembler::is_simm16(imm)) {
  9469        __ addiu32(dst, src1, imm);
  9470     } else {
  9471        __ move(AT, imm);
  9472        __ addu32(dst, src1, AT);
  9474   %}
  9475   ins_pipe( ialu_regI_regI );
  9476 %}
  9478 instruct addP_reg_reg(mRegP dst, mRegP src1, mRegL src2) %{
  9479   match(Set dst (AddP src1 src2));
  9481   format %{ "dadd    $dst, $src1, $src2 #@addP_reg_reg" %}
  9483   ins_encode %{
  9484     Register  dst = $dst$$Register;
  9485     Register src1 = $src1$$Register;
  9486     Register src2 = $src2$$Register;
  9487     __ daddu(dst, src1, src2);  
  9488   %}
  9490   ins_pipe( ialu_regI_regI );
  9491 %}
  9493 instruct addP_reg_reg_convI2L(mRegP dst, mRegP src1, mRegI src2) %{
  9494   match(Set dst (AddP src1 (ConvI2L src2)));
  9496   format %{ "dadd    $dst, $src1, $src2 #@addP_reg_reg_convI2L" %}
  9498   ins_encode %{
  9499     Register  dst = $dst$$Register;
  9500     Register src1 = $src1$$Register;
  9501     Register src2 = $src2$$Register;
  9502     __ daddu(dst, src1, src2);  
  9503   %}
  9505   ins_pipe( ialu_regI_regI );
  9506 %}
  9508 instruct addP_reg_imm(mRegP dst, mRegP src1,  immL src2) %{
  9509   match(Set dst (AddP src1 src2));
  9511   format %{ "daddi   $dst, $src1, $src2 #@addP_reg_imm" %}
  9512   ins_encode %{
  9513     Register src1 = $src1$$Register;
  9514     long      src2 = $src2$$constant;
  9515     Register  dst = $dst$$Register;
  9517     if(Assembler::is_simm16(src2)) {
  9518        __ daddiu(dst, src1, src2);
  9519     } else {
  9520        __ set64(AT, src2);
  9521        __ daddu(dst, src1, AT);
  9523   %}
  9524   ins_pipe( ialu_regI_imm16 );
  9525 %}
  9527 // Add Long Register with Register
  9528 instruct addL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
  9529   match(Set dst (AddL src1 src2));
  9530   ins_cost(200);
  9531   format %{ "ADD    $dst, $src1, $src2 #@addL_Reg_Reg\t" %}
  9533   ins_encode %{
  9534     Register dst_reg = as_Register($dst$$reg);
  9535     Register src1_reg = as_Register($src1$$reg);
  9536     Register src2_reg = as_Register($src2$$reg);
  9538     __ daddu(dst_reg, src1_reg, src2_reg);
  9539   %}
  9541   ins_pipe( ialu_regL_regL );
  9542 %}
  9544 instruct addL_Reg_imm(mRegL dst, mRegL src1, immL16 src2)
  9545 %{
  9546   match(Set dst (AddL src1 src2));
  9548   format %{ "ADD    $dst, $src1, $src2 #@addL_Reg_imm " %}
  9549   ins_encode %{
  9550     Register dst_reg  = as_Register($dst$$reg);
  9551     Register src1_reg = as_Register($src1$$reg);
  9552     int      src2_imm = $src2$$constant;
  9554     __ daddiu(dst_reg, src1_reg, src2_imm);
  9555   %}
  9557   ins_pipe( ialu_regL_regL );
  9558 %}
  9560 instruct addL_RegI2L_imm(mRegL dst, mRegI src1, immL16 src2)
  9561 %{
  9562   match(Set dst (AddL (ConvI2L src1) src2));
  9564   format %{ "ADD    $dst, $src1, $src2 #@addL_RegI2L_imm " %}
  9565   ins_encode %{
  9566     Register dst_reg  = as_Register($dst$$reg);
  9567     Register src1_reg = as_Register($src1$$reg);
  9568     int      src2_imm = $src2$$constant;
  9570     __ daddiu(dst_reg, src1_reg, src2_imm);
  9571   %}
  9573   ins_pipe( ialu_regL_regL );
  9574 %}
  9576 instruct addL_RegI2L_Reg(mRegL dst, mRegI src1, mRegL src2) %{
  9577   match(Set dst (AddL (ConvI2L src1) src2));
  9578   ins_cost(200);
  9579   format %{ "ADD    $dst, $src1, $src2 #@addL_RegI2L_Reg\t" %}
  9581   ins_encode %{
  9582     Register dst_reg = as_Register($dst$$reg);
  9583     Register src1_reg = as_Register($src1$$reg);
  9584     Register src2_reg = as_Register($src2$$reg);
  9586     __ daddu(dst_reg, src1_reg, src2_reg);
  9587   %}
  9589   ins_pipe( ialu_regL_regL );
  9590 %}
  9592 instruct addL_RegI2L_RegI2L(mRegL dst, mRegI src1, mRegI src2) %{
  9593   match(Set dst (AddL (ConvI2L src1) (ConvI2L src2)));
  9594   ins_cost(200);
  9595   format %{ "ADD    $dst, $src1, $src2 #@addL_RegI2L_RegI2L\t" %}
  9597   ins_encode %{
  9598     Register dst_reg = as_Register($dst$$reg);
  9599     Register src1_reg = as_Register($src1$$reg);
  9600     Register src2_reg = as_Register($src2$$reg);
  9602     __ daddu(dst_reg, src1_reg, src2_reg);
  9603   %}
  9605   ins_pipe( ialu_regL_regL );
  9606 %}
  9608 instruct addL_Reg_RegI2L(mRegL dst, mRegL src1, mRegI src2) %{
  9609   match(Set dst (AddL src1 (ConvI2L src2)));
  9610   ins_cost(200);
  9611   format %{ "ADD    $dst, $src1, $src2 #@addL_Reg_RegI2L\t" %}
  9613   ins_encode %{
  9614     Register dst_reg = as_Register($dst$$reg);
  9615     Register src1_reg = as_Register($src1$$reg);
  9616     Register src2_reg = as_Register($src2$$reg);
  9618     __ daddu(dst_reg, src1_reg, src2_reg);
  9619   %}
  9621   ins_pipe( ialu_regL_regL );
  9622 %}
  9624 //----------Subtraction Instructions-------------------------------------------
  9625 // Integer Subtraction Instructions
  9626 instruct subI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9627   match(Set dst (SubI src1 src2));
  9628   ins_cost(100);
  9630   format %{ "sub    $dst, $src1, $src2 #@subI_Reg_Reg" %}
  9631   ins_encode %{
  9632     Register  dst = $dst$$Register;
  9633     Register src1 = $src1$$Register;
  9634     Register src2 = $src2$$Register;
  9635     __ subu32(dst, src1, src2);
  9636   %}
  9637   ins_pipe( ialu_regI_regI );
  9638 %}
  9640 instruct subI_Reg_immI16_sub(mRegI dst, mRegI src1,  immI16_sub src2) %{
  9641   match(Set dst (SubI src1 src2));
  9642   ins_cost(80);
  9644   format %{ "sub    $dst, $src1, $src2 #@subI_Reg_immI16_sub" %}
  9645   ins_encode %{
  9646     Register  dst = $dst$$Register;
  9647     Register src1 = $src1$$Register;
  9648     __ addiu32(dst, src1, -1 * $src2$$constant);
  9649   %}
  9650   ins_pipe( ialu_regI_regI );
  9651 %}
  9653 instruct negI_Reg(mRegI dst, immI0 zero,  mRegI src) %{
  9654   match(Set dst (SubI zero src));
  9655   ins_cost(80);
  9657   format %{ "neg    $dst, $src #@negI_Reg" %}
  9658   ins_encode %{
  9659     Register  dst = $dst$$Register;
  9660     Register  src = $src$$Register;
  9661     __ subu32(dst, R0, src);
  9662   %}
  9663   ins_pipe( ialu_regI_regI );
  9664 %}
  9666 instruct negL_Reg(mRegL dst, immL0 zero,  mRegL src) %{
  9667   match(Set dst (SubL zero src));
  9668   ins_cost(80);
  9670   format %{ "neg    $dst, $src #@negL_Reg" %}
  9671   ins_encode %{
  9672     Register  dst = $dst$$Register;
  9673     Register  src = $src$$Register;
  9674     __ subu(dst, R0, src);
  9675   %}
  9676   ins_pipe( ialu_regI_regI );
  9677 %}
  9679 instruct subL_Reg_immL16_sub(mRegL dst, mRegL src1,  immL16_sub src2) %{
  9680   match(Set dst (SubL src1 src2));
  9681   ins_cost(80);
  9683   format %{ "sub    $dst, $src1, $src2 #@subL_Reg_immL16_sub" %}
  9684   ins_encode %{
  9685     Register  dst = $dst$$Register;
  9686     Register src1 = $src1$$Register;
  9687     __ daddiu(dst, src1, -1 * $src2$$constant);
  9688   %}
  9689   ins_pipe( ialu_regI_regI );
  9690 %}
  9692 // Subtract Long Register with Register.
  9693 instruct subL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
  9694   match(Set dst (SubL src1 src2));
  9695   ins_cost(100);
  9696   format %{ "SubL    $dst, $src1, $src2 @ subL_Reg_Reg" %}
  9697   ins_encode %{
  9698     Register dst  = as_Register($dst$$reg);
  9699     Register src1 = as_Register($src1$$reg);
  9700     Register src2 = as_Register($src2$$reg);
  9702     __ subu(dst, src1, src2);
  9703   %}
  9704   ins_pipe( ialu_regL_regL );
  9705 %}
  9707 instruct subL_Reg_RegI2L(mRegL dst, mRegL src1, mRegI src2) %{
  9708   match(Set dst (SubL src1 (ConvI2L src2)));
  9709   ins_cost(100);
  9710   format %{ "SubL    $dst, $src1, $src2 @ subL_Reg_RegI2L" %}
  9711   ins_encode %{
  9712     Register dst  = as_Register($dst$$reg);
  9713     Register src1 = as_Register($src1$$reg);
  9714     Register src2 = as_Register($src2$$reg);
  9716     __ subu(dst, src1, src2);
  9717   %}
  9718   ins_pipe( ialu_regL_regL );
  9719 %}
  9721 instruct subL_RegI2L_Reg(mRegL dst, mRegI src1, mRegL src2) %{
  9722   match(Set dst (SubL (ConvI2L src1) src2));
  9723   ins_cost(200);
  9724   format %{ "SubL    $dst, $src1, $src2 @ subL_RegI2L_Reg" %}
  9725   ins_encode %{
  9726     Register dst  = as_Register($dst$$reg);
  9727     Register src1 = as_Register($src1$$reg);
  9728     Register src2 = as_Register($src2$$reg);
  9730     __ subu(dst, src1, src2);
  9731   %}
  9732   ins_pipe( ialu_regL_regL );
  9733 %}
  9735 instruct subL_RegI2L_RegI2L(mRegL dst, mRegI src1, mRegI src2) %{
  9736   match(Set dst (SubL (ConvI2L src1) (ConvI2L src2)));
  9737   ins_cost(200);
  9738   format %{ "SubL    $dst, $src1, $src2 @ subL_RegI2L_RegI2L" %}
  9739   ins_encode %{
  9740     Register dst  = as_Register($dst$$reg);
  9741     Register src1 = as_Register($src1$$reg);
  9742     Register src2 = as_Register($src2$$reg);
  9744     __ subu(dst, src1, src2);
  9745   %}
  9746   ins_pipe( ialu_regL_regL );
  9747 %}
  9749 // Integer MOD with Register
  9750 instruct modI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9751   match(Set dst (ModI src1 src2));
  9752   ins_cost(300);
  9753   format %{ "modi   $dst, $src1, $src2 @ modI_Reg_Reg" %}
  9754   ins_encode %{
  9755     Register  dst = $dst$$Register;
  9756     Register src1 = $src1$$Register;
  9757     Register src2 = $src2$$Register;
  9759     //if (UseLoongsonISA) {
  9760     if (0) {
  9761       // 2016.08.10 
  9762       // Experiments show that gsmod is slower that div+mfhi.
  9763       // So I just disable it here.
  9764       __ gsmod(dst, src1, src2);
  9765     } else {
  9766       __ div(src1, src2); 
  9767       __ mfhi(dst);  
  9769   %}
  9771   //ins_pipe( ialu_mod );
  9772   ins_pipe( ialu_regI_regI );
  9773 %}
  9775 instruct modL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
  9776   match(Set dst (ModL src1 src2));
  9777   format %{ "modL  $dst, $src1, $src2 @modL_reg_reg" %}
  9779   ins_encode %{
  9780     Register dst = as_Register($dst$$reg);
  9781     Register op1 = as_Register($src1$$reg);
  9782     Register op2 = as_Register($src2$$reg);
  9784     if (UseLoongsonISA) {
  9785       __ gsdmod(dst, op1, op2);
  9786     } else {
  9787       __ ddiv(op1, op2);
  9788       __ mfhi(dst);
  9790   %}
  9791   ins_pipe( pipe_slow );
  9792 %}
  9794 instruct mulI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9795   match(Set dst (MulI src1 src2));
  9797   ins_cost(300);
  9798   format %{ "mul   $dst, $src1, $src2 @ mulI_Reg_Reg" %}
  9799   ins_encode %{
  9800      Register src1 = $src1$$Register;
  9801      Register src2 = $src2$$Register;
  9802      Register dst  = $dst$$Register;
  9804      __ mul(dst, src1, src2);
  9805   %}
  9806   ins_pipe( ialu_mult );
  9807 %}
  9809 instruct maddI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2, mRegI src3) %{
  9810   match(Set dst (AddI (MulI src1 src2) src3));
  9812   ins_cost(999);
  9813   format %{ "madd   $dst, $src1 * $src2 + $src3 #@maddI_Reg_Reg" %}
  9814   ins_encode %{
  9815      Register src1 = $src1$$Register;
  9816      Register src2 = $src2$$Register;
  9817      Register src3 = $src3$$Register;
  9818      Register dst  = $dst$$Register;
  9820      __ mtlo(src3);
  9821      __ madd(src1, src2);
  9822      __ mflo(dst);
  9823   %}
  9824   ins_pipe( ialu_mult );
  9825 %}
  9827 instruct divI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9828   match(Set dst (DivI src1 src2));
  9830   ins_cost(300);
  9831   format %{ "div   $dst, $src1, $src2 @ divI_Reg_Reg" %}
  9832   ins_encode %{
  9833      Register src1 = $src1$$Register;
  9834      Register src2 = $src2$$Register;
  9835      Register dst  = $dst$$Register;
  9837     /* 2012/4/21 Jin: In MIPS, div does not cause exception.
  9838        We must trap an exception manually. */   
  9839     __ teq(R0, src2, 0x7);
  9841     if (UseLoongsonISA) {
  9842       __ gsdiv(dst, src1, src2);
  9843     } else {
  9844       __ div(src1, src2);
  9846       __ nop();
  9847       __ nop();
  9848       __ mflo(dst);
  9850   %}
  9851   ins_pipe( ialu_mod );
  9852 %}
  9854 instruct divF_Reg_Reg(regF dst, regF src1, regF src2) %{
  9855   match(Set dst (DivF src1 src2));
  9857   ins_cost(300);
  9858   format %{ "divF   $dst, $src1, $src2 @ divF_Reg_Reg" %}
  9859   ins_encode %{
  9860      FloatRegister src1 = $src1$$FloatRegister;
  9861      FloatRegister src2 = $src2$$FloatRegister;
  9862      FloatRegister dst  = $dst$$FloatRegister;
  9864     /* Here do we need to trap an exception manually ? */   
  9865     __ div_s(dst, src1, src2);
  9866   %}
  9867   ins_pipe( pipe_slow );
  9868 %}
  9870 instruct divD_Reg_Reg(regD dst, regD src1, regD src2) %{
  9871   match(Set dst (DivD src1 src2));
  9873   ins_cost(300);
  9874   format %{ "divD   $dst, $src1, $src2 @ divD_Reg_Reg" %}
  9875   ins_encode %{
  9876      FloatRegister src1 = $src1$$FloatRegister;
  9877      FloatRegister src2 = $src2$$FloatRegister;
  9878      FloatRegister dst  = $dst$$FloatRegister;
  9880     /* Here do we need to trap an exception manually ? */   
  9881     __ div_d(dst, src1, src2);
  9882   %}
  9883   ins_pipe( pipe_slow );
  9884 %}
  9886 instruct mulL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
  9887   match(Set dst (MulL src1 src2));
  9888   format %{ "mulL  $dst, $src1, $src2 @mulL_reg_reg" %}
  9889   ins_encode %{
  9890     Register dst = as_Register($dst$$reg);
  9891     Register op1 = as_Register($src1$$reg);
  9892     Register op2 = as_Register($src2$$reg);
  9894     if (UseLoongsonISA) {
  9895       __ gsdmult(dst, op1, op2);
  9896     } else {
  9897       __ dmult(op1, op2);
  9898       __ mflo(dst);
  9900   %}
  9901   ins_pipe( pipe_slow );
  9902 %}
  9904 instruct mulL_reg_regI2L(mRegL dst, mRegL src1, mRegI src2) %{
  9905   match(Set dst (MulL src1 (ConvI2L src2)));
  9906   format %{ "mulL  $dst, $src1, $src2 @mulL_reg_regI2L" %}
  9907   ins_encode %{
  9908     Register dst = as_Register($dst$$reg);
  9909     Register op1 = as_Register($src1$$reg);
  9910     Register op2 = as_Register($src2$$reg);
  9912     if (UseLoongsonISA) {
  9913       __ gsdmult(dst, op1, op2);
  9914     } else {
  9915       __ dmult(op1, op2);
  9916       __ mflo(dst);
  9918   %}
  9919   ins_pipe( pipe_slow );
  9920 %}
  9922 instruct divL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
  9923   match(Set dst (DivL src1 src2));
  9924   format %{ "divL  $dst, $src1, $src2 @divL_reg_reg" %}
  9926   ins_encode %{
  9927     Register dst = as_Register($dst$$reg);
  9928     Register op1 = as_Register($src1$$reg);
  9929     Register op2 = as_Register($src2$$reg);
  9931     if (UseLoongsonISA) {
  9932       __ gsddiv(dst, op1, op2);
  9933     } else {
  9934       __ ddiv(op1, op2);
  9935       __ mflo(dst);
  9937   %}
  9938   ins_pipe( pipe_slow );
  9939 %}
  9941 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  9942   match(Set dst (AddF src1 src2));
  9943   format %{ "AddF  $dst, $src1, $src2 @addF_reg_reg" %}
  9944   ins_encode %{
  9945     FloatRegister src1 = as_FloatRegister($src1$$reg);
  9946     FloatRegister src2 = as_FloatRegister($src2$$reg);
  9947     FloatRegister dst  = as_FloatRegister($dst$$reg);
  9949     __ add_s(dst, src1, src2);  
  9950   %}
  9951   ins_pipe( fpu_regF_regF );
  9952 %}
  9954 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  9955   match(Set dst (SubF src1 src2));
  9956   format %{ "SubF  $dst, $src1, $src2 @subF_reg_reg" %}
  9957   ins_encode %{
  9958     FloatRegister src1 = as_FloatRegister($src1$$reg);
  9959     FloatRegister src2 = as_FloatRegister($src2$$reg);
  9960     FloatRegister dst  = as_FloatRegister($dst$$reg);
  9962     __ sub_s(dst, src1, src2);  
  9963   %}
  9964   ins_pipe( fpu_regF_regF );
  9965 %}
  9966 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  9967   match(Set dst (AddD src1 src2));
  9968   format %{ "AddD  $dst, $src1, $src2 @addD_reg_reg" %}
  9969   ins_encode %{
  9970     FloatRegister src1 = as_FloatRegister($src1$$reg);
  9971     FloatRegister src2 = as_FloatRegister($src2$$reg);
  9972     FloatRegister dst  = as_FloatRegister($dst$$reg);
  9974     __ add_d(dst, src1, src2);  
  9975   %}
  9976   ins_pipe( fpu_regF_regF );
  9977 %}
  9979 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  9980   match(Set dst (SubD src1 src2));
  9981   format %{ "SubD  $dst, $src1, $src2 @subD_reg_reg" %}
  9982   ins_encode %{
  9983     FloatRegister src1 = as_FloatRegister($src1$$reg);
  9984     FloatRegister src2 = as_FloatRegister($src2$$reg);
  9985     FloatRegister dst  = as_FloatRegister($dst$$reg);
  9987     __ sub_d(dst, src1, src2);  
  9988   %}
  9989   ins_pipe( fpu_regF_regF );
  9990 %}
  9992 instruct negF_reg(regF dst, regF src) %{
  9993   match(Set dst (NegF src));
  9994   format %{ "negF  $dst, $src @negF_reg" %}
  9995   ins_encode %{
  9996     FloatRegister src = as_FloatRegister($src$$reg);
  9997     FloatRegister dst = as_FloatRegister($dst$$reg);
  9999     __ neg_s(dst, src);
 10000   %}
 10001   ins_pipe( fpu_regF_regF );
 10002 %}
 10004 instruct negD_reg(regD dst, regD src) %{
 10005   match(Set dst (NegD src));
 10006   format %{ "negD  $dst, $src @negD_reg" %}
 10007   ins_encode %{
 10008     FloatRegister src = as_FloatRegister($src$$reg);
 10009     FloatRegister dst = as_FloatRegister($dst$$reg);
 10011     __ neg_d(dst, src);  
 10012   %}
 10013   ins_pipe( fpu_regF_regF );
 10014 %}
 10017 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
 10018   match(Set dst (MulF src1 src2));
 10019   format %{ "MULF  $dst, $src1, $src2 @mulF_reg_reg" %}
 10020   ins_encode %{
 10021     FloatRegister src1 = $src1$$FloatRegister;
 10022     FloatRegister src2 = $src2$$FloatRegister;
 10023     FloatRegister dst  = $dst$$FloatRegister;
 10025     __ mul_s(dst, src1, src2);  
 10026   %}
 10027   ins_pipe( fpu_regF_regF );
 10028 %}
 10030 instruct maddF_reg_reg(regF dst, regF src1, regF src2, regF src3) %{
 10031   match(Set dst (AddF (MulF src1 src2) src3));
 10032   // For compatibility reason (e.g. on the Loongson platform), disable this guy.
 10033   ins_cost(44444);
 10034   format %{ "maddF  $dst, $src1, $src2, $src3 @maddF_reg_reg" %}
 10035   ins_encode %{
 10036     FloatRegister src1 = $src1$$FloatRegister;
 10037     FloatRegister src2 = $src2$$FloatRegister;
 10038     FloatRegister src3 = $src3$$FloatRegister;
 10039     FloatRegister dst  = $dst$$FloatRegister;
 10041     __ madd_s(dst, src1, src2, src3);  
 10042   %}
 10043   ins_pipe( fpu_regF_regF );
 10044 %}
 10046 // Mul two double precision floating piont number
 10047 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
 10048   match(Set dst (MulD src1 src2));
 10049   format %{ "MULD  $dst, $src1, $src2 @mulD_reg_reg" %}
 10050   ins_encode %{
 10051     FloatRegister src1 = $src1$$FloatRegister;
 10052     FloatRegister src2 = $src2$$FloatRegister;
 10053     FloatRegister dst  = $dst$$FloatRegister;
 10055     __ mul_d(dst, src1, src2);  
 10056   %}
 10057   ins_pipe( fpu_regF_regF );
 10058 %}
 10060 instruct maddD_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
 10061   match(Set dst (AddD (MulD src1 src2) src3));
 10062   // For compatibility reason (e.g. on the Loongson platform), disable this guy.
 10063   ins_cost(44444);
 10064   format %{ "maddD  $dst, $src1, $src2, $src3 @maddD_reg_reg" %}
 10065   ins_encode %{
 10066     FloatRegister src1 = $src1$$FloatRegister;
 10067     FloatRegister src2 = $src2$$FloatRegister;
 10068     FloatRegister src3 = $src3$$FloatRegister;
 10069     FloatRegister dst  = $dst$$FloatRegister;
 10071     __ madd_d(dst, src1, src2, src3);  
 10072   %}
 10073   ins_pipe( fpu_regF_regF );
 10074 %}
 10076 instruct absF_reg(regF dst, regF src) %{
 10077   match(Set dst (AbsF src));
 10078   ins_cost(100);
 10079   format %{ "absF  $dst, $src @absF_reg" %}
 10080   ins_encode %{
 10081     FloatRegister src = as_FloatRegister($src$$reg);
 10082     FloatRegister dst = as_FloatRegister($dst$$reg);
 10084     __ abs_s(dst, src);  
 10085   %}
 10086   ins_pipe( fpu_regF_regF );
 10087 %}
 10090 // intrinsics for math_native.
 10091 // AbsD  SqrtD  CosD  SinD  TanD  LogD  Log10D
 10093 instruct absD_reg(regD dst, regD src) %{
 10094   match(Set dst (AbsD src));
 10095   ins_cost(100);
 10096   format %{ "absD  $dst, $src @absD_reg" %}
 10097   ins_encode %{
 10098     FloatRegister src = as_FloatRegister($src$$reg);
 10099     FloatRegister dst = as_FloatRegister($dst$$reg);
 10101     __ abs_d(dst, src);  
 10102   %}
 10103   ins_pipe( fpu_regF_regF );
 10104 %}
 10106 instruct sqrtD_reg(regD dst, regD src) %{
 10107   match(Set dst (SqrtD src));
 10108   ins_cost(100);
 10109   format %{ "SqrtD  $dst, $src @sqrtD_reg" %}
 10110   ins_encode %{
 10111     FloatRegister src = as_FloatRegister($src$$reg);
 10112     FloatRegister dst = as_FloatRegister($dst$$reg);
 10114     __ sqrt_d(dst, src);  
 10115   %}
 10116   ins_pipe( fpu_regF_regF );
 10117 %}
 10119 instruct sqrtF_reg(regF dst, regF src) %{
 10120   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 10121   ins_cost(100);
 10122   format %{ "SqrtF  $dst, $src @sqrtF_reg" %}
 10123   ins_encode %{
 10124     FloatRegister src = as_FloatRegister($src$$reg);
 10125     FloatRegister dst = as_FloatRegister($dst$$reg);
 10127     __ sqrt_s(dst, src);
 10128   %}
 10129   ins_pipe( fpu_regF_regF );
 10130 %}
 10131 //----------------------------------Logical Instructions----------------------
 10132 //__________________________________Integer Logical Instructions-------------
 10134 //And Instuctions
 10135 // And Register with Immediate
 10136 instruct andI_Reg_immI(mRegI dst, mRegI src1,  immI src2) %{
 10137   match(Set dst (AndI src1 src2));
 10139   format %{ "and  $dst, $src1, $src2 #@andI_Reg_immI" %}
 10140   ins_encode %{
 10141     Register dst = $dst$$Register;
 10142     Register src = $src1$$Register;
 10143     int      val = $src2$$constant;
 10145        __ move(AT, val);
 10146        __ andr(dst, src, AT);
 10147   %}
 10148   ins_pipe( ialu_regI_regI );
 10149 %}
 10151 instruct andI_Reg_imm_0_65535(mRegI dst, mRegI src1,  immI_0_65535 src2) %{
 10152   match(Set dst (AndI src1 src2));
 10153   ins_cost(60);
 10155   format %{ "and  $dst, $src1, $src2 #@andI_Reg_imm_0_65535" %}
 10156   ins_encode %{
 10157     Register dst = $dst$$Register;
 10158     Register src = $src1$$Register;
 10159     int      val = $src2$$constant;
 10161        __ andi(dst, src, val);
 10162   %}
 10163   ins_pipe( ialu_regI_regI );
 10164 %}
 10166 instruct andI_Reg_immI_nonneg_mask(mRegI dst, mRegI src1,  immI_nonneg_mask mask) %{
 10167   match(Set dst (AndI src1 mask));
 10168   ins_cost(60);
 10170   format %{ "and  $dst, $src1, $mask #@andI_Reg_immI_nonneg_mask" %}
 10171   ins_encode %{
 10172     Register dst = $dst$$Register;
 10173     Register src = $src1$$Register;
 10174     int     size = Assembler::is_int_mask($mask$$constant);
 10176     __ ext(dst, src, 0, size);
 10177   %}
 10178   ins_pipe( ialu_regI_regI );
 10179 %}
 10181 instruct andL_Reg_immL_nonneg_mask(mRegL dst, mRegL src1,  immL_nonneg_mask mask) %{
 10182   match(Set dst (AndL src1 mask));
 10183   ins_cost(60);
 10185   format %{ "and  $dst, $src1, $mask #@andL_Reg_immL_nonneg_mask" %}
 10186   ins_encode %{
 10187     Register dst = $dst$$Register;
 10188     Register src = $src1$$Register;
 10189     int     size = Assembler::is_jlong_mask($mask$$constant);
 10191     __ dext(dst, src, 0, size);
 10192   %}
 10193   ins_pipe( ialu_regI_regI );
 10194 %}
 10196 instruct xorI_Reg_imm_0_65535(mRegI dst, mRegI src1,  immI_0_65535 src2) %{
 10197   match(Set dst (XorI src1 src2));
 10198   ins_cost(60);
 10200   format %{ "xori  $dst, $src1, $src2 #@xorI_Reg_imm_0_65535" %}
 10201   ins_encode %{
 10202     Register dst = $dst$$Register;
 10203     Register src = $src1$$Register;
 10204     int      val = $src2$$constant;
 10206        __ xori(dst, src, val);
 10207   %}
 10208   ins_pipe( ialu_regI_regI );
 10209 %}
 10211 instruct xorI_Reg_immI_M1(mRegI dst, mRegI src1,  immI_M1 M1) %{
 10212   match(Set dst (XorI src1 M1));
 10213   predicate(UseLoongsonISA && Use3A2000);
 10214   ins_cost(60);
 10216   format %{ "xor  $dst, $src1, $M1 #@xorI_Reg_immI_M1" %}
 10217   ins_encode %{
 10218     Register dst = $dst$$Register;
 10219     Register src = $src1$$Register;
 10221        __ gsorn(dst, R0, src);
 10222   %}
 10223   ins_pipe( ialu_regI_regI );
 10224 %}
 10226 instruct xorL2I_Reg_immI_M1(mRegI dst, mRegL src1,  immI_M1 M1) %{
 10227   match(Set dst (XorI (ConvL2I src1) M1));
 10228   predicate(UseLoongsonISA && Use3A2000);
 10229   ins_cost(60);
 10231   format %{ "xor  $dst, $src1, $M1 #@xorL2I_Reg_immI_M1" %}
 10232   ins_encode %{
 10233     Register dst = $dst$$Register;
 10234     Register src = $src1$$Register;
 10236        __ gsorn(dst, R0, src);
 10237   %}
 10238   ins_pipe( ialu_regI_regI );
 10239 %}
 10241 instruct xorL_Reg_imm_0_65535(mRegL dst, mRegL src1,  immL_0_65535 src2) %{
 10242   match(Set dst (XorL src1 src2));
 10243   ins_cost(60);
 10245   format %{ "xori  $dst, $src1, $src2 #@xorL_Reg_imm_0_65535" %}
 10246   ins_encode %{
 10247     Register dst = $dst$$Register;
 10248     Register src = $src1$$Register;
 10249     int      val = $src2$$constant;
 10251        __ xori(dst, src, val);
 10252   %}
 10253   ins_pipe( ialu_regI_regI );
 10254 %}
 10256 /*
 10257 instruct xorL_Reg_immL_M1(mRegL dst, mRegL src1,  immL_M1 M1) %{
 10258   match(Set dst (XorL src1 M1));
 10259   predicate(UseLoongsonISA);
 10260   ins_cost(60);
 10262   format %{ "xor  $dst, $src1, $M1 #@xorL_Reg_immL_M1" %}
 10263   ins_encode %{
 10264     Register dst = $dst$$Register;
 10265     Register src = $src1$$Register;
 10267        __ gsorn(dst, R0, src);
 10268   %}
 10269   ins_pipe( ialu_regI_regI );
 10270 %}
 10271 */
 10273 instruct lbu_and_lmask(mRegI dst, memory mem,  immI_255 mask) %{
 10274   match(Set dst (AndI mask (LoadB mem)));
 10275   ins_cost(60);
 10277   format %{ "lhu  $dst, $mem #@lbu_and_lmask" %}
 10278   ins_encode(load_UB_enc(dst, mem));
 10279   ins_pipe( ialu_loadI );
 10280 %}
 10282 instruct lbu_and_rmask(mRegI dst, memory mem,  immI_255 mask) %{
 10283   match(Set dst (AndI (LoadB mem) mask));
 10284   ins_cost(60);
 10286   format %{ "lhu  $dst, $mem #@lbu_and_rmask" %}
 10287   ins_encode(load_UB_enc(dst, mem));
 10288   ins_pipe( ialu_loadI );
 10289 %}
 10291 instruct andI_Reg_Reg(mRegI dst, mRegI src1,  mRegI src2) %{
 10292   match(Set dst (AndI src1 src2));
 10294   format %{ "and    $dst, $src1, $src2 #@andI_Reg_Reg" %}
 10295   ins_encode %{
 10296     Register dst = $dst$$Register;
 10297     Register src1 = $src1$$Register;
 10298     Register src2 = $src2$$Register;
 10299     __ andr(dst, src1, src2);
 10300   %}
 10301   ins_pipe( ialu_regI_regI );
 10302 %}
 10304 instruct andnI_Reg_nReg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10305   match(Set dst (AndI src1 (XorI src2 M1)));
 10306   predicate(UseLoongsonISA && Use3A2000);
 10308   format %{ "andn   $dst, $src1, $src2 #@andnI_Reg_nReg" %}
 10309   ins_encode %{
 10310     Register dst = $dst$$Register;
 10311     Register src1 = $src1$$Register;
 10312     Register src2 = $src2$$Register;
 10314     __ gsandn(dst, src1, src2);
 10315   %}
 10316   ins_pipe( ialu_regI_regI );
 10317 %}
 10319 instruct ornI_Reg_nReg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10320   match(Set dst (OrI src1 (XorI src2 M1)));
 10321   predicate(UseLoongsonISA && Use3A2000);
 10323   format %{ "orn    $dst, $src1, $src2 #@ornI_Reg_nReg" %}
 10324   ins_encode %{
 10325     Register dst = $dst$$Register;
 10326     Register src1 = $src1$$Register;
 10327     Register src2 = $src2$$Register;
 10329     __ gsorn(dst, src1, src2);
 10330   %}
 10331   ins_pipe( ialu_regI_regI );
 10332 %}
 10334 instruct andnI_nReg_Reg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10335   match(Set dst (AndI (XorI src1 M1) src2));
 10336   predicate(UseLoongsonISA && Use3A2000);
 10338   format %{ "andn   $dst, $src2, $src1 #@andnI_nReg_Reg" %}
 10339   ins_encode %{
 10340     Register dst = $dst$$Register;
 10341     Register src1 = $src1$$Register;
 10342     Register src2 = $src2$$Register;
 10344     __ gsandn(dst, src2, src1);
 10345   %}
 10346   ins_pipe( ialu_regI_regI );
 10347 %}
 10349 instruct ornI_nReg_Reg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10350   match(Set dst (OrI (XorI src1 M1) src2));
 10351   predicate(UseLoongsonISA && Use3A2000);
 10353   format %{ "orn    $dst, $src2, $src1 #@ornI_nReg_Reg" %}
 10354   ins_encode %{
 10355     Register dst = $dst$$Register;
 10356     Register src1 = $src1$$Register;
 10357     Register src2 = $src2$$Register;
 10359     __ gsorn(dst, src2, src1);
 10360   %}
 10361   ins_pipe( ialu_regI_regI );
 10362 %}
 10364 // And Long Register with Register
 10365 instruct andL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
 10366   match(Set dst (AndL src1 src2));
 10367   format %{ "AND    $dst, $src1, $src2 @ andL_Reg_Reg\n\t" %}
 10368   ins_encode %{
 10369     Register dst_reg = as_Register($dst$$reg);
 10370     Register src1_reg = as_Register($src1$$reg);
 10371     Register src2_reg = as_Register($src2$$reg);
 10373     __ andr(dst_reg, src1_reg, src2_reg);
 10374   %}
 10375   ins_pipe( ialu_regL_regL );
 10376 %}
 10378 instruct andL_Reg_Reg_convI2L(mRegL dst, mRegL src1, mRegI src2) %{
 10379   match(Set dst (AndL src1 (ConvI2L src2)));
 10380   format %{ "AND    $dst, $src1, $src2 @ andL_Reg_Reg_convI2L\n\t" %}
 10381   ins_encode %{
 10382     Register dst_reg = as_Register($dst$$reg);
 10383     Register src1_reg = as_Register($src1$$reg);
 10384     Register src2_reg = as_Register($src2$$reg);
 10386     __ andr(dst_reg, src1_reg, src2_reg);
 10387   %}
 10388   ins_pipe( ialu_regL_regL );
 10389 %}
 10391 instruct andL_Reg_imm_0_65535(mRegL dst, mRegL src1,  immL_0_65535 src2) %{
 10392   match(Set dst (AndL src1 src2));
 10393   ins_cost(60);
 10395   format %{ "and  $dst, $src1, $src2 #@andL_Reg_imm_0_65535" %}
 10396   ins_encode %{
 10397     Register dst = $dst$$Register;
 10398     Register src = $src1$$Register;
 10399     long     val = $src2$$constant;
 10401        __ andi(dst, src, val);
 10402   %}
 10403   ins_pipe( ialu_regI_regI );
 10404 %}
 10406 instruct andL2I_Reg_imm_0_65535(mRegI dst, mRegL src1,  immL_0_65535 src2) %{
 10407   match(Set dst (ConvL2I (AndL src1 src2)));
 10408   ins_cost(60);
 10410   format %{ "and  $dst, $src1, $src2 #@andL2I_Reg_imm_0_65535" %}
 10411   ins_encode %{
 10412     Register dst = $dst$$Register;
 10413     Register src = $src1$$Register;
 10414     long     val = $src2$$constant;
 10416        __ andi(dst, src, val);
 10417   %}
 10418   ins_pipe( ialu_regI_regI );
 10419 %}
 10421 /*
 10422 instruct andnL_Reg_nReg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10423   match(Set dst (AndL src1 (XorL src2 M1)));
 10424   predicate(UseLoongsonISA);
 10426   format %{ "andn   $dst, $src1, $src2 #@andnL_Reg_nReg" %}
 10427   ins_encode %{
 10428     Register dst = $dst$$Register;
 10429     Register src1 = $src1$$Register;
 10430     Register src2 = $src2$$Register;
 10432     __ gsandn(dst, src1, src2);
 10433   %}
 10434   ins_pipe( ialu_regI_regI );
 10435 %}
 10436 */
 10438 /*
 10439 instruct ornL_Reg_nReg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10440   match(Set dst (OrL src1 (XorL src2 M1)));
 10441   predicate(UseLoongsonISA);
 10443   format %{ "orn    $dst, $src1, $src2 #@ornL_Reg_nReg" %}
 10444   ins_encode %{
 10445     Register dst = $dst$$Register;
 10446     Register src1 = $src1$$Register;
 10447     Register src2 = $src2$$Register;
 10449     __ gsorn(dst, src1, src2);
 10450   %}
 10451   ins_pipe( ialu_regI_regI );
 10452 %}
 10453 */
 10455 /*
 10456 instruct andnL_nReg_Reg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10457   match(Set dst (AndL (XorL src1 M1) src2));
 10458   predicate(UseLoongsonISA);
 10460   format %{ "andn   $dst, $src2, $src1 #@andnL_nReg_Reg" %}
 10461   ins_encode %{
 10462     Register dst = $dst$$Register;
 10463     Register src1 = $src1$$Register;
 10464     Register src2 = $src2$$Register;
 10466     __ gsandn(dst, src2, src1);
 10467   %}
 10468   ins_pipe( ialu_regI_regI );
 10469 %}
 10470 */
 10472 /*
 10473 instruct ornL_nReg_Reg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10474   match(Set dst (OrL (XorL src1 M1) src2));
 10475   predicate(UseLoongsonISA);
 10477   format %{ "orn    $dst, $src2, $src1 #@ornL_nReg_Reg" %}
 10478   ins_encode %{
 10479     Register dst = $dst$$Register;
 10480     Register src1 = $src1$$Register;
 10481     Register src2 = $src2$$Register;
 10483     __ gsorn(dst, src2, src1);
 10484   %}
 10485   ins_pipe( ialu_regI_regI );
 10486 %}
 10487 */
 10489 instruct andL_Reg_immL_M8(mRegL dst,  immL_M8 M8) %{
 10490   match(Set dst (AndL dst M8));
 10491   ins_cost(60);
 10493   format %{ "and  $dst, $dst, $M8 #@andL_Reg_immL_M8" %}
 10494   ins_encode %{
 10495     Register dst = $dst$$Register;
 10497     __ dins(dst, R0, 0, 3);
 10498   %}
 10499   ins_pipe( ialu_regI_regI );
 10500 %}
 10502 instruct andL_Reg_immL_M5(mRegL dst,  immL_M5 M5) %{
 10503   match(Set dst (AndL dst M5));
 10504   ins_cost(60);
 10506   format %{ "and  $dst, $dst, $M5 #@andL_Reg_immL_M5" %}
 10507   ins_encode %{
 10508     Register dst = $dst$$Register;
 10510     __ dins(dst, R0, 2, 1);
 10511   %}
 10512   ins_pipe( ialu_regI_regI );
 10513 %}
 10515 instruct andL_Reg_immL_M7(mRegL dst,  immL_M7 M7) %{
 10516   match(Set dst (AndL dst M7));
 10517   ins_cost(60);
 10519   format %{ "and  $dst, $dst, $M7 #@andL_Reg_immL_M7" %}
 10520   ins_encode %{
 10521     Register dst = $dst$$Register;
 10523     __ dins(dst, R0, 1, 2);
 10524   %}
 10525   ins_pipe( ialu_regI_regI );
 10526 %}
 10528 instruct andL_Reg_immL_M4(mRegL dst,  immL_M4 M4) %{
 10529   match(Set dst (AndL dst M4));
 10530   ins_cost(60);
 10532   format %{ "and  $dst, $dst, $M4 #@andL_Reg_immL_M4" %}
 10533   ins_encode %{
 10534     Register dst = $dst$$Register;
 10536     __ dins(dst, R0, 0, 2);
 10537   %}
 10538   ins_pipe( ialu_regI_regI );
 10539 %}
 10541 instruct andL_Reg_immL_M121(mRegL dst,  immL_M121 M121) %{
 10542   match(Set dst (AndL dst M121));
 10543   ins_cost(60);
 10545   format %{ "and  $dst, $dst, $M121 #@andL_Reg_immL_M121" %}
 10546   ins_encode %{
 10547     Register dst = $dst$$Register;
 10549     __ dins(dst, R0, 3, 4);
 10550   %}
 10551   ins_pipe( ialu_regI_regI );
 10552 %}
 10554 // Or Long Register with Register
 10555 instruct orL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
 10556   match(Set dst (OrL src1 src2));
 10557   format %{ "OR    $dst, $src1, $src2 @ orL_Reg_Reg\t" %}
 10558   ins_encode %{
 10559     Register dst_reg  = $dst$$Register;
 10560     Register src1_reg = $src1$$Register;
 10561     Register src2_reg = $src2$$Register;
 10563     __ orr(dst_reg, src1_reg, src2_reg);
 10564   %}
 10565   ins_pipe( ialu_regL_regL );
 10566 %}
 10568 instruct orL_Reg_P2XReg(mRegL dst, mRegP src1, mRegL src2) %{
 10569   match(Set dst (OrL (CastP2X src1) src2));
 10570   format %{ "OR    $dst, $src1, $src2 @ orL_Reg_P2XReg\t" %}
 10571   ins_encode %{
 10572     Register dst_reg  = $dst$$Register;
 10573     Register src1_reg = $src1$$Register;
 10574     Register src2_reg = $src2$$Register;
 10576     __ orr(dst_reg, src1_reg, src2_reg);
 10577   %}
 10578   ins_pipe( ialu_regL_regL );
 10579 %}
 10581 // Xor Long Register with Register
 10582 instruct xorL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
 10583   match(Set dst (XorL src1 src2));
 10584   format %{ "XOR    $dst, $src1, $src2 @ xorL_Reg_Reg\t" %}
 10585   ins_encode %{
 10586     Register dst_reg = as_Register($dst$$reg);
 10587     Register src1_reg = as_Register($src1$$reg);
 10588     Register src2_reg = as_Register($src2$$reg);
 10590     __ xorr(dst_reg, src1_reg, src2_reg);
 10591   %}
 10592   ins_pipe( ialu_regL_regL );
 10593 %}
 10595 // Shift Left by 8-bit immediate
 10596 instruct salI_Reg_imm(mRegI dst, mRegI src, immI8 shift) %{
 10597   match(Set dst (LShiftI src shift));
 10599   format %{ "SHL    $dst, $src, $shift #@salI_Reg_imm" %}
 10600   ins_encode %{
 10601     Register src = $src$$Register;
 10602     Register dst = $dst$$Register;
 10603     int    shamt = $shift$$constant;
 10605     __ sll(dst, src, shamt);
 10606   %}
 10607   ins_pipe( ialu_regI_regI );
 10608 %}
 10610 instruct salL2I_Reg_imm(mRegI dst, mRegL src, immI8 shift) %{
 10611   match(Set dst (LShiftI (ConvL2I src) shift));
 10613   format %{ "SHL    $dst, $src, $shift #@salL2I_Reg_imm" %}
 10614   ins_encode %{
 10615     Register src = $src$$Register;
 10616     Register dst = $dst$$Register;
 10617     int    shamt = $shift$$constant;
 10619     __ sll(dst, src, shamt);
 10620   %}
 10621   ins_pipe( ialu_regI_regI );
 10622 %}
 10624 instruct salI_Reg_imm_and_M65536(mRegI dst, mRegI src, immI_16 shift, immI_M65536 mask) %{
 10625   match(Set dst (AndI (LShiftI src shift) mask));
 10627   format %{ "SHL    $dst, $src, $shift #@salI_Reg_imm_and_M65536" %}
 10628   ins_encode %{
 10629     Register src = $src$$Register;
 10630     Register dst = $dst$$Register;
 10632     __ sll(dst, src, 16);
 10633   %}
 10634   ins_pipe( ialu_regI_regI );
 10635 %}
 10637 instruct land7_2_s(mRegI dst, mRegL src, immL7 seven, immI_16 sixteen)
 10638 %{
 10639   match(Set dst (RShiftI (LShiftI (ConvL2I (AndL src seven)) sixteen) sixteen));
 10641   format %{ "andi  $dst, $src, 7\t# @land7_2_s" %}
 10642   ins_encode %{
 10643     Register src = $src$$Register;
 10644     Register dst = $dst$$Register;
 10646     __ andi(dst, src, 7);
 10647   %}
 10648   ins_pipe(ialu_regI_regI);
 10649 %}
 10651 instruct ori2s(mRegI dst, mRegI src1, immI_0_32767 src2, immI_16 sixteen)
 10652 %{
 10653   match(Set dst (RShiftI (LShiftI (OrI src1 src2) sixteen) sixteen));
 10655   format %{ "ori  $dst, $src1, $src2\t# @ori2s" %}
 10656   ins_encode %{
 10657     Register src = $src1$$Register;
 10658     int      val = $src2$$constant;
 10659     Register dst = $dst$$Register;
 10661     __ ori(dst, src, val);
 10662   %}
 10663   ins_pipe(ialu_regI_regI);
 10664 %}
 10666 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
 10667 // This idiom is used by the compiler the i2s bytecode.
 10668 instruct i2s(mRegI dst, mRegI src, immI_16 sixteen)
 10669 %{
 10670   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
 10672   format %{ "i2s  $dst, $src\t# @i2s" %}
 10673   ins_encode %{
 10674     Register src = $src$$Register;
 10675     Register dst = $dst$$Register;
 10677     __ seh(dst, src);
 10678   %}
 10679   ins_pipe(ialu_regI_regI);
 10680 %}
 10682 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
 10683 // This idiom is used by the compiler for the i2b bytecode.
 10684 instruct i2b(mRegI dst, mRegI src, immI_24 twentyfour)
 10685 %{
 10686   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
 10688   format %{ "i2b  $dst, $src\t# @i2b" %}
 10689   ins_encode %{
 10690     Register src = $src$$Register;
 10691     Register dst = $dst$$Register;
 10693     __ seb(dst, src);
 10694   %}
 10695   ins_pipe(ialu_regI_regI);
 10696 %}
 10699 instruct salI_RegL2I_imm(mRegI dst, mRegL src, immI8 shift) %{
 10700   match(Set dst (LShiftI (ConvL2I src) shift));
 10702   format %{ "SHL    $dst, $src, $shift #@salI_RegL2I_imm" %}
 10703   ins_encode %{
 10704     Register src = $src$$Register;
 10705     Register dst = $dst$$Register;
 10706     int    shamt = $shift$$constant;
 10708     __ sll(dst, src, shamt);
 10709   %}
 10710   ins_pipe( ialu_regI_regI );
 10711 %}
 10713 // Shift Left by 8-bit immediate
 10714 instruct salI_Reg_Reg(mRegI dst, mRegI src, mRegI shift) %{
 10715   match(Set dst (LShiftI src shift));
 10717   format %{ "SHL    $dst, $src, $shift #@salI_Reg_Reg" %}
 10718   ins_encode %{
 10719     Register src = $src$$Register;
 10720     Register dst = $dst$$Register;
 10721     Register shamt = $shift$$Register;
 10722     __ sllv(dst, src, shamt);
 10723   %}
 10724   ins_pipe( ialu_regI_regI );
 10725 %}
 10728 // Shift Left Long 
 10729 instruct salL_Reg_imm(mRegL dst, mRegL src, immI8 shift) %{
 10730   //predicate(UseNewLongLShift);
 10731   match(Set dst (LShiftL src shift));
 10732   ins_cost(100);
 10733   format %{ "salL    $dst, $src, $shift @ salL_Reg_imm" %}
 10734   ins_encode %{
 10735     Register src_reg = as_Register($src$$reg);
 10736     Register dst_reg = as_Register($dst$$reg);
 10737     int      shamt = $shift$$constant;
 10739     if (__ is_simm(shamt, 5))
 10740         __ dsll(dst_reg, src_reg, shamt);
 10741     else
 10743        int sa = Assembler::low(shamt, 6);
 10744        if (sa < 32) { 
 10745           __ dsll(dst_reg, src_reg, sa);
 10746        } else {
 10747           __ dsll32(dst_reg, src_reg, sa - 32);
 10750   %}
 10751   ins_pipe( ialu_regL_regL );
 10752 %}
 10754 instruct salL_RegI2L_imm(mRegL dst, mRegI src, immI8 shift) %{
 10755   //predicate(UseNewLongLShift);
 10756   match(Set dst (LShiftL (ConvI2L src) shift));
 10757   ins_cost(100);
 10758   format %{ "salL    $dst, $src, $shift @ salL_RegI2L_imm" %}
 10759   ins_encode %{
 10760     Register src_reg = as_Register($src$$reg);
 10761     Register dst_reg = as_Register($dst$$reg);
 10762     int      shamt = $shift$$constant;
 10764     if (__ is_simm(shamt, 5))
 10765         __ dsll(dst_reg, src_reg, shamt);
 10766     else
 10768        int sa = Assembler::low(shamt, 6);
 10769        if (sa < 32) { 
 10770           __ dsll(dst_reg, src_reg, sa);
 10771        } else {
 10772           __ dsll32(dst_reg, src_reg, sa - 32);
 10775   %}
 10776   ins_pipe( ialu_regL_regL );
 10777 %}
 10779 // Shift Left Long 
 10780 instruct salL_Reg_Reg(mRegL dst, mRegL src, mRegI shift) %{
 10781   //predicate(UseNewLongLShift);
 10782   match(Set dst (LShiftL src shift));
 10783   ins_cost(100);
 10784   format %{ "salL    $dst, $src, $shift @ salL_Reg_Reg" %}
 10785   ins_encode %{
 10786     Register src_reg = as_Register($src$$reg);
 10787     Register dst_reg = as_Register($dst$$reg);
 10789     __ dsllv(dst_reg, src_reg, $shift$$Register);
 10790   %}
 10791   ins_pipe( ialu_regL_regL );
 10792 %}
 10794 instruct salL_convI2L_Reg_imm(mRegL dst, mRegI src, immI8 shift) %{
 10795   match(Set dst (LShiftL (ConvI2L src) shift));
 10796   ins_cost(100);
 10797   format %{ "salL    $dst, $src, $shift @ salL_convI2L_Reg_imm" %}
 10798   ins_encode %{
 10799     Register src_reg = as_Register($src$$reg);
 10800     Register dst_reg = as_Register($dst$$reg);
 10801     int      shamt = $shift$$constant;
 10803     if (__ is_simm(shamt, 5)) {
 10804         __ dsll(dst_reg, src_reg, shamt);
 10805     } else {
 10806        int sa = Assembler::low(shamt, 6);
 10807        if (sa < 32) { 
 10808           __ dsll(dst_reg, src_reg, sa);
 10809        } else {
 10810           __ dsll32(dst_reg, src_reg, sa - 32);
 10813   %}
 10814   ins_pipe( ialu_regL_regL );
 10815 %}
 10817 // Shift Right Long 
 10818 instruct sarL_Reg_imm(mRegL dst, mRegL src, immI8 shift) %{
 10819   match(Set dst (RShiftL src shift));
 10820   ins_cost(100);
 10821   format %{ "sarL    $dst, $src, $shift @ sarL_Reg_imm" %}
 10822   ins_encode %{
 10823     Register src_reg = as_Register($src$$reg);
 10824     Register dst_reg = as_Register($dst$$reg);
 10825     int      shamt = ($shift$$constant & 0x3f);
 10826     if (__  is_simm(shamt, 5))
 10827 	__ dsra(dst_reg, src_reg, shamt);
 10828     else {
 10829         int sa = Assembler::low(shamt, 6);
 10830         if (sa < 32) {
 10831 	   __ dsra(dst_reg, src_reg, sa);
 10832         } else {
 10833 	   __ dsra32(dst_reg, src_reg, sa - 32);
 10836   %}
 10837   ins_pipe( ialu_regL_regL );
 10838 %}
 10840 instruct sarL2I_Reg_immI_32_63(mRegI dst, mRegL src, immI_32_63 shift) %{
 10841   match(Set dst (ConvL2I (RShiftL src shift)));
 10842   ins_cost(100);
 10843   format %{ "sarL    $dst, $src, $shift @ sarL2I_Reg_immI_32_63" %}
 10844   ins_encode %{
 10845     Register src_reg = as_Register($src$$reg);
 10846     Register dst_reg = as_Register($dst$$reg);
 10847     int      shamt   = $shift$$constant;
 10849     __ dsra32(dst_reg, src_reg, shamt - 32);
 10850   %}
 10851   ins_pipe( ialu_regL_regL );
 10852 %}
 10854 // Shift Right Long arithmetically
 10855 instruct sarL_Reg_Reg(mRegL dst, mRegL src, mRegI shift) %{
 10856   //predicate(UseNewLongLShift);
 10857   match(Set dst (RShiftL src shift));
 10858   ins_cost(100);
 10859   format %{ "sarL    $dst, $src, $shift @ sarL_Reg_Reg" %}
 10860   ins_encode %{
 10861     Register src_reg = as_Register($src$$reg);
 10862     Register dst_reg = as_Register($dst$$reg);
 10864     __ dsrav(dst_reg, src_reg, $shift$$Register);
 10865   %}
 10866   ins_pipe( ialu_regL_regL );
 10867 %}
 10869 // Shift Right Long logically
 10870 instruct slrL_Reg_Reg(mRegL dst, mRegL src, mRegI shift) %{
 10871   match(Set dst (URShiftL src shift));
 10872   ins_cost(100);
 10873   format %{ "slrL    $dst, $src, $shift @ slrL_Reg_Reg" %}
 10874   ins_encode %{
 10875     Register src_reg = as_Register($src$$reg);
 10876     Register dst_reg = as_Register($dst$$reg);
 10878     __ dsrlv(dst_reg, src_reg, $shift$$Register);
 10879   %}
 10880   ins_pipe( ialu_regL_regL );
 10881 %}
 10883 instruct slrL_Reg_immI_0_31(mRegL dst, mRegL src, immI_0_31 shift) %{
 10884   match(Set dst (URShiftL src shift));
 10885   ins_cost(80);
 10886   format %{ "slrL    $dst, $src, $shift @ slrL_Reg_immI_0_31" %}
 10887   ins_encode %{
 10888     Register src_reg = as_Register($src$$reg);
 10889     Register dst_reg = as_Register($dst$$reg);
 10890     int        shamt = $shift$$constant;
 10892     __ dsrl(dst_reg, src_reg, shamt);
 10893   %}
 10894   ins_pipe( ialu_regL_regL );
 10895 %}
 10897 instruct slrL_Reg_immI_0_31_and_max_int(mRegI dst, mRegL src, immI_0_31 shift, immI_MaxI max_int) %{
 10898   match(Set dst (AndI (ConvL2I (URShiftL src shift)) max_int));
 10899   ins_cost(80);
 10900   format %{ "dext    $dst, $src, $shift, 31 @ slrL_Reg_immI_0_31_and_max_int" %}
 10901   ins_encode %{
 10902     Register src_reg = as_Register($src$$reg);
 10903     Register dst_reg = as_Register($dst$$reg);
 10904     int        shamt = $shift$$constant;
 10906     __ dext(dst_reg, src_reg, shamt, 31);
 10907   %}
 10908   ins_pipe( ialu_regL_regL );
 10909 %}
 10911 instruct slrL_P2XReg_immI_0_31(mRegL dst, mRegP src, immI_0_31 shift) %{
 10912   match(Set dst (URShiftL (CastP2X src) shift));
 10913   ins_cost(80);
 10914   format %{ "slrL    $dst, $src, $shift @ slrL_P2XReg_immI_0_31" %}
 10915   ins_encode %{
 10916     Register src_reg = as_Register($src$$reg);
 10917     Register dst_reg = as_Register($dst$$reg);
 10918     int        shamt = $shift$$constant;
 10920     __ dsrl(dst_reg, src_reg, shamt);
 10921   %}
 10922   ins_pipe( ialu_regL_regL );
 10923 %}
 10925 instruct slrL_Reg_immI_32_63(mRegL dst, mRegL src, immI_32_63 shift) %{
 10926   match(Set dst (URShiftL src shift));
 10927   ins_cost(80);
 10928   format %{ "slrL    $dst, $src, $shift @ slrL_Reg_immI_32_63" %}
 10929   ins_encode %{
 10930     Register src_reg = as_Register($src$$reg);
 10931     Register dst_reg = as_Register($dst$$reg);
 10932     int        shamt = $shift$$constant;
 10934     __ dsrl32(dst_reg, src_reg, shamt - 32);
 10935   %}
 10936   ins_pipe( ialu_regL_regL );
 10937 %}
 10939 instruct slrL_Reg_immI_convL2I(mRegI dst, mRegL src, immI_32_63 shift) %{
 10940   match(Set dst (ConvL2I (URShiftL src shift)));
 10941   predicate(n->in(1)->in(2)->get_int() > 32);
 10942   ins_cost(80);
 10943   format %{ "slrL    $dst, $src, $shift @ slrL_Reg_immI_convL2I" %}
 10944   ins_encode %{
 10945     Register src_reg = as_Register($src$$reg);
 10946     Register dst_reg = as_Register($dst$$reg);
 10947     int        shamt = $shift$$constant;
 10949     __ dsrl32(dst_reg, src_reg, shamt - 32);
 10950   %}
 10951   ins_pipe( ialu_regL_regL );
 10952 %}
 10954 instruct slrL_P2XReg_immI_32_63(mRegL dst, mRegP src, immI_32_63 shift) %{
 10955   match(Set dst (URShiftL (CastP2X src) shift));
 10956   ins_cost(80);
 10957   format %{ "slrL    $dst, $src, $shift @ slrL_P2XReg_immI_32_63" %}
 10958   ins_encode %{
 10959     Register src_reg = as_Register($src$$reg);
 10960     Register dst_reg = as_Register($dst$$reg);
 10961     int        shamt = $shift$$constant;
 10963     __ dsrl32(dst_reg, src_reg, shamt - 32);
 10964   %}
 10965   ins_pipe( ialu_regL_regL );
 10966 %}
 10968 // Xor Instructions
 10969 // Xor Register with Register
 10970 instruct xorI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
 10971   match(Set dst (XorI src1 src2));
 10973   format %{ "XOR    $dst, $src1, $src2 #@xorI_Reg_Reg" %}
 10975   ins_encode %{
 10976     Register  dst = $dst$$Register;
 10977     Register src1 = $src1$$Register;
 10978     Register src2 = $src2$$Register;
 10979     __ xorr(dst, src1, src2);
 10980     __ sll(dst, dst, 0); /* long -> int */
 10981   %}
 10983   ins_pipe( ialu_regI_regI );
 10984 %}
 10986 // Or Instructions
 10987 // Or Register with Register
 10988 instruct orI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
 10989   match(Set dst (OrI src1 src2));
 10991   format %{ "OR     $dst, $src1, $src2 #@orI_Reg_Reg" %}
 10992   ins_encode %{
 10993     Register  dst = $dst$$Register;
 10994     Register src1 = $src1$$Register;
 10995     Register src2 = $src2$$Register;
 10996     __ orr(dst, src1, src2);
 10997   %}
 10999   ins_pipe( ialu_regI_regI );
 11000 %}
 11002 instruct rotI_shr_logical_Reg(mRegI dst, mRegI src, immI_0_31 rshift, immI_0_31 lshift, immI_1 one) %{
 11003   match(Set dst (OrI (URShiftI src rshift) (LShiftI (AndI src one) lshift)));
 11004   predicate(32 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int())));
 11006   format %{ "rotr     $dst, $src, 1 ...\n\t" 
 11007             "srl      $dst, $dst, ($rshift-1) @ rotI_shr_logical_Reg" %}
 11008   ins_encode %{
 11009     Register   dst = $dst$$Register;
 11010     Register   src = $src$$Register;
 11011     int     rshift = $rshift$$constant;
 11013     __ rotr(dst, src, 1);
 11014     if (rshift - 1) {
 11015        __ srl(dst, dst, rshift - 1);
 11017   %}
 11019   ins_pipe( ialu_regI_regI );
 11020 %}
 11022 instruct orI_Reg_castP2X(mRegL dst, mRegL src1, mRegP src2) %{
 11023   match(Set dst (OrI src1 (CastP2X src2)));
 11025   format %{ "OR     $dst, $src1, $src2 #@orI_Reg_castP2X" %}
 11026   ins_encode %{
 11027     Register  dst = $dst$$Register;
 11028     Register src1 = $src1$$Register;
 11029     Register src2 = $src2$$Register;
 11030     __ orr(dst, src1, src2);
 11031   %}
 11033   ins_pipe( ialu_regI_regI );
 11034 %}
 11036 // Logical Shift Right by 8-bit immediate
 11037 instruct shr_logical_Reg_imm(mRegI dst, mRegI src, immI8 shift) %{
 11038   match(Set dst (URShiftI src shift));
 11039  // effect(KILL cr);
 11041   format %{ "SRL    $dst, $src, $shift #@shr_logical_Reg_imm" %}
 11042   ins_encode %{
 11043     Register src = $src$$Register;
 11044     Register dst = $dst$$Register;
 11045     int    shift = $shift$$constant;
 11047     __ srl(dst, src, shift);
 11048   %}
 11049   ins_pipe( ialu_regI_regI );
 11050 %}
 11052 instruct shr_logical_Reg_imm_nonneg_mask(mRegI dst, mRegI src, immI_0_31 shift, immI_nonneg_mask mask) %{
 11053   match(Set dst (AndI (URShiftI src shift) mask));
 11055   format %{ "ext    $dst, $src, $shift, one-bits($mask) #@shr_logical_Reg_imm_nonneg_mask" %}
 11056   ins_encode %{
 11057     Register src = $src$$Register;
 11058     Register dst = $dst$$Register;
 11059     int      pos = $shift$$constant;
 11060     int     size = Assembler::is_int_mask($mask$$constant);
 11062     __ ext(dst, src, pos, size);
 11063   %}
 11064   ins_pipe( ialu_regI_regI );
 11065 %}
 11067 instruct rolI_Reg_immI_0_31(mRegI dst, immI_0_31 lshift, immI_0_31 rshift)
 11068 %{
 11069   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
 11070   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
 11072   ins_cost(100);
 11073   format %{ "rotr    $dst, $dst, $rshift #@rolI_Reg_immI_0_31" %}
 11074   ins_encode %{
 11075     Register dst = $dst$$Register;
 11076     int      sa  = $rshift$$constant;
 11078     __ rotr(dst, dst, sa);
 11079   %}
 11080   ins_pipe( ialu_regI_regI );
 11081 %}
 11083 instruct rolL_Reg_immI_0_31(mRegL dst, immI_32_63 lshift, immI_0_31 rshift)
 11084 %{
 11085   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
 11086   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
 11088   ins_cost(100);
 11089   format %{ "rotr    $dst, $dst, $rshift #@rolL_Reg_immI_0_31" %}
 11090   ins_encode %{
 11091     Register dst = $dst$$Register;
 11092     int      sa  = $rshift$$constant;
 11094     __ drotr(dst, dst, sa);
 11095   %}
 11096   ins_pipe( ialu_regI_regI );
 11097 %}
 11099 instruct rolL_Reg_immI_32_63(mRegL dst, immI_0_31 lshift, immI_32_63 rshift)
 11100 %{
 11101   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
 11102   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
 11104   ins_cost(100);
 11105   format %{ "rotr    $dst, $dst, $rshift #@rolL_Reg_immI_32_63" %}
 11106   ins_encode %{
 11107     Register dst = $dst$$Register;
 11108     int      sa  = $rshift$$constant;
 11110     __ drotr32(dst, dst, sa - 32);
 11111   %}
 11112   ins_pipe( ialu_regI_regI );
 11113 %}
 11115 instruct rorI_Reg_immI_0_31(mRegI dst, immI_0_31 rshift, immI_0_31 lshift)
 11116 %{
 11117   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
 11118   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
 11120   ins_cost(100);
 11121   format %{ "rotr    $dst, $dst, $rshift #@rorI_Reg_immI_0_31" %}
 11122   ins_encode %{
 11123     Register dst = $dst$$Register;
 11124     int      sa  = $rshift$$constant;
 11126     __ rotr(dst, dst, sa);
 11127   %}
 11128   ins_pipe( ialu_regI_regI );
 11129 %}
 11131 instruct rorL_Reg_immI_0_31(mRegL dst, immI_0_31 rshift, immI_32_63 lshift)
 11132 %{
 11133   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
 11134   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
 11136   ins_cost(100);
 11137   format %{ "rotr    $dst, $dst, $rshift #@rorL_Reg_immI_0_31" %}
 11138   ins_encode %{
 11139     Register dst = $dst$$Register;
 11140     int      sa  = $rshift$$constant;
 11142     __ drotr(dst, dst, sa);
 11143   %}
 11144   ins_pipe( ialu_regI_regI );
 11145 %}
 11147 instruct rorL_Reg_immI_32_63(mRegL dst, immI_32_63 rshift, immI_0_31 lshift)
 11148 %{
 11149   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
 11150   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
 11152   ins_cost(100);
 11153   format %{ "rotr    $dst, $dst, $rshift #@rorL_Reg_immI_32_63" %}
 11154   ins_encode %{
 11155     Register dst = $dst$$Register;
 11156     int      sa  = $rshift$$constant;
 11158     __ drotr32(dst, dst, sa - 32);
 11159   %}
 11160   ins_pipe( ialu_regI_regI );
 11161 %}
 11163 // Logical Shift Right 
 11164 instruct shr_logical_Reg_Reg(mRegI dst, mRegI src, mRegI shift) %{
 11165   match(Set dst (URShiftI src shift));
 11167   format %{ "SRL    $dst, $src, $shift #@shr_logical_Reg_Reg" %}
 11168   ins_encode %{
 11169     Register src = $src$$Register;
 11170     Register dst = $dst$$Register;
 11171     Register shift = $shift$$Register;
 11172     __ srlv(dst, src, shift);
 11173   %}
 11174   ins_pipe( ialu_regI_regI );
 11175 %}
 11178 instruct shr_arith_Reg_imm(mRegI dst, mRegI src, immI8 shift) %{
 11179   match(Set dst (RShiftI src shift));
 11180  // effect(KILL cr);
 11182   format %{ "SRA    $dst, $src, $shift #@shr_arith_Reg_imm" %}
 11183   ins_encode %{
 11184     Register src = $src$$Register;
 11185     Register dst = $dst$$Register;
 11186     int    shift = $shift$$constant;
 11187     __ sra(dst, src, shift);
 11188   %}
 11189   ins_pipe( ialu_regI_regI );
 11190 %}
 11192 instruct shr_arith_Reg_Reg(mRegI dst, mRegI src, mRegI shift) %{
 11193   match(Set dst (RShiftI src shift));
 11194  // effect(KILL cr);
 11196   format %{ "SRA    $dst, $src, $shift #@shr_arith_Reg_Reg" %}
 11197   ins_encode %{
 11198     Register src = $src$$Register;
 11199     Register dst = $dst$$Register;
 11200     Register shift = $shift$$Register;
 11201     __ srav(dst, src, shift);
 11202   %}
 11203   ins_pipe( ialu_regI_regI );
 11204 %}
 11206 //----------Convert Int to Boolean---------------------------------------------
 11208 instruct convI2B(mRegI dst, mRegI src) %{
 11209   match(Set dst (Conv2B src));
 11211   ins_cost(100);
 11212   format %{ "convI2B    $dst, $src @ convI2B"  %}
 11213   ins_encode %{
 11214     Register dst = as_Register($dst$$reg);
 11215     Register src = as_Register($src$$reg);
 11217     if (dst != src) {
 11218       __ daddiu(dst, R0, 1);
 11219       __ movz(dst, R0, src);
 11220     } else {
 11221       __ move(AT, src);
 11222       __ daddiu(dst, R0, 1);
 11223       __ movz(dst, R0, AT);
 11225   %}
 11227   ins_pipe( ialu_regL_regL );
 11228 %}
 11230 instruct convI2L_reg( mRegL dst, mRegI src) %{
 11231   match(Set dst (ConvI2L src));
 11233   ins_cost(100);
 11234   format %{ "SLL    $dst, $src @ convI2L_reg\t"  %}
 11235   ins_encode %{
 11236     Register dst = as_Register($dst$$reg);
 11237     Register src = as_Register($src$$reg);
 11239     if(dst != src) __ sll(dst, src, 0);
 11240   %}
 11241   ins_pipe( ialu_regL_regL );
 11242 %}
 11245 instruct convL2I_reg( mRegI dst, mRegL src ) %{
 11246   match(Set dst (ConvL2I src));
 11248   format %{ "MOV    $dst, $src @ convL2I_reg" %}
 11249   ins_encode %{
 11250     Register dst = as_Register($dst$$reg);
 11251     Register src = as_Register($src$$reg);
 11253     __ sll(dst, src, 0);
 11254   %}
 11256   ins_pipe( ialu_regI_regI );
 11257 %}
 11259 instruct convL2I2L_reg( mRegL dst, mRegL src ) %{
 11260   match(Set dst (ConvI2L (ConvL2I src)));
 11262   format %{ "sll    $dst, $src, 0 @ convL2I2L_reg" %}
 11263   ins_encode %{
 11264     Register dst = as_Register($dst$$reg);
 11265     Register src = as_Register($src$$reg);
 11267     __ sll(dst, src, 0);
 11268   %}
 11270   ins_pipe( ialu_regI_regI );
 11271 %}
 11273 instruct convL2D_reg( regD dst, mRegL src ) %{
 11274   match(Set dst (ConvL2D src));
 11275   format %{ "convL2D    $dst, $src @ convL2D_reg" %}
 11276   ins_encode %{
 11277     Register src = as_Register($src$$reg);
 11278     FloatRegister dst = as_FloatRegister($dst$$reg);
 11280     __ dmtc1(src, dst);
 11281     __ cvt_d_l(dst, dst);
 11282   %}
 11284   ins_pipe( pipe_slow );
 11285 %}
 11287 instruct convD2L_reg_fast( mRegL dst, regD src ) %{
 11288   match(Set dst (ConvD2L src));
 11289   ins_cost(150);
 11290   format %{ "convD2L    $dst, $src @ convD2L_reg_fast" %}
 11291   ins_encode %{
 11292     Register dst = as_Register($dst$$reg);
 11293     FloatRegister src = as_FloatRegister($src$$reg);
 11295     Label Done;
 11297     __ trunc_l_d(F30, src);
 11298     // max_long:    0x7fffffffffffffff 
 11299     // __ set64(AT, 0x7fffffffffffffff);
 11300     __ daddiu(AT, R0, -1);
 11301     __ dsrl(AT, AT, 1);
 11302     __ dmfc1(dst, F30);
 11304     __ bne(dst, AT, Done);
 11305     __ delayed()->mtc1(R0, F30);
 11307     __ cvt_d_w(F30, F30);
 11308     __ c_ult_d(src, F30);
 11309     __ bc1f(Done);
 11310     __ delayed()->daddiu(T9, R0, -1);
 11312     __ c_un_d(src, src);    //NaN?
 11313     __ subu(dst, T9, AT);
 11314     __ movt(dst, R0);
 11316     __ bind(Done);
 11317   %}
 11319   ins_pipe( pipe_slow );
 11320 %}
 11322 instruct convD2L_reg_slow( mRegL dst, regD src ) %{
 11323   match(Set dst (ConvD2L src));
 11324   ins_cost(250);
 11325   format %{ "convD2L    $dst, $src @ convD2L_reg_slow" %}
 11326   ins_encode %{
 11327     Register dst = as_Register($dst$$reg);
 11328     FloatRegister src = as_FloatRegister($src$$reg);
 11330     Label L;
 11332     __ c_un_d(src, src);    //NaN?
 11333     __ bc1t(L);
 11334     __ delayed();
 11335     __ move(dst, R0);
 11337     __ trunc_l_d(F30, src);
 11338     __ cfc1(AT, 31);
 11339     __ li(T9, 0x10000);
 11340     __ andr(AT, AT, T9);
 11341     __ beq(AT, R0, L);
 11342     __ delayed()->dmfc1(dst, F30);
 11344     __ mov_d(F12, src);
 11345     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
 11346     __ move(dst, V0);
 11347     __ bind(L);
 11348   %}
 11350   ins_pipe( pipe_slow );
 11351 %}
 11353 instruct convF2I_reg_fast( mRegI dst, regF src ) %{
 11354   match(Set dst (ConvF2I src));
 11355   ins_cost(150);
 11356   format %{ "convf2i    $dst, $src @ convF2I_reg_fast" %}
 11357   ins_encode %{
 11358     Register      dreg = $dst$$Register;
 11359     FloatRegister fval = $src$$FloatRegister;
 11361     __ trunc_w_s(F30, fval);
 11362     __ mfc1(dreg, F30);
 11363     __ c_un_s(fval, fval);    //NaN?
 11364     __ movt(dreg, R0);
 11365   %}
 11367   ins_pipe( pipe_slow );
 11368 %}
 11370 instruct convF2I_reg_slow( mRegI dst, regF src ) %{
 11371   match(Set dst (ConvF2I src));
 11372   ins_cost(250);
 11373   format %{ "convf2i    $dst, $src @ convF2I_reg_slow" %}
 11374   ins_encode %{
 11375     Register      dreg = $dst$$Register;
 11376     FloatRegister fval = $src$$FloatRegister;
 11377     Label L;
 11379     __ c_un_s(fval, fval);    //NaN?
 11380     __ bc1t(L);
 11381     __ delayed();
 11382     __ move(dreg, R0);
 11384     __ trunc_w_s(F30, fval);
 11386     /* Call SharedRuntime:f2i() to do valid convention */
 11387     __ cfc1(AT, 31);
 11388     __ li(T9, 0x10000);
 11389     __ andr(AT, AT, T9);
 11390     __ beq(AT, R0, L);
 11391     __ delayed()->mfc1(dreg, F30);
 11393     __ mov_s(F12, fval);
 11395     /* 2014/01/08 Fu : This bug was found when running ezDS's control-panel.
 11396      *    J 982 C2 javax.swing.text.BoxView.layoutMajorAxis(II[I[I)V (283 bytes) @ 0x000000555c46aa74
 11398      * An interger array index has been assigned to V0, and then changed from 1 to Integer.MAX_VALUE. 
 11399      * V0 is corrupted during call_VM_leaf(), and should be preserved.
 11400      */
 11401     if(dreg != V0) {
 11402       __ push(V0); 
 11404     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
 11405     if(dreg != V0) {
 11406       __ move(dreg, V0);
 11407       __ pop(V0);
 11409     __ bind(L);
 11410   %}
 11412   ins_pipe( pipe_slow );
 11413 %}
 11415 instruct convF2L_reg_fast( mRegL dst, regF src ) %{
 11416   match(Set dst (ConvF2L src));
 11417   ins_cost(150);
 11418   format %{ "convf2l    $dst, $src @ convF2L_reg_fast" %}
 11419   ins_encode %{
 11420     Register      dreg = $dst$$Register;
 11421     FloatRegister fval = $src$$FloatRegister;
 11423     __ trunc_l_s(F30, fval);
 11424     __ dmfc1(dreg, F30);
 11425     __ c_un_s(fval, fval);    //NaN?
 11426     __ movt(dreg, R0);
 11427   %}
 11429   ins_pipe( pipe_slow );
 11430 %}
 11432 instruct convF2L_reg_slow( mRegL dst, regF src ) %{
 11433   match(Set dst (ConvF2L src));
 11434   ins_cost(250);
 11435   format %{ "convf2l    $dst, $src @ convF2L_reg_slow" %}
 11436   ins_encode %{
 11437     Register dst = as_Register($dst$$reg);
 11438     FloatRegister fval = $src$$FloatRegister;
 11439     Label L;
 11441     __ c_un_s(fval, fval);    //NaN?
 11442     __ bc1t(L);
 11443     __ delayed();
 11444     __ move(dst, R0);
 11446     __ trunc_l_s(F30, fval);
 11447     __ cfc1(AT, 31);
 11448     __ li(T9, 0x10000);
 11449     __ andr(AT, AT, T9);
 11450     __ beq(AT, R0, L);
 11451     __ delayed()->dmfc1(dst, F30);
 11453     __ mov_s(F12, fval);
 11454     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
 11455     __ move(dst, V0);
 11456     __ bind(L);
 11457   %}
 11459   ins_pipe( pipe_slow );
 11460 %}
 11462 instruct convL2F_reg( regF dst, mRegL src ) %{
 11463   match(Set dst (ConvL2F src));
 11464   format %{ "convl2f    $dst, $src @ convL2F_reg" %}
 11465   ins_encode %{
 11466     FloatRegister dst = $dst$$FloatRegister;
 11467     Register src = as_Register($src$$reg);
 11468     Label L;
 11470     __ dmtc1(src, dst);
 11471     __ cvt_s_l(dst, dst);
 11472   %}
 11474   ins_pipe( pipe_slow );
 11475 %}
 11477 instruct convI2F_reg( regF dst, mRegI src ) %{
 11478   match(Set dst (ConvI2F src));
 11479   format %{ "convi2f    $dst, $src @ convI2F_reg" %}
 11480   ins_encode %{
 11481     Register      src = $src$$Register;
 11482     FloatRegister dst = $dst$$FloatRegister;
 11484     __ mtc1(src, dst);
 11485     __ cvt_s_w(dst, dst);
 11486   %}
 11488   ins_pipe( fpu_regF_regF );
 11489 %}
 11491 instruct cmpLTMask_immI0( mRegI dst, mRegI p, immI0 zero ) %{
 11492   match(Set dst (CmpLTMask p zero));
 11493   ins_cost(100);
 11495   format %{ "sra    $dst, $p, 31 @ cmpLTMask_immI0" %}
 11496     ins_encode %{
 11497        Register src = $p$$Register;
 11498        Register dst = $dst$$Register;
 11500        __ sra(dst, src, 31);
 11501     %}
 11502     ins_pipe( pipe_slow );
 11503 %}
 11506 instruct cmpLTMask( mRegI dst, mRegI p, mRegI q ) %{
 11507   match(Set dst (CmpLTMask p q));
 11508   ins_cost(400);
 11510   format %{ "cmpLTMask    $dst, $p, $q @ cmpLTMask" %}
 11511     ins_encode %{
 11512        Register p   = $p$$Register;
 11513        Register q   = $q$$Register;
 11514        Register dst = $dst$$Register;
 11516        __ slt(dst, p, q);
 11517        __ subu(dst, R0, dst);
 11518     %}
 11519     ins_pipe( pipe_slow );
 11520 %}
 11522 instruct convP2B(mRegI dst, mRegP src) %{
 11523   match(Set dst (Conv2B src));
 11525   ins_cost(100);
 11526   format %{ "convP2B    $dst, $src @ convP2B"  %}
 11527   ins_encode %{
 11528     Register dst = as_Register($dst$$reg);
 11529     Register src = as_Register($src$$reg);
 11531     if (dst != src) {
 11532       __ daddiu(dst, R0, 1);
 11533       __ movz(dst, R0, src);
 11534     } else {
 11535       __ move(AT, src);
 11536       __ daddiu(dst, R0, 1);
 11537       __ movz(dst, R0, AT);
 11539   %}
 11541   ins_pipe( ialu_regL_regL );
 11542 %}
 11545 instruct convI2D_reg_reg(regD dst, mRegI src) %{
 11546   match(Set dst (ConvI2D src));
 11547   format %{ "conI2D $dst, $src @convI2D_reg" %}
 11548   ins_encode %{
 11549      Register      src = $src$$Register;
 11550      FloatRegister dst = $dst$$FloatRegister;
 11551      __ mtc1(src, dst);
 11552      __ cvt_d_w(dst, dst);
 11553   %}
 11554   ins_pipe( fpu_regF_regF );
 11555 %}
 11557 instruct convF2D_reg_reg(regD dst, regF src) %{
 11558   match(Set dst (ConvF2D src));
 11559   format %{ "convF2D  $dst, $src\t# @convF2D_reg_reg" %}
 11560   ins_encode %{
 11561     FloatRegister dst = $dst$$FloatRegister;
 11562     FloatRegister src = $src$$FloatRegister;
 11564     __ cvt_d_s(dst, src);
 11565   %}
 11566   ins_pipe( fpu_regF_regF );
 11567 %}
 11569 instruct convD2F_reg_reg(regF dst, regD src) %{
 11570   match(Set dst (ConvD2F src));
 11571   format %{ "convD2F  $dst, $src\t# @convD2F_reg_reg" %}
 11572   ins_encode %{
 11573     FloatRegister dst = $dst$$FloatRegister;
 11574     FloatRegister src = $src$$FloatRegister;
 11576     __ cvt_s_d(dst, src);
 11577   %}
 11578   ins_pipe( fpu_regF_regF );
 11579 %}
 11581 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11582 instruct convD2I_reg_reg_fast( mRegI dst, regD src ) %{
 11583   match(Set dst (ConvD2I src));
 11585   ins_cost(150);
 11586   format %{ "convD2I $dst, $src\t# @ convD2I_reg_reg_fast" %}
 11588   ins_encode %{
 11589       FloatRegister src = $src$$FloatRegister;
 11590       Register      dst = $dst$$Register;
 11592       Label Done;
 11594       __ trunc_w_d(F30, src);
 11595       // max_int: 2147483647
 11596       __ move(AT, 0x7fffffff);
 11597       __ mfc1(dst, F30);
 11599       __ bne(dst, AT, Done);
 11600       __ delayed()->mtc1(R0, F30);
 11602       __ cvt_d_w(F30, F30); 
 11603       __ c_ult_d(src, F30);
 11604       __ bc1f(Done);
 11605       __ delayed()->addiu(T9, R0, -1);
 11607       __ c_un_d(src, src);    //NaN?
 11608       __ subu32(dst, T9, AT);
 11609       __ movt(dst, R0);
 11611       __ bind(Done);
 11612   %}
 11613   ins_pipe( pipe_slow );
 11614 %}
 11616 instruct convD2I_reg_reg_slow( mRegI dst, regD src ) %{
 11617   match(Set dst (ConvD2I src));
 11619   ins_cost(250);
 11620   format %{ "convD2I $dst, $src\t# @ convD2I_reg_reg_slow" %}
 11622   ins_encode %{
 11623       FloatRegister src = $src$$FloatRegister;
 11624       Register      dst = $dst$$Register;
 11625       Label L;
 11627       __ trunc_w_d(F30, src);
 11628       __ cfc1(AT, 31);
 11629       __ li(T9, 0x10000);
 11630       __ andr(AT, AT, T9);
 11631       __ beq(AT, R0, L);
 11632       __ delayed()->mfc1(dst, F30);
 11634       __ mov_d(F12, src);
 11635       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
 11636       __ move(dst, V0);
 11637       __ bind(L);
 11639   %}
 11640   ins_pipe( pipe_slow );
 11641 %}
 11643 // Convert oop pointer into compressed form
 11644 instruct encodeHeapOop(mRegN dst, mRegP src) %{
 11645   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
 11646   match(Set dst (EncodeP src));
 11647   format %{ "encode_heap_oop $dst,$src" %}
 11648   ins_encode %{
 11649     Register src = $src$$Register;
 11650     Register dst = $dst$$Register;
 11651     if (src != dst) {
 11652       __ move(dst, src);
 11654     __ encode_heap_oop(dst);
 11655   %}
 11656   ins_pipe( ialu_regL_regL );
 11657 %}
 11659 instruct encodeHeapOop_not_null(mRegN dst, mRegP src) %{
 11660   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
 11661   match(Set dst (EncodeP src));
 11662   format %{ "encode_heap_oop_not_null $dst,$src @ encodeHeapOop_not_null" %}
 11663   ins_encode %{
 11664     __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
 11665   %}
 11666   ins_pipe( ialu_regL_regL );
 11667 %}
 11669 instruct decodeHeapOop(mRegP dst, mRegN src) %{
 11670   predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull &&
 11671             n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant);
 11672   match(Set dst (DecodeN src));
 11673   format %{ "decode_heap_oop $dst,$src @ decodeHeapOop" %}
 11674   ins_encode %{
 11675     Register s = $src$$Register;
 11676     Register d = $dst$$Register;
 11677     if (s != d) {
 11678       __ move(d, s);
 11680     __ decode_heap_oop(d);
 11681   %}
 11682   ins_pipe( ialu_regL_regL );
 11683 %}
 11685 instruct decodeHeapOop_not_null(mRegP dst, mRegN src) %{
 11686   predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull ||
 11687             n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant);
 11688   match(Set dst (DecodeN src));
 11689   format %{ "decode_heap_oop_not_null $dst,$src @ decodeHeapOop_not_null" %}
 11690   ins_encode %{
 11691     Register s = $src$$Register;
 11692     Register d = $dst$$Register;
 11693     if (s != d) {
 11694       __ decode_heap_oop_not_null(d, s);
 11695     } else {
 11696       __ decode_heap_oop_not_null(d);
 11698   %}
 11699   ins_pipe( ialu_regL_regL );
 11700 %}
 11702 instruct encodeKlass_not_null(mRegN dst, mRegP src) %{
 11703   match(Set dst (EncodePKlass src));
 11704   format %{ "encode_heap_oop_not_null $dst,$src @ encodeKlass_not_null" %}
 11705   ins_encode %{
 11706     __ encode_klass_not_null($dst$$Register, $src$$Register);
 11707   %}
 11708   ins_pipe( ialu_regL_regL );
 11709 %}
 11711 instruct decodeKlass_not_null(mRegP dst, mRegN src) %{
 11712   match(Set dst (DecodeNKlass src));
 11713   format %{ "decode_heap_klass_not_null $dst,$src" %}
 11714   ins_encode %{
 11715     Register s = $src$$Register;
 11716     Register d = $dst$$Register;
 11717     if (s != d) {
 11718       __ decode_klass_not_null(d, s);
 11719     } else {
 11720       __ decode_klass_not_null(d);
 11722   %}
 11723   ins_pipe( ialu_regL_regL );
 11724 %}
 11726 //FIXME
 11727 instruct tlsLoadP(mRegP dst) %{
 11728   match(Set dst (ThreadLocal));
 11730   ins_cost(0);
 11731   format %{ " get_thread in $dst #@tlsLoadP" %}
 11732   ins_encode %{
 11733     Register dst = $dst$$Register;
 11734 #ifdef OPT_THREAD
 11735     __ move(dst, TREG);
 11736 #else
 11737     __ get_thread(dst);
 11738 #endif
 11739   %}
 11741   ins_pipe( ialu_loadI );
 11742 %}
 11745 instruct checkCastPP( mRegP dst ) %{
 11746   match(Set dst (CheckCastPP dst));
 11748   format %{ "#checkcastPP of $dst (empty encoding) #@chekCastPP" %}
 11749   ins_encode( /*empty encoding*/ );
 11750   ins_pipe( empty );
 11751 %}
 11753 instruct castPP(mRegP dst)
 11754 %{
 11755   match(Set dst (CastPP dst));
 11757   size(0);
 11758   format %{ "# castPP of $dst" %}
 11759   ins_encode(/* empty encoding */);
 11760   ins_pipe(empty);
 11761 %}
 11763 instruct castII( mRegI dst ) %{
 11764   match(Set dst (CastII dst));
 11765   format %{ "#castII of $dst  empty encoding" %}
 11766   ins_encode( /*empty encoding*/ );
 11767   ins_cost(0);
 11768   ins_pipe( empty );
 11769 %}
 11771 // Return Instruction
 11772 // Remove the return address & jump to it.
 11773 instruct Ret() %{
 11774   match(Return);
 11775   format %{ "RET #@Ret" %}
 11777   ins_encode %{
 11778    __ jr(RA); 
 11779    __ nop();
 11780   %}
 11782   ins_pipe( pipe_jump );
 11783 %}
 11785 /*
 11786 // For Loongson CPUs, jr seems too slow, so this rule shouldn't be imported.
 11787 instruct jumpXtnd(mRegL switch_val) %{
 11788   match(Jump switch_val);
 11790   ins_cost(350);
 11792   format %{  "load   T9 <-- [$constanttablebase, $switch_val, $constantoffset] @ jumpXtnd\n\t"
 11793              "jr     T9\n\t"
 11794              "nop" %}
 11795   ins_encode %{
 11796     Register table_base = $constanttablebase;
 11797     int      con_offset = $constantoffset;
 11798     Register switch_reg = $switch_val$$Register;
 11800     if (UseLoongsonISA) {
 11801        if (Assembler::is_simm(con_offset, 8)) {
 11802          __ gsldx(T9, table_base, switch_reg, con_offset);
 11803        } else if (Assembler::is_simm16(con_offset)) {
 11804          __ daddu(T9, table_base, switch_reg);
 11805          __ ld(T9, T9, con_offset);
 11806        } else {
 11807          __ move(T9, con_offset);
 11808          __ daddu(AT, table_base, switch_reg);
 11809          __ gsldx(T9, AT, T9, 0);
 11811     } else {
 11812        if (Assembler::is_simm16(con_offset)) {
 11813          __ daddu(T9, table_base, switch_reg);
 11814          __ ld(T9, T9, con_offset);
 11815        } else {
 11816          __ move(T9, con_offset);
 11817          __ daddu(AT, table_base, switch_reg);
 11818          __ daddu(AT, T9, AT);
 11819          __ ld(T9, AT, 0);
 11823     __ jr(T9);
 11824     __ nop();
 11826   %}
 11827   ins_pipe(pipe_jump);
 11828 %}
 11829 */
 11831 // Jump Direct - Label defines a relative address from JMP
 11832 instruct jmpDir(label labl) %{
 11833   match(Goto);
 11834   effect(USE labl);
 11836   ins_cost(300);
 11837   format %{ "JMP    $labl #@jmpDir" %}
 11839   ins_encode %{
 11840     Label &L = *($labl$$label);
 11841     if(&L)
 11842     	 __ b(L);
 11843     else
 11844          __ b(int(0));
 11845     __ nop();
 11846   %}
 11848     ins_pipe( pipe_jump );
 11849     ins_pc_relative(1);
 11850 %}
 11854 // Tail Jump; remove the return address; jump to target.
 11855 // TailCall above leaves the return address around.
 11856 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 11857 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 11858 // "restore" before this instruction (in Epilogue), we need to materialize it
 11859 // in %i0.
 11860 //FIXME
 11861 instruct tailjmpInd(mRegP jump_target,mRegP ex_oop) %{
 11862   match( TailJump jump_target ex_oop );
 11863   ins_cost(200);
 11864   format %{ "Jmp     $jump_target  ; ex_oop = $ex_oop #@tailjmpInd" %}
 11865   ins_encode %{
 11866     Register target = $jump_target$$Register;
 11868     /* 2012/9/14 Jin: V0, V1 are indicated in:
 11869      *      [stubGenerator_mips.cpp] generate_forward_exception()
 11870      *      [runtime_mips.cpp] OptoRuntime::generate_exception_blob()
 11871      */
 11872     Register oop  = $ex_oop$$Register;
 11873     Register exception_oop = V0;
 11874     Register exception_pc = V1;
 11876     __ move(exception_pc, RA);
 11877     __ move(exception_oop, oop);
 11879     __ jr(target);  
 11880     __ nop();
 11881   %}
 11882   ins_pipe( pipe_jump ); 
 11883 %}
 11885 // ============================================================================
 11886 // Procedure Call/Return Instructions
 11887 // Call Java Static Instruction
 11888 // Note: If this code changes, the corresponding ret_addr_offset() and
 11889 //       compute_padding() functions will have to be adjusted.
 11890 instruct CallStaticJavaDirect(method meth) %{
 11891   match(CallStaticJava);
 11892   effect(USE meth);
 11894   ins_cost(300);
 11895   format %{ "CALL,static #@CallStaticJavaDirect " %}
 11896   ins_encode( Java_Static_Call( meth ) );
 11897   ins_pipe( pipe_slow );
 11898   ins_pc_relative(1);
 11899 %}
 11901 // Call Java Dynamic Instruction
 11902 // Note: If this code changes, the corresponding ret_addr_offset() and
 11903 //       compute_padding() functions will have to be adjusted.
 11904 instruct CallDynamicJavaDirect(method meth) %{
 11905   match(CallDynamicJava);
 11906   effect(USE meth);
 11908   ins_cost(300);
 11909   format %{"MOV IC_Klass, (oop)-1\n\t"
 11910            "CallDynamic @ CallDynamicJavaDirect" %}
 11911   ins_encode( Java_Dynamic_Call( meth ) );
 11912   ins_pipe( pipe_slow );
 11913   ins_pc_relative(1);
 11914 %}
 11916 instruct CallLeafNoFPDirect(method meth) %{
 11917   match(CallLeafNoFP);
 11918   effect(USE meth);
 11920   ins_cost(300);
 11921   format %{ "CALL_LEAF_NOFP,runtime " %}
 11922   ins_encode(Java_To_Runtime(meth));
 11923   ins_pipe( pipe_slow );
 11924   ins_pc_relative(1);
 11925   ins_alignment(16);
 11926 %}
 11928 // Prefetch instructions.
 11930 instruct prefetchrNTA( memory mem ) %{
 11931   match(PrefetchRead mem);
 11932   ins_cost(125);
 11934   format %{ "pref $mem\t# Prefetch into non-temporal cache for read @ prefetchrNTA" %}
 11935   ins_encode %{
 11936     int  base = $mem$$base;
 11937     int  index = $mem$$index;
 11938     int  scale = $mem$$scale;
 11939     int  disp = $mem$$disp;
 11941     if( index != 0 ) {
 11942       if (scale == 0) {
 11943         __ daddu(AT, as_Register(base), as_Register(index));
 11944       } else {
 11945         __ dsll(AT, as_Register(index), scale);
 11946         __ daddu(AT, as_Register(base), AT);
 11948     } else {
 11949       __ move(AT, as_Register(base));
 11951     if( Assembler::is_simm16(disp) ) {
 11952       __ daddiu(AT, as_Register(base), disp);
 11953       __ daddiu(AT, AT, disp);
 11954     } else {
 11955       __ move(T9, disp);
 11956       __ daddu(AT, as_Register(base), T9);
 11958     __ pref(0, AT, 0); //hint: 0:load
 11959   %}
 11960   ins_pipe(pipe_slow);
 11961 %}
 11963 instruct prefetchwNTA( memory mem ) %{
 11964   match(PrefetchWrite mem);
 11965   ins_cost(125);
 11966   format %{ "pref $mem\t# Prefetch to non-temporal cache for write @ prefetchwNTA" %}
 11967   ins_encode %{
 11968     int  base = $mem$$base;
 11969     int  index = $mem$$index;
 11970     int  scale = $mem$$scale;
 11971     int  disp = $mem$$disp;
 11973     if( index != 0 ) {
 11974       if (scale == 0) {
 11975         __ daddu(AT, as_Register(base), as_Register(index));
 11976       } else {
 11977         __ dsll(AT, as_Register(index), scale);
 11978         __ daddu(AT, as_Register(base), AT);
 11980     } else {
 11981       __ move(AT, as_Register(base));
 11983     if( Assembler::is_simm16(disp) ) {
 11984       __ daddiu(AT, as_Register(base), disp);
 11985       __ daddiu(AT, AT, disp);
 11986     } else {
 11987       __ move(T9, disp);
 11988       __ daddu(AT, as_Register(base), T9);
 11990      __ pref(1, AT, 0); //hint: 1:store
 11991   %}
 11992   ins_pipe(pipe_slow);
 11993 %}
 11995 // Prefetch instructions for allocation.
 11997 instruct prefetchAllocNTA( memory mem ) %{
 11998   match(PrefetchAllocation mem);
 11999   ins_cost(125);
 12000   format %{ "pref $mem\t# Prefetch allocation @ prefetchAllocNTA" %}
 12001   ins_encode %{
 12002      int  base = $mem$$base;
 12003      int  index = $mem$$index;
 12004      int  scale = $mem$$scale;
 12005      int  disp = $mem$$disp;
 12007      Register dst = R0;
 12009      if( index != 0 ) {
 12010         if( Assembler::is_simm16(disp) ) { 
 12011            if( UseLoongsonISA ) {
 12012               if (scale == 0) {
 12013                  __ gslbx(dst, as_Register(base), as_Register(index), disp);
 12014               } else {
 12015                  __ dsll(AT, as_Register(index), scale);
 12016                  __ gslbx(dst, as_Register(base), AT, disp);
 12018            } else {
 12019               if (scale == 0) {
 12020                  __ addu(AT, as_Register(base), as_Register(index));
 12021               } else {
 12022                  __ dsll(AT, as_Register(index), scale);
 12023                  __ addu(AT, as_Register(base), AT);
 12025               __ lb(dst, AT, disp);
 12027         } else {
 12028            if (scale == 0) {
 12029               __ addu(AT, as_Register(base), as_Register(index));
 12030            } else {
 12031               __ dsll(AT, as_Register(index), scale);
 12032               __ addu(AT, as_Register(base), AT);
 12034            __ move(T9, disp);
 12035            if( UseLoongsonISA ) {
 12036               __ gslbx(dst, AT, T9, 0);
 12037            } else {
 12038               __ addu(AT, AT, T9); 
 12039               __ lb(dst, AT, 0);
 12042      } else {
 12043         if( Assembler::is_simm16(disp) ) { 
 12044            __ lb(dst, as_Register(base), disp);
 12045         } else {
 12046            __ move(T9, disp);   
 12047            if( UseLoongsonISA ) {
 12048               __ gslbx(dst, as_Register(base), T9, 0);
 12049            } else {
 12050               __ addu(AT, as_Register(base), T9); 
 12051               __ lb(dst, AT, 0);
 12055   %}
 12056   ins_pipe(pipe_slow);
 12057 %}
 12060 // Call runtime without safepoint
 12061 instruct CallLeafDirect(method meth) %{
 12062   match(CallLeaf);
 12063   effect(USE meth);
 12065   ins_cost(300);
 12066   format %{ "CALL_LEAF,runtime #@CallLeafDirect " %}
 12067   ins_encode(Java_To_Runtime(meth));
 12068   ins_pipe( pipe_slow );
 12069   ins_pc_relative(1);
 12070   ins_alignment(16);
 12071 %}
 12073 // Load Char (16bit unsigned)
 12074 instruct loadUS(mRegI dst, memory mem) %{
 12075   match(Set dst (LoadUS mem));
 12077   ins_cost(125);
 12078   format %{ "loadUS  $dst,$mem @ loadC" %}
 12079   ins_encode(load_C_enc(dst, mem));
 12080   ins_pipe( ialu_loadI );
 12081 %}
 12083 instruct loadUS_convI2L(mRegL dst, memory mem) %{
 12084   match(Set dst (ConvI2L (LoadUS mem)));
 12086   ins_cost(125);
 12087   format %{ "loadUS  $dst,$mem @ loadUS_convI2L" %}
 12088   ins_encode(load_C_enc(dst, mem));
 12089   ins_pipe( ialu_loadI );
 12090 %}
 12092 // Store Char (16bit unsigned)
 12093 instruct storeC(memory mem, mRegI src) %{
 12094   match(Set mem (StoreC mem src));
 12096   ins_cost(125);
 12097   format %{ "storeC  $src, $mem @ storeC" %}
 12098   ins_encode(store_C_reg_enc(mem, src));
 12099   ins_pipe( ialu_loadI );
 12100 %}
 12102 instruct storeC0(memory mem, immI0 zero) %{
 12103   match(Set mem (StoreC mem zero));
 12105   ins_cost(125);
 12106   format %{ "storeC  $zero, $mem @ storeC0" %}
 12107   ins_encode(store_C0_enc(mem));
 12108   ins_pipe( ialu_loadI );
 12109 %}
 12112 instruct loadConF0(regF dst, immF0 zero) %{
 12113   match(Set dst zero);
 12114   ins_cost(100);
 12116   format %{ "mov  $dst, zero @ loadConF0\n"%}
 12117   ins_encode %{
 12118     FloatRegister dst = $dst$$FloatRegister;
 12120     __ mtc1(R0, dst);
 12121   %}
 12122   ins_pipe( fpu_loadF );
 12123 %}
 12126 instruct loadConF(regF dst, immF src) %{
 12127   match(Set dst src);
 12128   ins_cost(125);
 12130   format %{ "lwc1  $dst, $constantoffset[$constanttablebase] # load FLOAT $src from table @ loadConF" %}
 12131   ins_encode %{
 12132     int con_offset = $constantoffset($src);
 12134     if (Assembler::is_simm16(con_offset)) {
 12135        __ lwc1($dst$$FloatRegister, $constanttablebase, con_offset);
 12136     } else {
 12137        __ set64(AT, con_offset);
 12138        if (UseLoongsonISA) {
 12139           __ gslwxc1($dst$$FloatRegister, $constanttablebase, AT, 0);
 12140        } else {
 12141           __ daddu(AT, $constanttablebase, AT);
 12142           __ lwc1($dst$$FloatRegister, AT, 0);
 12145   %}
 12146   ins_pipe( fpu_loadF );
 12147 %}
 12150 instruct loadConD0(regD dst, immD0 zero) %{
 12151   match(Set dst zero);
 12152   ins_cost(100);
 12154   format %{ "mov  $dst, zero @ loadConD0"%}
 12155   ins_encode %{
 12156     FloatRegister dst = as_FloatRegister($dst$$reg);
 12158       __ dmtc1(R0, dst);
 12159   %}
 12160   ins_pipe( fpu_loadF );
 12161 %}
 12163 instruct loadConD(regD dst, immD src) %{
 12164   match(Set dst src);
 12165   ins_cost(125);
 12167   format %{ "ldc1  $dst, $constantoffset[$constanttablebase] # load DOUBLE $src from table @ loadConD" %}
 12168   ins_encode %{
 12169     int con_offset = $constantoffset($src);
 12171     if (Assembler::is_simm16(con_offset)) {
 12172        __ ldc1($dst$$FloatRegister, $constanttablebase, con_offset);
 12173     } else {
 12174        __ set64(AT, con_offset);
 12175        if (UseLoongsonISA) {
 12176           __ gsldxc1($dst$$FloatRegister, $constanttablebase, AT, 0);
 12177        } else {
 12178           __ daddu(AT, $constanttablebase, AT);
 12179           __ ldc1($dst$$FloatRegister, AT, 0);
 12182   %}
 12183   ins_pipe( fpu_loadF );
 12184 %}
 12186 // Store register Float value (it is faster than store from FPU register)
 12187 instruct storeF_reg( memory mem, regF src) %{
 12188   match(Set mem (StoreF mem src));
 12190   ins_cost(50);
 12191   format %{ "store   $mem, $src\t# store float @ storeF_reg" %}
 12192   ins_encode(store_F_reg_enc(mem, src));
 12193   ins_pipe( fpu_storeF );
 12194 %}
 12196 instruct storeF_imm0( memory mem, immF0 zero) %{
 12197   match(Set mem (StoreF mem zero));
 12199   ins_cost(40);
 12200   format %{ "store   $mem, zero\t# store float @ storeF_imm0" %}
 12201   ins_encode %{
 12202     int      base = $mem$$base;
 12203     int     index = $mem$$index;
 12204     int     scale = $mem$$scale;
 12205     int      disp = $mem$$disp;
 12207     if( index != 0 ) {
 12208 		if ( UseLoongsonISA ) {
 12209 			if ( Assembler::is_simm(disp, 8) ) {
 12210 				if ( scale == 0 ) {
 12211 					__ gsswx(R0, as_Register(base), as_Register(index), disp);
 12212 				} else {
 12213 					__ dsll(T9, as_Register(index), scale);
 12214 					__ gsswx(R0, as_Register(base), T9, disp);
 12216 			} else if ( Assembler::is_simm16(disp) ) {
 12217 				if ( scale == 0 ) {
 12218 					__ daddu(AT, as_Register(base), as_Register(index));
 12219 				} else {
 12220 					__ dsll(T9, as_Register(index), scale);
 12221 					__ daddu(AT, as_Register(base), T9);
 12223 				__ sw(R0, AT, disp);
 12224 			} else {
 12225 				if ( scale == 0 ) {
 12226 					__ move(T9, disp);
 12227 					__ daddu(AT, as_Register(index), T9);
 12228 					__ gsswx(R0, as_Register(base), AT, 0);
 12229 				} else {
 12230 					__ dsll(T9, as_Register(index), scale);
 12231 					__ move(AT, disp);
 12232 					__ daddu(AT, AT, T9);
 12233 					__ gsswx(R0, as_Register(base), AT, 0);
 12236 		} else { //not use loongson isa
 12237 		    if(scale != 0) {
 12238 		       __ dsll(T9, as_Register(index), scale);
 12239 		       __ daddu(AT, as_Register(base), T9);
 12240 		    } else {
 12241 		       __ daddu(AT, as_Register(base), as_Register(index));
 12243 		   if( Assembler::is_simm16(disp) ) { 
 12244 		      __ sw(R0, AT, disp);
 12245 		   } else {
 12246 		      __ move(T9, disp);
 12247 		      __ daddu(AT, AT, T9);
 12248 			  __ sw(R0, AT, 0);
 12251     } else { //index is 0
 12252 		if ( UseLoongsonISA ) {
 12253 			if ( Assembler::is_simm16(disp) ) {
 12254 				__ sw(R0, as_Register(base), disp);
 12255 			} else {
 12256 				__ move(T9, disp);
 12257 				__ gsswx(R0, as_Register(base), T9, 0);
 12259 		} else {
 12260 		   if( Assembler::is_simm16(disp) ) { 
 12261 		      __ sw(R0, as_Register(base), disp);
 12262 		   } else {
 12263 		      __ move(T9, disp);
 12264 		      __ daddu(AT, as_Register(base), T9);
 12265 			  __ sw(R0, AT, 0);
 12269   %}
 12270   ins_pipe( ialu_storeI );
 12271 %}
 12273 // Load Double
 12274 instruct loadD(regD dst, memory mem) %{
 12275   match(Set dst (LoadD mem));
 12277   ins_cost(150);
 12278   format %{ "loadD   $dst, $mem #@loadD" %}
 12279   ins_encode(load_D_enc(dst, mem));
 12280   ins_pipe( ialu_loadI );
 12281 %}
 12283 // Load Double - UNaligned
 12284 instruct loadD_unaligned(regD dst, memory mem ) %{
 12285   match(Set dst (LoadD_unaligned mem));
 12286   ins_cost(250);
 12287   // FIXME: Jin: Need more effective ldl/ldr
 12288   format %{ "loadD_unaligned   $dst, $mem #@loadD_unaligned" %}
 12289   ins_encode(load_D_enc(dst, mem));
 12290   ins_pipe( ialu_loadI );
 12291 %}
 12293 instruct storeD_reg( memory mem, regD src) %{
 12294   match(Set mem (StoreD mem src));
 12296   ins_cost(50);
 12297   format %{ "store   $mem, $src\t# store float @ storeD_reg" %}
 12298   ins_encode(store_D_reg_enc(mem, src));
 12299   ins_pipe( fpu_storeF );
 12300 %}
 12302 instruct storeD_imm0( memory mem, immD0 zero) %{
 12303   match(Set mem (StoreD mem zero));
 12305   ins_cost(40);
 12306   format %{ "store   $mem, zero\t# store float @ storeD_imm0" %}
 12307   ins_encode %{
 12308     int      base = $mem$$base;
 12309     int     index = $mem$$index;
 12310     int     scale = $mem$$scale;
 12311     int      disp = $mem$$disp;
 12313     __ mtc1(R0, F30);
 12314     __ cvt_d_w(F30, F30);
 12316     if( index != 0 ) {
 12317 		if ( UseLoongsonISA ) {
 12318 			if ( Assembler::is_simm(disp, 8) ) {
 12319 				if (scale == 0) {
 12320 					__ gssdxc1(F30, as_Register(base), as_Register(index), disp);
 12321 				} else {
 12322 					__ dsll(T9, as_Register(index), scale);
 12323 					__ gssdxc1(F30, as_Register(base), T9, disp);
 12325 			} else if ( Assembler::is_simm16(disp) ) {
 12326 				if (scale == 0) {
 12327 					__ daddu(AT, as_Register(base), as_Register(index));
 12328 					__ sdc1(F30, AT, disp);
 12329 				} else {
 12330 					__ dsll(T9, as_Register(index), scale);
 12331 					__ daddu(AT, as_Register(base), T9);
 12332 					__ sdc1(F30, AT, disp);
 12334 			} else {
 12335 				if (scale == 0) {
 12336 					__ move(T9, disp);
 12337 					__ daddu(AT, as_Register(index), T9);
 12338 					__ gssdxc1(F30, as_Register(base), AT, 0);
 12339 				} else {
 12340 					__ move(T9, disp);
 12341 					__ dsll(AT, as_Register(index), scale);
 12342 					__ daddu(AT, AT, T9);
 12343 					__ gssdxc1(F30, as_Register(base), AT, 0);
 12346 		} else { // not use loongson isa
 12347 		    if(scale != 0) {
 12348 		       __ dsll(T9, as_Register(index), scale);
 12349 		       __ daddu(AT, as_Register(base), T9);
 12350 		    } else {
 12351 		       __ daddu(AT, as_Register(base), as_Register(index));
 12353 		   if( Assembler::is_simm16(disp) ) { 
 12354 		      __ sdc1(F30, AT, disp);
 12355 		   } else {
 12356 		      __ move(T9, disp);
 12357 		      __ daddu(AT, AT, T9);
 12358 		      __ sdc1(F30, AT, 0);
 12361     } else {// index is 0
 12362 		if ( UseLoongsonISA ) {
 12363 			if ( Assembler::is_simm16(disp) ) {
 12364 				__ sdc1(F30, as_Register(base), disp);
 12365 			} else {
 12366 				__ move(T9, disp);
 12367 				__ gssdxc1(F30, as_Register(base), T9, 0);
 12369 		} else {
 12370 		   if( Assembler::is_simm16(disp) ) { 
 12371 		      __ sdc1(F30, as_Register(base), disp);
 12372 		   } else {
 12373 		      __ move(T9, disp);
 12374 		      __ daddu(AT, as_Register(base), T9);
 12375 		      __ sdc1(F30, AT, 0);
 12379   %}
 12380   ins_pipe( ialu_storeI );
 12381 %}
 12383 instruct loadSSI(mRegI dst, stackSlotI src)
 12384 %{
 12385   match(Set dst src);
 12387   ins_cost(125);
 12388   format %{ "lw    $dst, $src\t# int stk @ loadSSI" %}
 12389   ins_encode %{
 12390     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSI) !");
 12391     __ lw($dst$$Register, SP, $src$$disp);
 12392   %}
 12393   ins_pipe(ialu_loadI);
 12394 %}
 12396 instruct storeSSI(stackSlotI dst, mRegI src)
 12397 %{
 12398   match(Set dst src);
 12400   ins_cost(100);
 12401   format %{ "sw    $dst, $src\t# int stk @ storeSSI" %}
 12402   ins_encode %{
 12403     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSI) !");
 12404     __ sw($src$$Register, SP, $dst$$disp);
 12405   %}
 12406   ins_pipe(ialu_storeI);
 12407 %}
 12409 instruct loadSSL(mRegL dst, stackSlotL src)
 12410 %{
 12411   match(Set dst src);
 12413   ins_cost(125);
 12414   format %{ "ld    $dst, $src\t# long stk @ loadSSL" %}
 12415   ins_encode %{
 12416     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSL) !");
 12417     __ ld($dst$$Register, SP, $src$$disp);
 12418   %}
 12419   ins_pipe(ialu_loadI);
 12420 %}
 12422 instruct storeSSL(stackSlotL dst, mRegL src)
 12423 %{
 12424   match(Set dst src);
 12426   ins_cost(100);
 12427   format %{ "sd    $dst, $src\t# long stk @ storeSSL" %}
 12428   ins_encode %{
 12429     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSL) !");
 12430     __ sd($src$$Register, SP, $dst$$disp);
 12431   %}
 12432   ins_pipe(ialu_storeI);
 12433 %}
 12435 instruct loadSSP(mRegP dst, stackSlotP src)
 12436 %{
 12437   match(Set dst src);
 12439   ins_cost(125);
 12440   format %{ "ld    $dst, $src\t# ptr stk @ loadSSP" %}
 12441   ins_encode %{
 12442     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSP) !");
 12443     __ ld($dst$$Register, SP, $src$$disp);
 12444   %}
 12445   ins_pipe(ialu_loadI);
 12446 %}
 12448 instruct storeSSP(stackSlotP dst, mRegP src)
 12449 %{
 12450   match(Set dst src);
 12452   ins_cost(100);
 12453   format %{ "sd    $dst, $src\t# ptr stk @ storeSSP" %}
 12454   ins_encode %{
 12455     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSP) !");
 12456     __ sd($src$$Register, SP, $dst$$disp);
 12457   %}
 12458   ins_pipe(ialu_storeI);
 12459 %}
 12461 instruct loadSSF(regF dst, stackSlotF src)
 12462 %{
 12463   match(Set dst src);
 12465   ins_cost(125);
 12466   format %{ "lwc1   $dst, $src\t# float stk @ loadSSF" %}
 12467   ins_encode %{
 12468     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSF) !");
 12469     __ lwc1($dst$$FloatRegister, SP, $src$$disp);
 12470   %}
 12471   ins_pipe(ialu_loadI);
 12472 %}
 12474 instruct storeSSF(stackSlotF dst, regF src)
 12475 %{
 12476   match(Set dst src);
 12478   ins_cost(100);
 12479   format %{ "swc1    $dst, $src\t# float stk @ storeSSF" %}
 12480   ins_encode %{
 12481     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSF) !");
 12482     __ swc1($src$$FloatRegister, SP, $dst$$disp);
 12483   %}
 12484   ins_pipe(fpu_storeF);
 12485 %}
 12487 // Use the same format since predicate() can not be used here.
 12488 instruct loadSSD(regD dst, stackSlotD src)
 12489 %{
 12490   match(Set dst src);
 12492   ins_cost(125);
 12493   format %{ "ldc1   $dst, $src\t# double stk @ loadSSD" %}
 12494   ins_encode %{
 12495     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSD) !");
 12496     __ ldc1($dst$$FloatRegister, SP, $src$$disp);
 12497   %}
 12498   ins_pipe(ialu_loadI);
 12499 %}
 12501 instruct storeSSD(stackSlotD dst, regD src)
 12502 %{
 12503   match(Set dst src);
 12505   ins_cost(100);
 12506   format %{ "sdc1    $dst, $src\t# double stk @ storeSSD" %}
 12507   ins_encode %{
 12508     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSD) !");
 12509     __ sdc1($src$$FloatRegister, SP, $dst$$disp);
 12510   %}
 12511   ins_pipe(fpu_storeF);
 12512 %}
 12514 instruct cmpFastLock( FlagsReg cr, mRegP object, s0_RegP box, mRegI tmp, mRegP scr) %{
 12515   match( Set cr (FastLock object box) );
 12516   effect( TEMP tmp, TEMP scr, USE_KILL box );
 12517   ins_cost(300);
 12518   format %{ "FASTLOCK $cr $object, $box, $tmp #@ cmpFastLock" %}
 12519   ins_encode %{
 12520     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register, $scr$$Register);
 12521   %}
 12523   ins_pipe( pipe_slow );
 12524   ins_pc_relative(1);
 12525 %}
 12527 instruct cmpFastUnlock( FlagsReg cr, mRegP object, s0_RegP box, mRegP tmp ) %{
 12528   match( Set cr (FastUnlock object box) );
 12529   effect( TEMP tmp, USE_KILL box );
 12530   ins_cost(300);
 12531   format %{ "FASTUNLOCK $object, $box, $tmp #@cmpFastUnlock" %}
 12532   ins_encode %{
 12533     __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register);
 12534   %}
 12536   ins_pipe( pipe_slow );
 12537   ins_pc_relative(1);
 12538 %}
 12540 // Store CMS card-mark Immediate
 12541 instruct storeImmCM(memory mem, immI8 src) %{
 12542   match(Set mem (StoreCM mem src));
 12544   ins_cost(150);
 12545   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
 12546 //  opcode(0xC6);
 12547   ins_encode(store_B_immI_enc_sync(mem, src));
 12548   ins_pipe( ialu_storeI );
 12549 %}
 12551 // Die now
 12552 instruct ShouldNotReachHere( )
 12553 %{
 12554   match(Halt);
 12555   ins_cost(300);
 12557   // Use the following format syntax
 12558   format %{ "ILLTRAP   ;#@ShouldNotReachHere" %}
 12559   ins_encode %{
 12560     // Here we should emit illtrap !
 12562     __ stop("in ShoudNotReachHere");
 12564   %}
 12565   ins_pipe( pipe_jump );
 12566 %}
 12568 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12569 instruct  jmpLoopEnd(cmpOp cop, mRegI src1, mRegI src2, label labl) %{
 12570   match(CountedLoopEnd cop (CmpI src1 src2));
 12571   effect(USE labl);
 12573   ins_cost(300);
 12574   format %{ "J$cop  $src1, $src2,  $labl\t# Loop end @ jmpLoopEnd" %}
 12575   ins_encode %{
 12576     Register op1 = $src1$$Register;
 12577     Register op2 = $src2$$Register;
 12578     Label     &L = *($labl$$label);
 12579     int     flag = $cop$$cmpcode;
 12581     switch(flag)
 12583       case 0x01: //equal
 12584 	if (&L)
 12585         	__ beq(op1, op2, L); 
 12586 	else 
 12587         	__ beq(op1, op2, (int)0); 
 12588         break;
 12589       case 0x02: //not_equal
 12590 	if (&L)
 12591         	__ bne(op1, op2, L); 
 12592 	else
 12593         	__ bne(op1, op2, (int)0); 
 12594         break;
 12595       case 0x03: //above
 12596         __ slt(AT, op2, op1);
 12597         if(&L)
 12598         	__ bne(AT, R0, L); 
 12599         else
 12600                 __ bne(AT, R0, (int)0);
 12601         break;
 12602       case 0x04: //above_equal
 12603         __ slt(AT, op1, op2);
 12604         if(&L)
 12605         	__ beq(AT, R0, L);
 12606         else
 12607                 __ beq(AT, R0, (int)0);
 12608         break;
 12609       case 0x05: //below
 12610         __ slt(AT, op1, op2);
 12611         if(&L)
 12612       		 __ bne(AT, R0, L); 
 12613         else
 12614         	 __ bne(AT, R0, (int)0);
 12615         break;
 12616       case 0x06: //below_equal
 12617         __ slt(AT, op2, op1);
 12618         if(&L)
 12619         	__ beq(AT, R0, L);
 12620         else
 12621         	__ beq(AT, R0, (int)0);
 12622        break;
 12623       default:
 12624           Unimplemented();
 12626     __ nop();
 12627   %}
 12628   ins_pipe( pipe_jump );
 12629   ins_pc_relative(1);
 12630 %}
 12633  instruct  jmpLoopEnd_reg_imm16_sub(cmpOp cop, mRegI src1, immI16_sub src2, label labl) %{
 12634   match(CountedLoopEnd cop (CmpI src1 src2));
 12635   effect(USE labl);
 12637   ins_cost(250);
 12638   format %{ "J$cop  $src1, $src2,  $labl\t# Loop end @ jmpLoopEnd_reg_imm16_sub" %}
 12639   ins_encode %{
 12640     Register op1 = $src1$$Register;
 12641     int      op2 = $src2$$constant;
 12642     Label     &L = *($labl$$label);
 12643     int     flag = $cop$$cmpcode;
 12645     __ addiu32(AT, op1, -1 * op2);
 12647     switch(flag)
 12649       case 0x01: //equal
 12650        if (&L)
 12651                __ beq(AT, R0, L); 
 12652        else 
 12653                __ beq(AT, R0, (int)0); 
 12654         break;
 12655       case 0x02: //not_equal
 12656        if (&L)
 12657                __ bne(AT, R0, L); 
 12658        else
 12659                __ bne(AT, R0, (int)0); 
 12660         break;
 12661       case 0x03: //above
 12662         if(&L)
 12663                __ bgtz(AT, L); 
 12664         else
 12665                 __ bgtz(AT, (int)0);
 12666         break;
 12667       case 0x04: //above_equal
 12668         if(&L)
 12669                __ bgez(AT, L);
 12670         else
 12671                 __ bgez(AT,(int)0);
 12672         break;
 12673       case 0x05: //below
 12674         if(&L)
 12675                 __ bltz(AT, L); 
 12676         else
 12677                 __ bltz(AT, (int)0);
 12678         break;
 12679       case 0x06: //below_equal
 12680         if(&L)
 12681                __ blez(AT, L);
 12682         else
 12683                __ blez(AT, (int)0);
 12684        break;
 12685       default:
 12686           Unimplemented();
 12688     __ nop();
 12689   %}
 12690   ins_pipe( pipe_jump );
 12691   ins_pc_relative(1);
 12692 %}
 12695 /*  
 12696 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12697 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12698   match(CountedLoopEnd cop cmp);
 12699   effect(USE labl);
 12701   ins_cost(300);
 12702   format %{ "J$cop,u  $labl\t# Loop end" %}
 12703   size(6);
 12704   opcode(0x0F, 0x80);
 12705   ins_encode( Jcc( cop, labl) );
 12706   ins_pipe( pipe_jump );
 12707   ins_pc_relative(1);
 12708 %}
 12710 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12711   match(CountedLoopEnd cop cmp);
 12712   effect(USE labl);
 12714   ins_cost(200);
 12715   format %{ "J$cop,u  $labl\t# Loop end" %}
 12716   opcode(0x0F, 0x80);
 12717   ins_encode( Jcc( cop, labl) );
 12718   ins_pipe( pipe_jump );
 12719   ins_pc_relative(1);
 12720 %}
 12721 */
 12723 // This match pattern is created for StoreIConditional since I cannot match IfNode without a RegFlags! fujie 2012/07/17
 12724 instruct jmpCon_flags(cmpOp cop, FlagsReg cr, label labl) %{
 12725   match(If cop cr);
 12726   effect(USE labl);
 12728   ins_cost(300);
 12729   format %{ "J$cop    $labl  #mips uses AT as eflag @jmpCon_flags" %}
 12731   ins_encode %{
 12732     Label    &L =  *($labl$$label);
 12733     switch($cop$$cmpcode)
 12735       case 0x01: //equal
 12736 	if (&L)
 12737         	__ bne(AT, R0, L); 
 12738 	else 
 12739         	__ bne(AT, R0, (int)0); 
 12740         break;
 12741       case 0x02: //not equal
 12742 	if (&L)
 12743         	__ beq(AT, R0, L); 
 12744 	else 
 12745         	__ beq(AT, R0, (int)0); 
 12746         break;
 12747       default:
 12748          Unimplemented(); 
 12750     __ nop();
 12751   %}
 12753   ins_pipe( pipe_jump );
 12754   ins_pc_relative(1);
 12755 %}
 12758 // ============================================================================
 12759 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12760 // array for an instance of the superklass.  Set a hidden internal cache on a
 12761 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12762 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12763 instruct partialSubtypeCheck( mRegP result, no_T8_mRegP sub, no_T8_mRegP super, mT8RegI tmp ) %{
 12764   match(Set result (PartialSubtypeCheck sub super));
 12765   effect(KILL tmp);
 12766   ins_cost(1100);  // slightly larger than the next version
 12767   format %{ "partialSubtypeCheck result=$result, sub=$sub, super=$super, tmp=$tmp " %}
 12769   ins_encode( enc_PartialSubtypeCheck(result, sub, super, tmp) );
 12770   ins_pipe( pipe_slow );
 12771 %}
 12774 // Conditional-store of an int value.
 12775 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
 12776 instruct storeIConditional( memory mem, mRegI oldval, mRegI newval, FlagsReg cr ) %{
 12777   match(Set cr (StoreIConditional mem (Binary oldval newval)));
 12778 //  effect(KILL oldval);
 12779   format %{ "CMPXCHG  $newval, $mem, $oldval \t# @storeIConditional" %}
 12781   ins_encode %{
 12782     Register oldval = $oldval$$Register;
 12783     Register newval = $newval$$Register;
 12784     Address  addr(as_Register($mem$$base), $mem$$disp);
 12785     Label    again, failure;
 12787 //    int      base = $mem$$base;
 12788     int     index = $mem$$index;
 12789     int     scale = $mem$$scale;
 12790     int      disp = $mem$$disp;
 12792     guarantee(Assembler::is_simm16(disp), ""); 
 12794     if( index != 0 ) {
 12795        __ stop("in storeIConditional: index != 0");
 12796     } else {
 12797        __ bind(again);
 12798        if(UseSyncLevel <= 1000) __ sync();
 12799        __ ll(AT, addr);
 12800        __ bne(AT, oldval, failure);
 12801        __ delayed()->addu(AT, R0, R0);
 12803        __ addu(AT, newval, R0);
 12804        __ sc(AT, addr);
 12805        __ beq(AT, R0, again);
 12806        __ delayed()->addiu(AT, R0, 0xFF);
 12807        __ bind(failure);
 12808        __ sync();
 12810 %}
 12812   ins_pipe( long_memory_op );
 12813 %}
 12815 // Conditional-store of a long value.
 12816 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
 12817 instruct storeLConditional(memory mem, t2RegL oldval, mRegL newval, FlagsReg cr )
 12818 %{
 12819   match(Set cr (StoreLConditional mem (Binary oldval newval)));
 12820   effect(KILL oldval);
 12822   format %{ "cmpxchg $mem, $newval\t# If $oldval == $mem then store $newval into $mem" %}
 12823   ins_encode%{
 12824 		Register oldval = $oldval$$Register;
 12825 		Register newval = $newval$$Register;
 12826 		Address addr((Register)$mem$$base, $mem$$disp);  
 12828 		int     index = $mem$$index;
 12829 		int     scale = $mem$$scale;
 12830 		int      disp = $mem$$disp;
 12832 		guarantee(Assembler::is_simm16(disp), ""); 
 12834 		if( index != 0 ) {
 12835 			__ stop("in storeIConditional: index != 0");
 12836 		} else {
 12837 			__ cmpxchg(newval, addr, oldval);
 12839   %}
 12840   ins_pipe( long_memory_op );
 12841 %}
 12844 instruct compareAndSwapI( mRegI res, mRegP mem_ptr, mS2RegI oldval, mRegI newval) %{
 12845   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
 12846   effect(KILL oldval);
 12847 //  match(CompareAndSwapI mem_ptr (Binary oldval newval));
 12848   format %{ "CMPXCHG $newval, [$mem_ptr], $oldval @ compareAndSwapI\n\t"
 12849             "MOV    $res, 1 @ compareAndSwapI\n\t"
 12850             "BNE    AT, R0 @ compareAndSwapI\n\t"
 12851             "MOV    $res, 0 @ compareAndSwapI\n"
 12852           "L:" %}
 12853   ins_encode %{
 12854     Register newval = $newval$$Register;
 12855     Register oldval = $oldval$$Register;
 12856     Register res    = $res$$Register;
 12857     Address  addr($mem_ptr$$Register, 0);    
 12858     Label L;
 12860     __ cmpxchg32(newval, addr, oldval);
 12861     __ move(res, AT);
 12862   %}
 12863   ins_pipe( long_memory_op );
 12864 %}
 12866 //FIXME:
 12867 instruct compareAndSwapP( mRegI res, mRegP mem_ptr, s2_RegP oldval, mRegP newval) %{
 12868   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
 12869   effect(KILL oldval);
 12870   format %{ "CMPXCHG $newval, [$mem_ptr], $oldval @ compareAndSwapP\n\t"
 12871             "MOV    $res, AT @ compareAndSwapP\n\t"
 12872           "L:" %}
 12873   ins_encode %{
 12874     Register newval = $newval$$Register;
 12875     Register oldval = $oldval$$Register;
 12876     Register res    = $res$$Register;
 12877     Address  addr($mem_ptr$$Register, 0);    
 12878     Label L;
 12880     __ cmpxchg(newval, addr, oldval);
 12881     __ move(res, AT);
 12882   %}
 12883   ins_pipe( long_memory_op );
 12884 %}
 12886 instruct compareAndSwapN( mRegI res, mRegP mem_ptr, t2_RegN oldval, mRegN newval) %{
 12887   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
 12888   effect(KILL oldval);
 12889   format %{ "CMPXCHG $newval, [$mem_ptr], $oldval @ compareAndSwapN\n\t"
 12890             "MOV    $res, AT @ compareAndSwapN\n\t"
 12891           "L:" %}
 12892   ins_encode %{
 12893     Register newval = $newval$$Register;
 12894     Register oldval = $oldval$$Register;
 12895     Register res    = $res$$Register;
 12896     Address  addr($mem_ptr$$Register, 0);    
 12897     Label L;
 12899     /* 2013/7/19 Jin: cmpxchg32 is implemented with ll/sc, which will do sign extension.
 12900      *      Thus, we should extend oldval's sign for correct comparision.
 12901      */
 12902     __ sll(oldval, oldval, 0);
 12904     __ cmpxchg32(newval, addr, oldval);
 12905     __ move(res, AT);
 12906   %}
 12907   ins_pipe( long_memory_op );
 12908 %}
 12910 //----------Max and Min--------------------------------------------------------
 12911 // Min Instructions
 12912 ////
 12913 //   *** Min and Max using the conditional move are slower than the
 12914 //   *** branch version on a Pentium III.
 12915 // // Conditional move for min
 12916 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12917 //  effect( USE_DEF op2, USE op1, USE cr );
 12918 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 12919 //  opcode(0x4C,0x0F);
 12920 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12921 //  ins_pipe( pipe_cmov_reg );
 12922 //%}
 12923 //
 12924 //// Min Register with Register (P6 version)
 12925 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12926 //  predicate(VM_Version::supports_cmov() );
 12927 //  match(Set op2 (MinI op1 op2));
 12928 //  ins_cost(200);
 12929 //  expand %{
 12930 //    eFlagsReg cr;
 12931 //    compI_eReg(cr,op1,op2);
 12932 //    cmovI_reg_lt(op2,op1,cr);
 12933 //  %}
 12934 //%}
 12936 // Min Register with Register (generic version)
 12937 instruct minI_Reg_Reg(mRegI dst, mRegI src) %{
 12938   match(Set dst (MinI dst src));
 12939   //effect(KILL flags);
 12940   ins_cost(80);
 12942   format %{ "MIN    $dst, $src @minI_Reg_Reg" %}
 12943   ins_encode %{
 12944     Register dst   = $dst$$Register;
 12945     Register src   = $src$$Register;
 12947     __ slt(AT, src, dst);
 12948     __ movn(dst, src, AT);
 12950   %}
 12952   ins_pipe( pipe_slow );
 12953 %}
 12955 // Max Register with Register
 12956 //   *** Min and Max using the conditional move are slower than the
 12957 //   *** branch version on a Pentium III.
 12958 // // Conditional move for max
 12959 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12960 //  effect( USE_DEF op2, USE op1, USE cr );
 12961 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 12962 //  opcode(0x4F,0x0F);
 12963 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12964 //  ins_pipe( pipe_cmov_reg );
 12965 //%}
 12966 //
 12967 // // Max Register with Register (P6 version)
 12968 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12969 //  predicate(VM_Version::supports_cmov() );
 12970 //  match(Set op2 (MaxI op1 op2));
 12971 //  ins_cost(200);
 12972 //  expand %{
 12973 //    eFlagsReg cr;
 12974 //    compI_eReg(cr,op1,op2);
 12975 //    cmovI_reg_gt(op2,op1,cr);
 12976 //  %}
 12977 //%}
 12979 // Max Register with Register (generic version)
 12980 instruct maxI_Reg_Reg(mRegI dst, mRegI src) %{
 12981   match(Set dst (MaxI dst src));
 12982   ins_cost(80);
 12984   format %{ "MAX    $dst, $src @maxI_Reg_Reg" %}
 12986   ins_encode %{
 12987     Register dst   = $dst$$Register;
 12988     Register src   = $src$$Register;
 12990     __ slt(AT, dst, src);
 12991     __ movn(dst, src, AT);
 12993   %}
 12995   ins_pipe( pipe_slow );
 12996 %}
 12998 instruct maxI_Reg_zero(mRegI dst, immI0 zero) %{
 12999   match(Set dst (MaxI dst zero));
 13000   ins_cost(50);
 13002   format %{ "MAX    $dst, 0 @maxI_Reg_zero" %}
 13004   ins_encode %{
 13005     Register dst   = $dst$$Register;
 13007     __ slt(AT, dst, R0);
 13008     __ movn(dst, R0, AT);
 13010   %}
 13012   ins_pipe( pipe_slow );
 13013 %}
 13015 instruct zerox_long_reg_reg(mRegL dst, mRegL src, immL_32bits mask)
 13016 %{
 13017   match(Set dst (AndL src mask));
 13019   format %{ "movl    $dst, $src\t# zero-extend long @ zerox_long_reg_reg" %}
 13020   ins_encode %{
 13021     Register dst = $dst$$Register;
 13022     Register src = $src$$Register;
 13024     __ dext(dst, src, 0, 32);
 13025   %}
 13026   ins_pipe(ialu_regI_regI);
 13027 %}
 13029 instruct combine_i2l(mRegL dst, mRegI src1, immL_32bits mask, mRegI src2, immI_32 shift32)
 13030 %{
 13031   match(Set dst (OrL (AndL (ConvI2L src1) mask) (LShiftL (ConvI2L src2) shift32)));
 13033   format %{ "combine_i2l    $dst, $src2(H), $src1(L) @ combine_i2l" %}
 13034   ins_encode %{
 13035     Register dst  = $dst$$Register;
 13036     Register src1 = $src1$$Register;
 13037     Register src2 = $src2$$Register;
 13039     if (src1 == dst) {
 13040        __ dinsu(dst, src2, 32, 32);
 13041     } else if (src2 == dst) {
 13042        __ dsll32(dst, dst, 0); 
 13043        __ dins(dst, src1, 0, 32);
 13044     } else {
 13045        __ dext(dst, src1, 0, 32);
 13046        __ dinsu(dst, src2, 32, 32);
 13048   %}
 13049   ins_pipe(ialu_regI_regI);
 13050 %}
 13052 // Zero-extend convert int to long
 13053 instruct convI2L_reg_reg_zex(mRegL dst, mRegI src, immL_32bits mask)
 13054 %{
 13055   match(Set dst (AndL (ConvI2L src) mask));
 13057   format %{ "movl    $dst, $src\t# i2l zero-extend @ convI2L_reg_reg_zex" %}
 13058   ins_encode %{
 13059     Register dst = $dst$$Register;
 13060     Register src = $src$$Register;
 13062     __ dext(dst, src, 0, 32);
 13063   %}
 13064   ins_pipe(ialu_regI_regI);
 13065 %}
 13067 instruct convL2I2L_reg_reg_zex(mRegL dst, mRegL src, immL_32bits mask)
 13068 %{
 13069   match(Set dst (AndL (ConvI2L (ConvL2I src)) mask));
 13071   format %{ "movl    $dst, $src\t# i2l zero-extend @ convL2I2L_reg_reg_zex" %}
 13072   ins_encode %{
 13073     Register dst = $dst$$Register;
 13074     Register src = $src$$Register;
 13076     __ dext(dst, src, 0, 32);
 13077   %}
 13078   ins_pipe(ialu_regI_regI);
 13079 %}
 13081 // Match loading integer and casting it to unsigned int in long register.
 13082 // LoadI + ConvI2L + AndL 0xffffffff.
 13083 instruct loadUI2L_rmask(mRegL dst, memory mem, immL_32bits mask) %{
 13084   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
 13086   format %{ "lwu     $dst, $mem \t// zero-extend to long @ loadUI2L_rmask" %}
 13087   ins_encode (load_N_enc(dst, mem));
 13088   ins_pipe(ialu_loadI);
 13089 %}
 13091 instruct loadUI2L_lmask(mRegL dst, memory mem, immL_32bits mask) %{
 13092   match(Set dst (AndL mask (ConvI2L (LoadI mem))));
 13094   format %{ "lwu     $dst, $mem \t// zero-extend to long @ loadUI2L_lmask" %}
 13095   ins_encode (load_N_enc(dst, mem));
 13096   ins_pipe(ialu_loadI);
 13097 %}
 13100 // ============================================================================
 13101 // Safepoint Instruction
 13102 instruct safePoint_poll_reg(mRegP poll) %{
 13103   match(SafePoint poll);
 13104   predicate(false);
 13105   effect(USE poll);
 13107   ins_cost(125);
 13108   format %{ "Safepoint @ [$poll] : poll for GC @ safePoint_poll_reg" %}
 13110   ins_encode %{
 13111     Register poll_reg = $poll$$Register;
 13113     __ block_comment("Safepoint:");
 13114     __ relocate(relocInfo::poll_type);
 13115     __ lw(AT, poll_reg, 0);
 13116   %}
 13118   ins_pipe( ialu_storeI );
 13119 %}
 13121 instruct safePoint_poll() %{
 13122   match(SafePoint);
 13124   ins_cost(105);
 13125   format %{ "poll for GC @ safePoint_poll" %}
 13127   ins_encode %{
 13128     __ block_comment("Safepoint:");
 13129     __ set64(T9, (long)os::get_polling_page());
 13130     __ relocate(relocInfo::poll_type);
 13131     __ lw(AT, T9, 0);
 13132   %}
 13134   ins_pipe( ialu_storeI );
 13135 %}
 13137 //----------Arithmetic Conversion Instructions---------------------------------
 13139 instruct roundFloat_nop(regF dst)
 13140 %{
 13141   match(Set dst (RoundFloat dst));
 13143   ins_cost(0);
 13144   ins_encode();
 13145   ins_pipe(empty);
 13146 %}
 13148 instruct roundDouble_nop(regD dst)
 13149 %{
 13150   match(Set dst (RoundDouble dst));
 13152   ins_cost(0);
 13153   ins_encode();
 13154   ins_pipe(empty);
 13155 %}
 13157 //---------- Zeros Count Instructions ------------------------------------------
 13158 // CountLeadingZerosINode CountTrailingZerosINode 
 13159 instruct countLeadingZerosI(mRegI dst, mRegI src) %{
 13160   predicate(UseCountLeadingZerosInstruction);
 13161   match(Set dst (CountLeadingZerosI src));
 13163   format %{ "clz  $dst, $src\t# count leading zeros (int)" %}
 13164   ins_encode %{
 13165     __ clz($dst$$Register, $src$$Register);
 13166   %}
 13167   ins_pipe( ialu_regL_regL );
 13168 %}
 13170 instruct countLeadingZerosL(mRegI dst, mRegL src) %{
 13171   predicate(UseCountLeadingZerosInstruction);
 13172   match(Set dst (CountLeadingZerosL src));
 13174   format %{ "dclz  $dst, $src\t# count leading zeros (long)" %}
 13175   ins_encode %{
 13176     __ dclz($dst$$Register, $src$$Register);
 13177   %}
 13178   ins_pipe( ialu_regL_regL );
 13179 %}
 13181 instruct countTrailingZerosI(mRegI dst, mRegI src) %{
 13182   predicate(UseCountTrailingZerosInstruction);
 13183   match(Set dst (CountTrailingZerosI src));
 13185   format %{ "ctz    $dst, $src\t# count trailing zeros (int)" %}
 13186   ins_encode %{
 13187     // ctz and dctz is gs instructions.
 13188     __ ctz($dst$$Register, $src$$Register);
 13189   %}
 13190   ins_pipe( ialu_regL_regL );
 13191 %}
 13193 instruct countTrailingZerosL(mRegI dst, mRegL src) %{
 13194   predicate(UseCountTrailingZerosInstruction);
 13195   match(Set dst (CountTrailingZerosL src));
 13197   format %{ "dcto    $dst, $src\t# count trailing zeros (long)" %}
 13198   ins_encode %{
 13199     __ dctz($dst$$Register, $src$$Register);
 13200   %}
 13201   ins_pipe( ialu_regL_regL );
 13202 %}
 13204 // ====================VECTOR INSTRUCTIONS=====================================
 13206 // Load vectors (8 bytes long)
 13207 instruct loadV8(vecD dst, memory mem) %{
 13208   predicate(n->as_LoadVector()->memory_size() == 8);
 13209   match(Set dst (LoadVector mem));
 13210   ins_cost(125);
 13211   format %{ "load    $dst, $mem\t! load vector (8 bytes)" %}
 13212   ins_encode(load_D_enc(dst, mem));
 13213   ins_pipe( fpu_loadF );
 13214 %}
 13216 // Store vectors (8 bytes long)
 13217 instruct storeV8(memory mem, vecD src) %{
 13218   predicate(n->as_StoreVector()->memory_size() == 8);
 13219   match(Set mem (StoreVector mem src));
 13220   ins_cost(145);
 13221   format %{ "store    $mem, $src\t! store vector (8 bytes)" %}
 13222   ins_encode(store_D_reg_enc(mem, src));
 13223   ins_pipe( fpu_storeF );
 13224 %}
 13226 instruct Repl8B_DSP(vecD dst, mRegI src) %{
 13227   predicate(n->as_Vector()->length() == 8 && Use3A2000);
 13228   match(Set dst (ReplicateB src));
 13229   ins_cost(100);
 13230   format %{ "replv_ob    AT, $src\n\t"
 13231             "dmtc1 AT, $dst\t! replicate8B" %}
 13232   ins_encode %{
 13233     __ replv_ob(AT, $src$$Register);
 13234     __ dmtc1(AT, $dst$$FloatRegister);
 13235   %}
 13236   ins_pipe( pipe_mtc1 );
 13237 %}
 13239 instruct Repl8B(vecD dst, mRegI src) %{
 13240   predicate(n->as_Vector()->length() == 8);
 13241   match(Set dst (ReplicateB src));
 13242   ins_cost(140);
 13243   format %{ "move       AT,  $src\n\t"
 13244             "dins  AT, AT,  8,  8\n\t"
 13245             "dins  AT, AT, 16, 16\n\t"
 13246             "dinsu AT, AT, 32, 32\n\t"
 13247             "dmtc1 AT, $dst\t! replicate8B" %}
 13248   ins_encode %{
 13249     __ move(AT, $src$$Register);
 13250     __ dins(AT, AT, 8, 8);
 13251     __ dins(AT, AT, 16, 16);
 13252     __ dinsu(AT, AT, 32, 32);
 13253     __ dmtc1(AT, $dst$$FloatRegister);
 13254   %}
 13255   ins_pipe( pipe_mtc1 );
 13256 %}
 13258 instruct Repl8B_imm_DSP(vecD dst, immI con) %{
 13259   predicate(n->as_Vector()->length() == 8 && Use3A2000);
 13260   match(Set dst (ReplicateB con));
 13261   ins_cost(110);
 13262   format %{ "repl_ob    AT, [$con]\n\t"
 13263             "dmtc1 AT, $dst,0x00\t! replicate8B($con)" %}
 13264   ins_encode %{
 13265     int      val = $con$$constant;
 13266     __ repl_ob(AT, val);
 13267     __ dmtc1(AT, $dst$$FloatRegister);
 13268   %}
 13269   ins_pipe( pipe_mtc1 );
 13270 %}
 13272 instruct Repl8B_imm(vecD dst, immI con) %{
 13273   predicate(n->as_Vector()->length() == 8);
 13274   match(Set dst (ReplicateB con));
 13275   ins_cost(150);
 13276   format %{ "move      AT, [$con]\n\t"
 13277             "dins  AT, AT,  8,  8\n\t"
 13278             "dins  AT, AT, 16, 16\n\t"
 13279             "dinsu AT, AT, 32, 32\n\t"
 13280             "dmtc1 AT, $dst,0x00\t! replicate8B($con)" %}
 13281   ins_encode %{
 13282     __ move(AT, $con$$constant);
 13283     __ dins(AT, AT, 8, 8);
 13284     __ dins(AT, AT, 16, 16);
 13285     __ dinsu(AT, AT, 32, 32);
 13286     __ dmtc1(AT, $dst$$FloatRegister);
 13287   %}
 13288   ins_pipe( pipe_mtc1 );
 13289 %}
 13291 instruct Repl8B_zero(vecD dst, immI0 zero) %{
 13292   predicate(n->as_Vector()->length() == 8);
 13293   match(Set dst (ReplicateB zero));
 13294   ins_cost(90);
 13295   format %{ "dmtc1    R0, $dst\t! replicate8B zero" %}
 13296   ins_encode %{
 13297     __ dmtc1(R0, $dst$$FloatRegister);
 13298   %}
 13299   ins_pipe( pipe_mtc1 );
 13300 %}
 13302 instruct Repl8B_M1(vecD dst, immI_M1 M1) %{
 13303   predicate(n->as_Vector()->length() == 8);
 13304   match(Set dst (ReplicateB M1));
 13305   ins_cost(80);
 13306   format %{ "dmtc1    -1, $dst\t! replicate8B -1" %}
 13307   ins_encode %{
 13308     __ nor(AT, R0, R0);
 13309     __ dmtc1(AT, $dst$$FloatRegister);
 13310   %}
 13311   ins_pipe( pipe_mtc1 );
 13312 %}
 13314 instruct Repl4S_DSP(vecD dst, mRegI src) %{
 13315   predicate(n->as_Vector()->length() == 4 && Use3A2000);
 13316   match(Set dst (ReplicateS src));
 13317   ins_cost(100);
 13318   format %{ "replv_qh    AT, $src\n\t"
 13319             "dmtc1 AT, $dst\t! replicate4S" %}
 13320   ins_encode %{
 13321     __ replv_qh(AT, $src$$Register);
 13322     __ dmtc1(AT, $dst$$FloatRegister);
 13323   %}
 13324   ins_pipe( pipe_mtc1 );
 13325 %}
 13327 instruct Repl4S(vecD dst, mRegI src) %{
 13328   predicate(n->as_Vector()->length() == 4);
 13329   match(Set dst (ReplicateS src));
 13330   ins_cost(120);
 13331   format %{ "move    AT,     $src  \n\t"
 13332             "dins    AT, AT, 16, 16\n\t"
 13333             "dinsu   AT, AT, 32, 32\n\t"
 13334             "dmtc1 AT, $dst\t! replicate4S" %}
 13335   ins_encode %{
 13336     __ move(AT, $src$$Register);
 13337     __ dins(AT, AT, 16, 16);
 13338     __ dinsu(AT, AT, 32, 32);
 13339     __ dmtc1(AT, $dst$$FloatRegister);
 13340   %}
 13341   ins_pipe( pipe_mtc1 );
 13342 %}
 13344 instruct Repl4S_imm_DSP(vecD dst, immI con) %{
 13345   predicate(n->as_Vector()->length() == 4 && Use3A2000);
 13346   match(Set dst (ReplicateS con));
 13347   ins_cost(100);
 13348   format %{ "replv_qh    AT, [$con]\n\t"
 13349             "dmtc1 AT, $dst\t! replicate4S($con)" %}
 13350   ins_encode %{
 13351     int      val = $con$$constant;
 13352     if ( Assembler::is_simm(val, 10)) {
 13353       //repl_qh supports 10 bits immediate
 13354       __ repl_qh(AT, val);
 13355     } else {
 13356       __ li32(AT, val);
 13357       __ replv_qh(AT, AT);
 13359     __ dmtc1(AT, $dst$$FloatRegister);
 13360   %}
 13361   ins_pipe( pipe_mtc1 );
 13362 %}
 13364 instruct Repl4S_imm(vecD dst, immI con) %{
 13365   predicate(n->as_Vector()->length() == 4);
 13366   match(Set dst (ReplicateS con));
 13367   ins_cost(110);
 13368   format %{ "move    AT,   [$con]\n\t"
 13369             "dins  AT, AT, 16, 16\n\t"
 13370             "dinsu AT, AT, 32, 32\n\t"
 13371             "dmtc1 AT, $dst\t! replicate4S($con)" %}
 13372   ins_encode %{
 13373     __ move(AT, $con$$constant);
 13374     __ dins(AT, AT, 16, 16);
 13375     __ dinsu(AT, AT, 32, 32);
 13376     __ dmtc1(AT, $dst$$FloatRegister);
 13377   %}
 13378   ins_pipe( pipe_mtc1 );
 13379 %}
 13381 instruct Repl4S_zero(vecD dst, immI0 zero) %{
 13382   predicate(n->as_Vector()->length() == 4);
 13383   match(Set dst (ReplicateS zero));
 13384   format %{ "dmtc1    R0, $dst\t! replicate4S zero" %}
 13385   ins_encode %{
 13386     __ dmtc1(R0, $dst$$FloatRegister);
 13387   %}
 13388   ins_pipe( pipe_mtc1 );
 13389 %}
 13391 instruct Repl4S_M1(vecD dst, immI_M1 M1) %{
 13392   predicate(n->as_Vector()->length() == 4);
 13393   match(Set dst (ReplicateS M1));
 13394   format %{ "dmtc1    -1, $dst\t! replicate4S -1" %}
 13395   ins_encode %{
 13396     __ nor(AT, R0, R0);
 13397     __ dmtc1(AT, $dst$$FloatRegister);
 13398   %}
 13399   ins_pipe( pipe_mtc1 );
 13400 %}
 13402 // Replicate integer (4 byte) scalar to be vector
 13403 instruct Repl2I(vecD dst, mRegI src) %{
 13404   predicate(n->as_Vector()->length() == 2);
 13405   match(Set dst (ReplicateI src));
 13406   format %{ "dins    AT, $src, 0, 32\n\t"
 13407             "dinsu   AT, $src, 32, 32\n\t"
 13408             "dmtc1   AT, $dst\t! replicate2I" %}
 13409   ins_encode %{
 13410     __ dins(AT, $src$$Register, 0, 32);
 13411     __ dinsu(AT, $src$$Register, 32, 32);
 13412     __ dmtc1(AT, $dst$$FloatRegister);
 13413   %}
 13414   ins_pipe( pipe_mtc1 );
 13415 %}
 13417 // Replicate integer (4 byte) scalar immediate to be vector by loading from const table.
 13418 instruct Repl2I_imm(vecD dst, immI con, mA7RegI tmp) %{
 13419   predicate(n->as_Vector()->length() == 2);
 13420   match(Set dst (ReplicateI con));
 13421   effect(KILL tmp);
 13422   format %{ "li32    AT, [$con], 32\n\t"
 13423             "dinsu   AT,         AT\n\t"
 13424             "dmtc1   AT, $dst\t! replicate2I($con)" %}
 13425   ins_encode %{
 13426     int      val = $con$$constant;
 13427     __ li32(AT, val);
 13428     __ dinsu(AT, AT, 32, 32);
 13429     __ dmtc1(AT, $dst$$FloatRegister);
 13430   %}
 13431   ins_pipe( pipe_mtc1 );
 13432 %}
 13434 // Replicate integer (4 byte) scalar zero to be vector
 13435 instruct Repl2I_zero(vecD dst, immI0 zero) %{
 13436   predicate(n->as_Vector()->length() == 2);
 13437   match(Set dst (ReplicateI zero));
 13438   format %{ "dmtc1    R0, $dst\t! replicate2I zero" %}
 13439   ins_encode %{
 13440     __ dmtc1(R0, $dst$$FloatRegister);
 13441   %}
 13442   ins_pipe( pipe_mtc1 );
 13443 %}
 13445 // Replicate integer (4 byte) scalar -1 to be vector
 13446 instruct Repl2I_M1(vecD dst, immI_M1 M1) %{
 13447   predicate(n->as_Vector()->length() == 2);
 13448   match(Set dst (ReplicateI M1));
 13449   format %{ "dmtc1    -1, $dst\t! replicate2I -1, use AT" %}
 13450   ins_encode %{
 13451     __ nor(AT, R0, R0);
 13452     __ dmtc1(AT, $dst$$FloatRegister);
 13453   %}
 13454   ins_pipe( pipe_mtc1 );
 13455 %}
 13457 // Replicate float (4 byte) scalar to be vector
 13458 instruct Repl2F(vecD dst, regF src) %{
 13459   predicate(n->as_Vector()->length() == 2);
 13460   match(Set dst (ReplicateF src));
 13461   format %{ "cvt.ps  $dst, $src, $src\t! replicate2F" %}
 13462   ins_encode %{
 13463     __ cvt_ps_s($dst$$FloatRegister, $src$$FloatRegister, $src$$FloatRegister);
 13464   %}
 13465   ins_pipe( pipe_slow );
 13466 %}
 13468 // Replicate float (4 byte) scalar zero to be vector
 13469 instruct Repl2F_zero(vecD dst, immF0 zero) %{
 13470   predicate(n->as_Vector()->length() == 2);
 13471   match(Set dst (ReplicateF zero));
 13472   format %{ "dmtc1   R0, $dst\t! replicate2F zero" %}
 13473   ins_encode %{
 13474     __ dmtc1(R0, $dst$$FloatRegister);
 13475   %}
 13476   ins_pipe( pipe_mtc1 );
 13477 %}
 13480 // ====================VECTOR ARITHMETIC=======================================
 13482 // --------------------------------- ADD --------------------------------------
 13484 // Floats vector add
 13485 instruct vadd2F(vecD dst, vecD src) %{
 13486   predicate(n->as_Vector()->length() == 2);
 13487   match(Set dst (AddVF dst src));
 13488   format %{ "add.ps   $dst,$src\t! add packed2F" %}
 13489   ins_encode %{
 13490     __ add_ps($dst$$FloatRegister, $dst$$FloatRegister, $src$$FloatRegister);
 13491   %}
 13492   ins_pipe( pipe_slow );
 13493 %}
 13495 instruct vadd2F3(vecD dst, vecD src1, vecD src2) %{
 13496   predicate(n->as_Vector()->length() == 2);
 13497   match(Set dst (AddVF src1 src2));
 13498   format %{ "add.ps   $dst,$src1,$src2\t! add packed2F" %}
 13499   ins_encode %{
 13500     __ add_ps($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 13501   %}
 13502   ins_pipe( fpu_regF_regF );
 13503 %}
 13505 // --------------------------------- SUB --------------------------------------
 13507 // Floats vector sub
 13508 instruct vsub2F(vecD dst, vecD src) %{
 13509   predicate(n->as_Vector()->length() == 2);
 13510   match(Set dst (SubVF dst src));
 13511   format %{ "sub.ps   $dst,$src\t! sub packed2F" %}
 13512   ins_encode %{
 13513     __ sub_ps($dst$$FloatRegister, $dst$$FloatRegister, $src$$FloatRegister);
 13514   %}
 13515   ins_pipe( fpu_regF_regF );
 13516 %}
 13518 // --------------------------------- MUL --------------------------------------
 13520 // Floats vector mul
 13521 instruct vmul2F(vecD dst, vecD src) %{
 13522   predicate(n->as_Vector()->length() == 2);
 13523   match(Set dst (MulVF dst src));
 13524   format %{ "mul.ps   $dst, $src\t! mul packed2F" %}
 13525   ins_encode %{
 13526     __ mul_ps($dst$$FloatRegister, $dst$$FloatRegister, $src$$FloatRegister);
 13527   %}
 13528   ins_pipe( fpu_regF_regF );
 13529 %}
 13531 instruct vmul2F3(vecD dst, vecD src1, vecD src2) %{
 13532   predicate(n->as_Vector()->length() == 2);
 13533   match(Set dst (MulVF src1 src2));
 13534   format %{ "mul.ps   $dst, $src1, $src2\t! mul packed2F" %}
 13535   ins_encode %{
 13536     __ mul_ps($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 13537   %}
 13538   ins_pipe( fpu_regF_regF );
 13539 %}
 13541 // --------------------------------- DIV --------------------------------------
 13542 // MIPS do not have div.ps
 13545 //----------PEEPHOLE RULES-----------------------------------------------------
 13546 // These must follow all instruction definitions as they use the names
 13547 // defined in the instructions definitions.
 13548 // 
 13549 // peepmatch ( root_instr_name [preceeding_instruction]* );
 13550 //
 13551 // peepconstraint %{
 13552 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13553 //  [, ...] );
 13554 // // instruction numbers are zero-based using left to right order in peepmatch
 13555 //
 13556 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13557 // // provide an instruction_number.operand_name for each operand that appears
 13558 // // in the replacement instruction's match rule
 13559 //
 13560 // ---------VM FLAGS---------------------------------------------------------
 13561 // 
 13562 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13563 // 
 13564 // Each peephole rule is given an identifying number starting with zero and
 13565 // increasing by one in the order seen by the parser.  An individual peephole
 13566 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13567 // on the command-line.
 13568 // 
 13569 // ---------CURRENT LIMITATIONS----------------------------------------------
 13570 // 
 13571 // Only match adjacent instructions in same basic block
 13572 // Only equality constraints
 13573 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13574 // Only one replacement instruction
 13575 //
 13576 // ---------EXAMPLE----------------------------------------------------------
 13577 //
 13578 // // pertinent parts of existing instructions in architecture description
 13579 // instruct movI(eRegI dst, eRegI src) %{
 13580 //   match(Set dst (CopyI src));
 13581 // %}
 13582 // 
 13583 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 13584 //   match(Set dst (AddI dst src));
 13585 //   effect(KILL cr);
 13586 // %}
 13587 // 
 13588 // // Change (inc mov) to lea
 13589 // peephole %{
 13590 //   // increment preceeded by register-register move
 13591 //   peepmatch ( incI_eReg movI );
 13592 //   // require that the destination register of the increment 
 13593 //   // match the destination register of the move
 13594 //   peepconstraint ( 0.dst == 1.dst );
 13595 //   // construct a replacement instruction that sets
 13596 //   // the destination to ( move's source register + one )
 13597 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13598 // %}
 13599 // 
 13600 // Implementation no longer uses movX instructions since 
 13601 // machine-independent system no longer uses CopyX nodes.
 13602 // 
 13603 // peephole %{
 13604 //   peepmatch ( incI_eReg movI );
 13605 //   peepconstraint ( 0.dst == 1.dst );
 13606 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13607 // %}
 13608 // 
 13609 // peephole %{
 13610 //   peepmatch ( decI_eReg movI );
 13611 //   peepconstraint ( 0.dst == 1.dst );
 13612 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13613 // %}
 13614 // 
 13615 // peephole %{
 13616 //   peepmatch ( addI_eReg_imm movI );
 13617 //   peepconstraint ( 0.dst == 1.dst );
 13618 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13619 // %}
 13620 // 
 13621 // peephole %{
 13622 //   peepmatch ( addP_eReg_imm movP );
 13623 //   peepconstraint ( 0.dst == 1.dst );
 13624 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13625 // %}
 13627 // // Change load of spilled value to only a spill
 13628 // instruct storeI(memory mem, eRegI src) %{
 13629 //   match(Set mem (StoreI mem src));
 13630 // %}
 13631 // 
 13632 // instruct loadI(eRegI dst, memory mem) %{
 13633 //   match(Set dst (LoadI mem));
 13634 // %}
 13635 // 
 13636 //peephole %{
 13637 //  peepmatch ( loadI storeI );
 13638 //  peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13639 //  peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13640 //%}
 13642 //----------SMARTSPILL RULES---------------------------------------------------
 13643 // These must follow all instruction definitions as they use the names
 13644 // defined in the instructions definitions.

mercurial