src/cpu/x86/vm/vm_version_x86.hpp

Sat, 29 Sep 2012 06:40:00 -0400

author
coleenp
date
Sat, 29 Sep 2012 06:40:00 -0400
changeset 4142
d8ce2825b193
parent 3560
4a24c4f648bd
child 4153
b9a9ed0f8eeb
permissions
-rw-r--r--

8000213: NPG: Should have renamed arrayKlass and typeArrayKlass
Summary: Capitalize these metadata types (and objArrayKlass)
Reviewed-by: stefank, twisti, kvn

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_X86_VM_VM_VERSION_X86_HPP
    26 #define CPU_X86_VM_VM_VERSION_X86_HPP
    28 #include "runtime/globals_extension.hpp"
    29 #include "runtime/vm_version.hpp"
    31 class VM_Version : public Abstract_VM_Version {
    32 public:
    33   // cpuid result register layouts.  These are all unions of a uint32_t
    34   // (in case anyone wants access to the register as a whole) and a bitfield.
    36   union StdCpuid1Eax {
    37     uint32_t value;
    38     struct {
    39       uint32_t stepping   : 4,
    40                model      : 4,
    41                family     : 4,
    42                proc_type  : 2,
    43                           : 2,
    44                ext_model  : 4,
    45                ext_family : 8,
    46                           : 4;
    47     } bits;
    48   };
    50   union StdCpuid1Ebx { // example, unused
    51     uint32_t value;
    52     struct {
    53       uint32_t brand_id         : 8,
    54                clflush_size     : 8,
    55                threads_per_cpu  : 8,
    56                apic_id          : 8;
    57     } bits;
    58   };
    60   union StdCpuid1Ecx {
    61     uint32_t value;
    62     struct {
    63       uint32_t sse3     : 1,
    64                         : 2,
    65                monitor  : 1,
    66                         : 1,
    67                vmx      : 1,
    68                         : 1,
    69                est      : 1,
    70                         : 1,
    71                ssse3    : 1,
    72                cid      : 1,
    73                         : 2,
    74                cmpxchg16: 1,
    75                         : 4,
    76                dca      : 1,
    77                sse4_1   : 1,
    78                sse4_2   : 1,
    79                         : 2,
    80                popcnt   : 1,
    81                         : 3,
    82                osxsave  : 1,
    83                avx      : 1,
    84                         : 3;
    85     } bits;
    86   };
    88   union StdCpuid1Edx {
    89     uint32_t value;
    90     struct {
    91       uint32_t          : 4,
    92                tsc      : 1,
    93                         : 3,
    94                cmpxchg8 : 1,
    95                         : 6,
    96                cmov     : 1,
    97                         : 3,
    98                clflush  : 1,
    99                         : 3,
   100                mmx      : 1,
   101                fxsr     : 1,
   102                sse      : 1,
   103                sse2     : 1,
   104                         : 1,
   105                ht       : 1,
   106                         : 3;
   107     } bits;
   108   };
   110   union DcpCpuid4Eax {
   111     uint32_t value;
   112     struct {
   113       uint32_t cache_type    : 5,
   114                              : 21,
   115                cores_per_cpu : 6;
   116     } bits;
   117   };
   119   union DcpCpuid4Ebx {
   120     uint32_t value;
   121     struct {
   122       uint32_t L1_line_size  : 12,
   123                partitions    : 10,
   124                associativity : 10;
   125     } bits;
   126   };
   128   union TplCpuidBEbx {
   129     uint32_t value;
   130     struct {
   131       uint32_t logical_cpus : 16,
   132                             : 16;
   133     } bits;
   134   };
   136   union ExtCpuid1Ecx {
   137     uint32_t value;
   138     struct {
   139       uint32_t LahfSahf     : 1,
   140                CmpLegacy    : 1,
   141                             : 4,
   142                lzcnt        : 1,
   143                sse4a        : 1,
   144                misalignsse  : 1,
   145                prefetchw    : 1,
   146                             : 22;
   147     } bits;
   148   };
   150   union ExtCpuid1Edx {
   151     uint32_t value;
   152     struct {
   153       uint32_t           : 22,
   154                mmx_amd   : 1,
   155                mmx       : 1,
   156                fxsr      : 1,
   157                          : 4,
   158                long_mode : 1,
   159                tdnow2    : 1,
   160                tdnow     : 1;
   161     } bits;
   162   };
   164   union ExtCpuid5Ex {
   165     uint32_t value;
   166     struct {
   167       uint32_t L1_line_size : 8,
   168                L1_tag_lines : 8,
   169                L1_assoc     : 8,
   170                L1_size      : 8;
   171     } bits;
   172   };
   174   union ExtCpuid7Edx {
   175     uint32_t value;
   176     struct {
   177       uint32_t               : 8,
   178               tsc_invariance : 1,
   179                              : 23;
   180     } bits;
   181   };
   183   union ExtCpuid8Ecx {
   184     uint32_t value;
   185     struct {
   186       uint32_t cores_per_cpu : 8,
   187                              : 24;
   188     } bits;
   189   };
   191   union SefCpuid7Eax {
   192     uint32_t value;
   193   };
   195   union SefCpuid7Ebx {
   196     uint32_t value;
   197     struct {
   198       uint32_t fsgsbase : 1,
   199                         : 2,
   200                    bmi1 : 1,
   201                         : 1,
   202                    avx2 : 1,
   203                         : 2,
   204                    bmi2 : 1,
   205                         : 23;
   206     } bits;
   207   };
   209   union XemXcr0Eax {
   210     uint32_t value;
   211     struct {
   212       uint32_t x87 : 1,
   213                sse : 1,
   214                ymm : 1,
   215                    : 29;
   216     } bits;
   217   };
   219 protected:
   220   static int _cpu;
   221   static int _model;
   222   static int _stepping;
   223   static int _cpuFeatures;     // features returned by the "cpuid" instruction
   224                                // 0 if this instruction is not available
   225   static const char* _features_str;
   227   enum {
   228     CPU_CX8    = (1 << 0), // next bits are from cpuid 1 (EDX)
   229     CPU_CMOV   = (1 << 1),
   230     CPU_FXSR   = (1 << 2),
   231     CPU_HT     = (1 << 3),
   232     CPU_MMX    = (1 << 4),
   233     CPU_3DNOW_PREFETCH  = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
   234                                     // may not necessarily support other 3dnow instructions
   235     CPU_SSE    = (1 << 6),
   236     CPU_SSE2   = (1 << 7),
   237     CPU_SSE3   = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
   238     CPU_SSSE3  = (1 << 9),
   239     CPU_SSE4A  = (1 << 10),
   240     CPU_SSE4_1 = (1 << 11),
   241     CPU_SSE4_2 = (1 << 12),
   242     CPU_POPCNT = (1 << 13),
   243     CPU_LZCNT  = (1 << 14),
   244     CPU_TSC    = (1 << 15),
   245     CPU_TSCINV = (1 << 16),
   246     CPU_AVX    = (1 << 17),
   247     CPU_AVX2   = (1 << 18)
   248   } cpuFeatureFlags;
   250   enum {
   251     // AMD
   252     CPU_FAMILY_AMD_11H       = 0x11,
   253     // Intel
   254     CPU_FAMILY_INTEL_CORE    = 6,
   255     CPU_MODEL_NEHALEM        = 0x1e,
   256     CPU_MODEL_NEHALEM_EP     = 0x1a,
   257     CPU_MODEL_NEHALEM_EX     = 0x2e,
   258     CPU_MODEL_WESTMERE       = 0x25,
   259     CPU_MODEL_WESTMERE_EP    = 0x2c,
   260     CPU_MODEL_WESTMERE_EX    = 0x2f,
   261     CPU_MODEL_SANDYBRIDGE    = 0x2a,
   262     CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
   263     CPU_MODEL_IVYBRIDGE_EP   = 0x3a
   264   } cpuExtendedFamily;
   266   // cpuid information block.  All info derived from executing cpuid with
   267   // various function numbers is stored here.  Intel and AMD info is
   268   // merged in this block: accessor methods disentangle it.
   269   //
   270   // The info block is laid out in subblocks of 4 dwords corresponding to
   271   // eax, ebx, ecx and edx, whether or not they contain anything useful.
   272   struct CpuidInfo {
   273     // cpuid function 0
   274     uint32_t std_max_function;
   275     uint32_t std_vendor_name_0;
   276     uint32_t std_vendor_name_1;
   277     uint32_t std_vendor_name_2;
   279     // cpuid function 1
   280     StdCpuid1Eax std_cpuid1_eax;
   281     StdCpuid1Ebx std_cpuid1_ebx;
   282     StdCpuid1Ecx std_cpuid1_ecx;
   283     StdCpuid1Edx std_cpuid1_edx;
   285     // cpuid function 4 (deterministic cache parameters)
   286     DcpCpuid4Eax dcp_cpuid4_eax;
   287     DcpCpuid4Ebx dcp_cpuid4_ebx;
   288     uint32_t     dcp_cpuid4_ecx; // unused currently
   289     uint32_t     dcp_cpuid4_edx; // unused currently
   291     // cpuid function 7 (structured extended features)
   292     SefCpuid7Eax sef_cpuid7_eax;
   293     SefCpuid7Ebx sef_cpuid7_ebx;
   294     uint32_t     sef_cpuid7_ecx; // unused currently
   295     uint32_t     sef_cpuid7_edx; // unused currently
   297     // cpuid function 0xB (processor topology)
   298     // ecx = 0
   299     uint32_t     tpl_cpuidB0_eax;
   300     TplCpuidBEbx tpl_cpuidB0_ebx;
   301     uint32_t     tpl_cpuidB0_ecx; // unused currently
   302     uint32_t     tpl_cpuidB0_edx; // unused currently
   304     // ecx = 1
   305     uint32_t     tpl_cpuidB1_eax;
   306     TplCpuidBEbx tpl_cpuidB1_ebx;
   307     uint32_t     tpl_cpuidB1_ecx; // unused currently
   308     uint32_t     tpl_cpuidB1_edx; // unused currently
   310     // ecx = 2
   311     uint32_t     tpl_cpuidB2_eax;
   312     TplCpuidBEbx tpl_cpuidB2_ebx;
   313     uint32_t     tpl_cpuidB2_ecx; // unused currently
   314     uint32_t     tpl_cpuidB2_edx; // unused currently
   316     // cpuid function 0x80000000 // example, unused
   317     uint32_t ext_max_function;
   318     uint32_t ext_vendor_name_0;
   319     uint32_t ext_vendor_name_1;
   320     uint32_t ext_vendor_name_2;
   322     // cpuid function 0x80000001
   323     uint32_t     ext_cpuid1_eax; // reserved
   324     uint32_t     ext_cpuid1_ebx; // reserved
   325     ExtCpuid1Ecx ext_cpuid1_ecx;
   326     ExtCpuid1Edx ext_cpuid1_edx;
   328     // cpuid functions 0x80000002 thru 0x80000004: example, unused
   329     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
   330     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
   331     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
   333     // cpuid function 0x80000005 // AMD L1, Intel reserved
   334     uint32_t     ext_cpuid5_eax; // unused currently
   335     uint32_t     ext_cpuid5_ebx; // reserved
   336     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
   337     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
   339     // cpuid function 0x80000007
   340     uint32_t     ext_cpuid7_eax; // reserved
   341     uint32_t     ext_cpuid7_ebx; // reserved
   342     uint32_t     ext_cpuid7_ecx; // reserved
   343     ExtCpuid7Edx ext_cpuid7_edx; // tscinv
   345     // cpuid function 0x80000008
   346     uint32_t     ext_cpuid8_eax; // unused currently
   347     uint32_t     ext_cpuid8_ebx; // reserved
   348     ExtCpuid8Ecx ext_cpuid8_ecx;
   349     uint32_t     ext_cpuid8_edx; // reserved
   351     // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
   352     XemXcr0Eax   xem_xcr0_eax;
   353     uint32_t     xem_xcr0_edx; // reserved
   354   };
   356   // The actual cpuid info block
   357   static CpuidInfo _cpuid_info;
   359   // Extractors and predicates
   360   static uint32_t extended_cpu_family() {
   361     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
   362     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
   363     return result;
   364   }
   366   static uint32_t extended_cpu_model() {
   367     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
   368     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
   369     return result;
   370   }
   372   static uint32_t cpu_stepping() {
   373     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
   374     return result;
   375   }
   377   static uint logical_processor_count() {
   378     uint result = threads_per_core();
   379     return result;
   380   }
   382   static uint32_t feature_flags() {
   383     uint32_t result = 0;
   384     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
   385       result |= CPU_CX8;
   386     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
   387       result |= CPU_CMOV;
   388     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
   389         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
   390       result |= CPU_FXSR;
   391     // HT flag is set for multi-core processors also.
   392     if (threads_per_core() > 1)
   393       result |= CPU_HT;
   394     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
   395         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
   396       result |= CPU_MMX;
   397     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
   398       result |= CPU_SSE;
   399     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
   400       result |= CPU_SSE2;
   401     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
   402       result |= CPU_SSE3;
   403     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
   404       result |= CPU_SSSE3;
   405     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
   406       result |= CPU_SSE4_1;
   407     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
   408       result |= CPU_SSE4_2;
   409     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
   410       result |= CPU_POPCNT;
   411     if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
   412         _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
   413         _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
   414         _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
   415       result |= CPU_AVX;
   416       if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
   417         result |= CPU_AVX2;
   418     }
   419     if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
   420       result |= CPU_TSC;
   421     if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
   422       result |= CPU_TSCINV;
   424     // AMD features.
   425     if (is_amd()) {
   426       if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
   427           (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
   428         result |= CPU_3DNOW_PREFETCH;
   429       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
   430         result |= CPU_LZCNT;
   431       if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
   432         result |= CPU_SSE4A;
   433     }
   435     return result;
   436   }
   438   static void get_processor_features();
   440 public:
   441   // Offsets for cpuid asm stub
   442   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
   443   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
   444   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
   445   static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
   446   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
   447   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
   448   static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
   449   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
   450   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
   451   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
   452   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
   453   static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
   455   // Initialization
   456   static void initialize();
   458   // Asserts
   459   static void assert_is_initialized() {
   460     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
   461   }
   463   //
   464   // Processor family:
   465   //       3   -  386
   466   //       4   -  486
   467   //       5   -  Pentium
   468   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
   469   //              Pentium M, Core Solo, Core Duo, Core2 Duo
   470   //    family 6 model:   9,        13,       14,        15
   471   //    0x0f   -  Pentium 4, Opteron
   472   //
   473   // Note: The cpu family should be used to select between
   474   //       instruction sequences which are valid on all Intel
   475   //       processors.  Use the feature test functions below to
   476   //       determine whether a particular instruction is supported.
   477   //
   478   static int  cpu_family()        { return _cpu;}
   479   static bool is_P6()             { return cpu_family() >= 6; }
   480   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
   481   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
   483   static bool supports_processor_topology() {
   484     return (_cpuid_info.std_max_function >= 0xB) &&
   485            // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
   486            // Some cpus have max cpuid >= 0xB but do not support processor topology.
   487            ((_cpuid_info.tpl_cpuidB0_eax & 0x1f | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
   488   }
   490   static uint cores_per_cpu()  {
   491     uint result = 1;
   492     if (is_intel()) {
   493       if (supports_processor_topology()) {
   494         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
   495                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
   496       } else {
   497         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
   498       }
   499     } else if (is_amd()) {
   500       result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
   501     }
   502     return result;
   503   }
   505   static uint threads_per_core()  {
   506     uint result = 1;
   507     if (is_intel() && supports_processor_topology()) {
   508       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
   509     } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
   510       result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
   511                cores_per_cpu();
   512     }
   513     return result;
   514   }
   516   static intx prefetch_data_size()  {
   517     intx result = 0;
   518     if (is_intel()) {
   519       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
   520     } else if (is_amd()) {
   521       result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
   522     }
   523     if (result < 32) // not defined ?
   524       result = 32;   // 32 bytes by default on x86 and other x64
   525     return result;
   526   }
   528   //
   529   // Feature identification
   530   //
   531   static bool supports_cpuid()    { return _cpuFeatures  != 0; }
   532   static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
   533   static bool supports_cmov()     { return (_cpuFeatures & CPU_CMOV) != 0; }
   534   static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
   535   static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
   536   static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
   537   static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
   538   static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
   539   static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
   540   static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
   541   static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
   542   static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
   543   static bool supports_popcnt()   { return (_cpuFeatures & CPU_POPCNT) != 0; }
   544   static bool supports_avx()      { return (_cpuFeatures & CPU_AVX) != 0; }
   545   static bool supports_avx2()     { return (_cpuFeatures & CPU_AVX2) != 0; }
   546   static bool supports_tsc()      { return (_cpuFeatures & CPU_TSC)    != 0; }
   548   // Intel features
   549   static bool is_intel_family_core() { return is_intel() &&
   550                                        extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
   552   static bool is_intel_tsc_synched_at_init()  {
   553     if (is_intel_family_core()) {
   554       uint32_t ext_model = extended_cpu_model();
   555       if (ext_model == CPU_MODEL_NEHALEM_EP     ||
   556           ext_model == CPU_MODEL_WESTMERE_EP    ||
   557           ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
   558           ext_model == CPU_MODEL_IVYBRIDGE_EP) {
   559         // <= 2-socket invariant tsc support. EX versions are usually used
   560         // in > 2-socket systems and likely don't synchronize tscs at
   561         // initialization.
   562         // Code that uses tsc values must be prepared for them to arbitrarily
   563         // jump forward or backward.
   564         return true;
   565       }
   566     }
   567     return false;
   568   }
   570   // AMD features
   571   static bool supports_3dnow_prefetch()    { return (_cpuFeatures & CPU_3DNOW_PREFETCH) != 0; }
   572   static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
   573   static bool supports_lzcnt()    { return (_cpuFeatures & CPU_LZCNT) != 0; }
   574   static bool supports_sse4a()    { return (_cpuFeatures & CPU_SSE4A) != 0; }
   576   static bool is_amd_Barcelona()  { return is_amd() &&
   577                                            extended_cpu_family() == CPU_FAMILY_AMD_11H; }
   579   // Intel and AMD newer cores support fast timestamps well
   580   static bool supports_tscinv_bit() {
   581     return (_cpuFeatures & CPU_TSCINV) != 0;
   582   }
   583   static bool supports_tscinv() {
   584     return supports_tscinv_bit() &&
   585            ( (is_amd() && !is_amd_Barcelona()) ||
   586              is_intel_tsc_synched_at_init() );
   587   }
   589   // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
   590   static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
   591                                            supports_sse3() && _model != 0x1C; }
   593   static bool supports_compare_and_exchange() { return true; }
   595   static const char* cpu_features()           { return _features_str; }
   597   static intx allocate_prefetch_distance() {
   598     // This method should be called before allocate_prefetch_style().
   599     //
   600     // Hardware prefetching (distance/size in bytes):
   601     // Pentium 3 -  64 /  32
   602     // Pentium 4 - 256 / 128
   603     // Athlon    -  64 /  32 ????
   604     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
   605     // Core      - 128 /  64
   606     //
   607     // Software prefetching (distance in bytes / instruction with best score):
   608     // Pentium 3 - 128 / prefetchnta
   609     // Pentium 4 - 512 / prefetchnta
   610     // Athlon    - 128 / prefetchnta
   611     // Opteron   - 256 / prefetchnta
   612     // Core      - 256 / prefetchnta
   613     // It will be used only when AllocatePrefetchStyle > 0
   615     intx count = AllocatePrefetchDistance;
   616     if (count < 0) {   // default ?
   617       if (is_amd()) {  // AMD
   618         if (supports_sse2())
   619           count = 256; // Opteron
   620         else
   621           count = 128; // Athlon
   622       } else {         // Intel
   623         if (supports_sse2())
   624           if (cpu_family() == 6) {
   625             count = 256; // Pentium M, Core, Core2
   626           } else {
   627             count = 512; // Pentium 4
   628           }
   629         else
   630           count = 128; // Pentium 3 (and all other old CPUs)
   631       }
   632     }
   633     return count;
   634   }
   635   static intx allocate_prefetch_style() {
   636     assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
   637     // Return 0 if AllocatePrefetchDistance was not defined.
   638     return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
   639   }
   641   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
   642   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
   643   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
   644   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
   646   // gc copy/scan is disabled if prefetchw isn't supported, because
   647   // Prefetch::write emits an inlined prefetchw on Linux.
   648   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
   649   // The used prefetcht0 instruction works for both amd64 and em64t.
   650   static intx prefetch_copy_interval_in_bytes() {
   651     intx interval = PrefetchCopyIntervalInBytes;
   652     return interval >= 0 ? interval : 576;
   653   }
   654   static intx prefetch_scan_interval_in_bytes() {
   655     intx interval = PrefetchScanIntervalInBytes;
   656     return interval >= 0 ? interval : 576;
   657   }
   658   static intx prefetch_fields_ahead() {
   659     intx count = PrefetchFieldsAhead;
   660     return count >= 0 ? count : 1;
   661   }
   662 };
   664 #endif // CPU_X86_VM_VM_VERSION_X86_HPP

mercurial