src/cpu/x86/vm/vm_version_x86.cpp

Sat, 29 Sep 2012 06:40:00 -0400

author
coleenp
date
Sat, 29 Sep 2012 06:40:00 -0400
changeset 4142
d8ce2825b193
parent 4106
7eca5de9e0b6
child 4205
a3ecd773a7b9
permissions
-rw-r--r--

8000213: NPG: Should have renamed arrayKlass and typeArrayKlass
Summary: Capitalize these metadata types (and objArrayKlass)
Reviewed-by: stefank, twisti, kvn

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "assembler_x86.inline.hpp"
    27 #include "memory/resourceArea.hpp"
    28 #include "runtime/java.hpp"
    29 #include "runtime/stubCodeGenerator.hpp"
    30 #include "vm_version_x86.hpp"
    31 #ifdef TARGET_OS_FAMILY_linux
    32 # include "os_linux.inline.hpp"
    33 #endif
    34 #ifdef TARGET_OS_FAMILY_solaris
    35 # include "os_solaris.inline.hpp"
    36 #endif
    37 #ifdef TARGET_OS_FAMILY_windows
    38 # include "os_windows.inline.hpp"
    39 #endif
    40 #ifdef TARGET_OS_FAMILY_bsd
    41 # include "os_bsd.inline.hpp"
    42 #endif
    45 int VM_Version::_cpu;
    46 int VM_Version::_model;
    47 int VM_Version::_stepping;
    48 int VM_Version::_cpuFeatures;
    49 const char*           VM_Version::_features_str = "";
    50 VM_Version::CpuidInfo VM_Version::_cpuid_info   = { 0, };
    52 static BufferBlob* stub_blob;
    53 static const int stub_size = 550;
    55 extern "C" {
    56   typedef void (*getPsrInfo_stub_t)(void*);
    57 }
    58 static getPsrInfo_stub_t getPsrInfo_stub = NULL;
    61 class VM_Version_StubGenerator: public StubCodeGenerator {
    62  public:
    64   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
    66   address generate_getPsrInfo() {
    67     // Flags to test CPU type.
    68     const uint32_t HS_EFL_AC           = 0x40000;
    69     const uint32_t HS_EFL_ID           = 0x200000;
    70     // Values for when we don't have a CPUID instruction.
    71     const int      CPU_FAMILY_SHIFT = 8;
    72     const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
    73     const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);
    75     Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
    76     Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, done;
    78     StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub");
    79 #   define __ _masm->
    81     address start = __ pc();
    83     //
    84     // void getPsrInfo(VM_Version::CpuidInfo* cpuid_info);
    85     //
    86     // LP64: rcx and rdx are first and second argument registers on windows
    88     __ push(rbp);
    89 #ifdef _LP64
    90     __ mov(rbp, c_rarg0); // cpuid_info address
    91 #else
    92     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
    93 #endif
    94     __ push(rbx);
    95     __ push(rsi);
    96     __ pushf();          // preserve rbx, and flags
    97     __ pop(rax);
    98     __ push(rax);
    99     __ mov(rcx, rax);
   100     //
   101     // if we are unable to change the AC flag, we have a 386
   102     //
   103     __ xorl(rax, HS_EFL_AC);
   104     __ push(rax);
   105     __ popf();
   106     __ pushf();
   107     __ pop(rax);
   108     __ cmpptr(rax, rcx);
   109     __ jccb(Assembler::notEqual, detect_486);
   111     __ movl(rax, CPU_FAMILY_386);
   112     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   113     __ jmp(done);
   115     //
   116     // If we are unable to change the ID flag, we have a 486 which does
   117     // not support the "cpuid" instruction.
   118     //
   119     __ bind(detect_486);
   120     __ mov(rax, rcx);
   121     __ xorl(rax, HS_EFL_ID);
   122     __ push(rax);
   123     __ popf();
   124     __ pushf();
   125     __ pop(rax);
   126     __ cmpptr(rcx, rax);
   127     __ jccb(Assembler::notEqual, detect_586);
   129     __ bind(cpu486);
   130     __ movl(rax, CPU_FAMILY_486);
   131     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   132     __ jmp(done);
   134     //
   135     // At this point, we have a chip which supports the "cpuid" instruction
   136     //
   137     __ bind(detect_586);
   138     __ xorl(rax, rax);
   139     __ cpuid();
   140     __ orl(rax, rax);
   141     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
   142                                         // value of at least 1, we give up and
   143                                         // assume a 486
   144     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
   145     __ movl(Address(rsi, 0), rax);
   146     __ movl(Address(rsi, 4), rbx);
   147     __ movl(Address(rsi, 8), rcx);
   148     __ movl(Address(rsi,12), rdx);
   150     __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
   151     __ jccb(Assembler::belowEqual, std_cpuid4);
   153     //
   154     // cpuid(0xB) Processor Topology
   155     //
   156     __ movl(rax, 0xb);
   157     __ xorl(rcx, rcx);   // Threads level
   158     __ cpuid();
   160     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
   161     __ movl(Address(rsi, 0), rax);
   162     __ movl(Address(rsi, 4), rbx);
   163     __ movl(Address(rsi, 8), rcx);
   164     __ movl(Address(rsi,12), rdx);
   166     __ movl(rax, 0xb);
   167     __ movl(rcx, 1);     // Cores level
   168     __ cpuid();
   169     __ push(rax);
   170     __ andl(rax, 0x1f);  // Determine if valid topology level
   171     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
   172     __ andl(rax, 0xffff);
   173     __ pop(rax);
   174     __ jccb(Assembler::equal, std_cpuid4);
   176     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
   177     __ movl(Address(rsi, 0), rax);
   178     __ movl(Address(rsi, 4), rbx);
   179     __ movl(Address(rsi, 8), rcx);
   180     __ movl(Address(rsi,12), rdx);
   182     __ movl(rax, 0xb);
   183     __ movl(rcx, 2);     // Packages level
   184     __ cpuid();
   185     __ push(rax);
   186     __ andl(rax, 0x1f);  // Determine if valid topology level
   187     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
   188     __ andl(rax, 0xffff);
   189     __ pop(rax);
   190     __ jccb(Assembler::equal, std_cpuid4);
   192     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
   193     __ movl(Address(rsi, 0), rax);
   194     __ movl(Address(rsi, 4), rbx);
   195     __ movl(Address(rsi, 8), rcx);
   196     __ movl(Address(rsi,12), rdx);
   198     //
   199     // cpuid(0x4) Deterministic cache params
   200     //
   201     __ bind(std_cpuid4);
   202     __ movl(rax, 4);
   203     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
   204     __ jccb(Assembler::greater, std_cpuid1);
   206     __ xorl(rcx, rcx);   // L1 cache
   207     __ cpuid();
   208     __ push(rax);
   209     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
   210     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
   211     __ pop(rax);
   212     __ jccb(Assembler::equal, std_cpuid1);
   214     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
   215     __ movl(Address(rsi, 0), rax);
   216     __ movl(Address(rsi, 4), rbx);
   217     __ movl(Address(rsi, 8), rcx);
   218     __ movl(Address(rsi,12), rdx);
   220     //
   221     // Standard cpuid(0x1)
   222     //
   223     __ bind(std_cpuid1);
   224     __ movl(rax, 1);
   225     __ cpuid();
   226     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
   227     __ movl(Address(rsi, 0), rax);
   228     __ movl(Address(rsi, 4), rbx);
   229     __ movl(Address(rsi, 8), rcx);
   230     __ movl(Address(rsi,12), rdx);
   232     //
   233     // Check if OS has enabled XGETBV instruction to access XCR0
   234     // (OSXSAVE feature flag) and CPU supports AVX
   235     //
   236     __ andl(rcx, 0x18000000);
   237     __ cmpl(rcx, 0x18000000);
   238     __ jccb(Assembler::notEqual, sef_cpuid);
   240     //
   241     // XCR0, XFEATURE_ENABLED_MASK register
   242     //
   243     __ xorl(rcx, rcx);   // zero for XCR0 register
   244     __ xgetbv();
   245     __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset())));
   246     __ movl(Address(rsi, 0), rax);
   247     __ movl(Address(rsi, 4), rdx);
   249     //
   250     // cpuid(0x7) Structured Extended Features
   251     //
   252     __ bind(sef_cpuid);
   253     __ movl(rax, 7);
   254     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported?
   255     __ jccb(Assembler::greater, ext_cpuid);
   257     __ xorl(rcx, rcx);
   258     __ cpuid();
   259     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
   260     __ movl(Address(rsi, 0), rax);
   261     __ movl(Address(rsi, 4), rbx);
   263     //
   264     // Extended cpuid(0x80000000)
   265     //
   266     __ bind(ext_cpuid);
   267     __ movl(rax, 0x80000000);
   268     __ cpuid();
   269     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
   270     __ jcc(Assembler::belowEqual, done);
   271     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
   272     __ jccb(Assembler::belowEqual, ext_cpuid1);
   273     __ cmpl(rax, 0x80000006);     // Is cpuid(0x80000007) supported?
   274     __ jccb(Assembler::belowEqual, ext_cpuid5);
   275     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
   276     __ jccb(Assembler::belowEqual, ext_cpuid7);
   277     //
   278     // Extended cpuid(0x80000008)
   279     //
   280     __ movl(rax, 0x80000008);
   281     __ cpuid();
   282     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
   283     __ movl(Address(rsi, 0), rax);
   284     __ movl(Address(rsi, 4), rbx);
   285     __ movl(Address(rsi, 8), rcx);
   286     __ movl(Address(rsi,12), rdx);
   288     //
   289     // Extended cpuid(0x80000007)
   290     //
   291     __ bind(ext_cpuid7);
   292     __ movl(rax, 0x80000007);
   293     __ cpuid();
   294     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset())));
   295     __ movl(Address(rsi, 0), rax);
   296     __ movl(Address(rsi, 4), rbx);
   297     __ movl(Address(rsi, 8), rcx);
   298     __ movl(Address(rsi,12), rdx);
   300     //
   301     // Extended cpuid(0x80000005)
   302     //
   303     __ bind(ext_cpuid5);
   304     __ movl(rax, 0x80000005);
   305     __ cpuid();
   306     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
   307     __ movl(Address(rsi, 0), rax);
   308     __ movl(Address(rsi, 4), rbx);
   309     __ movl(Address(rsi, 8), rcx);
   310     __ movl(Address(rsi,12), rdx);
   312     //
   313     // Extended cpuid(0x80000001)
   314     //
   315     __ bind(ext_cpuid1);
   316     __ movl(rax, 0x80000001);
   317     __ cpuid();
   318     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
   319     __ movl(Address(rsi, 0), rax);
   320     __ movl(Address(rsi, 4), rbx);
   321     __ movl(Address(rsi, 8), rcx);
   322     __ movl(Address(rsi,12), rdx);
   324     //
   325     // return
   326     //
   327     __ bind(done);
   328     __ popf();
   329     __ pop(rsi);
   330     __ pop(rbx);
   331     __ pop(rbp);
   332     __ ret(0);
   334 #   undef __
   336     return start;
   337   };
   338 };
   341 void VM_Version::get_processor_features() {
   343   _cpu = 4; // 486 by default
   344   _model = 0;
   345   _stepping = 0;
   346   _cpuFeatures = 0;
   347   _logical_processors_per_package = 1;
   349   if (!Use486InstrsOnly) {
   350     // Get raw processor info
   351     getPsrInfo_stub(&_cpuid_info);
   352     assert_is_initialized();
   353     _cpu = extended_cpu_family();
   354     _model = extended_cpu_model();
   355     _stepping = cpu_stepping();
   357     if (cpu_family() > 4) { // it supports CPUID
   358       _cpuFeatures = feature_flags();
   359       // Logical processors are only available on P4s and above,
   360       // and only if hyperthreading is available.
   361       _logical_processors_per_package = logical_processor_count();
   362     }
   363   }
   365   _supports_cx8 = supports_cmpxchg8();
   366   // xchg and xadd instructions
   367   _supports_atomic_getset4 = true;
   368   _supports_atomic_getadd4 = true;
   369   LP64_ONLY(_supports_atomic_getset8 = true);
   370   LP64_ONLY(_supports_atomic_getadd8 = true);
   372 #ifdef _LP64
   373   // OS should support SSE for x64 and hardware should support at least SSE2.
   374   if (!VM_Version::supports_sse2()) {
   375     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
   376   }
   377   // in 64 bit the use of SSE2 is the minimum
   378   if (UseSSE < 2) UseSSE = 2;
   379 #endif
   381 #ifdef AMD64
   382   // flush_icache_stub have to be generated first.
   383   // That is why Icache line size is hard coded in ICache class,
   384   // see icache_x86.hpp. It is also the reason why we can't use
   385   // clflush instruction in 32-bit VM since it could be running
   386   // on CPU which does not support it.
   387   //
   388   // The only thing we can do is to verify that flushed
   389   // ICache::line_size has correct value.
   390   guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
   391   // clflush_size is size in quadwords (8 bytes).
   392   guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
   393 #endif
   395   // If the OS doesn't support SSE, we can't use this feature even if the HW does
   396   if (!os::supports_sse())
   397     _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
   399   if (UseSSE < 4) {
   400     _cpuFeatures &= ~CPU_SSE4_1;
   401     _cpuFeatures &= ~CPU_SSE4_2;
   402   }
   404   if (UseSSE < 3) {
   405     _cpuFeatures &= ~CPU_SSE3;
   406     _cpuFeatures &= ~CPU_SSSE3;
   407     _cpuFeatures &= ~CPU_SSE4A;
   408   }
   410   if (UseSSE < 2)
   411     _cpuFeatures &= ~CPU_SSE2;
   413   if (UseSSE < 1)
   414     _cpuFeatures &= ~CPU_SSE;
   416   if (UseAVX < 2)
   417     _cpuFeatures &= ~CPU_AVX2;
   419   if (UseAVX < 1)
   420     _cpuFeatures &= ~CPU_AVX;
   422   if (logical_processors_per_package() == 1) {
   423     // HT processor could be installed on a system which doesn't support HT.
   424     _cpuFeatures &= ~CPU_HT;
   425   }
   427   char buf[256];
   428   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
   429                cores_per_cpu(), threads_per_core(),
   430                cpu_family(), _model, _stepping,
   431                (supports_cmov() ? ", cmov" : ""),
   432                (supports_cmpxchg8() ? ", cx8" : ""),
   433                (supports_fxsr() ? ", fxsr" : ""),
   434                (supports_mmx()  ? ", mmx"  : ""),
   435                (supports_sse()  ? ", sse"  : ""),
   436                (supports_sse2() ? ", sse2" : ""),
   437                (supports_sse3() ? ", sse3" : ""),
   438                (supports_ssse3()? ", ssse3": ""),
   439                (supports_sse4_1() ? ", sse4.1" : ""),
   440                (supports_sse4_2() ? ", sse4.2" : ""),
   441                (supports_popcnt() ? ", popcnt" : ""),
   442                (supports_avx()    ? ", avx" : ""),
   443                (supports_avx2()   ? ", avx2" : ""),
   444                (supports_mmx_ext() ? ", mmxext" : ""),
   445                (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
   446                (supports_lzcnt()   ? ", lzcnt": ""),
   447                (supports_sse4a()   ? ", sse4a": ""),
   448                (supports_ht() ? ", ht": ""),
   449                (supports_tsc() ? ", tsc": ""),
   450                (supports_tscinv_bit() ? ", tscinvbit": ""),
   451                (supports_tscinv() ? ", tscinv": ""));
   452   _features_str = strdup(buf);
   454   // UseSSE is set to the smaller of what hardware supports and what
   455   // the command line requires.  I.e., you cannot set UseSSE to 2 on
   456   // older Pentiums which do not support it.
   457   if (UseSSE > 4) UseSSE=4;
   458   if (UseSSE < 0) UseSSE=0;
   459   if (!supports_sse4_1()) // Drop to 3 if no SSE4 support
   460     UseSSE = MIN2((intx)3,UseSSE);
   461   if (!supports_sse3()) // Drop to 2 if no SSE3 support
   462     UseSSE = MIN2((intx)2,UseSSE);
   463   if (!supports_sse2()) // Drop to 1 if no SSE2 support
   464     UseSSE = MIN2((intx)1,UseSSE);
   465   if (!supports_sse ()) // Drop to 0 if no SSE  support
   466     UseSSE = 0;
   468   if (UseAVX > 2) UseAVX=2;
   469   if (UseAVX < 0) UseAVX=0;
   470   if (!supports_avx2()) // Drop to 1 if no AVX2 support
   471     UseAVX = MIN2((intx)1,UseAVX);
   472   if (!supports_avx ()) // Drop to 0 if no AVX  support
   473     UseAVX = 0;
   475 #ifdef COMPILER2
   476   if (UseFPUForSpilling) {
   477     if (UseSSE < 2) {
   478       // Only supported with SSE2+
   479       FLAG_SET_DEFAULT(UseFPUForSpilling, false);
   480     }
   481   }
   482   if (MaxVectorSize > 0) {
   483     if (!is_power_of_2(MaxVectorSize)) {
   484       warning("MaxVectorSize must be a power of 2");
   485       FLAG_SET_DEFAULT(MaxVectorSize, 32);
   486     }
   487     if (MaxVectorSize > 32) {
   488       FLAG_SET_DEFAULT(MaxVectorSize, 32);
   489     }
   490     if (MaxVectorSize > 16 && UseAVX == 0) {
   491       // Only supported with AVX+
   492       FLAG_SET_DEFAULT(MaxVectorSize, 16);
   493     }
   494     if (UseSSE < 2) {
   495       // Only supported with SSE2+
   496       FLAG_SET_DEFAULT(MaxVectorSize, 0);
   497     }
   498   }
   499 #endif
   501   // On new cpus instructions which update whole XMM register should be used
   502   // to prevent partial register stall due to dependencies on high half.
   503   //
   504   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
   505   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
   506   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
   507   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
   509   if( is_amd() ) { // AMD cpus specific settings
   510     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
   511       // Use it on new AMD cpus starting from Opteron.
   512       UseAddressNop = true;
   513     }
   514     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
   515       // Use it on new AMD cpus starting from Opteron.
   516       UseNewLongLShift = true;
   517     }
   518     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   519       if( supports_sse4a() ) {
   520         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
   521       } else {
   522         UseXmmLoadAndClearUpper = false;
   523       }
   524     }
   525     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   526       if( supports_sse4a() ) {
   527         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
   528       } else {
   529         UseXmmRegToRegMoveAll = false;
   530       }
   531     }
   532     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
   533       if( supports_sse4a() ) {
   534         UseXmmI2F = true;
   535       } else {
   536         UseXmmI2F = false;
   537       }
   538     }
   539     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
   540       if( supports_sse4a() ) {
   541         UseXmmI2D = true;
   542       } else {
   543         UseXmmI2D = false;
   544       }
   545     }
   546     if( FLAG_IS_DEFAULT(UseSSE42Intrinsics) ) {
   547       if( supports_sse4_2() && UseSSE >= 4 ) {
   548         UseSSE42Intrinsics = true;
   549       }
   550     }
   552     // Use count leading zeros count instruction if available.
   553     if (supports_lzcnt()) {
   554       if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
   555         UseCountLeadingZerosInstruction = true;
   556       }
   557     }
   559     // some defaults for AMD family 15h
   560     if ( cpu_family() == 0x15 ) {
   561       // On family 15h processors default is no sw prefetch
   562       if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
   563         AllocatePrefetchStyle = 0;
   564       }
   565       // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
   566       if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
   567         AllocatePrefetchInstr = 3;
   568       }
   569       // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
   570       if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
   571         UseXMMForArrayCopy = true;
   572       }
   573       if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
   574         UseUnalignedLoadStores = true;
   575       }
   576     }
   578 #ifdef COMPILER2
   579     if (MaxVectorSize > 16) {
   580       // Limit vectors size to 16 bytes on current AMD cpus.
   581       FLAG_SET_DEFAULT(MaxVectorSize, 16);
   582     }
   583 #endif // COMPILER2
   584   }
   586   if( is_intel() ) { // Intel cpus specific settings
   587     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
   588       UseStoreImmI16 = false; // don't use it on Intel cpus
   589     }
   590     if( cpu_family() == 6 || cpu_family() == 15 ) {
   591       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
   592         // Use it on all Intel cpus starting from PentiumPro
   593         UseAddressNop = true;
   594       }
   595     }
   596     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   597       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
   598     }
   599     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   600       if( supports_sse3() ) {
   601         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
   602       } else {
   603         UseXmmRegToRegMoveAll = false;
   604       }
   605     }
   606     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
   607 #ifdef COMPILER2
   608       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
   609         // For new Intel cpus do the next optimization:
   610         // don't align the beginning of a loop if there are enough instructions
   611         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
   612         // in current fetch line (OptoLoopAlignment) or the padding
   613         // is big (> MaxLoopPad).
   614         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
   615         // generated NOP instructions. 11 is the largest size of one
   616         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
   617         MaxLoopPad = 11;
   618       }
   619 #endif // COMPILER2
   620       if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
   621         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
   622       }
   623       if (supports_sse4_2() && supports_ht()) { // Newest Intel cpus
   624         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
   625           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
   626         }
   627       }
   628       if (supports_sse4_2() && UseSSE >= 4) {
   629         if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
   630           UseSSE42Intrinsics = true;
   631         }
   632       }
   633     }
   634   }
   636   // Use population count instruction if available.
   637   if (supports_popcnt()) {
   638     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
   639       UsePopCountInstruction = true;
   640     }
   641   } else if (UsePopCountInstruction) {
   642     warning("POPCNT instruction is not available on this CPU");
   643     FLAG_SET_DEFAULT(UsePopCountInstruction, false);
   644   }
   646 #ifdef COMPILER2
   647   if (FLAG_IS_DEFAULT(AlignVector)) {
   648     // Modern processors allow misaligned memory operations for vectors.
   649     AlignVector = !UseUnalignedLoadStores;
   650   }
   651 #endif // COMPILER2
   653   assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
   654   assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
   656   // set valid Prefetch instruction
   657   if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
   658   if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
   659   if( ReadPrefetchInstr == 3 && !supports_3dnow_prefetch() ) ReadPrefetchInstr = 0;
   660   if( !supports_sse() && supports_3dnow_prefetch() ) ReadPrefetchInstr = 3;
   662   if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
   663   if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
   664   if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0;
   665   if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3;
   667   // Allocation prefetch settings
   668   intx cache_line_size = prefetch_data_size();
   669   if( cache_line_size > AllocatePrefetchStepSize )
   670     AllocatePrefetchStepSize = cache_line_size;
   672   assert(AllocatePrefetchLines > 0, "invalid value");
   673   if( AllocatePrefetchLines < 1 )     // set valid value in product VM
   674     AllocatePrefetchLines = 3;
   675   assert(AllocateInstancePrefetchLines > 0, "invalid value");
   676   if( AllocateInstancePrefetchLines < 1 ) // set valid value in product VM
   677     AllocateInstancePrefetchLines = 1;
   679   AllocatePrefetchDistance = allocate_prefetch_distance();
   680   AllocatePrefetchStyle    = allocate_prefetch_style();
   682   if( is_intel() && cpu_family() == 6 && supports_sse3() ) {
   683     if( AllocatePrefetchStyle == 2 ) { // watermark prefetching on Core
   684 #ifdef _LP64
   685       AllocatePrefetchDistance = 384;
   686 #else
   687       AllocatePrefetchDistance = 320;
   688 #endif
   689     }
   690     if( supports_sse4_2() && supports_ht() ) { // Nehalem based cpus
   691       AllocatePrefetchDistance = 192;
   692       AllocatePrefetchLines = 4;
   693 #ifdef COMPILER2
   694       if (AggressiveOpts && FLAG_IS_DEFAULT(UseFPUForSpilling)) {
   695         FLAG_SET_DEFAULT(UseFPUForSpilling, true);
   696       }
   697 #endif
   698     }
   699   }
   700   assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
   702 #ifdef _LP64
   703   // Prefetch settings
   704   PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
   705   PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
   706   PrefetchFieldsAhead         = prefetch_fields_ahead();
   707 #endif
   709 #ifndef PRODUCT
   710   if (PrintMiscellaneous && Verbose) {
   711     tty->print_cr("Logical CPUs per core: %u",
   712                   logical_processors_per_package());
   713     tty->print("UseSSE=%d",UseSSE);
   714     if (UseAVX > 0) {
   715       tty->print("  UseAVX=%d",UseAVX);
   716     }
   717     tty->cr();
   718     tty->print("Allocation");
   719     if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
   720       tty->print_cr(": no prefetching");
   721     } else {
   722       tty->print(" prefetching: ");
   723       if (UseSSE == 0 && supports_3dnow_prefetch()) {
   724         tty->print("PREFETCHW");
   725       } else if (UseSSE >= 1) {
   726         if (AllocatePrefetchInstr == 0) {
   727           tty->print("PREFETCHNTA");
   728         } else if (AllocatePrefetchInstr == 1) {
   729           tty->print("PREFETCHT0");
   730         } else if (AllocatePrefetchInstr == 2) {
   731           tty->print("PREFETCHT2");
   732         } else if (AllocatePrefetchInstr == 3) {
   733           tty->print("PREFETCHW");
   734         }
   735       }
   736       if (AllocatePrefetchLines > 1) {
   737         tty->print_cr(" at distance %d, %d lines of %d bytes", AllocatePrefetchDistance, AllocatePrefetchLines, AllocatePrefetchStepSize);
   738       } else {
   739         tty->print_cr(" at distance %d, one line of %d bytes", AllocatePrefetchDistance, AllocatePrefetchStepSize);
   740       }
   741     }
   743     if (PrefetchCopyIntervalInBytes > 0) {
   744       tty->print_cr("PrefetchCopyIntervalInBytes %d", PrefetchCopyIntervalInBytes);
   745     }
   746     if (PrefetchScanIntervalInBytes > 0) {
   747       tty->print_cr("PrefetchScanIntervalInBytes %d", PrefetchScanIntervalInBytes);
   748     }
   749     if (PrefetchFieldsAhead > 0) {
   750       tty->print_cr("PrefetchFieldsAhead %d", PrefetchFieldsAhead);
   751     }
   752   }
   753 #endif // !PRODUCT
   754 }
   756 void VM_Version::initialize() {
   757   ResourceMark rm;
   758   // Making this stub must be FIRST use of assembler
   760   stub_blob = BufferBlob::create("getPsrInfo_stub", stub_size);
   761   if (stub_blob == NULL) {
   762     vm_exit_during_initialization("Unable to allocate getPsrInfo_stub");
   763   }
   764   CodeBuffer c(stub_blob);
   765   VM_Version_StubGenerator g(&c);
   766   getPsrInfo_stub = CAST_TO_FN_PTR(getPsrInfo_stub_t,
   767                                    g.generate_getPsrInfo());
   769   get_processor_features();
   770 }

mercurial