src/share/vm/memory/referenceProcessor.hpp

Thu, 06 Feb 2014 14:12:43 +0100

author
pliden
date
Thu, 06 Feb 2014 14:12:43 +0100
changeset 6397
d60ecdb2773e
parent 6395
a258f8cb530f
child 6719
8e20ef014b08
permissions
-rw-r--r--

8031703: Missing post-barrier in ReferenceProcessor
Reviewed-by: tonyp, tschatzl

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
    26 #define SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
    28 #include "memory/referencePolicy.hpp"
    29 #include "memory/referenceProcessorStats.hpp"
    30 #include "memory/referenceType.hpp"
    31 #include "oops/instanceRefKlass.hpp"
    33 class GCTimer;
    35 // ReferenceProcessor class encapsulates the per-"collector" processing
    36 // of java.lang.Reference objects for GC. The interface is useful for supporting
    37 // a generational abstraction, in particular when there are multiple
    38 // generations that are being independently collected -- possibly
    39 // concurrently and/or incrementally.  Note, however, that the
    40 // ReferenceProcessor class abstracts away from a generational setting
    41 // by using only a heap interval (called "span" below), thus allowing
    42 // its use in a straightforward manner in a general, non-generational
    43 // setting.
    44 //
    45 // The basic idea is that each ReferenceProcessor object concerns
    46 // itself with ("weak") reference processing in a specific "span"
    47 // of the heap of interest to a specific collector. Currently,
    48 // the span is a convex interval of the heap, but, efficiency
    49 // apart, there seems to be no reason it couldn't be extended
    50 // (with appropriate modifications) to any "non-convex interval".
    52 // forward references
    53 class ReferencePolicy;
    54 class AbstractRefProcTaskExecutor;
    56 // List of discovered references.
    57 class DiscoveredList {
    58 public:
    59   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
    60   oop head() const     {
    61      return UseCompressedOops ?  oopDesc::decode_heap_oop(_compressed_head) :
    62                                 _oop_head;
    63   }
    64   HeapWord* adr_head() {
    65     return UseCompressedOops ? (HeapWord*)&_compressed_head :
    66                                (HeapWord*)&_oop_head;
    67   }
    68   void set_head(oop o) {
    69     if (UseCompressedOops) {
    70       // Must compress the head ptr.
    71       _compressed_head = oopDesc::encode_heap_oop(o);
    72     } else {
    73       _oop_head = o;
    74     }
    75   }
    76   bool   is_empty() const       { return head() == NULL; }
    77   size_t length()               { return _len; }
    78   void   set_length(size_t len) { _len = len;  }
    79   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
    80   void   dec_length(size_t dec) { _len -= dec; }
    81 private:
    82   // Set value depending on UseCompressedOops. This could be a template class
    83   // but then we have to fix all the instantiations and declarations that use this class.
    84   oop       _oop_head;
    85   narrowOop _compressed_head;
    86   size_t _len;
    87 };
    89 // Iterator for the list of discovered references.
    90 class DiscoveredListIterator {
    91 private:
    92   DiscoveredList&    _refs_list;
    93   HeapWord*          _prev_next;
    94   oop                _prev;
    95   oop                _ref;
    96   HeapWord*          _discovered_addr;
    97   oop                _next;
    98   HeapWord*          _referent_addr;
    99   oop                _referent;
   100   OopClosure*        _keep_alive;
   101   BoolObjectClosure* _is_alive;
   102   bool               _discovered_list_needs_post_barrier;
   104   DEBUG_ONLY(
   105   oop                _first_seen; // cyclic linked list check
   106   )
   108   NOT_PRODUCT(
   109   size_t             _processed;
   110   size_t             _removed;
   111   )
   113 public:
   114   inline DiscoveredListIterator(DiscoveredList&    refs_list,
   115                                 OopClosure*        keep_alive,
   116                                 BoolObjectClosure* is_alive,
   117                                 bool               discovered_list_needs_post_barrier = false):
   118     _refs_list(refs_list),
   119     _prev_next(refs_list.adr_head()),
   120     _prev(NULL),
   121     _ref(refs_list.head()),
   122 #ifdef ASSERT
   123     _first_seen(refs_list.head()),
   124 #endif
   125 #ifndef PRODUCT
   126     _processed(0),
   127     _removed(0),
   128 #endif
   129     _next(NULL),
   130     _keep_alive(keep_alive),
   131     _is_alive(is_alive),
   132     _discovered_list_needs_post_barrier(discovered_list_needs_post_barrier)
   133 { }
   135   // End Of List.
   136   inline bool has_next() const { return _ref != NULL; }
   138   // Get oop to the Reference object.
   139   inline oop obj() const { return _ref; }
   141   // Get oop to the referent object.
   142   inline oop referent() const { return _referent; }
   144   // Returns true if referent is alive.
   145   inline bool is_referent_alive() const {
   146     return _is_alive->do_object_b(_referent);
   147   }
   149   // Loads data for the current reference.
   150   // The "allow_null_referent" argument tells us to allow for the possibility
   151   // of a NULL referent in the discovered Reference object. This typically
   152   // happens in the case of concurrent collectors that may have done the
   153   // discovery concurrently, or interleaved, with mutator execution.
   154   void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
   156   // Move to the next discovered reference.
   157   inline void next() {
   158     _prev_next = _discovered_addr;
   159     _prev = _ref;
   160     move_to_next();
   161   }
   163   // Remove the current reference from the list
   164   void remove();
   166   // Make the Reference object active again.
   167   void make_active();
   169   // Make the referent alive.
   170   inline void make_referent_alive() {
   171     if (UseCompressedOops) {
   172       _keep_alive->do_oop((narrowOop*)_referent_addr);
   173     } else {
   174       _keep_alive->do_oop((oop*)_referent_addr);
   175     }
   176   }
   178   // Update the discovered field.
   179   inline void update_discovered() {
   180     // First _prev_next ref actually points into DiscoveredList (gross).
   181     if (UseCompressedOops) {
   182       if (!oopDesc::is_null(*(narrowOop*)_prev_next)) {
   183         _keep_alive->do_oop((narrowOop*)_prev_next);
   184       }
   185     } else {
   186       if (!oopDesc::is_null(*(oop*)_prev_next)) {
   187         _keep_alive->do_oop((oop*)_prev_next);
   188       }
   189     }
   190   }
   192   // NULL out referent pointer.
   193   void clear_referent();
   195   // Statistics
   196   NOT_PRODUCT(
   197   inline size_t processed() const { return _processed; }
   198   inline size_t removed() const   { return _removed; }
   199   )
   201   inline void move_to_next() {
   202     if (_ref == _next) {
   203       // End of the list.
   204       _ref = NULL;
   205     } else {
   206       _ref = _next;
   207     }
   208     assert(_ref != _first_seen, "cyclic ref_list found");
   209     NOT_PRODUCT(_processed++);
   210   }
   211 };
   213 class ReferenceProcessor : public CHeapObj<mtGC> {
   215  private:
   216   size_t total_count(DiscoveredList lists[]);
   218  protected:
   219   // Compatibility with pre-4965777 JDK's
   220   static bool _pending_list_uses_discovered_field;
   222   // The SoftReference master timestamp clock
   223   static jlong _soft_ref_timestamp_clock;
   225   MemRegion   _span;                    // (right-open) interval of heap
   226                                         // subject to wkref discovery
   228   bool        _discovering_refs;        // true when discovery enabled
   229   bool        _discovery_is_atomic;     // if discovery is atomic wrt
   230                                         // other collectors in configuration
   231   bool        _discovery_is_mt;         // true if reference discovery is MT.
   233   // If true, setting "next" field of a discovered refs list requires
   234   // write post barrier.  (Must be true if used in a collector in which
   235   // elements of a discovered list may be moved during discovery: for
   236   // example, a collector like Garbage-First that moves objects during a
   237   // long-term concurrent marking phase that does weak reference
   238   // discovery.)
   239   bool        _discovered_list_needs_post_barrier;
   241   bool        _enqueuing_is_done;       // true if all weak references enqueued
   242   bool        _processing_is_mt;        // true during phases when
   243                                         // reference processing is MT.
   244   uint        _next_id;                 // round-robin mod _num_q counter in
   245                                         // support of work distribution
   247   // For collectors that do not keep GC liveness information
   248   // in the object header, this field holds a closure that
   249   // helps the reference processor determine the reachability
   250   // of an oop. It is currently initialized to NULL for all
   251   // collectors except for CMS and G1.
   252   BoolObjectClosure* _is_alive_non_header;
   254   // Soft ref clearing policies
   255   // . the default policy
   256   static ReferencePolicy*   _default_soft_ref_policy;
   257   // . the "clear all" policy
   258   static ReferencePolicy*   _always_clear_soft_ref_policy;
   259   // . the current policy below is either one of the above
   260   ReferencePolicy*          _current_soft_ref_policy;
   262   // The discovered ref lists themselves
   264   // The active MT'ness degree of the queues below
   265   uint             _num_q;
   266   // The maximum MT'ness degree of the queues below
   267   uint             _max_num_q;
   269   // Master array of discovered oops
   270   DiscoveredList* _discovered_refs;
   272   // Arrays of lists of oops, one per thread (pointers into master array above)
   273   DiscoveredList* _discoveredSoftRefs;
   274   DiscoveredList* _discoveredWeakRefs;
   275   DiscoveredList* _discoveredFinalRefs;
   276   DiscoveredList* _discoveredPhantomRefs;
   278  public:
   279   static int number_of_subclasses_of_ref() { return (REF_PHANTOM - REF_OTHER); }
   281   uint num_q()                             { return _num_q; }
   282   uint max_num_q()                         { return _max_num_q; }
   283   void set_active_mt_degree(uint v)        { _num_q = v; }
   285   DiscoveredList* discovered_refs()        { return _discovered_refs; }
   287   ReferencePolicy* setup_policy(bool always_clear) {
   288     _current_soft_ref_policy = always_clear ?
   289       _always_clear_soft_ref_policy : _default_soft_ref_policy;
   290     _current_soft_ref_policy->setup();   // snapshot the policy threshold
   291     return _current_soft_ref_policy;
   292   }
   294   // Process references with a certain reachability level.
   295   size_t process_discovered_reflist(DiscoveredList               refs_lists[],
   296                                     ReferencePolicy*             policy,
   297                                     bool                         clear_referent,
   298                                     BoolObjectClosure*           is_alive,
   299                                     OopClosure*                  keep_alive,
   300                                     VoidClosure*                 complete_gc,
   301                                     AbstractRefProcTaskExecutor* task_executor);
   303   void process_phaseJNI(BoolObjectClosure* is_alive,
   304                         OopClosure*        keep_alive,
   305                         VoidClosure*       complete_gc);
   307   // Work methods used by the method process_discovered_reflist
   308   // Phase1: keep alive all those referents that are otherwise
   309   // dead but which must be kept alive by policy (and their closure).
   310   void process_phase1(DiscoveredList&     refs_list,
   311                       ReferencePolicy*    policy,
   312                       BoolObjectClosure*  is_alive,
   313                       OopClosure*         keep_alive,
   314                       VoidClosure*        complete_gc);
   315   // Phase2: remove all those references whose referents are
   316   // reachable.
   317   inline void process_phase2(DiscoveredList&    refs_list,
   318                              BoolObjectClosure* is_alive,
   319                              OopClosure*        keep_alive,
   320                              VoidClosure*       complete_gc) {
   321     if (discovery_is_atomic()) {
   322       // complete_gc is ignored in this case for this phase
   323       pp2_work(refs_list, is_alive, keep_alive);
   324     } else {
   325       assert(complete_gc != NULL, "Error");
   326       pp2_work_concurrent_discovery(refs_list, is_alive,
   327                                     keep_alive, complete_gc);
   328     }
   329   }
   330   // Work methods in support of process_phase2
   331   void pp2_work(DiscoveredList&    refs_list,
   332                 BoolObjectClosure* is_alive,
   333                 OopClosure*        keep_alive);
   334   void pp2_work_concurrent_discovery(
   335                 DiscoveredList&    refs_list,
   336                 BoolObjectClosure* is_alive,
   337                 OopClosure*        keep_alive,
   338                 VoidClosure*       complete_gc);
   339   // Phase3: process the referents by either clearing them
   340   // or keeping them alive (and their closure)
   341   void process_phase3(DiscoveredList&    refs_list,
   342                       bool               clear_referent,
   343                       BoolObjectClosure* is_alive,
   344                       OopClosure*        keep_alive,
   345                       VoidClosure*       complete_gc);
   347   // Enqueue references with a certain reachability level
   348   void enqueue_discovered_reflist(DiscoveredList& refs_list, HeapWord* pending_list_addr);
   350   // "Preclean" all the discovered reference lists
   351   // by removing references with strongly reachable referents.
   352   // The first argument is a predicate on an oop that indicates
   353   // its (strong) reachability and the second is a closure that
   354   // may be used to incrementalize or abort the precleaning process.
   355   // The caller is responsible for taking care of potential
   356   // interference with concurrent operations on these lists
   357   // (or predicates involved) by other threads. Currently
   358   // only used by the CMS collector.
   359   void preclean_discovered_references(BoolObjectClosure* is_alive,
   360                                       OopClosure*        keep_alive,
   361                                       VoidClosure*       complete_gc,
   362                                       YieldClosure*      yield,
   363                                       GCTimer*           gc_timer);
   365   // Delete entries in the discovered lists that have
   366   // either a null referent or are not active. Such
   367   // Reference objects can result from the clearing
   368   // or enqueueing of Reference objects concurrent
   369   // with their discovery by a (concurrent) collector.
   370   // For a definition of "active" see java.lang.ref.Reference;
   371   // Refs are born active, become inactive when enqueued,
   372   // and never become active again. The state of being
   373   // active is encoded as follows: A Ref is active
   374   // if and only if its "next" field is NULL.
   375   void clean_up_discovered_references();
   376   void clean_up_discovered_reflist(DiscoveredList& refs_list);
   378   // Returns the name of the discovered reference list
   379   // occupying the i / _num_q slot.
   380   const char* list_name(uint i);
   382   void enqueue_discovered_reflists(HeapWord* pending_list_addr, AbstractRefProcTaskExecutor* task_executor);
   384  protected:
   385   // Set the 'discovered' field of the given reference to
   386   // the given value - emitting post barriers depending upon
   387   // the value of _discovered_list_needs_post_barrier.
   388   void set_discovered(oop ref, oop value);
   390   // "Preclean" the given discovered reference list
   391   // by removing references with strongly reachable referents.
   392   // Currently used in support of CMS only.
   393   void preclean_discovered_reflist(DiscoveredList&    refs_list,
   394                                    BoolObjectClosure* is_alive,
   395                                    OopClosure*        keep_alive,
   396                                    VoidClosure*       complete_gc,
   397                                    YieldClosure*      yield);
   399   // round-robin mod _num_q (not: _not_ mode _max_num_q)
   400   uint next_id() {
   401     uint id = _next_id;
   402     if (++_next_id == _num_q) {
   403       _next_id = 0;
   404     }
   405     return id;
   406   }
   407   DiscoveredList* get_discovered_list(ReferenceType rt);
   408   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
   409                                         HeapWord* discovered_addr);
   410   void verify_ok_to_handle_reflists() PRODUCT_RETURN;
   412   void clear_discovered_references(DiscoveredList& refs_list);
   413   void abandon_partial_discovered_list(DiscoveredList& refs_list);
   415   // Calculate the number of jni handles.
   416   unsigned int count_jni_refs();
   418   // Balances reference queues.
   419   void balance_queues(DiscoveredList ref_lists[]);
   421   // Update (advance) the soft ref master clock field.
   422   void update_soft_ref_master_clock();
   424  public:
   425   // Default parameters give you a vanilla reference processor.
   426   ReferenceProcessor(MemRegion span,
   427                      bool mt_processing = false, uint mt_processing_degree = 1,
   428                      bool mt_discovery  = false, uint mt_discovery_degree  = 1,
   429                      bool atomic_discovery = true,
   430                      BoolObjectClosure* is_alive_non_header = NULL,
   431                      bool discovered_list_needs_post_barrier = false);
   433   // RefDiscoveryPolicy values
   434   enum DiscoveryPolicy {
   435     ReferenceBasedDiscovery = 0,
   436     ReferentBasedDiscovery  = 1,
   437     DiscoveryPolicyMin      = ReferenceBasedDiscovery,
   438     DiscoveryPolicyMax      = ReferentBasedDiscovery
   439   };
   441   static void init_statics();
   443  public:
   444   // get and set "is_alive_non_header" field
   445   BoolObjectClosure* is_alive_non_header() {
   446     return _is_alive_non_header;
   447   }
   448   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
   449     _is_alive_non_header = is_alive_non_header;
   450   }
   452   // get and set span
   453   MemRegion span()                   { return _span; }
   454   void      set_span(MemRegion span) { _span = span; }
   456   // start and stop weak ref discovery
   457   void enable_discovery(bool verify_disabled, bool check_no_refs);
   458   void disable_discovery()  { _discovering_refs = false; }
   459   bool discovery_enabled()  { return _discovering_refs;  }
   461   // whether discovery is atomic wrt other collectors
   462   bool discovery_is_atomic() const { return _discovery_is_atomic; }
   463   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
   465   // whether the JDK in which we are embedded is a pre-4965777 JDK,
   466   // and thus whether or not it uses the discovered field to chain
   467   // the entries in the pending list.
   468   static bool pending_list_uses_discovered_field() {
   469     return _pending_list_uses_discovered_field;
   470   }
   472   // whether discovery is done by multiple threads same-old-timeously
   473   bool discovery_is_mt() const { return _discovery_is_mt; }
   474   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
   476   // Whether we are in a phase when _processing_ is MT.
   477   bool processing_is_mt() const { return _processing_is_mt; }
   478   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
   480   // whether all enqueuing of weak references is complete
   481   bool enqueuing_is_done()  { return _enqueuing_is_done; }
   482   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
   484   // iterate over oops
   485   void weak_oops_do(OopClosure* f);       // weak roots
   487   // Balance each of the discovered lists.
   488   void balance_all_queues();
   489   void verify_list(DiscoveredList& ref_list);
   491   // Discover a Reference object, using appropriate discovery criteria
   492   bool discover_reference(oop obj, ReferenceType rt);
   494   // Process references found during GC (called by the garbage collector)
   495   ReferenceProcessorStats
   496   process_discovered_references(BoolObjectClosure*           is_alive,
   497                                 OopClosure*                  keep_alive,
   498                                 VoidClosure*                 complete_gc,
   499                                 AbstractRefProcTaskExecutor* task_executor,
   500                                 GCTimer *gc_timer);
   502   // Enqueue references at end of GC (called by the garbage collector)
   503   bool enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
   505   // If a discovery is in process that is being superceded, abandon it: all
   506   // the discovered lists will be empty, and all the objects on them will
   507   // have NULL discovered fields.  Must be called only at a safepoint.
   508   void abandon_partial_discovery();
   510   // debugging
   511   void verify_no_references_recorded() PRODUCT_RETURN;
   512   void verify_referent(oop obj)        PRODUCT_RETURN;
   514   // clear the discovered lists (unlinking each entry).
   515   void clear_discovered_references() PRODUCT_RETURN;
   516 };
   518 // A utility class to disable reference discovery in
   519 // the scope which contains it, for given ReferenceProcessor.
   520 class NoRefDiscovery: StackObj {
   521  private:
   522   ReferenceProcessor* _rp;
   523   bool _was_discovering_refs;
   524  public:
   525   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
   526     _was_discovering_refs = _rp->discovery_enabled();
   527     if (_was_discovering_refs) {
   528       _rp->disable_discovery();
   529     }
   530   }
   532   ~NoRefDiscovery() {
   533     if (_was_discovering_refs) {
   534       _rp->enable_discovery(true /*verify_disabled*/, false /*check_no_refs*/);
   535     }
   536   }
   537 };
   540 // A utility class to temporarily mutate the span of the
   541 // given ReferenceProcessor in the scope that contains it.
   542 class ReferenceProcessorSpanMutator: StackObj {
   543  private:
   544   ReferenceProcessor* _rp;
   545   MemRegion           _saved_span;
   547  public:
   548   ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
   549                                 MemRegion span):
   550     _rp(rp) {
   551     _saved_span = _rp->span();
   552     _rp->set_span(span);
   553   }
   555   ~ReferenceProcessorSpanMutator() {
   556     _rp->set_span(_saved_span);
   557   }
   558 };
   560 // A utility class to temporarily change the MT'ness of
   561 // reference discovery for the given ReferenceProcessor
   562 // in the scope that contains it.
   563 class ReferenceProcessorMTDiscoveryMutator: StackObj {
   564  private:
   565   ReferenceProcessor* _rp;
   566   bool                _saved_mt;
   568  public:
   569   ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp,
   570                                        bool mt):
   571     _rp(rp) {
   572     _saved_mt = _rp->discovery_is_mt();
   573     _rp->set_mt_discovery(mt);
   574   }
   576   ~ReferenceProcessorMTDiscoveryMutator() {
   577     _rp->set_mt_discovery(_saved_mt);
   578   }
   579 };
   582 // A utility class to temporarily change the disposition
   583 // of the "is_alive_non_header" closure field of the
   584 // given ReferenceProcessor in the scope that contains it.
   585 class ReferenceProcessorIsAliveMutator: StackObj {
   586  private:
   587   ReferenceProcessor* _rp;
   588   BoolObjectClosure*  _saved_cl;
   590  public:
   591   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
   592                                    BoolObjectClosure*  cl):
   593     _rp(rp) {
   594     _saved_cl = _rp->is_alive_non_header();
   595     _rp->set_is_alive_non_header(cl);
   596   }
   598   ~ReferenceProcessorIsAliveMutator() {
   599     _rp->set_is_alive_non_header(_saved_cl);
   600   }
   601 };
   603 // A utility class to temporarily change the disposition
   604 // of the "discovery_is_atomic" field of the
   605 // given ReferenceProcessor in the scope that contains it.
   606 class ReferenceProcessorAtomicMutator: StackObj {
   607  private:
   608   ReferenceProcessor* _rp;
   609   bool                _saved_atomic_discovery;
   611  public:
   612   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
   613                                   bool atomic):
   614     _rp(rp) {
   615     _saved_atomic_discovery = _rp->discovery_is_atomic();
   616     _rp->set_atomic_discovery(atomic);
   617   }
   619   ~ReferenceProcessorAtomicMutator() {
   620     _rp->set_atomic_discovery(_saved_atomic_discovery);
   621   }
   622 };
   625 // A utility class to temporarily change the MT processing
   626 // disposition of the given ReferenceProcessor instance
   627 // in the scope that contains it.
   628 class ReferenceProcessorMTProcMutator: StackObj {
   629  private:
   630   ReferenceProcessor* _rp;
   631   bool  _saved_mt;
   633  public:
   634   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
   635                                   bool mt):
   636     _rp(rp) {
   637     _saved_mt = _rp->processing_is_mt();
   638     _rp->set_mt_processing(mt);
   639   }
   641   ~ReferenceProcessorMTProcMutator() {
   642     _rp->set_mt_processing(_saved_mt);
   643   }
   644 };
   647 // This class is an interface used to implement task execution for the
   648 // reference processing.
   649 class AbstractRefProcTaskExecutor {
   650 public:
   652   // Abstract tasks to execute.
   653   class ProcessTask;
   654   class EnqueueTask;
   656   // Executes a task using worker threads.
   657   virtual void execute(ProcessTask& task) = 0;
   658   virtual void execute(EnqueueTask& task) = 0;
   660   // Switch to single threaded mode.
   661   virtual void set_single_threaded_mode() { };
   662 };
   664 // Abstract reference processing task to execute.
   665 class AbstractRefProcTaskExecutor::ProcessTask {
   666 protected:
   667   ProcessTask(ReferenceProcessor& ref_processor,
   668               DiscoveredList      refs_lists[],
   669               bool                marks_oops_alive)
   670     : _ref_processor(ref_processor),
   671       _refs_lists(refs_lists),
   672       _marks_oops_alive(marks_oops_alive)
   673   { }
   675 public:
   676   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
   677                     OopClosure& keep_alive,
   678                     VoidClosure& complete_gc) = 0;
   680   // Returns true if a task marks some oops as alive.
   681   bool marks_oops_alive() const
   682   { return _marks_oops_alive; }
   684 protected:
   685   ReferenceProcessor& _ref_processor;
   686   DiscoveredList*     _refs_lists;
   687   const bool          _marks_oops_alive;
   688 };
   690 // Abstract reference processing task to execute.
   691 class AbstractRefProcTaskExecutor::EnqueueTask {
   692 protected:
   693   EnqueueTask(ReferenceProcessor& ref_processor,
   694               DiscoveredList      refs_lists[],
   695               HeapWord*           pending_list_addr,
   696               int                 n_queues)
   697     : _ref_processor(ref_processor),
   698       _refs_lists(refs_lists),
   699       _pending_list_addr(pending_list_addr),
   700       _n_queues(n_queues)
   701   { }
   703 public:
   704   virtual void work(unsigned int work_id) = 0;
   706 protected:
   707   ReferenceProcessor& _ref_processor;
   708   DiscoveredList*     _refs_lists;
   709   HeapWord*           _pending_list_addr;
   710   int                 _n_queues;
   711 };
   713 #endif // SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP

mercurial