src/share/vm/memory/referenceProcessor.hpp

Fri, 10 Jan 2014 09:53:53 +0100

author
pliden
date
Fri, 10 Jan 2014 09:53:53 +0100
changeset 6395
a258f8cb530f
parent 5237
f2110083203d
child 6397
d60ecdb2773e
permissions
-rw-r--r--

8029255: G1: Reference processing should not enqueue references on the shared SATB queue
Reviewed-by: brutisso, tschatzl

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
    26 #define SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
    28 #include "memory/referencePolicy.hpp"
    29 #include "memory/referenceProcessorStats.hpp"
    30 #include "memory/referenceType.hpp"
    31 #include "oops/instanceRefKlass.hpp"
    33 class GCTimer;
    35 // ReferenceProcessor class encapsulates the per-"collector" processing
    36 // of java.lang.Reference objects for GC. The interface is useful for supporting
    37 // a generational abstraction, in particular when there are multiple
    38 // generations that are being independently collected -- possibly
    39 // concurrently and/or incrementally.  Note, however, that the
    40 // ReferenceProcessor class abstracts away from a generational setting
    41 // by using only a heap interval (called "span" below), thus allowing
    42 // its use in a straightforward manner in a general, non-generational
    43 // setting.
    44 //
    45 // The basic idea is that each ReferenceProcessor object concerns
    46 // itself with ("weak") reference processing in a specific "span"
    47 // of the heap of interest to a specific collector. Currently,
    48 // the span is a convex interval of the heap, but, efficiency
    49 // apart, there seems to be no reason it couldn't be extended
    50 // (with appropriate modifications) to any "non-convex interval".
    52 // forward references
    53 class ReferencePolicy;
    54 class AbstractRefProcTaskExecutor;
    56 // List of discovered references.
    57 class DiscoveredList {
    58 public:
    59   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
    60   oop head() const     {
    61      return UseCompressedOops ?  oopDesc::decode_heap_oop(_compressed_head) :
    62                                 _oop_head;
    63   }
    64   HeapWord* adr_head() {
    65     return UseCompressedOops ? (HeapWord*)&_compressed_head :
    66                                (HeapWord*)&_oop_head;
    67   }
    68   void set_head(oop o) {
    69     if (UseCompressedOops) {
    70       // Must compress the head ptr.
    71       _compressed_head = oopDesc::encode_heap_oop(o);
    72     } else {
    73       _oop_head = o;
    74     }
    75   }
    76   bool   is_empty() const       { return head() == NULL; }
    77   size_t length()               { return _len; }
    78   void   set_length(size_t len) { _len = len;  }
    79   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
    80   void   dec_length(size_t dec) { _len -= dec; }
    81 private:
    82   // Set value depending on UseCompressedOops. This could be a template class
    83   // but then we have to fix all the instantiations and declarations that use this class.
    84   oop       _oop_head;
    85   narrowOop _compressed_head;
    86   size_t _len;
    87 };
    89 // Iterator for the list of discovered references.
    90 class DiscoveredListIterator {
    91 private:
    92   DiscoveredList&    _refs_list;
    93   HeapWord*          _prev_next;
    94   oop                _prev;
    95   oop                _ref;
    96   HeapWord*          _discovered_addr;
    97   oop                _next;
    98   HeapWord*          _referent_addr;
    99   oop                _referent;
   100   OopClosure*        _keep_alive;
   101   BoolObjectClosure* _is_alive;
   103   DEBUG_ONLY(
   104   oop                _first_seen; // cyclic linked list check
   105   )
   107   NOT_PRODUCT(
   108   size_t             _processed;
   109   size_t             _removed;
   110   )
   112 public:
   113   inline DiscoveredListIterator(DiscoveredList&    refs_list,
   114                                 OopClosure*        keep_alive,
   115                                 BoolObjectClosure* is_alive):
   116     _refs_list(refs_list),
   117     _prev_next(refs_list.adr_head()),
   118     _prev(NULL),
   119     _ref(refs_list.head()),
   120 #ifdef ASSERT
   121     _first_seen(refs_list.head()),
   122 #endif
   123 #ifndef PRODUCT
   124     _processed(0),
   125     _removed(0),
   126 #endif
   127     _next(NULL),
   128     _keep_alive(keep_alive),
   129     _is_alive(is_alive)
   130 { }
   132   // End Of List.
   133   inline bool has_next() const { return _ref != NULL; }
   135   // Get oop to the Reference object.
   136   inline oop obj() const { return _ref; }
   138   // Get oop to the referent object.
   139   inline oop referent() const { return _referent; }
   141   // Returns true if referent is alive.
   142   inline bool is_referent_alive() const {
   143     return _is_alive->do_object_b(_referent);
   144   }
   146   // Loads data for the current reference.
   147   // The "allow_null_referent" argument tells us to allow for the possibility
   148   // of a NULL referent in the discovered Reference object. This typically
   149   // happens in the case of concurrent collectors that may have done the
   150   // discovery concurrently, or interleaved, with mutator execution.
   151   void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
   153   // Move to the next discovered reference.
   154   inline void next() {
   155     _prev_next = _discovered_addr;
   156     _prev = _ref;
   157     move_to_next();
   158   }
   160   // Remove the current reference from the list
   161   void remove();
   163   // Make the Reference object active again.
   164   void make_active();
   166   // Make the referent alive.
   167   inline void make_referent_alive() {
   168     if (UseCompressedOops) {
   169       _keep_alive->do_oop((narrowOop*)_referent_addr);
   170     } else {
   171       _keep_alive->do_oop((oop*)_referent_addr);
   172     }
   173   }
   175   // Update the discovered field.
   176   inline void update_discovered() {
   177     // First _prev_next ref actually points into DiscoveredList (gross).
   178     if (UseCompressedOops) {
   179       if (!oopDesc::is_null(*(narrowOop*)_prev_next)) {
   180         _keep_alive->do_oop((narrowOop*)_prev_next);
   181       }
   182     } else {
   183       if (!oopDesc::is_null(*(oop*)_prev_next)) {
   184         _keep_alive->do_oop((oop*)_prev_next);
   185       }
   186     }
   187   }
   189   // NULL out referent pointer.
   190   void clear_referent();
   192   // Statistics
   193   NOT_PRODUCT(
   194   inline size_t processed() const { return _processed; }
   195   inline size_t removed() const   { return _removed; }
   196   )
   198   inline void move_to_next() {
   199     if (_ref == _next) {
   200       // End of the list.
   201       _ref = NULL;
   202     } else {
   203       _ref = _next;
   204     }
   205     assert(_ref != _first_seen, "cyclic ref_list found");
   206     NOT_PRODUCT(_processed++);
   207   }
   208 };
   210 class ReferenceProcessor : public CHeapObj<mtGC> {
   212  private:
   213   size_t total_count(DiscoveredList lists[]);
   215  protected:
   216   // Compatibility with pre-4965777 JDK's
   217   static bool _pending_list_uses_discovered_field;
   219   // The SoftReference master timestamp clock
   220   static jlong _soft_ref_timestamp_clock;
   222   MemRegion   _span;                    // (right-open) interval of heap
   223                                         // subject to wkref discovery
   225   bool        _discovering_refs;        // true when discovery enabled
   226   bool        _discovery_is_atomic;     // if discovery is atomic wrt
   227                                         // other collectors in configuration
   228   bool        _discovery_is_mt;         // true if reference discovery is MT.
   230   // If true, setting "next" field of a discovered refs list requires
   231   // write barrier(s).  (Must be true if used in a collector in which
   232   // elements of a discovered list may be moved during discovery: for
   233   // example, a collector like Garbage-First that moves objects during a
   234   // long-term concurrent marking phase that does weak reference
   235   // discovery.)
   236   bool        _discovered_list_needs_barrier;
   238   bool        _enqueuing_is_done;       // true if all weak references enqueued
   239   bool        _processing_is_mt;        // true during phases when
   240                                         // reference processing is MT.
   241   uint        _next_id;                 // round-robin mod _num_q counter in
   242                                         // support of work distribution
   244   // For collectors that do not keep GC liveness information
   245   // in the object header, this field holds a closure that
   246   // helps the reference processor determine the reachability
   247   // of an oop. It is currently initialized to NULL for all
   248   // collectors except for CMS and G1.
   249   BoolObjectClosure* _is_alive_non_header;
   251   // Soft ref clearing policies
   252   // . the default policy
   253   static ReferencePolicy*   _default_soft_ref_policy;
   254   // . the "clear all" policy
   255   static ReferencePolicy*   _always_clear_soft_ref_policy;
   256   // . the current policy below is either one of the above
   257   ReferencePolicy*          _current_soft_ref_policy;
   259   // The discovered ref lists themselves
   261   // The active MT'ness degree of the queues below
   262   uint             _num_q;
   263   // The maximum MT'ness degree of the queues below
   264   uint             _max_num_q;
   266   // Master array of discovered oops
   267   DiscoveredList* _discovered_refs;
   269   // Arrays of lists of oops, one per thread (pointers into master array above)
   270   DiscoveredList* _discoveredSoftRefs;
   271   DiscoveredList* _discoveredWeakRefs;
   272   DiscoveredList* _discoveredFinalRefs;
   273   DiscoveredList* _discoveredPhantomRefs;
   275  public:
   276   static int number_of_subclasses_of_ref() { return (REF_PHANTOM - REF_OTHER); }
   278   uint num_q()                             { return _num_q; }
   279   uint max_num_q()                         { return _max_num_q; }
   280   void set_active_mt_degree(uint v)        { _num_q = v; }
   282   DiscoveredList* discovered_refs()        { return _discovered_refs; }
   284   ReferencePolicy* setup_policy(bool always_clear) {
   285     _current_soft_ref_policy = always_clear ?
   286       _always_clear_soft_ref_policy : _default_soft_ref_policy;
   287     _current_soft_ref_policy->setup();   // snapshot the policy threshold
   288     return _current_soft_ref_policy;
   289   }
   291   // Process references with a certain reachability level.
   292   size_t process_discovered_reflist(DiscoveredList               refs_lists[],
   293                                     ReferencePolicy*             policy,
   294                                     bool                         clear_referent,
   295                                     BoolObjectClosure*           is_alive,
   296                                     OopClosure*                  keep_alive,
   297                                     VoidClosure*                 complete_gc,
   298                                     AbstractRefProcTaskExecutor* task_executor);
   300   void process_phaseJNI(BoolObjectClosure* is_alive,
   301                         OopClosure*        keep_alive,
   302                         VoidClosure*       complete_gc);
   304   // Work methods used by the method process_discovered_reflist
   305   // Phase1: keep alive all those referents that are otherwise
   306   // dead but which must be kept alive by policy (and their closure).
   307   void process_phase1(DiscoveredList&     refs_list,
   308                       ReferencePolicy*    policy,
   309                       BoolObjectClosure*  is_alive,
   310                       OopClosure*         keep_alive,
   311                       VoidClosure*        complete_gc);
   312   // Phase2: remove all those references whose referents are
   313   // reachable.
   314   inline void process_phase2(DiscoveredList&    refs_list,
   315                              BoolObjectClosure* is_alive,
   316                              OopClosure*        keep_alive,
   317                              VoidClosure*       complete_gc) {
   318     if (discovery_is_atomic()) {
   319       // complete_gc is ignored in this case for this phase
   320       pp2_work(refs_list, is_alive, keep_alive);
   321     } else {
   322       assert(complete_gc != NULL, "Error");
   323       pp2_work_concurrent_discovery(refs_list, is_alive,
   324                                     keep_alive, complete_gc);
   325     }
   326   }
   327   // Work methods in support of process_phase2
   328   void pp2_work(DiscoveredList&    refs_list,
   329                 BoolObjectClosure* is_alive,
   330                 OopClosure*        keep_alive);
   331   void pp2_work_concurrent_discovery(
   332                 DiscoveredList&    refs_list,
   333                 BoolObjectClosure* is_alive,
   334                 OopClosure*        keep_alive,
   335                 VoidClosure*       complete_gc);
   336   // Phase3: process the referents by either clearing them
   337   // or keeping them alive (and their closure)
   338   void process_phase3(DiscoveredList&    refs_list,
   339                       bool               clear_referent,
   340                       BoolObjectClosure* is_alive,
   341                       OopClosure*        keep_alive,
   342                       VoidClosure*       complete_gc);
   344   // Enqueue references with a certain reachability level
   345   void enqueue_discovered_reflist(DiscoveredList& refs_list, HeapWord* pending_list_addr);
   347   // "Preclean" all the discovered reference lists
   348   // by removing references with strongly reachable referents.
   349   // The first argument is a predicate on an oop that indicates
   350   // its (strong) reachability and the second is a closure that
   351   // may be used to incrementalize or abort the precleaning process.
   352   // The caller is responsible for taking care of potential
   353   // interference with concurrent operations on these lists
   354   // (or predicates involved) by other threads. Currently
   355   // only used by the CMS collector.
   356   void preclean_discovered_references(BoolObjectClosure* is_alive,
   357                                       OopClosure*        keep_alive,
   358                                       VoidClosure*       complete_gc,
   359                                       YieldClosure*      yield,
   360                                       GCTimer*           gc_timer);
   362   // Delete entries in the discovered lists that have
   363   // either a null referent or are not active. Such
   364   // Reference objects can result from the clearing
   365   // or enqueueing of Reference objects concurrent
   366   // with their discovery by a (concurrent) collector.
   367   // For a definition of "active" see java.lang.ref.Reference;
   368   // Refs are born active, become inactive when enqueued,
   369   // and never become active again. The state of being
   370   // active is encoded as follows: A Ref is active
   371   // if and only if its "next" field is NULL.
   372   void clean_up_discovered_references();
   373   void clean_up_discovered_reflist(DiscoveredList& refs_list);
   375   // Returns the name of the discovered reference list
   376   // occupying the i / _num_q slot.
   377   const char* list_name(uint i);
   379   void enqueue_discovered_reflists(HeapWord* pending_list_addr, AbstractRefProcTaskExecutor* task_executor);
   381  protected:
   382   // Set the 'discovered' field of the given reference to
   383   // the given value - emitting barriers depending upon
   384   // the value of _discovered_list_needs_barrier.
   385   void set_discovered(oop ref, oop value);
   387   // "Preclean" the given discovered reference list
   388   // by removing references with strongly reachable referents.
   389   // Currently used in support of CMS only.
   390   void preclean_discovered_reflist(DiscoveredList&    refs_list,
   391                                    BoolObjectClosure* is_alive,
   392                                    OopClosure*        keep_alive,
   393                                    VoidClosure*       complete_gc,
   394                                    YieldClosure*      yield);
   396   // round-robin mod _num_q (not: _not_ mode _max_num_q)
   397   uint next_id() {
   398     uint id = _next_id;
   399     if (++_next_id == _num_q) {
   400       _next_id = 0;
   401     }
   402     return id;
   403   }
   404   DiscoveredList* get_discovered_list(ReferenceType rt);
   405   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
   406                                         HeapWord* discovered_addr);
   407   void verify_ok_to_handle_reflists() PRODUCT_RETURN;
   409   void clear_discovered_references(DiscoveredList& refs_list);
   410   void abandon_partial_discovered_list(DiscoveredList& refs_list);
   412   // Calculate the number of jni handles.
   413   unsigned int count_jni_refs();
   415   // Balances reference queues.
   416   void balance_queues(DiscoveredList ref_lists[]);
   418   // Update (advance) the soft ref master clock field.
   419   void update_soft_ref_master_clock();
   421  public:
   422   // Default parameters give you a vanilla reference processor.
   423   ReferenceProcessor(MemRegion span,
   424                      bool mt_processing = false, uint mt_processing_degree = 1,
   425                      bool mt_discovery  = false, uint mt_discovery_degree  = 1,
   426                      bool atomic_discovery = true,
   427                      BoolObjectClosure* is_alive_non_header = NULL,
   428                      bool discovered_list_needs_barrier = false);
   430   // RefDiscoveryPolicy values
   431   enum DiscoveryPolicy {
   432     ReferenceBasedDiscovery = 0,
   433     ReferentBasedDiscovery  = 1,
   434     DiscoveryPolicyMin      = ReferenceBasedDiscovery,
   435     DiscoveryPolicyMax      = ReferentBasedDiscovery
   436   };
   438   static void init_statics();
   440  public:
   441   // get and set "is_alive_non_header" field
   442   BoolObjectClosure* is_alive_non_header() {
   443     return _is_alive_non_header;
   444   }
   445   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
   446     _is_alive_non_header = is_alive_non_header;
   447   }
   449   // get and set span
   450   MemRegion span()                   { return _span; }
   451   void      set_span(MemRegion span) { _span = span; }
   453   // start and stop weak ref discovery
   454   void enable_discovery(bool verify_disabled, bool check_no_refs);
   455   void disable_discovery()  { _discovering_refs = false; }
   456   bool discovery_enabled()  { return _discovering_refs;  }
   458   // whether discovery is atomic wrt other collectors
   459   bool discovery_is_atomic() const { return _discovery_is_atomic; }
   460   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
   462   // whether the JDK in which we are embedded is a pre-4965777 JDK,
   463   // and thus whether or not it uses the discovered field to chain
   464   // the entries in the pending list.
   465   static bool pending_list_uses_discovered_field() {
   466     return _pending_list_uses_discovered_field;
   467   }
   469   // whether discovery is done by multiple threads same-old-timeously
   470   bool discovery_is_mt() const { return _discovery_is_mt; }
   471   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
   473   // Whether we are in a phase when _processing_ is MT.
   474   bool processing_is_mt() const { return _processing_is_mt; }
   475   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
   477   // whether all enqueuing of weak references is complete
   478   bool enqueuing_is_done()  { return _enqueuing_is_done; }
   479   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
   481   // iterate over oops
   482   void weak_oops_do(OopClosure* f);       // weak roots
   484   // Balance each of the discovered lists.
   485   void balance_all_queues();
   486   void verify_list(DiscoveredList& ref_list);
   488   // Discover a Reference object, using appropriate discovery criteria
   489   bool discover_reference(oop obj, ReferenceType rt);
   491   // Process references found during GC (called by the garbage collector)
   492   ReferenceProcessorStats
   493   process_discovered_references(BoolObjectClosure*           is_alive,
   494                                 OopClosure*                  keep_alive,
   495                                 VoidClosure*                 complete_gc,
   496                                 AbstractRefProcTaskExecutor* task_executor,
   497                                 GCTimer *gc_timer);
   499   // Enqueue references at end of GC (called by the garbage collector)
   500   bool enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
   502   // If a discovery is in process that is being superceded, abandon it: all
   503   // the discovered lists will be empty, and all the objects on them will
   504   // have NULL discovered fields.  Must be called only at a safepoint.
   505   void abandon_partial_discovery();
   507   // debugging
   508   void verify_no_references_recorded() PRODUCT_RETURN;
   509   void verify_referent(oop obj)        PRODUCT_RETURN;
   511   // clear the discovered lists (unlinking each entry).
   512   void clear_discovered_references() PRODUCT_RETURN;
   513 };
   515 // A utility class to disable reference discovery in
   516 // the scope which contains it, for given ReferenceProcessor.
   517 class NoRefDiscovery: StackObj {
   518  private:
   519   ReferenceProcessor* _rp;
   520   bool _was_discovering_refs;
   521  public:
   522   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
   523     _was_discovering_refs = _rp->discovery_enabled();
   524     if (_was_discovering_refs) {
   525       _rp->disable_discovery();
   526     }
   527   }
   529   ~NoRefDiscovery() {
   530     if (_was_discovering_refs) {
   531       _rp->enable_discovery(true /*verify_disabled*/, false /*check_no_refs*/);
   532     }
   533   }
   534 };
   537 // A utility class to temporarily mutate the span of the
   538 // given ReferenceProcessor in the scope that contains it.
   539 class ReferenceProcessorSpanMutator: StackObj {
   540  private:
   541   ReferenceProcessor* _rp;
   542   MemRegion           _saved_span;
   544  public:
   545   ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
   546                                 MemRegion span):
   547     _rp(rp) {
   548     _saved_span = _rp->span();
   549     _rp->set_span(span);
   550   }
   552   ~ReferenceProcessorSpanMutator() {
   553     _rp->set_span(_saved_span);
   554   }
   555 };
   557 // A utility class to temporarily change the MT'ness of
   558 // reference discovery for the given ReferenceProcessor
   559 // in the scope that contains it.
   560 class ReferenceProcessorMTDiscoveryMutator: StackObj {
   561  private:
   562   ReferenceProcessor* _rp;
   563   bool                _saved_mt;
   565  public:
   566   ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp,
   567                                        bool mt):
   568     _rp(rp) {
   569     _saved_mt = _rp->discovery_is_mt();
   570     _rp->set_mt_discovery(mt);
   571   }
   573   ~ReferenceProcessorMTDiscoveryMutator() {
   574     _rp->set_mt_discovery(_saved_mt);
   575   }
   576 };
   579 // A utility class to temporarily change the disposition
   580 // of the "is_alive_non_header" closure field of the
   581 // given ReferenceProcessor in the scope that contains it.
   582 class ReferenceProcessorIsAliveMutator: StackObj {
   583  private:
   584   ReferenceProcessor* _rp;
   585   BoolObjectClosure*  _saved_cl;
   587  public:
   588   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
   589                                    BoolObjectClosure*  cl):
   590     _rp(rp) {
   591     _saved_cl = _rp->is_alive_non_header();
   592     _rp->set_is_alive_non_header(cl);
   593   }
   595   ~ReferenceProcessorIsAliveMutator() {
   596     _rp->set_is_alive_non_header(_saved_cl);
   597   }
   598 };
   600 // A utility class to temporarily change the disposition
   601 // of the "discovery_is_atomic" field of the
   602 // given ReferenceProcessor in the scope that contains it.
   603 class ReferenceProcessorAtomicMutator: StackObj {
   604  private:
   605   ReferenceProcessor* _rp;
   606   bool                _saved_atomic_discovery;
   608  public:
   609   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
   610                                   bool atomic):
   611     _rp(rp) {
   612     _saved_atomic_discovery = _rp->discovery_is_atomic();
   613     _rp->set_atomic_discovery(atomic);
   614   }
   616   ~ReferenceProcessorAtomicMutator() {
   617     _rp->set_atomic_discovery(_saved_atomic_discovery);
   618   }
   619 };
   622 // A utility class to temporarily change the MT processing
   623 // disposition of the given ReferenceProcessor instance
   624 // in the scope that contains it.
   625 class ReferenceProcessorMTProcMutator: StackObj {
   626  private:
   627   ReferenceProcessor* _rp;
   628   bool  _saved_mt;
   630  public:
   631   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
   632                                   bool mt):
   633     _rp(rp) {
   634     _saved_mt = _rp->processing_is_mt();
   635     _rp->set_mt_processing(mt);
   636   }
   638   ~ReferenceProcessorMTProcMutator() {
   639     _rp->set_mt_processing(_saved_mt);
   640   }
   641 };
   644 // This class is an interface used to implement task execution for the
   645 // reference processing.
   646 class AbstractRefProcTaskExecutor {
   647 public:
   649   // Abstract tasks to execute.
   650   class ProcessTask;
   651   class EnqueueTask;
   653   // Executes a task using worker threads.
   654   virtual void execute(ProcessTask& task) = 0;
   655   virtual void execute(EnqueueTask& task) = 0;
   657   // Switch to single threaded mode.
   658   virtual void set_single_threaded_mode() { };
   659 };
   661 // Abstract reference processing task to execute.
   662 class AbstractRefProcTaskExecutor::ProcessTask {
   663 protected:
   664   ProcessTask(ReferenceProcessor& ref_processor,
   665               DiscoveredList      refs_lists[],
   666               bool                marks_oops_alive)
   667     : _ref_processor(ref_processor),
   668       _refs_lists(refs_lists),
   669       _marks_oops_alive(marks_oops_alive)
   670   { }
   672 public:
   673   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
   674                     OopClosure& keep_alive,
   675                     VoidClosure& complete_gc) = 0;
   677   // Returns true if a task marks some oops as alive.
   678   bool marks_oops_alive() const
   679   { return _marks_oops_alive; }
   681 protected:
   682   ReferenceProcessor& _ref_processor;
   683   DiscoveredList*     _refs_lists;
   684   const bool          _marks_oops_alive;
   685 };
   687 // Abstract reference processing task to execute.
   688 class AbstractRefProcTaskExecutor::EnqueueTask {
   689 protected:
   690   EnqueueTask(ReferenceProcessor& ref_processor,
   691               DiscoveredList      refs_lists[],
   692               HeapWord*           pending_list_addr,
   693               int                 n_queues)
   694     : _ref_processor(ref_processor),
   695       _refs_lists(refs_lists),
   696       _pending_list_addr(pending_list_addr),
   697       _n_queues(n_queues)
   698   { }
   700 public:
   701   virtual void work(unsigned int work_id) = 0;
   703 protected:
   704   ReferenceProcessor& _ref_processor;
   705   DiscoveredList*     _refs_lists;
   706   HeapWord*           _pending_list_addr;
   707   int                 _n_queues;
   708 };
   710 #endif // SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP

mercurial