src/share/vm/runtime/synchronizer.cpp

Wed, 11 Aug 2010 05:51:21 -0700

author
twisti
date
Wed, 11 Aug 2010 05:51:21 -0700
changeset 2047
d2ede61b7a12
parent 1995
bfc89697cccb
child 2233
fa83ab460c54
permissions
-rw-r--r--

6976186: integrate Shark HotSpot changes
Summary: Shark is a JIT compiler for Zero that uses the LLVM compiler infrastructure.
Reviewed-by: kvn, twisti
Contributed-by: Gary Benson <gbenson@redhat.com>

     1 /*
     2  * Copyright (c) 1998, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_synchronizer.cpp.incl"
    28 #if defined(__GNUC__) && !defined(IA64)
    29   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
    30   #define ATTR __attribute__((noinline))
    31 #else
    32   #define ATTR
    33 #endif
    35 // Native markword accessors for synchronization and hashCode().
    36 //
    37 // The "core" versions of monitor enter and exit reside in this file.
    38 // The interpreter and compilers contain specialized transliterated
    39 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
    40 // for instance.  If you make changes here, make sure to modify the
    41 // interpreter, and both C1 and C2 fast-path inline locking code emission.
    42 //
    43 // TODO: merge the objectMonitor and synchronizer classes.
    44 //
    45 // -----------------------------------------------------------------------------
    47 #ifdef DTRACE_ENABLED
    49 // Only bother with this argument setup if dtrace is available
    50 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
    52 HS_DTRACE_PROBE_DECL5(hotspot, monitor__wait,
    53   jlong, uintptr_t, char*, int, long);
    54 HS_DTRACE_PROBE_DECL4(hotspot, monitor__waited,
    55   jlong, uintptr_t, char*, int);
    56 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
    57   jlong, uintptr_t, char*, int);
    58 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
    59   jlong, uintptr_t, char*, int);
    60 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
    61   jlong, uintptr_t, char*, int);
    62 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
    63   jlong, uintptr_t, char*, int);
    64 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
    65   jlong, uintptr_t, char*, int);
    67 #define DTRACE_MONITOR_PROBE_COMMON(klassOop, thread)                      \
    68   char* bytes = NULL;                                                      \
    69   int len = 0;                                                             \
    70   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
    71   symbolOop klassname = ((oop)(klassOop))->klass()->klass_part()->name();  \
    72   if (klassname != NULL) {                                                 \
    73     bytes = (char*)klassname->bytes();                                     \
    74     len = klassname->utf8_length();                                        \
    75   }
    77 #define DTRACE_MONITOR_WAIT_PROBE(monitor, klassOop, thread, millis)       \
    78   {                                                                        \
    79     if (DTraceMonitorProbes) {                                            \
    80       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
    81       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
    82                        (monitor), bytes, len, (millis));                   \
    83     }                                                                      \
    84   }
    86 #define DTRACE_MONITOR_PROBE(probe, monitor, klassOop, thread)             \
    87   {                                                                        \
    88     if (DTraceMonitorProbes) {                                            \
    89       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
    90       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
    91                        (uintptr_t)(monitor), bytes, len);                  \
    92     }                                                                      \
    93   }
    95 #else //  ndef DTRACE_ENABLED
    97 #define DTRACE_MONITOR_WAIT_PROBE(klassOop, thread, millis, mon)    {;}
    98 #define DTRACE_MONITOR_PROBE(probe, klassOop, thread, mon)          {;}
   100 #endif // ndef DTRACE_ENABLED
   102 // ObjectWaiter serves as a "proxy" or surrogate thread.
   103 // TODO-FIXME: Eliminate ObjectWaiter and use the thread-specific
   104 // ParkEvent instead.  Beware, however, that the JVMTI code
   105 // knows about ObjectWaiters, so we'll have to reconcile that code.
   106 // See next_waiter(), first_waiter(), etc.
   108 class ObjectWaiter : public StackObj {
   109  public:
   110   enum TStates { TS_UNDEF, TS_READY, TS_RUN, TS_WAIT, TS_ENTER, TS_CXQ } ;
   111   enum Sorted  { PREPEND, APPEND, SORTED } ;
   112   ObjectWaiter * volatile _next;
   113   ObjectWaiter * volatile _prev;
   114   Thread*       _thread;
   115   ParkEvent *   _event;
   116   volatile int  _notified ;
   117   volatile TStates TState ;
   118   Sorted        _Sorted ;           // List placement disposition
   119   bool          _active ;           // Contention monitoring is enabled
   120  public:
   121   ObjectWaiter(Thread* thread) {
   122     _next     = NULL;
   123     _prev     = NULL;
   124     _notified = 0;
   125     TState    = TS_RUN ;
   126     _thread   = thread;
   127     _event    = thread->_ParkEvent ;
   128     _active   = false;
   129     assert (_event != NULL, "invariant") ;
   130   }
   132   void wait_reenter_begin(ObjectMonitor *mon) {
   133     JavaThread *jt = (JavaThread *)this->_thread;
   134     _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
   135   }
   137   void wait_reenter_end(ObjectMonitor *mon) {
   138     JavaThread *jt = (JavaThread *)this->_thread;
   139     JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
   140   }
   141 };
   143 enum ManifestConstants {
   144     ClearResponsibleAtSTW   = 0,
   145     MaximumRecheckInterval  = 1000
   146 } ;
   149 #undef TEVENT
   150 #define TEVENT(nom) {if (SyncVerbose) FEVENT(nom); }
   152 #define FEVENT(nom) { static volatile int ctr = 0 ; int v = ++ctr ; if ((v & (v-1)) == 0) { ::printf (#nom " : %d \n", v); ::fflush(stdout); }}
   154 #undef  TEVENT
   155 #define TEVENT(nom) {;}
   157 // Performance concern:
   158 // OrderAccess::storestore() calls release() which STs 0 into the global volatile
   159 // OrderAccess::Dummy variable.  This store is unnecessary for correctness.
   160 // Many threads STing into a common location causes considerable cache migration
   161 // or "sloshing" on large SMP system.  As such, I avoid using OrderAccess::storestore()
   162 // until it's repaired.  In some cases OrderAccess::fence() -- which incurs local
   163 // latency on the executing processor -- is a better choice as it scales on SMP
   164 // systems.  See http://blogs.sun.com/dave/entry/biased_locking_in_hotspot for a
   165 // discussion of coherency costs.  Note that all our current reference platforms
   166 // provide strong ST-ST order, so the issue is moot on IA32, x64, and SPARC.
   167 //
   168 // As a general policy we use "volatile" to control compiler-based reordering
   169 // and explicit fences (barriers) to control for architectural reordering performed
   170 // by the CPU(s) or platform.
   172 static int  MBFence (int x) { OrderAccess::fence(); return x; }
   174 struct SharedGlobals {
   175     // These are highly shared mostly-read variables.
   176     // To avoid false-sharing they need to be the sole occupants of a $ line.
   177     double padPrefix [8];
   178     volatile int stwRandom ;
   179     volatile int stwCycle ;
   181     // Hot RW variables -- Sequester to avoid false-sharing
   182     double padSuffix [16];
   183     volatile int hcSequence ;
   184     double padFinal [8] ;
   185 } ;
   187 static SharedGlobals GVars ;
   188 static int MonitorScavengeThreshold = 1000000 ;
   189 static volatile int ForceMonitorScavenge = 0 ; // Scavenge required and pending
   192 // Tunables ...
   193 // The knob* variables are effectively final.  Once set they should
   194 // never be modified hence.  Consider using __read_mostly with GCC.
   196 static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
   197 static int Knob_HandOff            = 0 ;
   198 static int Knob_Verbose            = 0 ;
   199 static int Knob_ReportSettings     = 0 ;
   201 static int Knob_SpinLimit          = 5000 ;    // derived by an external tool -
   202 static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
   203 static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
   204 static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
   205 static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
   206 static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
   207 static int Knob_SpinEarly          = 1 ;
   208 static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
   209 static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
   210 static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
   211 static int Knob_Bonus              = 100 ;     // spin success bonus
   212 static int Knob_BonusB             = 100 ;     // spin success bonus
   213 static int Knob_Penalty            = 200 ;     // spin failure penalty
   214 static int Knob_Poverty            = 1000 ;
   215 static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
   216 static int Knob_FixedSpin          = 0 ;
   217 static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
   218 static int Knob_UsePause           = 1 ;
   219 static int Knob_ExitPolicy         = 0 ;
   220 static int Knob_PreSpin            = 10 ;      // 20-100 likely better
   221 static int Knob_ResetEvent         = 0 ;
   222 static int BackOffMask             = 0 ;
   224 static int Knob_FastHSSEC          = 0 ;
   225 static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
   226 static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
   227 static volatile int InitDone       = 0 ;
   230 // hashCode() generation :
   231 //
   232 // Possibilities:
   233 // * MD5Digest of {obj,stwRandom}
   234 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
   235 // * A DES- or AES-style SBox[] mechanism
   236 // * One of the Phi-based schemes, such as:
   237 //   2654435761 = 2^32 * Phi (golden ratio)
   238 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
   239 // * A variation of Marsaglia's shift-xor RNG scheme.
   240 // * (obj ^ stwRandom) is appealing, but can result
   241 //   in undesirable regularity in the hashCode values of adjacent objects
   242 //   (objects allocated back-to-back, in particular).  This could potentially
   243 //   result in hashtable collisions and reduced hashtable efficiency.
   244 //   There are simple ways to "diffuse" the middle address bits over the
   245 //   generated hashCode values:
   246 //
   248 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
   249   intptr_t value = 0 ;
   250   if (hashCode == 0) {
   251      // This form uses an unguarded global Park-Miller RNG,
   252      // so it's possible for two threads to race and generate the same RNG.
   253      // On MP system we'll have lots of RW access to a global, so the
   254      // mechanism induces lots of coherency traffic.
   255      value = os::random() ;
   256   } else
   257   if (hashCode == 1) {
   258      // This variation has the property of being stable (idempotent)
   259      // between STW operations.  This can be useful in some of the 1-0
   260      // synchronization schemes.
   261      intptr_t addrBits = intptr_t(obj) >> 3 ;
   262      value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
   263   } else
   264   if (hashCode == 2) {
   265      value = 1 ;            // for sensitivity testing
   266   } else
   267   if (hashCode == 3) {
   268      value = ++GVars.hcSequence ;
   269   } else
   270   if (hashCode == 4) {
   271      value = intptr_t(obj) ;
   272   } else {
   273      // Marsaglia's xor-shift scheme with thread-specific state
   274      // This is probably the best overall implementation -- we'll
   275      // likely make this the default in future releases.
   276      unsigned t = Self->_hashStateX ;
   277      t ^= (t << 11) ;
   278      Self->_hashStateX = Self->_hashStateY ;
   279      Self->_hashStateY = Self->_hashStateZ ;
   280      Self->_hashStateZ = Self->_hashStateW ;
   281      unsigned v = Self->_hashStateW ;
   282      v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
   283      Self->_hashStateW = v ;
   284      value = v ;
   285   }
   287   value &= markOopDesc::hash_mask;
   288   if (value == 0) value = 0xBAD ;
   289   assert (value != markOopDesc::no_hash, "invariant") ;
   290   TEVENT (hashCode: GENERATE) ;
   291   return value;
   292 }
   294 void BasicLock::print_on(outputStream* st) const {
   295   st->print("monitor");
   296 }
   298 void BasicLock::move_to(oop obj, BasicLock* dest) {
   299   // Check to see if we need to inflate the lock. This is only needed
   300   // if an object is locked using "this" lightweight monitor. In that
   301   // case, the displaced_header() is unlocked, because the
   302   // displaced_header() contains the header for the originally unlocked
   303   // object. However the object could have already been inflated. But it
   304   // does not matter, the inflation will just a no-op. For other cases,
   305   // the displaced header will be either 0x0 or 0x3, which are location
   306   // independent, therefore the BasicLock is free to move.
   307   //
   308   // During OSR we may need to relocate a BasicLock (which contains a
   309   // displaced word) from a location in an interpreter frame to a
   310   // new location in a compiled frame.  "this" refers to the source
   311   // basiclock in the interpreter frame.  "dest" refers to the destination
   312   // basiclock in the new compiled frame.  We *always* inflate in move_to().
   313   // The always-Inflate policy works properly, but in 1.5.0 it can sometimes
   314   // cause performance problems in code that makes heavy use of a small # of
   315   // uncontended locks.   (We'd inflate during OSR, and then sync performance
   316   // would subsequently plummet because the thread would be forced thru the slow-path).
   317   // This problem has been made largely moot on IA32 by inlining the inflated fast-path
   318   // operations in Fast_Lock and Fast_Unlock in i486.ad.
   319   //
   320   // Note that there is a way to safely swing the object's markword from
   321   // one stack location to another.  This avoids inflation.  Obviously,
   322   // we need to ensure that both locations refer to the current thread's stack.
   323   // There are some subtle concurrency issues, however, and since the benefit is
   324   // is small (given the support for inflated fast-path locking in the fast_lock, etc)
   325   // we'll leave that optimization for another time.
   327   if (displaced_header()->is_neutral()) {
   328     ObjectSynchronizer::inflate_helper(obj);
   329     // WARNING: We can not put check here, because the inflation
   330     // will not update the displaced header. Once BasicLock is inflated,
   331     // no one should ever look at its content.
   332   } else {
   333     // Typically the displaced header will be 0 (recursive stack lock) or
   334     // unused_mark.  Naively we'd like to assert that the displaced mark
   335     // value is either 0, neutral, or 3.  But with the advent of the
   336     // store-before-CAS avoidance in fast_lock/compiler_lock_object
   337     // we can find any flavor mark in the displaced mark.
   338   }
   339 // [RGV] The next line appears to do nothing!
   340   intptr_t dh = (intptr_t) displaced_header();
   341   dest->set_displaced_header(displaced_header());
   342 }
   344 // -----------------------------------------------------------------------------
   346 // standard constructor, allows locking failures
   347 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
   348   _dolock = doLock;
   349   _thread = thread;
   350   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
   351   _obj = obj;
   353   if (_dolock) {
   354     TEVENT (ObjectLocker) ;
   356     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
   357   }
   358 }
   360 ObjectLocker::~ObjectLocker() {
   361   if (_dolock) {
   362     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
   363   }
   364 }
   366 // -----------------------------------------------------------------------------
   369 PerfCounter * ObjectSynchronizer::_sync_Inflations                  = NULL ;
   370 PerfCounter * ObjectSynchronizer::_sync_Deflations                  = NULL ;
   371 PerfCounter * ObjectSynchronizer::_sync_ContendedLockAttempts       = NULL ;
   372 PerfCounter * ObjectSynchronizer::_sync_FutileWakeups               = NULL ;
   373 PerfCounter * ObjectSynchronizer::_sync_Parks                       = NULL ;
   374 PerfCounter * ObjectSynchronizer::_sync_EmptyNotifications          = NULL ;
   375 PerfCounter * ObjectSynchronizer::_sync_Notifications               = NULL ;
   376 PerfCounter * ObjectSynchronizer::_sync_PrivateA                    = NULL ;
   377 PerfCounter * ObjectSynchronizer::_sync_PrivateB                    = NULL ;
   378 PerfCounter * ObjectSynchronizer::_sync_SlowExit                    = NULL ;
   379 PerfCounter * ObjectSynchronizer::_sync_SlowEnter                   = NULL ;
   380 PerfCounter * ObjectSynchronizer::_sync_SlowNotify                  = NULL ;
   381 PerfCounter * ObjectSynchronizer::_sync_SlowNotifyAll               = NULL ;
   382 PerfCounter * ObjectSynchronizer::_sync_FailedSpins                 = NULL ;
   383 PerfCounter * ObjectSynchronizer::_sync_SuccessfulSpins             = NULL ;
   384 PerfCounter * ObjectSynchronizer::_sync_MonInCirculation            = NULL ;
   385 PerfCounter * ObjectSynchronizer::_sync_MonScavenged                = NULL ;
   386 PerfLongVariable * ObjectSynchronizer::_sync_MonExtant              = NULL ;
   388 // One-shot global initialization for the sync subsystem.
   389 // We could also defer initialization and initialize on-demand
   390 // the first time we call inflate().  Initialization would
   391 // be protected - like so many things - by the MonitorCache_lock.
   393 void ObjectSynchronizer::Initialize () {
   394   static int InitializationCompleted = 0 ;
   395   assert (InitializationCompleted == 0, "invariant") ;
   396   InitializationCompleted = 1 ;
   397   if (UsePerfData) {
   398       EXCEPTION_MARK ;
   399       #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
   400       #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
   401       NEWPERFCOUNTER(_sync_Inflations) ;
   402       NEWPERFCOUNTER(_sync_Deflations) ;
   403       NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
   404       NEWPERFCOUNTER(_sync_FutileWakeups) ;
   405       NEWPERFCOUNTER(_sync_Parks) ;
   406       NEWPERFCOUNTER(_sync_EmptyNotifications) ;
   407       NEWPERFCOUNTER(_sync_Notifications) ;
   408       NEWPERFCOUNTER(_sync_SlowEnter) ;
   409       NEWPERFCOUNTER(_sync_SlowExit) ;
   410       NEWPERFCOUNTER(_sync_SlowNotify) ;
   411       NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
   412       NEWPERFCOUNTER(_sync_FailedSpins) ;
   413       NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
   414       NEWPERFCOUNTER(_sync_PrivateA) ;
   415       NEWPERFCOUNTER(_sync_PrivateB) ;
   416       NEWPERFCOUNTER(_sync_MonInCirculation) ;
   417       NEWPERFCOUNTER(_sync_MonScavenged) ;
   418       NEWPERFVARIABLE(_sync_MonExtant) ;
   419       #undef NEWPERFCOUNTER
   420   }
   421 }
   423 // Compile-time asserts
   424 // When possible, it's better to catch errors deterministically at
   425 // compile-time than at runtime.  The down-side to using compile-time
   426 // asserts is that error message -- often something about negative array
   427 // indices -- is opaque.
   429 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
   431 void ObjectMonitor::ctAsserts() {
   432   CTASSERT(offset_of (ObjectMonitor, _header) == 0);
   433 }
   435 static int Adjust (volatile int * adr, int dx) {
   436   int v ;
   437   for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
   438   return v ;
   439 }
   441 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
   442 //
   443 // We employ SpinLocks _only for low-contention, fixed-length
   444 // short-duration critical sections where we're concerned
   445 // about native mutex_t or HotSpot Mutex:: latency.
   446 // The mux construct provides a spin-then-block mutual exclusion
   447 // mechanism.
   448 //
   449 // Testing has shown that contention on the ListLock guarding gFreeList
   450 // is common.  If we implement ListLock as a simple SpinLock it's common
   451 // for the JVM to devolve to yielding with little progress.  This is true
   452 // despite the fact that the critical sections protected by ListLock are
   453 // extremely short.
   454 //
   455 // TODO-FIXME: ListLock should be of type SpinLock.
   456 // We should make this a 1st-class type, integrated into the lock
   457 // hierarchy as leaf-locks.  Critically, the SpinLock structure
   458 // should have sufficient padding to avoid false-sharing and excessive
   459 // cache-coherency traffic.
   462 typedef volatile int SpinLockT ;
   464 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
   465   if (Atomic::cmpxchg (1, adr, 0) == 0) {
   466      return ;   // normal fast-path return
   467   }
   469   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
   470   TEVENT (SpinAcquire - ctx) ;
   471   int ctr = 0 ;
   472   int Yields = 0 ;
   473   for (;;) {
   474      while (*adr != 0) {
   475         ++ctr ;
   476         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
   477            if (Yields > 5) {
   478              // Consider using a simple NakedSleep() instead.
   479              // Then SpinAcquire could be called by non-JVM threads
   480              Thread::current()->_ParkEvent->park(1) ;
   481            } else {
   482              os::NakedYield() ;
   483              ++Yields ;
   484            }
   485         } else {
   486            SpinPause() ;
   487         }
   488      }
   489      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
   490   }
   491 }
   493 void Thread::SpinRelease (volatile int * adr) {
   494   assert (*adr != 0, "invariant") ;
   495   OrderAccess::fence() ;      // guarantee at least release consistency.
   496   // Roach-motel semantics.
   497   // It's safe if subsequent LDs and STs float "up" into the critical section,
   498   // but prior LDs and STs within the critical section can't be allowed
   499   // to reorder or float past the ST that releases the lock.
   500   *adr = 0 ;
   501 }
   503 // muxAcquire and muxRelease:
   504 //
   505 // *  muxAcquire and muxRelease support a single-word lock-word construct.
   506 //    The LSB of the word is set IFF the lock is held.
   507 //    The remainder of the word points to the head of a singly-linked list
   508 //    of threads blocked on the lock.
   509 //
   510 // *  The current implementation of muxAcquire-muxRelease uses its own
   511 //    dedicated Thread._MuxEvent instance.  If we're interested in
   512 //    minimizing the peak number of extant ParkEvent instances then
   513 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
   514 //    as certain invariants were satisfied.  Specifically, care would need
   515 //    to be taken with regards to consuming unpark() "permits".
   516 //    A safe rule of thumb is that a thread would never call muxAcquire()
   517 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
   518 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
   519 //    consume an unpark() permit intended for monitorenter, for instance.
   520 //    One way around this would be to widen the restricted-range semaphore
   521 //    implemented in park().  Another alternative would be to provide
   522 //    multiple instances of the PlatformEvent() for each thread.  One
   523 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
   524 //
   525 // *  Usage:
   526 //    -- Only as leaf locks
   527 //    -- for short-term locking only as muxAcquire does not perform
   528 //       thread state transitions.
   529 //
   530 // Alternatives:
   531 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
   532 //    but with parking or spin-then-park instead of pure spinning.
   533 // *  Use Taura-Oyama-Yonenzawa locks.
   534 // *  It's possible to construct a 1-0 lock if we encode the lockword as
   535 //    (List,LockByte).  Acquire will CAS the full lockword while Release
   536 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
   537 //    acquiring threads use timers (ParkTimed) to detect and recover from
   538 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
   539 //    boundaries by using placement-new.
   540 // *  Augment MCS with advisory back-link fields maintained with CAS().
   541 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
   542 //    The validity of the backlinks must be ratified before we trust the value.
   543 //    If the backlinks are invalid the exiting thread must back-track through the
   544 //    the forward links, which are always trustworthy.
   545 // *  Add a successor indication.  The LockWord is currently encoded as
   546 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
   547 //    to provide the usual futile-wakeup optimization.
   548 //    See RTStt for details.
   549 // *  Consider schedctl.sc_nopreempt to cover the critical section.
   550 //
   553 typedef volatile intptr_t MutexT ;      // Mux Lock-word
   554 enum MuxBits { LOCKBIT = 1 } ;
   556 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
   557   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
   558   if (w == 0) return ;
   559   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
   560      return ;
   561   }
   563   TEVENT (muxAcquire - Contention) ;
   564   ParkEvent * const Self = Thread::current()->_MuxEvent ;
   565   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
   566   for (;;) {
   567      int its = (os::is_MP() ? 100 : 0) + 1 ;
   569      // Optional spin phase: spin-then-park strategy
   570      while (--its >= 0) {
   571        w = *Lock ;
   572        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
   573           return ;
   574        }
   575      }
   577      Self->reset() ;
   578      Self->OnList = intptr_t(Lock) ;
   579      // The following fence() isn't _strictly necessary as the subsequent
   580      // CAS() both serializes execution and ratifies the fetched *Lock value.
   581      OrderAccess::fence();
   582      for (;;) {
   583         w = *Lock ;
   584         if ((w & LOCKBIT) == 0) {
   585             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
   586                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
   587                 return ;
   588             }
   589             continue ;      // Interference -- *Lock changed -- Just retry
   590         }
   591         assert (w & LOCKBIT, "invariant") ;
   592         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
   593         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
   594      }
   596      while (Self->OnList != 0) {
   597         Self->park() ;
   598      }
   599   }
   600 }
   602 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
   603   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
   604   if (w == 0) return ;
   605   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
   606     return ;
   607   }
   609   TEVENT (muxAcquire - Contention) ;
   610   ParkEvent * ReleaseAfter = NULL ;
   611   if (ev == NULL) {
   612     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
   613   }
   614   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
   615   for (;;) {
   616     guarantee (ev->OnList == 0, "invariant") ;
   617     int its = (os::is_MP() ? 100 : 0) + 1 ;
   619     // Optional spin phase: spin-then-park strategy
   620     while (--its >= 0) {
   621       w = *Lock ;
   622       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
   623         if (ReleaseAfter != NULL) {
   624           ParkEvent::Release (ReleaseAfter) ;
   625         }
   626         return ;
   627       }
   628     }
   630     ev->reset() ;
   631     ev->OnList = intptr_t(Lock) ;
   632     // The following fence() isn't _strictly necessary as the subsequent
   633     // CAS() both serializes execution and ratifies the fetched *Lock value.
   634     OrderAccess::fence();
   635     for (;;) {
   636       w = *Lock ;
   637       if ((w & LOCKBIT) == 0) {
   638         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
   639           ev->OnList = 0 ;
   640           // We call ::Release while holding the outer lock, thus
   641           // artificially lengthening the critical section.
   642           // Consider deferring the ::Release() until the subsequent unlock(),
   643           // after we've dropped the outer lock.
   644           if (ReleaseAfter != NULL) {
   645             ParkEvent::Release (ReleaseAfter) ;
   646           }
   647           return ;
   648         }
   649         continue ;      // Interference -- *Lock changed -- Just retry
   650       }
   651       assert (w & LOCKBIT, "invariant") ;
   652       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
   653       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
   654     }
   656     while (ev->OnList != 0) {
   657       ev->park() ;
   658     }
   659   }
   660 }
   662 // Release() must extract a successor from the list and then wake that thread.
   663 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
   664 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
   665 // Release() would :
   666 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
   667 // (B) Extract a successor from the private list "in-hand"
   668 // (C) attempt to CAS() the residual back into *Lock over null.
   669 //     If there were any newly arrived threads and the CAS() would fail.
   670 //     In that case Release() would detach the RATs, re-merge the list in-hand
   671 //     with the RATs and repeat as needed.  Alternately, Release() might
   672 //     detach and extract a successor, but then pass the residual list to the wakee.
   673 //     The wakee would be responsible for reattaching and remerging before it
   674 //     competed for the lock.
   675 //
   676 // Both "pop" and DMR are immune from ABA corruption -- there can be
   677 // multiple concurrent pushers, but only one popper or detacher.
   678 // This implementation pops from the head of the list.  This is unfair,
   679 // but tends to provide excellent throughput as hot threads remain hot.
   680 // (We wake recently run threads first).
   682 void Thread::muxRelease (volatile intptr_t * Lock)  {
   683   for (;;) {
   684     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
   685     assert (w & LOCKBIT, "invariant") ;
   686     if (w == LOCKBIT) return ;
   687     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
   688     assert (List != NULL, "invariant") ;
   689     assert (List->OnList == intptr_t(Lock), "invariant") ;
   690     ParkEvent * nxt = List->ListNext ;
   692     // The following CAS() releases the lock and pops the head element.
   693     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
   694       continue ;
   695     }
   696     List->OnList = 0 ;
   697     OrderAccess::fence() ;
   698     List->unpark () ;
   699     return ;
   700   }
   701 }
   703 // ObjectMonitor Lifecycle
   704 // -----------------------
   705 // Inflation unlinks monitors from the global gFreeList and
   706 // associates them with objects.  Deflation -- which occurs at
   707 // STW-time -- disassociates idle monitors from objects.  Such
   708 // scavenged monitors are returned to the gFreeList.
   709 //
   710 // The global list is protected by ListLock.  All the critical sections
   711 // are short and operate in constant-time.
   712 //
   713 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
   714 //
   715 // Lifecycle:
   716 // --   unassigned and on the global free list
   717 // --   unassigned and on a thread's private omFreeList
   718 // --   assigned to an object.  The object is inflated and the mark refers
   719 //      to the objectmonitor.
   720 //
   721 // TODO-FIXME:
   722 //
   723 // *  We currently protect the gFreeList with a simple lock.
   724 //    An alternate lock-free scheme would be to pop elements from the gFreeList
   725 //    with CAS.  This would be safe from ABA corruption as long we only
   726 //    recycled previously appearing elements onto the list in deflate_idle_monitors()
   727 //    at STW-time.  Completely new elements could always be pushed onto the gFreeList
   728 //    with CAS.  Elements that appeared previously on the list could only
   729 //    be installed at STW-time.
   730 //
   731 // *  For efficiency and to help reduce the store-before-CAS penalty
   732 //    the objectmonitors on gFreeList or local free lists should be ready to install
   733 //    with the exception of _header and _object.  _object can be set after inflation.
   734 //    In particular, keep all objectMonitors on a thread's private list in ready-to-install
   735 //    state with m.Owner set properly.
   736 //
   737 // *  We could all diffuse contention by using multiple global (FreeList, Lock)
   738 //    pairs -- threads could use trylock() and a cyclic-scan strategy to search for
   739 //    an unlocked free list.
   740 //
   741 // *  Add lifecycle tags and assert()s.
   742 //
   743 // *  Be more consistent about when we clear an objectmonitor's fields:
   744 //    A.  After extracting the objectmonitor from a free list.
   745 //    B.  After adding an objectmonitor to a free list.
   746 //
   748 ObjectMonitor * ObjectSynchronizer::gBlockList = NULL ;
   749 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL ;
   750 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL ;
   751 int ObjectSynchronizer::gOmInUseCount = 0;
   752 static volatile intptr_t ListLock = 0 ;      // protects global monitor free-list cache
   753 static volatile int MonitorFreeCount  = 0 ;      // # on gFreeList
   754 static volatile int MonitorPopulation = 0 ;      // # Extant -- in circulation
   755 #define CHAINMARKER ((oop)-1)
   757 // Constraining monitor pool growth via MonitorBound ...
   758 //
   759 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
   760 // the rate of scavenging is driven primarily by GC.  As such,  we can find
   761 // an inordinate number of monitors in circulation.
   762 // To avoid that scenario we can artificially induce a STW safepoint
   763 // if the pool appears to be growing past some reasonable bound.
   764 // Generally we favor time in space-time tradeoffs, but as there's no
   765 // natural back-pressure on the # of extant monitors we need to impose some
   766 // type of limit.  Beware that if MonitorBound is set to too low a value
   767 // we could just loop. In addition, if MonitorBound is set to a low value
   768 // we'll incur more safepoints, which are harmful to performance.
   769 // See also: GuaranteedSafepointInterval
   770 //
   771 // As noted elsewhere, the correct long-term solution is to deflate at
   772 // monitorexit-time, in which case the number of inflated objects is bounded
   773 // by the number of threads.  That policy obviates the need for scavenging at
   774 // STW safepoint time.   As an aside, scavenging can be time-consuming when the
   775 // # of extant monitors is large.   Unfortunately there's a day-1 assumption baked
   776 // into much HotSpot code that the object::monitor relationship, once established
   777 // or observed, will remain stable except over potential safepoints.
   778 //
   779 // We can use either a blocking synchronous VM operation or an async VM operation.
   780 // -- If we use a blocking VM operation :
   781 //    Calls to ScavengeCheck() should be inserted only into 'safe' locations in paths
   782 //    that lead to ::inflate() or ::omAlloc().
   783 //    Even though the safepoint will not directly induce GC, a GC might
   784 //    piggyback on the safepoint operation, so the caller should hold no naked oops.
   785 //    Furthermore, monitor::object relationships are NOT necessarily stable over this call
   786 //    unless the caller has made provisions to "pin" the object to the monitor, say
   787 //    by incrementing the monitor's _count field.
   788 // -- If we use a non-blocking asynchronous VM operation :
   789 //    the constraints above don't apply.  The safepoint will fire in the future
   790 //    at a more convenient time.  On the other hand the latency between posting and
   791 //    running the safepoint introduces or admits "slop" or laxity during which the
   792 //    monitor population can climb further above the threshold.  The monitor population,
   793 //    however, tends to converge asymptotically over time to a count that's slightly
   794 //    above the target value specified by MonitorBound.   That is, we avoid unbounded
   795 //    growth, albeit with some imprecision.
   796 //
   797 // The current implementation uses asynchronous VM operations.
   798 //
   799 // Ideally we'd check if (MonitorPopulation > MonitorBound) in omAlloc()
   800 // immediately before trying to grow the global list via allocation.
   801 // If the predicate was true then we'd induce a synchronous safepoint, wait
   802 // for the safepoint to complete, and then again to allocate from the global
   803 // free list.  This approach is much simpler and precise, admitting no "slop".
   804 // Unfortunately we can't safely safepoint in the midst of omAlloc(), so
   805 // instead we use asynchronous safepoints.
   807 static void InduceScavenge (Thread * Self, const char * Whence) {
   808   // Induce STW safepoint to trim monitors
   809   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
   810   // More precisely, trigger an asynchronous STW safepoint as the number
   811   // of active monitors passes the specified threshold.
   812   // TODO: assert thread state is reasonable
   814   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
   815     if (Knob_Verbose) {
   816       ::printf ("Monitor scavenge - Induced STW @%s (%d)\n", Whence, ForceMonitorScavenge) ;
   817       ::fflush(stdout) ;
   818     }
   819     // Induce a 'null' safepoint to scavenge monitors
   820     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
   821     // to the VMthread and have a lifespan longer than that of this activation record.
   822     // The VMThread will delete the op when completed.
   823     VMThread::execute (new VM_ForceAsyncSafepoint()) ;
   825     if (Knob_Verbose) {
   826       ::printf ("Monitor scavenge - STW posted @%s (%d)\n", Whence, ForceMonitorScavenge) ;
   827       ::fflush(stdout) ;
   828     }
   829   }
   830 }
   831 /* Too slow for general assert or debug
   832 void ObjectSynchronizer::verifyInUse (Thread *Self) {
   833    ObjectMonitor* mid;
   834    int inusetally = 0;
   835    for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
   836      inusetally ++;
   837    }
   838    assert(inusetally == Self->omInUseCount, "inuse count off");
   840    int freetally = 0;
   841    for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
   842      freetally ++;
   843    }
   844    assert(freetally == Self->omFreeCount, "free count off");
   845 }
   846 */
   848 ObjectMonitor * ATTR ObjectSynchronizer::omAlloc (Thread * Self) {
   849     // A large MAXPRIVATE value reduces both list lock contention
   850     // and list coherency traffic, but also tends to increase the
   851     // number of objectMonitors in circulation as well as the STW
   852     // scavenge costs.  As usual, we lean toward time in space-time
   853     // tradeoffs.
   854     const int MAXPRIVATE = 1024 ;
   855     for (;;) {
   856         ObjectMonitor * m ;
   858         // 1: try to allocate from the thread's local omFreeList.
   859         // Threads will attempt to allocate first from their local list, then
   860         // from the global list, and only after those attempts fail will the thread
   861         // attempt to instantiate new monitors.   Thread-local free lists take
   862         // heat off the ListLock and improve allocation latency, as well as reducing
   863         // coherency traffic on the shared global list.
   864         m = Self->omFreeList ;
   865         if (m != NULL) {
   866            Self->omFreeList = m->FreeNext ;
   867            Self->omFreeCount -- ;
   868            // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
   869            guarantee (m->object() == NULL, "invariant") ;
   870            if (MonitorInUseLists) {
   871              m->FreeNext = Self->omInUseList;
   872              Self->omInUseList = m;
   873              Self->omInUseCount ++;
   874              // verifyInUse(Self);
   875            } else {
   876              m->FreeNext = NULL;
   877            }
   878            return m ;
   879         }
   881         // 2: try to allocate from the global gFreeList
   882         // CONSIDER: use muxTry() instead of muxAcquire().
   883         // If the muxTry() fails then drop immediately into case 3.
   884         // If we're using thread-local free lists then try
   885         // to reprovision the caller's free list.
   886         if (gFreeList != NULL) {
   887             // Reprovision the thread's omFreeList.
   888             // Use bulk transfers to reduce the allocation rate and heat
   889             // on various locks.
   890             Thread::muxAcquire (&ListLock, "omAlloc") ;
   891             for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL; ) {
   892                 MonitorFreeCount --;
   893                 ObjectMonitor * take = gFreeList ;
   894                 gFreeList = take->FreeNext ;
   895                 guarantee (take->object() == NULL, "invariant") ;
   896                 guarantee (!take->is_busy(), "invariant") ;
   897                 take->Recycle() ;
   898                 omRelease (Self, take, false) ;
   899             }
   900             Thread::muxRelease (&ListLock) ;
   901             Self->omFreeProvision += 1 + (Self->omFreeProvision/2) ;
   902             if (Self->omFreeProvision > MAXPRIVATE ) Self->omFreeProvision = MAXPRIVATE ;
   903             TEVENT (omFirst - reprovision) ;
   905             const int mx = MonitorBound ;
   906             if (mx > 0 && (MonitorPopulation-MonitorFreeCount) > mx) {
   907               // We can't safely induce a STW safepoint from omAlloc() as our thread
   908               // state may not be appropriate for such activities and callers may hold
   909               // naked oops, so instead we defer the action.
   910               InduceScavenge (Self, "omAlloc") ;
   911             }
   912             continue;
   913         }
   915         // 3: allocate a block of new ObjectMonitors
   916         // Both the local and global free lists are empty -- resort to malloc().
   917         // In the current implementation objectMonitors are TSM - immortal.
   918         assert (_BLOCKSIZE > 1, "invariant") ;
   919         ObjectMonitor * temp = new ObjectMonitor[_BLOCKSIZE];
   921         // NOTE: (almost) no way to recover if allocation failed.
   922         // We might be able to induce a STW safepoint and scavenge enough
   923         // objectMonitors to permit progress.
   924         if (temp == NULL) {
   925             vm_exit_out_of_memory (sizeof (ObjectMonitor[_BLOCKSIZE]), "Allocate ObjectMonitors") ;
   926         }
   928         // Format the block.
   929         // initialize the linked list, each monitor points to its next
   930         // forming the single linked free list, the very first monitor
   931         // will points to next block, which forms the block list.
   932         // The trick of using the 1st element in the block as gBlockList
   933         // linkage should be reconsidered.  A better implementation would
   934         // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
   936         for (int i = 1; i < _BLOCKSIZE ; i++) {
   937            temp[i].FreeNext = &temp[i+1];
   938         }
   940         // terminate the last monitor as the end of list
   941         temp[_BLOCKSIZE - 1].FreeNext = NULL ;
   943         // Element [0] is reserved for global list linkage
   944         temp[0].set_object(CHAINMARKER);
   946         // Consider carving out this thread's current request from the
   947         // block in hand.  This avoids some lock traffic and redundant
   948         // list activity.
   950         // Acquire the ListLock to manipulate BlockList and FreeList.
   951         // An Oyama-Taura-Yonezawa scheme might be more efficient.
   952         Thread::muxAcquire (&ListLock, "omAlloc [2]") ;
   953         MonitorPopulation += _BLOCKSIZE-1;
   954         MonitorFreeCount += _BLOCKSIZE-1;
   956         // Add the new block to the list of extant blocks (gBlockList).
   957         // The very first objectMonitor in a block is reserved and dedicated.
   958         // It serves as blocklist "next" linkage.
   959         temp[0].FreeNext = gBlockList;
   960         gBlockList = temp;
   962         // Add the new string of objectMonitors to the global free list
   963         temp[_BLOCKSIZE - 1].FreeNext = gFreeList ;
   964         gFreeList = temp + 1;
   965         Thread::muxRelease (&ListLock) ;
   966         TEVENT (Allocate block of monitors) ;
   967     }
   968 }
   970 // Place "m" on the caller's private per-thread omFreeList.
   971 // In practice there's no need to clamp or limit the number of
   972 // monitors on a thread's omFreeList as the only time we'll call
   973 // omRelease is to return a monitor to the free list after a CAS
   974 // attempt failed.  This doesn't allow unbounded #s of monitors to
   975 // accumulate on a thread's free list.
   976 //
   977 // In the future the usage of omRelease() might change and monitors
   978 // could migrate between free lists.  In that case to avoid excessive
   979 // accumulation we could  limit omCount to (omProvision*2), otherwise return
   980 // the objectMonitor to the global list.  We should drain (return) in reasonable chunks.
   981 // That is, *not* one-at-a-time.
   984 void ObjectSynchronizer::omRelease (Thread * Self, ObjectMonitor * m, bool fromPerThreadAlloc) {
   985     guarantee (m->object() == NULL, "invariant") ;
   987     // Remove from omInUseList
   988     if (MonitorInUseLists && fromPerThreadAlloc) {
   989       ObjectMonitor* curmidinuse = NULL;
   990       for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; ) {
   991        if (m == mid) {
   992          // extract from per-thread in-use-list
   993          if (mid == Self->omInUseList) {
   994            Self->omInUseList = mid->FreeNext;
   995          } else if (curmidinuse != NULL) {
   996            curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
   997          }
   998          Self->omInUseCount --;
   999          // verifyInUse(Self);
  1000          break;
  1001        } else {
  1002          curmidinuse = mid;
  1003          mid = mid->FreeNext;
  1008   // FreeNext is used for both onInUseList and omFreeList, so clear old before setting new
  1009   m->FreeNext = Self->omFreeList ;
  1010   Self->omFreeList = m ;
  1011   Self->omFreeCount ++ ;
  1014 // Return the monitors of a moribund thread's local free list to
  1015 // the global free list.  Typically a thread calls omFlush() when
  1016 // it's dying.  We could also consider having the VM thread steal
  1017 // monitors from threads that have not run java code over a few
  1018 // consecutive STW safepoints.  Relatedly, we might decay
  1019 // omFreeProvision at STW safepoints.
  1020 //
  1021 // Also return the monitors of a moribund thread"s omInUseList to
  1022 // a global gOmInUseList under the global list lock so these
  1023 // will continue to be scanned.
  1024 //
  1025 // We currently call omFlush() from the Thread:: dtor _after the thread
  1026 // has been excised from the thread list and is no longer a mutator.
  1027 // That means that omFlush() can run concurrently with a safepoint and
  1028 // the scavenge operator.  Calling omFlush() from JavaThread::exit() might
  1029 // be a better choice as we could safely reason that that the JVM is
  1030 // not at a safepoint at the time of the call, and thus there could
  1031 // be not inopportune interleavings between omFlush() and the scavenge
  1032 // operator.
  1034 void ObjectSynchronizer::omFlush (Thread * Self) {
  1035     ObjectMonitor * List = Self->omFreeList ;  // Null-terminated SLL
  1036     Self->omFreeList = NULL ;
  1037     ObjectMonitor * Tail = NULL ;
  1038     int Tally = 0;
  1039     if (List != NULL) {
  1040       ObjectMonitor * s ;
  1041       for (s = List ; s != NULL ; s = s->FreeNext) {
  1042           Tally ++ ;
  1043           Tail = s ;
  1044           guarantee (s->object() == NULL, "invariant") ;
  1045           guarantee (!s->is_busy(), "invariant") ;
  1046           s->set_owner (NULL) ;   // redundant but good hygiene
  1047           TEVENT (omFlush - Move one) ;
  1049       guarantee (Tail != NULL && List != NULL, "invariant") ;
  1052     ObjectMonitor * InUseList = Self->omInUseList;
  1053     ObjectMonitor * InUseTail = NULL ;
  1054     int InUseTally = 0;
  1055     if (InUseList != NULL) {
  1056       Self->omInUseList = NULL;
  1057       ObjectMonitor *curom;
  1058       for (curom = InUseList; curom != NULL; curom = curom->FreeNext) {
  1059         InUseTail = curom;
  1060         InUseTally++;
  1062 // TODO debug
  1063       assert(Self->omInUseCount == InUseTally, "inuse count off");
  1064       Self->omInUseCount = 0;
  1065       guarantee (InUseTail != NULL && InUseList != NULL, "invariant");
  1068     Thread::muxAcquire (&ListLock, "omFlush") ;
  1069     if (Tail != NULL) {
  1070       Tail->FreeNext = gFreeList ;
  1071       gFreeList = List ;
  1072       MonitorFreeCount += Tally;
  1075     if (InUseTail != NULL) {
  1076       InUseTail->FreeNext = gOmInUseList;
  1077       gOmInUseList = InUseList;
  1078       gOmInUseCount += InUseTally;
  1081     Thread::muxRelease (&ListLock) ;
  1082     TEVENT (omFlush) ;
  1086 // Get the next block in the block list.
  1087 static inline ObjectMonitor* next(ObjectMonitor* block) {
  1088   assert(block->object() == CHAINMARKER, "must be a block header");
  1089   block = block->FreeNext ;
  1090   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
  1091   return block;
  1094 // Fast path code shared by multiple functions
  1095 ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
  1096   markOop mark = obj->mark();
  1097   if (mark->has_monitor()) {
  1098     assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
  1099     assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
  1100     return mark->monitor();
  1102   return ObjectSynchronizer::inflate(Thread::current(), obj);
  1105 // Note that we could encounter some performance loss through false-sharing as
  1106 // multiple locks occupy the same $ line.  Padding might be appropriate.
  1108 #define NINFLATIONLOCKS 256
  1109 static volatile intptr_t InflationLocks [NINFLATIONLOCKS] ;
  1111 static markOop ReadStableMark (oop obj) {
  1112   markOop mark = obj->mark() ;
  1113   if (!mark->is_being_inflated()) {
  1114     return mark ;       // normal fast-path return
  1117   int its = 0 ;
  1118   for (;;) {
  1119     markOop mark = obj->mark() ;
  1120     if (!mark->is_being_inflated()) {
  1121       return mark ;    // normal fast-path return
  1124     // The object is being inflated by some other thread.
  1125     // The caller of ReadStableMark() must wait for inflation to complete.
  1126     // Avoid live-lock
  1127     // TODO: consider calling SafepointSynchronize::do_call_back() while
  1128     // spinning to see if there's a safepoint pending.  If so, immediately
  1129     // yielding or blocking would be appropriate.  Avoid spinning while
  1130     // there is a safepoint pending.
  1131     // TODO: add inflation contention performance counters.
  1132     // TODO: restrict the aggregate number of spinners.
  1134     ++its ;
  1135     if (its > 10000 || !os::is_MP()) {
  1136        if (its & 1) {
  1137          os::NakedYield() ;
  1138          TEVENT (Inflate: INFLATING - yield) ;
  1139        } else {
  1140          // Note that the following code attenuates the livelock problem but is not
  1141          // a complete remedy.  A more complete solution would require that the inflating
  1142          // thread hold the associated inflation lock.  The following code simply restricts
  1143          // the number of spinners to at most one.  We'll have N-2 threads blocked
  1144          // on the inflationlock, 1 thread holding the inflation lock and using
  1145          // a yield/park strategy, and 1 thread in the midst of inflation.
  1146          // A more refined approach would be to change the encoding of INFLATING
  1147          // to allow encapsulation of a native thread pointer.  Threads waiting for
  1148          // inflation to complete would use CAS to push themselves onto a singly linked
  1149          // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
  1150          // and calling park().  When inflation was complete the thread that accomplished inflation
  1151          // would detach the list and set the markword to inflated with a single CAS and
  1152          // then for each thread on the list, set the flag and unpark() the thread.
  1153          // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
  1154          // wakes at most one thread whereas we need to wake the entire list.
  1155          int ix = (intptr_t(obj) >> 5) & (NINFLATIONLOCKS-1) ;
  1156          int YieldThenBlock = 0 ;
  1157          assert (ix >= 0 && ix < NINFLATIONLOCKS, "invariant") ;
  1158          assert ((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant") ;
  1159          Thread::muxAcquire (InflationLocks + ix, "InflationLock") ;
  1160          while (obj->mark() == markOopDesc::INFLATING()) {
  1161            // Beware: NakedYield() is advisory and has almost no effect on some platforms
  1162            // so we periodically call Self->_ParkEvent->park(1).
  1163            // We use a mixed spin/yield/block mechanism.
  1164            if ((YieldThenBlock++) >= 16) {
  1165               Thread::current()->_ParkEvent->park(1) ;
  1166            } else {
  1167               os::NakedYield() ;
  1170          Thread::muxRelease (InflationLocks + ix ) ;
  1171          TEVENT (Inflate: INFLATING - yield/park) ;
  1173     } else {
  1174        SpinPause() ;       // SMP-polite spinning
  1179 ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) {
  1180   // Inflate mutates the heap ...
  1181   // Relaxing assertion for bug 6320749.
  1182   assert (Universe::verify_in_progress() ||
  1183           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
  1185   for (;;) {
  1186       const markOop mark = object->mark() ;
  1187       assert (!mark->has_bias_pattern(), "invariant") ;
  1189       // The mark can be in one of the following states:
  1190       // *  Inflated     - just return
  1191       // *  Stack-locked - coerce it to inflated
  1192       // *  INFLATING    - busy wait for conversion to complete
  1193       // *  Neutral      - aggressively inflate the object.
  1194       // *  BIASED       - Illegal.  We should never see this
  1196       // CASE: inflated
  1197       if (mark->has_monitor()) {
  1198           ObjectMonitor * inf = mark->monitor() ;
  1199           assert (inf->header()->is_neutral(), "invariant");
  1200           assert (inf->object() == object, "invariant") ;
  1201           assert (ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
  1202           return inf ;
  1205       // CASE: inflation in progress - inflating over a stack-lock.
  1206       // Some other thread is converting from stack-locked to inflated.
  1207       // Only that thread can complete inflation -- other threads must wait.
  1208       // The INFLATING value is transient.
  1209       // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
  1210       // We could always eliminate polling by parking the thread on some auxiliary list.
  1211       if (mark == markOopDesc::INFLATING()) {
  1212          TEVENT (Inflate: spin while INFLATING) ;
  1213          ReadStableMark(object) ;
  1214          continue ;
  1217       // CASE: stack-locked
  1218       // Could be stack-locked either by this thread or by some other thread.
  1219       //
  1220       // Note that we allocate the objectmonitor speculatively, _before_ attempting
  1221       // to install INFLATING into the mark word.  We originally installed INFLATING,
  1222       // allocated the objectmonitor, and then finally STed the address of the
  1223       // objectmonitor into the mark.  This was correct, but artificially lengthened
  1224       // the interval in which INFLATED appeared in the mark, thus increasing
  1225       // the odds of inflation contention.
  1226       //
  1227       // We now use per-thread private objectmonitor free lists.
  1228       // These list are reprovisioned from the global free list outside the
  1229       // critical INFLATING...ST interval.  A thread can transfer
  1230       // multiple objectmonitors en-mass from the global free list to its local free list.
  1231       // This reduces coherency traffic and lock contention on the global free list.
  1232       // Using such local free lists, it doesn't matter if the omAlloc() call appears
  1233       // before or after the CAS(INFLATING) operation.
  1234       // See the comments in omAlloc().
  1236       if (mark->has_locker()) {
  1237           ObjectMonitor * m = omAlloc (Self) ;
  1238           // Optimistically prepare the objectmonitor - anticipate successful CAS
  1239           // We do this before the CAS in order to minimize the length of time
  1240           // in which INFLATING appears in the mark.
  1241           m->Recycle();
  1242           m->_Responsible  = NULL ;
  1243           m->OwnerIsThread = 0 ;
  1244           m->_recursions   = 0 ;
  1245           m->_SpinDuration = Knob_SpinLimit ;   // Consider: maintain by type/class
  1247           markOop cmp = (markOop) Atomic::cmpxchg_ptr (markOopDesc::INFLATING(), object->mark_addr(), mark) ;
  1248           if (cmp != mark) {
  1249              omRelease (Self, m, true) ;
  1250              continue ;       // Interference -- just retry
  1253           // We've successfully installed INFLATING (0) into the mark-word.
  1254           // This is the only case where 0 will appear in a mark-work.
  1255           // Only the singular thread that successfully swings the mark-word
  1256           // to 0 can perform (or more precisely, complete) inflation.
  1257           //
  1258           // Why do we CAS a 0 into the mark-word instead of just CASing the
  1259           // mark-word from the stack-locked value directly to the new inflated state?
  1260           // Consider what happens when a thread unlocks a stack-locked object.
  1261           // It attempts to use CAS to swing the displaced header value from the
  1262           // on-stack basiclock back into the object header.  Recall also that the
  1263           // header value (hashcode, etc) can reside in (a) the object header, or
  1264           // (b) a displaced header associated with the stack-lock, or (c) a displaced
  1265           // header in an objectMonitor.  The inflate() routine must copy the header
  1266           // value from the basiclock on the owner's stack to the objectMonitor, all
  1267           // the while preserving the hashCode stability invariants.  If the owner
  1268           // decides to release the lock while the value is 0, the unlock will fail
  1269           // and control will eventually pass from slow_exit() to inflate.  The owner
  1270           // will then spin, waiting for the 0 value to disappear.   Put another way,
  1271           // the 0 causes the owner to stall if the owner happens to try to
  1272           // drop the lock (restoring the header from the basiclock to the object)
  1273           // while inflation is in-progress.  This protocol avoids races that might
  1274           // would otherwise permit hashCode values to change or "flicker" for an object.
  1275           // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
  1276           // 0 serves as a "BUSY" inflate-in-progress indicator.
  1279           // fetch the displaced mark from the owner's stack.
  1280           // The owner can't die or unwind past the lock while our INFLATING
  1281           // object is in the mark.  Furthermore the owner can't complete
  1282           // an unlock on the object, either.
  1283           markOop dmw = mark->displaced_mark_helper() ;
  1284           assert (dmw->is_neutral(), "invariant") ;
  1286           // Setup monitor fields to proper values -- prepare the monitor
  1287           m->set_header(dmw) ;
  1289           // Optimization: if the mark->locker stack address is associated
  1290           // with this thread we could simply set m->_owner = Self and
  1291           // m->OwnerIsThread = 1. Note that a thread can inflate an object
  1292           // that it has stack-locked -- as might happen in wait() -- directly
  1293           // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
  1294           m->set_owner(mark->locker());
  1295           m->set_object(object);
  1296           // TODO-FIXME: assert BasicLock->dhw != 0.
  1298           // Must preserve store ordering. The monitor state must
  1299           // be stable at the time of publishing the monitor address.
  1300           guarantee (object->mark() == markOopDesc::INFLATING(), "invariant") ;
  1301           object->release_set_mark(markOopDesc::encode(m));
  1303           // Hopefully the performance counters are allocated on distinct cache lines
  1304           // to avoid false sharing on MP systems ...
  1305           if (_sync_Inflations != NULL) _sync_Inflations->inc() ;
  1306           TEVENT(Inflate: overwrite stacklock) ;
  1307           if (TraceMonitorInflation) {
  1308             if (object->is_instance()) {
  1309               ResourceMark rm;
  1310               tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
  1311                 (intptr_t) object, (intptr_t) object->mark(),
  1312                 Klass::cast(object->klass())->external_name());
  1315           return m ;
  1318       // CASE: neutral
  1319       // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
  1320       // If we know we're inflating for entry it's better to inflate by swinging a
  1321       // pre-locked objectMonitor pointer into the object header.   A successful
  1322       // CAS inflates the object *and* confers ownership to the inflating thread.
  1323       // In the current implementation we use a 2-step mechanism where we CAS()
  1324       // to inflate and then CAS() again to try to swing _owner from NULL to Self.
  1325       // An inflateTry() method that we could call from fast_enter() and slow_enter()
  1326       // would be useful.
  1328       assert (mark->is_neutral(), "invariant");
  1329       ObjectMonitor * m = omAlloc (Self) ;
  1330       // prepare m for installation - set monitor to initial state
  1331       m->Recycle();
  1332       m->set_header(mark);
  1333       m->set_owner(NULL);
  1334       m->set_object(object);
  1335       m->OwnerIsThread = 1 ;
  1336       m->_recursions   = 0 ;
  1337       m->_Responsible  = NULL ;
  1338       m->_SpinDuration = Knob_SpinLimit ;       // consider: keep metastats by type/class
  1340       if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
  1341           m->set_object (NULL) ;
  1342           m->set_owner  (NULL) ;
  1343           m->OwnerIsThread = 0 ;
  1344           m->Recycle() ;
  1345           omRelease (Self, m, true) ;
  1346           m = NULL ;
  1347           continue ;
  1348           // interference - the markword changed - just retry.
  1349           // The state-transitions are one-way, so there's no chance of
  1350           // live-lock -- "Inflated" is an absorbing state.
  1353       // Hopefully the performance counters are allocated on distinct
  1354       // cache lines to avoid false sharing on MP systems ...
  1355       if (_sync_Inflations != NULL) _sync_Inflations->inc() ;
  1356       TEVENT(Inflate: overwrite neutral) ;
  1357       if (TraceMonitorInflation) {
  1358         if (object->is_instance()) {
  1359           ResourceMark rm;
  1360           tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
  1361             (intptr_t) object, (intptr_t) object->mark(),
  1362             Klass::cast(object->klass())->external_name());
  1365       return m ;
  1370 // This the fast monitor enter. The interpreter and compiler use
  1371 // some assembly copies of this code. Make sure update those code
  1372 // if the following function is changed. The implementation is
  1373 // extremely sensitive to race condition. Be careful.
  1375 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
  1376  if (UseBiasedLocking) {
  1377     if (!SafepointSynchronize::is_at_safepoint()) {
  1378       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
  1379       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
  1380         return;
  1382     } else {
  1383       assert(!attempt_rebias, "can not rebias toward VM thread");
  1384       BiasedLocking::revoke_at_safepoint(obj);
  1386     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1389  slow_enter (obj, lock, THREAD) ;
  1392 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
  1393   assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
  1394   // if displaced header is null, the previous enter is recursive enter, no-op
  1395   markOop dhw = lock->displaced_header();
  1396   markOop mark ;
  1397   if (dhw == NULL) {
  1398      // Recursive stack-lock.
  1399      // Diagnostics -- Could be: stack-locked, inflating, inflated.
  1400      mark = object->mark() ;
  1401      assert (!mark->is_neutral(), "invariant") ;
  1402      if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
  1403         assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ;
  1405      if (mark->has_monitor()) {
  1406         ObjectMonitor * m = mark->monitor() ;
  1407         assert(((oop)(m->object()))->mark() == mark, "invariant") ;
  1408         assert(m->is_entered(THREAD), "invariant") ;
  1410      return ;
  1413   mark = object->mark() ;
  1415   // If the object is stack-locked by the current thread, try to
  1416   // swing the displaced header from the box back to the mark.
  1417   if (mark == (markOop) lock) {
  1418      assert (dhw->is_neutral(), "invariant") ;
  1419      if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
  1420         TEVENT (fast_exit: release stacklock) ;
  1421         return;
  1425   ObjectSynchronizer::inflate(THREAD, object)->exit (THREAD) ;
  1428 // This routine is used to handle interpreter/compiler slow case
  1429 // We don't need to use fast path here, because it must have been
  1430 // failed in the interpreter/compiler code.
  1431 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
  1432   markOop mark = obj->mark();
  1433   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
  1435   if (mark->is_neutral()) {
  1436     // Anticipate successful CAS -- the ST of the displaced mark must
  1437     // be visible <= the ST performed by the CAS.
  1438     lock->set_displaced_header(mark);
  1439     if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
  1440       TEVENT (slow_enter: release stacklock) ;
  1441       return ;
  1443     // Fall through to inflate() ...
  1444   } else
  1445   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
  1446     assert(lock != mark->locker(), "must not re-lock the same lock");
  1447     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
  1448     lock->set_displaced_header(NULL);
  1449     return;
  1452 #if 0
  1453   // The following optimization isn't particularly useful.
  1454   if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
  1455     lock->set_displaced_header (NULL) ;
  1456     return ;
  1458 #endif
  1460   // The object header will never be displaced to this lock,
  1461   // so it does not matter what the value is, except that it
  1462   // must be non-zero to avoid looking like a re-entrant lock,
  1463   // and must not look locked either.
  1464   lock->set_displaced_header(markOopDesc::unused_mark());
  1465   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
  1468 // This routine is used to handle interpreter/compiler slow case
  1469 // We don't need to use fast path here, because it must have
  1470 // failed in the interpreter/compiler code. Simply use the heavy
  1471 // weight monitor should be ok, unless someone find otherwise.
  1472 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
  1473   fast_exit (object, lock, THREAD) ;
  1476 // NOTE: must use heavy weight monitor to handle jni monitor enter
  1477 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { // possible entry from jni enter
  1478   // the current locking is from JNI instead of Java code
  1479   TEVENT (jni_enter) ;
  1480   if (UseBiasedLocking) {
  1481     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1482     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1484   THREAD->set_current_pending_monitor_is_from_java(false);
  1485   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
  1486   THREAD->set_current_pending_monitor_is_from_java(true);
  1489 // NOTE: must use heavy weight monitor to handle jni monitor enter
  1490 bool ObjectSynchronizer::jni_try_enter(Handle obj, Thread* THREAD) {
  1491   if (UseBiasedLocking) {
  1492     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1493     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1496   ObjectMonitor* monitor = ObjectSynchronizer::inflate_helper(obj());
  1497   return monitor->try_enter(THREAD);
  1501 // NOTE: must use heavy weight monitor to handle jni monitor exit
  1502 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
  1503   TEVENT (jni_exit) ;
  1504   if (UseBiasedLocking) {
  1505     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1507   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1509   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
  1510   // If this thread has locked the object, exit the monitor.  Note:  can't use
  1511   // monitor->check(CHECK); must exit even if an exception is pending.
  1512   if (monitor->check(THREAD)) {
  1513      monitor->exit(THREAD);
  1517 // complete_exit()/reenter() are used to wait on a nested lock
  1518 // i.e. to give up an outer lock completely and then re-enter
  1519 // Used when holding nested locks - lock acquisition order: lock1 then lock2
  1520 //  1) complete_exit lock1 - saving recursion count
  1521 //  2) wait on lock2
  1522 //  3) when notified on lock2, unlock lock2
  1523 //  4) reenter lock1 with original recursion count
  1524 //  5) lock lock2
  1525 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
  1526 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
  1527   TEVENT (complete_exit) ;
  1528   if (UseBiasedLocking) {
  1529     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1530     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1533   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
  1535   return monitor->complete_exit(THREAD);
  1538 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
  1539 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
  1540   TEVENT (reenter) ;
  1541   if (UseBiasedLocking) {
  1542     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1543     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1546   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
  1548   monitor->reenter(recursion, THREAD);
  1551 // This exists only as a workaround of dtrace bug 6254741
  1552 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
  1553   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
  1554   return 0;
  1557 // NOTE: must use heavy weight monitor to handle wait()
  1558 void ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
  1559   if (UseBiasedLocking) {
  1560     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1561     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1563   if (millis < 0) {
  1564     TEVENT (wait - throw IAX) ;
  1565     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
  1567   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
  1568   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
  1569   monitor->wait(millis, true, THREAD);
  1571   /* This dummy call is in place to get around dtrace bug 6254741.  Once
  1572      that's fixed we can uncomment the following line and remove the call */
  1573   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
  1574   dtrace_waited_probe(monitor, obj, THREAD);
  1577 void ObjectSynchronizer::waitUninterruptibly (Handle obj, jlong millis, TRAPS) {
  1578   if (UseBiasedLocking) {
  1579     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1580     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1582   if (millis < 0) {
  1583     TEVENT (wait - throw IAX) ;
  1584     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
  1586   ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD) ;
  1589 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
  1590  if (UseBiasedLocking) {
  1591     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1592     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1595   markOop mark = obj->mark();
  1596   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
  1597     return;
  1599   ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
  1602 // NOTE: see comment of notify()
  1603 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
  1604   if (UseBiasedLocking) {
  1605     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1606     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1609   markOop mark = obj->mark();
  1610   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
  1611     return;
  1613   ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
  1616 intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
  1617   if (UseBiasedLocking) {
  1618     // NOTE: many places throughout the JVM do not expect a safepoint
  1619     // to be taken here, in particular most operations on perm gen
  1620     // objects. However, we only ever bias Java instances and all of
  1621     // the call sites of identity_hash that might revoke biases have
  1622     // been checked to make sure they can handle a safepoint. The
  1623     // added check of the bias pattern is to avoid useless calls to
  1624     // thread-local storage.
  1625     if (obj->mark()->has_bias_pattern()) {
  1626       // Box and unbox the raw reference just in case we cause a STW safepoint.
  1627       Handle hobj (Self, obj) ;
  1628       // Relaxing assertion for bug 6320749.
  1629       assert (Universe::verify_in_progress() ||
  1630               !SafepointSynchronize::is_at_safepoint(),
  1631              "biases should not be seen by VM thread here");
  1632       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
  1633       obj = hobj() ;
  1634       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1638   // hashCode() is a heap mutator ...
  1639   // Relaxing assertion for bug 6320749.
  1640   assert (Universe::verify_in_progress() ||
  1641           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
  1642   assert (Universe::verify_in_progress() ||
  1643           Self->is_Java_thread() , "invariant") ;
  1644   assert (Universe::verify_in_progress() ||
  1645          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
  1647   ObjectMonitor* monitor = NULL;
  1648   markOop temp, test;
  1649   intptr_t hash;
  1650   markOop mark = ReadStableMark (obj);
  1652   // object should remain ineligible for biased locking
  1653   assert (!mark->has_bias_pattern(), "invariant") ;
  1655   if (mark->is_neutral()) {
  1656     hash = mark->hash();              // this is a normal header
  1657     if (hash) {                       // if it has hash, just return it
  1658       return hash;
  1660     hash = get_next_hash(Self, obj);  // allocate a new hash code
  1661     temp = mark->copy_set_hash(hash); // merge the hash code into header
  1662     // use (machine word version) atomic operation to install the hash
  1663     test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
  1664     if (test == mark) {
  1665       return hash;
  1667     // If atomic operation failed, we must inflate the header
  1668     // into heavy weight monitor. We could add more code here
  1669     // for fast path, but it does not worth the complexity.
  1670   } else if (mark->has_monitor()) {
  1671     monitor = mark->monitor();
  1672     temp = monitor->header();
  1673     assert (temp->is_neutral(), "invariant") ;
  1674     hash = temp->hash();
  1675     if (hash) {
  1676       return hash;
  1678     // Skip to the following code to reduce code size
  1679   } else if (Self->is_lock_owned((address)mark->locker())) {
  1680     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
  1681     assert (temp->is_neutral(), "invariant") ;
  1682     hash = temp->hash();              // by current thread, check if the displaced
  1683     if (hash) {                       // header contains hash code
  1684       return hash;
  1686     // WARNING:
  1687     //   The displaced header is strictly immutable.
  1688     // It can NOT be changed in ANY cases. So we have
  1689     // to inflate the header into heavyweight monitor
  1690     // even the current thread owns the lock. The reason
  1691     // is the BasicLock (stack slot) will be asynchronously
  1692     // read by other threads during the inflate() function.
  1693     // Any change to stack may not propagate to other threads
  1694     // correctly.
  1697   // Inflate the monitor to set hash code
  1698   monitor = ObjectSynchronizer::inflate(Self, obj);
  1699   // Load displaced header and check it has hash code
  1700   mark = monitor->header();
  1701   assert (mark->is_neutral(), "invariant") ;
  1702   hash = mark->hash();
  1703   if (hash == 0) {
  1704     hash = get_next_hash(Self, obj);
  1705     temp = mark->copy_set_hash(hash); // merge hash code into header
  1706     assert (temp->is_neutral(), "invariant") ;
  1707     test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
  1708     if (test != mark) {
  1709       // The only update to the header in the monitor (outside GC)
  1710       // is install the hash code. If someone add new usage of
  1711       // displaced header, please update this code
  1712       hash = test->hash();
  1713       assert (test->is_neutral(), "invariant") ;
  1714       assert (hash != 0, "Trivial unexpected object/monitor header usage.");
  1717   // We finally get the hash
  1718   return hash;
  1721 // Deprecated -- use FastHashCode() instead.
  1723 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
  1724   return FastHashCode (Thread::current(), obj()) ;
  1727 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
  1728                                                    Handle h_obj) {
  1729   if (UseBiasedLocking) {
  1730     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
  1731     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1734   assert(thread == JavaThread::current(), "Can only be called on current thread");
  1735   oop obj = h_obj();
  1737   markOop mark = ReadStableMark (obj) ;
  1739   // Uncontended case, header points to stack
  1740   if (mark->has_locker()) {
  1741     return thread->is_lock_owned((address)mark->locker());
  1743   // Contended case, header points to ObjectMonitor (tagged pointer)
  1744   if (mark->has_monitor()) {
  1745     ObjectMonitor* monitor = mark->monitor();
  1746     return monitor->is_entered(thread) != 0 ;
  1748   // Unlocked case, header in place
  1749   assert(mark->is_neutral(), "sanity check");
  1750   return false;
  1753 // Be aware of this method could revoke bias of the lock object.
  1754 // This method querys the ownership of the lock handle specified by 'h_obj'.
  1755 // If the current thread owns the lock, it returns owner_self. If no
  1756 // thread owns the lock, it returns owner_none. Otherwise, it will return
  1757 // ower_other.
  1758 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
  1759 (JavaThread *self, Handle h_obj) {
  1760   // The caller must beware this method can revoke bias, and
  1761   // revocation can result in a safepoint.
  1762   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
  1763   assert (self->thread_state() != _thread_blocked , "invariant") ;
  1765   // Possible mark states: neutral, biased, stack-locked, inflated
  1767   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
  1768     // CASE: biased
  1769     BiasedLocking::revoke_and_rebias(h_obj, false, self);
  1770     assert(!h_obj->mark()->has_bias_pattern(),
  1771            "biases should be revoked by now");
  1774   assert(self == JavaThread::current(), "Can only be called on current thread");
  1775   oop obj = h_obj();
  1776   markOop mark = ReadStableMark (obj) ;
  1778   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
  1779   if (mark->has_locker()) {
  1780     return self->is_lock_owned((address)mark->locker()) ?
  1781       owner_self : owner_other;
  1784   // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
  1785   // The Object:ObjectMonitor relationship is stable as long as we're
  1786   // not at a safepoint.
  1787   if (mark->has_monitor()) {
  1788     void * owner = mark->monitor()->_owner ;
  1789     if (owner == NULL) return owner_none ;
  1790     return (owner == self ||
  1791             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
  1794   // CASE: neutral
  1795   assert(mark->is_neutral(), "sanity check");
  1796   return owner_none ;           // it's unlocked
  1799 // FIXME: jvmti should call this
  1800 JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
  1801   if (UseBiasedLocking) {
  1802     if (SafepointSynchronize::is_at_safepoint()) {
  1803       BiasedLocking::revoke_at_safepoint(h_obj);
  1804     } else {
  1805       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
  1807     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1810   oop obj = h_obj();
  1811   address owner = NULL;
  1813   markOop mark = ReadStableMark (obj) ;
  1815   // Uncontended case, header points to stack
  1816   if (mark->has_locker()) {
  1817     owner = (address) mark->locker();
  1820   // Contended case, header points to ObjectMonitor (tagged pointer)
  1821   if (mark->has_monitor()) {
  1822     ObjectMonitor* monitor = mark->monitor();
  1823     assert(monitor != NULL, "monitor should be non-null");
  1824     owner = (address) monitor->owner();
  1827   if (owner != NULL) {
  1828     return Threads::owning_thread_from_monitor_owner(owner, doLock);
  1831   // Unlocked case, header in place
  1832   // Cannot have assertion since this object may have been
  1833   // locked by another thread when reaching here.
  1834   // assert(mark->is_neutral(), "sanity check");
  1836   return NULL;
  1839 // Iterate through monitor cache and attempt to release thread's monitors
  1840 // Gives up on a particular monitor if an exception occurs, but continues
  1841 // the overall iteration, swallowing the exception.
  1842 class ReleaseJavaMonitorsClosure: public MonitorClosure {
  1843 private:
  1844   TRAPS;
  1846 public:
  1847   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
  1848   void do_monitor(ObjectMonitor* mid) {
  1849     if (mid->owner() == THREAD) {
  1850       (void)mid->complete_exit(CHECK);
  1853 };
  1855 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
  1856 // ignored.  This is meant to be called during JNI thread detach which assumes
  1857 // all remaining monitors are heavyweight.  All exceptions are swallowed.
  1858 // Scanning the extant monitor list can be time consuming.
  1859 // A simple optimization is to add a per-thread flag that indicates a thread
  1860 // called jni_monitorenter() during its lifetime.
  1861 //
  1862 // Instead of No_Savepoint_Verifier it might be cheaper to
  1863 // use an idiom of the form:
  1864 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
  1865 //   <code that must not run at safepoint>
  1866 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
  1867 // Since the tests are extremely cheap we could leave them enabled
  1868 // for normal product builds.
  1870 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
  1871   assert(THREAD == JavaThread::current(), "must be current Java thread");
  1872   No_Safepoint_Verifier nsv ;
  1873   ReleaseJavaMonitorsClosure rjmc(THREAD);
  1874   Thread::muxAcquire(&ListLock, "release_monitors_owned_by_thread");
  1875   ObjectSynchronizer::monitors_iterate(&rjmc);
  1876   Thread::muxRelease(&ListLock);
  1877   THREAD->clear_pending_exception();
  1880 // Visitors ...
  1882 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
  1883   ObjectMonitor* block = gBlockList;
  1884   ObjectMonitor* mid;
  1885   while (block) {
  1886     assert(block->object() == CHAINMARKER, "must be a block header");
  1887     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
  1888       mid = block + i;
  1889       oop object = (oop) mid->object();
  1890       if (object != NULL) {
  1891         closure->do_monitor(mid);
  1894     block = (ObjectMonitor*) block->FreeNext;
  1898 void ObjectSynchronizer::oops_do(OopClosure* f) {
  1899   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
  1900   for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
  1901     assert(block->object() == CHAINMARKER, "must be a block header");
  1902     for (int i = 1; i < _BLOCKSIZE; i++) {
  1903       ObjectMonitor* mid = &block[i];
  1904       if (mid->object() != NULL) {
  1905         f->do_oop((oop*)mid->object_addr());
  1911 // Deflate_idle_monitors() is called at all safepoints, immediately
  1912 // after all mutators are stopped, but before any objects have moved.
  1913 // It traverses the list of known monitors, deflating where possible.
  1914 // The scavenged monitor are returned to the monitor free list.
  1915 //
  1916 // Beware that we scavenge at *every* stop-the-world point.
  1917 // Having a large number of monitors in-circulation negatively
  1918 // impacts the performance of some applications (e.g., PointBase).
  1919 // Broadly, we want to minimize the # of monitors in circulation.
  1920 //
  1921 // We have added a flag, MonitorInUseLists, which creates a list
  1922 // of active monitors for each thread. deflate_idle_monitors()
  1923 // only scans the per-thread inuse lists. omAlloc() puts all
  1924 // assigned monitors on the per-thread list. deflate_idle_monitors()
  1925 // returns the non-busy monitors to the global free list.
  1926 // When a thread dies, omFlush() adds the list of active monitors for
  1927 // that thread to a global gOmInUseList acquiring the
  1928 // global list lock. deflate_idle_monitors() acquires the global
  1929 // list lock to scan for non-busy monitors to the global free list.
  1930 // An alternative could have used a single global inuse list. The
  1931 // downside would have been the additional cost of acquiring the global list lock
  1932 // for every omAlloc().
  1933 //
  1934 // Perversely, the heap size -- and thus the STW safepoint rate --
  1935 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
  1936 // which in turn can mean large(r) numbers of objectmonitors in circulation.
  1937 // This is an unfortunate aspect of this design.
  1938 //
  1939 // Another refinement would be to refrain from calling deflate_idle_monitors()
  1940 // except at stop-the-world points associated with garbage collections.
  1941 //
  1942 // An even better solution would be to deflate on-the-fly, aggressively,
  1943 // at monitorexit-time as is done in EVM's metalock or Relaxed Locks.
  1946 // Deflate a single monitor if not in use
  1947 // Return true if deflated, false if in use
  1948 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
  1949                                          ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
  1950   bool deflated;
  1951   // Normal case ... The monitor is associated with obj.
  1952   guarantee (obj->mark() == markOopDesc::encode(mid), "invariant") ;
  1953   guarantee (mid == obj->mark()->monitor(), "invariant");
  1954   guarantee (mid->header()->is_neutral(), "invariant");
  1956   if (mid->is_busy()) {
  1957      if (ClearResponsibleAtSTW) mid->_Responsible = NULL ;
  1958      deflated = false;
  1959   } else {
  1960      // Deflate the monitor if it is no longer being used
  1961      // It's idle - scavenge and return to the global free list
  1962      // plain old deflation ...
  1963      TEVENT (deflate_idle_monitors - scavenge1) ;
  1964      if (TraceMonitorInflation) {
  1965        if (obj->is_instance()) {
  1966          ResourceMark rm;
  1967            tty->print_cr("Deflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
  1968                 (intptr_t) obj, (intptr_t) obj->mark(), Klass::cast(obj->klass())->external_name());
  1972      // Restore the header back to obj
  1973      obj->release_set_mark(mid->header());
  1974      mid->clear();
  1976      assert (mid->object() == NULL, "invariant") ;
  1978      // Move the object to the working free list defined by FreeHead,FreeTail.
  1979      if (*FreeHeadp == NULL) *FreeHeadp = mid;
  1980      if (*FreeTailp != NULL) {
  1981        ObjectMonitor * prevtail = *FreeTailp;
  1982        assert(prevtail->FreeNext == NULL, "cleaned up deflated?"); // TODO KK
  1983        prevtail->FreeNext = mid;
  1985      *FreeTailp = mid;
  1986      deflated = true;
  1988   return deflated;
  1991 // Caller acquires ListLock
  1992 int ObjectSynchronizer::walk_monitor_list(ObjectMonitor** listheadp,
  1993                                           ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
  1994   ObjectMonitor* mid;
  1995   ObjectMonitor* next;
  1996   ObjectMonitor* curmidinuse = NULL;
  1997   int deflatedcount = 0;
  1999   for (mid = *listheadp; mid != NULL; ) {
  2000      oop obj = (oop) mid->object();
  2001      bool deflated = false;
  2002      if (obj != NULL) {
  2003        deflated = deflate_monitor(mid, obj, FreeHeadp, FreeTailp);
  2005      if (deflated) {
  2006        // extract from per-thread in-use-list
  2007        if (mid == *listheadp) {
  2008          *listheadp = mid->FreeNext;
  2009        } else if (curmidinuse != NULL) {
  2010          curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
  2012        next = mid->FreeNext;
  2013        mid->FreeNext = NULL;  // This mid is current tail in the FreeHead list
  2014        mid = next;
  2015        deflatedcount++;
  2016      } else {
  2017        curmidinuse = mid;
  2018        mid = mid->FreeNext;
  2021   return deflatedcount;
  2024 void ObjectSynchronizer::deflate_idle_monitors() {
  2025   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
  2026   int nInuse = 0 ;              // currently associated with objects
  2027   int nInCirculation = 0 ;      // extant
  2028   int nScavenged = 0 ;          // reclaimed
  2029   bool deflated = false;
  2031   ObjectMonitor * FreeHead = NULL ;  // Local SLL of scavenged monitors
  2032   ObjectMonitor * FreeTail = NULL ;
  2034   TEVENT (deflate_idle_monitors) ;
  2035   // Prevent omFlush from changing mids in Thread dtor's during deflation
  2036   // And in case the vm thread is acquiring a lock during a safepoint
  2037   // See e.g. 6320749
  2038   Thread::muxAcquire (&ListLock, "scavenge - return") ;
  2040   if (MonitorInUseLists) {
  2041     int inUse = 0;
  2042     for (JavaThread* cur = Threads::first(); cur != NULL; cur = cur->next()) {
  2043       nInCirculation+= cur->omInUseCount;
  2044       int deflatedcount = walk_monitor_list(cur->omInUseList_addr(), &FreeHead, &FreeTail);
  2045       cur->omInUseCount-= deflatedcount;
  2046       // verifyInUse(cur);
  2047       nScavenged += deflatedcount;
  2048       nInuse += cur->omInUseCount;
  2051    // For moribund threads, scan gOmInUseList
  2052    if (gOmInUseList) {
  2053      nInCirculation += gOmInUseCount;
  2054      int deflatedcount = walk_monitor_list((ObjectMonitor **)&gOmInUseList, &FreeHead, &FreeTail);
  2055      gOmInUseCount-= deflatedcount;
  2056      nScavenged += deflatedcount;
  2057      nInuse += gOmInUseCount;
  2060   } else for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
  2061   // Iterate over all extant monitors - Scavenge all idle monitors.
  2062     assert(block->object() == CHAINMARKER, "must be a block header");
  2063     nInCirculation += _BLOCKSIZE ;
  2064     for (int i = 1 ; i < _BLOCKSIZE; i++) {
  2065       ObjectMonitor* mid = &block[i];
  2066       oop obj = (oop) mid->object();
  2068       if (obj == NULL) {
  2069         // The monitor is not associated with an object.
  2070         // The monitor should either be a thread-specific private
  2071         // free list or the global free list.
  2072         // obj == NULL IMPLIES mid->is_busy() == 0
  2073         guarantee (!mid->is_busy(), "invariant") ;
  2074         continue ;
  2076       deflated = deflate_monitor(mid, obj, &FreeHead, &FreeTail);
  2078       if (deflated) {
  2079         mid->FreeNext = NULL ;
  2080         nScavenged ++ ;
  2081       } else {
  2082         nInuse ++;
  2087   MonitorFreeCount += nScavenged;
  2089   // Consider: audit gFreeList to ensure that MonitorFreeCount and list agree.
  2091   if (Knob_Verbose) {
  2092     ::printf ("Deflate: InCirc=%d InUse=%d Scavenged=%d ForceMonitorScavenge=%d : pop=%d free=%d\n",
  2093         nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
  2094         MonitorPopulation, MonitorFreeCount) ;
  2095     ::fflush(stdout) ;
  2098   ForceMonitorScavenge = 0;    // Reset
  2100   // Move the scavenged monitors back to the global free list.
  2101   if (FreeHead != NULL) {
  2102      guarantee (FreeTail != NULL && nScavenged > 0, "invariant") ;
  2103      assert (FreeTail->FreeNext == NULL, "invariant") ;
  2104      // constant-time list splice - prepend scavenged segment to gFreeList
  2105      FreeTail->FreeNext = gFreeList ;
  2106      gFreeList = FreeHead ;
  2108   Thread::muxRelease (&ListLock) ;
  2110   if (_sync_Deflations != NULL) _sync_Deflations->inc(nScavenged) ;
  2111   if (_sync_MonExtant  != NULL) _sync_MonExtant ->set_value(nInCirculation);
  2113   // TODO: Add objectMonitor leak detection.
  2114   // Audit/inventory the objectMonitors -- make sure they're all accounted for.
  2115   GVars.stwRandom = os::random() ;
  2116   GVars.stwCycle ++ ;
  2119 // A macro is used below because there may already be a pending
  2120 // exception which should not abort the execution of the routines
  2121 // which use this (which is why we don't put this into check_slow and
  2122 // call it with a CHECK argument).
  2124 #define CHECK_OWNER()                                                             \
  2125   do {                                                                            \
  2126     if (THREAD != _owner) {                                                       \
  2127       if (THREAD->is_lock_owned((address) _owner)) {                              \
  2128         _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
  2129         _recursions = 0;                                                          \
  2130         OwnerIsThread = 1 ;                                                       \
  2131       } else {                                                                    \
  2132         TEVENT (Throw IMSX) ;                                                     \
  2133         THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
  2134       }                                                                           \
  2135     }                                                                             \
  2136   } while (false)
  2138 // TODO-FIXME: eliminate ObjectWaiters.  Replace this visitor/enumerator
  2139 // interface with a simple FirstWaitingThread(), NextWaitingThread() interface.
  2141 ObjectWaiter* ObjectMonitor::first_waiter() {
  2142   return _WaitSet;
  2145 ObjectWaiter* ObjectMonitor::next_waiter(ObjectWaiter* o) {
  2146   return o->_next;
  2149 Thread* ObjectMonitor::thread_of_waiter(ObjectWaiter* o) {
  2150   return o->_thread;
  2153 // initialize the monitor, exception the semaphore, all other fields
  2154 // are simple integers or pointers
  2155 ObjectMonitor::ObjectMonitor() {
  2156   _header       = NULL;
  2157   _count        = 0;
  2158   _waiters      = 0,
  2159   _recursions   = 0;
  2160   _object       = NULL;
  2161   _owner        = NULL;
  2162   _WaitSet      = NULL;
  2163   _WaitSetLock  = 0 ;
  2164   _Responsible  = NULL ;
  2165   _succ         = NULL ;
  2166   _cxq          = NULL ;
  2167   FreeNext      = NULL ;
  2168   _EntryList    = NULL ;
  2169   _SpinFreq     = 0 ;
  2170   _SpinClock    = 0 ;
  2171   OwnerIsThread = 0 ;
  2174 ObjectMonitor::~ObjectMonitor() {
  2175    // TODO: Add asserts ...
  2176    // _cxq == 0 _succ == NULL _owner == NULL _waiters == 0
  2177    // _count == 0 _EntryList  == NULL etc
  2180 intptr_t ObjectMonitor::is_busy() const {
  2181   // TODO-FIXME: merge _count and _waiters.
  2182   // TODO-FIXME: assert _owner == null implies _recursions = 0
  2183   // TODO-FIXME: assert _WaitSet != null implies _count > 0
  2184   return _count|_waiters|intptr_t(_owner)|intptr_t(_cxq)|intptr_t(_EntryList ) ;
  2187 void ObjectMonitor::Recycle () {
  2188   // TODO: add stronger asserts ...
  2189   // _cxq == 0 _succ == NULL _owner == NULL _waiters == 0
  2190   // _count == 0 EntryList  == NULL
  2191   // _recursions == 0 _WaitSet == NULL
  2192   // TODO: assert (is_busy()|_recursions) == 0
  2193   _succ          = NULL ;
  2194   _EntryList     = NULL ;
  2195   _cxq           = NULL ;
  2196   _WaitSet       = NULL ;
  2197   _recursions    = 0 ;
  2198   _SpinFreq      = 0 ;
  2199   _SpinClock     = 0 ;
  2200   OwnerIsThread  = 0 ;
  2203 // WaitSet management ...
  2205 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
  2206   assert(node != NULL, "should not dequeue NULL node");
  2207   assert(node->_prev == NULL, "node already in list");
  2208   assert(node->_next == NULL, "node already in list");
  2209   // put node at end of queue (circular doubly linked list)
  2210   if (_WaitSet == NULL) {
  2211     _WaitSet = node;
  2212     node->_prev = node;
  2213     node->_next = node;
  2214   } else {
  2215     ObjectWaiter* head = _WaitSet ;
  2216     ObjectWaiter* tail = head->_prev;
  2217     assert(tail->_next == head, "invariant check");
  2218     tail->_next = node;
  2219     head->_prev = node;
  2220     node->_next = head;
  2221     node->_prev = tail;
  2225 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
  2226   // dequeue the very first waiter
  2227   ObjectWaiter* waiter = _WaitSet;
  2228   if (waiter) {
  2229     DequeueSpecificWaiter(waiter);
  2231   return waiter;
  2234 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
  2235   assert(node != NULL, "should not dequeue NULL node");
  2236   assert(node->_prev != NULL, "node already removed from list");
  2237   assert(node->_next != NULL, "node already removed from list");
  2238   // when the waiter has woken up because of interrupt,
  2239   // timeout or other spurious wake-up, dequeue the
  2240   // waiter from waiting list
  2241   ObjectWaiter* next = node->_next;
  2242   if (next == node) {
  2243     assert(node->_prev == node, "invariant check");
  2244     _WaitSet = NULL;
  2245   } else {
  2246     ObjectWaiter* prev = node->_prev;
  2247     assert(prev->_next == node, "invariant check");
  2248     assert(next->_prev == node, "invariant check");
  2249     next->_prev = prev;
  2250     prev->_next = next;
  2251     if (_WaitSet == node) {
  2252       _WaitSet = next;
  2255   node->_next = NULL;
  2256   node->_prev = NULL;
  2259 static char * kvGet (char * kvList, const char * Key) {
  2260     if (kvList == NULL) return NULL ;
  2261     size_t n = strlen (Key) ;
  2262     char * Search ;
  2263     for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
  2264         if (strncmp (Search, Key, n) == 0) {
  2265             if (Search[n] == '=') return Search + n + 1 ;
  2266             if (Search[n] == 0)   return (char *) "1" ;
  2269     return NULL ;
  2272 static int kvGetInt (char * kvList, const char * Key, int Default) {
  2273     char * v = kvGet (kvList, Key) ;
  2274     int rslt = v ? ::strtol (v, NULL, 0) : Default ;
  2275     if (Knob_ReportSettings && v != NULL) {
  2276         ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
  2277         ::fflush (stdout) ;
  2279     return rslt ;
  2282 // By convention we unlink a contending thread from EntryList|cxq immediately
  2283 // after the thread acquires the lock in ::enter().  Equally, we could defer
  2284 // unlinking the thread until ::exit()-time.
  2286 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
  2288     assert (_owner == Self, "invariant") ;
  2289     assert (SelfNode->_thread == Self, "invariant") ;
  2291     if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
  2292         // Normal case: remove Self from the DLL EntryList .
  2293         // This is a constant-time operation.
  2294         ObjectWaiter * nxt = SelfNode->_next ;
  2295         ObjectWaiter * prv = SelfNode->_prev ;
  2296         if (nxt != NULL) nxt->_prev = prv ;
  2297         if (prv != NULL) prv->_next = nxt ;
  2298         if (SelfNode == _EntryList ) _EntryList = nxt ;
  2299         assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  2300         assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  2301         TEVENT (Unlink from EntryList) ;
  2302     } else {
  2303         guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
  2304         // Inopportune interleaving -- Self is still on the cxq.
  2305         // This usually means the enqueue of self raced an exiting thread.
  2306         // Normally we'll find Self near the front of the cxq, so
  2307         // dequeueing is typically fast.  If needbe we can accelerate
  2308         // this with some MCS/CHL-like bidirectional list hints and advisory
  2309         // back-links so dequeueing from the interior will normally operate
  2310         // in constant-time.
  2311         // Dequeue Self from either the head (with CAS) or from the interior
  2312         // with a linear-time scan and normal non-atomic memory operations.
  2313         // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
  2314         // and then unlink Self from EntryList.  We have to drain eventually,
  2315         // so it might as well be now.
  2317         ObjectWaiter * v = _cxq ;
  2318         assert (v != NULL, "invariant") ;
  2319         if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
  2320             // The CAS above can fail from interference IFF a "RAT" arrived.
  2321             // In that case Self must be in the interior and can no longer be
  2322             // at the head of cxq.
  2323             if (v == SelfNode) {
  2324                 assert (_cxq != v, "invariant") ;
  2325                 v = _cxq ;          // CAS above failed - start scan at head of list
  2327             ObjectWaiter * p ;
  2328             ObjectWaiter * q = NULL ;
  2329             for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
  2330                 q = p ;
  2331                 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
  2333             assert (v != SelfNode,  "invariant") ;
  2334             assert (p == SelfNode,  "Node not found on cxq") ;
  2335             assert (p != _cxq,      "invariant") ;
  2336             assert (q != NULL,      "invariant") ;
  2337             assert (q->_next == p,  "invariant") ;
  2338             q->_next = p->_next ;
  2340         TEVENT (Unlink from cxq) ;
  2343     // Diagnostic hygiene ...
  2344     SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
  2345     SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
  2346     SelfNode->TState = ObjectWaiter::TS_RUN ;
  2349 // Caveat: TryLock() is not necessarily serializing if it returns failure.
  2350 // Callers must compensate as needed.
  2352 int ObjectMonitor::TryLock (Thread * Self) {
  2353    for (;;) {
  2354       void * own = _owner ;
  2355       if (own != NULL) return 0 ;
  2356       if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
  2357          // Either guarantee _recursions == 0 or set _recursions = 0.
  2358          assert (_recursions == 0, "invariant") ;
  2359          assert (_owner == Self, "invariant") ;
  2360          // CONSIDER: set or assert that OwnerIsThread == 1
  2361          return 1 ;
  2363       // The lock had been free momentarily, but we lost the race to the lock.
  2364       // Interference -- the CAS failed.
  2365       // We can either return -1 or retry.
  2366       // Retry doesn't make as much sense because the lock was just acquired.
  2367       if (true) return -1 ;
  2371 // NotRunnable() -- informed spinning
  2372 //
  2373 // Don't bother spinning if the owner is not eligible to drop the lock.
  2374 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
  2375 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
  2376 // The thread must be runnable in order to drop the lock in timely fashion.
  2377 // If the _owner is not runnable then spinning will not likely be
  2378 // successful (profitable).
  2379 //
  2380 // Beware -- the thread referenced by _owner could have died
  2381 // so a simply fetch from _owner->_thread_state might trap.
  2382 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
  2383 // Because of the lifecycle issues the schedctl and _thread_state values
  2384 // observed by NotRunnable() might be garbage.  NotRunnable must
  2385 // tolerate this and consider the observed _thread_state value
  2386 // as advisory.
  2387 //
  2388 // Beware too, that _owner is sometimes a BasicLock address and sometimes
  2389 // a thread pointer.  We differentiate the two cases with OwnerIsThread.
  2390 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
  2391 // with the LSB of _owner.  Another option would be to probablistically probe
  2392 // the putative _owner->TypeTag value.
  2393 //
  2394 // Checking _thread_state isn't perfect.  Even if the thread is
  2395 // in_java it might be blocked on a page-fault or have been preempted
  2396 // and sitting on a ready/dispatch queue.  _thread state in conjunction
  2397 // with schedctl.sc_state gives us a good picture of what the
  2398 // thread is doing, however.
  2399 //
  2400 // TODO: check schedctl.sc_state.
  2401 // We'll need to use SafeFetch32() to read from the schedctl block.
  2402 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
  2403 //
  2404 // The return value from NotRunnable() is *advisory* -- the
  2405 // result is based on sampling and is not necessarily coherent.
  2406 // The caller must tolerate false-negative and false-positive errors.
  2407 // Spinning, in general, is probabilistic anyway.
  2410 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
  2411     // Check either OwnerIsThread or ox->TypeTag == 2BAD.
  2412     if (!OwnerIsThread) return 0 ;
  2414     if (ox == NULL) return 0 ;
  2416     // Avoid transitive spinning ...
  2417     // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
  2418     // Immediately after T1 acquires L it's possible that T2, also
  2419     // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
  2420     // This occurs transiently after T1 acquired L but before
  2421     // T1 managed to clear T1.Stalled.  T2 does not need to abort
  2422     // its spin in this circumstance.
  2423     intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
  2425     if (BlockedOn == 1) return 1 ;
  2426     if (BlockedOn != 0) {
  2427       return BlockedOn != intptr_t(this) && _owner == ox ;
  2430     assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
  2431     int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
  2432     // consider also: jst != _thread_in_Java -- but that's overspecific.
  2433     return jst == _thread_blocked || jst == _thread_in_native ;
  2437 // Adaptive spin-then-block - rational spinning
  2438 //
  2439 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
  2440 // algorithm.  On high order SMP systems it would be better to start with
  2441 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
  2442 // a contending thread could enqueue itself on the cxq and then spin locally
  2443 // on a thread-specific variable such as its ParkEvent._Event flag.
  2444 // That's left as an exercise for the reader.  Note that global spinning is
  2445 // not problematic on Niagara, as the L2$ serves the interconnect and has both
  2446 // low latency and massive bandwidth.
  2447 //
  2448 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
  2449 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
  2450 // (duration) or we can fix the count at approximately the duration of
  2451 // a context switch and vary the frequency.   Of course we could also
  2452 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
  2453 // See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
  2454 //
  2455 // This implementation varies the duration "D", where D varies with
  2456 // the success rate of recent spin attempts. (D is capped at approximately
  2457 // length of a round-trip context switch).  The success rate for recent
  2458 // spin attempts is a good predictor of the success rate of future spin
  2459 // attempts.  The mechanism adapts automatically to varying critical
  2460 // section length (lock modality), system load and degree of parallelism.
  2461 // D is maintained per-monitor in _SpinDuration and is initialized
  2462 // optimistically.  Spin frequency is fixed at 100%.
  2463 //
  2464 // Note that _SpinDuration is volatile, but we update it without locks
  2465 // or atomics.  The code is designed so that _SpinDuration stays within
  2466 // a reasonable range even in the presence of races.  The arithmetic
  2467 // operations on _SpinDuration are closed over the domain of legal values,
  2468 // so at worst a race will install and older but still legal value.
  2469 // At the very worst this introduces some apparent non-determinism.
  2470 // We might spin when we shouldn't or vice-versa, but since the spin
  2471 // count are relatively short, even in the worst case, the effect is harmless.
  2472 //
  2473 // Care must be taken that a low "D" value does not become an
  2474 // an absorbing state.  Transient spinning failures -- when spinning
  2475 // is overall profitable -- should not cause the system to converge
  2476 // on low "D" values.  We want spinning to be stable and predictable
  2477 // and fairly responsive to change and at the same time we don't want
  2478 // it to oscillate, become metastable, be "too" non-deterministic,
  2479 // or converge on or enter undesirable stable absorbing states.
  2480 //
  2481 // We implement a feedback-based control system -- using past behavior
  2482 // to predict future behavior.  We face two issues: (a) if the
  2483 // input signal is random then the spin predictor won't provide optimal
  2484 // results, and (b) if the signal frequency is too high then the control
  2485 // system, which has some natural response lag, will "chase" the signal.
  2486 // (b) can arise from multimodal lock hold times.  Transient preemption
  2487 // can also result in apparent bimodal lock hold times.
  2488 // Although sub-optimal, neither condition is particularly harmful, as
  2489 // in the worst-case we'll spin when we shouldn't or vice-versa.
  2490 // The maximum spin duration is rather short so the failure modes aren't bad.
  2491 // To be conservative, I've tuned the gain in system to bias toward
  2492 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
  2493 // "rings" or oscillates between spinning and not spinning.  This happens
  2494 // when spinning is just on the cusp of profitability, however, so the
  2495 // situation is not dire.  The state is benign -- there's no need to add
  2496 // hysteresis control to damp the transition rate between spinning and
  2497 // not spinning.
  2498 //
  2499 // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  2500 //
  2501 // Spin-then-block strategies ...
  2502 //
  2503 // Thoughts on ways to improve spinning :
  2504 //
  2505 // *  Periodically call {psr_}getloadavg() while spinning, and
  2506 //    permit unbounded spinning if the load average is <
  2507 //    the number of processors.  Beware, however, that getloadavg()
  2508 //    is exceptionally fast on solaris (about 1/10 the cost of a full
  2509 //    spin cycle, but quite expensive on linux.  Beware also, that
  2510 //    multiple JVMs could "ring" or oscillate in a feedback loop.
  2511 //    Sufficient damping would solve that problem.
  2512 //
  2513 // *  We currently use spin loops with iteration counters to approximate
  2514 //    spinning for some interval.  Given the availability of high-precision
  2515 //    time sources such as gethrtime(), %TICK, %STICK, RDTSC, etc., we should
  2516 //    someday reimplement the spin loops to duration-based instead of iteration-based.
  2517 //
  2518 // *  Don't spin if there are more than N = (CPUs/2) threads
  2519 //        currently spinning on the monitor (or globally).
  2520 //    That is, limit the number of concurrent spinners.
  2521 //    We might also limit the # of spinners in the JVM, globally.
  2522 //
  2523 // *  If a spinning thread observes _owner change hands it should
  2524 //    abort the spin (and park immediately) or at least debit
  2525 //    the spin counter by a large "penalty".
  2526 //
  2527 // *  Classically, the spin count is either K*(CPUs-1) or is a
  2528 //        simple constant that approximates the length of a context switch.
  2529 //    We currently use a value -- computed by a special utility -- that
  2530 //    approximates round-trip context switch times.
  2531 //
  2532 // *  Normally schedctl_start()/_stop() is used to advise the kernel
  2533 //    to avoid preempting threads that are running in short, bounded
  2534 //    critical sections.  We could use the schedctl hooks in an inverted
  2535 //    sense -- spinners would set the nopreempt flag, but poll the preempt
  2536 //    pending flag.  If a spinner observed a pending preemption it'd immediately
  2537 //    abort the spin and park.   As such, the schedctl service acts as
  2538 //    a preemption warning mechanism.
  2539 //
  2540 // *  In lieu of spinning, if the system is running below saturation
  2541 //    (that is, loadavg() << #cpus), we can instead suppress futile
  2542 //    wakeup throttling, or even wake more than one successor at exit-time.
  2543 //    The net effect is largely equivalent to spinning.  In both cases,
  2544 //    contending threads go ONPROC and opportunistically attempt to acquire
  2545 //    the lock, decreasing lock handover latency at the expense of wasted
  2546 //    cycles and context switching.
  2547 //
  2548 // *  We might to spin less after we've parked as the thread will
  2549 //    have less $ and TLB affinity with the processor.
  2550 //    Likewise, we might spin less if we come ONPROC on a different
  2551 //    processor or after a long period (>> rechose_interval).
  2552 //
  2553 // *  A table-driven state machine similar to Solaris' dispadmin scheduling
  2554 //    tables might be a better design.  Instead of encoding information in
  2555 //    _SpinDuration, _SpinFreq and _SpinClock we'd just use explicit,
  2556 //    discrete states.   Success or failure during a spin would drive
  2557 //    state transitions, and each state node would contain a spin count.
  2558 //
  2559 // *  If the processor is operating in a mode intended to conserve power
  2560 //    (such as Intel's SpeedStep) or to reduce thermal output (thermal
  2561 //    step-down mode) then the Java synchronization subsystem should
  2562 //    forgo spinning.
  2563 //
  2564 // *  The minimum spin duration should be approximately the worst-case
  2565 //    store propagation latency on the platform.  That is, the time
  2566 //    it takes a store on CPU A to become visible on CPU B, where A and
  2567 //    B are "distant".
  2568 //
  2569 // *  We might want to factor a thread's priority in the spin policy.
  2570 //    Threads with a higher priority might spin for slightly longer.
  2571 //    Similarly, if we use back-off in the TATAS loop, lower priority
  2572 //    threads might back-off longer.  We don't currently use a
  2573 //    thread's priority when placing it on the entry queue.  We may
  2574 //    want to consider doing so in future releases.
  2575 //
  2576 // *  We might transiently drop a thread's scheduling priority while it spins.
  2577 //    SCHED_BATCH on linux and FX scheduling class at priority=0 on Solaris
  2578 //    would suffice.  We could even consider letting the thread spin indefinitely at
  2579 //    a depressed or "idle" priority.  This brings up fairness issues, however --
  2580 //    in a saturated system a thread would with a reduced priority could languish
  2581 //    for extended periods on the ready queue.
  2582 //
  2583 // *  While spinning try to use the otherwise wasted time to help the VM make
  2584 //    progress:
  2585 //
  2586 //    -- YieldTo() the owner, if the owner is OFFPROC but ready
  2587 //       Done our remaining quantum directly to the ready thread.
  2588 //       This helps "push" the lock owner through the critical section.
  2589 //       It also tends to improve affinity/locality as the lock
  2590 //       "migrates" less frequently between CPUs.
  2591 //    -- Walk our own stack in anticipation of blocking.  Memoize the roots.
  2592 //    -- Perform strand checking for other thread.  Unpark potential strandees.
  2593 //    -- Help GC: trace or mark -- this would need to be a bounded unit of work.
  2594 //       Unfortunately this will pollute our $ and TLBs.  Recall that we
  2595 //       spin to avoid context switching -- context switching has an
  2596 //       immediate cost in latency, a disruptive cost to other strands on a CMT
  2597 //       processor, and an amortized cost because of the D$ and TLB cache
  2598 //       reload transient when the thread comes back ONPROC and repopulates
  2599 //       $s and TLBs.
  2600 //    -- call getloadavg() to see if the system is saturated.  It'd probably
  2601 //       make sense to call getloadavg() half way through the spin.
  2602 //       If the system isn't at full capacity the we'd simply reset
  2603 //       the spin counter to and extend the spin attempt.
  2604 //    -- Doug points out that we should use the same "helping" policy
  2605 //       in thread.yield().
  2606 //
  2607 // *  Try MONITOR-MWAIT on systems that support those instructions.
  2608 //
  2609 // *  The spin statistics that drive spin decisions & frequency are
  2610 //    maintained in the objectmonitor structure so if we deflate and reinflate
  2611 //    we lose spin state.  In practice this is not usually a concern
  2612 //    as the default spin state after inflation is aggressive (optimistic)
  2613 //    and tends toward spinning.  So in the worst case for a lock where
  2614 //    spinning is not profitable we may spin unnecessarily for a brief
  2615 //    period.  But then again, if a lock is contended it'll tend not to deflate
  2616 //    in the first place.
  2619 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
  2620 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
  2622 // Spinning: Fixed frequency (100%), vary duration
  2624 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
  2626     // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
  2627     int ctr = Knob_FixedSpin ;
  2628     if (ctr != 0) {
  2629         while (--ctr >= 0) {
  2630             if (TryLock (Self) > 0) return 1 ;
  2631             SpinPause () ;
  2633         return 0 ;
  2636     for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
  2637       if (TryLock(Self) > 0) {
  2638         // Increase _SpinDuration ...
  2639         // Note that we don't clamp SpinDuration precisely at SpinLimit.
  2640         // Raising _SpurDuration to the poverty line is key.
  2641         int x = _SpinDuration ;
  2642         if (x < Knob_SpinLimit) {
  2643            if (x < Knob_Poverty) x = Knob_Poverty ;
  2644            _SpinDuration = x + Knob_BonusB ;
  2646         return 1 ;
  2648       SpinPause () ;
  2651     // Admission control - verify preconditions for spinning
  2652     //
  2653     // We always spin a little bit, just to prevent _SpinDuration == 0 from
  2654     // becoming an absorbing state.  Put another way, we spin briefly to
  2655     // sample, just in case the system load, parallelism, contention, or lock
  2656     // modality changed.
  2657     //
  2658     // Consider the following alternative:
  2659     // Periodically set _SpinDuration = _SpinLimit and try a long/full
  2660     // spin attempt.  "Periodically" might mean after a tally of
  2661     // the # of failed spin attempts (or iterations) reaches some threshold.
  2662     // This takes us into the realm of 1-out-of-N spinning, where we
  2663     // hold the duration constant but vary the frequency.
  2665     ctr = _SpinDuration  ;
  2666     if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
  2667     if (ctr <= 0) return 0 ;
  2669     if (Knob_SuccRestrict && _succ != NULL) return 0 ;
  2670     if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
  2671        TEVENT (Spin abort - notrunnable [TOP]);
  2672        return 0 ;
  2675     int MaxSpin = Knob_MaxSpinners ;
  2676     if (MaxSpin >= 0) {
  2677        if (_Spinner > MaxSpin) {
  2678           TEVENT (Spin abort -- too many spinners) ;
  2679           return 0 ;
  2681        // Slighty racy, but benign ...
  2682        Adjust (&_Spinner, 1) ;
  2685     // We're good to spin ... spin ingress.
  2686     // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
  2687     // when preparing to LD...CAS _owner, etc and the CAS is likely
  2688     // to succeed.
  2689     int hits    = 0 ;
  2690     int msk     = 0 ;
  2691     int caspty  = Knob_CASPenalty ;
  2692     int oxpty   = Knob_OXPenalty ;
  2693     int sss     = Knob_SpinSetSucc ;
  2694     if (sss && _succ == NULL ) _succ = Self ;
  2695     Thread * prv = NULL ;
  2697     // There are three ways to exit the following loop:
  2698     // 1.  A successful spin where this thread has acquired the lock.
  2699     // 2.  Spin failure with prejudice
  2700     // 3.  Spin failure without prejudice
  2702     while (--ctr >= 0) {
  2704       // Periodic polling -- Check for pending GC
  2705       // Threads may spin while they're unsafe.
  2706       // We don't want spinning threads to delay the JVM from reaching
  2707       // a stop-the-world safepoint or to steal cycles from GC.
  2708       // If we detect a pending safepoint we abort in order that
  2709       // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
  2710       // this thread, if safe, doesn't steal cycles from GC.
  2711       // This is in keeping with the "no loitering in runtime" rule.
  2712       // We periodically check to see if there's a safepoint pending.
  2713       if ((ctr & 0xFF) == 0) {
  2714          if (SafepointSynchronize::do_call_back()) {
  2715             TEVENT (Spin: safepoint) ;
  2716             goto Abort ;           // abrupt spin egress
  2718          if (Knob_UsePause & 1) SpinPause () ;
  2720          int (*scb)(intptr_t,int) = SpinCallbackFunction ;
  2721          if (hits > 50 && scb != NULL) {
  2722             int abend = (*scb)(SpinCallbackArgument, 0) ;
  2726       if (Knob_UsePause & 2) SpinPause() ;
  2728       // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
  2729       // This is useful on classic SMP systems, but is of less utility on
  2730       // N1-style CMT platforms.
  2731       //
  2732       // Trade-off: lock acquisition latency vs coherency bandwidth.
  2733       // Lock hold times are typically short.  A histogram
  2734       // of successful spin attempts shows that we usually acquire
  2735       // the lock early in the spin.  That suggests we want to
  2736       // sample _owner frequently in the early phase of the spin,
  2737       // but then back-off and sample less frequently as the spin
  2738       // progresses.  The back-off makes a good citizen on SMP big
  2739       // SMP systems.  Oversampling _owner can consume excessive
  2740       // coherency bandwidth.  Relatedly, if we _oversample _owner we
  2741       // can inadvertently interfere with the the ST m->owner=null.
  2742       // executed by the lock owner.
  2743       if (ctr & msk) continue ;
  2744       ++hits ;
  2745       if ((hits & 0xF) == 0) {
  2746         // The 0xF, above, corresponds to the exponent.
  2747         // Consider: (msk+1)|msk
  2748         msk = ((msk << 2)|3) & BackOffMask ;
  2751       // Probe _owner with TATAS
  2752       // If this thread observes the monitor transition or flicker
  2753       // from locked to unlocked to locked, then the odds that this
  2754       // thread will acquire the lock in this spin attempt go down
  2755       // considerably.  The same argument applies if the CAS fails
  2756       // or if we observe _owner change from one non-null value to
  2757       // another non-null value.   In such cases we might abort
  2758       // the spin without prejudice or apply a "penalty" to the
  2759       // spin count-down variable "ctr", reducing it by 100, say.
  2761       Thread * ox = (Thread *) _owner ;
  2762       if (ox == NULL) {
  2763          ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
  2764          if (ox == NULL) {
  2765             // The CAS succeeded -- this thread acquired ownership
  2766             // Take care of some bookkeeping to exit spin state.
  2767             if (sss && _succ == Self) {
  2768                _succ = NULL ;
  2770             if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
  2772             // Increase _SpinDuration :
  2773             // The spin was successful (profitable) so we tend toward
  2774             // longer spin attempts in the future.
  2775             // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
  2776             // If we acquired the lock early in the spin cycle it
  2777             // makes sense to increase _SpinDuration proportionally.
  2778             // Note that we don't clamp SpinDuration precisely at SpinLimit.
  2779             int x = _SpinDuration ;
  2780             if (x < Knob_SpinLimit) {
  2781                 if (x < Knob_Poverty) x = Knob_Poverty ;
  2782                 _SpinDuration = x + Knob_Bonus ;
  2784             return 1 ;
  2787          // The CAS failed ... we can take any of the following actions:
  2788          // * penalize: ctr -= Knob_CASPenalty
  2789          // * exit spin with prejudice -- goto Abort;
  2790          // * exit spin without prejudice.
  2791          // * Since CAS is high-latency, retry again immediately.
  2792          prv = ox ;
  2793          TEVENT (Spin: cas failed) ;
  2794          if (caspty == -2) break ;
  2795          if (caspty == -1) goto Abort ;
  2796          ctr -= caspty ;
  2797          continue ;
  2800       // Did lock ownership change hands ?
  2801       if (ox != prv && prv != NULL ) {
  2802           TEVENT (spin: Owner changed)
  2803           if (oxpty == -2) break ;
  2804           if (oxpty == -1) goto Abort ;
  2805           ctr -= oxpty ;
  2807       prv = ox ;
  2809       // Abort the spin if the owner is not executing.
  2810       // The owner must be executing in order to drop the lock.
  2811       // Spinning while the owner is OFFPROC is idiocy.
  2812       // Consider: ctr -= RunnablePenalty ;
  2813       if (Knob_OState && NotRunnable (Self, ox)) {
  2814          TEVENT (Spin abort - notrunnable);
  2815          goto Abort ;
  2817       if (sss && _succ == NULL ) _succ = Self ;
  2820    // Spin failed with prejudice -- reduce _SpinDuration.
  2821    // TODO: Use an AIMD-like policy to adjust _SpinDuration.
  2822    // AIMD is globally stable.
  2823    TEVENT (Spin failure) ;
  2825      int x = _SpinDuration ;
  2826      if (x > 0) {
  2827         // Consider an AIMD scheme like: x -= (x >> 3) + 100
  2828         // This is globally sample and tends to damp the response.
  2829         x -= Knob_Penalty ;
  2830         if (x < 0) x = 0 ;
  2831         _SpinDuration = x ;
  2835  Abort:
  2836    if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
  2837    if (sss && _succ == Self) {
  2838       _succ = NULL ;
  2839       // Invariant: after setting succ=null a contending thread
  2840       // must recheck-retry _owner before parking.  This usually happens
  2841       // in the normal usage of TrySpin(), but it's safest
  2842       // to make TrySpin() as foolproof as possible.
  2843       OrderAccess::fence() ;
  2844       if (TryLock(Self) > 0) return 1 ;
  2846    return 0 ;
  2849 #define TrySpin TrySpin_VaryDuration
  2851 static void DeferredInitialize () {
  2852   if (InitDone > 0) return ;
  2853   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
  2854       while (InitDone != 1) ;
  2855       return ;
  2858   // One-shot global initialization ...
  2859   // The initialization is idempotent, so we don't need locks.
  2860   // In the future consider doing this via os::init_2().
  2861   // SyncKnobs consist of <Key>=<Value> pairs in the style
  2862   // of environment variables.  Start by converting ':' to NUL.
  2864   if (SyncKnobs == NULL) SyncKnobs = "" ;
  2866   size_t sz = strlen (SyncKnobs) ;
  2867   char * knobs = (char *) malloc (sz + 2) ;
  2868   if (knobs == NULL) {
  2869      vm_exit_out_of_memory (sz + 2, "Parse SyncKnobs") ;
  2870      guarantee (0, "invariant") ;
  2872   strcpy (knobs, SyncKnobs) ;
  2873   knobs[sz+1] = 0 ;
  2874   for (char * p = knobs ; *p ; p++) {
  2875      if (*p == ':') *p = 0 ;
  2878   #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
  2879   SETKNOB(ReportSettings) ;
  2880   SETKNOB(Verbose) ;
  2881   SETKNOB(FixedSpin) ;
  2882   SETKNOB(SpinLimit) ;
  2883   SETKNOB(SpinBase) ;
  2884   SETKNOB(SpinBackOff);
  2885   SETKNOB(CASPenalty) ;
  2886   SETKNOB(OXPenalty) ;
  2887   SETKNOB(LogSpins) ;
  2888   SETKNOB(SpinSetSucc) ;
  2889   SETKNOB(SuccEnabled) ;
  2890   SETKNOB(SuccRestrict) ;
  2891   SETKNOB(Penalty) ;
  2892   SETKNOB(Bonus) ;
  2893   SETKNOB(BonusB) ;
  2894   SETKNOB(Poverty) ;
  2895   SETKNOB(SpinAfterFutile) ;
  2896   SETKNOB(UsePause) ;
  2897   SETKNOB(SpinEarly) ;
  2898   SETKNOB(OState) ;
  2899   SETKNOB(MaxSpinners) ;
  2900   SETKNOB(PreSpin) ;
  2901   SETKNOB(ExitPolicy) ;
  2902   SETKNOB(QMode);
  2903   SETKNOB(ResetEvent) ;
  2904   SETKNOB(MoveNotifyee) ;
  2905   SETKNOB(FastHSSEC) ;
  2906   #undef SETKNOB
  2908   if (os::is_MP()) {
  2909      BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
  2910      if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
  2911      // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
  2912   } else {
  2913      Knob_SpinLimit = 0 ;
  2914      Knob_SpinBase  = 0 ;
  2915      Knob_PreSpin   = 0 ;
  2916      Knob_FixedSpin = -1 ;
  2919   if (Knob_LogSpins == 0) {
  2920      ObjectSynchronizer::_sync_FailedSpins = NULL ;
  2923   free (knobs) ;
  2924   OrderAccess::fence() ;
  2925   InitDone = 1 ;
  2928 // Theory of operations -- Monitors lists, thread residency, etc:
  2929 //
  2930 // * A thread acquires ownership of a monitor by successfully
  2931 //   CAS()ing the _owner field from null to non-null.
  2932 //
  2933 // * Invariant: A thread appears on at most one monitor list --
  2934 //   cxq, EntryList or WaitSet -- at any one time.
  2935 //
  2936 // * Contending threads "push" themselves onto the cxq with CAS
  2937 //   and then spin/park.
  2938 //
  2939 // * After a contending thread eventually acquires the lock it must
  2940 //   dequeue itself from either the EntryList or the cxq.
  2941 //
  2942 // * The exiting thread identifies and unparks an "heir presumptive"
  2943 //   tentative successor thread on the EntryList.  Critically, the
  2944 //   exiting thread doesn't unlink the successor thread from the EntryList.
  2945 //   After having been unparked, the wakee will recontend for ownership of
  2946 //   the monitor.   The successor (wakee) will either acquire the lock or
  2947 //   re-park itself.
  2948 //
  2949 //   Succession is provided for by a policy of competitive handoff.
  2950 //   The exiting thread does _not_ grant or pass ownership to the
  2951 //   successor thread.  (This is also referred to as "handoff" succession").
  2952 //   Instead the exiting thread releases ownership and possibly wakes
  2953 //   a successor, so the successor can (re)compete for ownership of the lock.
  2954 //   If the EntryList is empty but the cxq is populated the exiting
  2955 //   thread will drain the cxq into the EntryList.  It does so by
  2956 //   by detaching the cxq (installing null with CAS) and folding
  2957 //   the threads from the cxq into the EntryList.  The EntryList is
  2958 //   doubly linked, while the cxq is singly linked because of the
  2959 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
  2960 //
  2961 // * Concurrency invariants:
  2962 //
  2963 //   -- only the monitor owner may access or mutate the EntryList.
  2964 //      The mutex property of the monitor itself protects the EntryList
  2965 //      from concurrent interference.
  2966 //   -- Only the monitor owner may detach the cxq.
  2967 //
  2968 // * The monitor entry list operations avoid locks, but strictly speaking
  2969 //   they're not lock-free.  Enter is lock-free, exit is not.
  2970 //   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
  2971 //
  2972 // * The cxq can have multiple concurrent "pushers" but only one concurrent
  2973 //   detaching thread.  This mechanism is immune from the ABA corruption.
  2974 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
  2975 //
  2976 // * Taken together, the cxq and the EntryList constitute or form a
  2977 //   single logical queue of threads stalled trying to acquire the lock.
  2978 //   We use two distinct lists to improve the odds of a constant-time
  2979 //   dequeue operation after acquisition (in the ::enter() epilog) and
  2980 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
  2981 //   A key desideratum is to minimize queue & monitor metadata manipulation
  2982 //   that occurs while holding the monitor lock -- that is, we want to
  2983 //   minimize monitor lock holds times.  Note that even a small amount of
  2984 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
  2985 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
  2986 //   locks and monitor metadata.
  2987 //
  2988 //   Cxq points to the the set of Recently Arrived Threads attempting entry.
  2989 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
  2990 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
  2991 //   the unlocking thread notices that EntryList is null but _cxq is != null.
  2992 //
  2993 //   The EntryList is ordered by the prevailing queue discipline and
  2994 //   can be organized in any convenient fashion, such as a doubly-linked list or
  2995 //   a circular doubly-linked list.  Critically, we want insert and delete operations
  2996 //   to operate in constant-time.  If we need a priority queue then something akin
  2997 //   to Solaris' sleepq would work nicely.  Viz.,
  2998 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
  2999 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
  3000 //   drains the cxq into the EntryList, and orders or reorders the threads on the
  3001 //   EntryList accordingly.
  3002 //
  3003 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
  3004 //   somewhat similar to an elevator-scan.
  3005 //
  3006 // * The monitor synchronization subsystem avoids the use of native
  3007 //   synchronization primitives except for the narrow platform-specific
  3008 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
  3009 //   the semantics of park-unpark.  Put another way, this monitor implementation
  3010 //   depends only on atomic operations and park-unpark.  The monitor subsystem
  3011 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
  3012 //   underlying OS manages the READY<->RUN transitions.
  3013 //
  3014 // * Waiting threads reside on the WaitSet list -- wait() puts
  3015 //   the caller onto the WaitSet.
  3016 //
  3017 // * notify() or notifyAll() simply transfers threads from the WaitSet to
  3018 //   either the EntryList or cxq.  Subsequent exit() operations will
  3019 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
  3020 //   it's likely the notifyee would simply impale itself on the lock held
  3021 //   by the notifier.
  3022 //
  3023 // * An interesting alternative is to encode cxq as (List,LockByte) where
  3024 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
  3025 //   variable, like _recursions, in the scheme.  The threads or Events that form
  3026 //   the list would have to be aligned in 256-byte addresses.  A thread would
  3027 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
  3028 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
  3029 //   Note that is is *not* word-tearing, but it does presume that full-word
  3030 //   CAS operations are coherent with intermix with STB operations.  That's true
  3031 //   on most common processors.
  3032 //
  3033 // * See also http://blogs.sun.com/dave
  3036 void ATTR ObjectMonitor::EnterI (TRAPS) {
  3037     Thread * Self = THREAD ;
  3038     assert (Self->is_Java_thread(), "invariant") ;
  3039     assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
  3041     // Try the lock - TATAS
  3042     if (TryLock (Self) > 0) {
  3043         assert (_succ != Self              , "invariant") ;
  3044         assert (_owner == Self             , "invariant") ;
  3045         assert (_Responsible != Self       , "invariant") ;
  3046         return ;
  3049     DeferredInitialize () ;
  3051     // We try one round of spinning *before* enqueueing Self.
  3052     //
  3053     // If the _owner is ready but OFFPROC we could use a YieldTo()
  3054     // operation to donate the remainder of this thread's quantum
  3055     // to the owner.  This has subtle but beneficial affinity
  3056     // effects.
  3058     if (TrySpin (Self) > 0) {
  3059         assert (_owner == Self        , "invariant") ;
  3060         assert (_succ != Self         , "invariant") ;
  3061         assert (_Responsible != Self  , "invariant") ;
  3062         return ;
  3065     // The Spin failed -- Enqueue and park the thread ...
  3066     assert (_succ  != Self            , "invariant") ;
  3067     assert (_owner != Self            , "invariant") ;
  3068     assert (_Responsible != Self      , "invariant") ;
  3070     // Enqueue "Self" on ObjectMonitor's _cxq.
  3071     //
  3072     // Node acts as a proxy for Self.
  3073     // As an aside, if were to ever rewrite the synchronization code mostly
  3074     // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
  3075     // Java objects.  This would avoid awkward lifecycle and liveness issues,
  3076     // as well as eliminate a subset of ABA issues.
  3077     // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
  3078     //
  3080     ObjectWaiter node(Self) ;
  3081     Self->_ParkEvent->reset() ;
  3082     node._prev   = (ObjectWaiter *) 0xBAD ;
  3083     node.TState  = ObjectWaiter::TS_CXQ ;
  3085     // Push "Self" onto the front of the _cxq.
  3086     // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
  3087     // Note that spinning tends to reduce the rate at which threads
  3088     // enqueue and dequeue on EntryList|cxq.
  3089     ObjectWaiter * nxt ;
  3090     for (;;) {
  3091         node._next = nxt = _cxq ;
  3092         if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
  3094         // Interference - the CAS failed because _cxq changed.  Just retry.
  3095         // As an optional optimization we retry the lock.
  3096         if (TryLock (Self) > 0) {
  3097             assert (_succ != Self         , "invariant") ;
  3098             assert (_owner == Self        , "invariant") ;
  3099             assert (_Responsible != Self  , "invariant") ;
  3100             return ;
  3104     // Check for cxq|EntryList edge transition to non-null.  This indicates
  3105     // the onset of contention.  While contention persists exiting threads
  3106     // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
  3107     // operations revert to the faster 1-0 mode.  This enter operation may interleave
  3108     // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
  3109     // arrange for one of the contending thread to use a timed park() operations
  3110     // to detect and recover from the race.  (Stranding is form of progress failure
  3111     // where the monitor is unlocked but all the contending threads remain parked).
  3112     // That is, at least one of the contended threads will periodically poll _owner.
  3113     // One of the contending threads will become the designated "Responsible" thread.
  3114     // The Responsible thread uses a timed park instead of a normal indefinite park
  3115     // operation -- it periodically wakes and checks for and recovers from potential
  3116     // strandings admitted by 1-0 exit operations.   We need at most one Responsible
  3117     // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
  3118     // be responsible for a monitor.
  3119     //
  3120     // Currently, one of the contended threads takes on the added role of "Responsible".
  3121     // A viable alternative would be to use a dedicated "stranding checker" thread
  3122     // that periodically iterated over all the threads (or active monitors) and unparked
  3123     // successors where there was risk of stranding.  This would help eliminate the
  3124     // timer scalability issues we see on some platforms as we'd only have one thread
  3125     // -- the checker -- parked on a timer.
  3127     if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
  3128         // Try to assume the role of responsible thread for the monitor.
  3129         // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
  3130         Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
  3133     // The lock have been released while this thread was occupied queueing
  3134     // itself onto _cxq.  To close the race and avoid "stranding" and
  3135     // progress-liveness failure we must resample-retry _owner before parking.
  3136     // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
  3137     // In this case the ST-MEMBAR is accomplished with CAS().
  3138     //
  3139     // TODO: Defer all thread state transitions until park-time.
  3140     // Since state transitions are heavy and inefficient we'd like
  3141     // to defer the state transitions until absolutely necessary,
  3142     // and in doing so avoid some transitions ...
  3144     TEVENT (Inflated enter - Contention) ;
  3145     int nWakeups = 0 ;
  3146     int RecheckInterval = 1 ;
  3148     for (;;) {
  3150         if (TryLock (Self) > 0) break ;
  3151         assert (_owner != Self, "invariant") ;
  3153         if ((SyncFlags & 2) && _Responsible == NULL) {
  3154            Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
  3157         // park self
  3158         if (_Responsible == Self || (SyncFlags & 1)) {
  3159             TEVENT (Inflated enter - park TIMED) ;
  3160             Self->_ParkEvent->park ((jlong) RecheckInterval) ;
  3161             // Increase the RecheckInterval, but clamp the value.
  3162             RecheckInterval *= 8 ;
  3163             if (RecheckInterval > 1000) RecheckInterval = 1000 ;
  3164         } else {
  3165             TEVENT (Inflated enter - park UNTIMED) ;
  3166             Self->_ParkEvent->park() ;
  3169         if (TryLock(Self) > 0) break ;
  3171         // The lock is still contested.
  3172         // Keep a tally of the # of futile wakeups.
  3173         // Note that the counter is not protected by a lock or updated by atomics.
  3174         // That is by design - we trade "lossy" counters which are exposed to
  3175         // races during updates for a lower probe effect.
  3176         TEVENT (Inflated enter - Futile wakeup) ;
  3177         if (ObjectSynchronizer::_sync_FutileWakeups != NULL) {
  3178            ObjectSynchronizer::_sync_FutileWakeups->inc() ;
  3180         ++ nWakeups ;
  3182         // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
  3183         // We can defer clearing _succ until after the spin completes
  3184         // TrySpin() must tolerate being called with _succ == Self.
  3185         // Try yet another round of adaptive spinning.
  3186         if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
  3188         // We can find that we were unpark()ed and redesignated _succ while
  3189         // we were spinning.  That's harmless.  If we iterate and call park(),
  3190         // park() will consume the event and return immediately and we'll
  3191         // just spin again.  This pattern can repeat, leaving _succ to simply
  3192         // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
  3193         // Alternately, we can sample fired() here, and if set, forgo spinning
  3194         // in the next iteration.
  3196         if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
  3197            Self->_ParkEvent->reset() ;
  3198            OrderAccess::fence() ;
  3200         if (_succ == Self) _succ = NULL ;
  3202         // Invariant: after clearing _succ a thread *must* retry _owner before parking.
  3203         OrderAccess::fence() ;
  3206     // Egress :
  3207     // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
  3208     // Normally we'll find Self on the EntryList .
  3209     // From the perspective of the lock owner (this thread), the
  3210     // EntryList is stable and cxq is prepend-only.
  3211     // The head of cxq is volatile but the interior is stable.
  3212     // In addition, Self.TState is stable.
  3214     assert (_owner == Self      , "invariant") ;
  3215     assert (object() != NULL    , "invariant") ;
  3216     // I'd like to write:
  3217     //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
  3218     // but as we're at a safepoint that's not safe.
  3220     UnlinkAfterAcquire (Self, &node) ;
  3221     if (_succ == Self) _succ = NULL ;
  3223     assert (_succ != Self, "invariant") ;
  3224     if (_Responsible == Self) {
  3225         _Responsible = NULL ;
  3226         // Dekker pivot-point.
  3227         // Consider OrderAccess::storeload() here
  3229         // We may leave threads on cxq|EntryList without a designated
  3230         // "Responsible" thread.  This is benign.  When this thread subsequently
  3231         // exits the monitor it can "see" such preexisting "old" threads --
  3232         // threads that arrived on the cxq|EntryList before the fence, above --
  3233         // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
  3234         // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
  3235         // non-null and elect a new "Responsible" timer thread.
  3236         //
  3237         // This thread executes:
  3238         //    ST Responsible=null; MEMBAR    (in enter epilog - here)
  3239         //    LD cxq|EntryList               (in subsequent exit)
  3240         //
  3241         // Entering threads in the slow/contended path execute:
  3242         //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
  3243         //    The (ST cxq; MEMBAR) is accomplished with CAS().
  3244         //
  3245         // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
  3246         // exit operation from floating above the ST Responsible=null.
  3247         //
  3248         // In *practice* however, EnterI() is always followed by some atomic
  3249         // operation such as the decrement of _count in ::enter().  Those atomics
  3250         // obviate the need for the explicit MEMBAR, above.
  3253     // We've acquired ownership with CAS().
  3254     // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
  3255     // But since the CAS() this thread may have also stored into _succ,
  3256     // EntryList, cxq or Responsible.  These meta-data updates must be
  3257     // visible __before this thread subsequently drops the lock.
  3258     // Consider what could occur if we didn't enforce this constraint --
  3259     // STs to monitor meta-data and user-data could reorder with (become
  3260     // visible after) the ST in exit that drops ownership of the lock.
  3261     // Some other thread could then acquire the lock, but observe inconsistent
  3262     // or old monitor meta-data and heap data.  That violates the JMM.
  3263     // To that end, the 1-0 exit() operation must have at least STST|LDST
  3264     // "release" barrier semantics.  Specifically, there must be at least a
  3265     // STST|LDST barrier in exit() before the ST of null into _owner that drops
  3266     // the lock.   The barrier ensures that changes to monitor meta-data and data
  3267     // protected by the lock will be visible before we release the lock, and
  3268     // therefore before some other thread (CPU) has a chance to acquire the lock.
  3269     // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  3270     //
  3271     // Critically, any prior STs to _succ or EntryList must be visible before
  3272     // the ST of null into _owner in the *subsequent* (following) corresponding
  3273     // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
  3274     // execute a serializing instruction.
  3276     if (SyncFlags & 8) {
  3277        OrderAccess::fence() ;
  3279     return ;
  3282 // ExitSuspendEquivalent:
  3283 // A faster alternate to handle_special_suspend_equivalent_condition()
  3284 //
  3285 // handle_special_suspend_equivalent_condition() unconditionally
  3286 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
  3287 // operations have high latency.  Note that in ::enter() we call HSSEC
  3288 // while holding the monitor, so we effectively lengthen the critical sections.
  3289 //
  3290 // There are a number of possible solutions:
  3291 //
  3292 // A.  To ameliorate the problem we might also defer state transitions
  3293 //     to as late as possible -- just prior to parking.
  3294 //     Given that, we'd call HSSEC after having returned from park(),
  3295 //     but before attempting to acquire the monitor.  This is only a
  3296 //     partial solution.  It avoids calling HSSEC while holding the
  3297 //     monitor (good), but it still increases successor reacquisition latency --
  3298 //     the interval between unparking a successor and the time the successor
  3299 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
  3300 //     If we use this technique we can also avoid EnterI()-exit() loop
  3301 //     in ::enter() where we iteratively drop the lock and then attempt
  3302 //     to reacquire it after suspending.
  3303 //
  3304 // B.  In the future we might fold all the suspend bits into a
  3305 //     composite per-thread suspend flag and then update it with CAS().
  3306 //     Alternately, a Dekker-like mechanism with multiple variables
  3307 //     would suffice:
  3308 //       ST Self->_suspend_equivalent = false
  3309 //       MEMBAR
  3310 //       LD Self_>_suspend_flags
  3311 //
  3314 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
  3315    int Mode = Knob_FastHSSEC ;
  3316    if (Mode && !jSelf->is_external_suspend()) {
  3317       assert (jSelf->is_suspend_equivalent(), "invariant") ;
  3318       jSelf->clear_suspend_equivalent() ;
  3319       if (2 == Mode) OrderAccess::storeload() ;
  3320       if (!jSelf->is_external_suspend()) return false ;
  3321       // We raced a suspension -- fall thru into the slow path
  3322       TEVENT (ExitSuspendEquivalent - raced) ;
  3323       jSelf->set_suspend_equivalent() ;
  3325    return jSelf->handle_special_suspend_equivalent_condition() ;
  3329 // ReenterI() is a specialized inline form of the latter half of the
  3330 // contended slow-path from EnterI().  We use ReenterI() only for
  3331 // monitor reentry in wait().
  3332 //
  3333 // In the future we should reconcile EnterI() and ReenterI(), adding
  3334 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
  3335 // loop accordingly.
  3337 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
  3338     assert (Self != NULL                , "invariant") ;
  3339     assert (SelfNode != NULL            , "invariant") ;
  3340     assert (SelfNode->_thread == Self   , "invariant") ;
  3341     assert (_waiters > 0                , "invariant") ;
  3342     assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
  3343     assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
  3344     JavaThread * jt = (JavaThread *) Self ;
  3346     int nWakeups = 0 ;
  3347     for (;;) {
  3348         ObjectWaiter::TStates v = SelfNode->TState ;
  3349         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
  3350         assert    (_owner != Self, "invariant") ;
  3352         if (TryLock (Self) > 0) break ;
  3353         if (TrySpin (Self) > 0) break ;
  3355         TEVENT (Wait Reentry - parking) ;
  3357         // State transition wrappers around park() ...
  3358         // ReenterI() wisely defers state transitions until
  3359         // it's clear we must park the thread.
  3361            OSThreadContendState osts(Self->osthread());
  3362            ThreadBlockInVM tbivm(jt);
  3364            // cleared by handle_special_suspend_equivalent_condition()
  3365            // or java_suspend_self()
  3366            jt->set_suspend_equivalent();
  3367            if (SyncFlags & 1) {
  3368               Self->_ParkEvent->park ((jlong)1000) ;
  3369            } else {
  3370               Self->_ParkEvent->park () ;
  3373            // were we externally suspended while we were waiting?
  3374            for (;;) {
  3375               if (!ExitSuspendEquivalent (jt)) break ;
  3376               if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
  3377               jt->java_suspend_self();
  3378               jt->set_suspend_equivalent();
  3382         // Try again, but just so we distinguish between futile wakeups and
  3383         // successful wakeups.  The following test isn't algorithmically
  3384         // necessary, but it helps us maintain sensible statistics.
  3385         if (TryLock(Self) > 0) break ;
  3387         // The lock is still contested.
  3388         // Keep a tally of the # of futile wakeups.
  3389         // Note that the counter is not protected by a lock or updated by atomics.
  3390         // That is by design - we trade "lossy" counters which are exposed to
  3391         // races during updates for a lower probe effect.
  3392         TEVENT (Wait Reentry - futile wakeup) ;
  3393         ++ nWakeups ;
  3395         // Assuming this is not a spurious wakeup we'll normally
  3396         // find that _succ == Self.
  3397         if (_succ == Self) _succ = NULL ;
  3399         // Invariant: after clearing _succ a contending thread
  3400         // *must* retry  _owner before parking.
  3401         OrderAccess::fence() ;
  3403         if (ObjectSynchronizer::_sync_FutileWakeups != NULL) {
  3404           ObjectSynchronizer::_sync_FutileWakeups->inc() ;
  3408     // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
  3409     // Normally we'll find Self on the EntryList.
  3410     // Unlinking from the EntryList is constant-time and atomic-free.
  3411     // From the perspective of the lock owner (this thread), the
  3412     // EntryList is stable and cxq is prepend-only.
  3413     // The head of cxq is volatile but the interior is stable.
  3414     // In addition, Self.TState is stable.
  3416     assert (_owner == Self, "invariant") ;
  3417     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
  3418     UnlinkAfterAcquire (Self, SelfNode) ;
  3419     if (_succ == Self) _succ = NULL ;
  3420     assert (_succ != Self, "invariant") ;
  3421     SelfNode->TState = ObjectWaiter::TS_RUN ;
  3422     OrderAccess::fence() ;      // see comments at the end of EnterI()
  3425 bool ObjectMonitor::try_enter(Thread* THREAD) {
  3426   if (THREAD != _owner) {
  3427     if (THREAD->is_lock_owned ((address)_owner)) {
  3428        assert(_recursions == 0, "internal state error");
  3429        _owner = THREAD ;
  3430        _recursions = 1 ;
  3431        OwnerIsThread = 1 ;
  3432        return true;
  3434     if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
  3435       return false;
  3437     return true;
  3438   } else {
  3439     _recursions++;
  3440     return true;
  3444 void ATTR ObjectMonitor::enter(TRAPS) {
  3445   // The following code is ordered to check the most common cases first
  3446   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
  3447   Thread * const Self = THREAD ;
  3448   void * cur ;
  3450   cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
  3451   if (cur == NULL) {
  3452      // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
  3453      assert (_recursions == 0   , "invariant") ;
  3454      assert (_owner      == Self, "invariant") ;
  3455      // CONSIDER: set or assert OwnerIsThread == 1
  3456      return ;
  3459   if (cur == Self) {
  3460      // TODO-FIXME: check for integer overflow!  BUGID 6557169.
  3461      _recursions ++ ;
  3462      return ;
  3465   if (Self->is_lock_owned ((address)cur)) {
  3466     assert (_recursions == 0, "internal state error");
  3467     _recursions = 1 ;
  3468     // Commute owner from a thread-specific on-stack BasicLockObject address to
  3469     // a full-fledged "Thread *".
  3470     _owner = Self ;
  3471     OwnerIsThread = 1 ;
  3472     return ;
  3475   // We've encountered genuine contention.
  3476   assert (Self->_Stalled == 0, "invariant") ;
  3477   Self->_Stalled = intptr_t(this) ;
  3479   // Try one round of spinning *before* enqueueing Self
  3480   // and before going through the awkward and expensive state
  3481   // transitions.  The following spin is strictly optional ...
  3482   // Note that if we acquire the monitor from an initial spin
  3483   // we forgo posting JVMTI events and firing DTRACE probes.
  3484   if (Knob_SpinEarly && TrySpin (Self) > 0) {
  3485      assert (_owner == Self      , "invariant") ;
  3486      assert (_recursions == 0    , "invariant") ;
  3487      assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
  3488      Self->_Stalled = 0 ;
  3489      return ;
  3492   assert (_owner != Self          , "invariant") ;
  3493   assert (_succ  != Self          , "invariant") ;
  3494   assert (Self->is_Java_thread()  , "invariant") ;
  3495   JavaThread * jt = (JavaThread *) Self ;
  3496   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
  3497   assert (jt->thread_state() != _thread_blocked   , "invariant") ;
  3498   assert (this->object() != NULL  , "invariant") ;
  3499   assert (_count >= 0, "invariant") ;
  3501   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
  3502   // Ensure the object-monitor relationship remains stable while there's contention.
  3503   Atomic::inc_ptr(&_count);
  3505   { // Change java thread status to indicate blocked on monitor enter.
  3506     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
  3508     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
  3509     if (JvmtiExport::should_post_monitor_contended_enter()) {
  3510       JvmtiExport::post_monitor_contended_enter(jt, this);
  3513     OSThreadContendState osts(Self->osthread());
  3514     ThreadBlockInVM tbivm(jt);
  3516     Self->set_current_pending_monitor(this);
  3518     // TODO-FIXME: change the following for(;;) loop to straight-line code.
  3519     for (;;) {
  3520       jt->set_suspend_equivalent();
  3521       // cleared by handle_special_suspend_equivalent_condition()
  3522       // or java_suspend_self()
  3524       EnterI (THREAD) ;
  3526       if (!ExitSuspendEquivalent(jt)) break ;
  3528       //
  3529       // We have acquired the contended monitor, but while we were
  3530       // waiting another thread suspended us. We don't want to enter
  3531       // the monitor while suspended because that would surprise the
  3532       // thread that suspended us.
  3533       //
  3534           _recursions = 0 ;
  3535       _succ = NULL ;
  3536       exit (Self) ;
  3538       jt->java_suspend_self();
  3540     Self->set_current_pending_monitor(NULL);
  3543   Atomic::dec_ptr(&_count);
  3544   assert (_count >= 0, "invariant") ;
  3545   Self->_Stalled = 0 ;
  3547   // Must either set _recursions = 0 or ASSERT _recursions == 0.
  3548   assert (_recursions == 0     , "invariant") ;
  3549   assert (_owner == Self       , "invariant") ;
  3550   assert (_succ  != Self       , "invariant") ;
  3551   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
  3553   // The thread -- now the owner -- is back in vm mode.
  3554   // Report the glorious news via TI,DTrace and jvmstat.
  3555   // The probe effect is non-trivial.  All the reportage occurs
  3556   // while we hold the monitor, increasing the length of the critical
  3557   // section.  Amdahl's parallel speedup law comes vividly into play.
  3558   //
  3559   // Another option might be to aggregate the events (thread local or
  3560   // per-monitor aggregation) and defer reporting until a more opportune
  3561   // time -- such as next time some thread encounters contention but has
  3562   // yet to acquire the lock.  While spinning that thread could
  3563   // spinning we could increment JVMStat counters, etc.
  3565   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
  3566   if (JvmtiExport::should_post_monitor_contended_entered()) {
  3567     JvmtiExport::post_monitor_contended_entered(jt, this);
  3569   if (ObjectSynchronizer::_sync_ContendedLockAttempts != NULL) {
  3570      ObjectSynchronizer::_sync_ContendedLockAttempts->inc() ;
  3574 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
  3575    assert (_owner == Self, "invariant") ;
  3577    // Exit protocol:
  3578    // 1. ST _succ = wakee
  3579    // 2. membar #loadstore|#storestore;
  3580    // 2. ST _owner = NULL
  3581    // 3. unpark(wakee)
  3583    _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
  3584    ParkEvent * Trigger = Wakee->_event ;
  3586    // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
  3587    // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
  3588    // out-of-scope (non-extant).
  3589    Wakee  = NULL ;
  3591    // Drop the lock
  3592    OrderAccess::release_store_ptr (&_owner, NULL) ;
  3593    OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
  3595    // TODO-FIXME:
  3596    // If there's a safepoint pending the best policy would be to
  3597    // get _this thread to a safepoint and only wake the successor
  3598    // after the safepoint completed.  monitorexit uses a "leaf"
  3599    // state transition, however, so this thread can't become
  3600    // safe at this point in time.  (Its stack isn't walkable).
  3601    // The next best thing is to defer waking the successor by
  3602    // adding to a list of thread to be unparked after at the
  3603    // end of the forthcoming STW).
  3604    if (SafepointSynchronize::do_call_back()) {
  3605       TEVENT (unpark before SAFEPOINT) ;
  3608    // Possible optimizations ...
  3609    //
  3610    // * Consider: set Wakee->UnparkTime = timeNow()
  3611    //   When the thread wakes up it'll compute (timeNow() - Self->UnparkTime()).
  3612    //   By measuring recent ONPROC latency we can approximate the
  3613    //   system load.  In turn, we can feed that information back
  3614    //   into the spinning & succession policies.
  3615    //   (ONPROC latency correlates strongly with load).
  3616    //
  3617    // * Pull affinity:
  3618    //   If the wakee is cold then transiently setting it's affinity
  3619    //   to the current CPU is a good idea.
  3620    //   See http://j2se.east/~dice/PERSIST/050624-PullAffinity.txt
  3621    DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
  3622    Trigger->unpark() ;
  3624    // Maintain stats and report events to JVMTI
  3625    if (ObjectSynchronizer::_sync_Parks != NULL) {
  3626       ObjectSynchronizer::_sync_Parks->inc() ;
  3631 // exit()
  3632 // ~~~~~~
  3633 // Note that the collector can't reclaim the objectMonitor or deflate
  3634 // the object out from underneath the thread calling ::exit() as the
  3635 // thread calling ::exit() never transitions to a stable state.
  3636 // This inhibits GC, which in turn inhibits asynchronous (and
  3637 // inopportune) reclamation of "this".
  3638 //
  3639 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
  3640 // There's one exception to the claim above, however.  EnterI() can call
  3641 // exit() to drop a lock if the acquirer has been externally suspended.
  3642 // In that case exit() is called with _thread_state as _thread_blocked,
  3643 // but the monitor's _count field is > 0, which inhibits reclamation.
  3644 //
  3645 // 1-0 exit
  3646 // ~~~~~~~~
  3647 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
  3648 // the fast-path operators have been optimized so the common ::exit()
  3649 // operation is 1-0.  See i486.ad fast_unlock(), for instance.
  3650 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
  3651 // greatly improves latency -- MEMBAR and CAS having considerable local
  3652 // latency on modern processors -- but at the cost of "stranding".  Absent the
  3653 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
  3654 // ::enter() path, resulting in the entering thread being stranding
  3655 // and a progress-liveness failure.   Stranding is extremely rare.
  3656 // We use timers (timed park operations) & periodic polling to detect
  3657 // and recover from stranding.  Potentially stranded threads periodically
  3658 // wake up and poll the lock.  See the usage of the _Responsible variable.
  3659 //
  3660 // The CAS() in enter provides for safety and exclusion, while the CAS or
  3661 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
  3662 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
  3663 // We detect and recover from stranding with timers.
  3664 //
  3665 // If a thread transiently strands it'll park until (a) another
  3666 // thread acquires the lock and then drops the lock, at which time the
  3667 // exiting thread will notice and unpark the stranded thread, or, (b)
  3668 // the timer expires.  If the lock is high traffic then the stranding latency
  3669 // will be low due to (a).  If the lock is low traffic then the odds of
  3670 // stranding are lower, although the worst-case stranding latency
  3671 // is longer.  Critically, we don't want to put excessive load in the
  3672 // platform's timer subsystem.  We want to minimize both the timer injection
  3673 // rate (timers created/sec) as well as the number of timers active at
  3674 // any one time.  (more precisely, we want to minimize timer-seconds, which is
  3675 // the integral of the # of active timers at any instant over time).
  3676 // Both impinge on OS scalability.  Given that, at most one thread parked on
  3677 // a monitor will use a timer.
  3679 void ATTR ObjectMonitor::exit(TRAPS) {
  3680    Thread * Self = THREAD ;
  3681    if (THREAD != _owner) {
  3682      if (THREAD->is_lock_owned((address) _owner)) {
  3683        // Transmute _owner from a BasicLock pointer to a Thread address.
  3684        // We don't need to hold _mutex for this transition.
  3685        // Non-null to Non-null is safe as long as all readers can
  3686        // tolerate either flavor.
  3687        assert (_recursions == 0, "invariant") ;
  3688        _owner = THREAD ;
  3689        _recursions = 0 ;
  3690        OwnerIsThread = 1 ;
  3691      } else {
  3692        // NOTE: we need to handle unbalanced monitor enter/exit
  3693        // in native code by throwing an exception.
  3694        // TODO: Throw an IllegalMonitorStateException ?
  3695        TEVENT (Exit - Throw IMSX) ;
  3696        assert(false, "Non-balanced monitor enter/exit!");
  3697        if (false) {
  3698           THROW(vmSymbols::java_lang_IllegalMonitorStateException());
  3700        return;
  3704    if (_recursions != 0) {
  3705      _recursions--;        // this is simple recursive enter
  3706      TEVENT (Inflated exit - recursive) ;
  3707      return ;
  3710    // Invariant: after setting Responsible=null an thread must execute
  3711    // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
  3712    if ((SyncFlags & 4) == 0) {
  3713       _Responsible = NULL ;
  3716    for (;;) {
  3717       assert (THREAD == _owner, "invariant") ;
  3719       // Fast-path monitor exit:
  3720       //
  3721       // Observe the Dekker/Lamport duality:
  3722       // A thread in ::exit() executes:
  3723       //   ST Owner=null; MEMBAR; LD EntryList|cxq.
  3724       // A thread in the contended ::enter() path executes the complementary:
  3725       //   ST EntryList|cxq = nonnull; MEMBAR; LD Owner.
  3726       //
  3727       // Note that there's a benign race in the exit path.  We can drop the
  3728       // lock, another thread can reacquire the lock immediately, and we can
  3729       // then wake a thread unnecessarily (yet another flavor of futile wakeup).
  3730       // This is benign, and we've structured the code so the windows are short
  3731       // and the frequency of such futile wakeups is low.
  3732       //
  3733       // We could eliminate the race by encoding both the "LOCKED" state and
  3734       // the queue head in a single word.  Exit would then use either CAS to
  3735       // clear the LOCKED bit/byte.  This precludes the desirable 1-0 optimization,
  3736       // however.
  3737       //
  3738       // Possible fast-path ::exit() optimization:
  3739       // The current fast-path exit implementation fetches both cxq and EntryList.
  3740       // See also i486.ad fast_unlock().  Testing has shown that two LDs
  3741       // isn't measurably slower than a single LD on any platforms.
  3742       // Still, we could reduce the 2 LDs to one or zero by one of the following:
  3743       //
  3744       // - Use _count instead of cxq|EntryList
  3745       //   We intend to eliminate _count, however, when we switch
  3746       //   to on-the-fly deflation in ::exit() as is used in
  3747       //   Metalocks and RelaxedLocks.
  3748       //
  3749       // - Establish the invariant that cxq == null implies EntryList == null.
  3750       //   set cxq == EMPTY (1) to encode the state where cxq is empty
  3751       //   by EntryList != null.  EMPTY is a distinguished value.
  3752       //   The fast-path exit() would fetch cxq but not EntryList.
  3753       //
  3754       // - Encode succ as follows:
  3755       //   succ = t :  Thread t is the successor -- t is ready or is spinning.
  3756       //               Exiting thread does not need to wake a successor.
  3757       //   succ = 0 :  No successor required -> (EntryList|cxq) == null
  3758       //               Exiting thread does not need to wake a successor
  3759       //   succ = 1 :  Successor required    -> (EntryList|cxq) != null and
  3760       //               logically succ == null.
  3761       //               Exiting thread must wake a successor.
  3762       //
  3763       //   The 1-1 fast-exit path would appear as :
  3764       //     _owner = null ; membar ;
  3765       //     if (_succ == 1 && CAS (&_owner, null, Self) == null) goto SlowPath
  3766       //     goto FastPathDone ;
  3767       //
  3768       //   and the 1-0 fast-exit path would appear as:
  3769       //      if (_succ == 1) goto SlowPath
  3770       //      Owner = null ;
  3771       //      goto FastPathDone
  3772       //
  3773       // - Encode the LSB of _owner as 1 to indicate that exit()
  3774       //   must use the slow-path and make a successor ready.
  3775       //   (_owner & 1) == 0 IFF succ != null || (EntryList|cxq) == null
  3776       //   (_owner & 1) == 0 IFF succ == null && (EntryList|cxq) != null (obviously)
  3777       //   The 1-0 fast exit path would read:
  3778       //      if (_owner != Self) goto SlowPath
  3779       //      _owner = null
  3780       //      goto FastPathDone
  3782       if (Knob_ExitPolicy == 0) {
  3783          // release semantics: prior loads and stores from within the critical section
  3784          // must not float (reorder) past the following store that drops the lock.
  3785          // On SPARC that requires MEMBAR #loadstore|#storestore.
  3786          // But of course in TSO #loadstore|#storestore is not required.
  3787          // I'd like to write one of the following:
  3788          // A.  OrderAccess::release() ; _owner = NULL
  3789          // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
  3790          // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
  3791          // store into a _dummy variable.  That store is not needed, but can result
  3792          // in massive wasteful coherency traffic on classic SMP systems.
  3793          // Instead, I use release_store(), which is implemented as just a simple
  3794          // ST on x64, x86 and SPARC.
  3795          OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
  3796          OrderAccess::storeload() ;                         // See if we need to wake a successor
  3797          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
  3798             TEVENT (Inflated exit - simple egress) ;
  3799             return ;
  3801          TEVENT (Inflated exit - complex egress) ;
  3803          // Normally the exiting thread is responsible for ensuring succession,
  3804          // but if other successors are ready or other entering threads are spinning
  3805          // then this thread can simply store NULL into _owner and exit without
  3806          // waking a successor.  The existence of spinners or ready successors
  3807          // guarantees proper succession (liveness).  Responsibility passes to the
  3808          // ready or running successors.  The exiting thread delegates the duty.
  3809          // More precisely, if a successor already exists this thread is absolved
  3810          // of the responsibility of waking (unparking) one.
  3811          //
  3812          // The _succ variable is critical to reducing futile wakeup frequency.
  3813          // _succ identifies the "heir presumptive" thread that has been made
  3814          // ready (unparked) but that has not yet run.  We need only one such
  3815          // successor thread to guarantee progress.
  3816          // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
  3817          // section 3.3 "Futile Wakeup Throttling" for details.
  3818          //
  3819          // Note that spinners in Enter() also set _succ non-null.
  3820          // In the current implementation spinners opportunistically set
  3821          // _succ so that exiting threads might avoid waking a successor.
  3822          // Another less appealing alternative would be for the exiting thread
  3823          // to drop the lock and then spin briefly to see if a spinner managed
  3824          // to acquire the lock.  If so, the exiting thread could exit
  3825          // immediately without waking a successor, otherwise the exiting
  3826          // thread would need to dequeue and wake a successor.
  3827          // (Note that we'd need to make the post-drop spin short, but no
  3828          // shorter than the worst-case round-trip cache-line migration time.
  3829          // The dropped lock needs to become visible to the spinner, and then
  3830          // the acquisition of the lock by the spinner must become visible to
  3831          // the exiting thread).
  3832          //
  3834          // It appears that an heir-presumptive (successor) must be made ready.
  3835          // Only the current lock owner can manipulate the EntryList or
  3836          // drain _cxq, so we need to reacquire the lock.  If we fail
  3837          // to reacquire the lock the responsibility for ensuring succession
  3838          // falls to the new owner.
  3839          //
  3840          if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
  3841             return ;
  3843          TEVENT (Exit - Reacquired) ;
  3844       } else {
  3845          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
  3846             OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
  3847             OrderAccess::storeload() ;
  3848             // Ratify the previously observed values.
  3849             if (_cxq == NULL || _succ != NULL) {
  3850                 TEVENT (Inflated exit - simple egress) ;
  3851                 return ;
  3854             // inopportune interleaving -- the exiting thread (this thread)
  3855             // in the fast-exit path raced an entering thread in the slow-enter
  3856             // path.
  3857             // We have two choices:
  3858             // A.  Try to reacquire the lock.
  3859             //     If the CAS() fails return immediately, otherwise
  3860             //     we either restart/rerun the exit operation, or simply
  3861             //     fall-through into the code below which wakes a successor.
  3862             // B.  If the elements forming the EntryList|cxq are TSM
  3863             //     we could simply unpark() the lead thread and return
  3864             //     without having set _succ.
  3865             if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
  3866                TEVENT (Inflated exit - reacquired succeeded) ;
  3867                return ;
  3869             TEVENT (Inflated exit - reacquired failed) ;
  3870          } else {
  3871             TEVENT (Inflated exit - complex egress) ;
  3875       guarantee (_owner == THREAD, "invariant") ;
  3877       // Select an appropriate successor ("heir presumptive") from the EntryList
  3878       // and make it ready.  Generally we just wake the head of EntryList .
  3879       // There's no algorithmic constraint that we use the head - it's just
  3880       // a policy decision.   Note that the thread at head of the EntryList
  3881       // remains at the head until it acquires the lock.  This means we'll
  3882       // repeatedly wake the same thread until it manages to grab the lock.
  3883       // This is generally a good policy - if we're seeing lots of futile wakeups
  3884       // at least we're waking/rewaking a thread that's like to be hot or warm
  3885       // (have residual D$ and TLB affinity).
  3886       //
  3887       // "Wakeup locality" optimization:
  3888       // http://j2se.east/~dice/PERSIST/040825-WakeLocality.txt
  3889       // In the future we'll try to bias the selection mechanism
  3890       // to preferentially pick a thread that recently ran on
  3891       // a processor element that shares cache with the CPU on which
  3892       // the exiting thread is running.   We need access to Solaris'
  3893       // schedctl.sc_cpu to make that work.
  3894       //
  3895       ObjectWaiter * w = NULL ;
  3896       int QMode = Knob_QMode ;
  3898       if (QMode == 2 && _cxq != NULL) {
  3899           // QMode == 2 : cxq has precedence over EntryList.
  3900           // Try to directly wake a successor from the cxq.
  3901           // If successful, the successor will need to unlink itself from cxq.
  3902           w = _cxq ;
  3903           assert (w != NULL, "invariant") ;
  3904           assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  3905           ExitEpilog (Self, w) ;
  3906           return ;
  3909       if (QMode == 3 && _cxq != NULL) {
  3910           // Aggressively drain cxq into EntryList at the first opportunity.
  3911           // This policy ensure that recently-run threads live at the head of EntryList.
  3912           // Drain _cxq into EntryList - bulk transfer.
  3913           // First, detach _cxq.
  3914           // The following loop is tantamount to: w = swap (&cxq, NULL)
  3915           w = _cxq ;
  3916           for (;;) {
  3917              assert (w != NULL, "Invariant") ;
  3918              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  3919              if (u == w) break ;
  3920              w = u ;
  3922           assert (w != NULL              , "invariant") ;
  3924           ObjectWaiter * q = NULL ;
  3925           ObjectWaiter * p ;
  3926           for (p = w ; p != NULL ; p = p->_next) {
  3927               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  3928               p->TState = ObjectWaiter::TS_ENTER ;
  3929               p->_prev = q ;
  3930               q = p ;
  3933           // Append the RATs to the EntryList
  3934           // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
  3935           ObjectWaiter * Tail ;
  3936           for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
  3937           if (Tail == NULL) {
  3938               _EntryList = w ;
  3939           } else {
  3940               Tail->_next = w ;
  3941               w->_prev = Tail ;
  3944           // Fall thru into code that tries to wake a successor from EntryList
  3947       if (QMode == 4 && _cxq != NULL) {
  3948           // Aggressively drain cxq into EntryList at the first opportunity.
  3949           // This policy ensure that recently-run threads live at the head of EntryList.
  3951           // Drain _cxq into EntryList - bulk transfer.
  3952           // First, detach _cxq.
  3953           // The following loop is tantamount to: w = swap (&cxq, NULL)
  3954           w = _cxq ;
  3955           for (;;) {
  3956              assert (w != NULL, "Invariant") ;
  3957              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  3958              if (u == w) break ;
  3959              w = u ;
  3961           assert (w != NULL              , "invariant") ;
  3963           ObjectWaiter * q = NULL ;
  3964           ObjectWaiter * p ;
  3965           for (p = w ; p != NULL ; p = p->_next) {
  3966               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  3967               p->TState = ObjectWaiter::TS_ENTER ;
  3968               p->_prev = q ;
  3969               q = p ;
  3972           // Prepend the RATs to the EntryList
  3973           if (_EntryList != NULL) {
  3974               q->_next = _EntryList ;
  3975               _EntryList->_prev = q ;
  3977           _EntryList = w ;
  3979           // Fall thru into code that tries to wake a successor from EntryList
  3982       w = _EntryList  ;
  3983       if (w != NULL) {
  3984           // I'd like to write: guarantee (w->_thread != Self).
  3985           // But in practice an exiting thread may find itself on the EntryList.
  3986           // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
  3987           // then calls exit().  Exit release the lock by setting O._owner to NULL.
  3988           // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
  3989           // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
  3990           // release the lock "O".  T2 resumes immediately after the ST of null into
  3991           // _owner, above.  T2 notices that the EntryList is populated, so it
  3992           // reacquires the lock and then finds itself on the EntryList.
  3993           // Given all that, we have to tolerate the circumstance where "w" is
  3994           // associated with Self.
  3995           assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  3996           ExitEpilog (Self, w) ;
  3997           return ;
  4000       // If we find that both _cxq and EntryList are null then just
  4001       // re-run the exit protocol from the top.
  4002       w = _cxq ;
  4003       if (w == NULL) continue ;
  4005       // Drain _cxq into EntryList - bulk transfer.
  4006       // First, detach _cxq.
  4007       // The following loop is tantamount to: w = swap (&cxq, NULL)
  4008       for (;;) {
  4009           assert (w != NULL, "Invariant") ;
  4010           ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  4011           if (u == w) break ;
  4012           w = u ;
  4014       TEVENT (Inflated exit - drain cxq into EntryList) ;
  4016       assert (w != NULL              , "invariant") ;
  4017       assert (_EntryList  == NULL    , "invariant") ;
  4019       // Convert the LIFO SLL anchored by _cxq into a DLL.
  4020       // The list reorganization step operates in O(LENGTH(w)) time.
  4021       // It's critical that this step operate quickly as
  4022       // "Self" still holds the outer-lock, restricting parallelism
  4023       // and effectively lengthening the critical section.
  4024       // Invariant: s chases t chases u.
  4025       // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
  4026       // we have faster access to the tail.
  4028       if (QMode == 1) {
  4029          // QMode == 1 : drain cxq to EntryList, reversing order
  4030          // We also reverse the order of the list.
  4031          ObjectWaiter * s = NULL ;
  4032          ObjectWaiter * t = w ;
  4033          ObjectWaiter * u = NULL ;
  4034          while (t != NULL) {
  4035              guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
  4036              t->TState = ObjectWaiter::TS_ENTER ;
  4037              u = t->_next ;
  4038              t->_prev = u ;
  4039              t->_next = s ;
  4040              s = t;
  4041              t = u ;
  4043          _EntryList  = s ;
  4044          assert (s != NULL, "invariant") ;
  4045       } else {
  4046          // QMode == 0 or QMode == 2
  4047          _EntryList = w ;
  4048          ObjectWaiter * q = NULL ;
  4049          ObjectWaiter * p ;
  4050          for (p = w ; p != NULL ; p = p->_next) {
  4051              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  4052              p->TState = ObjectWaiter::TS_ENTER ;
  4053              p->_prev = q ;
  4054              q = p ;
  4058       // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
  4059       // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
  4061       // See if we can abdicate to a spinner instead of waking a thread.
  4062       // A primary goal of the implementation is to reduce the
  4063       // context-switch rate.
  4064       if (_succ != NULL) continue;
  4066       w = _EntryList  ;
  4067       if (w != NULL) {
  4068           guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  4069           ExitEpilog (Self, w) ;
  4070           return ;
  4074 // complete_exit exits a lock returning recursion count
  4075 // complete_exit/reenter operate as a wait without waiting
  4076 // complete_exit requires an inflated monitor
  4077 // The _owner field is not always the Thread addr even with an
  4078 // inflated monitor, e.g. the monitor can be inflated by a non-owning
  4079 // thread due to contention.
  4080 intptr_t ObjectMonitor::complete_exit(TRAPS) {
  4081    Thread * const Self = THREAD;
  4082    assert(Self->is_Java_thread(), "Must be Java thread!");
  4083    JavaThread *jt = (JavaThread *)THREAD;
  4085    DeferredInitialize();
  4087    if (THREAD != _owner) {
  4088     if (THREAD->is_lock_owned ((address)_owner)) {
  4089        assert(_recursions == 0, "internal state error");
  4090        _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
  4091        _recursions = 0 ;
  4092        OwnerIsThread = 1 ;
  4096    guarantee(Self == _owner, "complete_exit not owner");
  4097    intptr_t save = _recursions; // record the old recursion count
  4098    _recursions = 0;        // set the recursion level to be 0
  4099    exit (Self) ;           // exit the monitor
  4100    guarantee (_owner != Self, "invariant");
  4101    return save;
  4104 // reenter() enters a lock and sets recursion count
  4105 // complete_exit/reenter operate as a wait without waiting
  4106 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
  4107    Thread * const Self = THREAD;
  4108    assert(Self->is_Java_thread(), "Must be Java thread!");
  4109    JavaThread *jt = (JavaThread *)THREAD;
  4111    guarantee(_owner != Self, "reenter already owner");
  4112    enter (THREAD);       // enter the monitor
  4113    guarantee (_recursions == 0, "reenter recursion");
  4114    _recursions = recursions;
  4115    return;
  4118 // Note: a subset of changes to ObjectMonitor::wait()
  4119 // will need to be replicated in complete_exit above
  4120 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
  4121    Thread * const Self = THREAD ;
  4122    assert(Self->is_Java_thread(), "Must be Java thread!");
  4123    JavaThread *jt = (JavaThread *)THREAD;
  4125    DeferredInitialize () ;
  4127    // Throw IMSX or IEX.
  4128    CHECK_OWNER();
  4130    // check for a pending interrupt
  4131    if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
  4132      // post monitor waited event.  Note that this is past-tense, we are done waiting.
  4133      if (JvmtiExport::should_post_monitor_waited()) {
  4134         // Note: 'false' parameter is passed here because the
  4135         // wait was not timed out due to thread interrupt.
  4136         JvmtiExport::post_monitor_waited(jt, this, false);
  4138      TEVENT (Wait - Throw IEX) ;
  4139      THROW(vmSymbols::java_lang_InterruptedException());
  4140      return ;
  4142    TEVENT (Wait) ;
  4144    assert (Self->_Stalled == 0, "invariant") ;
  4145    Self->_Stalled = intptr_t(this) ;
  4146    jt->set_current_waiting_monitor(this);
  4148    // create a node to be put into the queue
  4149    // Critically, after we reset() the event but prior to park(), we must check
  4150    // for a pending interrupt.
  4151    ObjectWaiter node(Self);
  4152    node.TState = ObjectWaiter::TS_WAIT ;
  4153    Self->_ParkEvent->reset() ;
  4154    OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
  4156    // Enter the waiting queue, which is a circular doubly linked list in this case
  4157    // but it could be a priority queue or any data structure.
  4158    // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
  4159    // by the the owner of the monitor *except* in the case where park()
  4160    // returns because of a timeout of interrupt.  Contention is exceptionally rare
  4161    // so we use a simple spin-lock instead of a heavier-weight blocking lock.
  4163    Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
  4164    AddWaiter (&node) ;
  4165    Thread::SpinRelease (&_WaitSetLock) ;
  4167    if ((SyncFlags & 4) == 0) {
  4168       _Responsible = NULL ;
  4170    intptr_t save = _recursions; // record the old recursion count
  4171    _waiters++;                  // increment the number of waiters
  4172    _recursions = 0;             // set the recursion level to be 1
  4173    exit (Self) ;                    // exit the monitor
  4174    guarantee (_owner != Self, "invariant") ;
  4176    // As soon as the ObjectMonitor's ownership is dropped in the exit()
  4177    // call above, another thread can enter() the ObjectMonitor, do the
  4178    // notify(), and exit() the ObjectMonitor. If the other thread's
  4179    // exit() call chooses this thread as the successor and the unpark()
  4180    // call happens to occur while this thread is posting a
  4181    // MONITOR_CONTENDED_EXIT event, then we run the risk of the event
  4182    // handler using RawMonitors and consuming the unpark().
  4183    //
  4184    // To avoid the problem, we re-post the event. This does no harm
  4185    // even if the original unpark() was not consumed because we are the
  4186    // chosen successor for this monitor.
  4187    if (node._notified != 0 && _succ == Self) {
  4188       node._event->unpark();
  4191    // The thread is on the WaitSet list - now park() it.
  4192    // On MP systems it's conceivable that a brief spin before we park
  4193    // could be profitable.
  4194    //
  4195    // TODO-FIXME: change the following logic to a loop of the form
  4196    //   while (!timeout && !interrupted && _notified == 0) park()
  4198    int ret = OS_OK ;
  4199    int WasNotified = 0 ;
  4200    { // State transition wrappers
  4201      OSThread* osthread = Self->osthread();
  4202      OSThreadWaitState osts(osthread, true);
  4204        ThreadBlockInVM tbivm(jt);
  4205        // Thread is in thread_blocked state and oop access is unsafe.
  4206        jt->set_suspend_equivalent();
  4208        if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
  4209            // Intentionally empty
  4210        } else
  4211        if (node._notified == 0) {
  4212          if (millis <= 0) {
  4213             Self->_ParkEvent->park () ;
  4214          } else {
  4215             ret = Self->_ParkEvent->park (millis) ;
  4219        // were we externally suspended while we were waiting?
  4220        if (ExitSuspendEquivalent (jt)) {
  4221           // TODO-FIXME: add -- if succ == Self then succ = null.
  4222           jt->java_suspend_self();
  4225      } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
  4228      // Node may be on the WaitSet, the EntryList (or cxq), or in transition
  4229      // from the WaitSet to the EntryList.
  4230      // See if we need to remove Node from the WaitSet.
  4231      // We use double-checked locking to avoid grabbing _WaitSetLock
  4232      // if the thread is not on the wait queue.
  4233      //
  4234      // Note that we don't need a fence before the fetch of TState.
  4235      // In the worst case we'll fetch a old-stale value of TS_WAIT previously
  4236      // written by the is thread. (perhaps the fetch might even be satisfied
  4237      // by a look-aside into the processor's own store buffer, although given
  4238      // the length of the code path between the prior ST and this load that's
  4239      // highly unlikely).  If the following LD fetches a stale TS_WAIT value
  4240      // then we'll acquire the lock and then re-fetch a fresh TState value.
  4241      // That is, we fail toward safety.
  4243      if (node.TState == ObjectWaiter::TS_WAIT) {
  4244          Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
  4245          if (node.TState == ObjectWaiter::TS_WAIT) {
  4246             DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
  4247             assert(node._notified == 0, "invariant");
  4248             node.TState = ObjectWaiter::TS_RUN ;
  4250          Thread::SpinRelease (&_WaitSetLock) ;
  4253      // The thread is now either on off-list (TS_RUN),
  4254      // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
  4255      // The Node's TState variable is stable from the perspective of this thread.
  4256      // No other threads will asynchronously modify TState.
  4257      guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
  4258      OrderAccess::loadload() ;
  4259      if (_succ == Self) _succ = NULL ;
  4260      WasNotified = node._notified ;
  4262      // Reentry phase -- reacquire the monitor.
  4263      // re-enter contended monitor after object.wait().
  4264      // retain OBJECT_WAIT state until re-enter successfully completes
  4265      // Thread state is thread_in_vm and oop access is again safe,
  4266      // although the raw address of the object may have changed.
  4267      // (Don't cache naked oops over safepoints, of course).
  4269      // post monitor waited event. Note that this is past-tense, we are done waiting.
  4270      if (JvmtiExport::should_post_monitor_waited()) {
  4271        JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
  4273      OrderAccess::fence() ;
  4275      assert (Self->_Stalled != 0, "invariant") ;
  4276      Self->_Stalled = 0 ;
  4278      assert (_owner != Self, "invariant") ;
  4279      ObjectWaiter::TStates v = node.TState ;
  4280      if (v == ObjectWaiter::TS_RUN) {
  4281          enter (Self) ;
  4282      } else {
  4283          guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
  4284          ReenterI (Self, &node) ;
  4285          node.wait_reenter_end(this);
  4288      // Self has reacquired the lock.
  4289      // Lifecycle - the node representing Self must not appear on any queues.
  4290      // Node is about to go out-of-scope, but even if it were immortal we wouldn't
  4291      // want residual elements associated with this thread left on any lists.
  4292      guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
  4293      assert    (_owner == Self, "invariant") ;
  4294      assert    (_succ != Self , "invariant") ;
  4295    } // OSThreadWaitState()
  4297    jt->set_current_waiting_monitor(NULL);
  4299    guarantee (_recursions == 0, "invariant") ;
  4300    _recursions = save;     // restore the old recursion count
  4301    _waiters--;             // decrement the number of waiters
  4303    // Verify a few postconditions
  4304    assert (_owner == Self       , "invariant") ;
  4305    assert (_succ  != Self       , "invariant") ;
  4306    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
  4308    if (SyncFlags & 32) {
  4309       OrderAccess::fence() ;
  4312    // check if the notification happened
  4313    if (!WasNotified) {
  4314      // no, it could be timeout or Thread.interrupt() or both
  4315      // check for interrupt event, otherwise it is timeout
  4316      if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
  4317        TEVENT (Wait - throw IEX from epilog) ;
  4318        THROW(vmSymbols::java_lang_InterruptedException());
  4322    // NOTE: Spurious wake up will be consider as timeout.
  4323    // Monitor notify has precedence over thread interrupt.
  4327 // Consider:
  4328 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
  4329 // then instead of transferring a thread from the WaitSet to the EntryList
  4330 // we might just dequeue a thread from the WaitSet and directly unpark() it.
  4332 void ObjectMonitor::notify(TRAPS) {
  4333   CHECK_OWNER();
  4334   if (_WaitSet == NULL) {
  4335      TEVENT (Empty-Notify) ;
  4336      return ;
  4338   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
  4340   int Policy = Knob_MoveNotifyee ;
  4342   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
  4343   ObjectWaiter * iterator = DequeueWaiter() ;
  4344   if (iterator != NULL) {
  4345      TEVENT (Notify1 - Transfer) ;
  4346      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
  4347      guarantee (iterator->_notified == 0, "invariant") ;
  4348      // Disposition - what might we do with iterator ?
  4349      // a.  add it directly to the EntryList - either tail or head.
  4350      // b.  push it onto the front of the _cxq.
  4351      // For now we use (a).
  4352      if (Policy != 4) {
  4353         iterator->TState = ObjectWaiter::TS_ENTER ;
  4355      iterator->_notified = 1 ;
  4357      ObjectWaiter * List = _EntryList ;
  4358      if (List != NULL) {
  4359         assert (List->_prev == NULL, "invariant") ;
  4360         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  4361         assert (List != iterator, "invariant") ;
  4364      if (Policy == 0) {       // prepend to EntryList
  4365          if (List == NULL) {
  4366              iterator->_next = iterator->_prev = NULL ;
  4367              _EntryList = iterator ;
  4368          } else {
  4369              List->_prev = iterator ;
  4370              iterator->_next = List ;
  4371              iterator->_prev = NULL ;
  4372              _EntryList = iterator ;
  4374      } else
  4375      if (Policy == 1) {      // append to EntryList
  4376          if (List == NULL) {
  4377              iterator->_next = iterator->_prev = NULL ;
  4378              _EntryList = iterator ;
  4379          } else {
  4380             // CONSIDER:  finding the tail currently requires a linear-time walk of
  4381             // the EntryList.  We can make tail access constant-time by converting to
  4382             // a CDLL instead of using our current DLL.
  4383             ObjectWaiter * Tail ;
  4384             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
  4385             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
  4386             Tail->_next = iterator ;
  4387             iterator->_prev = Tail ;
  4388             iterator->_next = NULL ;
  4390      } else
  4391      if (Policy == 2) {      // prepend to cxq
  4392          // prepend to cxq
  4393          if (List == NULL) {
  4394              iterator->_next = iterator->_prev = NULL ;
  4395              _EntryList = iterator ;
  4396          } else {
  4397             iterator->TState = ObjectWaiter::TS_CXQ ;
  4398             for (;;) {
  4399                 ObjectWaiter * Front = _cxq ;
  4400                 iterator->_next = Front ;
  4401                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
  4402                     break ;
  4406      } else
  4407      if (Policy == 3) {      // append to cxq
  4408         iterator->TState = ObjectWaiter::TS_CXQ ;
  4409         for (;;) {
  4410             ObjectWaiter * Tail ;
  4411             Tail = _cxq ;
  4412             if (Tail == NULL) {
  4413                 iterator->_next = NULL ;
  4414                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
  4415                    break ;
  4417             } else {
  4418                 while (Tail->_next != NULL) Tail = Tail->_next ;
  4419                 Tail->_next = iterator ;
  4420                 iterator->_prev = Tail ;
  4421                 iterator->_next = NULL ;
  4422                 break ;
  4425      } else {
  4426         ParkEvent * ev = iterator->_event ;
  4427         iterator->TState = ObjectWaiter::TS_RUN ;
  4428         OrderAccess::fence() ;
  4429         ev->unpark() ;
  4432      if (Policy < 4) {
  4433        iterator->wait_reenter_begin(this);
  4436      // _WaitSetLock protects the wait queue, not the EntryList.  We could
  4437      // move the add-to-EntryList operation, above, outside the critical section
  4438      // protected by _WaitSetLock.  In practice that's not useful.  With the
  4439      // exception of  wait() timeouts and interrupts the monitor owner
  4440      // is the only thread that grabs _WaitSetLock.  There's almost no contention
  4441      // on _WaitSetLock so it's not profitable to reduce the length of the
  4442      // critical section.
  4445   Thread::SpinRelease (&_WaitSetLock) ;
  4447   if (iterator != NULL && ObjectSynchronizer::_sync_Notifications != NULL) {
  4448      ObjectSynchronizer::_sync_Notifications->inc() ;
  4453 void ObjectMonitor::notifyAll(TRAPS) {
  4454   CHECK_OWNER();
  4455   ObjectWaiter* iterator;
  4456   if (_WaitSet == NULL) {
  4457       TEVENT (Empty-NotifyAll) ;
  4458       return ;
  4460   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
  4462   int Policy = Knob_MoveNotifyee ;
  4463   int Tally = 0 ;
  4464   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
  4466   for (;;) {
  4467      iterator = DequeueWaiter () ;
  4468      if (iterator == NULL) break ;
  4469      TEVENT (NotifyAll - Transfer1) ;
  4470      ++Tally ;
  4472      // Disposition - what might we do with iterator ?
  4473      // a.  add it directly to the EntryList - either tail or head.
  4474      // b.  push it onto the front of the _cxq.
  4475      // For now we use (a).
  4476      //
  4477      // TODO-FIXME: currently notifyAll() transfers the waiters one-at-a-time from the waitset
  4478      // to the EntryList.  This could be done more efficiently with a single bulk transfer,
  4479      // but in practice it's not time-critical.  Beware too, that in prepend-mode we invert the
  4480      // order of the waiters.  Lets say that the waitset is "ABCD" and the EntryList is "XYZ".
  4481      // After a notifyAll() in prepend mode the waitset will be empty and the EntryList will
  4482      // be "DCBAXYZ".
  4484      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
  4485      guarantee (iterator->_notified == 0, "invariant") ;
  4486      iterator->_notified = 1 ;
  4487      if (Policy != 4) {
  4488         iterator->TState = ObjectWaiter::TS_ENTER ;
  4491      ObjectWaiter * List = _EntryList ;
  4492      if (List != NULL) {
  4493         assert (List->_prev == NULL, "invariant") ;
  4494         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  4495         assert (List != iterator, "invariant") ;
  4498      if (Policy == 0) {       // prepend to EntryList
  4499          if (List == NULL) {
  4500              iterator->_next = iterator->_prev = NULL ;
  4501              _EntryList = iterator ;
  4502          } else {
  4503              List->_prev = iterator ;
  4504              iterator->_next = List ;
  4505              iterator->_prev = NULL ;
  4506              _EntryList = iterator ;
  4508      } else
  4509      if (Policy == 1) {      // append to EntryList
  4510          if (List == NULL) {
  4511              iterator->_next = iterator->_prev = NULL ;
  4512              _EntryList = iterator ;
  4513          } else {
  4514             // CONSIDER:  finding the tail currently requires a linear-time walk of
  4515             // the EntryList.  We can make tail access constant-time by converting to
  4516             // a CDLL instead of using our current DLL.
  4517             ObjectWaiter * Tail ;
  4518             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
  4519             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
  4520             Tail->_next = iterator ;
  4521             iterator->_prev = Tail ;
  4522             iterator->_next = NULL ;
  4524      } else
  4525      if (Policy == 2) {      // prepend to cxq
  4526          // prepend to cxq
  4527          iterator->TState = ObjectWaiter::TS_CXQ ;
  4528          for (;;) {
  4529              ObjectWaiter * Front = _cxq ;
  4530              iterator->_next = Front ;
  4531              if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
  4532                  break ;
  4535      } else
  4536      if (Policy == 3) {      // append to cxq
  4537         iterator->TState = ObjectWaiter::TS_CXQ ;
  4538         for (;;) {
  4539             ObjectWaiter * Tail ;
  4540             Tail = _cxq ;
  4541             if (Tail == NULL) {
  4542                 iterator->_next = NULL ;
  4543                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
  4544                    break ;
  4546             } else {
  4547                 while (Tail->_next != NULL) Tail = Tail->_next ;
  4548                 Tail->_next = iterator ;
  4549                 iterator->_prev = Tail ;
  4550                 iterator->_next = NULL ;
  4551                 break ;
  4554      } else {
  4555         ParkEvent * ev = iterator->_event ;
  4556         iterator->TState = ObjectWaiter::TS_RUN ;
  4557         OrderAccess::fence() ;
  4558         ev->unpark() ;
  4561      if (Policy < 4) {
  4562        iterator->wait_reenter_begin(this);
  4565      // _WaitSetLock protects the wait queue, not the EntryList.  We could
  4566      // move the add-to-EntryList operation, above, outside the critical section
  4567      // protected by _WaitSetLock.  In practice that's not useful.  With the
  4568      // exception of  wait() timeouts and interrupts the monitor owner
  4569      // is the only thread that grabs _WaitSetLock.  There's almost no contention
  4570      // on _WaitSetLock so it's not profitable to reduce the length of the
  4571      // critical section.
  4574   Thread::SpinRelease (&_WaitSetLock) ;
  4576   if (Tally != 0 && ObjectSynchronizer::_sync_Notifications != NULL) {
  4577      ObjectSynchronizer::_sync_Notifications->inc(Tally) ;
  4581 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
  4582 // TODO-FIXME: remove check_slow() -- it's likely dead.
  4584 void ObjectMonitor::check_slow(TRAPS) {
  4585   TEVENT (check_slow - throw IMSX) ;
  4586   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
  4587   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
  4591 // -------------------------------------------------------------------------
  4592 // The raw monitor subsystem is entirely distinct from normal
  4593 // java-synchronization or jni-synchronization.  raw monitors are not
  4594 // associated with objects.  They can be implemented in any manner
  4595 // that makes sense.  The original implementors decided to piggy-back
  4596 // the raw-monitor implementation on the existing Java objectMonitor mechanism.
  4597 // This flaw needs to fixed.  We should reimplement raw monitors as sui-generis.
  4598 // Specifically, we should not implement raw monitors via java monitors.
  4599 // Time permitting, we should disentangle and deconvolve the two implementations
  4600 // and move the resulting raw monitor implementation over to the JVMTI directories.
  4601 // Ideally, the raw monitor implementation would be built on top of
  4602 // park-unpark and nothing else.
  4603 //
  4604 // raw monitors are used mainly by JVMTI
  4605 // The raw monitor implementation borrows the ObjectMonitor structure,
  4606 // but the operators are degenerate and extremely simple.
  4607 //
  4608 // Mixed use of a single objectMonitor instance -- as both a raw monitor
  4609 // and a normal java monitor -- is not permissible.
  4610 //
  4611 // Note that we use the single RawMonitor_lock to protect queue operations for
  4612 // _all_ raw monitors.  This is a scalability impediment, but since raw monitor usage
  4613 // is deprecated and rare, this is not of concern.  The RawMonitor_lock can not
  4614 // be held indefinitely.  The critical sections must be short and bounded.
  4615 //
  4616 // -------------------------------------------------------------------------
  4618 int ObjectMonitor::SimpleEnter (Thread * Self) {
  4619   for (;;) {
  4620     if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
  4621        return OS_OK ;
  4624     ObjectWaiter Node (Self) ;
  4625     Self->_ParkEvent->reset() ;     // strictly optional
  4626     Node.TState = ObjectWaiter::TS_ENTER ;
  4628     RawMonitor_lock->lock_without_safepoint_check() ;
  4629     Node._next  = _EntryList ;
  4630     _EntryList  = &Node ;
  4631     OrderAccess::fence() ;
  4632     if (_owner == NULL && Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
  4633         _EntryList = Node._next ;
  4634         RawMonitor_lock->unlock() ;
  4635         return OS_OK ;
  4637     RawMonitor_lock->unlock() ;
  4638     while (Node.TState == ObjectWaiter::TS_ENTER) {
  4639        Self->_ParkEvent->park() ;
  4644 int ObjectMonitor::SimpleExit (Thread * Self) {
  4645   guarantee (_owner == Self, "invariant") ;
  4646   OrderAccess::release_store_ptr (&_owner, NULL) ;
  4647   OrderAccess::fence() ;
  4648   if (_EntryList == NULL) return OS_OK ;
  4649   ObjectWaiter * w ;
  4651   RawMonitor_lock->lock_without_safepoint_check() ;
  4652   w = _EntryList ;
  4653   if (w != NULL) {
  4654       _EntryList = w->_next ;
  4656   RawMonitor_lock->unlock() ;
  4657   if (w != NULL) {
  4658       guarantee (w ->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  4659       ParkEvent * ev = w->_event ;
  4660       w->TState = ObjectWaiter::TS_RUN ;
  4661       OrderAccess::fence() ;
  4662       ev->unpark() ;
  4664   return OS_OK ;
  4667 int ObjectMonitor::SimpleWait (Thread * Self, jlong millis) {
  4668   guarantee (_owner == Self  , "invariant") ;
  4669   guarantee (_recursions == 0, "invariant") ;
  4671   ObjectWaiter Node (Self) ;
  4672   Node._notified = 0 ;
  4673   Node.TState    = ObjectWaiter::TS_WAIT ;
  4675   RawMonitor_lock->lock_without_safepoint_check() ;
  4676   Node._next     = _WaitSet ;
  4677   _WaitSet       = &Node ;
  4678   RawMonitor_lock->unlock() ;
  4680   SimpleExit (Self) ;
  4681   guarantee (_owner != Self, "invariant") ;
  4683   int ret = OS_OK ;
  4684   if (millis <= 0) {
  4685     Self->_ParkEvent->park();
  4686   } else {
  4687     ret = Self->_ParkEvent->park(millis);
  4690   // If thread still resides on the waitset then unlink it.
  4691   // Double-checked locking -- the usage is safe in this context
  4692   // as we TState is volatile and the lock-unlock operators are
  4693   // serializing (barrier-equivalent).
  4695   if (Node.TState == ObjectWaiter::TS_WAIT) {
  4696     RawMonitor_lock->lock_without_safepoint_check() ;
  4697     if (Node.TState == ObjectWaiter::TS_WAIT) {
  4698       // Simple O(n) unlink, but performance isn't critical here.
  4699       ObjectWaiter * p ;
  4700       ObjectWaiter * q = NULL ;
  4701       for (p = _WaitSet ; p != &Node; p = p->_next) {
  4702          q = p ;
  4704       guarantee (p == &Node, "invariant") ;
  4705       if (q == NULL) {
  4706         guarantee (p == _WaitSet, "invariant") ;
  4707         _WaitSet = p->_next ;
  4708       } else {
  4709         guarantee (p == q->_next, "invariant") ;
  4710         q->_next = p->_next ;
  4712       Node.TState = ObjectWaiter::TS_RUN ;
  4714     RawMonitor_lock->unlock() ;
  4717   guarantee (Node.TState == ObjectWaiter::TS_RUN, "invariant") ;
  4718   SimpleEnter (Self) ;
  4720   guarantee (_owner == Self, "invariant") ;
  4721   guarantee (_recursions == 0, "invariant") ;
  4722   return ret ;
  4725 int ObjectMonitor::SimpleNotify (Thread * Self, bool All) {
  4726   guarantee (_owner == Self, "invariant") ;
  4727   if (_WaitSet == NULL) return OS_OK ;
  4729   // We have two options:
  4730   // A. Transfer the threads from the WaitSet to the EntryList
  4731   // B. Remove the thread from the WaitSet and unpark() it.
  4732   //
  4733   // We use (B), which is crude and results in lots of futile
  4734   // context switching.  In particular (B) induces lots of contention.
  4736   ParkEvent * ev = NULL ;       // consider using a small auto array ...
  4737   RawMonitor_lock->lock_without_safepoint_check() ;
  4738   for (;;) {
  4739       ObjectWaiter * w = _WaitSet ;
  4740       if (w == NULL) break ;
  4741       _WaitSet = w->_next ;
  4742       if (ev != NULL) { ev->unpark(); ev = NULL; }
  4743       ev = w->_event ;
  4744       OrderAccess::loadstore() ;
  4745       w->TState = ObjectWaiter::TS_RUN ;
  4746       OrderAccess::storeload();
  4747       if (!All) break ;
  4749   RawMonitor_lock->unlock() ;
  4750   if (ev != NULL) ev->unpark();
  4751   return OS_OK ;
  4754 // Any JavaThread will enter here with state _thread_blocked
  4755 int ObjectMonitor::raw_enter(TRAPS) {
  4756   TEVENT (raw_enter) ;
  4757   void * Contended ;
  4759   // don't enter raw monitor if thread is being externally suspended, it will
  4760   // surprise the suspender if a "suspended" thread can still enter monitor
  4761   JavaThread * jt = (JavaThread *)THREAD;
  4762   if (THREAD->is_Java_thread()) {
  4763     jt->SR_lock()->lock_without_safepoint_check();
  4764     while (jt->is_external_suspend()) {
  4765       jt->SR_lock()->unlock();
  4766       jt->java_suspend_self();
  4767       jt->SR_lock()->lock_without_safepoint_check();
  4769     // guarded by SR_lock to avoid racing with new external suspend requests.
  4770     Contended = Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) ;
  4771     jt->SR_lock()->unlock();
  4772   } else {
  4773     Contended = Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) ;
  4776   if (Contended == THREAD) {
  4777      _recursions ++ ;
  4778      return OM_OK ;
  4781   if (Contended == NULL) {
  4782      guarantee (_owner == THREAD, "invariant") ;
  4783      guarantee (_recursions == 0, "invariant") ;
  4784      return OM_OK ;
  4787   THREAD->set_current_pending_monitor(this);
  4789   if (!THREAD->is_Java_thread()) {
  4790      // No other non-Java threads besides VM thread would acquire
  4791      // a raw monitor.
  4792      assert(THREAD->is_VM_thread(), "must be VM thread");
  4793      SimpleEnter (THREAD) ;
  4794    } else {
  4795      guarantee (jt->thread_state() == _thread_blocked, "invariant") ;
  4796      for (;;) {
  4797        jt->set_suspend_equivalent();
  4798        // cleared by handle_special_suspend_equivalent_condition() or
  4799        // java_suspend_self()
  4800        SimpleEnter (THREAD) ;
  4802        // were we externally suspended while we were waiting?
  4803        if (!jt->handle_special_suspend_equivalent_condition()) break ;
  4805        // This thread was externally suspended
  4806        //
  4807        // This logic isn't needed for JVMTI raw monitors,
  4808        // but doesn't hurt just in case the suspend rules change. This
  4809            // logic is needed for the ObjectMonitor.wait() reentry phase.
  4810            // We have reentered the contended monitor, but while we were
  4811            // waiting another thread suspended us. We don't want to reenter
  4812            // the monitor while suspended because that would surprise the
  4813            // thread that suspended us.
  4814            //
  4815            // Drop the lock -
  4816        SimpleExit (THREAD) ;
  4818            jt->java_suspend_self();
  4821      assert(_owner == THREAD, "Fatal error with monitor owner!");
  4822      assert(_recursions == 0, "Fatal error with monitor recursions!");
  4825   THREAD->set_current_pending_monitor(NULL);
  4826   guarantee (_recursions == 0, "invariant") ;
  4827   return OM_OK;
  4830 // Used mainly for JVMTI raw monitor implementation
  4831 // Also used for ObjectMonitor::wait().
  4832 int ObjectMonitor::raw_exit(TRAPS) {
  4833   TEVENT (raw_exit) ;
  4834   if (THREAD != _owner) {
  4835     return OM_ILLEGAL_MONITOR_STATE;
  4837   if (_recursions > 0) {
  4838     --_recursions ;
  4839     return OM_OK ;
  4842   void * List = _EntryList ;
  4843   SimpleExit (THREAD) ;
  4845   return OM_OK;
  4848 // Used for JVMTI raw monitor implementation.
  4849 // All JavaThreads will enter here with state _thread_blocked
  4851 int ObjectMonitor::raw_wait(jlong millis, bool interruptible, TRAPS) {
  4852   TEVENT (raw_wait) ;
  4853   if (THREAD != _owner) {
  4854     return OM_ILLEGAL_MONITOR_STATE;
  4857   // To avoid spurious wakeups we reset the parkevent -- This is strictly optional.
  4858   // The caller must be able to tolerate spurious returns from raw_wait().
  4859   THREAD->_ParkEvent->reset() ;
  4860   OrderAccess::fence() ;
  4862   // check interrupt event
  4863   if (interruptible && Thread::is_interrupted(THREAD, true)) {
  4864     return OM_INTERRUPTED;
  4867   intptr_t save = _recursions ;
  4868   _recursions = 0 ;
  4869   _waiters ++ ;
  4870   if (THREAD->is_Java_thread()) {
  4871     guarantee (((JavaThread *) THREAD)->thread_state() == _thread_blocked, "invariant") ;
  4872     ((JavaThread *)THREAD)->set_suspend_equivalent();
  4874   int rv = SimpleWait (THREAD, millis) ;
  4875   _recursions = save ;
  4876   _waiters -- ;
  4878   guarantee (THREAD == _owner, "invariant") ;
  4879   if (THREAD->is_Java_thread()) {
  4880      JavaThread * jSelf = (JavaThread *) THREAD ;
  4881      for (;;) {
  4882         if (!jSelf->handle_special_suspend_equivalent_condition()) break ;
  4883         SimpleExit (THREAD) ;
  4884         jSelf->java_suspend_self();
  4885         SimpleEnter (THREAD) ;
  4886         jSelf->set_suspend_equivalent() ;
  4889   guarantee (THREAD == _owner, "invariant") ;
  4891   if (interruptible && Thread::is_interrupted(THREAD, true)) {
  4892     return OM_INTERRUPTED;
  4894   return OM_OK ;
  4897 int ObjectMonitor::raw_notify(TRAPS) {
  4898   TEVENT (raw_notify) ;
  4899   if (THREAD != _owner) {
  4900     return OM_ILLEGAL_MONITOR_STATE;
  4902   SimpleNotify (THREAD, false) ;
  4903   return OM_OK;
  4906 int ObjectMonitor::raw_notifyAll(TRAPS) {
  4907   TEVENT (raw_notifyAll) ;
  4908   if (THREAD != _owner) {
  4909     return OM_ILLEGAL_MONITOR_STATE;
  4911   SimpleNotify (THREAD, true) ;
  4912   return OM_OK;
  4915 #ifndef PRODUCT
  4916 void ObjectMonitor::verify() {
  4919 void ObjectMonitor::print() {
  4921 #endif
  4923 //------------------------------------------------------------------------------
  4924 // Non-product code
  4926 #ifndef PRODUCT
  4928 void ObjectSynchronizer::trace_locking(Handle locking_obj, bool is_compiled,
  4929                                        bool is_method, bool is_locking) {
  4930   // Don't know what to do here
  4933 // Verify all monitors in the monitor cache, the verification is weak.
  4934 void ObjectSynchronizer::verify() {
  4935   ObjectMonitor* block = gBlockList;
  4936   ObjectMonitor* mid;
  4937   while (block) {
  4938     assert(block->object() == CHAINMARKER, "must be a block header");
  4939     for (int i = 1; i < _BLOCKSIZE; i++) {
  4940       mid = block + i;
  4941       oop object = (oop) mid->object();
  4942       if (object != NULL) {
  4943         mid->verify();
  4946     block = (ObjectMonitor*) block->FreeNext;
  4950 // Check if monitor belongs to the monitor cache
  4951 // The list is grow-only so it's *relatively* safe to traverse
  4952 // the list of extant blocks without taking a lock.
  4954 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
  4955   ObjectMonitor* block = gBlockList;
  4957   while (block) {
  4958     assert(block->object() == CHAINMARKER, "must be a block header");
  4959     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
  4960       address mon = (address) monitor;
  4961       address blk = (address) block;
  4962       size_t diff = mon - blk;
  4963       assert((diff % sizeof(ObjectMonitor)) == 0, "check");
  4964       return 1;
  4966     block = (ObjectMonitor*) block->FreeNext;
  4968   return 0;
  4971 #endif

mercurial