src/share/vm/opto/vectornode.cpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 3040
c7b60b601eb4
child 3882
8c92982cbbc4
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

     1 /*
     2  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  */
    24 #include "precompiled.hpp"
    25 #include "memory/allocation.inline.hpp"
    26 #include "opto/connode.hpp"
    27 #include "opto/vectornode.hpp"
    29 //------------------------------VectorNode--------------------------------------
    31 // Return vector type for an element type and vector length.
    32 const Type* VectorNode::vect_type(BasicType elt_bt, uint len) {
    33   assert(len <= VectorNode::max_vlen(elt_bt), "len in range");
    34   switch(elt_bt) {
    35   case T_BOOLEAN:
    36   case T_BYTE:
    37     switch(len) {
    38     case 2:  return TypeInt::CHAR;
    39     case 4:  return TypeInt::INT;
    40     case 8:  return TypeLong::LONG;
    41     }
    42     break;
    43   case T_CHAR:
    44   case T_SHORT:
    45     switch(len) {
    46     case 2:  return TypeInt::INT;
    47     case 4:  return TypeLong::LONG;
    48     }
    49     break;
    50   case T_INT:
    51     switch(len) {
    52     case 2:  return TypeLong::LONG;
    53     }
    54     break;
    55   case T_LONG:
    56     break;
    57   case T_FLOAT:
    58     switch(len) {
    59     case 2:  return Type::DOUBLE;
    60     }
    61     break;
    62   case T_DOUBLE:
    63     break;
    64   }
    65   ShouldNotReachHere();
    66   return NULL;
    67 }
    69 // Scalar promotion
    70 VectorNode* VectorNode::scalar2vector(Compile* C, Node* s, uint vlen, const Type* opd_t) {
    71   BasicType bt = opd_t->array_element_basic_type();
    72   assert(vlen <= VectorNode::max_vlen(bt), "vlen in range");
    73   switch (bt) {
    74   case T_BOOLEAN:
    75   case T_BYTE:
    76     if (vlen == 16) return new (C, 2) Replicate16BNode(s);
    77     if (vlen ==  8) return new (C, 2) Replicate8BNode(s);
    78     if (vlen ==  4) return new (C, 2) Replicate4BNode(s);
    79     break;
    80   case T_CHAR:
    81     if (vlen == 8) return new (C, 2) Replicate8CNode(s);
    82     if (vlen == 4) return new (C, 2) Replicate4CNode(s);
    83     if (vlen == 2) return new (C, 2) Replicate2CNode(s);
    84     break;
    85   case T_SHORT:
    86     if (vlen == 8) return new (C, 2) Replicate8SNode(s);
    87     if (vlen == 4) return new (C, 2) Replicate4SNode(s);
    88     if (vlen == 2) return new (C, 2) Replicate2SNode(s);
    89     break;
    90   case T_INT:
    91     if (vlen == 4) return new (C, 2) Replicate4INode(s);
    92     if (vlen == 2) return new (C, 2) Replicate2INode(s);
    93     break;
    94   case T_LONG:
    95     if (vlen == 2) return new (C, 2) Replicate2LNode(s);
    96     break;
    97   case T_FLOAT:
    98     if (vlen == 4) return new (C, 2) Replicate4FNode(s);
    99     if (vlen == 2) return new (C, 2) Replicate2FNode(s);
   100     break;
   101   case T_DOUBLE:
   102     if (vlen == 2) return new (C, 2) Replicate2DNode(s);
   103     break;
   104   }
   105   ShouldNotReachHere();
   106   return NULL;
   107 }
   109 // Return initial Pack node. Additional operands added with add_opd() calls.
   110 PackNode* PackNode::make(Compile* C, Node* s, const Type* opd_t) {
   111   BasicType bt = opd_t->array_element_basic_type();
   112   switch (bt) {
   113   case T_BOOLEAN:
   114   case T_BYTE:
   115     return new (C, 2) PackBNode(s);
   116   case T_CHAR:
   117     return new (C, 2) PackCNode(s);
   118   case T_SHORT:
   119     return new (C, 2) PackSNode(s);
   120   case T_INT:
   121     return new (C, 2) PackINode(s);
   122   case T_LONG:
   123     return new (C, 2) PackLNode(s);
   124   case T_FLOAT:
   125     return new (C, 2) PackFNode(s);
   126   case T_DOUBLE:
   127     return new (C, 2) PackDNode(s);
   128   }
   129   ShouldNotReachHere();
   130   return NULL;
   131 }
   133 // Create a binary tree form for Packs. [lo, hi) (half-open) range
   134 Node* PackNode::binaryTreePack(Compile* C, int lo, int hi) {
   135   int ct = hi - lo;
   136   assert(is_power_of_2(ct), "power of 2");
   137   int mid = lo + ct/2;
   138   Node* n1 = ct == 2 ? in(lo)   : binaryTreePack(C, lo,  mid);
   139   Node* n2 = ct == 2 ? in(lo+1) : binaryTreePack(C, mid, hi );
   140   int rslt_bsize = ct * type2aelembytes(elt_basic_type());
   141   if (bottom_type()->is_floatingpoint()) {
   142     switch (rslt_bsize) {
   143     case  8: return new (C, 3) PackFNode(n1, n2);
   144     case 16: return new (C, 3) PackDNode(n1, n2);
   145     }
   146   } else {
   147     assert(bottom_type()->isa_int() || bottom_type()->isa_long(), "int or long");
   148     switch (rslt_bsize) {
   149     case  2: return new (C, 3) Pack2x1BNode(n1, n2);
   150     case  4: return new (C, 3) Pack2x2BNode(n1, n2);
   151     case  8: return new (C, 3) PackINode(n1, n2);
   152     case 16: return new (C, 3) PackLNode(n1, n2);
   153     }
   154   }
   155   ShouldNotReachHere();
   156   return NULL;
   157 }
   159 // Return the vector operator for the specified scalar operation
   160 // and vector length.  One use is to check if the code generator
   161 // supports the vector operation.
   162 int VectorNode::opcode(int sopc, uint vlen, const Type* opd_t) {
   163   BasicType bt = opd_t->array_element_basic_type();
   164   if (!(is_power_of_2(vlen) && vlen <= max_vlen(bt)))
   165     return 0; // unimplemented
   166   switch (sopc) {
   167   case Op_AddI:
   168     switch (bt) {
   169     case T_BOOLEAN:
   170     case T_BYTE:      return Op_AddVB;
   171     case T_CHAR:      return Op_AddVC;
   172     case T_SHORT:     return Op_AddVS;
   173     case T_INT:       return Op_AddVI;
   174     }
   175     ShouldNotReachHere();
   176   case Op_AddL:
   177     assert(bt == T_LONG, "must be");
   178     return Op_AddVL;
   179   case Op_AddF:
   180     assert(bt == T_FLOAT, "must be");
   181     return Op_AddVF;
   182   case Op_AddD:
   183     assert(bt == T_DOUBLE, "must be");
   184     return Op_AddVD;
   185   case Op_SubI:
   186     switch (bt) {
   187     case T_BOOLEAN:
   188     case T_BYTE:   return Op_SubVB;
   189     case T_CHAR:   return Op_SubVC;
   190     case T_SHORT:  return Op_SubVS;
   191     case T_INT:    return Op_SubVI;
   192     }
   193     ShouldNotReachHere();
   194   case Op_SubL:
   195     assert(bt == T_LONG, "must be");
   196     return Op_SubVL;
   197   case Op_SubF:
   198     assert(bt == T_FLOAT, "must be");
   199     return Op_SubVF;
   200   case Op_SubD:
   201     assert(bt == T_DOUBLE, "must be");
   202     return Op_SubVD;
   203   case Op_MulF:
   204     assert(bt == T_FLOAT, "must be");
   205     return Op_MulVF;
   206   case Op_MulD:
   207     assert(bt == T_DOUBLE, "must be");
   208     return Op_MulVD;
   209   case Op_DivF:
   210     assert(bt == T_FLOAT, "must be");
   211     return Op_DivVF;
   212   case Op_DivD:
   213     assert(bt == T_DOUBLE, "must be");
   214     return Op_DivVD;
   215   case Op_LShiftI:
   216     switch (bt) {
   217     case T_BOOLEAN:
   218     case T_BYTE:   return Op_LShiftVB;
   219     case T_CHAR:   return Op_LShiftVC;
   220     case T_SHORT:  return Op_LShiftVS;
   221     case T_INT:    return Op_LShiftVI;
   222     }
   223     ShouldNotReachHere();
   224   case Op_URShiftI:
   225     switch (bt) {
   226     case T_BOOLEAN:
   227     case T_BYTE:   return Op_URShiftVB;
   228     case T_CHAR:   return Op_URShiftVC;
   229     case T_SHORT:  return Op_URShiftVS;
   230     case T_INT:    return Op_URShiftVI;
   231     }
   232     ShouldNotReachHere();
   233   case Op_AndI:
   234   case Op_AndL:
   235     return Op_AndV;
   236   case Op_OrI:
   237   case Op_OrL:
   238     return Op_OrV;
   239   case Op_XorI:
   240   case Op_XorL:
   241     return Op_XorV;
   243   case Op_LoadB:
   244   case Op_LoadUS:
   245   case Op_LoadS:
   246   case Op_LoadI:
   247   case Op_LoadL:
   248   case Op_LoadF:
   249   case Op_LoadD:
   250     return VectorLoadNode::opcode(sopc, vlen);
   252   case Op_StoreB:
   253   case Op_StoreC:
   254   case Op_StoreI:
   255   case Op_StoreL:
   256   case Op_StoreF:
   257   case Op_StoreD:
   258     return VectorStoreNode::opcode(sopc, vlen);
   259   }
   260   return 0; // Unimplemented
   261 }
   263 // Helper for above.
   264 int VectorLoadNode::opcode(int sopc, uint vlen) {
   265   switch (sopc) {
   266   case Op_LoadB:
   267     switch (vlen) {
   268     case  2:       return 0; // Unimplemented
   269     case  4:       return Op_Load4B;
   270     case  8:       return Op_Load8B;
   271     case 16:       return Op_Load16B;
   272     }
   273     break;
   274   case Op_LoadUS:
   275     switch (vlen) {
   276     case  2:       return Op_Load2C;
   277     case  4:       return Op_Load4C;
   278     case  8:       return Op_Load8C;
   279     }
   280     break;
   281   case Op_LoadS:
   282     switch (vlen) {
   283     case  2:       return Op_Load2S;
   284     case  4:       return Op_Load4S;
   285     case  8:       return Op_Load8S;
   286     }
   287     break;
   288   case Op_LoadI:
   289     switch (vlen) {
   290     case  2:       return Op_Load2I;
   291     case  4:       return Op_Load4I;
   292     }
   293     break;
   294   case Op_LoadL:
   295     if (vlen == 2) return Op_Load2L;
   296     break;
   297   case Op_LoadF:
   298     switch (vlen) {
   299     case  2:       return Op_Load2F;
   300     case  4:       return Op_Load4F;
   301     }
   302     break;
   303   case Op_LoadD:
   304     if (vlen == 2) return Op_Load2D;
   305     break;
   306   }
   307   return 0; // Unimplemented
   308 }
   310 // Helper for above
   311 int VectorStoreNode::opcode(int sopc, uint vlen) {
   312   switch (sopc) {
   313   case Op_StoreB:
   314     switch (vlen) {
   315     case  2:       return 0; // Unimplemented
   316     case  4:       return Op_Store4B;
   317     case  8:       return Op_Store8B;
   318     case 16:       return Op_Store16B;
   319     }
   320     break;
   321   case Op_StoreC:
   322     switch (vlen) {
   323     case  2:       return Op_Store2C;
   324     case  4:       return Op_Store4C;
   325     case  8:       return Op_Store8C;
   326     }
   327     break;
   328   case Op_StoreI:
   329     switch (vlen) {
   330     case  2:       return Op_Store2I;
   331     case  4:       return Op_Store4I;
   332     }
   333     break;
   334   case Op_StoreL:
   335     if (vlen == 2) return Op_Store2L;
   336     break;
   337   case Op_StoreF:
   338     switch (vlen) {
   339     case  2:       return Op_Store2F;
   340     case  4:       return Op_Store4F;
   341     }
   342     break;
   343   case Op_StoreD:
   344     if (vlen == 2) return Op_Store2D;
   345     break;
   346   }
   347   return 0; // Unimplemented
   348 }
   350 // Return the vector version of a scalar operation node.
   351 VectorNode* VectorNode::make(Compile* C, int sopc, Node* n1, Node* n2, uint vlen, const Type* opd_t) {
   352   int vopc = opcode(sopc, vlen, opd_t);
   354   switch (vopc) {
   355   case Op_AddVB: return new (C, 3) AddVBNode(n1, n2, vlen);
   356   case Op_AddVC: return new (C, 3) AddVCNode(n1, n2, vlen);
   357   case Op_AddVS: return new (C, 3) AddVSNode(n1, n2, vlen);
   358   case Op_AddVI: return new (C, 3) AddVINode(n1, n2, vlen);
   359   case Op_AddVL: return new (C, 3) AddVLNode(n1, n2, vlen);
   360   case Op_AddVF: return new (C, 3) AddVFNode(n1, n2, vlen);
   361   case Op_AddVD: return new (C, 3) AddVDNode(n1, n2, vlen);
   363   case Op_SubVB: return new (C, 3) SubVBNode(n1, n2, vlen);
   364   case Op_SubVC: return new (C, 3) SubVCNode(n1, n2, vlen);
   365   case Op_SubVS: return new (C, 3) SubVSNode(n1, n2, vlen);
   366   case Op_SubVI: return new (C, 3) SubVINode(n1, n2, vlen);
   367   case Op_SubVL: return new (C, 3) SubVLNode(n1, n2, vlen);
   368   case Op_SubVF: return new (C, 3) SubVFNode(n1, n2, vlen);
   369   case Op_SubVD: return new (C, 3) SubVDNode(n1, n2, vlen);
   371   case Op_MulVF: return new (C, 3) MulVFNode(n1, n2, vlen);
   372   case Op_MulVD: return new (C, 3) MulVDNode(n1, n2, vlen);
   374   case Op_DivVF: return new (C, 3) DivVFNode(n1, n2, vlen);
   375   case Op_DivVD: return new (C, 3) DivVDNode(n1, n2, vlen);
   377   case Op_LShiftVB: return new (C, 3) LShiftVBNode(n1, n2, vlen);
   378   case Op_LShiftVC: return new (C, 3) LShiftVCNode(n1, n2, vlen);
   379   case Op_LShiftVS: return new (C, 3) LShiftVSNode(n1, n2, vlen);
   380   case Op_LShiftVI: return new (C, 3) LShiftVINode(n1, n2, vlen);
   382   case Op_URShiftVB: return new (C, 3) URShiftVBNode(n1, n2, vlen);
   383   case Op_URShiftVC: return new (C, 3) URShiftVCNode(n1, n2, vlen);
   384   case Op_URShiftVS: return new (C, 3) URShiftVSNode(n1, n2, vlen);
   385   case Op_URShiftVI: return new (C, 3) URShiftVINode(n1, n2, vlen);
   387   case Op_AndV: return new (C, 3) AndVNode(n1, n2, vlen, opd_t->array_element_basic_type());
   388   case Op_OrV:  return new (C, 3) OrVNode (n1, n2, vlen, opd_t->array_element_basic_type());
   389   case Op_XorV: return new (C, 3) XorVNode(n1, n2, vlen, opd_t->array_element_basic_type());
   390   }
   391   ShouldNotReachHere();
   392   return NULL;
   393 }
   395 // Return the vector version of a scalar load node.
   396 VectorLoadNode* VectorLoadNode::make(Compile* C, int opc, Node* ctl, Node* mem,
   397                                      Node* adr, const TypePtr* atyp, uint vlen) {
   398   int vopc = opcode(opc, vlen);
   400   switch(vopc) {
   401   case Op_Load16B: return new (C, 3) Load16BNode(ctl, mem, adr, atyp);
   402   case Op_Load8B:  return new (C, 3) Load8BNode(ctl, mem, adr, atyp);
   403   case Op_Load4B:  return new (C, 3) Load4BNode(ctl, mem, adr, atyp);
   405   case Op_Load8C:  return new (C, 3) Load8CNode(ctl, mem, adr, atyp);
   406   case Op_Load4C:  return new (C, 3) Load4CNode(ctl, mem, adr, atyp);
   407   case Op_Load2C:  return new (C, 3) Load2CNode(ctl, mem, adr, atyp);
   409   case Op_Load8S:  return new (C, 3) Load8SNode(ctl, mem, adr, atyp);
   410   case Op_Load4S:  return new (C, 3) Load4SNode(ctl, mem, adr, atyp);
   411   case Op_Load2S:  return new (C, 3) Load2SNode(ctl, mem, adr, atyp);
   413   case Op_Load4I:  return new (C, 3) Load4INode(ctl, mem, adr, atyp);
   414   case Op_Load2I:  return new (C, 3) Load2INode(ctl, mem, adr, atyp);
   416   case Op_Load2L:  return new (C, 3) Load2LNode(ctl, mem, adr, atyp);
   418   case Op_Load4F:  return new (C, 3) Load4FNode(ctl, mem, adr, atyp);
   419   case Op_Load2F:  return new (C, 3) Load2FNode(ctl, mem, adr, atyp);
   421   case Op_Load2D:  return new (C, 3) Load2DNode(ctl, mem, adr, atyp);
   422   }
   423   ShouldNotReachHere();
   424   return NULL;
   425 }
   427 // Return the vector version of a scalar store node.
   428 VectorStoreNode* VectorStoreNode::make(Compile* C, int opc, Node* ctl, Node* mem,
   429                                        Node* adr, const TypePtr* atyp, Node* val,
   430                                        uint vlen) {
   431   int vopc = opcode(opc, vlen);
   433   switch(vopc) {
   434   case Op_Store16B: return new (C, 4) Store16BNode(ctl, mem, adr, atyp, val);
   435   case Op_Store8B: return new (C, 4) Store8BNode(ctl, mem, adr, atyp, val);
   436   case Op_Store4B: return new (C, 4) Store4BNode(ctl, mem, adr, atyp, val);
   438   case Op_Store8C: return new (C, 4) Store8CNode(ctl, mem, adr, atyp, val);
   439   case Op_Store4C: return new (C, 4) Store4CNode(ctl, mem, adr, atyp, val);
   440   case Op_Store2C: return new (C, 4) Store2CNode(ctl, mem, adr, atyp, val);
   442   case Op_Store4I: return new (C, 4) Store4INode(ctl, mem, adr, atyp, val);
   443   case Op_Store2I: return new (C, 4) Store2INode(ctl, mem, adr, atyp, val);
   445   case Op_Store2L: return new (C, 4) Store2LNode(ctl, mem, adr, atyp, val);
   447   case Op_Store4F: return new (C, 4) Store4FNode(ctl, mem, adr, atyp, val);
   448   case Op_Store2F: return new (C, 4) Store2FNode(ctl, mem, adr, atyp, val);
   450   case Op_Store2D: return new (C, 4) Store2DNode(ctl, mem, adr, atyp, val);
   451   }
   452   ShouldNotReachHere();
   453   return NULL;
   454 }
   456 // Extract a scalar element of vector.
   457 Node* ExtractNode::make(Compile* C, Node* v, uint position, const Type* opd_t) {
   458   BasicType bt = opd_t->array_element_basic_type();
   459   assert(position < VectorNode::max_vlen(bt), "pos in range");
   460   ConINode* pos = ConINode::make(C, (int)position);
   461   switch (bt) {
   462   case T_BOOLEAN:
   463   case T_BYTE:
   464     return new (C, 3) ExtractBNode(v, pos);
   465   case T_CHAR:
   466     return new (C, 3) ExtractCNode(v, pos);
   467   case T_SHORT:
   468     return new (C, 3) ExtractSNode(v, pos);
   469   case T_INT:
   470     return new (C, 3) ExtractINode(v, pos);
   471   case T_LONG:
   472     return new (C, 3) ExtractLNode(v, pos);
   473   case T_FLOAT:
   474     return new (C, 3) ExtractFNode(v, pos);
   475   case T_DOUBLE:
   476     return new (C, 3) ExtractDNode(v, pos);
   477   }
   478   ShouldNotReachHere();
   479   return NULL;
   480 }

mercurial