src/share/vm/opto/superword.cpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 3847
5e990493719e
child 3882
8c92982cbbc4
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

     1 /*
     2  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  */
    24 #include "precompiled.hpp"
    25 #include "compiler/compileLog.hpp"
    26 #include "libadt/vectset.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/divnode.hpp"
    31 #include "opto/matcher.hpp"
    32 #include "opto/memnode.hpp"
    33 #include "opto/mulnode.hpp"
    34 #include "opto/opcodes.hpp"
    35 #include "opto/superword.hpp"
    36 #include "opto/vectornode.hpp"
    38 //
    39 //                  S U P E R W O R D   T R A N S F O R M
    40 //=============================================================================
    42 //------------------------------SuperWord---------------------------
    43 SuperWord::SuperWord(PhaseIdealLoop* phase) :
    44   _phase(phase),
    45   _igvn(phase->_igvn),
    46   _arena(phase->C->comp_arena()),
    47   _packset(arena(), 8,  0, NULL),         // packs for the current block
    48   _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
    49   _block(arena(), 8,  0, NULL),           // nodes in current block
    50   _data_entry(arena(), 8,  0, NULL),      // nodes with all inputs from outside
    51   _mem_slice_head(arena(), 8,  0, NULL),  // memory slice heads
    52   _mem_slice_tail(arena(), 8,  0, NULL),  // memory slice tails
    53   _node_info(arena(), 8,  0, SWNodeInfo::initial), // info needed per node
    54   _align_to_ref(NULL),                    // memory reference to align vectors to
    55   _disjoint_ptrs(arena(), 8,  0, OrderedPair::initial), // runtime disambiguated pointer pairs
    56   _dg(_arena),                            // dependence graph
    57   _visited(arena()),                      // visited node set
    58   _post_visited(arena()),                 // post visited node set
    59   _n_idx_list(arena(), 8),                // scratch list of (node,index) pairs
    60   _stk(arena(), 8, 0, NULL),              // scratch stack of nodes
    61   _nlist(arena(), 8, 0, NULL),            // scratch list of nodes
    62   _lpt(NULL),                             // loop tree node
    63   _lp(NULL),                              // LoopNode
    64   _bb(NULL),                              // basic block
    65   _iv(NULL)                               // induction var
    66 {}
    68 //------------------------------transform_loop---------------------------
    69 void SuperWord::transform_loop(IdealLoopTree* lpt) {
    70   assert(lpt->_head->is_CountedLoop(), "must be");
    71   CountedLoopNode *cl = lpt->_head->as_CountedLoop();
    73   if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
    75   if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
    77   // Check for no control flow in body (other than exit)
    78   Node *cl_exit = cl->loopexit();
    79   if (cl_exit->in(0) != lpt->_head) return;
    81   // Make sure the are no extra control users of the loop backedge
    82   if (cl->back_control()->outcnt() != 1) {
    83     return;
    84   }
    86   // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
    87   CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
    88   if (pre_end == NULL) return;
    89   Node *pre_opaq1 = pre_end->limit();
    90   if (pre_opaq1->Opcode() != Op_Opaque1) return;
    92   // Do vectors exist on this architecture?
    93   if (vector_width_in_bytes() == 0) return;
    95   init(); // initialize data structures
    97   set_lpt(lpt);
    98   set_lp(cl);
   100  // For now, define one block which is the entire loop body
   101   set_bb(cl);
   103   assert(_packset.length() == 0, "packset must be empty");
   104   SLP_extract();
   105 }
   107 //------------------------------SLP_extract---------------------------
   108 // Extract the superword level parallelism
   109 //
   110 // 1) A reverse post-order of nodes in the block is constructed.  By scanning
   111 //    this list from first to last, all definitions are visited before their uses.
   112 //
   113 // 2) A point-to-point dependence graph is constructed between memory references.
   114 //    This simplies the upcoming "independence" checker.
   115 //
   116 // 3) The maximum depth in the node graph from the beginning of the block
   117 //    to each node is computed.  This is used to prune the graph search
   118 //    in the independence checker.
   119 //
   120 // 4) For integer types, the necessary bit width is propagated backwards
   121 //    from stores to allow packed operations on byte, char, and short
   122 //    integers.  This reverses the promotion to type "int" that javac
   123 //    did for operations like: char c1,c2,c3;  c1 = c2 + c3.
   124 //
   125 // 5) One of the memory references is picked to be an aligned vector reference.
   126 //    The pre-loop trip count is adjusted to align this reference in the
   127 //    unrolled body.
   128 //
   129 // 6) The initial set of pack pairs is seeded with memory references.
   130 //
   131 // 7) The set of pack pairs is extended by following use->def and def->use links.
   132 //
   133 // 8) The pairs are combined into vector sized packs.
   134 //
   135 // 9) Reorder the memory slices to co-locate members of the memory packs.
   136 //
   137 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
   138 //    inserting scalar promotion, vector creation from multiple scalars, and
   139 //    extraction of scalar values from vectors.
   140 //
   141 void SuperWord::SLP_extract() {
   143   // Ready the block
   145   construct_bb();
   147   dependence_graph();
   149   compute_max_depth();
   151   compute_vector_element_type();
   153   // Attempt vectorization
   155   find_adjacent_refs();
   157   extend_packlist();
   159   combine_packs();
   161   construct_my_pack_map();
   163   filter_packs();
   165   schedule();
   167   output();
   168 }
   170 //------------------------------find_adjacent_refs---------------------------
   171 // Find the adjacent memory references and create pack pairs for them.
   172 // This is the initial set of packs that will then be extended by
   173 // following use->def and def->use links.  The align positions are
   174 // assigned relative to the reference "align_to_ref"
   175 void SuperWord::find_adjacent_refs() {
   176   // Get list of memory operations
   177   Node_List memops;
   178   for (int i = 0; i < _block.length(); i++) {
   179     Node* n = _block.at(i);
   180     if (n->is_Mem() && in_bb(n) &&
   181         is_java_primitive(n->as_Mem()->memory_type())) {
   182       int align = memory_alignment(n->as_Mem(), 0);
   183       if (align != bottom_align) {
   184         memops.push(n);
   185       }
   186     }
   187   }
   188   if (memops.size() == 0) return;
   190   // Find a memory reference to align to.  The pre-loop trip count
   191   // is modified to align this reference to a vector-aligned address
   192   find_align_to_ref(memops);
   193   if (align_to_ref() == NULL) return;
   195   SWPointer align_to_ref_p(align_to_ref(), this);
   196   int offset = align_to_ref_p.offset_in_bytes();
   197   int scale  = align_to_ref_p.scale_in_bytes();
   198   int vw              = vector_width_in_bytes();
   199   int stride_sign     = (scale * iv_stride()) > 0 ? 1 : -1;
   200   int iv_adjustment   = (stride_sign * vw - (offset % vw)) % vw;
   202 #ifndef PRODUCT
   203   if (TraceSuperWord)
   204     tty->print_cr("\noffset = %d iv_adjustment = %d  elt_align = %d scale = %d iv_stride = %d",
   205                   offset, iv_adjustment, align_to_ref_p.memory_size(), align_to_ref_p.scale_in_bytes(), iv_stride());
   206 #endif
   208   // Set alignment relative to "align_to_ref"
   209   for (int i = memops.size() - 1; i >= 0; i--) {
   210     MemNode* s = memops.at(i)->as_Mem();
   211     SWPointer p2(s, this);
   212     if (p2.comparable(align_to_ref_p)) {
   213       int align = memory_alignment(s, iv_adjustment);
   214       set_alignment(s, align);
   215     } else {
   216       memops.remove(i);
   217     }
   218   }
   220   // Create initial pack pairs of memory operations
   221   for (uint i = 0; i < memops.size(); i++) {
   222     Node* s1 = memops.at(i);
   223     for (uint j = 0; j < memops.size(); j++) {
   224       Node* s2 = memops.at(j);
   225       if (s1 != s2 && are_adjacent_refs(s1, s2)) {
   226         int align = alignment(s1);
   227         if (stmts_can_pack(s1, s2, align)) {
   228           Node_List* pair = new Node_List();
   229           pair->push(s1);
   230           pair->push(s2);
   231           _packset.append(pair);
   232         }
   233       }
   234     }
   235   }
   237 #ifndef PRODUCT
   238   if (TraceSuperWord) {
   239     tty->print_cr("\nAfter find_adjacent_refs");
   240     print_packset();
   241   }
   242 #endif
   243 }
   245 //------------------------------find_align_to_ref---------------------------
   246 // Find a memory reference to align the loop induction variable to.
   247 // Looks first at stores then at loads, looking for a memory reference
   248 // with the largest number of references similar to it.
   249 void SuperWord::find_align_to_ref(Node_List &memops) {
   250   GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
   252   // Count number of comparable memory ops
   253   for (uint i = 0; i < memops.size(); i++) {
   254     MemNode* s1 = memops.at(i)->as_Mem();
   255     SWPointer p1(s1, this);
   256     // Discard if pre loop can't align this reference
   257     if (!ref_is_alignable(p1)) {
   258       *cmp_ct.adr_at(i) = 0;
   259       continue;
   260     }
   261     for (uint j = i+1; j < memops.size(); j++) {
   262       MemNode* s2 = memops.at(j)->as_Mem();
   263       if (isomorphic(s1, s2)) {
   264         SWPointer p2(s2, this);
   265         if (p1.comparable(p2)) {
   266           (*cmp_ct.adr_at(i))++;
   267           (*cmp_ct.adr_at(j))++;
   268         }
   269       }
   270     }
   271   }
   273   // Find Store (or Load) with the greatest number of "comparable" references
   274   int max_ct        = 0;
   275   int max_idx       = -1;
   276   int min_size      = max_jint;
   277   int min_iv_offset = max_jint;
   278   for (uint j = 0; j < memops.size(); j++) {
   279     MemNode* s = memops.at(j)->as_Mem();
   280     if (s->is_Store()) {
   281       SWPointer p(s, this);
   282       if (cmp_ct.at(j) > max_ct ||
   283           cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
   284                                      data_size(s) == min_size &&
   285                                         p.offset_in_bytes() < min_iv_offset)) {
   286         max_ct = cmp_ct.at(j);
   287         max_idx = j;
   288         min_size = data_size(s);
   289         min_iv_offset = p.offset_in_bytes();
   290       }
   291     }
   292   }
   293   // If no stores, look at loads
   294   if (max_ct == 0) {
   295     for (uint j = 0; j < memops.size(); j++) {
   296       MemNode* s = memops.at(j)->as_Mem();
   297       if (s->is_Load()) {
   298         SWPointer p(s, this);
   299         if (cmp_ct.at(j) > max_ct ||
   300             cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
   301                                        data_size(s) == min_size &&
   302                                           p.offset_in_bytes() < min_iv_offset)) {
   303           max_ct = cmp_ct.at(j);
   304           max_idx = j;
   305           min_size = data_size(s);
   306           min_iv_offset = p.offset_in_bytes();
   307         }
   308       }
   309     }
   310   }
   312   if (max_ct > 0)
   313     set_align_to_ref(memops.at(max_idx)->as_Mem());
   315 #ifndef PRODUCT
   316   if (TraceSuperWord && Verbose) {
   317     tty->print_cr("\nVector memops after find_align_to_refs");
   318     for (uint i = 0; i < memops.size(); i++) {
   319       MemNode* s = memops.at(i)->as_Mem();
   320       s->dump();
   321     }
   322   }
   323 #endif
   324 }
   326 //------------------------------ref_is_alignable---------------------------
   327 // Can the preloop align the reference to position zero in the vector?
   328 bool SuperWord::ref_is_alignable(SWPointer& p) {
   329   if (!p.has_iv()) {
   330     return true;   // no induction variable
   331   }
   332   CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
   333   assert(pre_end->stride_is_con(), "pre loop stride is constant");
   334   int preloop_stride = pre_end->stride_con();
   336   int span = preloop_stride * p.scale_in_bytes();
   338   // Stride one accesses are alignable.
   339   if (ABS(span) == p.memory_size())
   340     return true;
   342   // If initial offset from start of object is computable,
   343   // compute alignment within the vector.
   344   int vw = vector_width_in_bytes();
   345   if (vw % span == 0) {
   346     Node* init_nd = pre_end->init_trip();
   347     if (init_nd->is_Con() && p.invar() == NULL) {
   348       int init = init_nd->bottom_type()->is_int()->get_con();
   350       int init_offset = init * p.scale_in_bytes() + p.offset_in_bytes();
   351       assert(init_offset >= 0, "positive offset from object start");
   353       if (span > 0) {
   354         return (vw - (init_offset % vw)) % span == 0;
   355       } else {
   356         assert(span < 0, "nonzero stride * scale");
   357         return (init_offset % vw) % -span == 0;
   358       }
   359     }
   360   }
   361   return false;
   362 }
   364 //---------------------------dependence_graph---------------------------
   365 // Construct dependency graph.
   366 // Add dependence edges to load/store nodes for memory dependence
   367 //    A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
   368 void SuperWord::dependence_graph() {
   369   // First, assign a dependence node to each memory node
   370   for (int i = 0; i < _block.length(); i++ ) {
   371     Node *n = _block.at(i);
   372     if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
   373       _dg.make_node(n);
   374     }
   375   }
   377   // For each memory slice, create the dependences
   378   for (int i = 0; i < _mem_slice_head.length(); i++) {
   379     Node* n      = _mem_slice_head.at(i);
   380     Node* n_tail = _mem_slice_tail.at(i);
   382     // Get slice in predecessor order (last is first)
   383     mem_slice_preds(n_tail, n, _nlist);
   385     // Make the slice dependent on the root
   386     DepMem* slice = _dg.dep(n);
   387     _dg.make_edge(_dg.root(), slice);
   389     // Create a sink for the slice
   390     DepMem* slice_sink = _dg.make_node(NULL);
   391     _dg.make_edge(slice_sink, _dg.tail());
   393     // Now visit each pair of memory ops, creating the edges
   394     for (int j = _nlist.length() - 1; j >= 0 ; j--) {
   395       Node* s1 = _nlist.at(j);
   397       // If no dependency yet, use slice
   398       if (_dg.dep(s1)->in_cnt() == 0) {
   399         _dg.make_edge(slice, s1);
   400       }
   401       SWPointer p1(s1->as_Mem(), this);
   402       bool sink_dependent = true;
   403       for (int k = j - 1; k >= 0; k--) {
   404         Node* s2 = _nlist.at(k);
   405         if (s1->is_Load() && s2->is_Load())
   406           continue;
   407         SWPointer p2(s2->as_Mem(), this);
   409         int cmp = p1.cmp(p2);
   410         if (SuperWordRTDepCheck &&
   411             p1.base() != p2.base() && p1.valid() && p2.valid()) {
   412           // Create a runtime check to disambiguate
   413           OrderedPair pp(p1.base(), p2.base());
   414           _disjoint_ptrs.append_if_missing(pp);
   415         } else if (!SWPointer::not_equal(cmp)) {
   416           // Possibly same address
   417           _dg.make_edge(s1, s2);
   418           sink_dependent = false;
   419         }
   420       }
   421       if (sink_dependent) {
   422         _dg.make_edge(s1, slice_sink);
   423       }
   424     }
   425 #ifndef PRODUCT
   426     if (TraceSuperWord) {
   427       tty->print_cr("\nDependence graph for slice: %d", n->_idx);
   428       for (int q = 0; q < _nlist.length(); q++) {
   429         _dg.print(_nlist.at(q));
   430       }
   431       tty->cr();
   432     }
   433 #endif
   434     _nlist.clear();
   435   }
   437 #ifndef PRODUCT
   438   if (TraceSuperWord) {
   439     tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
   440     for (int r = 0; r < _disjoint_ptrs.length(); r++) {
   441       _disjoint_ptrs.at(r).print();
   442       tty->cr();
   443     }
   444     tty->cr();
   445   }
   446 #endif
   447 }
   449 //---------------------------mem_slice_preds---------------------------
   450 // Return a memory slice (node list) in predecessor order starting at "start"
   451 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
   452   assert(preds.length() == 0, "start empty");
   453   Node* n = start;
   454   Node* prev = NULL;
   455   while (true) {
   456     assert(in_bb(n), "must be in block");
   457     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   458       Node* out = n->fast_out(i);
   459       if (out->is_Load()) {
   460         if (in_bb(out)) {
   461           preds.push(out);
   462         }
   463       } else {
   464         // FIXME
   465         if (out->is_MergeMem() && !in_bb(out)) {
   466           // Either unrolling is causing a memory edge not to disappear,
   467           // or need to run igvn.optimize() again before SLP
   468         } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
   469           // Ditto.  Not sure what else to check further.
   470         } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
   471           // StoreCM has an input edge used as a precedence edge.
   472           // Maybe an issue when oop stores are vectorized.
   473         } else {
   474           assert(out == prev || prev == NULL, "no branches off of store slice");
   475         }
   476       }
   477     }
   478     if (n == stop) break;
   479     preds.push(n);
   480     prev = n;
   481     n = n->in(MemNode::Memory);
   482   }
   483 }
   485 //------------------------------stmts_can_pack---------------------------
   486 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
   487 // s1 aligned at "align"
   488 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
   490   // Do not use superword for non-primitives
   491   if((s1->is_Mem() && !is_java_primitive(s1->as_Mem()->memory_type())) ||
   492      (s2->is_Mem() && !is_java_primitive(s2->as_Mem()->memory_type())))
   493     return false;
   495   if (isomorphic(s1, s2)) {
   496     if (independent(s1, s2)) {
   497       if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
   498         if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
   499           int s1_align = alignment(s1);
   500           int s2_align = alignment(s2);
   501           if (s1_align == top_align || s1_align == align) {
   502             if (s2_align == top_align || s2_align == align + data_size(s1)) {
   503               return true;
   504             }
   505           }
   506         }
   507       }
   508     }
   509   }
   510   return false;
   511 }
   513 //------------------------------exists_at---------------------------
   514 // Does s exist in a pack at position pos?
   515 bool SuperWord::exists_at(Node* s, uint pos) {
   516   for (int i = 0; i < _packset.length(); i++) {
   517     Node_List* p = _packset.at(i);
   518     if (p->at(pos) == s) {
   519       return true;
   520     }
   521   }
   522   return false;
   523 }
   525 //------------------------------are_adjacent_refs---------------------------
   526 // Is s1 immediately before s2 in memory?
   527 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
   528   if (!s1->is_Mem() || !s2->is_Mem()) return false;
   529   if (!in_bb(s1)    || !in_bb(s2))    return false;
   531   // Do not use superword for non-primitives
   532   if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
   533       !is_java_primitive(s2->as_Mem()->memory_type())) {
   534     return false;
   535   }
   537   // FIXME - co_locate_pack fails on Stores in different mem-slices, so
   538   // only pack memops that are in the same alias set until that's fixed.
   539   if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
   540       _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
   541     return false;
   542   SWPointer p1(s1->as_Mem(), this);
   543   SWPointer p2(s2->as_Mem(), this);
   544   if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
   545   int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
   546   return diff == data_size(s1);
   547 }
   549 //------------------------------isomorphic---------------------------
   550 // Are s1 and s2 similar?
   551 bool SuperWord::isomorphic(Node* s1, Node* s2) {
   552   if (s1->Opcode() != s2->Opcode()) return false;
   553   if (s1->req() != s2->req()) return false;
   554   if (s1->in(0) != s2->in(0)) return false;
   555   if (velt_type(s1) != velt_type(s2)) return false;
   556   return true;
   557 }
   559 //------------------------------independent---------------------------
   560 // Is there no data path from s1 to s2 or s2 to s1?
   561 bool SuperWord::independent(Node* s1, Node* s2) {
   562   //  assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
   563   int d1 = depth(s1);
   564   int d2 = depth(s2);
   565   if (d1 == d2) return s1 != s2;
   566   Node* deep    = d1 > d2 ? s1 : s2;
   567   Node* shallow = d1 > d2 ? s2 : s1;
   569   visited_clear();
   571   return independent_path(shallow, deep);
   572 }
   574 //------------------------------independent_path------------------------------
   575 // Helper for independent
   576 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
   577   if (dp >= 1000) return false; // stop deep recursion
   578   visited_set(deep);
   579   int shal_depth = depth(shallow);
   580   assert(shal_depth <= depth(deep), "must be");
   581   for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
   582     Node* pred = preds.current();
   583     if (in_bb(pred) && !visited_test(pred)) {
   584       if (shallow == pred) {
   585         return false;
   586       }
   587       if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
   588         return false;
   589       }
   590     }
   591   }
   592   return true;
   593 }
   595 //------------------------------set_alignment---------------------------
   596 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
   597   set_alignment(s1, align);
   598   set_alignment(s2, align + data_size(s1));
   599 }
   601 //------------------------------data_size---------------------------
   602 int SuperWord::data_size(Node* s) {
   603   const Type* t = velt_type(s);
   604   BasicType  bt = t->array_element_basic_type();
   605   int bsize = type2aelembytes(bt);
   606   assert(bsize != 0, "valid size");
   607   return bsize;
   608 }
   610 //------------------------------extend_packlist---------------------------
   611 // Extend packset by following use->def and def->use links from pack members.
   612 void SuperWord::extend_packlist() {
   613   bool changed;
   614   do {
   615     changed = false;
   616     for (int i = 0; i < _packset.length(); i++) {
   617       Node_List* p = _packset.at(i);
   618       changed |= follow_use_defs(p);
   619       changed |= follow_def_uses(p);
   620     }
   621   } while (changed);
   623 #ifndef PRODUCT
   624   if (TraceSuperWord) {
   625     tty->print_cr("\nAfter extend_packlist");
   626     print_packset();
   627   }
   628 #endif
   629 }
   631 //------------------------------follow_use_defs---------------------------
   632 // Extend the packset by visiting operand definitions of nodes in pack p
   633 bool SuperWord::follow_use_defs(Node_List* p) {
   634   Node* s1 = p->at(0);
   635   Node* s2 = p->at(1);
   636   assert(p->size() == 2, "just checking");
   637   assert(s1->req() == s2->req(), "just checking");
   638   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
   640   if (s1->is_Load()) return false;
   642   int align = alignment(s1);
   643   bool changed = false;
   644   int start = s1->is_Store() ? MemNode::ValueIn   : 1;
   645   int end   = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
   646   for (int j = start; j < end; j++) {
   647     Node* t1 = s1->in(j);
   648     Node* t2 = s2->in(j);
   649     if (!in_bb(t1) || !in_bb(t2))
   650       continue;
   651     if (stmts_can_pack(t1, t2, align)) {
   652       if (est_savings(t1, t2) >= 0) {
   653         Node_List* pair = new Node_List();
   654         pair->push(t1);
   655         pair->push(t2);
   656         _packset.append(pair);
   657         set_alignment(t1, t2, align);
   658         changed = true;
   659       }
   660     }
   661   }
   662   return changed;
   663 }
   665 //------------------------------follow_def_uses---------------------------
   666 // Extend the packset by visiting uses of nodes in pack p
   667 bool SuperWord::follow_def_uses(Node_List* p) {
   668   bool changed = false;
   669   Node* s1 = p->at(0);
   670   Node* s2 = p->at(1);
   671   assert(p->size() == 2, "just checking");
   672   assert(s1->req() == s2->req(), "just checking");
   673   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
   675   if (s1->is_Store()) return false;
   677   int align = alignment(s1);
   678   int savings = -1;
   679   Node* u1 = NULL;
   680   Node* u2 = NULL;
   681   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
   682     Node* t1 = s1->fast_out(i);
   683     if (!in_bb(t1)) continue;
   684     for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
   685       Node* t2 = s2->fast_out(j);
   686       if (!in_bb(t2)) continue;
   687       if (!opnd_positions_match(s1, t1, s2, t2))
   688         continue;
   689       if (stmts_can_pack(t1, t2, align)) {
   690         int my_savings = est_savings(t1, t2);
   691         if (my_savings > savings) {
   692           savings = my_savings;
   693           u1 = t1;
   694           u2 = t2;
   695         }
   696       }
   697     }
   698   }
   699   if (savings >= 0) {
   700     Node_List* pair = new Node_List();
   701     pair->push(u1);
   702     pair->push(u2);
   703     _packset.append(pair);
   704     set_alignment(u1, u2, align);
   705     changed = true;
   706   }
   707   return changed;
   708 }
   710 //---------------------------opnd_positions_match-------------------------
   711 // Is the use of d1 in u1 at the same operand position as d2 in u2?
   712 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
   713   uint ct = u1->req();
   714   if (ct != u2->req()) return false;
   715   uint i1 = 0;
   716   uint i2 = 0;
   717   do {
   718     for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
   719     for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
   720     if (i1 != i2) {
   721       return false;
   722     }
   723   } while (i1 < ct);
   724   return true;
   725 }
   727 //------------------------------est_savings---------------------------
   728 // Estimate the savings from executing s1 and s2 as a pack
   729 int SuperWord::est_savings(Node* s1, Node* s2) {
   730   int save = 2 - 1; // 2 operations per instruction in packed form
   732   // inputs
   733   for (uint i = 1; i < s1->req(); i++) {
   734     Node* x1 = s1->in(i);
   735     Node* x2 = s2->in(i);
   736     if (x1 != x2) {
   737       if (are_adjacent_refs(x1, x2)) {
   738         save += adjacent_profit(x1, x2);
   739       } else if (!in_packset(x1, x2)) {
   740         save -= pack_cost(2);
   741       } else {
   742         save += unpack_cost(2);
   743       }
   744     }
   745   }
   747   // uses of result
   748   uint ct = 0;
   749   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
   750     Node* s1_use = s1->fast_out(i);
   751     for (int j = 0; j < _packset.length(); j++) {
   752       Node_List* p = _packset.at(j);
   753       if (p->at(0) == s1_use) {
   754         for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
   755           Node* s2_use = s2->fast_out(k);
   756           if (p->at(p->size()-1) == s2_use) {
   757             ct++;
   758             if (are_adjacent_refs(s1_use, s2_use)) {
   759               save += adjacent_profit(s1_use, s2_use);
   760             }
   761           }
   762         }
   763       }
   764     }
   765   }
   767   if (ct < s1->outcnt()) save += unpack_cost(1);
   768   if (ct < s2->outcnt()) save += unpack_cost(1);
   770   return save;
   771 }
   773 //------------------------------costs---------------------------
   774 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
   775 int SuperWord::pack_cost(int ct)   { return ct; }
   776 int SuperWord::unpack_cost(int ct) { return ct; }
   778 //------------------------------combine_packs---------------------------
   779 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
   780 void SuperWord::combine_packs() {
   781   bool changed;
   782   do {
   783     changed = false;
   784     for (int i = 0; i < _packset.length(); i++) {
   785       Node_List* p1 = _packset.at(i);
   786       if (p1 == NULL) continue;
   787       for (int j = 0; j < _packset.length(); j++) {
   788         Node_List* p2 = _packset.at(j);
   789         if (p2 == NULL) continue;
   790         if (p1->at(p1->size()-1) == p2->at(0)) {
   791           for (uint k = 1; k < p2->size(); k++) {
   792             p1->push(p2->at(k));
   793           }
   794           _packset.at_put(j, NULL);
   795           changed = true;
   796         }
   797       }
   798     }
   799   } while (changed);
   801   for (int i = _packset.length() - 1; i >= 0; i--) {
   802     Node_List* p1 = _packset.at(i);
   803     if (p1 == NULL) {
   804       _packset.remove_at(i);
   805     }
   806   }
   808 #ifndef PRODUCT
   809   if (TraceSuperWord) {
   810     tty->print_cr("\nAfter combine_packs");
   811     print_packset();
   812   }
   813 #endif
   814 }
   816 //-----------------------------construct_my_pack_map--------------------------
   817 // Construct the map from nodes to packs.  Only valid after the
   818 // point where a node is only in one pack (after combine_packs).
   819 void SuperWord::construct_my_pack_map() {
   820   Node_List* rslt = NULL;
   821   for (int i = 0; i < _packset.length(); i++) {
   822     Node_List* p = _packset.at(i);
   823     for (uint j = 0; j < p->size(); j++) {
   824       Node* s = p->at(j);
   825       assert(my_pack(s) == NULL, "only in one pack");
   826       set_my_pack(s, p);
   827     }
   828   }
   829 }
   831 //------------------------------filter_packs---------------------------
   832 // Remove packs that are not implemented or not profitable.
   833 void SuperWord::filter_packs() {
   835   // Remove packs that are not implemented
   836   for (int i = _packset.length() - 1; i >= 0; i--) {
   837     Node_List* pk = _packset.at(i);
   838     bool impl = implemented(pk);
   839     if (!impl) {
   840 #ifndef PRODUCT
   841       if (TraceSuperWord && Verbose) {
   842         tty->print_cr("Unimplemented");
   843         pk->at(0)->dump();
   844       }
   845 #endif
   846       remove_pack_at(i);
   847     }
   848   }
   850   // Remove packs that are not profitable
   851   bool changed;
   852   do {
   853     changed = false;
   854     for (int i = _packset.length() - 1; i >= 0; i--) {
   855       Node_List* pk = _packset.at(i);
   856       bool prof = profitable(pk);
   857       if (!prof) {
   858 #ifndef PRODUCT
   859         if (TraceSuperWord && Verbose) {
   860           tty->print_cr("Unprofitable");
   861           pk->at(0)->dump();
   862         }
   863 #endif
   864         remove_pack_at(i);
   865         changed = true;
   866       }
   867     }
   868   } while (changed);
   870 #ifndef PRODUCT
   871   if (TraceSuperWord) {
   872     tty->print_cr("\nAfter filter_packs");
   873     print_packset();
   874     tty->cr();
   875   }
   876 #endif
   877 }
   879 //------------------------------implemented---------------------------
   880 // Can code be generated for pack p?
   881 bool SuperWord::implemented(Node_List* p) {
   882   Node* p0 = p->at(0);
   883   int vopc = VectorNode::opcode(p0->Opcode(), p->size(), velt_type(p0));
   884   return vopc > 0 && Matcher::has_match_rule(vopc);
   885 }
   887 //------------------------------profitable---------------------------
   888 // For pack p, are all operands and all uses (with in the block) vector?
   889 bool SuperWord::profitable(Node_List* p) {
   890   Node* p0 = p->at(0);
   891   uint start, end;
   892   vector_opd_range(p0, &start, &end);
   894   // Return false if some input is not vector and inside block
   895   for (uint i = start; i < end; i++) {
   896     if (!is_vector_use(p0, i)) {
   897       // For now, return false if not scalar promotion case (inputs are the same.)
   898       // Later, implement PackNode and allow differing, non-vector inputs
   899       // (maybe just the ones from outside the block.)
   900       Node* p0_def = p0->in(i);
   901       for (uint j = 1; j < p->size(); j++) {
   902         Node* use = p->at(j);
   903         Node* def = use->in(i);
   904         if (p0_def != def)
   905           return false;
   906       }
   907     }
   908   }
   909   if (!p0->is_Store()) {
   910     // For now, return false if not all uses are vector.
   911     // Later, implement ExtractNode and allow non-vector uses (maybe
   912     // just the ones outside the block.)
   913     for (uint i = 0; i < p->size(); i++) {
   914       Node* def = p->at(i);
   915       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
   916         Node* use = def->fast_out(j);
   917         for (uint k = 0; k < use->req(); k++) {
   918           Node* n = use->in(k);
   919           if (def == n) {
   920             if (!is_vector_use(use, k)) {
   921               return false;
   922             }
   923           }
   924         }
   925       }
   926     }
   927   }
   928   return true;
   929 }
   931 //------------------------------schedule---------------------------
   932 // Adjust the memory graph for the packed operations
   933 void SuperWord::schedule() {
   935   // Co-locate in the memory graph the members of each memory pack
   936   for (int i = 0; i < _packset.length(); i++) {
   937     co_locate_pack(_packset.at(i));
   938   }
   939 }
   941 //-------------------------------remove_and_insert-------------------
   942 //remove "current" from its current position in the memory graph and insert
   943 //it after the appropriate insertion point (lip or uip)
   944 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
   945                                   Node *uip, Unique_Node_List &sched_before) {
   946   Node* my_mem = current->in(MemNode::Memory);
   947   _igvn.rehash_node_delayed(current);
   948   _igvn.hash_delete(my_mem);
   950   //remove current_store from its current position in the memmory graph
   951   for (DUIterator i = current->outs(); current->has_out(i); i++) {
   952     Node* use = current->out(i);
   953     if (use->is_Mem()) {
   954       assert(use->in(MemNode::Memory) == current, "must be");
   955       _igvn.rehash_node_delayed(use);
   956       if (use == prev) { // connect prev to my_mem
   957         use->set_req(MemNode::Memory, my_mem);
   958       } else if (sched_before.member(use)) {
   959         _igvn.hash_delete(uip);
   960         use->set_req(MemNode::Memory, uip);
   961       } else {
   962         _igvn.hash_delete(lip);
   963         use->set_req(MemNode::Memory, lip);
   964       }
   965       --i; //deleted this edge; rescan position
   966     }
   967   }
   969   bool sched_up = sched_before.member(current);
   970   Node *insert_pt =  sched_up ?  uip : lip;
   971   _igvn.hash_delete(insert_pt);
   973   // all uses of insert_pt's memory state should use current's instead
   974   for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
   975     Node* use = insert_pt->out(i);
   976     if (use->is_Mem()) {
   977       assert(use->in(MemNode::Memory) == insert_pt, "must be");
   978       _igvn.replace_input_of(use, MemNode::Memory, current);
   979       --i; //deleted this edge; rescan position
   980     } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
   981       uint pos; //lip (lower insert point) must be the last one in the memory slice
   982       for (pos=1; pos < use->req(); pos++) {
   983         if (use->in(pos) == insert_pt) break;
   984       }
   985       _igvn.replace_input_of(use, pos, current);
   986       --i;
   987     }
   988   }
   990   //connect current to insert_pt
   991   current->set_req(MemNode::Memory, insert_pt);
   992 }
   994 //------------------------------co_locate_pack----------------------------------
   995 // To schedule a store pack, we need to move any sandwiched memory ops either before
   996 // or after the pack, based upon dependence information:
   997 // (1) If any store in the pack depends on the sandwiched memory op, the
   998 //     sandwiched memory op must be scheduled BEFORE the pack;
   999 // (2) If a sandwiched memory op depends on any store in the pack, the
  1000 //     sandwiched memory op must be scheduled AFTER the pack;
  1001 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
  1002 //     memory op (say memB), memB must be scheduled before memA. So, if memA is
  1003 //     scheduled before the pack, memB must also be scheduled before the pack;
  1004 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
  1005 //     schedule this store AFTER the pack
  1006 // (5) We know there is no dependence cycle, so there in no other case;
  1007 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
  1008 //
  1009 // To schedule a load pack, we use the memory state of either the first or the last load in
  1010 // the pack, based on the dependence constraint.
  1011 void SuperWord::co_locate_pack(Node_List* pk) {
  1012   if (pk->at(0)->is_Store()) {
  1013     MemNode* first     = executed_first(pk)->as_Mem();
  1014     MemNode* last      = executed_last(pk)->as_Mem();
  1015     Unique_Node_List schedule_before_pack;
  1016     Unique_Node_List memops;
  1018     MemNode* current   = last->in(MemNode::Memory)->as_Mem();
  1019     MemNode* previous  = last;
  1020     while (true) {
  1021       assert(in_bb(current), "stay in block");
  1022       memops.push(previous);
  1023       for (DUIterator i = current->outs(); current->has_out(i); i++) {
  1024         Node* use = current->out(i);
  1025         if (use->is_Mem() && use != previous)
  1026           memops.push(use);
  1028       if(current == first) break;
  1029       previous = current;
  1030       current  = current->in(MemNode::Memory)->as_Mem();
  1033     // determine which memory operations should be scheduled before the pack
  1034     for (uint i = 1; i < memops.size(); i++) {
  1035       Node *s1 = memops.at(i);
  1036       if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
  1037         for (uint j = 0; j< i; j++) {
  1038           Node *s2 = memops.at(j);
  1039           if (!independent(s1, s2)) {
  1040             if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
  1041               schedule_before_pack.push(s1); //s1 must be scheduled before
  1042               Node_List* mem_pk = my_pack(s1);
  1043               if (mem_pk != NULL) {
  1044                 for (uint ii = 0; ii < mem_pk->size(); ii++) {
  1045                   Node* s = mem_pk->at(ii); // follow partner
  1046                   if (memops.member(s) && !schedule_before_pack.member(s))
  1047                     schedule_before_pack.push(s);
  1056     MemNode* lower_insert_pt = last;
  1057     Node*    upper_insert_pt = first->in(MemNode::Memory);
  1058     previous                 = last; //previous store in pk
  1059     current                  = last->in(MemNode::Memory)->as_Mem();
  1061     //start scheduling from "last" to "first"
  1062     while (true) {
  1063       assert(in_bb(current), "stay in block");
  1064       assert(in_pack(previous, pk), "previous stays in pack");
  1065       Node* my_mem = current->in(MemNode::Memory);
  1067       if (in_pack(current, pk)) {
  1068         // Forward users of my memory state (except "previous) to my input memory state
  1069         _igvn.hash_delete(current);
  1070         for (DUIterator i = current->outs(); current->has_out(i); i++) {
  1071           Node* use = current->out(i);
  1072           if (use->is_Mem() && use != previous) {
  1073             assert(use->in(MemNode::Memory) == current, "must be");
  1074             if (schedule_before_pack.member(use)) {
  1075               _igvn.hash_delete(upper_insert_pt);
  1076               _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt);
  1077             } else {
  1078               _igvn.hash_delete(lower_insert_pt);
  1079               _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt);
  1081             --i; // deleted this edge; rescan position
  1084         previous = current;
  1085       } else { // !in_pack(current, pk) ==> a sandwiched store
  1086         remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
  1089       if (current == first) break;
  1090       current = my_mem->as_Mem();
  1091     } // end while
  1092   } else if (pk->at(0)->is_Load()) { //load
  1093     // all loads in the pack should have the same memory state. By default,
  1094     // we use the memory state of the last load. However, if any load could
  1095     // not be moved down due to the dependence constraint, we use the memory
  1096     // state of the first load.
  1097     Node* last_mem  = executed_last(pk)->in(MemNode::Memory);
  1098     Node* first_mem = executed_first(pk)->in(MemNode::Memory);
  1099     bool schedule_last = true;
  1100     for (uint i = 0; i < pk->size(); i++) {
  1101       Node* ld = pk->at(i);
  1102       for (Node* current = last_mem; current != ld->in(MemNode::Memory);
  1103            current=current->in(MemNode::Memory)) {
  1104         assert(current != first_mem, "corrupted memory graph");
  1105         if(current->is_Mem() && !independent(current, ld)){
  1106           schedule_last = false; // a later store depends on this load
  1107           break;
  1112     Node* mem_input = schedule_last ? last_mem : first_mem;
  1113     _igvn.hash_delete(mem_input);
  1114     // Give each load the same memory state
  1115     for (uint i = 0; i < pk->size(); i++) {
  1116       LoadNode* ld = pk->at(i)->as_Load();
  1117       _igvn.replace_input_of(ld, MemNode::Memory, mem_input);
  1122 //------------------------------output---------------------------
  1123 // Convert packs into vector node operations
  1124 void SuperWord::output() {
  1125   if (_packset.length() == 0) return;
  1127 #ifndef PRODUCT
  1128   if (TraceLoopOpts) {
  1129     tty->print("SuperWord    ");
  1130     lpt()->dump_head();
  1132 #endif
  1134   // MUST ENSURE main loop's initial value is properly aligned:
  1135   //  (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
  1137   align_initial_loop_index(align_to_ref());
  1139   // Insert extract (unpack) operations for scalar uses
  1140   for (int i = 0; i < _packset.length(); i++) {
  1141     insert_extracts(_packset.at(i));
  1144   for (int i = 0; i < _block.length(); i++) {
  1145     Node* n = _block.at(i);
  1146     Node_List* p = my_pack(n);
  1147     if (p && n == executed_last(p)) {
  1148       uint vlen = p->size();
  1149       Node* vn = NULL;
  1150       Node* low_adr = p->at(0);
  1151       Node* first   = executed_first(p);
  1152       if (n->is_Load()) {
  1153         int   opc = n->Opcode();
  1154         Node* ctl = n->in(MemNode::Control);
  1155         Node* mem = first->in(MemNode::Memory);
  1156         Node* adr = low_adr->in(MemNode::Address);
  1157         const TypePtr* atyp = n->adr_type();
  1158         vn = VectorLoadNode::make(_phase->C, opc, ctl, mem, adr, atyp, vlen);
  1160       } else if (n->is_Store()) {
  1161         // Promote value to be stored to vector
  1162         Node* val = vector_opd(p, MemNode::ValueIn);
  1164         int   opc = n->Opcode();
  1165         Node* ctl = n->in(MemNode::Control);
  1166         Node* mem = first->in(MemNode::Memory);
  1167         Node* adr = low_adr->in(MemNode::Address);
  1168         const TypePtr* atyp = n->adr_type();
  1169         vn = VectorStoreNode::make(_phase->C, opc, ctl, mem, adr, atyp, val, vlen);
  1171       } else if (n->req() == 3) {
  1172         // Promote operands to vector
  1173         Node* in1 = vector_opd(p, 1);
  1174         Node* in2 = vector_opd(p, 2);
  1175         vn = VectorNode::make(_phase->C, n->Opcode(), in1, in2, vlen, velt_type(n));
  1177       } else {
  1178         ShouldNotReachHere();
  1181       _phase->_igvn.register_new_node_with_optimizer(vn);
  1182       _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
  1183       for (uint j = 0; j < p->size(); j++) {
  1184         Node* pm = p->at(j);
  1185         _igvn.replace_node(pm, vn);
  1187       _igvn._worklist.push(vn);
  1192 //------------------------------vector_opd---------------------------
  1193 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
  1194 Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
  1195   Node* p0 = p->at(0);
  1196   uint vlen = p->size();
  1197   Node* opd = p0->in(opd_idx);
  1199   bool same_opd = true;
  1200   for (uint i = 1; i < vlen; i++) {
  1201     Node* pi = p->at(i);
  1202     Node* in = pi->in(opd_idx);
  1203     if (opd != in) {
  1204       same_opd = false;
  1205       break;
  1209   if (same_opd) {
  1210     if (opd->is_Vector() || opd->is_VectorLoad()) {
  1211       return opd; // input is matching vector
  1213     assert(!opd->is_VectorStore(), "such vector is not expected here");
  1214     // Convert scalar input to vector with the same number of elements as
  1215     // p0's vector. Use p0's type because size of operand's container in
  1216     // vector should match p0's size regardless operand's size.
  1217     const Type* p0_t = velt_type(p0);
  1218     VectorNode* vn = VectorNode::scalar2vector(_phase->C, opd, vlen, p0_t);
  1220     _phase->_igvn.register_new_node_with_optimizer(vn);
  1221     _phase->set_ctrl(vn, _phase->get_ctrl(opd));
  1222     return vn;
  1225   // Insert pack operation
  1226   const Type* p0_t = velt_type(p0);
  1227   PackNode* pk = PackNode::make(_phase->C, opd, p0_t);
  1228   DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
  1230   for (uint i = 1; i < vlen; i++) {
  1231     Node* pi = p->at(i);
  1232     Node* in = pi->in(opd_idx);
  1233     assert(my_pack(in) == NULL, "Should already have been unpacked");
  1234     assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
  1235     pk->add_opd(in);
  1237   _phase->_igvn.register_new_node_with_optimizer(pk);
  1238   _phase->set_ctrl(pk, _phase->get_ctrl(opd));
  1239   return pk;
  1242 //------------------------------insert_extracts---------------------------
  1243 // If a use of pack p is not a vector use, then replace the
  1244 // use with an extract operation.
  1245 void SuperWord::insert_extracts(Node_List* p) {
  1246   if (p->at(0)->is_Store()) return;
  1247   assert(_n_idx_list.is_empty(), "empty (node,index) list");
  1249   // Inspect each use of each pack member.  For each use that is
  1250   // not a vector use, replace the use with an extract operation.
  1252   for (uint i = 0; i < p->size(); i++) {
  1253     Node* def = p->at(i);
  1254     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
  1255       Node* use = def->fast_out(j);
  1256       for (uint k = 0; k < use->req(); k++) {
  1257         Node* n = use->in(k);
  1258         if (def == n) {
  1259           if (!is_vector_use(use, k)) {
  1260             _n_idx_list.push(use, k);
  1267   while (_n_idx_list.is_nonempty()) {
  1268     Node* use = _n_idx_list.node();
  1269     int   idx = _n_idx_list.index();
  1270     _n_idx_list.pop();
  1271     Node* def = use->in(idx);
  1273     // Insert extract operation
  1274     _igvn.hash_delete(def);
  1275     int def_pos = alignment(def) / data_size(def);
  1276     const Type* def_t = velt_type(def);
  1278     Node* ex = ExtractNode::make(_phase->C, def, def_pos, def_t);
  1279     _phase->_igvn.register_new_node_with_optimizer(ex);
  1280     _phase->set_ctrl(ex, _phase->get_ctrl(def));
  1281     _igvn.replace_input_of(use, idx, ex);
  1282     _igvn._worklist.push(def);
  1284     bb_insert_after(ex, bb_idx(def));
  1285     set_velt_type(ex, def_t);
  1289 //------------------------------is_vector_use---------------------------
  1290 // Is use->in(u_idx) a vector use?
  1291 bool SuperWord::is_vector_use(Node* use, int u_idx) {
  1292   Node_List* u_pk = my_pack(use);
  1293   if (u_pk == NULL) return false;
  1294   Node* def = use->in(u_idx);
  1295   Node_List* d_pk = my_pack(def);
  1296   if (d_pk == NULL) {
  1297     // check for scalar promotion
  1298     Node* n = u_pk->at(0)->in(u_idx);
  1299     for (uint i = 1; i < u_pk->size(); i++) {
  1300       if (u_pk->at(i)->in(u_idx) != n) return false;
  1302     return true;
  1304   if (u_pk->size() != d_pk->size())
  1305     return false;
  1306   for (uint i = 0; i < u_pk->size(); i++) {
  1307     Node* ui = u_pk->at(i);
  1308     Node* di = d_pk->at(i);
  1309     if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
  1310       return false;
  1312   return true;
  1315 //------------------------------construct_bb---------------------------
  1316 // Construct reverse postorder list of block members
  1317 void SuperWord::construct_bb() {
  1318   Node* entry = bb();
  1320   assert(_stk.length() == 0,            "stk is empty");
  1321   assert(_block.length() == 0,          "block is empty");
  1322   assert(_data_entry.length() == 0,     "data_entry is empty");
  1323   assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
  1324   assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
  1326   // Find non-control nodes with no inputs from within block,
  1327   // create a temporary map from node _idx to bb_idx for use
  1328   // by the visited and post_visited sets,
  1329   // and count number of nodes in block.
  1330   int bb_ct = 0;
  1331   for (uint i = 0; i < lpt()->_body.size(); i++ ) {
  1332     Node *n = lpt()->_body.at(i);
  1333     set_bb_idx(n, i); // Create a temporary map
  1334     if (in_bb(n)) {
  1335       bb_ct++;
  1336       if (!n->is_CFG()) {
  1337         bool found = false;
  1338         for (uint j = 0; j < n->req(); j++) {
  1339           Node* def = n->in(j);
  1340           if (def && in_bb(def)) {
  1341             found = true;
  1342             break;
  1345         if (!found) {
  1346           assert(n != entry, "can't be entry");
  1347           _data_entry.push(n);
  1353   // Find memory slices (head and tail)
  1354   for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
  1355     Node *n = lp()->fast_out(i);
  1356     if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
  1357       Node* n_tail  = n->in(LoopNode::LoopBackControl);
  1358       if (n_tail != n->in(LoopNode::EntryControl)) {
  1359         _mem_slice_head.push(n);
  1360         _mem_slice_tail.push(n_tail);
  1365   // Create an RPO list of nodes in block
  1367   visited_clear();
  1368   post_visited_clear();
  1370   // Push all non-control nodes with no inputs from within block, then control entry
  1371   for (int j = 0; j < _data_entry.length(); j++) {
  1372     Node* n = _data_entry.at(j);
  1373     visited_set(n);
  1374     _stk.push(n);
  1376   visited_set(entry);
  1377   _stk.push(entry);
  1379   // Do a depth first walk over out edges
  1380   int rpo_idx = bb_ct - 1;
  1381   int size;
  1382   while ((size = _stk.length()) > 0) {
  1383     Node* n = _stk.top(); // Leave node on stack
  1384     if (!visited_test_set(n)) {
  1385       // forward arc in graph
  1386     } else if (!post_visited_test(n)) {
  1387       // cross or back arc
  1388       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1389         Node *use = n->fast_out(i);
  1390         if (in_bb(use) && !visited_test(use) &&
  1391             // Don't go around backedge
  1392             (!use->is_Phi() || n == entry)) {
  1393           _stk.push(use);
  1396       if (_stk.length() == size) {
  1397         // There were no additional uses, post visit node now
  1398         _stk.pop(); // Remove node from stack
  1399         assert(rpo_idx >= 0, "");
  1400         _block.at_put_grow(rpo_idx, n);
  1401         rpo_idx--;
  1402         post_visited_set(n);
  1403         assert(rpo_idx >= 0 || _stk.is_empty(), "");
  1405     } else {
  1406       _stk.pop(); // Remove post-visited node from stack
  1410   // Create real map of block indices for nodes
  1411   for (int j = 0; j < _block.length(); j++) {
  1412     Node* n = _block.at(j);
  1413     set_bb_idx(n, j);
  1416   initialize_bb(); // Ensure extra info is allocated.
  1418 #ifndef PRODUCT
  1419   if (TraceSuperWord) {
  1420     print_bb();
  1421     tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
  1422     for (int m = 0; m < _data_entry.length(); m++) {
  1423       tty->print("%3d ", m);
  1424       _data_entry.at(m)->dump();
  1426     tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
  1427     for (int m = 0; m < _mem_slice_head.length(); m++) {
  1428       tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
  1429       tty->print("    ");    _mem_slice_tail.at(m)->dump();
  1432 #endif
  1433   assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
  1436 //------------------------------initialize_bb---------------------------
  1437 // Initialize per node info
  1438 void SuperWord::initialize_bb() {
  1439   Node* last = _block.at(_block.length() - 1);
  1440   grow_node_info(bb_idx(last));
  1443 //------------------------------bb_insert_after---------------------------
  1444 // Insert n into block after pos
  1445 void SuperWord::bb_insert_after(Node* n, int pos) {
  1446   int n_pos = pos + 1;
  1447   // Make room
  1448   for (int i = _block.length() - 1; i >= n_pos; i--) {
  1449     _block.at_put_grow(i+1, _block.at(i));
  1451   for (int j = _node_info.length() - 1; j >= n_pos; j--) {
  1452     _node_info.at_put_grow(j+1, _node_info.at(j));
  1454   // Set value
  1455   _block.at_put_grow(n_pos, n);
  1456   _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
  1457   // Adjust map from node->_idx to _block index
  1458   for (int i = n_pos; i < _block.length(); i++) {
  1459     set_bb_idx(_block.at(i), i);
  1463 //------------------------------compute_max_depth---------------------------
  1464 // Compute max depth for expressions from beginning of block
  1465 // Use to prune search paths during test for independence.
  1466 void SuperWord::compute_max_depth() {
  1467   int ct = 0;
  1468   bool again;
  1469   do {
  1470     again = false;
  1471     for (int i = 0; i < _block.length(); i++) {
  1472       Node* n = _block.at(i);
  1473       if (!n->is_Phi()) {
  1474         int d_orig = depth(n);
  1475         int d_in   = 0;
  1476         for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
  1477           Node* pred = preds.current();
  1478           if (in_bb(pred)) {
  1479             d_in = MAX2(d_in, depth(pred));
  1482         if (d_in + 1 != d_orig) {
  1483           set_depth(n, d_in + 1);
  1484           again = true;
  1488     ct++;
  1489   } while (again);
  1490 #ifndef PRODUCT
  1491   if (TraceSuperWord && Verbose)
  1492     tty->print_cr("compute_max_depth iterated: %d times", ct);
  1493 #endif
  1496 //-------------------------compute_vector_element_type-----------------------
  1497 // Compute necessary vector element type for expressions
  1498 // This propagates backwards a narrower integer type when the
  1499 // upper bits of the value are not needed.
  1500 // Example:  char a,b,c;  a = b + c;
  1501 // Normally the type of the add is integer, but for packed character
  1502 // operations the type of the add needs to be char.
  1503 void SuperWord::compute_vector_element_type() {
  1504 #ifndef PRODUCT
  1505   if (TraceSuperWord && Verbose)
  1506     tty->print_cr("\ncompute_velt_type:");
  1507 #endif
  1509   // Initial type
  1510   for (int i = 0; i < _block.length(); i++) {
  1511     Node* n = _block.at(i);
  1512     const Type* t  = n->is_Mem() ? Type::get_const_basic_type(n->as_Mem()->memory_type())
  1513                                  : _igvn.type(n);
  1514     const Type* vt = container_type(t);
  1515     set_velt_type(n, vt);
  1518   // Propagate narrowed type backwards through operations
  1519   // that don't depend on higher order bits
  1520   for (int i = _block.length() - 1; i >= 0; i--) {
  1521     Node* n = _block.at(i);
  1522     // Only integer types need be examined
  1523     if (n->bottom_type()->isa_int()) {
  1524       uint start, end;
  1525       vector_opd_range(n, &start, &end);
  1526       const Type* vt = velt_type(n);
  1528       for (uint j = start; j < end; j++) {
  1529         Node* in  = n->in(j);
  1530         // Don't propagate through a type conversion
  1531         if (n->bottom_type() != in->bottom_type())
  1532           continue;
  1533         switch(in->Opcode()) {
  1534         case Op_AddI:    case Op_AddL:
  1535         case Op_SubI:    case Op_SubL:
  1536         case Op_MulI:    case Op_MulL:
  1537         case Op_AndI:    case Op_AndL:
  1538         case Op_OrI:     case Op_OrL:
  1539         case Op_XorI:    case Op_XorL:
  1540         case Op_LShiftI: case Op_LShiftL:
  1541         case Op_CMoveI:  case Op_CMoveL:
  1542           if (in_bb(in)) {
  1543             bool same_type = true;
  1544             for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
  1545               Node *use = in->fast_out(k);
  1546               if (!in_bb(use) || velt_type(use) != vt) {
  1547                 same_type = false;
  1548                 break;
  1551             if (same_type) {
  1552               set_velt_type(in, vt);
  1559 #ifndef PRODUCT
  1560   if (TraceSuperWord && Verbose) {
  1561     for (int i = 0; i < _block.length(); i++) {
  1562       Node* n = _block.at(i);
  1563       velt_type(n)->dump();
  1564       tty->print("\t");
  1565       n->dump();
  1568 #endif
  1571 //------------------------------memory_alignment---------------------------
  1572 // Alignment within a vector memory reference
  1573 int SuperWord::memory_alignment(MemNode* s, int iv_adjust_in_bytes) {
  1574   SWPointer p(s, this);
  1575   if (!p.valid()) {
  1576     return bottom_align;
  1578   int offset  = p.offset_in_bytes();
  1579   offset     += iv_adjust_in_bytes;
  1580   int off_rem = offset % vector_width_in_bytes();
  1581   int off_mod = off_rem >= 0 ? off_rem : off_rem + vector_width_in_bytes();
  1582   return off_mod;
  1585 //---------------------------container_type---------------------------
  1586 // Smallest type containing range of values
  1587 const Type* SuperWord::container_type(const Type* t) {
  1588   const Type* tp = t->make_ptr();
  1589   if (tp && tp->isa_aryptr()) {
  1590     t = tp->is_aryptr()->elem();
  1592   if (t->basic_type() == T_INT) {
  1593     if (t->higher_equal(TypeInt::BOOL))  return TypeInt::BOOL;
  1594     if (t->higher_equal(TypeInt::BYTE))  return TypeInt::BYTE;
  1595     if (t->higher_equal(TypeInt::CHAR))  return TypeInt::CHAR;
  1596     if (t->higher_equal(TypeInt::SHORT)) return TypeInt::SHORT;
  1597     return TypeInt::INT;
  1599   return t;
  1602 //-------------------------vector_opd_range-----------------------
  1603 // (Start, end] half-open range defining which operands are vector
  1604 void SuperWord::vector_opd_range(Node* n, uint* start, uint* end) {
  1605   switch (n->Opcode()) {
  1606   case Op_LoadB:   case Op_LoadUS:
  1607   case Op_LoadI:   case Op_LoadL:
  1608   case Op_LoadF:   case Op_LoadD:
  1609   case Op_LoadP:
  1610     *start = 0;
  1611     *end   = 0;
  1612     return;
  1613   case Op_StoreB:  case Op_StoreC:
  1614   case Op_StoreI:  case Op_StoreL:
  1615   case Op_StoreF:  case Op_StoreD:
  1616   case Op_StoreP:
  1617     *start = MemNode::ValueIn;
  1618     *end   = *start + 1;
  1619     return;
  1620   case Op_LShiftI: case Op_LShiftL:
  1621     *start = 1;
  1622     *end   = 2;
  1623     return;
  1624   case Op_CMoveI:  case Op_CMoveL:  case Op_CMoveF:  case Op_CMoveD:
  1625     *start = 2;
  1626     *end   = n->req();
  1627     return;
  1629   *start = 1;
  1630   *end   = n->req(); // default is all operands
  1633 //------------------------------in_packset---------------------------
  1634 // Are s1 and s2 in a pack pair and ordered as s1,s2?
  1635 bool SuperWord::in_packset(Node* s1, Node* s2) {
  1636   for (int i = 0; i < _packset.length(); i++) {
  1637     Node_List* p = _packset.at(i);
  1638     assert(p->size() == 2, "must be");
  1639     if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
  1640       return true;
  1643   return false;
  1646 //------------------------------in_pack---------------------------
  1647 // Is s in pack p?
  1648 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
  1649   for (uint i = 0; i < p->size(); i++) {
  1650     if (p->at(i) == s) {
  1651       return p;
  1654   return NULL;
  1657 //------------------------------remove_pack_at---------------------------
  1658 // Remove the pack at position pos in the packset
  1659 void SuperWord::remove_pack_at(int pos) {
  1660   Node_List* p = _packset.at(pos);
  1661   for (uint i = 0; i < p->size(); i++) {
  1662     Node* s = p->at(i);
  1663     set_my_pack(s, NULL);
  1665   _packset.remove_at(pos);
  1668 //------------------------------executed_first---------------------------
  1669 // Return the node executed first in pack p.  Uses the RPO block list
  1670 // to determine order.
  1671 Node* SuperWord::executed_first(Node_List* p) {
  1672   Node* n = p->at(0);
  1673   int n_rpo = bb_idx(n);
  1674   for (uint i = 1; i < p->size(); i++) {
  1675     Node* s = p->at(i);
  1676     int s_rpo = bb_idx(s);
  1677     if (s_rpo < n_rpo) {
  1678       n = s;
  1679       n_rpo = s_rpo;
  1682   return n;
  1685 //------------------------------executed_last---------------------------
  1686 // Return the node executed last in pack p.
  1687 Node* SuperWord::executed_last(Node_List* p) {
  1688   Node* n = p->at(0);
  1689   int n_rpo = bb_idx(n);
  1690   for (uint i = 1; i < p->size(); i++) {
  1691     Node* s = p->at(i);
  1692     int s_rpo = bb_idx(s);
  1693     if (s_rpo > n_rpo) {
  1694       n = s;
  1695       n_rpo = s_rpo;
  1698   return n;
  1701 //----------------------------align_initial_loop_index---------------------------
  1702 // Adjust pre-loop limit so that in main loop, a load/store reference
  1703 // to align_to_ref will be a position zero in the vector.
  1704 //   (iv + k) mod vector_align == 0
  1705 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
  1706   CountedLoopNode *main_head = lp()->as_CountedLoop();
  1707   assert(main_head->is_main_loop(), "");
  1708   CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
  1709   assert(pre_end != NULL, "");
  1710   Node *pre_opaq1 = pre_end->limit();
  1711   assert(pre_opaq1->Opcode() == Op_Opaque1, "");
  1712   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  1713   Node *lim0 = pre_opaq->in(1);
  1715   // Where we put new limit calculations
  1716   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
  1718   // Ensure the original loop limit is available from the
  1719   // pre-loop Opaque1 node.
  1720   Node *orig_limit = pre_opaq->original_loop_limit();
  1721   assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
  1723   SWPointer align_to_ref_p(align_to_ref, this);
  1725   // Given:
  1726   //     lim0 == original pre loop limit
  1727   //     V == v_align (power of 2)
  1728   //     invar == extra invariant piece of the address expression
  1729   //     e == k [ +/- invar ]
  1730   //
  1731   // When reassociating expressions involving '%' the basic rules are:
  1732   //     (a - b) % k == 0   =>  a % k == b % k
  1733   // and:
  1734   //     (a + b) % k == 0   =>  a % k == (k - b) % k
  1735   //
  1736   // For stride > 0 && scale > 0,
  1737   //   Derive the new pre-loop limit "lim" such that the two constraints:
  1738   //     (1) lim = lim0 + N           (where N is some positive integer < V)
  1739   //     (2) (e + lim) % V == 0
  1740   //   are true.
  1741   //
  1742   //   Substituting (1) into (2),
  1743   //     (e + lim0 + N) % V == 0
  1744   //   solve for N:
  1745   //     N = (V - (e + lim0)) % V
  1746   //   substitute back into (1), so that new limit
  1747   //     lim = lim0 + (V - (e + lim0)) % V
  1748   //
  1749   // For stride > 0 && scale < 0
  1750   //   Constraints:
  1751   //     lim = lim0 + N
  1752   //     (e - lim) % V == 0
  1753   //   Solving for lim:
  1754   //     (e - lim0 - N) % V == 0
  1755   //     N = (e - lim0) % V
  1756   //     lim = lim0 + (e - lim0) % V
  1757   //
  1758   // For stride < 0 && scale > 0
  1759   //   Constraints:
  1760   //     lim = lim0 - N
  1761   //     (e + lim) % V == 0
  1762   //   Solving for lim:
  1763   //     (e + lim0 - N) % V == 0
  1764   //     N = (e + lim0) % V
  1765   //     lim = lim0 - (e + lim0) % V
  1766   //
  1767   // For stride < 0 && scale < 0
  1768   //   Constraints:
  1769   //     lim = lim0 - N
  1770   //     (e - lim) % V == 0
  1771   //   Solving for lim:
  1772   //     (e - lim0 + N) % V == 0
  1773   //     N = (V - (e - lim0)) % V
  1774   //     lim = lim0 - (V - (e - lim0)) % V
  1776   int stride   = iv_stride();
  1777   int scale    = align_to_ref_p.scale_in_bytes();
  1778   int elt_size = align_to_ref_p.memory_size();
  1779   int v_align  = vector_width_in_bytes() / elt_size;
  1780   int k        = align_to_ref_p.offset_in_bytes() / elt_size;
  1782   Node *kn   = _igvn.intcon(k);
  1784   Node *e = kn;
  1785   if (align_to_ref_p.invar() != NULL) {
  1786     // incorporate any extra invariant piece producing k +/- invar >>> log2(elt)
  1787     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
  1788     Node* aref     = new (_phase->C, 3) URShiftINode(align_to_ref_p.invar(), log2_elt);
  1789     _phase->_igvn.register_new_node_with_optimizer(aref);
  1790     _phase->set_ctrl(aref, pre_ctrl);
  1791     if (align_to_ref_p.negate_invar()) {
  1792       e = new (_phase->C, 3) SubINode(e, aref);
  1793     } else {
  1794       e = new (_phase->C, 3) AddINode(e, aref);
  1796     _phase->_igvn.register_new_node_with_optimizer(e);
  1797     _phase->set_ctrl(e, pre_ctrl);
  1800   // compute e +/- lim0
  1801   if (scale < 0) {
  1802     e = new (_phase->C, 3) SubINode(e, lim0);
  1803   } else {
  1804     e = new (_phase->C, 3) AddINode(e, lim0);
  1806   _phase->_igvn.register_new_node_with_optimizer(e);
  1807   _phase->set_ctrl(e, pre_ctrl);
  1809   if (stride * scale > 0) {
  1810     // compute V - (e +/- lim0)
  1811     Node* va  = _igvn.intcon(v_align);
  1812     e = new (_phase->C, 3) SubINode(va, e);
  1813     _phase->_igvn.register_new_node_with_optimizer(e);
  1814     _phase->set_ctrl(e, pre_ctrl);
  1816   // compute N = (exp) % V
  1817   Node* va_msk = _igvn.intcon(v_align - 1);
  1818   Node* N = new (_phase->C, 3) AndINode(e, va_msk);
  1819   _phase->_igvn.register_new_node_with_optimizer(N);
  1820   _phase->set_ctrl(N, pre_ctrl);
  1822   //   substitute back into (1), so that new limit
  1823   //     lim = lim0 + N
  1824   Node* lim;
  1825   if (stride < 0) {
  1826     lim = new (_phase->C, 3) SubINode(lim0, N);
  1827   } else {
  1828     lim = new (_phase->C, 3) AddINode(lim0, N);
  1830   _phase->_igvn.register_new_node_with_optimizer(lim);
  1831   _phase->set_ctrl(lim, pre_ctrl);
  1832   Node* constrained =
  1833     (stride > 0) ? (Node*) new (_phase->C,3) MinINode(lim, orig_limit)
  1834                  : (Node*) new (_phase->C,3) MaxINode(lim, orig_limit);
  1835   _phase->_igvn.register_new_node_with_optimizer(constrained);
  1836   _phase->set_ctrl(constrained, pre_ctrl);
  1837   _igvn.hash_delete(pre_opaq);
  1838   pre_opaq->set_req(1, constrained);
  1841 //----------------------------get_pre_loop_end---------------------------
  1842 // Find pre loop end from main loop.  Returns null if none.
  1843 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode *cl) {
  1844   Node *ctrl = cl->in(LoopNode::EntryControl);
  1845   if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
  1846   Node *iffm = ctrl->in(0);
  1847   if (!iffm->is_If()) return NULL;
  1848   Node *p_f = iffm->in(0);
  1849   if (!p_f->is_IfFalse()) return NULL;
  1850   if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
  1851   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
  1852   if (!pre_end->loopnode()->is_pre_loop()) return NULL;
  1853   return pre_end;
  1857 //------------------------------init---------------------------
  1858 void SuperWord::init() {
  1859   _dg.init();
  1860   _packset.clear();
  1861   _disjoint_ptrs.clear();
  1862   _block.clear();
  1863   _data_entry.clear();
  1864   _mem_slice_head.clear();
  1865   _mem_slice_tail.clear();
  1866   _node_info.clear();
  1867   _align_to_ref = NULL;
  1868   _lpt = NULL;
  1869   _lp = NULL;
  1870   _bb = NULL;
  1871   _iv = NULL;
  1874 //------------------------------print_packset---------------------------
  1875 void SuperWord::print_packset() {
  1876 #ifndef PRODUCT
  1877   tty->print_cr("packset");
  1878   for (int i = 0; i < _packset.length(); i++) {
  1879     tty->print_cr("Pack: %d", i);
  1880     Node_List* p = _packset.at(i);
  1881     print_pack(p);
  1883 #endif
  1886 //------------------------------print_pack---------------------------
  1887 void SuperWord::print_pack(Node_List* p) {
  1888   for (uint i = 0; i < p->size(); i++) {
  1889     print_stmt(p->at(i));
  1893 //------------------------------print_bb---------------------------
  1894 void SuperWord::print_bb() {
  1895 #ifndef PRODUCT
  1896   tty->print_cr("\nBlock");
  1897   for (int i = 0; i < _block.length(); i++) {
  1898     Node* n = _block.at(i);
  1899     tty->print("%d ", i);
  1900     if (n) {
  1901       n->dump();
  1904 #endif
  1907 //------------------------------print_stmt---------------------------
  1908 void SuperWord::print_stmt(Node* s) {
  1909 #ifndef PRODUCT
  1910   tty->print(" align: %d \t", alignment(s));
  1911   s->dump();
  1912 #endif
  1915 //------------------------------blank---------------------------
  1916 char* SuperWord::blank(uint depth) {
  1917   static char blanks[101];
  1918   assert(depth < 101, "too deep");
  1919   for (uint i = 0; i < depth; i++) blanks[i] = ' ';
  1920   blanks[depth] = '\0';
  1921   return blanks;
  1925 //==============================SWPointer===========================
  1927 //----------------------------SWPointer------------------------
  1928 SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
  1929   _mem(mem), _slp(slp),  _base(NULL),  _adr(NULL),
  1930   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
  1932   Node* adr = mem->in(MemNode::Address);
  1933   if (!adr->is_AddP()) {
  1934     assert(!valid(), "too complex");
  1935     return;
  1937   // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
  1938   Node* base = adr->in(AddPNode::Base);
  1939   //unsafe reference could not be aligned appropriately without runtime checking
  1940   if (base == NULL || base->bottom_type() == Type::TOP) {
  1941     assert(!valid(), "unsafe access");
  1942     return;
  1944   for (int i = 0; i < 3; i++) {
  1945     if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
  1946       assert(!valid(), "too complex");
  1947       return;
  1949     adr = adr->in(AddPNode::Address);
  1950     if (base == adr || !adr->is_AddP()) {
  1951       break; // stop looking at addp's
  1954   _base = base;
  1955   _adr  = adr;
  1956   assert(valid(), "Usable");
  1959 // Following is used to create a temporary object during
  1960 // the pattern match of an address expression.
  1961 SWPointer::SWPointer(SWPointer* p) :
  1962   _mem(p->_mem), _slp(p->_slp),  _base(NULL),  _adr(NULL),
  1963   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
  1965 //------------------------scaled_iv_plus_offset--------------------
  1966 // Match: k*iv + offset
  1967 // where: k is a constant that maybe zero, and
  1968 //        offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
  1969 bool SWPointer::scaled_iv_plus_offset(Node* n) {
  1970   if (scaled_iv(n)) {
  1971     return true;
  1973   if (offset_plus_k(n)) {
  1974     return true;
  1976   int opc = n->Opcode();
  1977   if (opc == Op_AddI) {
  1978     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
  1979       return true;
  1981     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
  1982       return true;
  1984   } else if (opc == Op_SubI) {
  1985     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
  1986       return true;
  1988     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
  1989       _scale *= -1;
  1990       return true;
  1993   return false;
  1996 //----------------------------scaled_iv------------------------
  1997 // Match: k*iv where k is a constant that's not zero
  1998 bool SWPointer::scaled_iv(Node* n) {
  1999   if (_scale != 0) {
  2000     return false;  // already found a scale
  2002   if (n == iv()) {
  2003     _scale = 1;
  2004     return true;
  2006   int opc = n->Opcode();
  2007   if (opc == Op_MulI) {
  2008     if (n->in(1) == iv() && n->in(2)->is_Con()) {
  2009       _scale = n->in(2)->get_int();
  2010       return true;
  2011     } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
  2012       _scale = n->in(1)->get_int();
  2013       return true;
  2015   } else if (opc == Op_LShiftI) {
  2016     if (n->in(1) == iv() && n->in(2)->is_Con()) {
  2017       _scale = 1 << n->in(2)->get_int();
  2018       return true;
  2020   } else if (opc == Op_ConvI2L) {
  2021     if (scaled_iv_plus_offset(n->in(1))) {
  2022       return true;
  2024   } else if (opc == Op_LShiftL) {
  2025     if (!has_iv() && _invar == NULL) {
  2026       // Need to preserve the current _offset value, so
  2027       // create a temporary object for this expression subtree.
  2028       // Hacky, so should re-engineer the address pattern match.
  2029       SWPointer tmp(this);
  2030       if (tmp.scaled_iv_plus_offset(n->in(1))) {
  2031         if (tmp._invar == NULL) {
  2032           int mult = 1 << n->in(2)->get_int();
  2033           _scale   = tmp._scale  * mult;
  2034           _offset += tmp._offset * mult;
  2035           return true;
  2040   return false;
  2043 //----------------------------offset_plus_k------------------------
  2044 // Match: offset is (k [+/- invariant])
  2045 // where k maybe zero and invariant is optional, but not both.
  2046 bool SWPointer::offset_plus_k(Node* n, bool negate) {
  2047   int opc = n->Opcode();
  2048   if (opc == Op_ConI) {
  2049     _offset += negate ? -(n->get_int()) : n->get_int();
  2050     return true;
  2051   } else if (opc == Op_ConL) {
  2052     // Okay if value fits into an int
  2053     const TypeLong* t = n->find_long_type();
  2054     if (t->higher_equal(TypeLong::INT)) {
  2055       jlong loff = n->get_long();
  2056       jint  off  = (jint)loff;
  2057       _offset += negate ? -off : loff;
  2058       return true;
  2060     return false;
  2062   if (_invar != NULL) return false; // already have an invariant
  2063   if (opc == Op_AddI) {
  2064     if (n->in(2)->is_Con() && invariant(n->in(1))) {
  2065       _negate_invar = negate;
  2066       _invar = n->in(1);
  2067       _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
  2068       return true;
  2069     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
  2070       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
  2071       _negate_invar = negate;
  2072       _invar = n->in(2);
  2073       return true;
  2076   if (opc == Op_SubI) {
  2077     if (n->in(2)->is_Con() && invariant(n->in(1))) {
  2078       _negate_invar = negate;
  2079       _invar = n->in(1);
  2080       _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
  2081       return true;
  2082     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
  2083       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
  2084       _negate_invar = !negate;
  2085       _invar = n->in(2);
  2086       return true;
  2089   if (invariant(n)) {
  2090     _negate_invar = negate;
  2091     _invar = n;
  2092     return true;
  2094   return false;
  2097 //----------------------------print------------------------
  2098 void SWPointer::print() {
  2099 #ifndef PRODUCT
  2100   tty->print("base: %d  adr: %d  scale: %d  offset: %d  invar: %c%d\n",
  2101              _base != NULL ? _base->_idx : 0,
  2102              _adr  != NULL ? _adr->_idx  : 0,
  2103              _scale, _offset,
  2104              _negate_invar?'-':'+',
  2105              _invar != NULL ? _invar->_idx : 0);
  2106 #endif
  2109 // ========================= OrderedPair =====================
  2111 const OrderedPair OrderedPair::initial;
  2113 // ========================= SWNodeInfo =====================
  2115 const SWNodeInfo SWNodeInfo::initial;
  2118 // ============================ DepGraph ===========================
  2120 //------------------------------make_node---------------------------
  2121 // Make a new dependence graph node for an ideal node.
  2122 DepMem* DepGraph::make_node(Node* node) {
  2123   DepMem* m = new (_arena) DepMem(node);
  2124   if (node != NULL) {
  2125     assert(_map.at_grow(node->_idx) == NULL, "one init only");
  2126     _map.at_put_grow(node->_idx, m);
  2128   return m;
  2131 //------------------------------make_edge---------------------------
  2132 // Make a new dependence graph edge from dpred -> dsucc
  2133 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
  2134   DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
  2135   dpred->set_out_head(e);
  2136   dsucc->set_in_head(e);
  2137   return e;
  2140 // ========================== DepMem ========================
  2142 //------------------------------in_cnt---------------------------
  2143 int DepMem::in_cnt() {
  2144   int ct = 0;
  2145   for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
  2146   return ct;
  2149 //------------------------------out_cnt---------------------------
  2150 int DepMem::out_cnt() {
  2151   int ct = 0;
  2152   for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
  2153   return ct;
  2156 //------------------------------print-----------------------------
  2157 void DepMem::print() {
  2158 #ifndef PRODUCT
  2159   tty->print("  DepNode %d (", _node->_idx);
  2160   for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
  2161     Node* pred = p->pred()->node();
  2162     tty->print(" %d", pred != NULL ? pred->_idx : 0);
  2164   tty->print(") [");
  2165   for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
  2166     Node* succ = s->succ()->node();
  2167     tty->print(" %d", succ != NULL ? succ->_idx : 0);
  2169   tty->print_cr(" ]");
  2170 #endif
  2173 // =========================== DepEdge =========================
  2175 //------------------------------DepPreds---------------------------
  2176 void DepEdge::print() {
  2177 #ifndef PRODUCT
  2178   tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
  2179 #endif
  2182 // =========================== DepPreds =========================
  2183 // Iterator over predecessor edges in the dependence graph.
  2185 //------------------------------DepPreds---------------------------
  2186 DepPreds::DepPreds(Node* n, DepGraph& dg) {
  2187   _n = n;
  2188   _done = false;
  2189   if (_n->is_Store() || _n->is_Load()) {
  2190     _next_idx = MemNode::Address;
  2191     _end_idx  = n->req();
  2192     _dep_next = dg.dep(_n)->in_head();
  2193   } else if (_n->is_Mem()) {
  2194     _next_idx = 0;
  2195     _end_idx  = 0;
  2196     _dep_next = dg.dep(_n)->in_head();
  2197   } else {
  2198     _next_idx = 1;
  2199     _end_idx  = _n->req();
  2200     _dep_next = NULL;
  2202   next();
  2205 //------------------------------next---------------------------
  2206 void DepPreds::next() {
  2207   if (_dep_next != NULL) {
  2208     _current  = _dep_next->pred()->node();
  2209     _dep_next = _dep_next->next_in();
  2210   } else if (_next_idx < _end_idx) {
  2211     _current  = _n->in(_next_idx++);
  2212   } else {
  2213     _done = true;
  2217 // =========================== DepSuccs =========================
  2218 // Iterator over successor edges in the dependence graph.
  2220 //------------------------------DepSuccs---------------------------
  2221 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
  2222   _n = n;
  2223   _done = false;
  2224   if (_n->is_Load()) {
  2225     _next_idx = 0;
  2226     _end_idx  = _n->outcnt();
  2227     _dep_next = dg.dep(_n)->out_head();
  2228   } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
  2229     _next_idx = 0;
  2230     _end_idx  = 0;
  2231     _dep_next = dg.dep(_n)->out_head();
  2232   } else {
  2233     _next_idx = 0;
  2234     _end_idx  = _n->outcnt();
  2235     _dep_next = NULL;
  2237   next();
  2240 //-------------------------------next---------------------------
  2241 void DepSuccs::next() {
  2242   if (_dep_next != NULL) {
  2243     _current  = _dep_next->succ()->node();
  2244     _dep_next = _dep_next->next_out();
  2245   } else if (_next_idx < _end_idx) {
  2246     _current  = _n->raw_out(_next_idx++);
  2247   } else {
  2248     _done = true;

mercurial