src/share/vm/opto/superword.cpp

Fri, 15 Jun 2012 01:25:19 -0700

author
kvn
date
Fri, 15 Jun 2012 01:25:19 -0700
changeset 3882
8c92982cbbc4
parent 3847
5e990493719e
child 3886
6f8f439e247d
permissions
-rw-r--r--

7119644: Increase superword's vector size up to 256 bits
Summary: Increase vector size up to 256-bits for YMM AVX registers on x86.
Reviewed-by: never, twisti, roland

     1 /*
     2  * Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  */
    24 #include "precompiled.hpp"
    25 #include "compiler/compileLog.hpp"
    26 #include "libadt/vectset.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/divnode.hpp"
    31 #include "opto/matcher.hpp"
    32 #include "opto/memnode.hpp"
    33 #include "opto/mulnode.hpp"
    34 #include "opto/opcodes.hpp"
    35 #include "opto/superword.hpp"
    36 #include "opto/vectornode.hpp"
    38 //
    39 //                  S U P E R W O R D   T R A N S F O R M
    40 //=============================================================================
    42 //------------------------------SuperWord---------------------------
    43 SuperWord::SuperWord(PhaseIdealLoop* phase) :
    44   _phase(phase),
    45   _igvn(phase->_igvn),
    46   _arena(phase->C->comp_arena()),
    47   _packset(arena(), 8,  0, NULL),         // packs for the current block
    48   _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
    49   _block(arena(), 8,  0, NULL),           // nodes in current block
    50   _data_entry(arena(), 8,  0, NULL),      // nodes with all inputs from outside
    51   _mem_slice_head(arena(), 8,  0, NULL),  // memory slice heads
    52   _mem_slice_tail(arena(), 8,  0, NULL),  // memory slice tails
    53   _node_info(arena(), 8,  0, SWNodeInfo::initial), // info needed per node
    54   _align_to_ref(NULL),                    // memory reference to align vectors to
    55   _disjoint_ptrs(arena(), 8,  0, OrderedPair::initial), // runtime disambiguated pointer pairs
    56   _dg(_arena),                            // dependence graph
    57   _visited(arena()),                      // visited node set
    58   _post_visited(arena()),                 // post visited node set
    59   _n_idx_list(arena(), 8),                // scratch list of (node,index) pairs
    60   _stk(arena(), 8, 0, NULL),              // scratch stack of nodes
    61   _nlist(arena(), 8, 0, NULL),            // scratch list of nodes
    62   _lpt(NULL),                             // loop tree node
    63   _lp(NULL),                              // LoopNode
    64   _bb(NULL),                              // basic block
    65   _iv(NULL)                               // induction var
    66 {}
    68 //------------------------------transform_loop---------------------------
    69 void SuperWord::transform_loop(IdealLoopTree* lpt) {
    70   assert(UseSuperWord, "should be");
    71   // Do vectors exist on this architecture?
    72   if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return;
    74   assert(lpt->_head->is_CountedLoop(), "must be");
    75   CountedLoopNode *cl = lpt->_head->as_CountedLoop();
    77   if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
    79   if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
    81   // Check for no control flow in body (other than exit)
    82   Node *cl_exit = cl->loopexit();
    83   if (cl_exit->in(0) != lpt->_head) return;
    85   // Make sure the are no extra control users of the loop backedge
    86   if (cl->back_control()->outcnt() != 1) {
    87     return;
    88   }
    90   // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
    91   CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
    92   if (pre_end == NULL) return;
    93   Node *pre_opaq1 = pre_end->limit();
    94   if (pre_opaq1->Opcode() != Op_Opaque1) return;
    96   init(); // initialize data structures
    98   set_lpt(lpt);
    99   set_lp(cl);
   101   // For now, define one block which is the entire loop body
   102   set_bb(cl);
   104   assert(_packset.length() == 0, "packset must be empty");
   105   SLP_extract();
   106 }
   108 //------------------------------SLP_extract---------------------------
   109 // Extract the superword level parallelism
   110 //
   111 // 1) A reverse post-order of nodes in the block is constructed.  By scanning
   112 //    this list from first to last, all definitions are visited before their uses.
   113 //
   114 // 2) A point-to-point dependence graph is constructed between memory references.
   115 //    This simplies the upcoming "independence" checker.
   116 //
   117 // 3) The maximum depth in the node graph from the beginning of the block
   118 //    to each node is computed.  This is used to prune the graph search
   119 //    in the independence checker.
   120 //
   121 // 4) For integer types, the necessary bit width is propagated backwards
   122 //    from stores to allow packed operations on byte, char, and short
   123 //    integers.  This reverses the promotion to type "int" that javac
   124 //    did for operations like: char c1,c2,c3;  c1 = c2 + c3.
   125 //
   126 // 5) One of the memory references is picked to be an aligned vector reference.
   127 //    The pre-loop trip count is adjusted to align this reference in the
   128 //    unrolled body.
   129 //
   130 // 6) The initial set of pack pairs is seeded with memory references.
   131 //
   132 // 7) The set of pack pairs is extended by following use->def and def->use links.
   133 //
   134 // 8) The pairs are combined into vector sized packs.
   135 //
   136 // 9) Reorder the memory slices to co-locate members of the memory packs.
   137 //
   138 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
   139 //    inserting scalar promotion, vector creation from multiple scalars, and
   140 //    extraction of scalar values from vectors.
   141 //
   142 void SuperWord::SLP_extract() {
   144   // Ready the block
   146   construct_bb();
   148   dependence_graph();
   150   compute_max_depth();
   152   compute_vector_element_type();
   154   // Attempt vectorization
   156   find_adjacent_refs();
   158   extend_packlist();
   160   combine_packs();
   162   construct_my_pack_map();
   164   filter_packs();
   166   schedule();
   168   output();
   169 }
   171 //------------------------------find_adjacent_refs---------------------------
   172 // Find the adjacent memory references and create pack pairs for them.
   173 // This is the initial set of packs that will then be extended by
   174 // following use->def and def->use links.  The align positions are
   175 // assigned relative to the reference "align_to_ref"
   176 void SuperWord::find_adjacent_refs() {
   177   // Get list of memory operations
   178   Node_List memops;
   179   for (int i = 0; i < _block.length(); i++) {
   180     Node* n = _block.at(i);
   181     if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) &&
   182         is_java_primitive(n->as_Mem()->memory_type())) {
   183       int align = memory_alignment(n->as_Mem(), 0);
   184       if (align != bottom_align) {
   185         memops.push(n);
   186       }
   187     }
   188   }
   190   Node_List align_to_refs;
   191   int best_iv_adjustment = 0;
   192   MemNode* best_align_to_mem_ref = NULL;
   194   while (memops.size() != 0) {
   195     // Find a memory reference to align to.
   196     MemNode* mem_ref = find_align_to_ref(memops);
   197     if (mem_ref == NULL) break;
   198     align_to_refs.push(mem_ref);
   199     int iv_adjustment = get_iv_adjustment(mem_ref);
   201     if (best_align_to_mem_ref == NULL) {
   202       // Set memory reference which is the best from all memory operations
   203       // to be used for alignment. The pre-loop trip count is modified to align
   204       // this reference to a vector-aligned address.
   205       best_align_to_mem_ref = mem_ref;
   206       best_iv_adjustment = iv_adjustment;
   207     }
   209     SWPointer align_to_ref_p(mem_ref, this);
   210     // Set alignment relative to "align_to_ref" for all related memory operations.
   211     for (int i = memops.size() - 1; i >= 0; i--) {
   212       MemNode* s = memops.at(i)->as_Mem();
   213       if (isomorphic(s, mem_ref)) {
   214         SWPointer p2(s, this);
   215         if (p2.comparable(align_to_ref_p)) {
   216           int align = memory_alignment(s, iv_adjustment);
   217           set_alignment(s, align);
   218         }
   219       }
   220     }
   222     // Create initial pack pairs of memory operations for which
   223     // alignment is set and vectors will be aligned.
   224     bool create_pack = true;
   225     if (memory_alignment(mem_ref, best_iv_adjustment) != 0) {
   226       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
   227         // Can't allow vectorization of unaligned memory accesses with the
   228         // same type since it could be overlapped accesses to the same array.
   229         create_pack = false;
   230       } else {
   231         // Allow independent (different type) unaligned memory operations
   232         // if HW supports them.
   233         if (!Matcher::misaligned_vectors_ok()) {
   234           create_pack = false;
   235         } else {
   236           // Check if packs of the same memory type but
   237           // with a different alignment were created before.
   238           for (uint i = 0; i < align_to_refs.size(); i++) {
   239             MemNode* mr = align_to_refs.at(i)->as_Mem();
   240             if (same_velt_type(mr, mem_ref) &&
   241                 memory_alignment(mr, iv_adjustment) != 0)
   242               create_pack = false;
   243           }
   244         }
   245       }
   246     }
   247     if (create_pack) {
   248       for (uint i = 0; i < memops.size(); i++) {
   249         Node* s1 = memops.at(i);
   250         int align = alignment(s1);
   251         if (align == top_align) continue;
   252         for (uint j = 0; j < memops.size(); j++) {
   253           Node* s2 = memops.at(j);
   254           if (alignment(s2) == top_align) continue;
   255           if (s1 != s2 && are_adjacent_refs(s1, s2)) {
   256             if (stmts_can_pack(s1, s2, align)) {
   257               Node_List* pair = new Node_List();
   258               pair->push(s1);
   259               pair->push(s2);
   260               _packset.append(pair);
   261             }
   262           }
   263         }
   264       }
   265     } else { // Don't create unaligned pack
   266       // First, remove remaining memory ops of the same type from the list.
   267       for (int i = memops.size() - 1; i >= 0; i--) {
   268         MemNode* s = memops.at(i)->as_Mem();
   269         if (same_velt_type(s, mem_ref)) {
   270           memops.remove(i);
   271         }
   272       }
   274       // Second, remove already constructed packs of the same type.
   275       for (int i = _packset.length() - 1; i >= 0; i--) {
   276         Node_List* p = _packset.at(i);
   277         MemNode* s = p->at(0)->as_Mem();
   278         if (same_velt_type(s, mem_ref)) {
   279           remove_pack_at(i);
   280         }
   281       }
   283       // If needed find the best memory reference for loop alignment again.
   284       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
   285         // Put memory ops from remaining packs back on memops list for
   286         // the best alignment search.
   287         uint orig_msize = memops.size();
   288         for (int i = 0; i < _packset.length(); i++) {
   289           Node_List* p = _packset.at(i);
   290           MemNode* s = p->at(0)->as_Mem();
   291           assert(!same_velt_type(s, mem_ref), "sanity");
   292           memops.push(s);
   293         }
   294         MemNode* best_align_to_mem_ref = find_align_to_ref(memops);
   295         if (best_align_to_mem_ref == NULL) break;
   296         best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref);
   297         // Restore list.
   298         while (memops.size() > orig_msize)
   299           (void)memops.pop();
   300       }
   301     } // unaligned memory accesses
   303     // Remove used mem nodes.
   304     for (int i = memops.size() - 1; i >= 0; i--) {
   305       MemNode* m = memops.at(i)->as_Mem();
   306       if (alignment(m) != top_align) {
   307         memops.remove(i);
   308       }
   309     }
   311   } // while (memops.size() != 0
   312   set_align_to_ref(best_align_to_mem_ref);
   314 #ifndef PRODUCT
   315   if (TraceSuperWord) {
   316     tty->print_cr("\nAfter find_adjacent_refs");
   317     print_packset();
   318   }
   319 #endif
   320 }
   322 //------------------------------find_align_to_ref---------------------------
   323 // Find a memory reference to align the loop induction variable to.
   324 // Looks first at stores then at loads, looking for a memory reference
   325 // with the largest number of references similar to it.
   326 MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
   327   GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
   329   // Count number of comparable memory ops
   330   for (uint i = 0; i < memops.size(); i++) {
   331     MemNode* s1 = memops.at(i)->as_Mem();
   332     SWPointer p1(s1, this);
   333     // Discard if pre loop can't align this reference
   334     if (!ref_is_alignable(p1)) {
   335       *cmp_ct.adr_at(i) = 0;
   336       continue;
   337     }
   338     for (uint j = i+1; j < memops.size(); j++) {
   339       MemNode* s2 = memops.at(j)->as_Mem();
   340       if (isomorphic(s1, s2)) {
   341         SWPointer p2(s2, this);
   342         if (p1.comparable(p2)) {
   343           (*cmp_ct.adr_at(i))++;
   344           (*cmp_ct.adr_at(j))++;
   345         }
   346       }
   347     }
   348   }
   350   // Find Store (or Load) with the greatest number of "comparable" references,
   351   // biggest vector size, smallest data size and smallest iv offset.
   352   int max_ct        = 0;
   353   int max_vw        = 0;
   354   int max_idx       = -1;
   355   int min_size      = max_jint;
   356   int min_iv_offset = max_jint;
   357   for (uint j = 0; j < memops.size(); j++) {
   358     MemNode* s = memops.at(j)->as_Mem();
   359     if (s->is_Store()) {
   360       int vw = vector_width_in_bytes(velt_basic_type(s));
   361       assert(vw > 1, "sanity");
   362       SWPointer p(s, this);
   363       if (cmp_ct.at(j) >  max_ct ||
   364           cmp_ct.at(j) == max_ct &&
   365             (vw >  max_vw ||
   366              vw == max_vw &&
   367               (data_size(s) <  min_size ||
   368                data_size(s) == min_size &&
   369                  (p.offset_in_bytes() < min_iv_offset)))) {
   370         max_ct = cmp_ct.at(j);
   371         max_vw = vw;
   372         max_idx = j;
   373         min_size = data_size(s);
   374         min_iv_offset = p.offset_in_bytes();
   375       }
   376     }
   377   }
   378   // If no stores, look at loads
   379   if (max_ct == 0) {
   380     for (uint j = 0; j < memops.size(); j++) {
   381       MemNode* s = memops.at(j)->as_Mem();
   382       if (s->is_Load()) {
   383         int vw = vector_width_in_bytes(velt_basic_type(s));
   384         assert(vw > 1, "sanity");
   385         SWPointer p(s, this);
   386         if (cmp_ct.at(j) >  max_ct ||
   387             cmp_ct.at(j) == max_ct &&
   388               (vw >  max_vw ||
   389                vw == max_vw &&
   390                 (data_size(s) <  min_size ||
   391                  data_size(s) == min_size &&
   392                    (p.offset_in_bytes() < min_iv_offset)))) {
   393           max_ct = cmp_ct.at(j);
   394           max_vw = vw;
   395           max_idx = j;
   396           min_size = data_size(s);
   397           min_iv_offset = p.offset_in_bytes();
   398         }
   399       }
   400     }
   401   }
   403 #ifdef ASSERT
   404   if (TraceSuperWord && Verbose) {
   405     tty->print_cr("\nVector memops after find_align_to_refs");
   406     for (uint i = 0; i < memops.size(); i++) {
   407       MemNode* s = memops.at(i)->as_Mem();
   408       s->dump();
   409     }
   410   }
   411 #endif
   413   if (max_ct > 0) {
   414 #ifdef ASSERT
   415     if (TraceSuperWord) {
   416       tty->print("\nVector align to node: ");
   417       memops.at(max_idx)->as_Mem()->dump();
   418     }
   419 #endif
   420     return memops.at(max_idx)->as_Mem();
   421   }
   422   return NULL;
   423 }
   425 //------------------------------ref_is_alignable---------------------------
   426 // Can the preloop align the reference to position zero in the vector?
   427 bool SuperWord::ref_is_alignable(SWPointer& p) {
   428   if (!p.has_iv()) {
   429     return true;   // no induction variable
   430   }
   431   CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
   432   assert(pre_end->stride_is_con(), "pre loop stride is constant");
   433   int preloop_stride = pre_end->stride_con();
   435   int span = preloop_stride * p.scale_in_bytes();
   437   // Stride one accesses are alignable.
   438   if (ABS(span) == p.memory_size())
   439     return true;
   441   // If initial offset from start of object is computable,
   442   // compute alignment within the vector.
   443   BasicType bt = velt_basic_type(p.mem());
   444   int vw = vector_width_in_bytes(bt);
   445   assert(vw > 1, "sanity");
   446   if (vw % span == 0) {
   447     Node* init_nd = pre_end->init_trip();
   448     if (init_nd->is_Con() && p.invar() == NULL) {
   449       int init = init_nd->bottom_type()->is_int()->get_con();
   451       int init_offset = init * p.scale_in_bytes() + p.offset_in_bytes();
   452       assert(init_offset >= 0, "positive offset from object start");
   454       if (span > 0) {
   455         return (vw - (init_offset % vw)) % span == 0;
   456       } else {
   457         assert(span < 0, "nonzero stride * scale");
   458         return (init_offset % vw) % -span == 0;
   459       }
   460     }
   461   }
   462   return false;
   463 }
   465 //---------------------------get_iv_adjustment---------------------------
   466 // Calculate loop's iv adjustment for this memory ops.
   467 int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
   468   SWPointer align_to_ref_p(mem_ref, this);
   469   int offset = align_to_ref_p.offset_in_bytes();
   470   int scale  = align_to_ref_p.scale_in_bytes();
   471   BasicType bt = velt_basic_type(mem_ref);
   472   int vw       = vector_width_in_bytes(bt);
   473   assert(vw > 1, "sanity");
   474   int stride_sign   = (scale * iv_stride()) > 0 ? 1 : -1;
   475   int iv_adjustment = (stride_sign * vw - (offset % vw)) % vw;
   477 #ifndef PRODUCT
   478   if (TraceSuperWord)
   479     tty->print_cr("\noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d",
   480                   offset, iv_adjustment, align_to_ref_p.memory_size(), scale, iv_stride(), vw);
   481 #endif
   482   return iv_adjustment;
   483 }
   485 //---------------------------dependence_graph---------------------------
   486 // Construct dependency graph.
   487 // Add dependence edges to load/store nodes for memory dependence
   488 //    A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
   489 void SuperWord::dependence_graph() {
   490   // First, assign a dependence node to each memory node
   491   for (int i = 0; i < _block.length(); i++ ) {
   492     Node *n = _block.at(i);
   493     if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
   494       _dg.make_node(n);
   495     }
   496   }
   498   // For each memory slice, create the dependences
   499   for (int i = 0; i < _mem_slice_head.length(); i++) {
   500     Node* n      = _mem_slice_head.at(i);
   501     Node* n_tail = _mem_slice_tail.at(i);
   503     // Get slice in predecessor order (last is first)
   504     mem_slice_preds(n_tail, n, _nlist);
   506     // Make the slice dependent on the root
   507     DepMem* slice = _dg.dep(n);
   508     _dg.make_edge(_dg.root(), slice);
   510     // Create a sink for the slice
   511     DepMem* slice_sink = _dg.make_node(NULL);
   512     _dg.make_edge(slice_sink, _dg.tail());
   514     // Now visit each pair of memory ops, creating the edges
   515     for (int j = _nlist.length() - 1; j >= 0 ; j--) {
   516       Node* s1 = _nlist.at(j);
   518       // If no dependency yet, use slice
   519       if (_dg.dep(s1)->in_cnt() == 0) {
   520         _dg.make_edge(slice, s1);
   521       }
   522       SWPointer p1(s1->as_Mem(), this);
   523       bool sink_dependent = true;
   524       for (int k = j - 1; k >= 0; k--) {
   525         Node* s2 = _nlist.at(k);
   526         if (s1->is_Load() && s2->is_Load())
   527           continue;
   528         SWPointer p2(s2->as_Mem(), this);
   530         int cmp = p1.cmp(p2);
   531         if (SuperWordRTDepCheck &&
   532             p1.base() != p2.base() && p1.valid() && p2.valid()) {
   533           // Create a runtime check to disambiguate
   534           OrderedPair pp(p1.base(), p2.base());
   535           _disjoint_ptrs.append_if_missing(pp);
   536         } else if (!SWPointer::not_equal(cmp)) {
   537           // Possibly same address
   538           _dg.make_edge(s1, s2);
   539           sink_dependent = false;
   540         }
   541       }
   542       if (sink_dependent) {
   543         _dg.make_edge(s1, slice_sink);
   544       }
   545     }
   546 #ifndef PRODUCT
   547     if (TraceSuperWord) {
   548       tty->print_cr("\nDependence graph for slice: %d", n->_idx);
   549       for (int q = 0; q < _nlist.length(); q++) {
   550         _dg.print(_nlist.at(q));
   551       }
   552       tty->cr();
   553     }
   554 #endif
   555     _nlist.clear();
   556   }
   558 #ifndef PRODUCT
   559   if (TraceSuperWord) {
   560     tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
   561     for (int r = 0; r < _disjoint_ptrs.length(); r++) {
   562       _disjoint_ptrs.at(r).print();
   563       tty->cr();
   564     }
   565     tty->cr();
   566   }
   567 #endif
   568 }
   570 //---------------------------mem_slice_preds---------------------------
   571 // Return a memory slice (node list) in predecessor order starting at "start"
   572 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
   573   assert(preds.length() == 0, "start empty");
   574   Node* n = start;
   575   Node* prev = NULL;
   576   while (true) {
   577     assert(in_bb(n), "must be in block");
   578     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   579       Node* out = n->fast_out(i);
   580       if (out->is_Load()) {
   581         if (in_bb(out)) {
   582           preds.push(out);
   583         }
   584       } else {
   585         // FIXME
   586         if (out->is_MergeMem() && !in_bb(out)) {
   587           // Either unrolling is causing a memory edge not to disappear,
   588           // or need to run igvn.optimize() again before SLP
   589         } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
   590           // Ditto.  Not sure what else to check further.
   591         } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
   592           // StoreCM has an input edge used as a precedence edge.
   593           // Maybe an issue when oop stores are vectorized.
   594         } else {
   595           assert(out == prev || prev == NULL, "no branches off of store slice");
   596         }
   597       }
   598     }
   599     if (n == stop) break;
   600     preds.push(n);
   601     prev = n;
   602     n = n->in(MemNode::Memory);
   603   }
   604 }
   606 //------------------------------stmts_can_pack---------------------------
   607 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
   608 // s1 aligned at "align"
   609 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
   611   // Do not use superword for non-primitives
   612   BasicType bt1 = velt_basic_type(s1);
   613   BasicType bt2 = velt_basic_type(s2);
   614   if(!is_java_primitive(bt1) || !is_java_primitive(bt2))
   615     return false;
   616   if (Matcher::max_vector_size(bt1) < 2) {
   617     return false; // No vectors for this type
   618   }
   620   if (isomorphic(s1, s2)) {
   621     if (independent(s1, s2)) {
   622       if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
   623         if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
   624           int s1_align = alignment(s1);
   625           int s2_align = alignment(s2);
   626           if (s1_align == top_align || s1_align == align) {
   627             if (s2_align == top_align || s2_align == align + data_size(s1)) {
   628               return true;
   629             }
   630           }
   631         }
   632       }
   633     }
   634   }
   635   return false;
   636 }
   638 //------------------------------exists_at---------------------------
   639 // Does s exist in a pack at position pos?
   640 bool SuperWord::exists_at(Node* s, uint pos) {
   641   for (int i = 0; i < _packset.length(); i++) {
   642     Node_List* p = _packset.at(i);
   643     if (p->at(pos) == s) {
   644       return true;
   645     }
   646   }
   647   return false;
   648 }
   650 //------------------------------are_adjacent_refs---------------------------
   651 // Is s1 immediately before s2 in memory?
   652 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
   653   if (!s1->is_Mem() || !s2->is_Mem()) return false;
   654   if (!in_bb(s1)    || !in_bb(s2))    return false;
   656   // Do not use superword for non-primitives
   657   if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
   658       !is_java_primitive(s2->as_Mem()->memory_type())) {
   659     return false;
   660   }
   662   // FIXME - co_locate_pack fails on Stores in different mem-slices, so
   663   // only pack memops that are in the same alias set until that's fixed.
   664   if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
   665       _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
   666     return false;
   667   SWPointer p1(s1->as_Mem(), this);
   668   SWPointer p2(s2->as_Mem(), this);
   669   if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
   670   int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
   671   return diff == data_size(s1);
   672 }
   674 //------------------------------isomorphic---------------------------
   675 // Are s1 and s2 similar?
   676 bool SuperWord::isomorphic(Node* s1, Node* s2) {
   677   if (s1->Opcode() != s2->Opcode()) return false;
   678   if (s1->req() != s2->req()) return false;
   679   if (s1->in(0) != s2->in(0)) return false;
   680   if (!same_velt_type(s1, s2)) return false;
   681   return true;
   682 }
   684 //------------------------------independent---------------------------
   685 // Is there no data path from s1 to s2 or s2 to s1?
   686 bool SuperWord::independent(Node* s1, Node* s2) {
   687   //  assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
   688   int d1 = depth(s1);
   689   int d2 = depth(s2);
   690   if (d1 == d2) return s1 != s2;
   691   Node* deep    = d1 > d2 ? s1 : s2;
   692   Node* shallow = d1 > d2 ? s2 : s1;
   694   visited_clear();
   696   return independent_path(shallow, deep);
   697 }
   699 //------------------------------independent_path------------------------------
   700 // Helper for independent
   701 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
   702   if (dp >= 1000) return false; // stop deep recursion
   703   visited_set(deep);
   704   int shal_depth = depth(shallow);
   705   assert(shal_depth <= depth(deep), "must be");
   706   for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
   707     Node* pred = preds.current();
   708     if (in_bb(pred) && !visited_test(pred)) {
   709       if (shallow == pred) {
   710         return false;
   711       }
   712       if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
   713         return false;
   714       }
   715     }
   716   }
   717   return true;
   718 }
   720 //------------------------------set_alignment---------------------------
   721 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
   722   set_alignment(s1, align);
   723   if (align == top_align || align == bottom_align) {
   724     set_alignment(s2, align);
   725   } else {
   726     set_alignment(s2, align + data_size(s1));
   727   }
   728 }
   730 //------------------------------data_size---------------------------
   731 int SuperWord::data_size(Node* s) {
   732   int bsize = type2aelembytes(velt_basic_type(s));
   733   assert(bsize != 0, "valid size");
   734   return bsize;
   735 }
   737 //------------------------------extend_packlist---------------------------
   738 // Extend packset by following use->def and def->use links from pack members.
   739 void SuperWord::extend_packlist() {
   740   bool changed;
   741   do {
   742     changed = false;
   743     for (int i = 0; i < _packset.length(); i++) {
   744       Node_List* p = _packset.at(i);
   745       changed |= follow_use_defs(p);
   746       changed |= follow_def_uses(p);
   747     }
   748   } while (changed);
   750 #ifndef PRODUCT
   751   if (TraceSuperWord) {
   752     tty->print_cr("\nAfter extend_packlist");
   753     print_packset();
   754   }
   755 #endif
   756 }
   758 //------------------------------follow_use_defs---------------------------
   759 // Extend the packset by visiting operand definitions of nodes in pack p
   760 bool SuperWord::follow_use_defs(Node_List* p) {
   761   assert(p->size() == 2, "just checking");
   762   Node* s1 = p->at(0);
   763   Node* s2 = p->at(1);
   764   assert(s1->req() == s2->req(), "just checking");
   765   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
   767   if (s1->is_Load()) return false;
   769   int align = alignment(s1);
   770   bool changed = false;
   771   int start = s1->is_Store() ? MemNode::ValueIn   : 1;
   772   int end   = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
   773   for (int j = start; j < end; j++) {
   774     Node* t1 = s1->in(j);
   775     Node* t2 = s2->in(j);
   776     if (!in_bb(t1) || !in_bb(t2))
   777       continue;
   778     if (stmts_can_pack(t1, t2, align)) {
   779       if (est_savings(t1, t2) >= 0) {
   780         Node_List* pair = new Node_List();
   781         pair->push(t1);
   782         pair->push(t2);
   783         _packset.append(pair);
   784         set_alignment(t1, t2, align);
   785         changed = true;
   786       }
   787     }
   788   }
   789   return changed;
   790 }
   792 //------------------------------follow_def_uses---------------------------
   793 // Extend the packset by visiting uses of nodes in pack p
   794 bool SuperWord::follow_def_uses(Node_List* p) {
   795   bool changed = false;
   796   Node* s1 = p->at(0);
   797   Node* s2 = p->at(1);
   798   assert(p->size() == 2, "just checking");
   799   assert(s1->req() == s2->req(), "just checking");
   800   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
   802   if (s1->is_Store()) return false;
   804   int align = alignment(s1);
   805   int savings = -1;
   806   Node* u1 = NULL;
   807   Node* u2 = NULL;
   808   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
   809     Node* t1 = s1->fast_out(i);
   810     if (!in_bb(t1)) continue;
   811     for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
   812       Node* t2 = s2->fast_out(j);
   813       if (!in_bb(t2)) continue;
   814       if (!opnd_positions_match(s1, t1, s2, t2))
   815         continue;
   816       if (stmts_can_pack(t1, t2, align)) {
   817         int my_savings = est_savings(t1, t2);
   818         if (my_savings > savings) {
   819           savings = my_savings;
   820           u1 = t1;
   821           u2 = t2;
   822         }
   823       }
   824     }
   825   }
   826   if (savings >= 0) {
   827     Node_List* pair = new Node_List();
   828     pair->push(u1);
   829     pair->push(u2);
   830     _packset.append(pair);
   831     set_alignment(u1, u2, align);
   832     changed = true;
   833   }
   834   return changed;
   835 }
   837 //---------------------------opnd_positions_match-------------------------
   838 // Is the use of d1 in u1 at the same operand position as d2 in u2?
   839 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
   840   uint ct = u1->req();
   841   if (ct != u2->req()) return false;
   842   uint i1 = 0;
   843   uint i2 = 0;
   844   do {
   845     for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
   846     for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
   847     if (i1 != i2) {
   848       if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) {
   849         // Further analysis relies on operands position matching.
   850         u2->swap_edges(i1, i2);
   851       } else {
   852         return false;
   853       }
   854     }
   855   } while (i1 < ct);
   856   return true;
   857 }
   859 //------------------------------est_savings---------------------------
   860 // Estimate the savings from executing s1 and s2 as a pack
   861 int SuperWord::est_savings(Node* s1, Node* s2) {
   862   int save_in = 2 - 1; // 2 operations per instruction in packed form
   864   // inputs
   865   for (uint i = 1; i < s1->req(); i++) {
   866     Node* x1 = s1->in(i);
   867     Node* x2 = s2->in(i);
   868     if (x1 != x2) {
   869       if (are_adjacent_refs(x1, x2)) {
   870         save_in += adjacent_profit(x1, x2);
   871       } else if (!in_packset(x1, x2)) {
   872         save_in -= pack_cost(2);
   873       } else {
   874         save_in += unpack_cost(2);
   875       }
   876     }
   877   }
   879   // uses of result
   880   uint ct = 0;
   881   int save_use = 0;
   882   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
   883     Node* s1_use = s1->fast_out(i);
   884     for (int j = 0; j < _packset.length(); j++) {
   885       Node_List* p = _packset.at(j);
   886       if (p->at(0) == s1_use) {
   887         for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
   888           Node* s2_use = s2->fast_out(k);
   889           if (p->at(p->size()-1) == s2_use) {
   890             ct++;
   891             if (are_adjacent_refs(s1_use, s2_use)) {
   892               save_use += adjacent_profit(s1_use, s2_use);
   893             }
   894           }
   895         }
   896       }
   897     }
   898   }
   900   if (ct < s1->outcnt()) save_use += unpack_cost(1);
   901   if (ct < s2->outcnt()) save_use += unpack_cost(1);
   903   return MAX2(save_in, save_use);
   904 }
   906 //------------------------------costs---------------------------
   907 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
   908 int SuperWord::pack_cost(int ct)   { return ct; }
   909 int SuperWord::unpack_cost(int ct) { return ct; }
   911 //------------------------------combine_packs---------------------------
   912 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
   913 void SuperWord::combine_packs() {
   914   bool changed = true;
   915   // Combine packs regardless max vector size.
   916   while (changed) {
   917     changed = false;
   918     for (int i = 0; i < _packset.length(); i++) {
   919       Node_List* p1 = _packset.at(i);
   920       if (p1 == NULL) continue;
   921       for (int j = 0; j < _packset.length(); j++) {
   922         Node_List* p2 = _packset.at(j);
   923         if (p2 == NULL) continue;
   924         if (i == j) continue;
   925         if (p1->at(p1->size()-1) == p2->at(0)) {
   926           for (uint k = 1; k < p2->size(); k++) {
   927             p1->push(p2->at(k));
   928           }
   929           _packset.at_put(j, NULL);
   930           changed = true;
   931         }
   932       }
   933     }
   934   }
   936   // Split packs which have size greater then max vector size.
   937   for (int i = 0; i < _packset.length(); i++) {
   938     Node_List* p1 = _packset.at(i);
   939     if (p1 != NULL) {
   940       BasicType bt = velt_basic_type(p1->at(0));
   941       uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector
   942       assert(is_power_of_2(max_vlen), "sanity");
   943       uint psize = p1->size();
   944       if (!is_power_of_2(psize)) {
   945         // Skip pack which can't be vector.
   946         // case1: for(...) { a[i] = i; }    elements values are different (i+x)
   947         // case2: for(...) { a[i] = b[i+1]; }  can't align both, load and store
   948         _packset.at_put(i, NULL);
   949         continue;
   950       }
   951       if (psize > max_vlen) {
   952         Node_List* pack = new Node_List();
   953         for (uint j = 0; j < psize; j++) {
   954           pack->push(p1->at(j));
   955           if (pack->size() >= max_vlen) {
   956             assert(is_power_of_2(pack->size()), "sanity");
   957             _packset.append(pack);
   958             pack = new Node_List();
   959           }
   960         }
   961         _packset.at_put(i, NULL);
   962       }
   963     }
   964   }
   966   // Compress list.
   967   for (int i = _packset.length() - 1; i >= 0; i--) {
   968     Node_List* p1 = _packset.at(i);
   969     if (p1 == NULL) {
   970       _packset.remove_at(i);
   971     }
   972   }
   974 #ifndef PRODUCT
   975   if (TraceSuperWord) {
   976     tty->print_cr("\nAfter combine_packs");
   977     print_packset();
   978   }
   979 #endif
   980 }
   982 //-----------------------------construct_my_pack_map--------------------------
   983 // Construct the map from nodes to packs.  Only valid after the
   984 // point where a node is only in one pack (after combine_packs).
   985 void SuperWord::construct_my_pack_map() {
   986   Node_List* rslt = NULL;
   987   for (int i = 0; i < _packset.length(); i++) {
   988     Node_List* p = _packset.at(i);
   989     for (uint j = 0; j < p->size(); j++) {
   990       Node* s = p->at(j);
   991       assert(my_pack(s) == NULL, "only in one pack");
   992       set_my_pack(s, p);
   993     }
   994   }
   995 }
   997 //------------------------------filter_packs---------------------------
   998 // Remove packs that are not implemented or not profitable.
   999 void SuperWord::filter_packs() {
  1001   // Remove packs that are not implemented
  1002   for (int i = _packset.length() - 1; i >= 0; i--) {
  1003     Node_List* pk = _packset.at(i);
  1004     bool impl = implemented(pk);
  1005     if (!impl) {
  1006 #ifndef PRODUCT
  1007       if (TraceSuperWord && Verbose) {
  1008         tty->print_cr("Unimplemented");
  1009         pk->at(0)->dump();
  1011 #endif
  1012       remove_pack_at(i);
  1016   // Remove packs that are not profitable
  1017   bool changed;
  1018   do {
  1019     changed = false;
  1020     for (int i = _packset.length() - 1; i >= 0; i--) {
  1021       Node_List* pk = _packset.at(i);
  1022       bool prof = profitable(pk);
  1023       if (!prof) {
  1024 #ifndef PRODUCT
  1025         if (TraceSuperWord && Verbose) {
  1026           tty->print_cr("Unprofitable");
  1027           pk->at(0)->dump();
  1029 #endif
  1030         remove_pack_at(i);
  1031         changed = true;
  1034   } while (changed);
  1036 #ifndef PRODUCT
  1037   if (TraceSuperWord) {
  1038     tty->print_cr("\nAfter filter_packs");
  1039     print_packset();
  1040     tty->cr();
  1042 #endif
  1045 //------------------------------implemented---------------------------
  1046 // Can code be generated for pack p?
  1047 bool SuperWord::implemented(Node_List* p) {
  1048   Node* p0 = p->at(0);
  1049   return VectorNode::implemented(p0->Opcode(), p->size(), velt_basic_type(p0));
  1052 //------------------------------profitable---------------------------
  1053 // For pack p, are all operands and all uses (with in the block) vector?
  1054 bool SuperWord::profitable(Node_List* p) {
  1055   Node* p0 = p->at(0);
  1056   uint start, end;
  1057   vector_opd_range(p0, &start, &end);
  1059   // Return false if some input is not vector and inside block
  1060   for (uint i = start; i < end; i++) {
  1061     if (!is_vector_use(p0, i)) {
  1062       // For now, return false if not scalar promotion case (inputs are the same.)
  1063       // Later, implement PackNode and allow differing, non-vector inputs
  1064       // (maybe just the ones from outside the block.)
  1065       Node* p0_def = p0->in(i);
  1066       for (uint j = 1; j < p->size(); j++) {
  1067         Node* use = p->at(j);
  1068         Node* def = use->in(i);
  1069         if (p0_def != def)
  1070           return false;
  1074   if (!p0->is_Store()) {
  1075     // For now, return false if not all uses are vector.
  1076     // Later, implement ExtractNode and allow non-vector uses (maybe
  1077     // just the ones outside the block.)
  1078     for (uint i = 0; i < p->size(); i++) {
  1079       Node* def = p->at(i);
  1080       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
  1081         Node* use = def->fast_out(j);
  1082         for (uint k = 0; k < use->req(); k++) {
  1083           Node* n = use->in(k);
  1084           if (def == n) {
  1085             if (!is_vector_use(use, k)) {
  1086               return false;
  1093   return true;
  1096 //------------------------------schedule---------------------------
  1097 // Adjust the memory graph for the packed operations
  1098 void SuperWord::schedule() {
  1100   // Co-locate in the memory graph the members of each memory pack
  1101   for (int i = 0; i < _packset.length(); i++) {
  1102     co_locate_pack(_packset.at(i));
  1106 //-------------------------------remove_and_insert-------------------
  1107 // Remove "current" from its current position in the memory graph and insert
  1108 // it after the appropriate insertion point (lip or uip).
  1109 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
  1110                                   Node *uip, Unique_Node_List &sched_before) {
  1111   Node* my_mem = current->in(MemNode::Memory);
  1112   bool sched_up = sched_before.member(current);
  1114   // remove current_store from its current position in the memmory graph
  1115   for (DUIterator i = current->outs(); current->has_out(i); i++) {
  1116     Node* use = current->out(i);
  1117     if (use->is_Mem()) {
  1118       assert(use->in(MemNode::Memory) == current, "must be");
  1119       if (use == prev) { // connect prev to my_mem
  1120           _igvn.replace_input_of(use, MemNode::Memory, my_mem);
  1121           --i; //deleted this edge; rescan position
  1122       } else if (sched_before.member(use)) {
  1123         if (!sched_up) { // Will be moved together with current
  1124           _igvn.replace_input_of(use, MemNode::Memory, uip);
  1125           --i; //deleted this edge; rescan position
  1127       } else {
  1128         if (sched_up) { // Will be moved together with current
  1129           _igvn.replace_input_of(use, MemNode::Memory, lip);
  1130           --i; //deleted this edge; rescan position
  1136   Node *insert_pt =  sched_up ?  uip : lip;
  1138   // all uses of insert_pt's memory state should use current's instead
  1139   for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
  1140     Node* use = insert_pt->out(i);
  1141     if (use->is_Mem()) {
  1142       assert(use->in(MemNode::Memory) == insert_pt, "must be");
  1143       _igvn.replace_input_of(use, MemNode::Memory, current);
  1144       --i; //deleted this edge; rescan position
  1145     } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
  1146       uint pos; //lip (lower insert point) must be the last one in the memory slice
  1147       for (pos=1; pos < use->req(); pos++) {
  1148         if (use->in(pos) == insert_pt) break;
  1150       _igvn.replace_input_of(use, pos, current);
  1151       --i;
  1155   //connect current to insert_pt
  1156   _igvn.replace_input_of(current, MemNode::Memory, insert_pt);
  1159 //------------------------------co_locate_pack----------------------------------
  1160 // To schedule a store pack, we need to move any sandwiched memory ops either before
  1161 // or after the pack, based upon dependence information:
  1162 // (1) If any store in the pack depends on the sandwiched memory op, the
  1163 //     sandwiched memory op must be scheduled BEFORE the pack;
  1164 // (2) If a sandwiched memory op depends on any store in the pack, the
  1165 //     sandwiched memory op must be scheduled AFTER the pack;
  1166 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
  1167 //     memory op (say memB), memB must be scheduled before memA. So, if memA is
  1168 //     scheduled before the pack, memB must also be scheduled before the pack;
  1169 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
  1170 //     schedule this store AFTER the pack
  1171 // (5) We know there is no dependence cycle, so there in no other case;
  1172 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
  1173 //
  1174 // To schedule a load pack, we use the memory state of either the first or the last load in
  1175 // the pack, based on the dependence constraint.
  1176 void SuperWord::co_locate_pack(Node_List* pk) {
  1177   if (pk->at(0)->is_Store()) {
  1178     MemNode* first     = executed_first(pk)->as_Mem();
  1179     MemNode* last      = executed_last(pk)->as_Mem();
  1180     Unique_Node_List schedule_before_pack;
  1181     Unique_Node_List memops;
  1183     MemNode* current   = last->in(MemNode::Memory)->as_Mem();
  1184     MemNode* previous  = last;
  1185     while (true) {
  1186       assert(in_bb(current), "stay in block");
  1187       memops.push(previous);
  1188       for (DUIterator i = current->outs(); current->has_out(i); i++) {
  1189         Node* use = current->out(i);
  1190         if (use->is_Mem() && use != previous)
  1191           memops.push(use);
  1193       if (current == first) break;
  1194       previous = current;
  1195       current  = current->in(MemNode::Memory)->as_Mem();
  1198     // determine which memory operations should be scheduled before the pack
  1199     for (uint i = 1; i < memops.size(); i++) {
  1200       Node *s1 = memops.at(i);
  1201       if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
  1202         for (uint j = 0; j< i; j++) {
  1203           Node *s2 = memops.at(j);
  1204           if (!independent(s1, s2)) {
  1205             if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
  1206               schedule_before_pack.push(s1); // s1 must be scheduled before
  1207               Node_List* mem_pk = my_pack(s1);
  1208               if (mem_pk != NULL) {
  1209                 for (uint ii = 0; ii < mem_pk->size(); ii++) {
  1210                   Node* s = mem_pk->at(ii);  // follow partner
  1211                   if (memops.member(s) && !schedule_before_pack.member(s))
  1212                     schedule_before_pack.push(s);
  1215               break;
  1222     Node*    upper_insert_pt = first->in(MemNode::Memory);
  1223     // Following code moves loads connected to upper_insert_pt below aliased stores.
  1224     // Collect such loads here and reconnect them back to upper_insert_pt later.
  1225     memops.clear();
  1226     for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) {
  1227       Node* use = upper_insert_pt->out(i);
  1228       if (!use->is_Store())
  1229         memops.push(use);
  1232     MemNode* lower_insert_pt = last;
  1233     previous                 = last; //previous store in pk
  1234     current                  = last->in(MemNode::Memory)->as_Mem();
  1236     // start scheduling from "last" to "first"
  1237     while (true) {
  1238       assert(in_bb(current), "stay in block");
  1239       assert(in_pack(previous, pk), "previous stays in pack");
  1240       Node* my_mem = current->in(MemNode::Memory);
  1242       if (in_pack(current, pk)) {
  1243         // Forward users of my memory state (except "previous) to my input memory state
  1244         for (DUIterator i = current->outs(); current->has_out(i); i++) {
  1245           Node* use = current->out(i);
  1246           if (use->is_Mem() && use != previous) {
  1247             assert(use->in(MemNode::Memory) == current, "must be");
  1248             if (schedule_before_pack.member(use)) {
  1249               _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt);
  1250             } else {
  1251               _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt);
  1253             --i; // deleted this edge; rescan position
  1256         previous = current;
  1257       } else { // !in_pack(current, pk) ==> a sandwiched store
  1258         remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
  1261       if (current == first) break;
  1262       current = my_mem->as_Mem();
  1263     } // end while
  1265     // Reconnect loads back to upper_insert_pt.
  1266     for (uint i = 0; i < memops.size(); i++) {
  1267       Node *ld = memops.at(i);
  1268       if (ld->in(MemNode::Memory) != upper_insert_pt) {
  1269         _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt);
  1272   } else if (pk->at(0)->is_Load()) { //load
  1273     // all loads in the pack should have the same memory state. By default,
  1274     // we use the memory state of the last load. However, if any load could
  1275     // not be moved down due to the dependence constraint, we use the memory
  1276     // state of the first load.
  1277     Node* last_mem  = executed_last(pk)->in(MemNode::Memory);
  1278     Node* first_mem = executed_first(pk)->in(MemNode::Memory);
  1279     bool schedule_last = true;
  1280     for (uint i = 0; i < pk->size(); i++) {
  1281       Node* ld = pk->at(i);
  1282       for (Node* current = last_mem; current != ld->in(MemNode::Memory);
  1283            current=current->in(MemNode::Memory)) {
  1284         assert(current != first_mem, "corrupted memory graph");
  1285         if(current->is_Mem() && !independent(current, ld)){
  1286           schedule_last = false; // a later store depends on this load
  1287           break;
  1292     Node* mem_input = schedule_last ? last_mem : first_mem;
  1293     _igvn.hash_delete(mem_input);
  1294     // Give each load the same memory state
  1295     for (uint i = 0; i < pk->size(); i++) {
  1296       LoadNode* ld = pk->at(i)->as_Load();
  1297       _igvn.replace_input_of(ld, MemNode::Memory, mem_input);
  1302 //------------------------------output---------------------------
  1303 // Convert packs into vector node operations
  1304 void SuperWord::output() {
  1305   if (_packset.length() == 0) return;
  1307 #ifndef PRODUCT
  1308   if (TraceLoopOpts) {
  1309     tty->print("SuperWord    ");
  1310     lpt()->dump_head();
  1312 #endif
  1314   // MUST ENSURE main loop's initial value is properly aligned:
  1315   //  (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
  1317   align_initial_loop_index(align_to_ref());
  1319   // Insert extract (unpack) operations for scalar uses
  1320   for (int i = 0; i < _packset.length(); i++) {
  1321     insert_extracts(_packset.at(i));
  1324   for (int i = 0; i < _block.length(); i++) {
  1325     Node* n = _block.at(i);
  1326     Node_List* p = my_pack(n);
  1327     if (p && n == executed_last(p)) {
  1328       uint vlen = p->size();
  1329       Node* vn = NULL;
  1330       Node* low_adr = p->at(0);
  1331       Node* first   = executed_first(p);
  1332       int   opc = n->Opcode();
  1333       if (n->is_Load()) {
  1334         Node* ctl = n->in(MemNode::Control);
  1335         Node* mem = first->in(MemNode::Memory);
  1336         Node* adr = low_adr->in(MemNode::Address);
  1337         const TypePtr* atyp = n->adr_type();
  1338         vn = LoadVectorNode::make(_phase->C, opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n));
  1339       } else if (n->is_Store()) {
  1340         // Promote value to be stored to vector
  1341         Node* val = vector_opd(p, MemNode::ValueIn);
  1342         Node* ctl = n->in(MemNode::Control);
  1343         Node* mem = first->in(MemNode::Memory);
  1344         Node* adr = low_adr->in(MemNode::Address);
  1345         const TypePtr* atyp = n->adr_type();
  1346         vn = StoreVectorNode::make(_phase->C, opc, ctl, mem, adr, atyp, val, vlen);
  1347       } else if (n->req() == 3) {
  1348         // Promote operands to vector
  1349         Node* in1 = vector_opd(p, 1);
  1350         Node* in2 = vector_opd(p, 2);
  1351         vn = VectorNode::make(_phase->C, opc, in1, in2, vlen, velt_basic_type(n));
  1352       } else {
  1353         ShouldNotReachHere();
  1355       assert(vn != NULL, "sanity");
  1356       _phase->_igvn.register_new_node_with_optimizer(vn);
  1357       _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
  1358       for (uint j = 0; j < p->size(); j++) {
  1359         Node* pm = p->at(j);
  1360         _igvn.replace_node(pm, vn);
  1362       _igvn._worklist.push(vn);
  1363 #ifdef ASSERT
  1364       if (TraceSuperWord) {
  1365         tty->print("new Vector node: ");
  1366         vn->dump();
  1368 #endif
  1373 //------------------------------vector_opd---------------------------
  1374 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
  1375 Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
  1376   Node* p0 = p->at(0);
  1377   uint vlen = p->size();
  1378   Node* opd = p0->in(opd_idx);
  1380   bool same_opd = true;
  1381   for (uint i = 1; i < vlen; i++) {
  1382     Node* pi = p->at(i);
  1383     Node* in = pi->in(opd_idx);
  1384     if (opd != in) {
  1385       same_opd = false;
  1386       break;
  1390   if (same_opd) {
  1391     if (opd->is_Vector() || opd->is_LoadVector()) {
  1392       return opd; // input is matching vector
  1394     assert(!opd->is_StoreVector(), "such vector is not expected here");
  1395     // Convert scalar input to vector with the same number of elements as
  1396     // p0's vector. Use p0's type because size of operand's container in
  1397     // vector should match p0's size regardless operand's size.
  1398     const Type* p0_t = velt_type(p0);
  1399     VectorNode* vn = VectorNode::scalar2vector(_phase->C, opd, vlen, p0_t);
  1401     _phase->_igvn.register_new_node_with_optimizer(vn);
  1402     _phase->set_ctrl(vn, _phase->get_ctrl(opd));
  1403 #ifdef ASSERT
  1404     if (TraceSuperWord) {
  1405       tty->print("new Vector node: ");
  1406       vn->dump();
  1408 #endif
  1409     return vn;
  1412   // Insert pack operation
  1413   BasicType bt = velt_basic_type(p0);
  1414   PackNode* pk = PackNode::make(_phase->C, opd, vlen, bt);
  1415   DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
  1417   for (uint i = 1; i < vlen; i++) {
  1418     Node* pi = p->at(i);
  1419     Node* in = pi->in(opd_idx);
  1420     assert(my_pack(in) == NULL, "Should already have been unpacked");
  1421     assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
  1422     pk->add_opd(i, in);
  1424   _phase->_igvn.register_new_node_with_optimizer(pk);
  1425   _phase->set_ctrl(pk, _phase->get_ctrl(opd));
  1426 #ifdef ASSERT
  1427     if (TraceSuperWord) {
  1428       tty->print("new Pack node: ");
  1429       pk->dump();
  1431 #endif
  1432   return pk;
  1435 //------------------------------insert_extracts---------------------------
  1436 // If a use of pack p is not a vector use, then replace the
  1437 // use with an extract operation.
  1438 void SuperWord::insert_extracts(Node_List* p) {
  1439   if (p->at(0)->is_Store()) return;
  1440   assert(_n_idx_list.is_empty(), "empty (node,index) list");
  1442   // Inspect each use of each pack member.  For each use that is
  1443   // not a vector use, replace the use with an extract operation.
  1445   for (uint i = 0; i < p->size(); i++) {
  1446     Node* def = p->at(i);
  1447     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
  1448       Node* use = def->fast_out(j);
  1449       for (uint k = 0; k < use->req(); k++) {
  1450         Node* n = use->in(k);
  1451         if (def == n) {
  1452           if (!is_vector_use(use, k)) {
  1453             _n_idx_list.push(use, k);
  1460   while (_n_idx_list.is_nonempty()) {
  1461     Node* use = _n_idx_list.node();
  1462     int   idx = _n_idx_list.index();
  1463     _n_idx_list.pop();
  1464     Node* def = use->in(idx);
  1466     // Insert extract operation
  1467     _igvn.hash_delete(def);
  1468     int def_pos = alignment(def) / data_size(def);
  1470     Node* ex = ExtractNode::make(_phase->C, def, def_pos, velt_basic_type(def));
  1471     _phase->_igvn.register_new_node_with_optimizer(ex);
  1472     _phase->set_ctrl(ex, _phase->get_ctrl(def));
  1473     _igvn.replace_input_of(use, idx, ex);
  1474     _igvn._worklist.push(def);
  1476     bb_insert_after(ex, bb_idx(def));
  1477     set_velt_type(ex, velt_type(def));
  1481 //------------------------------is_vector_use---------------------------
  1482 // Is use->in(u_idx) a vector use?
  1483 bool SuperWord::is_vector_use(Node* use, int u_idx) {
  1484   Node_List* u_pk = my_pack(use);
  1485   if (u_pk == NULL) return false;
  1486   Node* def = use->in(u_idx);
  1487   Node_List* d_pk = my_pack(def);
  1488   if (d_pk == NULL) {
  1489     // check for scalar promotion
  1490     Node* n = u_pk->at(0)->in(u_idx);
  1491     for (uint i = 1; i < u_pk->size(); i++) {
  1492       if (u_pk->at(i)->in(u_idx) != n) return false;
  1494     return true;
  1496   if (u_pk->size() != d_pk->size())
  1497     return false;
  1498   for (uint i = 0; i < u_pk->size(); i++) {
  1499     Node* ui = u_pk->at(i);
  1500     Node* di = d_pk->at(i);
  1501     if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
  1502       return false;
  1504   return true;
  1507 //------------------------------construct_bb---------------------------
  1508 // Construct reverse postorder list of block members
  1509 void SuperWord::construct_bb() {
  1510   Node* entry = bb();
  1512   assert(_stk.length() == 0,            "stk is empty");
  1513   assert(_block.length() == 0,          "block is empty");
  1514   assert(_data_entry.length() == 0,     "data_entry is empty");
  1515   assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
  1516   assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
  1518   // Find non-control nodes with no inputs from within block,
  1519   // create a temporary map from node _idx to bb_idx for use
  1520   // by the visited and post_visited sets,
  1521   // and count number of nodes in block.
  1522   int bb_ct = 0;
  1523   for (uint i = 0; i < lpt()->_body.size(); i++ ) {
  1524     Node *n = lpt()->_body.at(i);
  1525     set_bb_idx(n, i); // Create a temporary map
  1526     if (in_bb(n)) {
  1527       bb_ct++;
  1528       if (!n->is_CFG()) {
  1529         bool found = false;
  1530         for (uint j = 0; j < n->req(); j++) {
  1531           Node* def = n->in(j);
  1532           if (def && in_bb(def)) {
  1533             found = true;
  1534             break;
  1537         if (!found) {
  1538           assert(n != entry, "can't be entry");
  1539           _data_entry.push(n);
  1545   // Find memory slices (head and tail)
  1546   for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
  1547     Node *n = lp()->fast_out(i);
  1548     if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
  1549       Node* n_tail  = n->in(LoopNode::LoopBackControl);
  1550       if (n_tail != n->in(LoopNode::EntryControl)) {
  1551         _mem_slice_head.push(n);
  1552         _mem_slice_tail.push(n_tail);
  1557   // Create an RPO list of nodes in block
  1559   visited_clear();
  1560   post_visited_clear();
  1562   // Push all non-control nodes with no inputs from within block, then control entry
  1563   for (int j = 0; j < _data_entry.length(); j++) {
  1564     Node* n = _data_entry.at(j);
  1565     visited_set(n);
  1566     _stk.push(n);
  1568   visited_set(entry);
  1569   _stk.push(entry);
  1571   // Do a depth first walk over out edges
  1572   int rpo_idx = bb_ct - 1;
  1573   int size;
  1574   while ((size = _stk.length()) > 0) {
  1575     Node* n = _stk.top(); // Leave node on stack
  1576     if (!visited_test_set(n)) {
  1577       // forward arc in graph
  1578     } else if (!post_visited_test(n)) {
  1579       // cross or back arc
  1580       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1581         Node *use = n->fast_out(i);
  1582         if (in_bb(use) && !visited_test(use) &&
  1583             // Don't go around backedge
  1584             (!use->is_Phi() || n == entry)) {
  1585           _stk.push(use);
  1588       if (_stk.length() == size) {
  1589         // There were no additional uses, post visit node now
  1590         _stk.pop(); // Remove node from stack
  1591         assert(rpo_idx >= 0, "");
  1592         _block.at_put_grow(rpo_idx, n);
  1593         rpo_idx--;
  1594         post_visited_set(n);
  1595         assert(rpo_idx >= 0 || _stk.is_empty(), "");
  1597     } else {
  1598       _stk.pop(); // Remove post-visited node from stack
  1602   // Create real map of block indices for nodes
  1603   for (int j = 0; j < _block.length(); j++) {
  1604     Node* n = _block.at(j);
  1605     set_bb_idx(n, j);
  1608   initialize_bb(); // Ensure extra info is allocated.
  1610 #ifndef PRODUCT
  1611   if (TraceSuperWord) {
  1612     print_bb();
  1613     tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
  1614     for (int m = 0; m < _data_entry.length(); m++) {
  1615       tty->print("%3d ", m);
  1616       _data_entry.at(m)->dump();
  1618     tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
  1619     for (int m = 0; m < _mem_slice_head.length(); m++) {
  1620       tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
  1621       tty->print("    ");    _mem_slice_tail.at(m)->dump();
  1624 #endif
  1625   assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
  1628 //------------------------------initialize_bb---------------------------
  1629 // Initialize per node info
  1630 void SuperWord::initialize_bb() {
  1631   Node* last = _block.at(_block.length() - 1);
  1632   grow_node_info(bb_idx(last));
  1635 //------------------------------bb_insert_after---------------------------
  1636 // Insert n into block after pos
  1637 void SuperWord::bb_insert_after(Node* n, int pos) {
  1638   int n_pos = pos + 1;
  1639   // Make room
  1640   for (int i = _block.length() - 1; i >= n_pos; i--) {
  1641     _block.at_put_grow(i+1, _block.at(i));
  1643   for (int j = _node_info.length() - 1; j >= n_pos; j--) {
  1644     _node_info.at_put_grow(j+1, _node_info.at(j));
  1646   // Set value
  1647   _block.at_put_grow(n_pos, n);
  1648   _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
  1649   // Adjust map from node->_idx to _block index
  1650   for (int i = n_pos; i < _block.length(); i++) {
  1651     set_bb_idx(_block.at(i), i);
  1655 //------------------------------compute_max_depth---------------------------
  1656 // Compute max depth for expressions from beginning of block
  1657 // Use to prune search paths during test for independence.
  1658 void SuperWord::compute_max_depth() {
  1659   int ct = 0;
  1660   bool again;
  1661   do {
  1662     again = false;
  1663     for (int i = 0; i < _block.length(); i++) {
  1664       Node* n = _block.at(i);
  1665       if (!n->is_Phi()) {
  1666         int d_orig = depth(n);
  1667         int d_in   = 0;
  1668         for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
  1669           Node* pred = preds.current();
  1670           if (in_bb(pred)) {
  1671             d_in = MAX2(d_in, depth(pred));
  1674         if (d_in + 1 != d_orig) {
  1675           set_depth(n, d_in + 1);
  1676           again = true;
  1680     ct++;
  1681   } while (again);
  1682 #ifndef PRODUCT
  1683   if (TraceSuperWord && Verbose)
  1684     tty->print_cr("compute_max_depth iterated: %d times", ct);
  1685 #endif
  1688 //-------------------------compute_vector_element_type-----------------------
  1689 // Compute necessary vector element type for expressions
  1690 // This propagates backwards a narrower integer type when the
  1691 // upper bits of the value are not needed.
  1692 // Example:  char a,b,c;  a = b + c;
  1693 // Normally the type of the add is integer, but for packed character
  1694 // operations the type of the add needs to be char.
  1695 void SuperWord::compute_vector_element_type() {
  1696 #ifndef PRODUCT
  1697   if (TraceSuperWord && Verbose)
  1698     tty->print_cr("\ncompute_velt_type:");
  1699 #endif
  1701   // Initial type
  1702   for (int i = 0; i < _block.length(); i++) {
  1703     Node* n = _block.at(i);
  1704     set_velt_type(n, container_type(n));
  1707   // Propagate narrowed type backwards through operations
  1708   // that don't depend on higher order bits
  1709   for (int i = _block.length() - 1; i >= 0; i--) {
  1710     Node* n = _block.at(i);
  1711     // Only integer types need be examined
  1712     if (n->bottom_type()->isa_int()) {
  1713       uint start, end;
  1714       vector_opd_range(n, &start, &end);
  1715       const Type* vt = velt_type(n);
  1717       for (uint j = start; j < end; j++) {
  1718         Node* in  = n->in(j);
  1719         // Don't propagate through a type conversion
  1720         if (n->bottom_type() != in->bottom_type())
  1721           continue;
  1722         switch(in->Opcode()) {
  1723         case Op_AddI:    case Op_AddL:
  1724         case Op_SubI:    case Op_SubL:
  1725         case Op_MulI:    case Op_MulL:
  1726         case Op_AndI:    case Op_AndL:
  1727         case Op_OrI:     case Op_OrL:
  1728         case Op_XorI:    case Op_XorL:
  1729         case Op_LShiftI: case Op_LShiftL:
  1730         case Op_CMoveI:  case Op_CMoveL:
  1731           if (in_bb(in)) {
  1732             bool same_type = true;
  1733             for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
  1734               Node *use = in->fast_out(k);
  1735               if (!in_bb(use) || !same_velt_type(use, n)) {
  1736                 same_type = false;
  1737                 break;
  1740             if (same_type) {
  1741               set_velt_type(in, vt);
  1748 #ifndef PRODUCT
  1749   if (TraceSuperWord && Verbose) {
  1750     for (int i = 0; i < _block.length(); i++) {
  1751       Node* n = _block.at(i);
  1752       velt_type(n)->dump();
  1753       tty->print("\t");
  1754       n->dump();
  1757 #endif
  1760 //------------------------------memory_alignment---------------------------
  1761 // Alignment within a vector memory reference
  1762 int SuperWord::memory_alignment(MemNode* s, int iv_adjust_in_bytes) {
  1763   SWPointer p(s, this);
  1764   if (!p.valid()) {
  1765     return bottom_align;
  1767   int vw = vector_width_in_bytes(velt_basic_type(s));
  1768   if (vw < 2) {
  1769     return bottom_align; // No vectors for this type
  1771   int offset  = p.offset_in_bytes();
  1772   offset     += iv_adjust_in_bytes;
  1773   int off_rem = offset % vw;
  1774   int off_mod = off_rem >= 0 ? off_rem : off_rem + vw;
  1775   return off_mod;
  1778 //---------------------------container_type---------------------------
  1779 // Smallest type containing range of values
  1780 const Type* SuperWord::container_type(Node* n) {
  1781   if (n->is_Mem()) {
  1782     return Type::get_const_basic_type(n->as_Mem()->memory_type());
  1784   const Type* t = _igvn.type(n);
  1785   if (t->basic_type() == T_INT) {
  1786     if (t->higher_equal(TypeInt::BOOL))  return TypeInt::BOOL;
  1787     if (t->higher_equal(TypeInt::BYTE))  return TypeInt::BYTE;
  1788     if (t->higher_equal(TypeInt::CHAR))  return TypeInt::CHAR;
  1789     if (t->higher_equal(TypeInt::SHORT)) return TypeInt::SHORT;
  1790     return TypeInt::INT;
  1792   return t;
  1795 bool SuperWord::same_velt_type(Node* n1, Node* n2) {
  1796   const Type* vt1 = velt_type(n1);
  1797   const Type* vt2 = velt_type(n1);
  1798   if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) {
  1799     // Compare vectors element sizes for integer types.
  1800     return data_size(n1) == data_size(n2);
  1802   return vt1 == vt2;
  1805 //-------------------------vector_opd_range-----------------------
  1806 // (Start, end] half-open range defining which operands are vector
  1807 void SuperWord::vector_opd_range(Node* n, uint* start, uint* end) {
  1808   switch (n->Opcode()) {
  1809   case Op_LoadB:   case Op_LoadUB:
  1810   case Op_LoadS:   case Op_LoadUS:
  1811   case Op_LoadI:   case Op_LoadL:
  1812   case Op_LoadF:   case Op_LoadD:
  1813   case Op_LoadP:
  1814     *start = 0;
  1815     *end   = 0;
  1816     return;
  1817   case Op_StoreB:  case Op_StoreC:
  1818   case Op_StoreI:  case Op_StoreL:
  1819   case Op_StoreF:  case Op_StoreD:
  1820   case Op_StoreP:
  1821     *start = MemNode::ValueIn;
  1822     *end   = *start + 1;
  1823     return;
  1824   case Op_LShiftI: case Op_LShiftL:
  1825     *start = 1;
  1826     *end   = 2;
  1827     return;
  1828   case Op_CMoveI:  case Op_CMoveL:  case Op_CMoveF:  case Op_CMoveD:
  1829     *start = 2;
  1830     *end   = n->req();
  1831     return;
  1833   *start = 1;
  1834   *end   = n->req(); // default is all operands
  1837 //------------------------------in_packset---------------------------
  1838 // Are s1 and s2 in a pack pair and ordered as s1,s2?
  1839 bool SuperWord::in_packset(Node* s1, Node* s2) {
  1840   for (int i = 0; i < _packset.length(); i++) {
  1841     Node_List* p = _packset.at(i);
  1842     assert(p->size() == 2, "must be");
  1843     if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
  1844       return true;
  1847   return false;
  1850 //------------------------------in_pack---------------------------
  1851 // Is s in pack p?
  1852 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
  1853   for (uint i = 0; i < p->size(); i++) {
  1854     if (p->at(i) == s) {
  1855       return p;
  1858   return NULL;
  1861 //------------------------------remove_pack_at---------------------------
  1862 // Remove the pack at position pos in the packset
  1863 void SuperWord::remove_pack_at(int pos) {
  1864   Node_List* p = _packset.at(pos);
  1865   for (uint i = 0; i < p->size(); i++) {
  1866     Node* s = p->at(i);
  1867     set_my_pack(s, NULL);
  1869   _packset.remove_at(pos);
  1872 //------------------------------executed_first---------------------------
  1873 // Return the node executed first in pack p.  Uses the RPO block list
  1874 // to determine order.
  1875 Node* SuperWord::executed_first(Node_List* p) {
  1876   Node* n = p->at(0);
  1877   int n_rpo = bb_idx(n);
  1878   for (uint i = 1; i < p->size(); i++) {
  1879     Node* s = p->at(i);
  1880     int s_rpo = bb_idx(s);
  1881     if (s_rpo < n_rpo) {
  1882       n = s;
  1883       n_rpo = s_rpo;
  1886   return n;
  1889 //------------------------------executed_last---------------------------
  1890 // Return the node executed last in pack p.
  1891 Node* SuperWord::executed_last(Node_List* p) {
  1892   Node* n = p->at(0);
  1893   int n_rpo = bb_idx(n);
  1894   for (uint i = 1; i < p->size(); i++) {
  1895     Node* s = p->at(i);
  1896     int s_rpo = bb_idx(s);
  1897     if (s_rpo > n_rpo) {
  1898       n = s;
  1899       n_rpo = s_rpo;
  1902   return n;
  1905 //----------------------------align_initial_loop_index---------------------------
  1906 // Adjust pre-loop limit so that in main loop, a load/store reference
  1907 // to align_to_ref will be a position zero in the vector.
  1908 //   (iv + k) mod vector_align == 0
  1909 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
  1910   CountedLoopNode *main_head = lp()->as_CountedLoop();
  1911   assert(main_head->is_main_loop(), "");
  1912   CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
  1913   assert(pre_end != NULL, "");
  1914   Node *pre_opaq1 = pre_end->limit();
  1915   assert(pre_opaq1->Opcode() == Op_Opaque1, "");
  1916   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  1917   Node *lim0 = pre_opaq->in(1);
  1919   // Where we put new limit calculations
  1920   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
  1922   // Ensure the original loop limit is available from the
  1923   // pre-loop Opaque1 node.
  1924   Node *orig_limit = pre_opaq->original_loop_limit();
  1925   assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
  1927   SWPointer align_to_ref_p(align_to_ref, this);
  1928   assert(align_to_ref_p.valid(), "sanity");
  1930   // Given:
  1931   //     lim0 == original pre loop limit
  1932   //     V == v_align (power of 2)
  1933   //     invar == extra invariant piece of the address expression
  1934   //     e == k [ +/- invar ]
  1935   //
  1936   // When reassociating expressions involving '%' the basic rules are:
  1937   //     (a - b) % k == 0   =>  a % k == b % k
  1938   // and:
  1939   //     (a + b) % k == 0   =>  a % k == (k - b) % k
  1940   //
  1941   // For stride > 0 && scale > 0,
  1942   //   Derive the new pre-loop limit "lim" such that the two constraints:
  1943   //     (1) lim = lim0 + N           (where N is some positive integer < V)
  1944   //     (2) (e + lim) % V == 0
  1945   //   are true.
  1946   //
  1947   //   Substituting (1) into (2),
  1948   //     (e + lim0 + N) % V == 0
  1949   //   solve for N:
  1950   //     N = (V - (e + lim0)) % V
  1951   //   substitute back into (1), so that new limit
  1952   //     lim = lim0 + (V - (e + lim0)) % V
  1953   //
  1954   // For stride > 0 && scale < 0
  1955   //   Constraints:
  1956   //     lim = lim0 + N
  1957   //     (e - lim) % V == 0
  1958   //   Solving for lim:
  1959   //     (e - lim0 - N) % V == 0
  1960   //     N = (e - lim0) % V
  1961   //     lim = lim0 + (e - lim0) % V
  1962   //
  1963   // For stride < 0 && scale > 0
  1964   //   Constraints:
  1965   //     lim = lim0 - N
  1966   //     (e + lim) % V == 0
  1967   //   Solving for lim:
  1968   //     (e + lim0 - N) % V == 0
  1969   //     N = (e + lim0) % V
  1970   //     lim = lim0 - (e + lim0) % V
  1971   //
  1972   // For stride < 0 && scale < 0
  1973   //   Constraints:
  1974   //     lim = lim0 - N
  1975   //     (e - lim) % V == 0
  1976   //   Solving for lim:
  1977   //     (e - lim0 + N) % V == 0
  1978   //     N = (V - (e - lim0)) % V
  1979   //     lim = lim0 - (V - (e - lim0)) % V
  1981   int vw = vector_width_in_bytes(velt_basic_type(align_to_ref));
  1982   assert(vw > 1, "sanity");
  1983   int stride   = iv_stride();
  1984   int scale    = align_to_ref_p.scale_in_bytes();
  1985   int elt_size = align_to_ref_p.memory_size();
  1986   int v_align  = vw / elt_size;
  1987   int k        = align_to_ref_p.offset_in_bytes() / elt_size;
  1989   Node *kn   = _igvn.intcon(k);
  1991   Node *e = kn;
  1992   if (align_to_ref_p.invar() != NULL) {
  1993     // incorporate any extra invariant piece producing k +/- invar >>> log2(elt)
  1994     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
  1995     Node* aref     = new (_phase->C, 3) URShiftINode(align_to_ref_p.invar(), log2_elt);
  1996     _phase->_igvn.register_new_node_with_optimizer(aref);
  1997     _phase->set_ctrl(aref, pre_ctrl);
  1998     if (align_to_ref_p.negate_invar()) {
  1999       e = new (_phase->C, 3) SubINode(e, aref);
  2000     } else {
  2001       e = new (_phase->C, 3) AddINode(e, aref);
  2003     _phase->_igvn.register_new_node_with_optimizer(e);
  2004     _phase->set_ctrl(e, pre_ctrl);
  2006   if (vw > ObjectAlignmentInBytes) {
  2007     // incorporate base e +/- base && Mask >>> log2(elt)
  2008     Node* mask = _igvn.MakeConX(~(-1 << exact_log2(vw)));
  2009     Node* xbase = new(_phase->C, 2) CastP2XNode(NULL, align_to_ref_p.base());
  2010     _phase->_igvn.register_new_node_with_optimizer(xbase);
  2011     Node* masked_xbase  = new (_phase->C, 3) AndXNode(xbase, mask);
  2012     _phase->_igvn.register_new_node_with_optimizer(masked_xbase);
  2013 #ifdef _LP64
  2014     masked_xbase  = new (_phase->C, 2) ConvL2INode(masked_xbase);
  2015     _phase->_igvn.register_new_node_with_optimizer(masked_xbase);
  2016 #endif
  2017     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
  2018     Node* bref     = new (_phase->C, 3) URShiftINode(masked_xbase, log2_elt);
  2019     _phase->_igvn.register_new_node_with_optimizer(bref);
  2020     _phase->set_ctrl(bref, pre_ctrl);
  2021     e = new (_phase->C, 3) AddINode(e, bref);
  2022     _phase->_igvn.register_new_node_with_optimizer(e);
  2023     _phase->set_ctrl(e, pre_ctrl);
  2026   // compute e +/- lim0
  2027   if (scale < 0) {
  2028     e = new (_phase->C, 3) SubINode(e, lim0);
  2029   } else {
  2030     e = new (_phase->C, 3) AddINode(e, lim0);
  2032   _phase->_igvn.register_new_node_with_optimizer(e);
  2033   _phase->set_ctrl(e, pre_ctrl);
  2035   if (stride * scale > 0) {
  2036     // compute V - (e +/- lim0)
  2037     Node* va  = _igvn.intcon(v_align);
  2038     e = new (_phase->C, 3) SubINode(va, e);
  2039     _phase->_igvn.register_new_node_with_optimizer(e);
  2040     _phase->set_ctrl(e, pre_ctrl);
  2042   // compute N = (exp) % V
  2043   Node* va_msk = _igvn.intcon(v_align - 1);
  2044   Node* N = new (_phase->C, 3) AndINode(e, va_msk);
  2045   _phase->_igvn.register_new_node_with_optimizer(N);
  2046   _phase->set_ctrl(N, pre_ctrl);
  2048   //   substitute back into (1), so that new limit
  2049   //     lim = lim0 + N
  2050   Node* lim;
  2051   if (stride < 0) {
  2052     lim = new (_phase->C, 3) SubINode(lim0, N);
  2053   } else {
  2054     lim = new (_phase->C, 3) AddINode(lim0, N);
  2056   _phase->_igvn.register_new_node_with_optimizer(lim);
  2057   _phase->set_ctrl(lim, pre_ctrl);
  2058   Node* constrained =
  2059     (stride > 0) ? (Node*) new (_phase->C,3) MinINode(lim, orig_limit)
  2060                  : (Node*) new (_phase->C,3) MaxINode(lim, orig_limit);
  2061   _phase->_igvn.register_new_node_with_optimizer(constrained);
  2062   _phase->set_ctrl(constrained, pre_ctrl);
  2063   _igvn.hash_delete(pre_opaq);
  2064   pre_opaq->set_req(1, constrained);
  2067 //----------------------------get_pre_loop_end---------------------------
  2068 // Find pre loop end from main loop.  Returns null if none.
  2069 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode *cl) {
  2070   Node *ctrl = cl->in(LoopNode::EntryControl);
  2071   if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
  2072   Node *iffm = ctrl->in(0);
  2073   if (!iffm->is_If()) return NULL;
  2074   Node *p_f = iffm->in(0);
  2075   if (!p_f->is_IfFalse()) return NULL;
  2076   if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
  2077   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
  2078   if (!pre_end->loopnode()->is_pre_loop()) return NULL;
  2079   return pre_end;
  2083 //------------------------------init---------------------------
  2084 void SuperWord::init() {
  2085   _dg.init();
  2086   _packset.clear();
  2087   _disjoint_ptrs.clear();
  2088   _block.clear();
  2089   _data_entry.clear();
  2090   _mem_slice_head.clear();
  2091   _mem_slice_tail.clear();
  2092   _node_info.clear();
  2093   _align_to_ref = NULL;
  2094   _lpt = NULL;
  2095   _lp = NULL;
  2096   _bb = NULL;
  2097   _iv = NULL;
  2100 //------------------------------print_packset---------------------------
  2101 void SuperWord::print_packset() {
  2102 #ifndef PRODUCT
  2103   tty->print_cr("packset");
  2104   for (int i = 0; i < _packset.length(); i++) {
  2105     tty->print_cr("Pack: %d", i);
  2106     Node_List* p = _packset.at(i);
  2107     print_pack(p);
  2109 #endif
  2112 //------------------------------print_pack---------------------------
  2113 void SuperWord::print_pack(Node_List* p) {
  2114   for (uint i = 0; i < p->size(); i++) {
  2115     print_stmt(p->at(i));
  2119 //------------------------------print_bb---------------------------
  2120 void SuperWord::print_bb() {
  2121 #ifndef PRODUCT
  2122   tty->print_cr("\nBlock");
  2123   for (int i = 0; i < _block.length(); i++) {
  2124     Node* n = _block.at(i);
  2125     tty->print("%d ", i);
  2126     if (n) {
  2127       n->dump();
  2130 #endif
  2133 //------------------------------print_stmt---------------------------
  2134 void SuperWord::print_stmt(Node* s) {
  2135 #ifndef PRODUCT
  2136   tty->print(" align: %d \t", alignment(s));
  2137   s->dump();
  2138 #endif
  2141 //------------------------------blank---------------------------
  2142 char* SuperWord::blank(uint depth) {
  2143   static char blanks[101];
  2144   assert(depth < 101, "too deep");
  2145   for (uint i = 0; i < depth; i++) blanks[i] = ' ';
  2146   blanks[depth] = '\0';
  2147   return blanks;
  2151 //==============================SWPointer===========================
  2153 //----------------------------SWPointer------------------------
  2154 SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
  2155   _mem(mem), _slp(slp),  _base(NULL),  _adr(NULL),
  2156   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
  2158   Node* adr = mem->in(MemNode::Address);
  2159   if (!adr->is_AddP()) {
  2160     assert(!valid(), "too complex");
  2161     return;
  2163   // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
  2164   Node* base = adr->in(AddPNode::Base);
  2165   //unsafe reference could not be aligned appropriately without runtime checking
  2166   if (base == NULL || base->bottom_type() == Type::TOP) {
  2167     assert(!valid(), "unsafe access");
  2168     return;
  2170   for (int i = 0; i < 3; i++) {
  2171     if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
  2172       assert(!valid(), "too complex");
  2173       return;
  2175     adr = adr->in(AddPNode::Address);
  2176     if (base == adr || !adr->is_AddP()) {
  2177       break; // stop looking at addp's
  2180   _base = base;
  2181   _adr  = adr;
  2182   assert(valid(), "Usable");
  2185 // Following is used to create a temporary object during
  2186 // the pattern match of an address expression.
  2187 SWPointer::SWPointer(SWPointer* p) :
  2188   _mem(p->_mem), _slp(p->_slp),  _base(NULL),  _adr(NULL),
  2189   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
  2191 //------------------------scaled_iv_plus_offset--------------------
  2192 // Match: k*iv + offset
  2193 // where: k is a constant that maybe zero, and
  2194 //        offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
  2195 bool SWPointer::scaled_iv_plus_offset(Node* n) {
  2196   if (scaled_iv(n)) {
  2197     return true;
  2199   if (offset_plus_k(n)) {
  2200     return true;
  2202   int opc = n->Opcode();
  2203   if (opc == Op_AddI) {
  2204     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
  2205       return true;
  2207     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
  2208       return true;
  2210   } else if (opc == Op_SubI) {
  2211     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
  2212       return true;
  2214     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
  2215       _scale *= -1;
  2216       return true;
  2219   return false;
  2222 //----------------------------scaled_iv------------------------
  2223 // Match: k*iv where k is a constant that's not zero
  2224 bool SWPointer::scaled_iv(Node* n) {
  2225   if (_scale != 0) {
  2226     return false;  // already found a scale
  2228   if (n == iv()) {
  2229     _scale = 1;
  2230     return true;
  2232   int opc = n->Opcode();
  2233   if (opc == Op_MulI) {
  2234     if (n->in(1) == iv() && n->in(2)->is_Con()) {
  2235       _scale = n->in(2)->get_int();
  2236       return true;
  2237     } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
  2238       _scale = n->in(1)->get_int();
  2239       return true;
  2241   } else if (opc == Op_LShiftI) {
  2242     if (n->in(1) == iv() && n->in(2)->is_Con()) {
  2243       _scale = 1 << n->in(2)->get_int();
  2244       return true;
  2246   } else if (opc == Op_ConvI2L) {
  2247     if (scaled_iv_plus_offset(n->in(1))) {
  2248       return true;
  2250   } else if (opc == Op_LShiftL) {
  2251     if (!has_iv() && _invar == NULL) {
  2252       // Need to preserve the current _offset value, so
  2253       // create a temporary object for this expression subtree.
  2254       // Hacky, so should re-engineer the address pattern match.
  2255       SWPointer tmp(this);
  2256       if (tmp.scaled_iv_plus_offset(n->in(1))) {
  2257         if (tmp._invar == NULL) {
  2258           int mult = 1 << n->in(2)->get_int();
  2259           _scale   = tmp._scale  * mult;
  2260           _offset += tmp._offset * mult;
  2261           return true;
  2266   return false;
  2269 //----------------------------offset_plus_k------------------------
  2270 // Match: offset is (k [+/- invariant])
  2271 // where k maybe zero and invariant is optional, but not both.
  2272 bool SWPointer::offset_plus_k(Node* n, bool negate) {
  2273   int opc = n->Opcode();
  2274   if (opc == Op_ConI) {
  2275     _offset += negate ? -(n->get_int()) : n->get_int();
  2276     return true;
  2277   } else if (opc == Op_ConL) {
  2278     // Okay if value fits into an int
  2279     const TypeLong* t = n->find_long_type();
  2280     if (t->higher_equal(TypeLong::INT)) {
  2281       jlong loff = n->get_long();
  2282       jint  off  = (jint)loff;
  2283       _offset += negate ? -off : loff;
  2284       return true;
  2286     return false;
  2288   if (_invar != NULL) return false; // already have an invariant
  2289   if (opc == Op_AddI) {
  2290     if (n->in(2)->is_Con() && invariant(n->in(1))) {
  2291       _negate_invar = negate;
  2292       _invar = n->in(1);
  2293       _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
  2294       return true;
  2295     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
  2296       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
  2297       _negate_invar = negate;
  2298       _invar = n->in(2);
  2299       return true;
  2302   if (opc == Op_SubI) {
  2303     if (n->in(2)->is_Con() && invariant(n->in(1))) {
  2304       _negate_invar = negate;
  2305       _invar = n->in(1);
  2306       _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
  2307       return true;
  2308     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
  2309       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
  2310       _negate_invar = !negate;
  2311       _invar = n->in(2);
  2312       return true;
  2315   if (invariant(n)) {
  2316     _negate_invar = negate;
  2317     _invar = n;
  2318     return true;
  2320   return false;
  2323 //----------------------------print------------------------
  2324 void SWPointer::print() {
  2325 #ifndef PRODUCT
  2326   tty->print("base: %d  adr: %d  scale: %d  offset: %d  invar: %c%d\n",
  2327              _base != NULL ? _base->_idx : 0,
  2328              _adr  != NULL ? _adr->_idx  : 0,
  2329              _scale, _offset,
  2330              _negate_invar?'-':'+',
  2331              _invar != NULL ? _invar->_idx : 0);
  2332 #endif
  2335 // ========================= OrderedPair =====================
  2337 const OrderedPair OrderedPair::initial;
  2339 // ========================= SWNodeInfo =====================
  2341 const SWNodeInfo SWNodeInfo::initial;
  2344 // ============================ DepGraph ===========================
  2346 //------------------------------make_node---------------------------
  2347 // Make a new dependence graph node for an ideal node.
  2348 DepMem* DepGraph::make_node(Node* node) {
  2349   DepMem* m = new (_arena) DepMem(node);
  2350   if (node != NULL) {
  2351     assert(_map.at_grow(node->_idx) == NULL, "one init only");
  2352     _map.at_put_grow(node->_idx, m);
  2354   return m;
  2357 //------------------------------make_edge---------------------------
  2358 // Make a new dependence graph edge from dpred -> dsucc
  2359 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
  2360   DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
  2361   dpred->set_out_head(e);
  2362   dsucc->set_in_head(e);
  2363   return e;
  2366 // ========================== DepMem ========================
  2368 //------------------------------in_cnt---------------------------
  2369 int DepMem::in_cnt() {
  2370   int ct = 0;
  2371   for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
  2372   return ct;
  2375 //------------------------------out_cnt---------------------------
  2376 int DepMem::out_cnt() {
  2377   int ct = 0;
  2378   for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
  2379   return ct;
  2382 //------------------------------print-----------------------------
  2383 void DepMem::print() {
  2384 #ifndef PRODUCT
  2385   tty->print("  DepNode %d (", _node->_idx);
  2386   for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
  2387     Node* pred = p->pred()->node();
  2388     tty->print(" %d", pred != NULL ? pred->_idx : 0);
  2390   tty->print(") [");
  2391   for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
  2392     Node* succ = s->succ()->node();
  2393     tty->print(" %d", succ != NULL ? succ->_idx : 0);
  2395   tty->print_cr(" ]");
  2396 #endif
  2399 // =========================== DepEdge =========================
  2401 //------------------------------DepPreds---------------------------
  2402 void DepEdge::print() {
  2403 #ifndef PRODUCT
  2404   tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
  2405 #endif
  2408 // =========================== DepPreds =========================
  2409 // Iterator over predecessor edges in the dependence graph.
  2411 //------------------------------DepPreds---------------------------
  2412 DepPreds::DepPreds(Node* n, DepGraph& dg) {
  2413   _n = n;
  2414   _done = false;
  2415   if (_n->is_Store() || _n->is_Load()) {
  2416     _next_idx = MemNode::Address;
  2417     _end_idx  = n->req();
  2418     _dep_next = dg.dep(_n)->in_head();
  2419   } else if (_n->is_Mem()) {
  2420     _next_idx = 0;
  2421     _end_idx  = 0;
  2422     _dep_next = dg.dep(_n)->in_head();
  2423   } else {
  2424     _next_idx = 1;
  2425     _end_idx  = _n->req();
  2426     _dep_next = NULL;
  2428   next();
  2431 //------------------------------next---------------------------
  2432 void DepPreds::next() {
  2433   if (_dep_next != NULL) {
  2434     _current  = _dep_next->pred()->node();
  2435     _dep_next = _dep_next->next_in();
  2436   } else if (_next_idx < _end_idx) {
  2437     _current  = _n->in(_next_idx++);
  2438   } else {
  2439     _done = true;
  2443 // =========================== DepSuccs =========================
  2444 // Iterator over successor edges in the dependence graph.
  2446 //------------------------------DepSuccs---------------------------
  2447 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
  2448   _n = n;
  2449   _done = false;
  2450   if (_n->is_Load()) {
  2451     _next_idx = 0;
  2452     _end_idx  = _n->outcnt();
  2453     _dep_next = dg.dep(_n)->out_head();
  2454   } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
  2455     _next_idx = 0;
  2456     _end_idx  = 0;
  2457     _dep_next = dg.dep(_n)->out_head();
  2458   } else {
  2459     _next_idx = 0;
  2460     _end_idx  = _n->outcnt();
  2461     _dep_next = NULL;
  2463   next();
  2466 //-------------------------------next---------------------------
  2467 void DepSuccs::next() {
  2468   if (_dep_next != NULL) {
  2469     _current  = _dep_next->succ()->node();
  2470     _dep_next = _dep_next->next_out();
  2471   } else if (_next_idx < _end_idx) {
  2472     _current  = _n->raw_out(_next_idx++);
  2473   } else {
  2474     _done = true;

mercurial