src/share/vm/gc_implementation/parallelScavenge/parallelScavengeHeap.cpp

Thu, 28 Jun 2012 17:03:16 -0400

author
zgu
date
Thu, 28 Jun 2012 17:03:16 -0400
changeset 3900
d2a62e0f25eb
parent 3711
b632e80fc9dc
child 4037
da91efe96a93
permissions
-rw-r--r--

6995781: Native Memory Tracking (Phase 1)
7151532: DCmd for hotspot native memory tracking
Summary: Implementation of native memory tracking phase 1, which tracks VM native memory usage, and related DCmd
Reviewed-by: acorn, coleenp, fparain

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/parallelScavenge/adjoiningGenerations.hpp"
    27 #include "gc_implementation/parallelScavenge/adjoiningVirtualSpaces.hpp"
    28 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
    29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
    30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
    31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
    32 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
    33 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
    34 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
    35 #include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
    36 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
    37 #include "gc_implementation/parallelScavenge/vmPSOperations.hpp"
    38 #include "memory/gcLocker.inline.hpp"
    39 #include "oops/oop.inline.hpp"
    40 #include "runtime/handles.inline.hpp"
    41 #include "runtime/java.hpp"
    42 #include "runtime/vmThread.hpp"
    43 #include "services/memTracker.hpp"
    44 #include "utilities/vmError.hpp"
    46 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
    47 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
    48 PSPermGen*   ParallelScavengeHeap::_perm_gen = NULL;
    49 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
    50 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
    51 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
    52 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
    54 static void trace_gen_sizes(const char* const str,
    55                             size_t pg_min, size_t pg_max,
    56                             size_t og_min, size_t og_max,
    57                             size_t yg_min, size_t yg_max)
    58 {
    59   if (TracePageSizes) {
    60     tty->print_cr("%s:  " SIZE_FORMAT "," SIZE_FORMAT " "
    61                   SIZE_FORMAT "," SIZE_FORMAT " "
    62                   SIZE_FORMAT "," SIZE_FORMAT " "
    63                   SIZE_FORMAT,
    64                   str, pg_min / K, pg_max / K,
    65                   og_min / K, og_max / K,
    66                   yg_min / K, yg_max / K,
    67                   (pg_max + og_max + yg_max) / K);
    68   }
    69 }
    71 jint ParallelScavengeHeap::initialize() {
    72   CollectedHeap::pre_initialize();
    74   // Cannot be initialized until after the flags are parsed
    75   // GenerationSizer flag_parser;
    76   _collector_policy = new GenerationSizer();
    78   size_t yg_min_size = _collector_policy->min_young_gen_size();
    79   size_t yg_max_size = _collector_policy->max_young_gen_size();
    80   size_t og_min_size = _collector_policy->min_old_gen_size();
    81   size_t og_max_size = _collector_policy->max_old_gen_size();
    82   // Why isn't there a min_perm_gen_size()?
    83   size_t pg_min_size = _collector_policy->perm_gen_size();
    84   size_t pg_max_size = _collector_policy->max_perm_gen_size();
    86   trace_gen_sizes("ps heap raw",
    87                   pg_min_size, pg_max_size,
    88                   og_min_size, og_max_size,
    89                   yg_min_size, yg_max_size);
    91   // The ReservedSpace ctor used below requires that the page size for the perm
    92   // gen is <= the page size for the rest of the heap (young + old gens).
    93   const size_t og_page_sz = os::page_size_for_region(yg_min_size + og_min_size,
    94                                                      yg_max_size + og_max_size,
    95                                                      8);
    96   const size_t pg_page_sz = MIN2(os::page_size_for_region(pg_min_size,
    97                                                           pg_max_size, 16),
    98                                  og_page_sz);
   100   const size_t pg_align = set_alignment(_perm_gen_alignment,  pg_page_sz);
   101   const size_t og_align = set_alignment(_old_gen_alignment,   og_page_sz);
   102   const size_t yg_align = set_alignment(_young_gen_alignment, og_page_sz);
   104   // Update sizes to reflect the selected page size(s).
   105   //
   106   // NEEDS_CLEANUP.  The default TwoGenerationCollectorPolicy uses NewRatio; it
   107   // should check UseAdaptiveSizePolicy.  Changes from generationSizer could
   108   // move to the common code.
   109   yg_min_size = align_size_up(yg_min_size, yg_align);
   110   yg_max_size = align_size_up(yg_max_size, yg_align);
   111   size_t yg_cur_size =
   112     align_size_up(_collector_policy->young_gen_size(), yg_align);
   113   yg_cur_size = MAX2(yg_cur_size, yg_min_size);
   115   og_min_size = align_size_up(og_min_size, og_align);
   116   // Align old gen size down to preserve specified heap size.
   117   assert(og_align == yg_align, "sanity");
   118   og_max_size = align_size_down(og_max_size, og_align);
   119   og_max_size = MAX2(og_max_size, og_min_size);
   120   size_t og_cur_size =
   121     align_size_down(_collector_policy->old_gen_size(), og_align);
   122   og_cur_size = MAX2(og_cur_size, og_min_size);
   124   pg_min_size = align_size_up(pg_min_size, pg_align);
   125   pg_max_size = align_size_up(pg_max_size, pg_align);
   126   size_t pg_cur_size = pg_min_size;
   128   trace_gen_sizes("ps heap rnd",
   129                   pg_min_size, pg_max_size,
   130                   og_min_size, og_max_size,
   131                   yg_min_size, yg_max_size);
   133   const size_t total_reserved = pg_max_size + og_max_size + yg_max_size;
   134   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
   136   // The main part of the heap (old gen + young gen) can often use a larger page
   137   // size than is needed or wanted for the perm gen.  Use the "compound
   138   // alignment" ReservedSpace ctor to avoid having to use the same page size for
   139   // all gens.
   141   ReservedHeapSpace heap_rs(pg_max_size, pg_align, og_max_size + yg_max_size,
   142                             og_align, addr);
   144   if (UseCompressedOops) {
   145     if (addr != NULL && !heap_rs.is_reserved()) {
   146       // Failed to reserve at specified address - the requested memory
   147       // region is taken already, for example, by 'java' launcher.
   148       // Try again to reserver heap higher.
   149       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
   150       ReservedHeapSpace heap_rs0(pg_max_size, pg_align, og_max_size + yg_max_size,
   151                                  og_align, addr);
   152       if (addr != NULL && !heap_rs0.is_reserved()) {
   153         // Failed to reserve at specified address again - give up.
   154         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
   155         assert(addr == NULL, "");
   156         ReservedHeapSpace heap_rs1(pg_max_size, pg_align, og_max_size + yg_max_size,
   157                                    og_align, addr);
   158         heap_rs = heap_rs1;
   159       } else {
   160         heap_rs = heap_rs0;
   161       }
   162     }
   163   }
   165   MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtJavaHeap);
   167   os::trace_page_sizes("ps perm", pg_min_size, pg_max_size, pg_page_sz,
   168                        heap_rs.base(), pg_max_size);
   169   os::trace_page_sizes("ps main", og_min_size + yg_min_size,
   170                        og_max_size + yg_max_size, og_page_sz,
   171                        heap_rs.base() + pg_max_size,
   172                        heap_rs.size() - pg_max_size);
   173   if (!heap_rs.is_reserved()) {
   174     vm_shutdown_during_initialization(
   175       "Could not reserve enough space for object heap");
   176     return JNI_ENOMEM;
   177   }
   179   _reserved = MemRegion((HeapWord*)heap_rs.base(),
   180                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
   182   CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3);
   183   _barrier_set = barrier_set;
   184   oopDesc::set_bs(_barrier_set);
   185   if (_barrier_set == NULL) {
   186     vm_shutdown_during_initialization(
   187       "Could not reserve enough space for barrier set");
   188     return JNI_ENOMEM;
   189   }
   191   // Initial young gen size is 4 Mb
   192   //
   193   // XXX - what about flag_parser.young_gen_size()?
   194   const size_t init_young_size = align_size_up(4 * M, yg_align);
   195   yg_cur_size = MAX2(MIN2(init_young_size, yg_max_size), yg_cur_size);
   197   // Split the reserved space into perm gen and the main heap (everything else).
   198   // The main heap uses a different alignment.
   199   ReservedSpace perm_rs = heap_rs.first_part(pg_max_size);
   200   ReservedSpace main_rs = heap_rs.last_part(pg_max_size, og_align);
   202   // Make up the generations
   203   // Calculate the maximum size that a generation can grow.  This
   204   // includes growth into the other generation.  Note that the
   205   // parameter _max_gen_size is kept as the maximum
   206   // size of the generation as the boundaries currently stand.
   207   // _max_gen_size is still used as that value.
   208   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
   209   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
   211   _gens = new AdjoiningGenerations(main_rs,
   212                                    og_cur_size,
   213                                    og_min_size,
   214                                    og_max_size,
   215                                    yg_cur_size,
   216                                    yg_min_size,
   217                                    yg_max_size,
   218                                    yg_align);
   220   _old_gen = _gens->old_gen();
   221   _young_gen = _gens->young_gen();
   223   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
   224   const size_t old_capacity = _old_gen->capacity_in_bytes();
   225   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
   226   _size_policy =
   227     new PSAdaptiveSizePolicy(eden_capacity,
   228                              initial_promo_size,
   229                              young_gen()->to_space()->capacity_in_bytes(),
   230                              intra_heap_alignment(),
   231                              max_gc_pause_sec,
   232                              max_gc_minor_pause_sec,
   233                              GCTimeRatio
   234                              );
   236   _perm_gen = new PSPermGen(perm_rs,
   237                             pg_align,
   238                             pg_cur_size,
   239                             pg_cur_size,
   240                             pg_max_size,
   241                             "perm", 2);
   243   assert(!UseAdaptiveGCBoundary ||
   244     (old_gen()->virtual_space()->high_boundary() ==
   245      young_gen()->virtual_space()->low_boundary()),
   246     "Boundaries must meet");
   247   // initialize the policy counters - 2 collectors, 3 generations
   248   _gc_policy_counters =
   249     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
   250   _psh = this;
   252   // Set up the GCTaskManager
   253   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
   255   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
   256     return JNI_ENOMEM;
   257   }
   259   return JNI_OK;
   260 }
   262 void ParallelScavengeHeap::post_initialize() {
   263   // Need to init the tenuring threshold
   264   PSScavenge::initialize();
   265   if (UseParallelOldGC) {
   266     PSParallelCompact::post_initialize();
   267   } else {
   268     PSMarkSweep::initialize();
   269   }
   270   PSPromotionManager::initialize();
   271 }
   273 void ParallelScavengeHeap::update_counters() {
   274   young_gen()->update_counters();
   275   old_gen()->update_counters();
   276   perm_gen()->update_counters();
   277 }
   279 size_t ParallelScavengeHeap::capacity() const {
   280   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
   281   return value;
   282 }
   284 size_t ParallelScavengeHeap::used() const {
   285   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
   286   return value;
   287 }
   289 bool ParallelScavengeHeap::is_maximal_no_gc() const {
   290   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
   291 }
   294 size_t ParallelScavengeHeap::permanent_capacity() const {
   295   return perm_gen()->capacity_in_bytes();
   296 }
   298 size_t ParallelScavengeHeap::permanent_used() const {
   299   return perm_gen()->used_in_bytes();
   300 }
   302 size_t ParallelScavengeHeap::max_capacity() const {
   303   size_t estimated = reserved_region().byte_size();
   304   estimated -= perm_gen()->reserved().byte_size();
   305   if (UseAdaptiveSizePolicy) {
   306     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
   307   } else {
   308     estimated -= young_gen()->to_space()->capacity_in_bytes();
   309   }
   310   return MAX2(estimated, capacity());
   311 }
   313 bool ParallelScavengeHeap::is_in(const void* p) const {
   314   if (young_gen()->is_in(p)) {
   315     return true;
   316   }
   318   if (old_gen()->is_in(p)) {
   319     return true;
   320   }
   322   if (perm_gen()->is_in(p)) {
   323     return true;
   324   }
   326   return false;
   327 }
   329 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
   330   if (young_gen()->is_in_reserved(p)) {
   331     return true;
   332   }
   334   if (old_gen()->is_in_reserved(p)) {
   335     return true;
   336   }
   338   if (perm_gen()->is_in_reserved(p)) {
   339     return true;
   340   }
   342   return false;
   343 }
   345 bool ParallelScavengeHeap::is_scavengable(const void* addr) {
   346   return is_in_young((oop)addr);
   347 }
   349 #ifdef ASSERT
   350 // Don't implement this by using is_in_young().  This method is used
   351 // in some cases to check that is_in_young() is correct.
   352 bool ParallelScavengeHeap::is_in_partial_collection(const void *p) {
   353   assert(is_in_reserved(p) || p == NULL,
   354     "Does not work if address is non-null and outside of the heap");
   355   // The order of the generations is perm (low addr), old, young (high addr)
   356   return p >= old_gen()->reserved().end();
   357 }
   358 #endif
   360 // There are two levels of allocation policy here.
   361 //
   362 // When an allocation request fails, the requesting thread must invoke a VM
   363 // operation, transfer control to the VM thread, and await the results of a
   364 // garbage collection. That is quite expensive, and we should avoid doing it
   365 // multiple times if possible.
   366 //
   367 // To accomplish this, we have a basic allocation policy, and also a
   368 // failed allocation policy.
   369 //
   370 // The basic allocation policy controls how you allocate memory without
   371 // attempting garbage collection. It is okay to grab locks and
   372 // expand the heap, if that can be done without coming to a safepoint.
   373 // It is likely that the basic allocation policy will not be very
   374 // aggressive.
   375 //
   376 // The failed allocation policy is invoked from the VM thread after
   377 // the basic allocation policy is unable to satisfy a mem_allocate
   378 // request. This policy needs to cover the entire range of collection,
   379 // heap expansion, and out-of-memory conditions. It should make every
   380 // attempt to allocate the requested memory.
   382 // Basic allocation policy. Should never be called at a safepoint, or
   383 // from the VM thread.
   384 //
   385 // This method must handle cases where many mem_allocate requests fail
   386 // simultaneously. When that happens, only one VM operation will succeed,
   387 // and the rest will not be executed. For that reason, this method loops
   388 // during failed allocation attempts. If the java heap becomes exhausted,
   389 // we rely on the size_policy object to force a bail out.
   390 HeapWord* ParallelScavengeHeap::mem_allocate(
   391                                      size_t size,
   392                                      bool* gc_overhead_limit_was_exceeded) {
   393   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
   394   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
   395   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   397   // In general gc_overhead_limit_was_exceeded should be false so
   398   // set it so here and reset it to true only if the gc time
   399   // limit is being exceeded as checked below.
   400   *gc_overhead_limit_was_exceeded = false;
   402   HeapWord* result = young_gen()->allocate(size);
   404   uint loop_count = 0;
   405   uint gc_count = 0;
   407   while (result == NULL) {
   408     // We don't want to have multiple collections for a single filled generation.
   409     // To prevent this, each thread tracks the total_collections() value, and if
   410     // the count has changed, does not do a new collection.
   411     //
   412     // The collection count must be read only while holding the heap lock. VM
   413     // operations also hold the heap lock during collections. There is a lock
   414     // contention case where thread A blocks waiting on the Heap_lock, while
   415     // thread B is holding it doing a collection. When thread A gets the lock,
   416     // the collection count has already changed. To prevent duplicate collections,
   417     // The policy MUST attempt allocations during the same period it reads the
   418     // total_collections() value!
   419     {
   420       MutexLocker ml(Heap_lock);
   421       gc_count = Universe::heap()->total_collections();
   423       result = young_gen()->allocate(size);
   424       if (result != NULL) {
   425         return result;
   426       }
   428       // If certain conditions hold, try allocating from the old gen.
   429       result = mem_allocate_old_gen(size);
   430       if (result != NULL) {
   431         return result;
   432       }
   434       // Failed to allocate without a gc.
   435       if (GC_locker::is_active_and_needs_gc()) {
   436         // If this thread is not in a jni critical section, we stall
   437         // the requestor until the critical section has cleared and
   438         // GC allowed. When the critical section clears, a GC is
   439         // initiated by the last thread exiting the critical section; so
   440         // we retry the allocation sequence from the beginning of the loop,
   441         // rather than causing more, now probably unnecessary, GC attempts.
   442         JavaThread* jthr = JavaThread::current();
   443         if (!jthr->in_critical()) {
   444           MutexUnlocker mul(Heap_lock);
   445           GC_locker::stall_until_clear();
   446           continue;
   447         } else {
   448           if (CheckJNICalls) {
   449             fatal("Possible deadlock due to allocating while"
   450                   " in jni critical section");
   451           }
   452           return NULL;
   453         }
   454       }
   455     }
   457     if (result == NULL) {
   458       // Generate a VM operation
   459       VM_ParallelGCFailedAllocation op(size, gc_count);
   460       VMThread::execute(&op);
   462       // Did the VM operation execute? If so, return the result directly.
   463       // This prevents us from looping until time out on requests that can
   464       // not be satisfied.
   465       if (op.prologue_succeeded()) {
   466         assert(Universe::heap()->is_in_or_null(op.result()),
   467           "result not in heap");
   469         // If GC was locked out during VM operation then retry allocation
   470         // and/or stall as necessary.
   471         if (op.gc_locked()) {
   472           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
   473           continue;  // retry and/or stall as necessary
   474         }
   476         // Exit the loop if the gc time limit has been exceeded.
   477         // The allocation must have failed above ("result" guarding
   478         // this path is NULL) and the most recent collection has exceeded the
   479         // gc overhead limit (although enough may have been collected to
   480         // satisfy the allocation).  Exit the loop so that an out-of-memory
   481         // will be thrown (return a NULL ignoring the contents of
   482         // op.result()),
   483         // but clear gc_overhead_limit_exceeded so that the next collection
   484         // starts with a clean slate (i.e., forgets about previous overhead
   485         // excesses).  Fill op.result() with a filler object so that the
   486         // heap remains parsable.
   487         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
   488         const bool softrefs_clear = collector_policy()->all_soft_refs_clear();
   489         assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
   490         if (limit_exceeded && softrefs_clear) {
   491           *gc_overhead_limit_was_exceeded = true;
   492           size_policy()->set_gc_overhead_limit_exceeded(false);
   493           if (PrintGCDetails && Verbose) {
   494             gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
   495               "return NULL because gc_overhead_limit_exceeded is set");
   496           }
   497           if (op.result() != NULL) {
   498             CollectedHeap::fill_with_object(op.result(), size);
   499           }
   500           return NULL;
   501         }
   503         return op.result();
   504       }
   505     }
   507     // The policy object will prevent us from looping forever. If the
   508     // time spent in gc crosses a threshold, we will bail out.
   509     loop_count++;
   510     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
   511         (loop_count % QueuedAllocationWarningCount == 0)) {
   512       warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
   513               " size=%d", loop_count, size);
   514     }
   515   }
   517   return result;
   518 }
   520 // A "death march" is a series of ultra-slow allocations in which a full gc is
   521 // done before each allocation, and after the full gc the allocation still
   522 // cannot be satisfied from the young gen.  This routine detects that condition;
   523 // it should be called after a full gc has been done and the allocation
   524 // attempted from the young gen. The parameter 'addr' should be the result of
   525 // that young gen allocation attempt.
   526 void
   527 ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
   528   if (addr != NULL) {
   529     _death_march_count = 0;  // death march has ended
   530   } else if (_death_march_count == 0) {
   531     if (should_alloc_in_eden(size)) {
   532       _death_march_count = 1;    // death march has started
   533     }
   534   }
   535 }
   537 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
   538   if (!should_alloc_in_eden(size) || GC_locker::is_active_and_needs_gc()) {
   539     // Size is too big for eden, or gc is locked out.
   540     return old_gen()->allocate(size);
   541   }
   543   // If a "death march" is in progress, allocate from the old gen a limited
   544   // number of times before doing a GC.
   545   if (_death_march_count > 0) {
   546     if (_death_march_count < 64) {
   547       ++_death_march_count;
   548       return old_gen()->allocate(size);
   549     } else {
   550       _death_march_count = 0;
   551     }
   552   }
   553   return NULL;
   554 }
   556 // Failed allocation policy. Must be called from the VM thread, and
   557 // only at a safepoint! Note that this method has policy for allocation
   558 // flow, and NOT collection policy. So we do not check for gc collection
   559 // time over limit here, that is the responsibility of the heap specific
   560 // collection methods. This method decides where to attempt allocations,
   561 // and when to attempt collections, but no collection specific policy.
   562 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
   563   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   564   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   565   assert(!Universe::heap()->is_gc_active(), "not reentrant");
   566   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   568   // We assume that allocation in eden will fail unless we collect.
   570   // First level allocation failure, scavenge and allocate in young gen.
   571   GCCauseSetter gccs(this, GCCause::_allocation_failure);
   572   const bool invoked_full_gc = PSScavenge::invoke();
   573   HeapWord* result = young_gen()->allocate(size);
   575   // Second level allocation failure.
   576   //   Mark sweep and allocate in young generation.
   577   if (result == NULL && !invoked_full_gc) {
   578     invoke_full_gc(false);
   579     result = young_gen()->allocate(size);
   580   }
   582   death_march_check(result, size);
   584   // Third level allocation failure.
   585   //   After mark sweep and young generation allocation failure,
   586   //   allocate in old generation.
   587   if (result == NULL) {
   588     result = old_gen()->allocate(size);
   589   }
   591   // Fourth level allocation failure. We're running out of memory.
   592   //   More complete mark sweep and allocate in young generation.
   593   if (result == NULL) {
   594     invoke_full_gc(true);
   595     result = young_gen()->allocate(size);
   596   }
   598   // Fifth level allocation failure.
   599   //   After more complete mark sweep, allocate in old generation.
   600   if (result == NULL) {
   601     result = old_gen()->allocate(size);
   602   }
   604   return result;
   605 }
   607 //
   608 // This is the policy loop for allocating in the permanent generation.
   609 // If the initial allocation fails, we create a vm operation which will
   610 // cause a collection.
   611 HeapWord* ParallelScavengeHeap::permanent_mem_allocate(size_t size) {
   612   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
   613   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
   614   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   616   HeapWord* result;
   618   uint loop_count = 0;
   619   uint gc_count = 0;
   620   uint full_gc_count = 0;
   622   do {
   623     // We don't want to have multiple collections for a single filled generation.
   624     // To prevent this, each thread tracks the total_collections() value, and if
   625     // the count has changed, does not do a new collection.
   626     //
   627     // The collection count must be read only while holding the heap lock. VM
   628     // operations also hold the heap lock during collections. There is a lock
   629     // contention case where thread A blocks waiting on the Heap_lock, while
   630     // thread B is holding it doing a collection. When thread A gets the lock,
   631     // the collection count has already changed. To prevent duplicate collections,
   632     // The policy MUST attempt allocations during the same period it reads the
   633     // total_collections() value!
   634     {
   635       MutexLocker ml(Heap_lock);
   636       gc_count      = Universe::heap()->total_collections();
   637       full_gc_count = Universe::heap()->total_full_collections();
   639       result = perm_gen()->allocate_permanent(size);
   641       if (result != NULL) {
   642         return result;
   643       }
   645       if (GC_locker::is_active_and_needs_gc()) {
   646         // If this thread is not in a jni critical section, we stall
   647         // the requestor until the critical section has cleared and
   648         // GC allowed. When the critical section clears, a GC is
   649         // initiated by the last thread exiting the critical section; so
   650         // we retry the allocation sequence from the beginning of the loop,
   651         // rather than causing more, now probably unnecessary, GC attempts.
   652         JavaThread* jthr = JavaThread::current();
   653         if (!jthr->in_critical()) {
   654           MutexUnlocker mul(Heap_lock);
   655           GC_locker::stall_until_clear();
   656           continue;
   657         } else {
   658           if (CheckJNICalls) {
   659             fatal("Possible deadlock due to allocating while"
   660                   " in jni critical section");
   661           }
   662           return NULL;
   663         }
   664       }
   665     }
   667     if (result == NULL) {
   669       // Exit the loop if the gc time limit has been exceeded.
   670       // The allocation must have failed above (result must be NULL),
   671       // and the most recent collection must have exceeded the
   672       // gc time limit.  Exit the loop so that an out-of-memory
   673       // will be thrown (returning a NULL will do that), but
   674       // clear gc_overhead_limit_exceeded so that the next collection
   675       // will succeeded if the applications decides to handle the
   676       // out-of-memory and tries to go on.
   677       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
   678       if (limit_exceeded) {
   679         size_policy()->set_gc_overhead_limit_exceeded(false);
   680         if (PrintGCDetails && Verbose) {
   681           gclog_or_tty->print_cr("ParallelScavengeHeap::permanent_mem_allocate:"
   682             " return NULL because gc_overhead_limit_exceeded is set");
   683         }
   684         assert(result == NULL, "Allocation did not fail");
   685         return NULL;
   686       }
   688       // Generate a VM operation
   689       VM_ParallelGCFailedPermanentAllocation op(size, gc_count, full_gc_count);
   690       VMThread::execute(&op);
   692       // Did the VM operation execute? If so, return the result directly.
   693       // This prevents us from looping until time out on requests that can
   694       // not be satisfied.
   695       if (op.prologue_succeeded()) {
   696         assert(Universe::heap()->is_in_permanent_or_null(op.result()),
   697           "result not in heap");
   698         // If GC was locked out during VM operation then retry allocation
   699         // and/or stall as necessary.
   700         if (op.gc_locked()) {
   701           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
   702           continue;  // retry and/or stall as necessary
   703         }
   704         // If a NULL results is being returned, an out-of-memory
   705         // will be thrown now.  Clear the gc_overhead_limit_exceeded
   706         // flag to avoid the following situation.
   707         //      gc_overhead_limit_exceeded is set during a collection
   708         //      the collection fails to return enough space and an OOM is thrown
   709         //      a subsequent GC prematurely throws an out-of-memory because
   710         //        the gc_overhead_limit_exceeded counts did not start
   711         //        again from 0.
   712         if (op.result() == NULL) {
   713           size_policy()->reset_gc_overhead_limit_count();
   714         }
   715         return op.result();
   716       }
   717     }
   719     // The policy object will prevent us from looping forever. If the
   720     // time spent in gc crosses a threshold, we will bail out.
   721     loop_count++;
   722     if ((QueuedAllocationWarningCount > 0) &&
   723         (loop_count % QueuedAllocationWarningCount == 0)) {
   724       warning("ParallelScavengeHeap::permanent_mem_allocate retries %d times \n\t"
   725               " size=%d", loop_count, size);
   726     }
   727   } while (result == NULL);
   729   return result;
   730 }
   732 //
   733 // This is the policy code for permanent allocations which have failed
   734 // and require a collection. Note that just as in failed_mem_allocate,
   735 // we do not set collection policy, only where & when to allocate and
   736 // collect.
   737 HeapWord* ParallelScavengeHeap::failed_permanent_mem_allocate(size_t size) {
   738   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   739   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   740   assert(!Universe::heap()->is_gc_active(), "not reentrant");
   741   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   742   assert(size > perm_gen()->free_in_words(), "Allocation should fail");
   744   // We assume (and assert!) that an allocation at this point will fail
   745   // unless we collect.
   747   // First level allocation failure.  Mark-sweep and allocate in perm gen.
   748   GCCauseSetter gccs(this, GCCause::_allocation_failure);
   749   invoke_full_gc(false);
   750   HeapWord* result = perm_gen()->allocate_permanent(size);
   752   // Second level allocation failure. We're running out of memory.
   753   if (result == NULL) {
   754     invoke_full_gc(true);
   755     result = perm_gen()->allocate_permanent(size);
   756   }
   758   return result;
   759 }
   761 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
   762   CollectedHeap::ensure_parsability(retire_tlabs);
   763   young_gen()->eden_space()->ensure_parsability();
   764 }
   766 size_t ParallelScavengeHeap::unsafe_max_alloc() {
   767   return young_gen()->eden_space()->free_in_bytes();
   768 }
   770 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
   771   return young_gen()->eden_space()->tlab_capacity(thr);
   772 }
   774 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
   775   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
   776 }
   778 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
   779   return young_gen()->allocate(size);
   780 }
   782 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
   783   CollectedHeap::accumulate_statistics_all_tlabs();
   784 }
   786 void ParallelScavengeHeap::resize_all_tlabs() {
   787   CollectedHeap::resize_all_tlabs();
   788 }
   790 bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
   791   // We don't need barriers for stores to objects in the
   792   // young gen and, a fortiori, for initializing stores to
   793   // objects therein.
   794   return is_in_young(new_obj);
   795 }
   797 // This method is used by System.gc() and JVMTI.
   798 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
   799   assert(!Heap_lock->owned_by_self(),
   800     "this thread should not own the Heap_lock");
   802   unsigned int gc_count      = 0;
   803   unsigned int full_gc_count = 0;
   804   {
   805     MutexLocker ml(Heap_lock);
   806     // This value is guarded by the Heap_lock
   807     gc_count      = Universe::heap()->total_collections();
   808     full_gc_count = Universe::heap()->total_full_collections();
   809   }
   811   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
   812   VMThread::execute(&op);
   813 }
   815 // This interface assumes that it's being called by the
   816 // vm thread. It collects the heap assuming that the
   817 // heap lock is already held and that we are executing in
   818 // the context of the vm thread.
   819 void ParallelScavengeHeap::collect_as_vm_thread(GCCause::Cause cause) {
   820   assert(Thread::current()->is_VM_thread(), "Precondition#1");
   821   assert(Heap_lock->is_locked(), "Precondition#2");
   822   GCCauseSetter gcs(this, cause);
   823   switch (cause) {
   824     case GCCause::_heap_inspection:
   825     case GCCause::_heap_dump: {
   826       HandleMark hm;
   827       invoke_full_gc(false);
   828       break;
   829     }
   830     default: // XXX FIX ME
   831       ShouldNotReachHere();
   832   }
   833 }
   836 void ParallelScavengeHeap::oop_iterate(OopClosure* cl) {
   837   Unimplemented();
   838 }
   840 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
   841   young_gen()->object_iterate(cl);
   842   old_gen()->object_iterate(cl);
   843   perm_gen()->object_iterate(cl);
   844 }
   846 void ParallelScavengeHeap::permanent_oop_iterate(OopClosure* cl) {
   847   Unimplemented();
   848 }
   850 void ParallelScavengeHeap::permanent_object_iterate(ObjectClosure* cl) {
   851   perm_gen()->object_iterate(cl);
   852 }
   854 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
   855   if (young_gen()->is_in_reserved(addr)) {
   856     assert(young_gen()->is_in(addr),
   857            "addr should be in allocated part of young gen");
   858     // called from os::print_location by find or VMError
   859     if (Debugging || VMError::fatal_error_in_progress())  return NULL;
   860     Unimplemented();
   861   } else if (old_gen()->is_in_reserved(addr)) {
   862     assert(old_gen()->is_in(addr),
   863            "addr should be in allocated part of old gen");
   864     return old_gen()->start_array()->object_start((HeapWord*)addr);
   865   } else if (perm_gen()->is_in_reserved(addr)) {
   866     assert(perm_gen()->is_in(addr),
   867            "addr should be in allocated part of perm gen");
   868     return perm_gen()->start_array()->object_start((HeapWord*)addr);
   869   }
   870   return 0;
   871 }
   873 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
   874   return oop(addr)->size();
   875 }
   877 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
   878   return block_start(addr) == addr;
   879 }
   881 jlong ParallelScavengeHeap::millis_since_last_gc() {
   882   return UseParallelOldGC ?
   883     PSParallelCompact::millis_since_last_gc() :
   884     PSMarkSweep::millis_since_last_gc();
   885 }
   887 void ParallelScavengeHeap::prepare_for_verify() {
   888   ensure_parsability(false);  // no need to retire TLABs for verification
   889 }
   891 void ParallelScavengeHeap::print_on(outputStream* st) const {
   892   young_gen()->print_on(st);
   893   old_gen()->print_on(st);
   894   perm_gen()->print_on(st);
   895 }
   897 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
   898   PSScavenge::gc_task_manager()->threads_do(tc);
   899 }
   901 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
   902   PSScavenge::gc_task_manager()->print_threads_on(st);
   903 }
   905 void ParallelScavengeHeap::print_tracing_info() const {
   906   if (TraceGen0Time) {
   907     double time = PSScavenge::accumulated_time()->seconds();
   908     tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
   909   }
   910   if (TraceGen1Time) {
   911     double time = PSMarkSweep::accumulated_time()->seconds();
   912     tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
   913   }
   914 }
   917 void ParallelScavengeHeap::verify(bool silent, VerifyOption option /* ignored */) {
   918   // Why do we need the total_collections()-filter below?
   919   if (total_collections() > 0) {
   920     if (!silent) {
   921       gclog_or_tty->print("permanent ");
   922     }
   923     perm_gen()->verify();
   925     if (!silent) {
   926       gclog_or_tty->print("tenured ");
   927     }
   928     old_gen()->verify();
   930     if (!silent) {
   931       gclog_or_tty->print("eden ");
   932     }
   933     young_gen()->verify();
   934   }
   935 }
   937 void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
   938   if (PrintGCDetails && Verbose) {
   939     gclog_or_tty->print(" "  SIZE_FORMAT
   940                         "->" SIZE_FORMAT
   941                         "("  SIZE_FORMAT ")",
   942                         prev_used, used(), capacity());
   943   } else {
   944     gclog_or_tty->print(" "  SIZE_FORMAT "K"
   945                         "->" SIZE_FORMAT "K"
   946                         "("  SIZE_FORMAT "K)",
   947                         prev_used / K, used() / K, capacity() / K);
   948   }
   949 }
   951 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
   952   assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
   953   assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
   954   return _psh;
   955 }
   957 // Before delegating the resize to the young generation,
   958 // the reserved space for the young and old generations
   959 // may be changed to accomodate the desired resize.
   960 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
   961     size_t survivor_size) {
   962   if (UseAdaptiveGCBoundary) {
   963     if (size_policy()->bytes_absorbed_from_eden() != 0) {
   964       size_policy()->reset_bytes_absorbed_from_eden();
   965       return;  // The generation changed size already.
   966     }
   967     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
   968   }
   970   // Delegate the resize to the generation.
   971   _young_gen->resize(eden_size, survivor_size);
   972 }
   974 // Before delegating the resize to the old generation,
   975 // the reserved space for the young and old generations
   976 // may be changed to accomodate the desired resize.
   977 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
   978   if (UseAdaptiveGCBoundary) {
   979     if (size_policy()->bytes_absorbed_from_eden() != 0) {
   980       size_policy()->reset_bytes_absorbed_from_eden();
   981       return;  // The generation changed size already.
   982     }
   983     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
   984   }
   986   // Delegate the resize to the generation.
   987   _old_gen->resize(desired_free_space);
   988 }
   990 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
   991   // nothing particular
   992 }
   994 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
   995   // nothing particular
   996 }
   998 #ifndef PRODUCT
   999 void ParallelScavengeHeap::record_gen_tops_before_GC() {
  1000   if (ZapUnusedHeapArea) {
  1001     young_gen()->record_spaces_top();
  1002     old_gen()->record_spaces_top();
  1003     perm_gen()->record_spaces_top();
  1007 void ParallelScavengeHeap::gen_mangle_unused_area() {
  1008   if (ZapUnusedHeapArea) {
  1009     young_gen()->eden_space()->mangle_unused_area();
  1010     young_gen()->to_space()->mangle_unused_area();
  1011     young_gen()->from_space()->mangle_unused_area();
  1012     old_gen()->object_space()->mangle_unused_area();
  1013     perm_gen()->object_space()->mangle_unused_area();
  1016 #endif

mercurial