src/share/vm/gc_implementation/parallelScavenge/parallelScavengeHeap.cpp

Mon, 16 Apr 2012 08:57:18 +0200

author
brutisso
date
Mon, 16 Apr 2012 08:57:18 +0200
changeset 3711
b632e80fc9dc
parent 3541
23c0eb012d6f
child 3900
d2a62e0f25eb
permissions
-rw-r--r--

4988100: oop_verify_old_oop appears to be dead
Summary: removed oop_verify_old_oop and allow_dirty. Also reviewed by: alexlamsl@gmail.com
Reviewed-by: jmasa, jwilhelm

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/parallelScavenge/adjoiningGenerations.hpp"
    27 #include "gc_implementation/parallelScavenge/adjoiningVirtualSpaces.hpp"
    28 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
    29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
    30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
    31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
    32 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
    33 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
    34 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
    35 #include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
    36 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
    37 #include "gc_implementation/parallelScavenge/vmPSOperations.hpp"
    38 #include "memory/gcLocker.inline.hpp"
    39 #include "oops/oop.inline.hpp"
    40 #include "runtime/handles.inline.hpp"
    41 #include "runtime/java.hpp"
    42 #include "runtime/vmThread.hpp"
    43 #include "utilities/vmError.hpp"
    45 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
    46 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
    47 PSPermGen*   ParallelScavengeHeap::_perm_gen = NULL;
    48 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
    49 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
    50 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
    51 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
    53 static void trace_gen_sizes(const char* const str,
    54                             size_t pg_min, size_t pg_max,
    55                             size_t og_min, size_t og_max,
    56                             size_t yg_min, size_t yg_max)
    57 {
    58   if (TracePageSizes) {
    59     tty->print_cr("%s:  " SIZE_FORMAT "," SIZE_FORMAT " "
    60                   SIZE_FORMAT "," SIZE_FORMAT " "
    61                   SIZE_FORMAT "," SIZE_FORMAT " "
    62                   SIZE_FORMAT,
    63                   str, pg_min / K, pg_max / K,
    64                   og_min / K, og_max / K,
    65                   yg_min / K, yg_max / K,
    66                   (pg_max + og_max + yg_max) / K);
    67   }
    68 }
    70 jint ParallelScavengeHeap::initialize() {
    71   CollectedHeap::pre_initialize();
    73   // Cannot be initialized until after the flags are parsed
    74   // GenerationSizer flag_parser;
    75   _collector_policy = new GenerationSizer();
    77   size_t yg_min_size = _collector_policy->min_young_gen_size();
    78   size_t yg_max_size = _collector_policy->max_young_gen_size();
    79   size_t og_min_size = _collector_policy->min_old_gen_size();
    80   size_t og_max_size = _collector_policy->max_old_gen_size();
    81   // Why isn't there a min_perm_gen_size()?
    82   size_t pg_min_size = _collector_policy->perm_gen_size();
    83   size_t pg_max_size = _collector_policy->max_perm_gen_size();
    85   trace_gen_sizes("ps heap raw",
    86                   pg_min_size, pg_max_size,
    87                   og_min_size, og_max_size,
    88                   yg_min_size, yg_max_size);
    90   // The ReservedSpace ctor used below requires that the page size for the perm
    91   // gen is <= the page size for the rest of the heap (young + old gens).
    92   const size_t og_page_sz = os::page_size_for_region(yg_min_size + og_min_size,
    93                                                      yg_max_size + og_max_size,
    94                                                      8);
    95   const size_t pg_page_sz = MIN2(os::page_size_for_region(pg_min_size,
    96                                                           pg_max_size, 16),
    97                                  og_page_sz);
    99   const size_t pg_align = set_alignment(_perm_gen_alignment,  pg_page_sz);
   100   const size_t og_align = set_alignment(_old_gen_alignment,   og_page_sz);
   101   const size_t yg_align = set_alignment(_young_gen_alignment, og_page_sz);
   103   // Update sizes to reflect the selected page size(s).
   104   //
   105   // NEEDS_CLEANUP.  The default TwoGenerationCollectorPolicy uses NewRatio; it
   106   // should check UseAdaptiveSizePolicy.  Changes from generationSizer could
   107   // move to the common code.
   108   yg_min_size = align_size_up(yg_min_size, yg_align);
   109   yg_max_size = align_size_up(yg_max_size, yg_align);
   110   size_t yg_cur_size =
   111     align_size_up(_collector_policy->young_gen_size(), yg_align);
   112   yg_cur_size = MAX2(yg_cur_size, yg_min_size);
   114   og_min_size = align_size_up(og_min_size, og_align);
   115   // Align old gen size down to preserve specified heap size.
   116   assert(og_align == yg_align, "sanity");
   117   og_max_size = align_size_down(og_max_size, og_align);
   118   og_max_size = MAX2(og_max_size, og_min_size);
   119   size_t og_cur_size =
   120     align_size_down(_collector_policy->old_gen_size(), og_align);
   121   og_cur_size = MAX2(og_cur_size, og_min_size);
   123   pg_min_size = align_size_up(pg_min_size, pg_align);
   124   pg_max_size = align_size_up(pg_max_size, pg_align);
   125   size_t pg_cur_size = pg_min_size;
   127   trace_gen_sizes("ps heap rnd",
   128                   pg_min_size, pg_max_size,
   129                   og_min_size, og_max_size,
   130                   yg_min_size, yg_max_size);
   132   const size_t total_reserved = pg_max_size + og_max_size + yg_max_size;
   133   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
   135   // The main part of the heap (old gen + young gen) can often use a larger page
   136   // size than is needed or wanted for the perm gen.  Use the "compound
   137   // alignment" ReservedSpace ctor to avoid having to use the same page size for
   138   // all gens.
   140   ReservedHeapSpace heap_rs(pg_max_size, pg_align, og_max_size + yg_max_size,
   141                             og_align, addr);
   143   if (UseCompressedOops) {
   144     if (addr != NULL && !heap_rs.is_reserved()) {
   145       // Failed to reserve at specified address - the requested memory
   146       // region is taken already, for example, by 'java' launcher.
   147       // Try again to reserver heap higher.
   148       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
   149       ReservedHeapSpace heap_rs0(pg_max_size, pg_align, og_max_size + yg_max_size,
   150                                  og_align, addr);
   151       if (addr != NULL && !heap_rs0.is_reserved()) {
   152         // Failed to reserve at specified address again - give up.
   153         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
   154         assert(addr == NULL, "");
   155         ReservedHeapSpace heap_rs1(pg_max_size, pg_align, og_max_size + yg_max_size,
   156                                    og_align, addr);
   157         heap_rs = heap_rs1;
   158       } else {
   159         heap_rs = heap_rs0;
   160       }
   161     }
   162   }
   164   os::trace_page_sizes("ps perm", pg_min_size, pg_max_size, pg_page_sz,
   165                        heap_rs.base(), pg_max_size);
   166   os::trace_page_sizes("ps main", og_min_size + yg_min_size,
   167                        og_max_size + yg_max_size, og_page_sz,
   168                        heap_rs.base() + pg_max_size,
   169                        heap_rs.size() - pg_max_size);
   170   if (!heap_rs.is_reserved()) {
   171     vm_shutdown_during_initialization(
   172       "Could not reserve enough space for object heap");
   173     return JNI_ENOMEM;
   174   }
   176   _reserved = MemRegion((HeapWord*)heap_rs.base(),
   177                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
   179   CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3);
   180   _barrier_set = barrier_set;
   181   oopDesc::set_bs(_barrier_set);
   182   if (_barrier_set == NULL) {
   183     vm_shutdown_during_initialization(
   184       "Could not reserve enough space for barrier set");
   185     return JNI_ENOMEM;
   186   }
   188   // Initial young gen size is 4 Mb
   189   //
   190   // XXX - what about flag_parser.young_gen_size()?
   191   const size_t init_young_size = align_size_up(4 * M, yg_align);
   192   yg_cur_size = MAX2(MIN2(init_young_size, yg_max_size), yg_cur_size);
   194   // Split the reserved space into perm gen and the main heap (everything else).
   195   // The main heap uses a different alignment.
   196   ReservedSpace perm_rs = heap_rs.first_part(pg_max_size);
   197   ReservedSpace main_rs = heap_rs.last_part(pg_max_size, og_align);
   199   // Make up the generations
   200   // Calculate the maximum size that a generation can grow.  This
   201   // includes growth into the other generation.  Note that the
   202   // parameter _max_gen_size is kept as the maximum
   203   // size of the generation as the boundaries currently stand.
   204   // _max_gen_size is still used as that value.
   205   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
   206   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
   208   _gens = new AdjoiningGenerations(main_rs,
   209                                    og_cur_size,
   210                                    og_min_size,
   211                                    og_max_size,
   212                                    yg_cur_size,
   213                                    yg_min_size,
   214                                    yg_max_size,
   215                                    yg_align);
   217   _old_gen = _gens->old_gen();
   218   _young_gen = _gens->young_gen();
   220   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
   221   const size_t old_capacity = _old_gen->capacity_in_bytes();
   222   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
   223   _size_policy =
   224     new PSAdaptiveSizePolicy(eden_capacity,
   225                              initial_promo_size,
   226                              young_gen()->to_space()->capacity_in_bytes(),
   227                              intra_heap_alignment(),
   228                              max_gc_pause_sec,
   229                              max_gc_minor_pause_sec,
   230                              GCTimeRatio
   231                              );
   233   _perm_gen = new PSPermGen(perm_rs,
   234                             pg_align,
   235                             pg_cur_size,
   236                             pg_cur_size,
   237                             pg_max_size,
   238                             "perm", 2);
   240   assert(!UseAdaptiveGCBoundary ||
   241     (old_gen()->virtual_space()->high_boundary() ==
   242      young_gen()->virtual_space()->low_boundary()),
   243     "Boundaries must meet");
   244   // initialize the policy counters - 2 collectors, 3 generations
   245   _gc_policy_counters =
   246     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
   247   _psh = this;
   249   // Set up the GCTaskManager
   250   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
   252   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
   253     return JNI_ENOMEM;
   254   }
   256   return JNI_OK;
   257 }
   259 void ParallelScavengeHeap::post_initialize() {
   260   // Need to init the tenuring threshold
   261   PSScavenge::initialize();
   262   if (UseParallelOldGC) {
   263     PSParallelCompact::post_initialize();
   264   } else {
   265     PSMarkSweep::initialize();
   266   }
   267   PSPromotionManager::initialize();
   268 }
   270 void ParallelScavengeHeap::update_counters() {
   271   young_gen()->update_counters();
   272   old_gen()->update_counters();
   273   perm_gen()->update_counters();
   274 }
   276 size_t ParallelScavengeHeap::capacity() const {
   277   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
   278   return value;
   279 }
   281 size_t ParallelScavengeHeap::used() const {
   282   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
   283   return value;
   284 }
   286 bool ParallelScavengeHeap::is_maximal_no_gc() const {
   287   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
   288 }
   291 size_t ParallelScavengeHeap::permanent_capacity() const {
   292   return perm_gen()->capacity_in_bytes();
   293 }
   295 size_t ParallelScavengeHeap::permanent_used() const {
   296   return perm_gen()->used_in_bytes();
   297 }
   299 size_t ParallelScavengeHeap::max_capacity() const {
   300   size_t estimated = reserved_region().byte_size();
   301   estimated -= perm_gen()->reserved().byte_size();
   302   if (UseAdaptiveSizePolicy) {
   303     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
   304   } else {
   305     estimated -= young_gen()->to_space()->capacity_in_bytes();
   306   }
   307   return MAX2(estimated, capacity());
   308 }
   310 bool ParallelScavengeHeap::is_in(const void* p) const {
   311   if (young_gen()->is_in(p)) {
   312     return true;
   313   }
   315   if (old_gen()->is_in(p)) {
   316     return true;
   317   }
   319   if (perm_gen()->is_in(p)) {
   320     return true;
   321   }
   323   return false;
   324 }
   326 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
   327   if (young_gen()->is_in_reserved(p)) {
   328     return true;
   329   }
   331   if (old_gen()->is_in_reserved(p)) {
   332     return true;
   333   }
   335   if (perm_gen()->is_in_reserved(p)) {
   336     return true;
   337   }
   339   return false;
   340 }
   342 bool ParallelScavengeHeap::is_scavengable(const void* addr) {
   343   return is_in_young((oop)addr);
   344 }
   346 #ifdef ASSERT
   347 // Don't implement this by using is_in_young().  This method is used
   348 // in some cases to check that is_in_young() is correct.
   349 bool ParallelScavengeHeap::is_in_partial_collection(const void *p) {
   350   assert(is_in_reserved(p) || p == NULL,
   351     "Does not work if address is non-null and outside of the heap");
   352   // The order of the generations is perm (low addr), old, young (high addr)
   353   return p >= old_gen()->reserved().end();
   354 }
   355 #endif
   357 // There are two levels of allocation policy here.
   358 //
   359 // When an allocation request fails, the requesting thread must invoke a VM
   360 // operation, transfer control to the VM thread, and await the results of a
   361 // garbage collection. That is quite expensive, and we should avoid doing it
   362 // multiple times if possible.
   363 //
   364 // To accomplish this, we have a basic allocation policy, and also a
   365 // failed allocation policy.
   366 //
   367 // The basic allocation policy controls how you allocate memory without
   368 // attempting garbage collection. It is okay to grab locks and
   369 // expand the heap, if that can be done without coming to a safepoint.
   370 // It is likely that the basic allocation policy will not be very
   371 // aggressive.
   372 //
   373 // The failed allocation policy is invoked from the VM thread after
   374 // the basic allocation policy is unable to satisfy a mem_allocate
   375 // request. This policy needs to cover the entire range of collection,
   376 // heap expansion, and out-of-memory conditions. It should make every
   377 // attempt to allocate the requested memory.
   379 // Basic allocation policy. Should never be called at a safepoint, or
   380 // from the VM thread.
   381 //
   382 // This method must handle cases where many mem_allocate requests fail
   383 // simultaneously. When that happens, only one VM operation will succeed,
   384 // and the rest will not be executed. For that reason, this method loops
   385 // during failed allocation attempts. If the java heap becomes exhausted,
   386 // we rely on the size_policy object to force a bail out.
   387 HeapWord* ParallelScavengeHeap::mem_allocate(
   388                                      size_t size,
   389                                      bool* gc_overhead_limit_was_exceeded) {
   390   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
   391   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
   392   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   394   // In general gc_overhead_limit_was_exceeded should be false so
   395   // set it so here and reset it to true only if the gc time
   396   // limit is being exceeded as checked below.
   397   *gc_overhead_limit_was_exceeded = false;
   399   HeapWord* result = young_gen()->allocate(size);
   401   uint loop_count = 0;
   402   uint gc_count = 0;
   404   while (result == NULL) {
   405     // We don't want to have multiple collections for a single filled generation.
   406     // To prevent this, each thread tracks the total_collections() value, and if
   407     // the count has changed, does not do a new collection.
   408     //
   409     // The collection count must be read only while holding the heap lock. VM
   410     // operations also hold the heap lock during collections. There is a lock
   411     // contention case where thread A blocks waiting on the Heap_lock, while
   412     // thread B is holding it doing a collection. When thread A gets the lock,
   413     // the collection count has already changed. To prevent duplicate collections,
   414     // The policy MUST attempt allocations during the same period it reads the
   415     // total_collections() value!
   416     {
   417       MutexLocker ml(Heap_lock);
   418       gc_count = Universe::heap()->total_collections();
   420       result = young_gen()->allocate(size);
   421       if (result != NULL) {
   422         return result;
   423       }
   425       // If certain conditions hold, try allocating from the old gen.
   426       result = mem_allocate_old_gen(size);
   427       if (result != NULL) {
   428         return result;
   429       }
   431       // Failed to allocate without a gc.
   432       if (GC_locker::is_active_and_needs_gc()) {
   433         // If this thread is not in a jni critical section, we stall
   434         // the requestor until the critical section has cleared and
   435         // GC allowed. When the critical section clears, a GC is
   436         // initiated by the last thread exiting the critical section; so
   437         // we retry the allocation sequence from the beginning of the loop,
   438         // rather than causing more, now probably unnecessary, GC attempts.
   439         JavaThread* jthr = JavaThread::current();
   440         if (!jthr->in_critical()) {
   441           MutexUnlocker mul(Heap_lock);
   442           GC_locker::stall_until_clear();
   443           continue;
   444         } else {
   445           if (CheckJNICalls) {
   446             fatal("Possible deadlock due to allocating while"
   447                   " in jni critical section");
   448           }
   449           return NULL;
   450         }
   451       }
   452     }
   454     if (result == NULL) {
   455       // Generate a VM operation
   456       VM_ParallelGCFailedAllocation op(size, gc_count);
   457       VMThread::execute(&op);
   459       // Did the VM operation execute? If so, return the result directly.
   460       // This prevents us from looping until time out on requests that can
   461       // not be satisfied.
   462       if (op.prologue_succeeded()) {
   463         assert(Universe::heap()->is_in_or_null(op.result()),
   464           "result not in heap");
   466         // If GC was locked out during VM operation then retry allocation
   467         // and/or stall as necessary.
   468         if (op.gc_locked()) {
   469           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
   470           continue;  // retry and/or stall as necessary
   471         }
   473         // Exit the loop if the gc time limit has been exceeded.
   474         // The allocation must have failed above ("result" guarding
   475         // this path is NULL) and the most recent collection has exceeded the
   476         // gc overhead limit (although enough may have been collected to
   477         // satisfy the allocation).  Exit the loop so that an out-of-memory
   478         // will be thrown (return a NULL ignoring the contents of
   479         // op.result()),
   480         // but clear gc_overhead_limit_exceeded so that the next collection
   481         // starts with a clean slate (i.e., forgets about previous overhead
   482         // excesses).  Fill op.result() with a filler object so that the
   483         // heap remains parsable.
   484         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
   485         const bool softrefs_clear = collector_policy()->all_soft_refs_clear();
   486         assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
   487         if (limit_exceeded && softrefs_clear) {
   488           *gc_overhead_limit_was_exceeded = true;
   489           size_policy()->set_gc_overhead_limit_exceeded(false);
   490           if (PrintGCDetails && Verbose) {
   491             gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
   492               "return NULL because gc_overhead_limit_exceeded is set");
   493           }
   494           if (op.result() != NULL) {
   495             CollectedHeap::fill_with_object(op.result(), size);
   496           }
   497           return NULL;
   498         }
   500         return op.result();
   501       }
   502     }
   504     // The policy object will prevent us from looping forever. If the
   505     // time spent in gc crosses a threshold, we will bail out.
   506     loop_count++;
   507     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
   508         (loop_count % QueuedAllocationWarningCount == 0)) {
   509       warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
   510               " size=%d", loop_count, size);
   511     }
   512   }
   514   return result;
   515 }
   517 // A "death march" is a series of ultra-slow allocations in which a full gc is
   518 // done before each allocation, and after the full gc the allocation still
   519 // cannot be satisfied from the young gen.  This routine detects that condition;
   520 // it should be called after a full gc has been done and the allocation
   521 // attempted from the young gen. The parameter 'addr' should be the result of
   522 // that young gen allocation attempt.
   523 void
   524 ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
   525   if (addr != NULL) {
   526     _death_march_count = 0;  // death march has ended
   527   } else if (_death_march_count == 0) {
   528     if (should_alloc_in_eden(size)) {
   529       _death_march_count = 1;    // death march has started
   530     }
   531   }
   532 }
   534 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
   535   if (!should_alloc_in_eden(size) || GC_locker::is_active_and_needs_gc()) {
   536     // Size is too big for eden, or gc is locked out.
   537     return old_gen()->allocate(size);
   538   }
   540   // If a "death march" is in progress, allocate from the old gen a limited
   541   // number of times before doing a GC.
   542   if (_death_march_count > 0) {
   543     if (_death_march_count < 64) {
   544       ++_death_march_count;
   545       return old_gen()->allocate(size);
   546     } else {
   547       _death_march_count = 0;
   548     }
   549   }
   550   return NULL;
   551 }
   553 // Failed allocation policy. Must be called from the VM thread, and
   554 // only at a safepoint! Note that this method has policy for allocation
   555 // flow, and NOT collection policy. So we do not check for gc collection
   556 // time over limit here, that is the responsibility of the heap specific
   557 // collection methods. This method decides where to attempt allocations,
   558 // and when to attempt collections, but no collection specific policy.
   559 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
   560   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   561   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   562   assert(!Universe::heap()->is_gc_active(), "not reentrant");
   563   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   565   // We assume that allocation in eden will fail unless we collect.
   567   // First level allocation failure, scavenge and allocate in young gen.
   568   GCCauseSetter gccs(this, GCCause::_allocation_failure);
   569   const bool invoked_full_gc = PSScavenge::invoke();
   570   HeapWord* result = young_gen()->allocate(size);
   572   // Second level allocation failure.
   573   //   Mark sweep and allocate in young generation.
   574   if (result == NULL && !invoked_full_gc) {
   575     invoke_full_gc(false);
   576     result = young_gen()->allocate(size);
   577   }
   579   death_march_check(result, size);
   581   // Third level allocation failure.
   582   //   After mark sweep and young generation allocation failure,
   583   //   allocate in old generation.
   584   if (result == NULL) {
   585     result = old_gen()->allocate(size);
   586   }
   588   // Fourth level allocation failure. We're running out of memory.
   589   //   More complete mark sweep and allocate in young generation.
   590   if (result == NULL) {
   591     invoke_full_gc(true);
   592     result = young_gen()->allocate(size);
   593   }
   595   // Fifth level allocation failure.
   596   //   After more complete mark sweep, allocate in old generation.
   597   if (result == NULL) {
   598     result = old_gen()->allocate(size);
   599   }
   601   return result;
   602 }
   604 //
   605 // This is the policy loop for allocating in the permanent generation.
   606 // If the initial allocation fails, we create a vm operation which will
   607 // cause a collection.
   608 HeapWord* ParallelScavengeHeap::permanent_mem_allocate(size_t size) {
   609   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
   610   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
   611   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   613   HeapWord* result;
   615   uint loop_count = 0;
   616   uint gc_count = 0;
   617   uint full_gc_count = 0;
   619   do {
   620     // We don't want to have multiple collections for a single filled generation.
   621     // To prevent this, each thread tracks the total_collections() value, and if
   622     // the count has changed, does not do a new collection.
   623     //
   624     // The collection count must be read only while holding the heap lock. VM
   625     // operations also hold the heap lock during collections. There is a lock
   626     // contention case where thread A blocks waiting on the Heap_lock, while
   627     // thread B is holding it doing a collection. When thread A gets the lock,
   628     // the collection count has already changed. To prevent duplicate collections,
   629     // The policy MUST attempt allocations during the same period it reads the
   630     // total_collections() value!
   631     {
   632       MutexLocker ml(Heap_lock);
   633       gc_count      = Universe::heap()->total_collections();
   634       full_gc_count = Universe::heap()->total_full_collections();
   636       result = perm_gen()->allocate_permanent(size);
   638       if (result != NULL) {
   639         return result;
   640       }
   642       if (GC_locker::is_active_and_needs_gc()) {
   643         // If this thread is not in a jni critical section, we stall
   644         // the requestor until the critical section has cleared and
   645         // GC allowed. When the critical section clears, a GC is
   646         // initiated by the last thread exiting the critical section; so
   647         // we retry the allocation sequence from the beginning of the loop,
   648         // rather than causing more, now probably unnecessary, GC attempts.
   649         JavaThread* jthr = JavaThread::current();
   650         if (!jthr->in_critical()) {
   651           MutexUnlocker mul(Heap_lock);
   652           GC_locker::stall_until_clear();
   653           continue;
   654         } else {
   655           if (CheckJNICalls) {
   656             fatal("Possible deadlock due to allocating while"
   657                   " in jni critical section");
   658           }
   659           return NULL;
   660         }
   661       }
   662     }
   664     if (result == NULL) {
   666       // Exit the loop if the gc time limit has been exceeded.
   667       // The allocation must have failed above (result must be NULL),
   668       // and the most recent collection must have exceeded the
   669       // gc time limit.  Exit the loop so that an out-of-memory
   670       // will be thrown (returning a NULL will do that), but
   671       // clear gc_overhead_limit_exceeded so that the next collection
   672       // will succeeded if the applications decides to handle the
   673       // out-of-memory and tries to go on.
   674       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
   675       if (limit_exceeded) {
   676         size_policy()->set_gc_overhead_limit_exceeded(false);
   677         if (PrintGCDetails && Verbose) {
   678           gclog_or_tty->print_cr("ParallelScavengeHeap::permanent_mem_allocate:"
   679             " return NULL because gc_overhead_limit_exceeded is set");
   680         }
   681         assert(result == NULL, "Allocation did not fail");
   682         return NULL;
   683       }
   685       // Generate a VM operation
   686       VM_ParallelGCFailedPermanentAllocation op(size, gc_count, full_gc_count);
   687       VMThread::execute(&op);
   689       // Did the VM operation execute? If so, return the result directly.
   690       // This prevents us from looping until time out on requests that can
   691       // not be satisfied.
   692       if (op.prologue_succeeded()) {
   693         assert(Universe::heap()->is_in_permanent_or_null(op.result()),
   694           "result not in heap");
   695         // If GC was locked out during VM operation then retry allocation
   696         // and/or stall as necessary.
   697         if (op.gc_locked()) {
   698           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
   699           continue;  // retry and/or stall as necessary
   700         }
   701         // If a NULL results is being returned, an out-of-memory
   702         // will be thrown now.  Clear the gc_overhead_limit_exceeded
   703         // flag to avoid the following situation.
   704         //      gc_overhead_limit_exceeded is set during a collection
   705         //      the collection fails to return enough space and an OOM is thrown
   706         //      a subsequent GC prematurely throws an out-of-memory because
   707         //        the gc_overhead_limit_exceeded counts did not start
   708         //        again from 0.
   709         if (op.result() == NULL) {
   710           size_policy()->reset_gc_overhead_limit_count();
   711         }
   712         return op.result();
   713       }
   714     }
   716     // The policy object will prevent us from looping forever. If the
   717     // time spent in gc crosses a threshold, we will bail out.
   718     loop_count++;
   719     if ((QueuedAllocationWarningCount > 0) &&
   720         (loop_count % QueuedAllocationWarningCount == 0)) {
   721       warning("ParallelScavengeHeap::permanent_mem_allocate retries %d times \n\t"
   722               " size=%d", loop_count, size);
   723     }
   724   } while (result == NULL);
   726   return result;
   727 }
   729 //
   730 // This is the policy code for permanent allocations which have failed
   731 // and require a collection. Note that just as in failed_mem_allocate,
   732 // we do not set collection policy, only where & when to allocate and
   733 // collect.
   734 HeapWord* ParallelScavengeHeap::failed_permanent_mem_allocate(size_t size) {
   735   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   736   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   737   assert(!Universe::heap()->is_gc_active(), "not reentrant");
   738   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   739   assert(size > perm_gen()->free_in_words(), "Allocation should fail");
   741   // We assume (and assert!) that an allocation at this point will fail
   742   // unless we collect.
   744   // First level allocation failure.  Mark-sweep and allocate in perm gen.
   745   GCCauseSetter gccs(this, GCCause::_allocation_failure);
   746   invoke_full_gc(false);
   747   HeapWord* result = perm_gen()->allocate_permanent(size);
   749   // Second level allocation failure. We're running out of memory.
   750   if (result == NULL) {
   751     invoke_full_gc(true);
   752     result = perm_gen()->allocate_permanent(size);
   753   }
   755   return result;
   756 }
   758 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
   759   CollectedHeap::ensure_parsability(retire_tlabs);
   760   young_gen()->eden_space()->ensure_parsability();
   761 }
   763 size_t ParallelScavengeHeap::unsafe_max_alloc() {
   764   return young_gen()->eden_space()->free_in_bytes();
   765 }
   767 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
   768   return young_gen()->eden_space()->tlab_capacity(thr);
   769 }
   771 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
   772   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
   773 }
   775 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
   776   return young_gen()->allocate(size);
   777 }
   779 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
   780   CollectedHeap::accumulate_statistics_all_tlabs();
   781 }
   783 void ParallelScavengeHeap::resize_all_tlabs() {
   784   CollectedHeap::resize_all_tlabs();
   785 }
   787 bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
   788   // We don't need barriers for stores to objects in the
   789   // young gen and, a fortiori, for initializing stores to
   790   // objects therein.
   791   return is_in_young(new_obj);
   792 }
   794 // This method is used by System.gc() and JVMTI.
   795 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
   796   assert(!Heap_lock->owned_by_self(),
   797     "this thread should not own the Heap_lock");
   799   unsigned int gc_count      = 0;
   800   unsigned int full_gc_count = 0;
   801   {
   802     MutexLocker ml(Heap_lock);
   803     // This value is guarded by the Heap_lock
   804     gc_count      = Universe::heap()->total_collections();
   805     full_gc_count = Universe::heap()->total_full_collections();
   806   }
   808   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
   809   VMThread::execute(&op);
   810 }
   812 // This interface assumes that it's being called by the
   813 // vm thread. It collects the heap assuming that the
   814 // heap lock is already held and that we are executing in
   815 // the context of the vm thread.
   816 void ParallelScavengeHeap::collect_as_vm_thread(GCCause::Cause cause) {
   817   assert(Thread::current()->is_VM_thread(), "Precondition#1");
   818   assert(Heap_lock->is_locked(), "Precondition#2");
   819   GCCauseSetter gcs(this, cause);
   820   switch (cause) {
   821     case GCCause::_heap_inspection:
   822     case GCCause::_heap_dump: {
   823       HandleMark hm;
   824       invoke_full_gc(false);
   825       break;
   826     }
   827     default: // XXX FIX ME
   828       ShouldNotReachHere();
   829   }
   830 }
   833 void ParallelScavengeHeap::oop_iterate(OopClosure* cl) {
   834   Unimplemented();
   835 }
   837 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
   838   young_gen()->object_iterate(cl);
   839   old_gen()->object_iterate(cl);
   840   perm_gen()->object_iterate(cl);
   841 }
   843 void ParallelScavengeHeap::permanent_oop_iterate(OopClosure* cl) {
   844   Unimplemented();
   845 }
   847 void ParallelScavengeHeap::permanent_object_iterate(ObjectClosure* cl) {
   848   perm_gen()->object_iterate(cl);
   849 }
   851 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
   852   if (young_gen()->is_in_reserved(addr)) {
   853     assert(young_gen()->is_in(addr),
   854            "addr should be in allocated part of young gen");
   855     // called from os::print_location by find or VMError
   856     if (Debugging || VMError::fatal_error_in_progress())  return NULL;
   857     Unimplemented();
   858   } else if (old_gen()->is_in_reserved(addr)) {
   859     assert(old_gen()->is_in(addr),
   860            "addr should be in allocated part of old gen");
   861     return old_gen()->start_array()->object_start((HeapWord*)addr);
   862   } else if (perm_gen()->is_in_reserved(addr)) {
   863     assert(perm_gen()->is_in(addr),
   864            "addr should be in allocated part of perm gen");
   865     return perm_gen()->start_array()->object_start((HeapWord*)addr);
   866   }
   867   return 0;
   868 }
   870 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
   871   return oop(addr)->size();
   872 }
   874 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
   875   return block_start(addr) == addr;
   876 }
   878 jlong ParallelScavengeHeap::millis_since_last_gc() {
   879   return UseParallelOldGC ?
   880     PSParallelCompact::millis_since_last_gc() :
   881     PSMarkSweep::millis_since_last_gc();
   882 }
   884 void ParallelScavengeHeap::prepare_for_verify() {
   885   ensure_parsability(false);  // no need to retire TLABs for verification
   886 }
   888 void ParallelScavengeHeap::print_on(outputStream* st) const {
   889   young_gen()->print_on(st);
   890   old_gen()->print_on(st);
   891   perm_gen()->print_on(st);
   892 }
   894 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
   895   PSScavenge::gc_task_manager()->threads_do(tc);
   896 }
   898 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
   899   PSScavenge::gc_task_manager()->print_threads_on(st);
   900 }
   902 void ParallelScavengeHeap::print_tracing_info() const {
   903   if (TraceGen0Time) {
   904     double time = PSScavenge::accumulated_time()->seconds();
   905     tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
   906   }
   907   if (TraceGen1Time) {
   908     double time = PSMarkSweep::accumulated_time()->seconds();
   909     tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
   910   }
   911 }
   914 void ParallelScavengeHeap::verify(bool silent, VerifyOption option /* ignored */) {
   915   // Why do we need the total_collections()-filter below?
   916   if (total_collections() > 0) {
   917     if (!silent) {
   918       gclog_or_tty->print("permanent ");
   919     }
   920     perm_gen()->verify();
   922     if (!silent) {
   923       gclog_or_tty->print("tenured ");
   924     }
   925     old_gen()->verify();
   927     if (!silent) {
   928       gclog_or_tty->print("eden ");
   929     }
   930     young_gen()->verify();
   931   }
   932 }
   934 void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
   935   if (PrintGCDetails && Verbose) {
   936     gclog_or_tty->print(" "  SIZE_FORMAT
   937                         "->" SIZE_FORMAT
   938                         "("  SIZE_FORMAT ")",
   939                         prev_used, used(), capacity());
   940   } else {
   941     gclog_or_tty->print(" "  SIZE_FORMAT "K"
   942                         "->" SIZE_FORMAT "K"
   943                         "("  SIZE_FORMAT "K)",
   944                         prev_used / K, used() / K, capacity() / K);
   945   }
   946 }
   948 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
   949   assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
   950   assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
   951   return _psh;
   952 }
   954 // Before delegating the resize to the young generation,
   955 // the reserved space for the young and old generations
   956 // may be changed to accomodate the desired resize.
   957 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
   958     size_t survivor_size) {
   959   if (UseAdaptiveGCBoundary) {
   960     if (size_policy()->bytes_absorbed_from_eden() != 0) {
   961       size_policy()->reset_bytes_absorbed_from_eden();
   962       return;  // The generation changed size already.
   963     }
   964     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
   965   }
   967   // Delegate the resize to the generation.
   968   _young_gen->resize(eden_size, survivor_size);
   969 }
   971 // Before delegating the resize to the old generation,
   972 // the reserved space for the young and old generations
   973 // may be changed to accomodate the desired resize.
   974 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
   975   if (UseAdaptiveGCBoundary) {
   976     if (size_policy()->bytes_absorbed_from_eden() != 0) {
   977       size_policy()->reset_bytes_absorbed_from_eden();
   978       return;  // The generation changed size already.
   979     }
   980     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
   981   }
   983   // Delegate the resize to the generation.
   984   _old_gen->resize(desired_free_space);
   985 }
   987 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
   988   // nothing particular
   989 }
   991 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
   992   // nothing particular
   993 }
   995 #ifndef PRODUCT
   996 void ParallelScavengeHeap::record_gen_tops_before_GC() {
   997   if (ZapUnusedHeapArea) {
   998     young_gen()->record_spaces_top();
   999     old_gen()->record_spaces_top();
  1000     perm_gen()->record_spaces_top();
  1004 void ParallelScavengeHeap::gen_mangle_unused_area() {
  1005   if (ZapUnusedHeapArea) {
  1006     young_gen()->eden_space()->mangle_unused_area();
  1007     young_gen()->to_space()->mangle_unused_area();
  1008     young_gen()->from_space()->mangle_unused_area();
  1009     old_gen()->object_space()->mangle_unused_area();
  1010     perm_gen()->object_space()->mangle_unused_area();
  1013 #endif

mercurial