src/share/vm/oops/methodDataOop.cpp

Sat, 30 Oct 2010 11:45:35 -0700

author
jrose
date
Sat, 30 Oct 2010 11:45:35 -0700
changeset 2265
d1896d1dda3e
parent 2138
d5d065957597
child 2314
f95d63e2154a
permissions
-rw-r--r--

6981788: GC map generator sometimes picks up the wrong kind of instruction operand
Summary: Distinguish pool indexes from cache indexes in recently changed code.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_methodDataOop.cpp.incl"
    28 // ==================================================================
    29 // DataLayout
    30 //
    31 // Overlay for generic profiling data.
    33 // Some types of data layouts need a length field.
    34 bool DataLayout::needs_array_len(u1 tag) {
    35   return (tag == multi_branch_data_tag) || (tag == arg_info_data_tag);
    36 }
    38 // Perform generic initialization of the data.  More specific
    39 // initialization occurs in overrides of ProfileData::post_initialize.
    40 void DataLayout::initialize(u1 tag, u2 bci, int cell_count) {
    41   _header._bits = (intptr_t)0;
    42   _header._struct._tag = tag;
    43   _header._struct._bci = bci;
    44   for (int i = 0; i < cell_count; i++) {
    45     set_cell_at(i, (intptr_t)0);
    46   }
    47   if (needs_array_len(tag)) {
    48     set_cell_at(ArrayData::array_len_off_set, cell_count - 1); // -1 for header.
    49   }
    50 }
    52 void DataLayout::follow_weak_refs(BoolObjectClosure* cl) {
    53   ResourceMark m;
    54   data_in()->follow_weak_refs(cl);
    55 }
    58 // ==================================================================
    59 // ProfileData
    60 //
    61 // A ProfileData object is created to refer to a section of profiling
    62 // data in a structured way.
    64 // Constructor for invalid ProfileData.
    65 ProfileData::ProfileData() {
    66   _data = NULL;
    67 }
    69 #ifndef PRODUCT
    70 void ProfileData::print_shared(outputStream* st, const char* name) {
    71   st->print("bci: %d", bci());
    72   st->fill_to(tab_width_one);
    73   st->print("%s", name);
    74   tab(st);
    75   int trap = trap_state();
    76   if (trap != 0) {
    77     char buf[100];
    78     st->print("trap(%s) ", Deoptimization::format_trap_state(buf, sizeof(buf), trap));
    79   }
    80   int flags = data()->flags();
    81   if (flags != 0)
    82     st->print("flags(%d) ", flags);
    83 }
    85 void ProfileData::tab(outputStream* st) {
    86   st->fill_to(tab_width_two);
    87 }
    88 #endif // !PRODUCT
    90 // ==================================================================
    91 // BitData
    92 //
    93 // A BitData corresponds to a one-bit flag.  This is used to indicate
    94 // whether a checkcast bytecode has seen a null value.
    97 #ifndef PRODUCT
    98 void BitData::print_data_on(outputStream* st) {
    99   print_shared(st, "BitData");
   100 }
   101 #endif // !PRODUCT
   103 // ==================================================================
   104 // CounterData
   105 //
   106 // A CounterData corresponds to a simple counter.
   108 #ifndef PRODUCT
   109 void CounterData::print_data_on(outputStream* st) {
   110   print_shared(st, "CounterData");
   111   st->print_cr("count(%u)", count());
   112 }
   113 #endif // !PRODUCT
   115 // ==================================================================
   116 // JumpData
   117 //
   118 // A JumpData is used to access profiling information for a direct
   119 // branch.  It is a counter, used for counting the number of branches,
   120 // plus a data displacement, used for realigning the data pointer to
   121 // the corresponding target bci.
   123 void JumpData::post_initialize(BytecodeStream* stream, methodDataOop mdo) {
   124   assert(stream->bci() == bci(), "wrong pos");
   125   int target;
   126   Bytecodes::Code c = stream->code();
   127   if (c == Bytecodes::_goto_w || c == Bytecodes::_jsr_w) {
   128     target = stream->dest_w();
   129   } else {
   130     target = stream->dest();
   131   }
   132   int my_di = mdo->dp_to_di(dp());
   133   int target_di = mdo->bci_to_di(target);
   134   int offset = target_di - my_di;
   135   set_displacement(offset);
   136 }
   138 #ifndef PRODUCT
   139 void JumpData::print_data_on(outputStream* st) {
   140   print_shared(st, "JumpData");
   141   st->print_cr("taken(%u) displacement(%d)", taken(), displacement());
   142 }
   143 #endif // !PRODUCT
   145 // ==================================================================
   146 // ReceiverTypeData
   147 //
   148 // A ReceiverTypeData is used to access profiling information about a
   149 // dynamic type check.  It consists of a counter which counts the total times
   150 // that the check is reached, and a series of (klassOop, count) pairs
   151 // which are used to store a type profile for the receiver of the check.
   153 void ReceiverTypeData::follow_contents() {
   154   // This is a set of weak references that need
   155   // to be followed at the end of the strong marking
   156   // phase. Memoize this object so it can be visited
   157   // in the weak roots processing phase.
   158   MarkSweep::revisit_mdo(data());
   159 }
   161 #ifndef SERIALGC
   162 void ReceiverTypeData::follow_contents(ParCompactionManager* cm) {
   163   // This is a set of weak references that need
   164   // to be followed at the end of the strong marking
   165   // phase. Memoize this object so it can be visited
   166   // in the weak roots processing phase.
   167   PSParallelCompact::revisit_mdo(cm, data());
   168 }
   169 #endif // SERIALGC
   171 void ReceiverTypeData::oop_iterate(OopClosure* blk) {
   172   if (blk->should_remember_mdo()) {
   173     // This is a set of weak references that need
   174     // to be followed at the end of the strong marking
   175     // phase. Memoize this object so it can be visited
   176     // in the weak roots processing phase.
   177     blk->remember_mdo(data());
   178   } else { // normal scan
   179     for (uint row = 0; row < row_limit(); row++) {
   180       if (receiver(row) != NULL) {
   181         oop* adr = adr_receiver(row);
   182         blk->do_oop(adr);
   183       }
   184     }
   185   }
   186 }
   188 void ReceiverTypeData::oop_iterate_m(OopClosure* blk, MemRegion mr) {
   189   // Currently, this interface is called only during card-scanning for
   190   // a young gen gc, in which case this object cannot contribute anything,
   191   // since it does not contain any references that cross out of
   192   // the perm gen. However, for future more general use we allow
   193   // the possibility of calling for instance from more general
   194   // iterators (for example, a future regionalized perm gen for G1,
   195   // or the possibility of moving some references out of perm in
   196   // the case of other collectors). In that case, you will need
   197   // to relax or remove some of the assertions below.
   198 #ifdef ASSERT
   199   // Verify that none of the embedded oop references cross out of
   200   // this generation.
   201   for (uint row = 0; row < row_limit(); row++) {
   202     if (receiver(row) != NULL) {
   203       oop* adr = adr_receiver(row);
   204       CollectedHeap* h = Universe::heap();
   205       assert(h->is_permanent(adr) && h->is_permanent_or_null(*adr), "Not intra-perm");
   206     }
   207   }
   208 #endif // ASSERT
   209   assert(!blk->should_remember_mdo(), "Not expected to remember MDO");
   210   return;   // Nothing to do, see comment above
   211 #if 0
   212   if (blk->should_remember_mdo()) {
   213     // This is a set of weak references that need
   214     // to be followed at the end of the strong marking
   215     // phase. Memoize this object so it can be visited
   216     // in the weak roots processing phase.
   217     blk->remember_mdo(data());
   218   } else { // normal scan
   219     for (uint row = 0; row < row_limit(); row++) {
   220       if (receiver(row) != NULL) {
   221         oop* adr = adr_receiver(row);
   222         if (mr.contains(adr)) {
   223           blk->do_oop(adr);
   224         } else if ((HeapWord*)adr >= mr.end()) {
   225           // Test that the current cursor and the two ends of the range
   226           // that we may have skipped iterating over are monotonically ordered;
   227           // this is just a paranoid assertion, just in case represetations
   228           // should change in the future rendering the short-circuit return
   229           // here invalid.
   230           assert((row+1 >= row_limit() || adr_receiver(row+1) > adr) &&
   231                  (row+2 >= row_limit() || adr_receiver(row_limit()-1) > adr_receiver(row+1)), "Reducing?");
   232           break; // remaining should be outside this mr too
   233         }
   234       }
   235     }
   236   }
   237 #endif
   238 }
   240 void ReceiverTypeData::adjust_pointers() {
   241   for (uint row = 0; row < row_limit(); row++) {
   242     if (receiver(row) != NULL) {
   243       MarkSweep::adjust_pointer(adr_receiver(row));
   244     }
   245   }
   246 }
   248 void ReceiverTypeData::follow_weak_refs(BoolObjectClosure* is_alive_cl) {
   249   for (uint row = 0; row < row_limit(); row++) {
   250     klassOop p = receiver(row);
   251     if (p != NULL && !is_alive_cl->do_object_b(p)) {
   252       clear_row(row);
   253     }
   254   }
   255 }
   257 #ifndef SERIALGC
   258 void ReceiverTypeData::update_pointers() {
   259   for (uint row = 0; row < row_limit(); row++) {
   260     if (receiver_unchecked(row) != NULL) {
   261       PSParallelCompact::adjust_pointer(adr_receiver(row));
   262     }
   263   }
   264 }
   266 void ReceiverTypeData::update_pointers(HeapWord* beg_addr, HeapWord* end_addr) {
   267   // The loop bounds could be computed based on beg_addr/end_addr and the
   268   // boundary test hoisted outside the loop (see klassVTable for an example);
   269   // however, row_limit() is small enough (2) to make that less efficient.
   270   for (uint row = 0; row < row_limit(); row++) {
   271     if (receiver_unchecked(row) != NULL) {
   272       PSParallelCompact::adjust_pointer(adr_receiver(row), beg_addr, end_addr);
   273     }
   274   }
   275 }
   276 #endif // SERIALGC
   278 #ifndef PRODUCT
   279 void ReceiverTypeData::print_receiver_data_on(outputStream* st) {
   280   uint row;
   281   int entries = 0;
   282   for (row = 0; row < row_limit(); row++) {
   283     if (receiver(row) != NULL)  entries++;
   284   }
   285   st->print_cr("count(%u) entries(%u)", count(), entries);
   286   int total = count();
   287   for (row = 0; row < row_limit(); row++) {
   288     if (receiver(row) != NULL) {
   289       total += receiver_count(row);
   290     }
   291   }
   292   for (row = 0; row < row_limit(); row++) {
   293     if (receiver(row) != NULL) {
   294       tab(st);
   295       receiver(row)->print_value_on(st);
   296       st->print_cr("(%u %4.2f)", receiver_count(row), (float) receiver_count(row) / (float) total);
   297     }
   298   }
   299 }
   300 void ReceiverTypeData::print_data_on(outputStream* st) {
   301   print_shared(st, "ReceiverTypeData");
   302   print_receiver_data_on(st);
   303 }
   304 void VirtualCallData::print_data_on(outputStream* st) {
   305   print_shared(st, "VirtualCallData");
   306   print_receiver_data_on(st);
   307 }
   308 #endif // !PRODUCT
   310 // ==================================================================
   311 // RetData
   312 //
   313 // A RetData is used to access profiling information for a ret bytecode.
   314 // It is composed of a count of the number of times that the ret has
   315 // been executed, followed by a series of triples of the form
   316 // (bci, count, di) which count the number of times that some bci was the
   317 // target of the ret and cache a corresponding displacement.
   319 void RetData::post_initialize(BytecodeStream* stream, methodDataOop mdo) {
   320   for (uint row = 0; row < row_limit(); row++) {
   321     set_bci_displacement(row, -1);
   322     set_bci(row, no_bci);
   323   }
   324   // release so other threads see a consistent state.  bci is used as
   325   // a valid flag for bci_displacement.
   326   OrderAccess::release();
   327 }
   329 // This routine needs to atomically update the RetData structure, so the
   330 // caller needs to hold the RetData_lock before it gets here.  Since taking
   331 // the lock can block (and allow GC) and since RetData is a ProfileData is a
   332 // wrapper around a derived oop, taking the lock in _this_ method will
   333 // basically cause the 'this' pointer's _data field to contain junk after the
   334 // lock.  We require the caller to take the lock before making the ProfileData
   335 // structure.  Currently the only caller is InterpreterRuntime::update_mdp_for_ret
   336 address RetData::fixup_ret(int return_bci, methodDataHandle h_mdo) {
   337   // First find the mdp which corresponds to the return bci.
   338   address mdp = h_mdo->bci_to_dp(return_bci);
   340   // Now check to see if any of the cache slots are open.
   341   for (uint row = 0; row < row_limit(); row++) {
   342     if (bci(row) == no_bci) {
   343       set_bci_displacement(row, mdp - dp());
   344       set_bci_count(row, DataLayout::counter_increment);
   345       // Barrier to ensure displacement is written before the bci; allows
   346       // the interpreter to read displacement without fear of race condition.
   347       release_set_bci(row, return_bci);
   348       break;
   349     }
   350   }
   351   return mdp;
   352 }
   355 #ifndef PRODUCT
   356 void RetData::print_data_on(outputStream* st) {
   357   print_shared(st, "RetData");
   358   uint row;
   359   int entries = 0;
   360   for (row = 0; row < row_limit(); row++) {
   361     if (bci(row) != no_bci)  entries++;
   362   }
   363   st->print_cr("count(%u) entries(%u)", count(), entries);
   364   for (row = 0; row < row_limit(); row++) {
   365     if (bci(row) != no_bci) {
   366       tab(st);
   367       st->print_cr("bci(%d: count(%u) displacement(%d))",
   368                    bci(row), bci_count(row), bci_displacement(row));
   369     }
   370   }
   371 }
   372 #endif // !PRODUCT
   374 // ==================================================================
   375 // BranchData
   376 //
   377 // A BranchData is used to access profiling data for a two-way branch.
   378 // It consists of taken and not_taken counts as well as a data displacement
   379 // for the taken case.
   381 void BranchData::post_initialize(BytecodeStream* stream, methodDataOop mdo) {
   382   assert(stream->bci() == bci(), "wrong pos");
   383   int target = stream->dest();
   384   int my_di = mdo->dp_to_di(dp());
   385   int target_di = mdo->bci_to_di(target);
   386   int offset = target_di - my_di;
   387   set_displacement(offset);
   388 }
   390 #ifndef PRODUCT
   391 void BranchData::print_data_on(outputStream* st) {
   392   print_shared(st, "BranchData");
   393   st->print_cr("taken(%u) displacement(%d)",
   394                taken(), displacement());
   395   tab(st);
   396   st->print_cr("not taken(%u)", not_taken());
   397 }
   398 #endif
   400 // ==================================================================
   401 // MultiBranchData
   402 //
   403 // A MultiBranchData is used to access profiling information for
   404 // a multi-way branch (*switch bytecodes).  It consists of a series
   405 // of (count, displacement) pairs, which count the number of times each
   406 // case was taken and specify the data displacment for each branch target.
   408 int MultiBranchData::compute_cell_count(BytecodeStream* stream) {
   409   int cell_count = 0;
   410   if (stream->code() == Bytecodes::_tableswitch) {
   411     Bytecode_tableswitch* sw = Bytecode_tableswitch_at(stream->bcp());
   412     cell_count = 1 + per_case_cell_count * (1 + sw->length()); // 1 for default
   413   } else {
   414     Bytecode_lookupswitch* sw = Bytecode_lookupswitch_at(stream->bcp());
   415     cell_count = 1 + per_case_cell_count * (sw->number_of_pairs() + 1); // 1 for default
   416   }
   417   return cell_count;
   418 }
   420 void MultiBranchData::post_initialize(BytecodeStream* stream,
   421                                       methodDataOop mdo) {
   422   assert(stream->bci() == bci(), "wrong pos");
   423   int target;
   424   int my_di;
   425   int target_di;
   426   int offset;
   427   if (stream->code() == Bytecodes::_tableswitch) {
   428     Bytecode_tableswitch* sw = Bytecode_tableswitch_at(stream->bcp());
   429     int len = sw->length();
   430     assert(array_len() == per_case_cell_count * (len + 1), "wrong len");
   431     for (int count = 0; count < len; count++) {
   432       target = sw->dest_offset_at(count) + bci();
   433       my_di = mdo->dp_to_di(dp());
   434       target_di = mdo->bci_to_di(target);
   435       offset = target_di - my_di;
   436       set_displacement_at(count, offset);
   437     }
   438     target = sw->default_offset() + bci();
   439     my_di = mdo->dp_to_di(dp());
   440     target_di = mdo->bci_to_di(target);
   441     offset = target_di - my_di;
   442     set_default_displacement(offset);
   444   } else {
   445     Bytecode_lookupswitch* sw = Bytecode_lookupswitch_at(stream->bcp());
   446     int npairs = sw->number_of_pairs();
   447     assert(array_len() == per_case_cell_count * (npairs + 1), "wrong len");
   448     for (int count = 0; count < npairs; count++) {
   449       LookupswitchPair *pair = sw->pair_at(count);
   450       target = pair->offset() + bci();
   451       my_di = mdo->dp_to_di(dp());
   452       target_di = mdo->bci_to_di(target);
   453       offset = target_di - my_di;
   454       set_displacement_at(count, offset);
   455     }
   456     target = sw->default_offset() + bci();
   457     my_di = mdo->dp_to_di(dp());
   458     target_di = mdo->bci_to_di(target);
   459     offset = target_di - my_di;
   460     set_default_displacement(offset);
   461   }
   462 }
   464 #ifndef PRODUCT
   465 void MultiBranchData::print_data_on(outputStream* st) {
   466   print_shared(st, "MultiBranchData");
   467   st->print_cr("default_count(%u) displacement(%d)",
   468                default_count(), default_displacement());
   469   int cases = number_of_cases();
   470   for (int i = 0; i < cases; i++) {
   471     tab(st);
   472     st->print_cr("count(%u) displacement(%d)",
   473                  count_at(i), displacement_at(i));
   474   }
   475 }
   476 #endif
   478 #ifndef PRODUCT
   479 void ArgInfoData::print_data_on(outputStream* st) {
   480   print_shared(st, "ArgInfoData");
   481   int nargs = number_of_args();
   482   for (int i = 0; i < nargs; i++) {
   483     st->print("  0x%x", arg_modified(i));
   484   }
   485   st->cr();
   486 }
   488 #endif
   489 // ==================================================================
   490 // methodDataOop
   491 //
   492 // A methodDataOop holds information which has been collected about
   493 // a method.
   495 int methodDataOopDesc::bytecode_cell_count(Bytecodes::Code code) {
   496   switch (code) {
   497   case Bytecodes::_checkcast:
   498   case Bytecodes::_instanceof:
   499   case Bytecodes::_aastore:
   500     if (TypeProfileCasts) {
   501       return ReceiverTypeData::static_cell_count();
   502     } else {
   503       return BitData::static_cell_count();
   504     }
   505   case Bytecodes::_invokespecial:
   506   case Bytecodes::_invokestatic:
   507     return CounterData::static_cell_count();
   508   case Bytecodes::_goto:
   509   case Bytecodes::_goto_w:
   510   case Bytecodes::_jsr:
   511   case Bytecodes::_jsr_w:
   512     return JumpData::static_cell_count();
   513   case Bytecodes::_invokevirtual:
   514   case Bytecodes::_invokeinterface:
   515     return VirtualCallData::static_cell_count();
   516   case Bytecodes::_invokedynamic:
   517     return CounterData::static_cell_count();
   518   case Bytecodes::_ret:
   519     return RetData::static_cell_count();
   520   case Bytecodes::_ifeq:
   521   case Bytecodes::_ifne:
   522   case Bytecodes::_iflt:
   523   case Bytecodes::_ifge:
   524   case Bytecodes::_ifgt:
   525   case Bytecodes::_ifle:
   526   case Bytecodes::_if_icmpeq:
   527   case Bytecodes::_if_icmpne:
   528   case Bytecodes::_if_icmplt:
   529   case Bytecodes::_if_icmpge:
   530   case Bytecodes::_if_icmpgt:
   531   case Bytecodes::_if_icmple:
   532   case Bytecodes::_if_acmpeq:
   533   case Bytecodes::_if_acmpne:
   534   case Bytecodes::_ifnull:
   535   case Bytecodes::_ifnonnull:
   536     return BranchData::static_cell_count();
   537   case Bytecodes::_lookupswitch:
   538   case Bytecodes::_tableswitch:
   539     return variable_cell_count;
   540   }
   541   return no_profile_data;
   542 }
   544 // Compute the size of the profiling information corresponding to
   545 // the current bytecode.
   546 int methodDataOopDesc::compute_data_size(BytecodeStream* stream) {
   547   int cell_count = bytecode_cell_count(stream->code());
   548   if (cell_count == no_profile_data) {
   549     return 0;
   550   }
   551   if (cell_count == variable_cell_count) {
   552     cell_count = MultiBranchData::compute_cell_count(stream);
   553   }
   554   // Note:  cell_count might be zero, meaning that there is just
   555   //        a DataLayout header, with no extra cells.
   556   assert(cell_count >= 0, "sanity");
   557   return DataLayout::compute_size_in_bytes(cell_count);
   558 }
   560 int methodDataOopDesc::compute_extra_data_count(int data_size, int empty_bc_count) {
   561   if (ProfileTraps) {
   562     // Assume that up to 3% of BCIs with no MDP will need to allocate one.
   563     int extra_data_count = (uint)(empty_bc_count * 3) / 128 + 1;
   564     // If the method is large, let the extra BCIs grow numerous (to ~1%).
   565     int one_percent_of_data
   566       = (uint)data_size / (DataLayout::header_size_in_bytes()*128);
   567     if (extra_data_count < one_percent_of_data)
   568       extra_data_count = one_percent_of_data;
   569     if (extra_data_count > empty_bc_count)
   570       extra_data_count = empty_bc_count;  // no need for more
   571     return extra_data_count;
   572   } else {
   573     return 0;
   574   }
   575 }
   577 // Compute the size of the methodDataOop necessary to store
   578 // profiling information about a given method.  Size is in bytes.
   579 int methodDataOopDesc::compute_allocation_size_in_bytes(methodHandle method) {
   580   int data_size = 0;
   581   BytecodeStream stream(method);
   582   Bytecodes::Code c;
   583   int empty_bc_count = 0;  // number of bytecodes lacking data
   584   while ((c = stream.next()) >= 0) {
   585     int size_in_bytes = compute_data_size(&stream);
   586     data_size += size_in_bytes;
   587     if (size_in_bytes == 0)  empty_bc_count += 1;
   588   }
   589   int object_size = in_bytes(data_offset()) + data_size;
   591   // Add some extra DataLayout cells (at least one) to track stray traps.
   592   int extra_data_count = compute_extra_data_count(data_size, empty_bc_count);
   593   object_size += extra_data_count * DataLayout::compute_size_in_bytes(0);
   595   // Add a cell to record information about modified arguments.
   596   int arg_size = method->size_of_parameters();
   597   object_size += DataLayout::compute_size_in_bytes(arg_size+1);
   598   return object_size;
   599 }
   601 // Compute the size of the methodDataOop necessary to store
   602 // profiling information about a given method.  Size is in words
   603 int methodDataOopDesc::compute_allocation_size_in_words(methodHandle method) {
   604   int byte_size = compute_allocation_size_in_bytes(method);
   605   int word_size = align_size_up(byte_size, BytesPerWord) / BytesPerWord;
   606   return align_object_size(word_size);
   607 }
   609 // Initialize an individual data segment.  Returns the size of
   610 // the segment in bytes.
   611 int methodDataOopDesc::initialize_data(BytecodeStream* stream,
   612                                        int data_index) {
   613   int cell_count = -1;
   614   int tag = DataLayout::no_tag;
   615   DataLayout* data_layout = data_layout_at(data_index);
   616   Bytecodes::Code c = stream->code();
   617   switch (c) {
   618   case Bytecodes::_checkcast:
   619   case Bytecodes::_instanceof:
   620   case Bytecodes::_aastore:
   621     if (TypeProfileCasts) {
   622       cell_count = ReceiverTypeData::static_cell_count();
   623       tag = DataLayout::receiver_type_data_tag;
   624     } else {
   625       cell_count = BitData::static_cell_count();
   626       tag = DataLayout::bit_data_tag;
   627     }
   628     break;
   629   case Bytecodes::_invokespecial:
   630   case Bytecodes::_invokestatic:
   631     cell_count = CounterData::static_cell_count();
   632     tag = DataLayout::counter_data_tag;
   633     break;
   634   case Bytecodes::_goto:
   635   case Bytecodes::_goto_w:
   636   case Bytecodes::_jsr:
   637   case Bytecodes::_jsr_w:
   638     cell_count = JumpData::static_cell_count();
   639     tag = DataLayout::jump_data_tag;
   640     break;
   641   case Bytecodes::_invokevirtual:
   642   case Bytecodes::_invokeinterface:
   643     cell_count = VirtualCallData::static_cell_count();
   644     tag = DataLayout::virtual_call_data_tag;
   645     break;
   646   case Bytecodes::_invokedynamic:
   647     // %%% should make a type profile for any invokedynamic that takes a ref argument
   648     cell_count = CounterData::static_cell_count();
   649     tag = DataLayout::counter_data_tag;
   650     break;
   651   case Bytecodes::_ret:
   652     cell_count = RetData::static_cell_count();
   653     tag = DataLayout::ret_data_tag;
   654     break;
   655   case Bytecodes::_ifeq:
   656   case Bytecodes::_ifne:
   657   case Bytecodes::_iflt:
   658   case Bytecodes::_ifge:
   659   case Bytecodes::_ifgt:
   660   case Bytecodes::_ifle:
   661   case Bytecodes::_if_icmpeq:
   662   case Bytecodes::_if_icmpne:
   663   case Bytecodes::_if_icmplt:
   664   case Bytecodes::_if_icmpge:
   665   case Bytecodes::_if_icmpgt:
   666   case Bytecodes::_if_icmple:
   667   case Bytecodes::_if_acmpeq:
   668   case Bytecodes::_if_acmpne:
   669   case Bytecodes::_ifnull:
   670   case Bytecodes::_ifnonnull:
   671     cell_count = BranchData::static_cell_count();
   672     tag = DataLayout::branch_data_tag;
   673     break;
   674   case Bytecodes::_lookupswitch:
   675   case Bytecodes::_tableswitch:
   676     cell_count = MultiBranchData::compute_cell_count(stream);
   677     tag = DataLayout::multi_branch_data_tag;
   678     break;
   679   }
   680   assert(tag == DataLayout::multi_branch_data_tag ||
   681          cell_count == bytecode_cell_count(c), "cell counts must agree");
   682   if (cell_count >= 0) {
   683     assert(tag != DataLayout::no_tag, "bad tag");
   684     assert(bytecode_has_profile(c), "agree w/ BHP");
   685     data_layout->initialize(tag, stream->bci(), cell_count);
   686     return DataLayout::compute_size_in_bytes(cell_count);
   687   } else {
   688     assert(!bytecode_has_profile(c), "agree w/ !BHP");
   689     return 0;
   690   }
   691 }
   693 // Get the data at an arbitrary (sort of) data index.
   694 ProfileData* methodDataOopDesc::data_at(int data_index) {
   695   if (out_of_bounds(data_index)) {
   696     return NULL;
   697   }
   698   DataLayout* data_layout = data_layout_at(data_index);
   699   return data_layout->data_in();
   700 }
   702 ProfileData* DataLayout::data_in() {
   703   switch (tag()) {
   704   case DataLayout::no_tag:
   705   default:
   706     ShouldNotReachHere();
   707     return NULL;
   708   case DataLayout::bit_data_tag:
   709     return new BitData(this);
   710   case DataLayout::counter_data_tag:
   711     return new CounterData(this);
   712   case DataLayout::jump_data_tag:
   713     return new JumpData(this);
   714   case DataLayout::receiver_type_data_tag:
   715     return new ReceiverTypeData(this);
   716   case DataLayout::virtual_call_data_tag:
   717     return new VirtualCallData(this);
   718   case DataLayout::ret_data_tag:
   719     return new RetData(this);
   720   case DataLayout::branch_data_tag:
   721     return new BranchData(this);
   722   case DataLayout::multi_branch_data_tag:
   723     return new MultiBranchData(this);
   724   case DataLayout::arg_info_data_tag:
   725     return new ArgInfoData(this);
   726   };
   727 }
   729 // Iteration over data.
   730 ProfileData* methodDataOopDesc::next_data(ProfileData* current) {
   731   int current_index = dp_to_di(current->dp());
   732   int next_index = current_index + current->size_in_bytes();
   733   ProfileData* next = data_at(next_index);
   734   return next;
   735 }
   737 // Give each of the data entries a chance to perform specific
   738 // data initialization.
   739 void methodDataOopDesc::post_initialize(BytecodeStream* stream) {
   740   ResourceMark rm;
   741   ProfileData* data;
   742   for (data = first_data(); is_valid(data); data = next_data(data)) {
   743     stream->set_start(data->bci());
   744     stream->next();
   745     data->post_initialize(stream, this);
   746   }
   747 }
   749 // Initialize the methodDataOop corresponding to a given method.
   750 void methodDataOopDesc::initialize(methodHandle method) {
   751   ResourceMark rm;
   752   // Set the method back-pointer.
   753   _method = method();
   755   if (TieredCompilation) {
   756     _invocation_counter.init();
   757     _backedge_counter.init();
   758     _num_loops = 0;
   759     _num_blocks = 0;
   760     _highest_comp_level = 0;
   761     _highest_osr_comp_level = 0;
   762     _would_profile = false;
   763   }
   764   set_creation_mileage(mileage_of(method()));
   766   // Initialize flags and trap history.
   767   _nof_decompiles = 0;
   768   _nof_overflow_recompiles = 0;
   769   _nof_overflow_traps = 0;
   770   assert(sizeof(_trap_hist) % sizeof(HeapWord) == 0, "align");
   771   Copy::zero_to_words((HeapWord*) &_trap_hist,
   772                       sizeof(_trap_hist) / sizeof(HeapWord));
   774   // Go through the bytecodes and allocate and initialize the
   775   // corresponding data cells.
   776   int data_size = 0;
   777   int empty_bc_count = 0;  // number of bytecodes lacking data
   778   BytecodeStream stream(method);
   779   Bytecodes::Code c;
   780   while ((c = stream.next()) >= 0) {
   781     int size_in_bytes = initialize_data(&stream, data_size);
   782     data_size += size_in_bytes;
   783     if (size_in_bytes == 0)  empty_bc_count += 1;
   784   }
   785   _data_size = data_size;
   786   int object_size = in_bytes(data_offset()) + data_size;
   788   // Add some extra DataLayout cells (at least one) to track stray traps.
   789   int extra_data_count = compute_extra_data_count(data_size, empty_bc_count);
   790   int extra_size = extra_data_count * DataLayout::compute_size_in_bytes(0);
   792   // Add a cell to record information about modified arguments.
   793   // Set up _args_modified array after traps cells so that
   794   // the code for traps cells works.
   795   DataLayout *dp = data_layout_at(data_size + extra_size);
   797   int arg_size = method->size_of_parameters();
   798   dp->initialize(DataLayout::arg_info_data_tag, 0, arg_size+1);
   800   object_size += extra_size + DataLayout::compute_size_in_bytes(arg_size+1);
   802   // Set an initial hint. Don't use set_hint_di() because
   803   // first_di() may be out of bounds if data_size is 0.
   804   // In that situation, _hint_di is never used, but at
   805   // least well-defined.
   806   _hint_di = first_di();
   808   post_initialize(&stream);
   810   set_object_is_parsable(object_size);
   811 }
   813 // Get a measure of how much mileage the method has on it.
   814 int methodDataOopDesc::mileage_of(methodOop method) {
   815   int mileage = 0;
   816   if (TieredCompilation) {
   817     mileage = MAX2(method->invocation_count(), method->backedge_count());
   818   } else {
   819     int iic = method->interpreter_invocation_count();
   820     if (mileage < iic)  mileage = iic;
   821     InvocationCounter* ic = method->invocation_counter();
   822     InvocationCounter* bc = method->backedge_counter();
   823     int icval = ic->count();
   824     if (ic->carry()) icval += CompileThreshold;
   825     if (mileage < icval)  mileage = icval;
   826     int bcval = bc->count();
   827     if (bc->carry()) bcval += CompileThreshold;
   828     if (mileage < bcval)  mileage = bcval;
   829   }
   830   return mileage;
   831 }
   833 bool methodDataOopDesc::is_mature() const {
   834   return CompilationPolicy::policy()->is_mature(_method);
   835 }
   837 // Translate a bci to its corresponding data index (di).
   838 address methodDataOopDesc::bci_to_dp(int bci) {
   839   ResourceMark rm;
   840   ProfileData* data = data_before(bci);
   841   ProfileData* prev = NULL;
   842   for ( ; is_valid(data); data = next_data(data)) {
   843     if (data->bci() >= bci) {
   844       if (data->bci() == bci)  set_hint_di(dp_to_di(data->dp()));
   845       else if (prev != NULL)   set_hint_di(dp_to_di(prev->dp()));
   846       return data->dp();
   847     }
   848     prev = data;
   849   }
   850   return (address)limit_data_position();
   851 }
   853 // Translate a bci to its corresponding data, or NULL.
   854 ProfileData* methodDataOopDesc::bci_to_data(int bci) {
   855   ProfileData* data = data_before(bci);
   856   for ( ; is_valid(data); data = next_data(data)) {
   857     if (data->bci() == bci) {
   858       set_hint_di(dp_to_di(data->dp()));
   859       return data;
   860     } else if (data->bci() > bci) {
   861       break;
   862     }
   863   }
   864   return bci_to_extra_data(bci, false);
   865 }
   867 // Translate a bci to its corresponding extra data, or NULL.
   868 ProfileData* methodDataOopDesc::bci_to_extra_data(int bci, bool create_if_missing) {
   869   DataLayout* dp    = extra_data_base();
   870   DataLayout* end   = extra_data_limit();
   871   DataLayout* avail = NULL;
   872   for (; dp < end; dp = next_extra(dp)) {
   873     // No need for "OrderAccess::load_acquire" ops,
   874     // since the data structure is monotonic.
   875     if (dp->tag() == DataLayout::no_tag)  break;
   876     if (dp->tag() == DataLayout::arg_info_data_tag) {
   877       dp = end; // ArgInfoData is at the end of extra data section.
   878       break;
   879     }
   880     if (dp->bci() == bci) {
   881       assert(dp->tag() == DataLayout::bit_data_tag, "sane");
   882       return new BitData(dp);
   883     }
   884   }
   885   if (create_if_missing && dp < end) {
   886     // Allocate this one.  There is no mutual exclusion,
   887     // so two threads could allocate different BCIs to the
   888     // same data layout.  This means these extra data
   889     // records, like most other MDO contents, must not be
   890     // trusted too much.
   891     DataLayout temp;
   892     temp.initialize(DataLayout::bit_data_tag, bci, 0);
   893     dp->release_set_header(temp.header());
   894     assert(dp->tag() == DataLayout::bit_data_tag, "sane");
   895     //NO: assert(dp->bci() == bci, "no concurrent allocation");
   896     return new BitData(dp);
   897   }
   898   return NULL;
   899 }
   901 ArgInfoData *methodDataOopDesc::arg_info() {
   902   DataLayout* dp    = extra_data_base();
   903   DataLayout* end   = extra_data_limit();
   904   for (; dp < end; dp = next_extra(dp)) {
   905     if (dp->tag() == DataLayout::arg_info_data_tag)
   906       return new ArgInfoData(dp);
   907   }
   908   return NULL;
   909 }
   911 #ifndef PRODUCT
   912 void methodDataOopDesc::print_data_on(outputStream* st) {
   913   ResourceMark rm;
   914   ProfileData* data = first_data();
   915   for ( ; is_valid(data); data = next_data(data)) {
   916     st->print("%d", dp_to_di(data->dp()));
   917     st->fill_to(6);
   918     data->print_data_on(st);
   919   }
   920   st->print_cr("--- Extra data:");
   921   DataLayout* dp    = extra_data_base();
   922   DataLayout* end   = extra_data_limit();
   923   for (; dp < end; dp = next_extra(dp)) {
   924     // No need for "OrderAccess::load_acquire" ops,
   925     // since the data structure is monotonic.
   926     if (dp->tag() == DataLayout::no_tag)  continue;
   927     if (dp->tag() == DataLayout::bit_data_tag) {
   928       data = new BitData(dp);
   929     } else {
   930       assert(dp->tag() == DataLayout::arg_info_data_tag, "must be BitData or ArgInfo");
   931       data = new ArgInfoData(dp);
   932       dp = end; // ArgInfoData is at the end of extra data section.
   933     }
   934     st->print("%d", dp_to_di(data->dp()));
   935     st->fill_to(6);
   936     data->print_data_on(st);
   937   }
   938 }
   939 #endif
   941 void methodDataOopDesc::verify_data_on(outputStream* st) {
   942   NEEDS_CLEANUP;
   943   // not yet implemented.
   944 }

mercurial