src/share/vm/oops/methodDataOop.cpp

Sat, 30 Oct 2010 11:45:35 -0700

author
jrose
date
Sat, 30 Oct 2010 11:45:35 -0700
changeset 2265
d1896d1dda3e
parent 2138
d5d065957597
child 2314
f95d63e2154a
permissions
-rw-r--r--

6981788: GC map generator sometimes picks up the wrong kind of instruction operand
Summary: Distinguish pool indexes from cache indexes in recently changed code.
Reviewed-by: never

duke@435 1 /*
iveresov@2138 2 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_methodDataOop.cpp.incl"
duke@435 27
duke@435 28 // ==================================================================
duke@435 29 // DataLayout
duke@435 30 //
duke@435 31 // Overlay for generic profiling data.
duke@435 32
duke@435 33 // Some types of data layouts need a length field.
duke@435 34 bool DataLayout::needs_array_len(u1 tag) {
kvn@480 35 return (tag == multi_branch_data_tag) || (tag == arg_info_data_tag);
duke@435 36 }
duke@435 37
duke@435 38 // Perform generic initialization of the data. More specific
duke@435 39 // initialization occurs in overrides of ProfileData::post_initialize.
duke@435 40 void DataLayout::initialize(u1 tag, u2 bci, int cell_count) {
duke@435 41 _header._bits = (intptr_t)0;
duke@435 42 _header._struct._tag = tag;
duke@435 43 _header._struct._bci = bci;
duke@435 44 for (int i = 0; i < cell_count; i++) {
duke@435 45 set_cell_at(i, (intptr_t)0);
duke@435 46 }
duke@435 47 if (needs_array_len(tag)) {
duke@435 48 set_cell_at(ArrayData::array_len_off_set, cell_count - 1); // -1 for header.
duke@435 49 }
duke@435 50 }
duke@435 51
ysr@1376 52 void DataLayout::follow_weak_refs(BoolObjectClosure* cl) {
ysr@1376 53 ResourceMark m;
ysr@1376 54 data_in()->follow_weak_refs(cl);
ysr@1376 55 }
ysr@1376 56
ysr@1376 57
duke@435 58 // ==================================================================
duke@435 59 // ProfileData
duke@435 60 //
duke@435 61 // A ProfileData object is created to refer to a section of profiling
duke@435 62 // data in a structured way.
duke@435 63
duke@435 64 // Constructor for invalid ProfileData.
duke@435 65 ProfileData::ProfileData() {
duke@435 66 _data = NULL;
duke@435 67 }
duke@435 68
duke@435 69 #ifndef PRODUCT
duke@435 70 void ProfileData::print_shared(outputStream* st, const char* name) {
duke@435 71 st->print("bci: %d", bci());
duke@435 72 st->fill_to(tab_width_one);
duke@435 73 st->print("%s", name);
duke@435 74 tab(st);
duke@435 75 int trap = trap_state();
duke@435 76 if (trap != 0) {
duke@435 77 char buf[100];
duke@435 78 st->print("trap(%s) ", Deoptimization::format_trap_state(buf, sizeof(buf), trap));
duke@435 79 }
duke@435 80 int flags = data()->flags();
duke@435 81 if (flags != 0)
duke@435 82 st->print("flags(%d) ", flags);
duke@435 83 }
duke@435 84
duke@435 85 void ProfileData::tab(outputStream* st) {
duke@435 86 st->fill_to(tab_width_two);
duke@435 87 }
duke@435 88 #endif // !PRODUCT
duke@435 89
duke@435 90 // ==================================================================
duke@435 91 // BitData
duke@435 92 //
duke@435 93 // A BitData corresponds to a one-bit flag. This is used to indicate
duke@435 94 // whether a checkcast bytecode has seen a null value.
duke@435 95
duke@435 96
duke@435 97 #ifndef PRODUCT
duke@435 98 void BitData::print_data_on(outputStream* st) {
duke@435 99 print_shared(st, "BitData");
duke@435 100 }
duke@435 101 #endif // !PRODUCT
duke@435 102
duke@435 103 // ==================================================================
duke@435 104 // CounterData
duke@435 105 //
duke@435 106 // A CounterData corresponds to a simple counter.
duke@435 107
duke@435 108 #ifndef PRODUCT
duke@435 109 void CounterData::print_data_on(outputStream* st) {
duke@435 110 print_shared(st, "CounterData");
duke@435 111 st->print_cr("count(%u)", count());
duke@435 112 }
duke@435 113 #endif // !PRODUCT
duke@435 114
duke@435 115 // ==================================================================
duke@435 116 // JumpData
duke@435 117 //
duke@435 118 // A JumpData is used to access profiling information for a direct
duke@435 119 // branch. It is a counter, used for counting the number of branches,
duke@435 120 // plus a data displacement, used for realigning the data pointer to
duke@435 121 // the corresponding target bci.
duke@435 122
duke@435 123 void JumpData::post_initialize(BytecodeStream* stream, methodDataOop mdo) {
duke@435 124 assert(stream->bci() == bci(), "wrong pos");
duke@435 125 int target;
duke@435 126 Bytecodes::Code c = stream->code();
duke@435 127 if (c == Bytecodes::_goto_w || c == Bytecodes::_jsr_w) {
duke@435 128 target = stream->dest_w();
duke@435 129 } else {
duke@435 130 target = stream->dest();
duke@435 131 }
duke@435 132 int my_di = mdo->dp_to_di(dp());
duke@435 133 int target_di = mdo->bci_to_di(target);
duke@435 134 int offset = target_di - my_di;
duke@435 135 set_displacement(offset);
duke@435 136 }
duke@435 137
duke@435 138 #ifndef PRODUCT
duke@435 139 void JumpData::print_data_on(outputStream* st) {
duke@435 140 print_shared(st, "JumpData");
duke@435 141 st->print_cr("taken(%u) displacement(%d)", taken(), displacement());
duke@435 142 }
duke@435 143 #endif // !PRODUCT
duke@435 144
duke@435 145 // ==================================================================
duke@435 146 // ReceiverTypeData
duke@435 147 //
duke@435 148 // A ReceiverTypeData is used to access profiling information about a
duke@435 149 // dynamic type check. It consists of a counter which counts the total times
duke@435 150 // that the check is reached, and a series of (klassOop, count) pairs
duke@435 151 // which are used to store a type profile for the receiver of the check.
duke@435 152
duke@435 153 void ReceiverTypeData::follow_contents() {
ysr@1376 154 // This is a set of weak references that need
ysr@1376 155 // to be followed at the end of the strong marking
ysr@1376 156 // phase. Memoize this object so it can be visited
ysr@1376 157 // in the weak roots processing phase.
ysr@1376 158 MarkSweep::revisit_mdo(data());
duke@435 159 }
duke@435 160
duke@435 161 #ifndef SERIALGC
duke@435 162 void ReceiverTypeData::follow_contents(ParCompactionManager* cm) {
ysr@1376 163 // This is a set of weak references that need
ysr@1376 164 // to be followed at the end of the strong marking
ysr@1376 165 // phase. Memoize this object so it can be visited
ysr@1376 166 // in the weak roots processing phase.
ysr@1376 167 PSParallelCompact::revisit_mdo(cm, data());
duke@435 168 }
duke@435 169 #endif // SERIALGC
duke@435 170
duke@435 171 void ReceiverTypeData::oop_iterate(OopClosure* blk) {
ysr@1376 172 if (blk->should_remember_mdo()) {
ysr@1376 173 // This is a set of weak references that need
ysr@1376 174 // to be followed at the end of the strong marking
ysr@1376 175 // phase. Memoize this object so it can be visited
ysr@1376 176 // in the weak roots processing phase.
ysr@1376 177 blk->remember_mdo(data());
ysr@1376 178 } else { // normal scan
ysr@1376 179 for (uint row = 0; row < row_limit(); row++) {
ysr@1376 180 if (receiver(row) != NULL) {
ysr@1376 181 oop* adr = adr_receiver(row);
duke@435 182 blk->do_oop(adr);
duke@435 183 }
duke@435 184 }
duke@435 185 }
duke@435 186 }
duke@435 187
ysr@1376 188 void ReceiverTypeData::oop_iterate_m(OopClosure* blk, MemRegion mr) {
ysr@1376 189 // Currently, this interface is called only during card-scanning for
ysr@1376 190 // a young gen gc, in which case this object cannot contribute anything,
ysr@1376 191 // since it does not contain any references that cross out of
ysr@1376 192 // the perm gen. However, for future more general use we allow
ysr@1376 193 // the possibility of calling for instance from more general
ysr@1376 194 // iterators (for example, a future regionalized perm gen for G1,
ysr@1376 195 // or the possibility of moving some references out of perm in
ysr@1376 196 // the case of other collectors). In that case, you will need
ysr@1376 197 // to relax or remove some of the assertions below.
ysr@1376 198 #ifdef ASSERT
ysr@1376 199 // Verify that none of the embedded oop references cross out of
ysr@1376 200 // this generation.
ysr@1376 201 for (uint row = 0; row < row_limit(); row++) {
ysr@1376 202 if (receiver(row) != NULL) {
ysr@1376 203 oop* adr = adr_receiver(row);
ysr@1376 204 CollectedHeap* h = Universe::heap();
ysr@1376 205 assert(h->is_permanent(adr) && h->is_permanent_or_null(*adr), "Not intra-perm");
ysr@1376 206 }
ysr@1376 207 }
ysr@1376 208 #endif // ASSERT
ysr@1376 209 assert(!blk->should_remember_mdo(), "Not expected to remember MDO");
ysr@1376 210 return; // Nothing to do, see comment above
ysr@1376 211 #if 0
ysr@1376 212 if (blk->should_remember_mdo()) {
ysr@1376 213 // This is a set of weak references that need
ysr@1376 214 // to be followed at the end of the strong marking
ysr@1376 215 // phase. Memoize this object so it can be visited
ysr@1376 216 // in the weak roots processing phase.
ysr@1376 217 blk->remember_mdo(data());
ysr@1376 218 } else { // normal scan
ysr@1376 219 for (uint row = 0; row < row_limit(); row++) {
ysr@1376 220 if (receiver(row) != NULL) {
ysr@1376 221 oop* adr = adr_receiver(row);
ysr@1376 222 if (mr.contains(adr)) {
ysr@1376 223 blk->do_oop(adr);
ysr@1376 224 } else if ((HeapWord*)adr >= mr.end()) {
ysr@1376 225 // Test that the current cursor and the two ends of the range
ysr@1376 226 // that we may have skipped iterating over are monotonically ordered;
ysr@1376 227 // this is just a paranoid assertion, just in case represetations
ysr@1376 228 // should change in the future rendering the short-circuit return
ysr@1376 229 // here invalid.
ysr@1376 230 assert((row+1 >= row_limit() || adr_receiver(row+1) > adr) &&
ysr@1376 231 (row+2 >= row_limit() || adr_receiver(row_limit()-1) > adr_receiver(row+1)), "Reducing?");
ysr@1376 232 break; // remaining should be outside this mr too
ysr@1376 233 }
ysr@1376 234 }
ysr@1376 235 }
ysr@1376 236 }
ysr@1376 237 #endif
ysr@1376 238 }
ysr@1376 239
duke@435 240 void ReceiverTypeData::adjust_pointers() {
duke@435 241 for (uint row = 0; row < row_limit(); row++) {
duke@435 242 if (receiver(row) != NULL) {
duke@435 243 MarkSweep::adjust_pointer(adr_receiver(row));
duke@435 244 }
duke@435 245 }
duke@435 246 }
duke@435 247
ysr@1376 248 void ReceiverTypeData::follow_weak_refs(BoolObjectClosure* is_alive_cl) {
ysr@1376 249 for (uint row = 0; row < row_limit(); row++) {
ysr@1376 250 klassOop p = receiver(row);
ysr@1376 251 if (p != NULL && !is_alive_cl->do_object_b(p)) {
ysr@1376 252 clear_row(row);
ysr@1376 253 }
ysr@1376 254 }
ysr@1376 255 }
ysr@1376 256
duke@435 257 #ifndef SERIALGC
duke@435 258 void ReceiverTypeData::update_pointers() {
duke@435 259 for (uint row = 0; row < row_limit(); row++) {
duke@435 260 if (receiver_unchecked(row) != NULL) {
duke@435 261 PSParallelCompact::adjust_pointer(adr_receiver(row));
duke@435 262 }
duke@435 263 }
duke@435 264 }
duke@435 265
duke@435 266 void ReceiverTypeData::update_pointers(HeapWord* beg_addr, HeapWord* end_addr) {
duke@435 267 // The loop bounds could be computed based on beg_addr/end_addr and the
duke@435 268 // boundary test hoisted outside the loop (see klassVTable for an example);
duke@435 269 // however, row_limit() is small enough (2) to make that less efficient.
duke@435 270 for (uint row = 0; row < row_limit(); row++) {
duke@435 271 if (receiver_unchecked(row) != NULL) {
duke@435 272 PSParallelCompact::adjust_pointer(adr_receiver(row), beg_addr, end_addr);
duke@435 273 }
duke@435 274 }
duke@435 275 }
duke@435 276 #endif // SERIALGC
duke@435 277
duke@435 278 #ifndef PRODUCT
duke@435 279 void ReceiverTypeData::print_receiver_data_on(outputStream* st) {
duke@435 280 uint row;
duke@435 281 int entries = 0;
duke@435 282 for (row = 0; row < row_limit(); row++) {
duke@435 283 if (receiver(row) != NULL) entries++;
duke@435 284 }
duke@435 285 st->print_cr("count(%u) entries(%u)", count(), entries);
iveresov@2138 286 int total = count();
iveresov@2138 287 for (row = 0; row < row_limit(); row++) {
iveresov@2138 288 if (receiver(row) != NULL) {
iveresov@2138 289 total += receiver_count(row);
iveresov@2138 290 }
iveresov@2138 291 }
duke@435 292 for (row = 0; row < row_limit(); row++) {
duke@435 293 if (receiver(row) != NULL) {
duke@435 294 tab(st);
duke@435 295 receiver(row)->print_value_on(st);
iveresov@2138 296 st->print_cr("(%u %4.2f)", receiver_count(row), (float) receiver_count(row) / (float) total);
duke@435 297 }
duke@435 298 }
duke@435 299 }
duke@435 300 void ReceiverTypeData::print_data_on(outputStream* st) {
duke@435 301 print_shared(st, "ReceiverTypeData");
duke@435 302 print_receiver_data_on(st);
duke@435 303 }
duke@435 304 void VirtualCallData::print_data_on(outputStream* st) {
duke@435 305 print_shared(st, "VirtualCallData");
duke@435 306 print_receiver_data_on(st);
duke@435 307 }
duke@435 308 #endif // !PRODUCT
duke@435 309
duke@435 310 // ==================================================================
duke@435 311 // RetData
duke@435 312 //
duke@435 313 // A RetData is used to access profiling information for a ret bytecode.
duke@435 314 // It is composed of a count of the number of times that the ret has
duke@435 315 // been executed, followed by a series of triples of the form
duke@435 316 // (bci, count, di) which count the number of times that some bci was the
duke@435 317 // target of the ret and cache a corresponding displacement.
duke@435 318
duke@435 319 void RetData::post_initialize(BytecodeStream* stream, methodDataOop mdo) {
duke@435 320 for (uint row = 0; row < row_limit(); row++) {
duke@435 321 set_bci_displacement(row, -1);
duke@435 322 set_bci(row, no_bci);
duke@435 323 }
duke@435 324 // release so other threads see a consistent state. bci is used as
duke@435 325 // a valid flag for bci_displacement.
duke@435 326 OrderAccess::release();
duke@435 327 }
duke@435 328
duke@435 329 // This routine needs to atomically update the RetData structure, so the
duke@435 330 // caller needs to hold the RetData_lock before it gets here. Since taking
duke@435 331 // the lock can block (and allow GC) and since RetData is a ProfileData is a
duke@435 332 // wrapper around a derived oop, taking the lock in _this_ method will
duke@435 333 // basically cause the 'this' pointer's _data field to contain junk after the
duke@435 334 // lock. We require the caller to take the lock before making the ProfileData
duke@435 335 // structure. Currently the only caller is InterpreterRuntime::update_mdp_for_ret
duke@435 336 address RetData::fixup_ret(int return_bci, methodDataHandle h_mdo) {
duke@435 337 // First find the mdp which corresponds to the return bci.
duke@435 338 address mdp = h_mdo->bci_to_dp(return_bci);
duke@435 339
duke@435 340 // Now check to see if any of the cache slots are open.
duke@435 341 for (uint row = 0; row < row_limit(); row++) {
duke@435 342 if (bci(row) == no_bci) {
duke@435 343 set_bci_displacement(row, mdp - dp());
duke@435 344 set_bci_count(row, DataLayout::counter_increment);
duke@435 345 // Barrier to ensure displacement is written before the bci; allows
duke@435 346 // the interpreter to read displacement without fear of race condition.
duke@435 347 release_set_bci(row, return_bci);
duke@435 348 break;
duke@435 349 }
duke@435 350 }
duke@435 351 return mdp;
duke@435 352 }
duke@435 353
duke@435 354
duke@435 355 #ifndef PRODUCT
duke@435 356 void RetData::print_data_on(outputStream* st) {
duke@435 357 print_shared(st, "RetData");
duke@435 358 uint row;
duke@435 359 int entries = 0;
duke@435 360 for (row = 0; row < row_limit(); row++) {
duke@435 361 if (bci(row) != no_bci) entries++;
duke@435 362 }
duke@435 363 st->print_cr("count(%u) entries(%u)", count(), entries);
duke@435 364 for (row = 0; row < row_limit(); row++) {
duke@435 365 if (bci(row) != no_bci) {
duke@435 366 tab(st);
duke@435 367 st->print_cr("bci(%d: count(%u) displacement(%d))",
duke@435 368 bci(row), bci_count(row), bci_displacement(row));
duke@435 369 }
duke@435 370 }
duke@435 371 }
duke@435 372 #endif // !PRODUCT
duke@435 373
duke@435 374 // ==================================================================
duke@435 375 // BranchData
duke@435 376 //
duke@435 377 // A BranchData is used to access profiling data for a two-way branch.
duke@435 378 // It consists of taken and not_taken counts as well as a data displacement
duke@435 379 // for the taken case.
duke@435 380
duke@435 381 void BranchData::post_initialize(BytecodeStream* stream, methodDataOop mdo) {
duke@435 382 assert(stream->bci() == bci(), "wrong pos");
duke@435 383 int target = stream->dest();
duke@435 384 int my_di = mdo->dp_to_di(dp());
duke@435 385 int target_di = mdo->bci_to_di(target);
duke@435 386 int offset = target_di - my_di;
duke@435 387 set_displacement(offset);
duke@435 388 }
duke@435 389
duke@435 390 #ifndef PRODUCT
duke@435 391 void BranchData::print_data_on(outputStream* st) {
duke@435 392 print_shared(st, "BranchData");
duke@435 393 st->print_cr("taken(%u) displacement(%d)",
duke@435 394 taken(), displacement());
duke@435 395 tab(st);
duke@435 396 st->print_cr("not taken(%u)", not_taken());
duke@435 397 }
duke@435 398 #endif
duke@435 399
duke@435 400 // ==================================================================
duke@435 401 // MultiBranchData
duke@435 402 //
duke@435 403 // A MultiBranchData is used to access profiling information for
duke@435 404 // a multi-way branch (*switch bytecodes). It consists of a series
duke@435 405 // of (count, displacement) pairs, which count the number of times each
duke@435 406 // case was taken and specify the data displacment for each branch target.
duke@435 407
duke@435 408 int MultiBranchData::compute_cell_count(BytecodeStream* stream) {
duke@435 409 int cell_count = 0;
duke@435 410 if (stream->code() == Bytecodes::_tableswitch) {
duke@435 411 Bytecode_tableswitch* sw = Bytecode_tableswitch_at(stream->bcp());
duke@435 412 cell_count = 1 + per_case_cell_count * (1 + sw->length()); // 1 for default
duke@435 413 } else {
duke@435 414 Bytecode_lookupswitch* sw = Bytecode_lookupswitch_at(stream->bcp());
duke@435 415 cell_count = 1 + per_case_cell_count * (sw->number_of_pairs() + 1); // 1 for default
duke@435 416 }
duke@435 417 return cell_count;
duke@435 418 }
duke@435 419
duke@435 420 void MultiBranchData::post_initialize(BytecodeStream* stream,
duke@435 421 methodDataOop mdo) {
duke@435 422 assert(stream->bci() == bci(), "wrong pos");
duke@435 423 int target;
duke@435 424 int my_di;
duke@435 425 int target_di;
duke@435 426 int offset;
duke@435 427 if (stream->code() == Bytecodes::_tableswitch) {
duke@435 428 Bytecode_tableswitch* sw = Bytecode_tableswitch_at(stream->bcp());
duke@435 429 int len = sw->length();
duke@435 430 assert(array_len() == per_case_cell_count * (len + 1), "wrong len");
duke@435 431 for (int count = 0; count < len; count++) {
duke@435 432 target = sw->dest_offset_at(count) + bci();
duke@435 433 my_di = mdo->dp_to_di(dp());
duke@435 434 target_di = mdo->bci_to_di(target);
duke@435 435 offset = target_di - my_di;
duke@435 436 set_displacement_at(count, offset);
duke@435 437 }
duke@435 438 target = sw->default_offset() + bci();
duke@435 439 my_di = mdo->dp_to_di(dp());
duke@435 440 target_di = mdo->bci_to_di(target);
duke@435 441 offset = target_di - my_di;
duke@435 442 set_default_displacement(offset);
duke@435 443
duke@435 444 } else {
duke@435 445 Bytecode_lookupswitch* sw = Bytecode_lookupswitch_at(stream->bcp());
duke@435 446 int npairs = sw->number_of_pairs();
duke@435 447 assert(array_len() == per_case_cell_count * (npairs + 1), "wrong len");
duke@435 448 for (int count = 0; count < npairs; count++) {
duke@435 449 LookupswitchPair *pair = sw->pair_at(count);
duke@435 450 target = pair->offset() + bci();
duke@435 451 my_di = mdo->dp_to_di(dp());
duke@435 452 target_di = mdo->bci_to_di(target);
duke@435 453 offset = target_di - my_di;
duke@435 454 set_displacement_at(count, offset);
duke@435 455 }
duke@435 456 target = sw->default_offset() + bci();
duke@435 457 my_di = mdo->dp_to_di(dp());
duke@435 458 target_di = mdo->bci_to_di(target);
duke@435 459 offset = target_di - my_di;
duke@435 460 set_default_displacement(offset);
duke@435 461 }
duke@435 462 }
duke@435 463
duke@435 464 #ifndef PRODUCT
duke@435 465 void MultiBranchData::print_data_on(outputStream* st) {
duke@435 466 print_shared(st, "MultiBranchData");
duke@435 467 st->print_cr("default_count(%u) displacement(%d)",
duke@435 468 default_count(), default_displacement());
duke@435 469 int cases = number_of_cases();
duke@435 470 for (int i = 0; i < cases; i++) {
duke@435 471 tab(st);
duke@435 472 st->print_cr("count(%u) displacement(%d)",
duke@435 473 count_at(i), displacement_at(i));
duke@435 474 }
duke@435 475 }
duke@435 476 #endif
duke@435 477
kvn@480 478 #ifndef PRODUCT
kvn@480 479 void ArgInfoData::print_data_on(outputStream* st) {
kvn@480 480 print_shared(st, "ArgInfoData");
kvn@480 481 int nargs = number_of_args();
kvn@480 482 for (int i = 0; i < nargs; i++) {
kvn@480 483 st->print(" 0x%x", arg_modified(i));
kvn@480 484 }
kvn@480 485 st->cr();
kvn@480 486 }
kvn@480 487
kvn@480 488 #endif
duke@435 489 // ==================================================================
duke@435 490 // methodDataOop
duke@435 491 //
duke@435 492 // A methodDataOop holds information which has been collected about
duke@435 493 // a method.
duke@435 494
duke@435 495 int methodDataOopDesc::bytecode_cell_count(Bytecodes::Code code) {
duke@435 496 switch (code) {
duke@435 497 case Bytecodes::_checkcast:
duke@435 498 case Bytecodes::_instanceof:
duke@435 499 case Bytecodes::_aastore:
duke@435 500 if (TypeProfileCasts) {
duke@435 501 return ReceiverTypeData::static_cell_count();
duke@435 502 } else {
duke@435 503 return BitData::static_cell_count();
duke@435 504 }
duke@435 505 case Bytecodes::_invokespecial:
duke@435 506 case Bytecodes::_invokestatic:
duke@435 507 return CounterData::static_cell_count();
duke@435 508 case Bytecodes::_goto:
duke@435 509 case Bytecodes::_goto_w:
duke@435 510 case Bytecodes::_jsr:
duke@435 511 case Bytecodes::_jsr_w:
duke@435 512 return JumpData::static_cell_count();
duke@435 513 case Bytecodes::_invokevirtual:
duke@435 514 case Bytecodes::_invokeinterface:
duke@435 515 return VirtualCallData::static_cell_count();
jrose@1161 516 case Bytecodes::_invokedynamic:
jrose@1161 517 return CounterData::static_cell_count();
duke@435 518 case Bytecodes::_ret:
duke@435 519 return RetData::static_cell_count();
duke@435 520 case Bytecodes::_ifeq:
duke@435 521 case Bytecodes::_ifne:
duke@435 522 case Bytecodes::_iflt:
duke@435 523 case Bytecodes::_ifge:
duke@435 524 case Bytecodes::_ifgt:
duke@435 525 case Bytecodes::_ifle:
duke@435 526 case Bytecodes::_if_icmpeq:
duke@435 527 case Bytecodes::_if_icmpne:
duke@435 528 case Bytecodes::_if_icmplt:
duke@435 529 case Bytecodes::_if_icmpge:
duke@435 530 case Bytecodes::_if_icmpgt:
duke@435 531 case Bytecodes::_if_icmple:
duke@435 532 case Bytecodes::_if_acmpeq:
duke@435 533 case Bytecodes::_if_acmpne:
duke@435 534 case Bytecodes::_ifnull:
duke@435 535 case Bytecodes::_ifnonnull:
duke@435 536 return BranchData::static_cell_count();
duke@435 537 case Bytecodes::_lookupswitch:
duke@435 538 case Bytecodes::_tableswitch:
duke@435 539 return variable_cell_count;
duke@435 540 }
duke@435 541 return no_profile_data;
duke@435 542 }
duke@435 543
duke@435 544 // Compute the size of the profiling information corresponding to
duke@435 545 // the current bytecode.
duke@435 546 int methodDataOopDesc::compute_data_size(BytecodeStream* stream) {
duke@435 547 int cell_count = bytecode_cell_count(stream->code());
duke@435 548 if (cell_count == no_profile_data) {
duke@435 549 return 0;
duke@435 550 }
duke@435 551 if (cell_count == variable_cell_count) {
duke@435 552 cell_count = MultiBranchData::compute_cell_count(stream);
duke@435 553 }
duke@435 554 // Note: cell_count might be zero, meaning that there is just
duke@435 555 // a DataLayout header, with no extra cells.
duke@435 556 assert(cell_count >= 0, "sanity");
duke@435 557 return DataLayout::compute_size_in_bytes(cell_count);
duke@435 558 }
duke@435 559
duke@435 560 int methodDataOopDesc::compute_extra_data_count(int data_size, int empty_bc_count) {
duke@435 561 if (ProfileTraps) {
duke@435 562 // Assume that up to 3% of BCIs with no MDP will need to allocate one.
duke@435 563 int extra_data_count = (uint)(empty_bc_count * 3) / 128 + 1;
duke@435 564 // If the method is large, let the extra BCIs grow numerous (to ~1%).
duke@435 565 int one_percent_of_data
duke@435 566 = (uint)data_size / (DataLayout::header_size_in_bytes()*128);
duke@435 567 if (extra_data_count < one_percent_of_data)
duke@435 568 extra_data_count = one_percent_of_data;
duke@435 569 if (extra_data_count > empty_bc_count)
duke@435 570 extra_data_count = empty_bc_count; // no need for more
duke@435 571 return extra_data_count;
duke@435 572 } else {
duke@435 573 return 0;
duke@435 574 }
duke@435 575 }
duke@435 576
duke@435 577 // Compute the size of the methodDataOop necessary to store
duke@435 578 // profiling information about a given method. Size is in bytes.
duke@435 579 int methodDataOopDesc::compute_allocation_size_in_bytes(methodHandle method) {
duke@435 580 int data_size = 0;
duke@435 581 BytecodeStream stream(method);
duke@435 582 Bytecodes::Code c;
duke@435 583 int empty_bc_count = 0; // number of bytecodes lacking data
duke@435 584 while ((c = stream.next()) >= 0) {
duke@435 585 int size_in_bytes = compute_data_size(&stream);
duke@435 586 data_size += size_in_bytes;
duke@435 587 if (size_in_bytes == 0) empty_bc_count += 1;
duke@435 588 }
duke@435 589 int object_size = in_bytes(data_offset()) + data_size;
duke@435 590
duke@435 591 // Add some extra DataLayout cells (at least one) to track stray traps.
duke@435 592 int extra_data_count = compute_extra_data_count(data_size, empty_bc_count);
duke@435 593 object_size += extra_data_count * DataLayout::compute_size_in_bytes(0);
duke@435 594
kvn@480 595 // Add a cell to record information about modified arguments.
kvn@480 596 int arg_size = method->size_of_parameters();
kvn@480 597 object_size += DataLayout::compute_size_in_bytes(arg_size+1);
duke@435 598 return object_size;
duke@435 599 }
duke@435 600
duke@435 601 // Compute the size of the methodDataOop necessary to store
duke@435 602 // profiling information about a given method. Size is in words
duke@435 603 int methodDataOopDesc::compute_allocation_size_in_words(methodHandle method) {
duke@435 604 int byte_size = compute_allocation_size_in_bytes(method);
duke@435 605 int word_size = align_size_up(byte_size, BytesPerWord) / BytesPerWord;
duke@435 606 return align_object_size(word_size);
duke@435 607 }
duke@435 608
duke@435 609 // Initialize an individual data segment. Returns the size of
duke@435 610 // the segment in bytes.
duke@435 611 int methodDataOopDesc::initialize_data(BytecodeStream* stream,
duke@435 612 int data_index) {
duke@435 613 int cell_count = -1;
duke@435 614 int tag = DataLayout::no_tag;
duke@435 615 DataLayout* data_layout = data_layout_at(data_index);
duke@435 616 Bytecodes::Code c = stream->code();
duke@435 617 switch (c) {
duke@435 618 case Bytecodes::_checkcast:
duke@435 619 case Bytecodes::_instanceof:
duke@435 620 case Bytecodes::_aastore:
duke@435 621 if (TypeProfileCasts) {
duke@435 622 cell_count = ReceiverTypeData::static_cell_count();
duke@435 623 tag = DataLayout::receiver_type_data_tag;
duke@435 624 } else {
duke@435 625 cell_count = BitData::static_cell_count();
duke@435 626 tag = DataLayout::bit_data_tag;
duke@435 627 }
duke@435 628 break;
duke@435 629 case Bytecodes::_invokespecial:
duke@435 630 case Bytecodes::_invokestatic:
duke@435 631 cell_count = CounterData::static_cell_count();
duke@435 632 tag = DataLayout::counter_data_tag;
duke@435 633 break;
duke@435 634 case Bytecodes::_goto:
duke@435 635 case Bytecodes::_goto_w:
duke@435 636 case Bytecodes::_jsr:
duke@435 637 case Bytecodes::_jsr_w:
duke@435 638 cell_count = JumpData::static_cell_count();
duke@435 639 tag = DataLayout::jump_data_tag;
duke@435 640 break;
duke@435 641 case Bytecodes::_invokevirtual:
duke@435 642 case Bytecodes::_invokeinterface:
duke@435 643 cell_count = VirtualCallData::static_cell_count();
duke@435 644 tag = DataLayout::virtual_call_data_tag;
duke@435 645 break;
jrose@1161 646 case Bytecodes::_invokedynamic:
jrose@1161 647 // %%% should make a type profile for any invokedynamic that takes a ref argument
jrose@1161 648 cell_count = CounterData::static_cell_count();
jrose@1161 649 tag = DataLayout::counter_data_tag;
jrose@1161 650 break;
duke@435 651 case Bytecodes::_ret:
duke@435 652 cell_count = RetData::static_cell_count();
duke@435 653 tag = DataLayout::ret_data_tag;
duke@435 654 break;
duke@435 655 case Bytecodes::_ifeq:
duke@435 656 case Bytecodes::_ifne:
duke@435 657 case Bytecodes::_iflt:
duke@435 658 case Bytecodes::_ifge:
duke@435 659 case Bytecodes::_ifgt:
duke@435 660 case Bytecodes::_ifle:
duke@435 661 case Bytecodes::_if_icmpeq:
duke@435 662 case Bytecodes::_if_icmpne:
duke@435 663 case Bytecodes::_if_icmplt:
duke@435 664 case Bytecodes::_if_icmpge:
duke@435 665 case Bytecodes::_if_icmpgt:
duke@435 666 case Bytecodes::_if_icmple:
duke@435 667 case Bytecodes::_if_acmpeq:
duke@435 668 case Bytecodes::_if_acmpne:
duke@435 669 case Bytecodes::_ifnull:
duke@435 670 case Bytecodes::_ifnonnull:
duke@435 671 cell_count = BranchData::static_cell_count();
duke@435 672 tag = DataLayout::branch_data_tag;
duke@435 673 break;
duke@435 674 case Bytecodes::_lookupswitch:
duke@435 675 case Bytecodes::_tableswitch:
duke@435 676 cell_count = MultiBranchData::compute_cell_count(stream);
duke@435 677 tag = DataLayout::multi_branch_data_tag;
duke@435 678 break;
duke@435 679 }
duke@435 680 assert(tag == DataLayout::multi_branch_data_tag ||
duke@435 681 cell_count == bytecode_cell_count(c), "cell counts must agree");
duke@435 682 if (cell_count >= 0) {
duke@435 683 assert(tag != DataLayout::no_tag, "bad tag");
duke@435 684 assert(bytecode_has_profile(c), "agree w/ BHP");
duke@435 685 data_layout->initialize(tag, stream->bci(), cell_count);
duke@435 686 return DataLayout::compute_size_in_bytes(cell_count);
duke@435 687 } else {
duke@435 688 assert(!bytecode_has_profile(c), "agree w/ !BHP");
duke@435 689 return 0;
duke@435 690 }
duke@435 691 }
duke@435 692
duke@435 693 // Get the data at an arbitrary (sort of) data index.
duke@435 694 ProfileData* methodDataOopDesc::data_at(int data_index) {
duke@435 695 if (out_of_bounds(data_index)) {
duke@435 696 return NULL;
duke@435 697 }
duke@435 698 DataLayout* data_layout = data_layout_at(data_index);
ysr@1376 699 return data_layout->data_in();
ysr@1376 700 }
duke@435 701
ysr@1376 702 ProfileData* DataLayout::data_in() {
ysr@1376 703 switch (tag()) {
duke@435 704 case DataLayout::no_tag:
duke@435 705 default:
duke@435 706 ShouldNotReachHere();
duke@435 707 return NULL;
duke@435 708 case DataLayout::bit_data_tag:
ysr@1376 709 return new BitData(this);
duke@435 710 case DataLayout::counter_data_tag:
ysr@1376 711 return new CounterData(this);
duke@435 712 case DataLayout::jump_data_tag:
ysr@1376 713 return new JumpData(this);
duke@435 714 case DataLayout::receiver_type_data_tag:
ysr@1376 715 return new ReceiverTypeData(this);
duke@435 716 case DataLayout::virtual_call_data_tag:
ysr@1376 717 return new VirtualCallData(this);
duke@435 718 case DataLayout::ret_data_tag:
ysr@1376 719 return new RetData(this);
duke@435 720 case DataLayout::branch_data_tag:
ysr@1376 721 return new BranchData(this);
duke@435 722 case DataLayout::multi_branch_data_tag:
ysr@1376 723 return new MultiBranchData(this);
kvn@480 724 case DataLayout::arg_info_data_tag:
ysr@1376 725 return new ArgInfoData(this);
duke@435 726 };
duke@435 727 }
duke@435 728
duke@435 729 // Iteration over data.
duke@435 730 ProfileData* methodDataOopDesc::next_data(ProfileData* current) {
duke@435 731 int current_index = dp_to_di(current->dp());
duke@435 732 int next_index = current_index + current->size_in_bytes();
duke@435 733 ProfileData* next = data_at(next_index);
duke@435 734 return next;
duke@435 735 }
duke@435 736
duke@435 737 // Give each of the data entries a chance to perform specific
duke@435 738 // data initialization.
duke@435 739 void methodDataOopDesc::post_initialize(BytecodeStream* stream) {
duke@435 740 ResourceMark rm;
duke@435 741 ProfileData* data;
duke@435 742 for (data = first_data(); is_valid(data); data = next_data(data)) {
duke@435 743 stream->set_start(data->bci());
duke@435 744 stream->next();
duke@435 745 data->post_initialize(stream, this);
duke@435 746 }
duke@435 747 }
duke@435 748
duke@435 749 // Initialize the methodDataOop corresponding to a given method.
duke@435 750 void methodDataOopDesc::initialize(methodHandle method) {
duke@435 751 ResourceMark rm;
duke@435 752 // Set the method back-pointer.
duke@435 753 _method = method();
iveresov@2138 754
iveresov@2138 755 if (TieredCompilation) {
iveresov@2138 756 _invocation_counter.init();
iveresov@2138 757 _backedge_counter.init();
iveresov@2138 758 _num_loops = 0;
iveresov@2138 759 _num_blocks = 0;
iveresov@2138 760 _highest_comp_level = 0;
iveresov@2138 761 _highest_osr_comp_level = 0;
iveresov@2138 762 _would_profile = false;
iveresov@2138 763 }
duke@435 764 set_creation_mileage(mileage_of(method()));
duke@435 765
duke@435 766 // Initialize flags and trap history.
duke@435 767 _nof_decompiles = 0;
duke@435 768 _nof_overflow_recompiles = 0;
duke@435 769 _nof_overflow_traps = 0;
duke@435 770 assert(sizeof(_trap_hist) % sizeof(HeapWord) == 0, "align");
duke@435 771 Copy::zero_to_words((HeapWord*) &_trap_hist,
duke@435 772 sizeof(_trap_hist) / sizeof(HeapWord));
duke@435 773
duke@435 774 // Go through the bytecodes and allocate and initialize the
duke@435 775 // corresponding data cells.
duke@435 776 int data_size = 0;
duke@435 777 int empty_bc_count = 0; // number of bytecodes lacking data
duke@435 778 BytecodeStream stream(method);
duke@435 779 Bytecodes::Code c;
duke@435 780 while ((c = stream.next()) >= 0) {
duke@435 781 int size_in_bytes = initialize_data(&stream, data_size);
duke@435 782 data_size += size_in_bytes;
duke@435 783 if (size_in_bytes == 0) empty_bc_count += 1;
duke@435 784 }
duke@435 785 _data_size = data_size;
duke@435 786 int object_size = in_bytes(data_offset()) + data_size;
duke@435 787
duke@435 788 // Add some extra DataLayout cells (at least one) to track stray traps.
duke@435 789 int extra_data_count = compute_extra_data_count(data_size, empty_bc_count);
kvn@480 790 int extra_size = extra_data_count * DataLayout::compute_size_in_bytes(0);
kvn@480 791
kvn@480 792 // Add a cell to record information about modified arguments.
kvn@480 793 // Set up _args_modified array after traps cells so that
kvn@480 794 // the code for traps cells works.
kvn@480 795 DataLayout *dp = data_layout_at(data_size + extra_size);
kvn@480 796
kvn@480 797 int arg_size = method->size_of_parameters();
kvn@480 798 dp->initialize(DataLayout::arg_info_data_tag, 0, arg_size+1);
kvn@480 799
kvn@480 800 object_size += extra_size + DataLayout::compute_size_in_bytes(arg_size+1);
duke@435 801
duke@435 802 // Set an initial hint. Don't use set_hint_di() because
duke@435 803 // first_di() may be out of bounds if data_size is 0.
duke@435 804 // In that situation, _hint_di is never used, but at
duke@435 805 // least well-defined.
duke@435 806 _hint_di = first_di();
duke@435 807
duke@435 808 post_initialize(&stream);
duke@435 809
duke@435 810 set_object_is_parsable(object_size);
duke@435 811 }
duke@435 812
duke@435 813 // Get a measure of how much mileage the method has on it.
duke@435 814 int methodDataOopDesc::mileage_of(methodOop method) {
duke@435 815 int mileage = 0;
iveresov@2138 816 if (TieredCompilation) {
iveresov@2138 817 mileage = MAX2(method->invocation_count(), method->backedge_count());
iveresov@2138 818 } else {
iveresov@2138 819 int iic = method->interpreter_invocation_count();
iveresov@2138 820 if (mileage < iic) mileage = iic;
iveresov@2138 821 InvocationCounter* ic = method->invocation_counter();
iveresov@2138 822 InvocationCounter* bc = method->backedge_counter();
iveresov@2138 823 int icval = ic->count();
iveresov@2138 824 if (ic->carry()) icval += CompileThreshold;
iveresov@2138 825 if (mileage < icval) mileage = icval;
iveresov@2138 826 int bcval = bc->count();
iveresov@2138 827 if (bc->carry()) bcval += CompileThreshold;
iveresov@2138 828 if (mileage < bcval) mileage = bcval;
iveresov@2138 829 }
duke@435 830 return mileage;
duke@435 831 }
duke@435 832
duke@435 833 bool methodDataOopDesc::is_mature() const {
iveresov@2138 834 return CompilationPolicy::policy()->is_mature(_method);
duke@435 835 }
duke@435 836
duke@435 837 // Translate a bci to its corresponding data index (di).
duke@435 838 address methodDataOopDesc::bci_to_dp(int bci) {
duke@435 839 ResourceMark rm;
duke@435 840 ProfileData* data = data_before(bci);
duke@435 841 ProfileData* prev = NULL;
duke@435 842 for ( ; is_valid(data); data = next_data(data)) {
duke@435 843 if (data->bci() >= bci) {
duke@435 844 if (data->bci() == bci) set_hint_di(dp_to_di(data->dp()));
duke@435 845 else if (prev != NULL) set_hint_di(dp_to_di(prev->dp()));
duke@435 846 return data->dp();
duke@435 847 }
duke@435 848 prev = data;
duke@435 849 }
duke@435 850 return (address)limit_data_position();
duke@435 851 }
duke@435 852
duke@435 853 // Translate a bci to its corresponding data, or NULL.
duke@435 854 ProfileData* methodDataOopDesc::bci_to_data(int bci) {
duke@435 855 ProfileData* data = data_before(bci);
duke@435 856 for ( ; is_valid(data); data = next_data(data)) {
duke@435 857 if (data->bci() == bci) {
duke@435 858 set_hint_di(dp_to_di(data->dp()));
duke@435 859 return data;
duke@435 860 } else if (data->bci() > bci) {
duke@435 861 break;
duke@435 862 }
duke@435 863 }
duke@435 864 return bci_to_extra_data(bci, false);
duke@435 865 }
duke@435 866
duke@435 867 // Translate a bci to its corresponding extra data, or NULL.
duke@435 868 ProfileData* methodDataOopDesc::bci_to_extra_data(int bci, bool create_if_missing) {
duke@435 869 DataLayout* dp = extra_data_base();
duke@435 870 DataLayout* end = extra_data_limit();
duke@435 871 DataLayout* avail = NULL;
duke@435 872 for (; dp < end; dp = next_extra(dp)) {
duke@435 873 // No need for "OrderAccess::load_acquire" ops,
duke@435 874 // since the data structure is monotonic.
duke@435 875 if (dp->tag() == DataLayout::no_tag) break;
kvn@480 876 if (dp->tag() == DataLayout::arg_info_data_tag) {
kvn@480 877 dp = end; // ArgInfoData is at the end of extra data section.
kvn@480 878 break;
kvn@480 879 }
duke@435 880 if (dp->bci() == bci) {
duke@435 881 assert(dp->tag() == DataLayout::bit_data_tag, "sane");
duke@435 882 return new BitData(dp);
duke@435 883 }
duke@435 884 }
duke@435 885 if (create_if_missing && dp < end) {
duke@435 886 // Allocate this one. There is no mutual exclusion,
duke@435 887 // so two threads could allocate different BCIs to the
duke@435 888 // same data layout. This means these extra data
duke@435 889 // records, like most other MDO contents, must not be
duke@435 890 // trusted too much.
duke@435 891 DataLayout temp;
duke@435 892 temp.initialize(DataLayout::bit_data_tag, bci, 0);
duke@435 893 dp->release_set_header(temp.header());
duke@435 894 assert(dp->tag() == DataLayout::bit_data_tag, "sane");
duke@435 895 //NO: assert(dp->bci() == bci, "no concurrent allocation");
duke@435 896 return new BitData(dp);
duke@435 897 }
duke@435 898 return NULL;
duke@435 899 }
duke@435 900
kvn@480 901 ArgInfoData *methodDataOopDesc::arg_info() {
kvn@480 902 DataLayout* dp = extra_data_base();
kvn@480 903 DataLayout* end = extra_data_limit();
kvn@480 904 for (; dp < end; dp = next_extra(dp)) {
kvn@480 905 if (dp->tag() == DataLayout::arg_info_data_tag)
kvn@480 906 return new ArgInfoData(dp);
kvn@480 907 }
kvn@480 908 return NULL;
kvn@480 909 }
kvn@480 910
duke@435 911 #ifndef PRODUCT
duke@435 912 void methodDataOopDesc::print_data_on(outputStream* st) {
duke@435 913 ResourceMark rm;
duke@435 914 ProfileData* data = first_data();
duke@435 915 for ( ; is_valid(data); data = next_data(data)) {
duke@435 916 st->print("%d", dp_to_di(data->dp()));
duke@435 917 st->fill_to(6);
duke@435 918 data->print_data_on(st);
duke@435 919 }
kvn@480 920 st->print_cr("--- Extra data:");
duke@435 921 DataLayout* dp = extra_data_base();
duke@435 922 DataLayout* end = extra_data_limit();
duke@435 923 for (; dp < end; dp = next_extra(dp)) {
duke@435 924 // No need for "OrderAccess::load_acquire" ops,
duke@435 925 // since the data structure is monotonic.
kvn@480 926 if (dp->tag() == DataLayout::no_tag) continue;
kvn@480 927 if (dp->tag() == DataLayout::bit_data_tag) {
kvn@480 928 data = new BitData(dp);
kvn@480 929 } else {
kvn@480 930 assert(dp->tag() == DataLayout::arg_info_data_tag, "must be BitData or ArgInfo");
kvn@480 931 data = new ArgInfoData(dp);
kvn@480 932 dp = end; // ArgInfoData is at the end of extra data section.
kvn@480 933 }
duke@435 934 st->print("%d", dp_to_di(data->dp()));
duke@435 935 st->fill_to(6);
duke@435 936 data->print_data_on(st);
duke@435 937 }
duke@435 938 }
duke@435 939 #endif
duke@435 940
duke@435 941 void methodDataOopDesc::verify_data_on(outputStream* st) {
duke@435 942 NEEDS_CLEANUP;
duke@435 943 // not yet implemented.
duke@435 944 }

mercurial