src/os/linux/vm/os_linux.cpp

Thu, 23 Jan 2014 09:06:21 +0100

author
sla
date
Thu, 23 Jan 2014 09:06:21 +0100
changeset 6326
d1621038becf
parent 6026
e4f478e7781b
child 6348
0e6af9b390af
child 6513
bbfbe9b06038
permissions
-rw-r--r--

8031968: Mac OS X: VM starts the agent by calling both Agent_OnAttach and Agent_OnAttach_L functions if its agent library is dynamically linked.
Summary: Make sure we only look for statically linked agents in the main process image
Reviewed-by: dsamersoff, bpittore, dcubed

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_linux.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_linux.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_linux.hpp"
    40 #include "prims/jniFastGetField.hpp"
    41 #include "prims/jvm.h"
    42 #include "prims/jvm_misc.hpp"
    43 #include "runtime/arguments.hpp"
    44 #include "runtime/extendedPC.hpp"
    45 #include "runtime/globals.hpp"
    46 #include "runtime/interfaceSupport.hpp"
    47 #include "runtime/init.hpp"
    48 #include "runtime/java.hpp"
    49 #include "runtime/javaCalls.hpp"
    50 #include "runtime/mutexLocker.hpp"
    51 #include "runtime/objectMonitor.hpp"
    52 #include "runtime/osThread.hpp"
    53 #include "runtime/perfMemory.hpp"
    54 #include "runtime/sharedRuntime.hpp"
    55 #include "runtime/statSampler.hpp"
    56 #include "runtime/stubRoutines.hpp"
    57 #include "runtime/thread.inline.hpp"
    58 #include "runtime/threadCritical.hpp"
    59 #include "runtime/timer.hpp"
    60 #include "services/attachListener.hpp"
    61 #include "services/memTracker.hpp"
    62 #include "services/runtimeService.hpp"
    63 #include "utilities/decoder.hpp"
    64 #include "utilities/defaultStream.hpp"
    65 #include "utilities/events.hpp"
    66 #include "utilities/elfFile.hpp"
    67 #include "utilities/growableArray.hpp"
    68 #include "utilities/vmError.hpp"
    70 // put OS-includes here
    71 # include <sys/types.h>
    72 # include <sys/mman.h>
    73 # include <sys/stat.h>
    74 # include <sys/select.h>
    75 # include <pthread.h>
    76 # include <signal.h>
    77 # include <errno.h>
    78 # include <dlfcn.h>
    79 # include <stdio.h>
    80 # include <unistd.h>
    81 # include <sys/resource.h>
    82 # include <pthread.h>
    83 # include <sys/stat.h>
    84 # include <sys/time.h>
    85 # include <sys/times.h>
    86 # include <sys/utsname.h>
    87 # include <sys/socket.h>
    88 # include <sys/wait.h>
    89 # include <pwd.h>
    90 # include <poll.h>
    91 # include <semaphore.h>
    92 # include <fcntl.h>
    93 # include <string.h>
    94 # include <syscall.h>
    95 # include <sys/sysinfo.h>
    96 # include <gnu/libc-version.h>
    97 # include <sys/ipc.h>
    98 # include <sys/shm.h>
    99 # include <link.h>
   100 # include <stdint.h>
   101 # include <inttypes.h>
   102 # include <sys/ioctl.h>
   104 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
   105 // getrusage() is prepared to handle the associated failure.
   106 #ifndef RUSAGE_THREAD
   107 #define RUSAGE_THREAD   (1)               /* only the calling thread */
   108 #endif
   110 #define MAX_PATH    (2 * K)
   112 // for timer info max values which include all bits
   113 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   115 #define LARGEPAGES_BIT (1 << 6)
   116 ////////////////////////////////////////////////////////////////////////////////
   117 // global variables
   118 julong os::Linux::_physical_memory = 0;
   120 address   os::Linux::_initial_thread_stack_bottom = NULL;
   121 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   123 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   124 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   125 Mutex* os::Linux::_createThread_lock = NULL;
   126 pthread_t os::Linux::_main_thread;
   127 int os::Linux::_page_size = -1;
   128 const int os::Linux::_vm_default_page_size = (8 * K);
   129 bool os::Linux::_is_floating_stack = false;
   130 bool os::Linux::_is_NPTL = false;
   131 bool os::Linux::_supports_fast_thread_cpu_time = false;
   132 const char * os::Linux::_glibc_version = NULL;
   133 const char * os::Linux::_libpthread_version = NULL;
   134 pthread_condattr_t os::Linux::_condattr[1];
   136 static jlong initial_time_count=0;
   138 static int clock_tics_per_sec = 100;
   140 // For diagnostics to print a message once. see run_periodic_checks
   141 static sigset_t check_signal_done;
   142 static bool check_signals = true;;
   144 static pid_t _initial_pid = 0;
   146 /* Signal number used to suspend/resume a thread */
   148 /* do not use any signal number less than SIGSEGV, see 4355769 */
   149 static int SR_signum = SIGUSR2;
   150 sigset_t SR_sigset;
   152 /* Used to protect dlsym() calls */
   153 static pthread_mutex_t dl_mutex;
   155 // Declarations
   156 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
   158 #ifdef JAVASE_EMBEDDED
   159 class MemNotifyThread: public Thread {
   160   friend class VMStructs;
   161  public:
   162   virtual void run();
   164  private:
   165   static MemNotifyThread* _memnotify_thread;
   166   int _fd;
   168  public:
   170   // Constructor
   171   MemNotifyThread(int fd);
   173   // Tester
   174   bool is_memnotify_thread() const { return true; }
   176   // Printing
   177   char* name() const { return (char*)"Linux MemNotify Thread"; }
   179   // Returns the single instance of the MemNotifyThread
   180   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
   182   // Create and start the single instance of MemNotifyThread
   183   static void start();
   184 };
   185 #endif // JAVASE_EMBEDDED
   187 // utility functions
   189 static int SR_initialize();
   191 julong os::available_memory() {
   192   return Linux::available_memory();
   193 }
   195 julong os::Linux::available_memory() {
   196   // values in struct sysinfo are "unsigned long"
   197   struct sysinfo si;
   198   sysinfo(&si);
   200   return (julong)si.freeram * si.mem_unit;
   201 }
   203 julong os::physical_memory() {
   204   return Linux::physical_memory();
   205 }
   207 ////////////////////////////////////////////////////////////////////////////////
   208 // environment support
   210 bool os::getenv(const char* name, char* buf, int len) {
   211   const char* val = ::getenv(name);
   212   if (val != NULL && strlen(val) < (size_t)len) {
   213     strcpy(buf, val);
   214     return true;
   215   }
   216   if (len > 0) buf[0] = 0;  // return a null string
   217   return false;
   218 }
   221 // Return true if user is running as root.
   223 bool os::have_special_privileges() {
   224   static bool init = false;
   225   static bool privileges = false;
   226   if (!init) {
   227     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   228     init = true;
   229   }
   230   return privileges;
   231 }
   234 #ifndef SYS_gettid
   235 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   236 #ifdef __ia64__
   237 #define SYS_gettid 1105
   238 #elif __i386__
   239 #define SYS_gettid 224
   240 #elif __amd64__
   241 #define SYS_gettid 186
   242 #elif __sparc__
   243 #define SYS_gettid 143
   244 #else
   245 #error define gettid for the arch
   246 #endif
   247 #endif
   249 // Cpu architecture string
   250 #if   defined(ZERO)
   251 static char cpu_arch[] = ZERO_LIBARCH;
   252 #elif defined(IA64)
   253 static char cpu_arch[] = "ia64";
   254 #elif defined(IA32)
   255 static char cpu_arch[] = "i386";
   256 #elif defined(AMD64)
   257 static char cpu_arch[] = "amd64";
   258 #elif defined(ARM)
   259 static char cpu_arch[] = "arm";
   260 #elif defined(PPC)
   261 static char cpu_arch[] = "ppc";
   262 #elif defined(SPARC)
   263 #  ifdef _LP64
   264 static char cpu_arch[] = "sparcv9";
   265 #  else
   266 static char cpu_arch[] = "sparc";
   267 #  endif
   268 #else
   269 #error Add appropriate cpu_arch setting
   270 #endif
   273 // pid_t gettid()
   274 //
   275 // Returns the kernel thread id of the currently running thread. Kernel
   276 // thread id is used to access /proc.
   277 //
   278 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   279 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   280 //
   281 pid_t os::Linux::gettid() {
   282   int rslt = syscall(SYS_gettid);
   283   if (rslt == -1) {
   284      // old kernel, no NPTL support
   285      return getpid();
   286   } else {
   287      return (pid_t)rslt;
   288   }
   289 }
   291 // Most versions of linux have a bug where the number of processors are
   292 // determined by looking at the /proc file system.  In a chroot environment,
   293 // the system call returns 1.  This causes the VM to act as if it is
   294 // a single processor and elide locking (see is_MP() call).
   295 static bool unsafe_chroot_detected = false;
   296 static const char *unstable_chroot_error = "/proc file system not found.\n"
   297                      "Java may be unstable running multithreaded in a chroot "
   298                      "environment on Linux when /proc filesystem is not mounted.";
   300 void os::Linux::initialize_system_info() {
   301   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   302   if (processor_count() == 1) {
   303     pid_t pid = os::Linux::gettid();
   304     char fname[32];
   305     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   306     FILE *fp = fopen(fname, "r");
   307     if (fp == NULL) {
   308       unsafe_chroot_detected = true;
   309     } else {
   310       fclose(fp);
   311     }
   312   }
   313   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   314   assert(processor_count() > 0, "linux error");
   315 }
   317 void os::init_system_properties_values() {
   318 //  char arch[12];
   319 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   321   // The next steps are taken in the product version:
   322   //
   323   // Obtain the JAVA_HOME value from the location of libjvm.so.
   324   // This library should be located at:
   325   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   326   //
   327   // If "/jre/lib/" appears at the right place in the path, then we
   328   // assume libjvm.so is installed in a JDK and we use this path.
   329   //
   330   // Otherwise exit with message: "Could not create the Java virtual machine."
   331   //
   332   // The following extra steps are taken in the debugging version:
   333   //
   334   // If "/jre/lib/" does NOT appear at the right place in the path
   335   // instead of exit check for $JAVA_HOME environment variable.
   336   //
   337   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   338   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   339   // it looks like libjvm.so is installed there
   340   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   341   //
   342   // Otherwise exit.
   343   //
   344   // Important note: if the location of libjvm.so changes this
   345   // code needs to be changed accordingly.
   347   // The next few definitions allow the code to be verbatim:
   348 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
   349 #define getenv(n) ::getenv(n)
   351 /*
   352  * See ld(1):
   353  *      The linker uses the following search paths to locate required
   354  *      shared libraries:
   355  *        1: ...
   356  *        ...
   357  *        7: The default directories, normally /lib and /usr/lib.
   358  */
   359 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   360 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   361 #else
   362 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   363 #endif
   365 #define EXTENSIONS_DIR  "/lib/ext"
   366 #define ENDORSED_DIR    "/lib/endorsed"
   367 #define REG_DIR         "/usr/java/packages"
   369   {
   370     /* sysclasspath, java_home, dll_dir */
   371     {
   372         char *home_path;
   373         char *dll_path;
   374         char *pslash;
   375         char buf[MAXPATHLEN];
   376         os::jvm_path(buf, sizeof(buf));
   378         // Found the full path to libjvm.so.
   379         // Now cut the path to <java_home>/jre if we can.
   380         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   381         pslash = strrchr(buf, '/');
   382         if (pslash != NULL)
   383             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   384         dll_path = malloc(strlen(buf) + 1);
   385         if (dll_path == NULL)
   386             return;
   387         strcpy(dll_path, buf);
   388         Arguments::set_dll_dir(dll_path);
   390         if (pslash != NULL) {
   391             pslash = strrchr(buf, '/');
   392             if (pslash != NULL) {
   393                 *pslash = '\0';       /* get rid of /<arch> */
   394                 pslash = strrchr(buf, '/');
   395                 if (pslash != NULL)
   396                     *pslash = '\0';   /* get rid of /lib */
   397             }
   398         }
   400         home_path = malloc(strlen(buf) + 1);
   401         if (home_path == NULL)
   402             return;
   403         strcpy(home_path, buf);
   404         Arguments::set_java_home(home_path);
   406         if (!set_boot_path('/', ':'))
   407             return;
   408     }
   410     /*
   411      * Where to look for native libraries
   412      *
   413      * Note: Due to a legacy implementation, most of the library path
   414      * is set in the launcher.  This was to accomodate linking restrictions
   415      * on legacy Linux implementations (which are no longer supported).
   416      * Eventually, all the library path setting will be done here.
   417      *
   418      * However, to prevent the proliferation of improperly built native
   419      * libraries, the new path component /usr/java/packages is added here.
   420      * Eventually, all the library path setting will be done here.
   421      */
   422     {
   423         char *ld_library_path;
   425         /*
   426          * Construct the invariant part of ld_library_path. Note that the
   427          * space for the colon and the trailing null are provided by the
   428          * nulls included by the sizeof operator (so actually we allocate
   429          * a byte more than necessary).
   430          */
   431         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
   432             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
   433         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
   435         /*
   436          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
   437          * should always exist (until the legacy problem cited above is
   438          * addressed).
   439          */
   440         char *v = getenv("LD_LIBRARY_PATH");
   441         if (v != NULL) {
   442             char *t = ld_library_path;
   443             /* That's +1 for the colon and +1 for the trailing '\0' */
   444             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
   445             sprintf(ld_library_path, "%s:%s", v, t);
   446         }
   447         Arguments::set_library_path(ld_library_path);
   448     }
   450     /*
   451      * Extensions directories.
   452      *
   453      * Note that the space for the colon and the trailing null are provided
   454      * by the nulls included by the sizeof operator (so actually one byte more
   455      * than necessary is allocated).
   456      */
   457     {
   458         char *buf = malloc(strlen(Arguments::get_java_home()) +
   459             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
   460         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
   461             Arguments::get_java_home());
   462         Arguments::set_ext_dirs(buf);
   463     }
   465     /* Endorsed standards default directory. */
   466     {
   467         char * buf;
   468         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   469         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   470         Arguments::set_endorsed_dirs(buf);
   471     }
   472   }
   474 #undef malloc
   475 #undef getenv
   476 #undef EXTENSIONS_DIR
   477 #undef ENDORSED_DIR
   479   // Done
   480   return;
   481 }
   483 ////////////////////////////////////////////////////////////////////////////////
   484 // breakpoint support
   486 void os::breakpoint() {
   487   BREAKPOINT;
   488 }
   490 extern "C" void breakpoint() {
   491   // use debugger to set breakpoint here
   492 }
   494 ////////////////////////////////////////////////////////////////////////////////
   495 // signal support
   497 debug_only(static bool signal_sets_initialized = false);
   498 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   500 bool os::Linux::is_sig_ignored(int sig) {
   501       struct sigaction oact;
   502       sigaction(sig, (struct sigaction*)NULL, &oact);
   503       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   504                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   505       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   506            return true;
   507       else
   508            return false;
   509 }
   511 void os::Linux::signal_sets_init() {
   512   // Should also have an assertion stating we are still single-threaded.
   513   assert(!signal_sets_initialized, "Already initialized");
   514   // Fill in signals that are necessarily unblocked for all threads in
   515   // the VM. Currently, we unblock the following signals:
   516   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   517   //                         by -Xrs (=ReduceSignalUsage));
   518   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   519   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   520   // the dispositions or masks wrt these signals.
   521   // Programs embedding the VM that want to use the above signals for their
   522   // own purposes must, at this time, use the "-Xrs" option to prevent
   523   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   524   // (See bug 4345157, and other related bugs).
   525   // In reality, though, unblocking these signals is really a nop, since
   526   // these signals are not blocked by default.
   527   sigemptyset(&unblocked_sigs);
   528   sigemptyset(&allowdebug_blocked_sigs);
   529   sigaddset(&unblocked_sigs, SIGILL);
   530   sigaddset(&unblocked_sigs, SIGSEGV);
   531   sigaddset(&unblocked_sigs, SIGBUS);
   532   sigaddset(&unblocked_sigs, SIGFPE);
   533   sigaddset(&unblocked_sigs, SR_signum);
   535   if (!ReduceSignalUsage) {
   536    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   537       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   538       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   539    }
   540    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   541       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   542       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   543    }
   544    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   545       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   546       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   547    }
   548   }
   549   // Fill in signals that are blocked by all but the VM thread.
   550   sigemptyset(&vm_sigs);
   551   if (!ReduceSignalUsage)
   552     sigaddset(&vm_sigs, BREAK_SIGNAL);
   553   debug_only(signal_sets_initialized = true);
   555 }
   557 // These are signals that are unblocked while a thread is running Java.
   558 // (For some reason, they get blocked by default.)
   559 sigset_t* os::Linux::unblocked_signals() {
   560   assert(signal_sets_initialized, "Not initialized");
   561   return &unblocked_sigs;
   562 }
   564 // These are the signals that are blocked while a (non-VM) thread is
   565 // running Java. Only the VM thread handles these signals.
   566 sigset_t* os::Linux::vm_signals() {
   567   assert(signal_sets_initialized, "Not initialized");
   568   return &vm_sigs;
   569 }
   571 // These are signals that are blocked during cond_wait to allow debugger in
   572 sigset_t* os::Linux::allowdebug_blocked_signals() {
   573   assert(signal_sets_initialized, "Not initialized");
   574   return &allowdebug_blocked_sigs;
   575 }
   577 void os::Linux::hotspot_sigmask(Thread* thread) {
   579   //Save caller's signal mask before setting VM signal mask
   580   sigset_t caller_sigmask;
   581   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   583   OSThread* osthread = thread->osthread();
   584   osthread->set_caller_sigmask(caller_sigmask);
   586   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   588   if (!ReduceSignalUsage) {
   589     if (thread->is_VM_thread()) {
   590       // Only the VM thread handles BREAK_SIGNAL ...
   591       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   592     } else {
   593       // ... all other threads block BREAK_SIGNAL
   594       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   595     }
   596   }
   597 }
   599 //////////////////////////////////////////////////////////////////////////////
   600 // detecting pthread library
   602 void os::Linux::libpthread_init() {
   603   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   604   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   605   // generic name for earlier versions.
   606   // Define macros here so we can build HotSpot on old systems.
   607 # ifndef _CS_GNU_LIBC_VERSION
   608 # define _CS_GNU_LIBC_VERSION 2
   609 # endif
   610 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   611 # define _CS_GNU_LIBPTHREAD_VERSION 3
   612 # endif
   614   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   615   if (n > 0) {
   616      char *str = (char *)malloc(n, mtInternal);
   617      confstr(_CS_GNU_LIBC_VERSION, str, n);
   618      os::Linux::set_glibc_version(str);
   619   } else {
   620      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   621      static char _gnu_libc_version[32];
   622      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   623               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   624      os::Linux::set_glibc_version(_gnu_libc_version);
   625   }
   627   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   628   if (n > 0) {
   629      char *str = (char *)malloc(n, mtInternal);
   630      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   631      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   632      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   633      // is the case. LinuxThreads has a hard limit on max number of threads.
   634      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   635      // On the other hand, NPTL does not have such a limit, sysconf()
   636      // will return -1 and errno is not changed. Check if it is really NPTL.
   637      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   638          strstr(str, "NPTL") &&
   639          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   640        free(str);
   641        os::Linux::set_libpthread_version("linuxthreads");
   642      } else {
   643        os::Linux::set_libpthread_version(str);
   644      }
   645   } else {
   646     // glibc before 2.3.2 only has LinuxThreads.
   647     os::Linux::set_libpthread_version("linuxthreads");
   648   }
   650   if (strstr(libpthread_version(), "NPTL")) {
   651      os::Linux::set_is_NPTL();
   652   } else {
   653      os::Linux::set_is_LinuxThreads();
   654   }
   656   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   657   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   658   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   659      os::Linux::set_is_floating_stack();
   660   }
   661 }
   663 /////////////////////////////////////////////////////////////////////////////
   664 // thread stack
   666 // Force Linux kernel to expand current thread stack. If "bottom" is close
   667 // to the stack guard, caller should block all signals.
   668 //
   669 // MAP_GROWSDOWN:
   670 //   A special mmap() flag that is used to implement thread stacks. It tells
   671 //   kernel that the memory region should extend downwards when needed. This
   672 //   allows early versions of LinuxThreads to only mmap the first few pages
   673 //   when creating a new thread. Linux kernel will automatically expand thread
   674 //   stack as needed (on page faults).
   675 //
   676 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   677 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   678 //   region, it's hard to tell if the fault is due to a legitimate stack
   679 //   access or because of reading/writing non-exist memory (e.g. buffer
   680 //   overrun). As a rule, if the fault happens below current stack pointer,
   681 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   682 //   application (see Linux kernel fault.c).
   683 //
   684 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   685 //   stack overflow detection.
   686 //
   687 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   688 //   not use this flag. However, the stack of initial thread is not created
   689 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   690 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   691 //   and then attach the thread to JVM.
   692 //
   693 // To get around the problem and allow stack banging on Linux, we need to
   694 // manually expand thread stack after receiving the SIGSEGV.
   695 //
   696 // There are two ways to expand thread stack to address "bottom", we used
   697 // both of them in JVM before 1.5:
   698 //   1. adjust stack pointer first so that it is below "bottom", and then
   699 //      touch "bottom"
   700 //   2. mmap() the page in question
   701 //
   702 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   703 // if current sp is already near the lower end of page 101, and we need to
   704 // call mmap() to map page 100, it is possible that part of the mmap() frame
   705 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   706 // That will destroy the mmap() frame and cause VM to crash.
   707 //
   708 // The following code works by adjusting sp first, then accessing the "bottom"
   709 // page to force a page fault. Linux kernel will then automatically expand the
   710 // stack mapping.
   711 //
   712 // _expand_stack_to() assumes its frame size is less than page size, which
   713 // should always be true if the function is not inlined.
   715 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   716 #define NOINLINE
   717 #else
   718 #define NOINLINE __attribute__ ((noinline))
   719 #endif
   721 static void _expand_stack_to(address bottom) NOINLINE;
   723 static void _expand_stack_to(address bottom) {
   724   address sp;
   725   size_t size;
   726   volatile char *p;
   728   // Adjust bottom to point to the largest address within the same page, it
   729   // gives us a one-page buffer if alloca() allocates slightly more memory.
   730   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   731   bottom += os::Linux::page_size() - 1;
   733   // sp might be slightly above current stack pointer; if that's the case, we
   734   // will alloca() a little more space than necessary, which is OK. Don't use
   735   // os::current_stack_pointer(), as its result can be slightly below current
   736   // stack pointer, causing us to not alloca enough to reach "bottom".
   737   sp = (address)&sp;
   739   if (sp > bottom) {
   740     size = sp - bottom;
   741     p = (volatile char *)alloca(size);
   742     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   743     p[0] = '\0';
   744   }
   745 }
   747 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   748   assert(t!=NULL, "just checking");
   749   assert(t->osthread()->expanding_stack(), "expand should be set");
   750   assert(t->stack_base() != NULL, "stack_base was not initialized");
   752   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   753     sigset_t mask_all, old_sigset;
   754     sigfillset(&mask_all);
   755     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   756     _expand_stack_to(addr);
   757     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   758     return true;
   759   }
   760   return false;
   761 }
   763 //////////////////////////////////////////////////////////////////////////////
   764 // create new thread
   766 static address highest_vm_reserved_address();
   768 // check if it's safe to start a new thread
   769 static bool _thread_safety_check(Thread* thread) {
   770   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   771     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   772     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   773     //   allocated (MAP_FIXED) from high address space. Every thread stack
   774     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   775     //   it to other values if they rebuild LinuxThreads).
   776     //
   777     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   778     // the memory region has already been mmap'ed. That means if we have too
   779     // many threads and/or very large heap, eventually thread stack will
   780     // collide with heap.
   781     //
   782     // Here we try to prevent heap/stack collision by comparing current
   783     // stack bottom with the highest address that has been mmap'ed by JVM
   784     // plus a safety margin for memory maps created by native code.
   785     //
   786     // This feature can be disabled by setting ThreadSafetyMargin to 0
   787     //
   788     if (ThreadSafetyMargin > 0) {
   789       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   791       // not safe if our stack extends below the safety margin
   792       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   793     } else {
   794       return true;
   795     }
   796   } else {
   797     // Floating stack LinuxThreads or NPTL:
   798     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   799     //   there's not enough space left, pthread_create() will fail. If we come
   800     //   here, that means enough space has been reserved for stack.
   801     return true;
   802   }
   803 }
   805 // Thread start routine for all newly created threads
   806 static void *java_start(Thread *thread) {
   807   // Try to randomize the cache line index of hot stack frames.
   808   // This helps when threads of the same stack traces evict each other's
   809   // cache lines. The threads can be either from the same JVM instance, or
   810   // from different JVM instances. The benefit is especially true for
   811   // processors with hyperthreading technology.
   812   static int counter = 0;
   813   int pid = os::current_process_id();
   814   alloca(((pid ^ counter++) & 7) * 128);
   816   ThreadLocalStorage::set_thread(thread);
   818   OSThread* osthread = thread->osthread();
   819   Monitor* sync = osthread->startThread_lock();
   821   // non floating stack LinuxThreads needs extra check, see above
   822   if (!_thread_safety_check(thread)) {
   823     // notify parent thread
   824     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   825     osthread->set_state(ZOMBIE);
   826     sync->notify_all();
   827     return NULL;
   828   }
   830   // thread_id is kernel thread id (similar to Solaris LWP id)
   831   osthread->set_thread_id(os::Linux::gettid());
   833   if (UseNUMA) {
   834     int lgrp_id = os::numa_get_group_id();
   835     if (lgrp_id != -1) {
   836       thread->set_lgrp_id(lgrp_id);
   837     }
   838   }
   839   // initialize signal mask for this thread
   840   os::Linux::hotspot_sigmask(thread);
   842   // initialize floating point control register
   843   os::Linux::init_thread_fpu_state();
   845   // handshaking with parent thread
   846   {
   847     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   849     // notify parent thread
   850     osthread->set_state(INITIALIZED);
   851     sync->notify_all();
   853     // wait until os::start_thread()
   854     while (osthread->get_state() == INITIALIZED) {
   855       sync->wait(Mutex::_no_safepoint_check_flag);
   856     }
   857   }
   859   // call one more level start routine
   860   thread->run();
   862   return 0;
   863 }
   865 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   866   assert(thread->osthread() == NULL, "caller responsible");
   868   // Allocate the OSThread object
   869   OSThread* osthread = new OSThread(NULL, NULL);
   870   if (osthread == NULL) {
   871     return false;
   872   }
   874   // set the correct thread state
   875   osthread->set_thread_type(thr_type);
   877   // Initial state is ALLOCATED but not INITIALIZED
   878   osthread->set_state(ALLOCATED);
   880   thread->set_osthread(osthread);
   882   // init thread attributes
   883   pthread_attr_t attr;
   884   pthread_attr_init(&attr);
   885   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   887   // stack size
   888   if (os::Linux::supports_variable_stack_size()) {
   889     // calculate stack size if it's not specified by caller
   890     if (stack_size == 0) {
   891       stack_size = os::Linux::default_stack_size(thr_type);
   893       switch (thr_type) {
   894       case os::java_thread:
   895         // Java threads use ThreadStackSize which default value can be
   896         // changed with the flag -Xss
   897         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   898         stack_size = JavaThread::stack_size_at_create();
   899         break;
   900       case os::compiler_thread:
   901         if (CompilerThreadStackSize > 0) {
   902           stack_size = (size_t)(CompilerThreadStackSize * K);
   903           break;
   904         } // else fall through:
   905           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   906       case os::vm_thread:
   907       case os::pgc_thread:
   908       case os::cgc_thread:
   909       case os::watcher_thread:
   910         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   911         break;
   912       }
   913     }
   915     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   916     pthread_attr_setstacksize(&attr, stack_size);
   917   } else {
   918     // let pthread_create() pick the default value.
   919   }
   921   // glibc guard page
   922   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   924   ThreadState state;
   926   {
   927     // Serialize thread creation if we are running with fixed stack LinuxThreads
   928     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   929     if (lock) {
   930       os::Linux::createThread_lock()->lock_without_safepoint_check();
   931     }
   933     pthread_t tid;
   934     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   936     pthread_attr_destroy(&attr);
   938     if (ret != 0) {
   939       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   940         perror("pthread_create()");
   941       }
   942       // Need to clean up stuff we've allocated so far
   943       thread->set_osthread(NULL);
   944       delete osthread;
   945       if (lock) os::Linux::createThread_lock()->unlock();
   946       return false;
   947     }
   949     // Store pthread info into the OSThread
   950     osthread->set_pthread_id(tid);
   952     // Wait until child thread is either initialized or aborted
   953     {
   954       Monitor* sync_with_child = osthread->startThread_lock();
   955       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   956       while ((state = osthread->get_state()) == ALLOCATED) {
   957         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   958       }
   959     }
   961     if (lock) {
   962       os::Linux::createThread_lock()->unlock();
   963     }
   964   }
   966   // Aborted due to thread limit being reached
   967   if (state == ZOMBIE) {
   968       thread->set_osthread(NULL);
   969       delete osthread;
   970       return false;
   971   }
   973   // The thread is returned suspended (in state INITIALIZED),
   974   // and is started higher up in the call chain
   975   assert(state == INITIALIZED, "race condition");
   976   return true;
   977 }
   979 /////////////////////////////////////////////////////////////////////////////
   980 // attach existing thread
   982 // bootstrap the main thread
   983 bool os::create_main_thread(JavaThread* thread) {
   984   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   985   return create_attached_thread(thread);
   986 }
   988 bool os::create_attached_thread(JavaThread* thread) {
   989 #ifdef ASSERT
   990     thread->verify_not_published();
   991 #endif
   993   // Allocate the OSThread object
   994   OSThread* osthread = new OSThread(NULL, NULL);
   996   if (osthread == NULL) {
   997     return false;
   998   }
  1000   // Store pthread info into the OSThread
  1001   osthread->set_thread_id(os::Linux::gettid());
  1002   osthread->set_pthread_id(::pthread_self());
  1004   // initialize floating point control register
  1005   os::Linux::init_thread_fpu_state();
  1007   // Initial thread state is RUNNABLE
  1008   osthread->set_state(RUNNABLE);
  1010   thread->set_osthread(osthread);
  1012   if (UseNUMA) {
  1013     int lgrp_id = os::numa_get_group_id();
  1014     if (lgrp_id != -1) {
  1015       thread->set_lgrp_id(lgrp_id);
  1019   if (os::Linux::is_initial_thread()) {
  1020     // If current thread is initial thread, its stack is mapped on demand,
  1021     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
  1022     // the entire stack region to avoid SEGV in stack banging.
  1023     // It is also useful to get around the heap-stack-gap problem on SuSE
  1024     // kernel (see 4821821 for details). We first expand stack to the top
  1025     // of yellow zone, then enable stack yellow zone (order is significant,
  1026     // enabling yellow zone first will crash JVM on SuSE Linux), so there
  1027     // is no gap between the last two virtual memory regions.
  1029     JavaThread *jt = (JavaThread *)thread;
  1030     address addr = jt->stack_yellow_zone_base();
  1031     assert(addr != NULL, "initialization problem?");
  1032     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
  1034     osthread->set_expanding_stack();
  1035     os::Linux::manually_expand_stack(jt, addr);
  1036     osthread->clear_expanding_stack();
  1039   // initialize signal mask for this thread
  1040   // and save the caller's signal mask
  1041   os::Linux::hotspot_sigmask(thread);
  1043   return true;
  1046 void os::pd_start_thread(Thread* thread) {
  1047   OSThread * osthread = thread->osthread();
  1048   assert(osthread->get_state() != INITIALIZED, "just checking");
  1049   Monitor* sync_with_child = osthread->startThread_lock();
  1050   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
  1051   sync_with_child->notify();
  1054 // Free Linux resources related to the OSThread
  1055 void os::free_thread(OSThread* osthread) {
  1056   assert(osthread != NULL, "osthread not set");
  1058   if (Thread::current()->osthread() == osthread) {
  1059     // Restore caller's signal mask
  1060     sigset_t sigmask = osthread->caller_sigmask();
  1061     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
  1064   delete osthread;
  1067 //////////////////////////////////////////////////////////////////////////////
  1068 // thread local storage
  1070 int os::allocate_thread_local_storage() {
  1071   pthread_key_t key;
  1072   int rslt = pthread_key_create(&key, NULL);
  1073   assert(rslt == 0, "cannot allocate thread local storage");
  1074   return (int)key;
  1077 // Note: This is currently not used by VM, as we don't destroy TLS key
  1078 // on VM exit.
  1079 void os::free_thread_local_storage(int index) {
  1080   int rslt = pthread_key_delete((pthread_key_t)index);
  1081   assert(rslt == 0, "invalid index");
  1084 void os::thread_local_storage_at_put(int index, void* value) {
  1085   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1086   assert(rslt == 0, "pthread_setspecific failed");
  1089 extern "C" Thread* get_thread() {
  1090   return ThreadLocalStorage::thread();
  1093 //////////////////////////////////////////////////////////////////////////////
  1094 // initial thread
  1096 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1097 bool os::Linux::is_initial_thread(void) {
  1098   char dummy;
  1099   // If called before init complete, thread stack bottom will be null.
  1100   // Can be called if fatal error occurs before initialization.
  1101   if (initial_thread_stack_bottom() == NULL) return false;
  1102   assert(initial_thread_stack_bottom() != NULL &&
  1103          initial_thread_stack_size()   != 0,
  1104          "os::init did not locate initial thread's stack region");
  1105   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1106       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1107        return true;
  1108   else return false;
  1111 // Find the virtual memory area that contains addr
  1112 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1113   FILE *fp = fopen("/proc/self/maps", "r");
  1114   if (fp) {
  1115     address low, high;
  1116     while (!feof(fp)) {
  1117       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1118         if (low <= addr && addr < high) {
  1119            if (vma_low)  *vma_low  = low;
  1120            if (vma_high) *vma_high = high;
  1121            fclose (fp);
  1122            return true;
  1125       for (;;) {
  1126         int ch = fgetc(fp);
  1127         if (ch == EOF || ch == (int)'\n') break;
  1130     fclose(fp);
  1132   return false;
  1135 // Locate initial thread stack. This special handling of initial thread stack
  1136 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1137 // bogus value for initial thread.
  1138 void os::Linux::capture_initial_stack(size_t max_size) {
  1139   // stack size is the easy part, get it from RLIMIT_STACK
  1140   size_t stack_size;
  1141   struct rlimit rlim;
  1142   getrlimit(RLIMIT_STACK, &rlim);
  1143   stack_size = rlim.rlim_cur;
  1145   // 6308388: a bug in ld.so will relocate its own .data section to the
  1146   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1147   //   so we won't install guard page on ld.so's data section.
  1148   stack_size -= 2 * page_size();
  1150   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
  1151   //   7.1, in both cases we will get 2G in return value.
  1152   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
  1153   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
  1154   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
  1155   //   in case other parts in glibc still assumes 2M max stack size.
  1156   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
  1157   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
  1158   if (stack_size > 2 * K * K IA64_ONLY(*2))
  1159       stack_size = 2 * K * K IA64_ONLY(*2);
  1160   // Try to figure out where the stack base (top) is. This is harder.
  1161   //
  1162   // When an application is started, glibc saves the initial stack pointer in
  1163   // a global variable "__libc_stack_end", which is then used by system
  1164   // libraries. __libc_stack_end should be pretty close to stack top. The
  1165   // variable is available since the very early days. However, because it is
  1166   // a private interface, it could disappear in the future.
  1167   //
  1168   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1169   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1170   // stack top. Note that /proc may not exist if VM is running as a chroot
  1171   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1172   // /proc/<pid>/stat could change in the future (though unlikely).
  1173   //
  1174   // We try __libc_stack_end first. If that doesn't work, look for
  1175   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1176   // as a hint, which should work well in most cases.
  1178   uintptr_t stack_start;
  1180   // try __libc_stack_end first
  1181   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1182   if (p && *p) {
  1183     stack_start = *p;
  1184   } else {
  1185     // see if we can get the start_stack field from /proc/self/stat
  1186     FILE *fp;
  1187     int pid;
  1188     char state;
  1189     int ppid;
  1190     int pgrp;
  1191     int session;
  1192     int nr;
  1193     int tpgrp;
  1194     unsigned long flags;
  1195     unsigned long minflt;
  1196     unsigned long cminflt;
  1197     unsigned long majflt;
  1198     unsigned long cmajflt;
  1199     unsigned long utime;
  1200     unsigned long stime;
  1201     long cutime;
  1202     long cstime;
  1203     long prio;
  1204     long nice;
  1205     long junk;
  1206     long it_real;
  1207     uintptr_t start;
  1208     uintptr_t vsize;
  1209     intptr_t rss;
  1210     uintptr_t rsslim;
  1211     uintptr_t scodes;
  1212     uintptr_t ecode;
  1213     int i;
  1215     // Figure what the primordial thread stack base is. Code is inspired
  1216     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1217     // followed by command name surrounded by parentheses, state, etc.
  1218     char stat[2048];
  1219     int statlen;
  1221     fp = fopen("/proc/self/stat", "r");
  1222     if (fp) {
  1223       statlen = fread(stat, 1, 2047, fp);
  1224       stat[statlen] = '\0';
  1225       fclose(fp);
  1227       // Skip pid and the command string. Note that we could be dealing with
  1228       // weird command names, e.g. user could decide to rename java launcher
  1229       // to "java 1.4.2 :)", then the stat file would look like
  1230       //                1234 (java 1.4.2 :)) R ... ...
  1231       // We don't really need to know the command string, just find the last
  1232       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1233       char * s = strrchr(stat, ')');
  1235       i = 0;
  1236       if (s) {
  1237         // Skip blank chars
  1238         do s++; while (isspace(*s));
  1240 #define _UFM UINTX_FORMAT
  1241 #define _DFM INTX_FORMAT
  1243         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1244         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1245         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1246              &state,          /* 3  %c  */
  1247              &ppid,           /* 4  %d  */
  1248              &pgrp,           /* 5  %d  */
  1249              &session,        /* 6  %d  */
  1250              &nr,             /* 7  %d  */
  1251              &tpgrp,          /* 8  %d  */
  1252              &flags,          /* 9  %lu  */
  1253              &minflt,         /* 10 %lu  */
  1254              &cminflt,        /* 11 %lu  */
  1255              &majflt,         /* 12 %lu  */
  1256              &cmajflt,        /* 13 %lu  */
  1257              &utime,          /* 14 %lu  */
  1258              &stime,          /* 15 %lu  */
  1259              &cutime,         /* 16 %ld  */
  1260              &cstime,         /* 17 %ld  */
  1261              &prio,           /* 18 %ld  */
  1262              &nice,           /* 19 %ld  */
  1263              &junk,           /* 20 %ld  */
  1264              &it_real,        /* 21 %ld  */
  1265              &start,          /* 22 UINTX_FORMAT */
  1266              &vsize,          /* 23 UINTX_FORMAT */
  1267              &rss,            /* 24 INTX_FORMAT  */
  1268              &rsslim,         /* 25 UINTX_FORMAT */
  1269              &scodes,         /* 26 UINTX_FORMAT */
  1270              &ecode,          /* 27 UINTX_FORMAT */
  1271              &stack_start);   /* 28 UINTX_FORMAT */
  1274 #undef _UFM
  1275 #undef _DFM
  1277       if (i != 28 - 2) {
  1278          assert(false, "Bad conversion from /proc/self/stat");
  1279          // product mode - assume we are the initial thread, good luck in the
  1280          // embedded case.
  1281          warning("Can't detect initial thread stack location - bad conversion");
  1282          stack_start = (uintptr_t) &rlim;
  1284     } else {
  1285       // For some reason we can't open /proc/self/stat (for example, running on
  1286       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1287       // most cases, so don't abort:
  1288       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1289       stack_start = (uintptr_t) &rlim;
  1293   // Now we have a pointer (stack_start) very close to the stack top, the
  1294   // next thing to do is to figure out the exact location of stack top. We
  1295   // can find out the virtual memory area that contains stack_start by
  1296   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1297   // and its upper limit is the real stack top. (again, this would fail if
  1298   // running inside chroot, because /proc may not exist.)
  1300   uintptr_t stack_top;
  1301   address low, high;
  1302   if (find_vma((address)stack_start, &low, &high)) {
  1303     // success, "high" is the true stack top. (ignore "low", because initial
  1304     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1305     stack_top = (uintptr_t)high;
  1306   } else {
  1307     // failed, likely because /proc/self/maps does not exist
  1308     warning("Can't detect initial thread stack location - find_vma failed");
  1309     // best effort: stack_start is normally within a few pages below the real
  1310     // stack top, use it as stack top, and reduce stack size so we won't put
  1311     // guard page outside stack.
  1312     stack_top = stack_start;
  1313     stack_size -= 16 * page_size();
  1316   // stack_top could be partially down the page so align it
  1317   stack_top = align_size_up(stack_top, page_size());
  1319   if (max_size && stack_size > max_size) {
  1320      _initial_thread_stack_size = max_size;
  1321   } else {
  1322      _initial_thread_stack_size = stack_size;
  1325   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1326   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1329 ////////////////////////////////////////////////////////////////////////////////
  1330 // time support
  1332 // Time since start-up in seconds to a fine granularity.
  1333 // Used by VMSelfDestructTimer and the MemProfiler.
  1334 double os::elapsedTime() {
  1336   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
  1339 jlong os::elapsed_counter() {
  1340   return javaTimeNanos() - initial_time_count;
  1343 jlong os::elapsed_frequency() {
  1344   return NANOSECS_PER_SEC; // nanosecond resolution
  1347 bool os::supports_vtime() { return true; }
  1348 bool os::enable_vtime()   { return false; }
  1349 bool os::vtime_enabled()  { return false; }
  1351 double os::elapsedVTime() {
  1352   struct rusage usage;
  1353   int retval = getrusage(RUSAGE_THREAD, &usage);
  1354   if (retval == 0) {
  1355     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
  1356   } else {
  1357     // better than nothing, but not much
  1358     return elapsedTime();
  1362 jlong os::javaTimeMillis() {
  1363   timeval time;
  1364   int status = gettimeofday(&time, NULL);
  1365   assert(status != -1, "linux error");
  1366   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1369 #ifndef CLOCK_MONOTONIC
  1370 #define CLOCK_MONOTONIC (1)
  1371 #endif
  1373 void os::Linux::clock_init() {
  1374   // we do dlopen's in this particular order due to bug in linux
  1375   // dynamical loader (see 6348968) leading to crash on exit
  1376   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1377   if (handle == NULL) {
  1378     handle = dlopen("librt.so", RTLD_LAZY);
  1381   if (handle) {
  1382     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1383            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1384     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1385            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1386     if (clock_getres_func && clock_gettime_func) {
  1387       // See if monotonic clock is supported by the kernel. Note that some
  1388       // early implementations simply return kernel jiffies (updated every
  1389       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1390       // for nano time (though the monotonic property is still nice to have).
  1391       // It's fixed in newer kernels, however clock_getres() still returns
  1392       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1393       // resolution for now. Hopefully as people move to new kernels, this
  1394       // won't be a problem.
  1395       struct timespec res;
  1396       struct timespec tp;
  1397       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1398           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1399         // yes, monotonic clock is supported
  1400         _clock_gettime = clock_gettime_func;
  1401         return;
  1402       } else {
  1403         // close librt if there is no monotonic clock
  1404         dlclose(handle);
  1408   warning("No monotonic clock was available - timed services may " \
  1409           "be adversely affected if the time-of-day clock changes");
  1412 #ifndef SYS_clock_getres
  1414 #if defined(IA32) || defined(AMD64)
  1415 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1416 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1417 #else
  1418 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1419 #define sys_clock_getres(x,y)  -1
  1420 #endif
  1422 #else
  1423 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1424 #endif
  1426 void os::Linux::fast_thread_clock_init() {
  1427   if (!UseLinuxPosixThreadCPUClocks) {
  1428     return;
  1430   clockid_t clockid;
  1431   struct timespec tp;
  1432   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1433       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1435   // Switch to using fast clocks for thread cpu time if
  1436   // the sys_clock_getres() returns 0 error code.
  1437   // Note, that some kernels may support the current thread
  1438   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1439   // returned by the pthread_getcpuclockid().
  1440   // If the fast Posix clocks are supported then the sys_clock_getres()
  1441   // must return at least tp.tv_sec == 0 which means a resolution
  1442   // better than 1 sec. This is extra check for reliability.
  1444   if(pthread_getcpuclockid_func &&
  1445      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1446      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1448     _supports_fast_thread_cpu_time = true;
  1449     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1453 jlong os::javaTimeNanos() {
  1454   if (Linux::supports_monotonic_clock()) {
  1455     struct timespec tp;
  1456     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1457     assert(status == 0, "gettime error");
  1458     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1459     return result;
  1460   } else {
  1461     timeval time;
  1462     int status = gettimeofday(&time, NULL);
  1463     assert(status != -1, "linux error");
  1464     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1465     return 1000 * usecs;
  1469 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1470   if (Linux::supports_monotonic_clock()) {
  1471     info_ptr->max_value = ALL_64_BITS;
  1473     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1474     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1475     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1476   } else {
  1477     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1478     info_ptr->max_value = ALL_64_BITS;
  1480     // gettimeofday is a real time clock so it skips
  1481     info_ptr->may_skip_backward = true;
  1482     info_ptr->may_skip_forward = true;
  1485   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1488 // Return the real, user, and system times in seconds from an
  1489 // arbitrary fixed point in the past.
  1490 bool os::getTimesSecs(double* process_real_time,
  1491                       double* process_user_time,
  1492                       double* process_system_time) {
  1493   struct tms ticks;
  1494   clock_t real_ticks = times(&ticks);
  1496   if (real_ticks == (clock_t) (-1)) {
  1497     return false;
  1498   } else {
  1499     double ticks_per_second = (double) clock_tics_per_sec;
  1500     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1501     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1502     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1504     return true;
  1509 char * os::local_time_string(char *buf, size_t buflen) {
  1510   struct tm t;
  1511   time_t long_time;
  1512   time(&long_time);
  1513   localtime_r(&long_time, &t);
  1514   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1515                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1516                t.tm_hour, t.tm_min, t.tm_sec);
  1517   return buf;
  1520 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1521   return localtime_r(clock, res);
  1524 ////////////////////////////////////////////////////////////////////////////////
  1525 // runtime exit support
  1527 // Note: os::shutdown() might be called very early during initialization, or
  1528 // called from signal handler. Before adding something to os::shutdown(), make
  1529 // sure it is async-safe and can handle partially initialized VM.
  1530 void os::shutdown() {
  1532   // allow PerfMemory to attempt cleanup of any persistent resources
  1533   perfMemory_exit();
  1535   // needs to remove object in file system
  1536   AttachListener::abort();
  1538   // flush buffered output, finish log files
  1539   ostream_abort();
  1541   // Check for abort hook
  1542   abort_hook_t abort_hook = Arguments::abort_hook();
  1543   if (abort_hook != NULL) {
  1544     abort_hook();
  1549 // Note: os::abort() might be called very early during initialization, or
  1550 // called from signal handler. Before adding something to os::abort(), make
  1551 // sure it is async-safe and can handle partially initialized VM.
  1552 void os::abort(bool dump_core) {
  1553   os::shutdown();
  1554   if (dump_core) {
  1555 #ifndef PRODUCT
  1556     fdStream out(defaultStream::output_fd());
  1557     out.print_raw("Current thread is ");
  1558     char buf[16];
  1559     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1560     out.print_raw_cr(buf);
  1561     out.print_raw_cr("Dumping core ...");
  1562 #endif
  1563     ::abort(); // dump core
  1566   ::exit(1);
  1569 // Die immediately, no exit hook, no abort hook, no cleanup.
  1570 void os::die() {
  1571   // _exit() on LinuxThreads only kills current thread
  1572   ::abort();
  1575 // unused on linux for now.
  1576 void os::set_error_file(const char *logfile) {}
  1579 // This method is a copy of JDK's sysGetLastErrorString
  1580 // from src/solaris/hpi/src/system_md.c
  1582 size_t os::lasterror(char *buf, size_t len) {
  1584   if (errno == 0)  return 0;
  1586   const char *s = ::strerror(errno);
  1587   size_t n = ::strlen(s);
  1588   if (n >= len) {
  1589     n = len - 1;
  1591   ::strncpy(buf, s, n);
  1592   buf[n] = '\0';
  1593   return n;
  1596 intx os::current_thread_id() { return (intx)pthread_self(); }
  1597 int os::current_process_id() {
  1599   // Under the old linux thread library, linux gives each thread
  1600   // its own process id. Because of this each thread will return
  1601   // a different pid if this method were to return the result
  1602   // of getpid(2). Linux provides no api that returns the pid
  1603   // of the launcher thread for the vm. This implementation
  1604   // returns a unique pid, the pid of the launcher thread
  1605   // that starts the vm 'process'.
  1607   // Under the NPTL, getpid() returns the same pid as the
  1608   // launcher thread rather than a unique pid per thread.
  1609   // Use gettid() if you want the old pre NPTL behaviour.
  1611   // if you are looking for the result of a call to getpid() that
  1612   // returns a unique pid for the calling thread, then look at the
  1613   // OSThread::thread_id() method in osThread_linux.hpp file
  1615   return (int)(_initial_pid ? _initial_pid : getpid());
  1618 // DLL functions
  1620 const char* os::dll_file_extension() { return ".so"; }
  1622 // This must be hard coded because it's the system's temporary
  1623 // directory not the java application's temp directory, ala java.io.tmpdir.
  1624 const char* os::get_temp_directory() { return "/tmp"; }
  1626 static bool file_exists(const char* filename) {
  1627   struct stat statbuf;
  1628   if (filename == NULL || strlen(filename) == 0) {
  1629     return false;
  1631   return os::stat(filename, &statbuf) == 0;
  1634 bool os::dll_build_name(char* buffer, size_t buflen,
  1635                         const char* pname, const char* fname) {
  1636   bool retval = false;
  1637   // Copied from libhpi
  1638   const size_t pnamelen = pname ? strlen(pname) : 0;
  1640   // Return error on buffer overflow.
  1641   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1642     return retval;
  1645   if (pnamelen == 0) {
  1646     snprintf(buffer, buflen, "lib%s.so", fname);
  1647     retval = true;
  1648   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1649     int n;
  1650     char** pelements = split_path(pname, &n);
  1651     if (pelements == NULL) {
  1652       return false;
  1654     for (int i = 0 ; i < n ; i++) {
  1655       // Really shouldn't be NULL, but check can't hurt
  1656       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1657         continue; // skip the empty path values
  1659       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1660       if (file_exists(buffer)) {
  1661         retval = true;
  1662         break;
  1665     // release the storage
  1666     for (int i = 0 ; i < n ; i++) {
  1667       if (pelements[i] != NULL) {
  1668         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1671     if (pelements != NULL) {
  1672       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1674   } else {
  1675     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1676     retval = true;
  1678   return retval;
  1681 // check if addr is inside libjvm.so
  1682 bool os::address_is_in_vm(address addr) {
  1683   static address libjvm_base_addr;
  1684   Dl_info dlinfo;
  1686   if (libjvm_base_addr == NULL) {
  1687     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
  1688       libjvm_base_addr = (address)dlinfo.dli_fbase;
  1690     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1693   if (dladdr((void *)addr, &dlinfo) != 0) {
  1694     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1697   return false;
  1700 bool os::dll_address_to_function_name(address addr, char *buf,
  1701                                       int buflen, int *offset) {
  1702   // buf is not optional, but offset is optional
  1703   assert(buf != NULL, "sanity check");
  1705   Dl_info dlinfo;
  1707   if (dladdr((void*)addr, &dlinfo) != 0) {
  1708     // see if we have a matching symbol
  1709     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
  1710       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1711         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1713       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1714       return true;
  1716     // no matching symbol so try for just file info
  1717     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
  1718       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1719                           buf, buflen, offset, dlinfo.dli_fname)) {
  1720         return true;
  1725   buf[0] = '\0';
  1726   if (offset != NULL) *offset = -1;
  1727   return false;
  1730 struct _address_to_library_name {
  1731   address addr;          // input : memory address
  1732   size_t  buflen;        //         size of fname
  1733   char*   fname;         // output: library name
  1734   address base;          //         library base addr
  1735 };
  1737 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1738                                             size_t size, void *data) {
  1739   int i;
  1740   bool found = false;
  1741   address libbase = NULL;
  1742   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1744   // iterate through all loadable segments
  1745   for (i = 0; i < info->dlpi_phnum; i++) {
  1746     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1747     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1748       // base address of a library is the lowest address of its loaded
  1749       // segments.
  1750       if (libbase == NULL || libbase > segbase) {
  1751         libbase = segbase;
  1753       // see if 'addr' is within current segment
  1754       if (segbase <= d->addr &&
  1755           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1756         found = true;
  1761   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1762   // so dll_address_to_library_name() can fall through to use dladdr() which
  1763   // can figure out executable name from argv[0].
  1764   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1765     d->base = libbase;
  1766     if (d->fname) {
  1767       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1769     return 1;
  1771   return 0;
  1774 bool os::dll_address_to_library_name(address addr, char* buf,
  1775                                      int buflen, int* offset) {
  1776   // buf is not optional, but offset is optional
  1777   assert(buf != NULL, "sanity check");
  1779   Dl_info dlinfo;
  1780   struct _address_to_library_name data;
  1782   // There is a bug in old glibc dladdr() implementation that it could resolve
  1783   // to wrong library name if the .so file has a base address != NULL. Here
  1784   // we iterate through the program headers of all loaded libraries to find
  1785   // out which library 'addr' really belongs to. This workaround can be
  1786   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1787   data.addr = addr;
  1788   data.fname = buf;
  1789   data.buflen = buflen;
  1790   data.base = NULL;
  1791   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1793   if (rslt) {
  1794      // buf already contains library name
  1795      if (offset) *offset = addr - data.base;
  1796      return true;
  1798   if (dladdr((void*)addr, &dlinfo) != 0) {
  1799     if (dlinfo.dli_fname != NULL) {
  1800       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1802     if (dlinfo.dli_fbase != NULL && offset != NULL) {
  1803       *offset = addr - (address)dlinfo.dli_fbase;
  1805     return true;
  1808   buf[0] = '\0';
  1809   if (offset) *offset = -1;
  1810   return false;
  1813   // Loads .dll/.so and
  1814   // in case of error it checks if .dll/.so was built for the
  1815   // same architecture as Hotspot is running on
  1818 // Remember the stack's state. The Linux dynamic linker will change
  1819 // the stack to 'executable' at most once, so we must safepoint only once.
  1820 bool os::Linux::_stack_is_executable = false;
  1822 // VM operation that loads a library.  This is necessary if stack protection
  1823 // of the Java stacks can be lost during loading the library.  If we
  1824 // do not stop the Java threads, they can stack overflow before the stacks
  1825 // are protected again.
  1826 class VM_LinuxDllLoad: public VM_Operation {
  1827  private:
  1828   const char *_filename;
  1829   char *_ebuf;
  1830   int _ebuflen;
  1831   void *_lib;
  1832  public:
  1833   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
  1834     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
  1835   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
  1836   void doit() {
  1837     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
  1838     os::Linux::_stack_is_executable = true;
  1840   void* loaded_library() { return _lib; }
  1841 };
  1843 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1845   void * result = NULL;
  1846   bool load_attempted = false;
  1848   // Check whether the library to load might change execution rights
  1849   // of the stack. If they are changed, the protection of the stack
  1850   // guard pages will be lost. We need a safepoint to fix this.
  1851   //
  1852   // See Linux man page execstack(8) for more info.
  1853   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
  1854     ElfFile ef(filename);
  1855     if (!ef.specifies_noexecstack()) {
  1856       if (!is_init_completed()) {
  1857         os::Linux::_stack_is_executable = true;
  1858         // This is OK - No Java threads have been created yet, and hence no
  1859         // stack guard pages to fix.
  1860         //
  1861         // This should happen only when you are building JDK7 using a very
  1862         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
  1863         //
  1864         // Dynamic loader will make all stacks executable after
  1865         // this function returns, and will not do that again.
  1866         assert(Threads::first() == NULL, "no Java threads should exist yet.");
  1867       } else {
  1868         warning("You have loaded library %s which might have disabled stack guard. "
  1869                 "The VM will try to fix the stack guard now.\n"
  1870                 "It's highly recommended that you fix the library with "
  1871                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
  1872                 filename);
  1874         assert(Thread::current()->is_Java_thread(), "must be Java thread");
  1875         JavaThread *jt = JavaThread::current();
  1876         if (jt->thread_state() != _thread_in_native) {
  1877           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
  1878           // that requires ExecStack. Cannot enter safe point. Let's give up.
  1879           warning("Unable to fix stack guard. Giving up.");
  1880         } else {
  1881           if (!LoadExecStackDllInVMThread) {
  1882             // This is for the case where the DLL has an static
  1883             // constructor function that executes JNI code. We cannot
  1884             // load such DLLs in the VMThread.
  1885             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1888           ThreadInVMfromNative tiv(jt);
  1889           debug_only(VMNativeEntryWrapper vew;)
  1891           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
  1892           VMThread::execute(&op);
  1893           if (LoadExecStackDllInVMThread) {
  1894             result = op.loaded_library();
  1896           load_attempted = true;
  1902   if (!load_attempted) {
  1903     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1906   if (result != NULL) {
  1907     // Successful loading
  1908     return result;
  1911   Elf32_Ehdr elf_head;
  1912   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1913   char* diag_msg_buf=ebuf+strlen(ebuf);
  1915   if (diag_msg_max_length==0) {
  1916     // No more space in ebuf for additional diagnostics message
  1917     return NULL;
  1921   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1923   if (file_descriptor < 0) {
  1924     // Can't open library, report dlerror() message
  1925     return NULL;
  1928   bool failed_to_read_elf_head=
  1929     (sizeof(elf_head)!=
  1930         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1932   ::close(file_descriptor);
  1933   if (failed_to_read_elf_head) {
  1934     // file i/o error - report dlerror() msg
  1935     return NULL;
  1938   typedef struct {
  1939     Elf32_Half  code;         // Actual value as defined in elf.h
  1940     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1941     char        elf_class;    // 32 or 64 bit
  1942     char        endianess;    // MSB or LSB
  1943     char*       name;         // String representation
  1944   } arch_t;
  1946   #ifndef EM_486
  1947   #define EM_486          6               /* Intel 80486 */
  1948   #endif
  1950   static const arch_t arch_array[]={
  1951     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1952     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1953     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1954     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1955     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1956     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1957     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1958     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1959     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1960     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1961     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1962     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1963     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1964     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1965     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1966     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1967   };
  1969   #if  (defined IA32)
  1970     static  Elf32_Half running_arch_code=EM_386;
  1971   #elif   (defined AMD64)
  1972     static  Elf32_Half running_arch_code=EM_X86_64;
  1973   #elif  (defined IA64)
  1974     static  Elf32_Half running_arch_code=EM_IA_64;
  1975   #elif  (defined __sparc) && (defined _LP64)
  1976     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1977   #elif  (defined __sparc) && (!defined _LP64)
  1978     static  Elf32_Half running_arch_code=EM_SPARC;
  1979   #elif  (defined __powerpc64__)
  1980     static  Elf32_Half running_arch_code=EM_PPC64;
  1981   #elif  (defined __powerpc__)
  1982     static  Elf32_Half running_arch_code=EM_PPC;
  1983   #elif  (defined ARM)
  1984     static  Elf32_Half running_arch_code=EM_ARM;
  1985   #elif  (defined S390)
  1986     static  Elf32_Half running_arch_code=EM_S390;
  1987   #elif  (defined ALPHA)
  1988     static  Elf32_Half running_arch_code=EM_ALPHA;
  1989   #elif  (defined MIPSEL)
  1990     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1991   #elif  (defined PARISC)
  1992     static  Elf32_Half running_arch_code=EM_PARISC;
  1993   #elif  (defined MIPS)
  1994     static  Elf32_Half running_arch_code=EM_MIPS;
  1995   #elif  (defined M68K)
  1996     static  Elf32_Half running_arch_code=EM_68K;
  1997   #else
  1998     #error Method os::dll_load requires that one of following is defined:\
  1999          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  2000   #endif
  2002   // Identify compatability class for VM's architecture and library's architecture
  2003   // Obtain string descriptions for architectures
  2005   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  2006   int running_arch_index=-1;
  2008   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  2009     if (running_arch_code == arch_array[i].code) {
  2010       running_arch_index    = i;
  2012     if (lib_arch.code == arch_array[i].code) {
  2013       lib_arch.compat_class = arch_array[i].compat_class;
  2014       lib_arch.name         = arch_array[i].name;
  2018   assert(running_arch_index != -1,
  2019     "Didn't find running architecture code (running_arch_code) in arch_array");
  2020   if (running_arch_index == -1) {
  2021     // Even though running architecture detection failed
  2022     // we may still continue with reporting dlerror() message
  2023     return NULL;
  2026   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  2027     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  2028     return NULL;
  2031 #ifndef S390
  2032   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  2033     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  2034     return NULL;
  2036 #endif // !S390
  2038   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  2039     if ( lib_arch.name!=NULL ) {
  2040       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2041         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  2042         lib_arch.name, arch_array[running_arch_index].name);
  2043     } else {
  2044       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2045       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  2046         lib_arch.code,
  2047         arch_array[running_arch_index].name);
  2051   return NULL;
  2054 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
  2055   void * result = ::dlopen(filename, RTLD_LAZY);
  2056   if (result == NULL) {
  2057     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
  2058     ebuf[ebuflen-1] = '\0';
  2060   return result;
  2063 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
  2064   void * result = NULL;
  2065   if (LoadExecStackDllInVMThread) {
  2066     result = dlopen_helper(filename, ebuf, ebuflen);
  2069   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
  2070   // library that requires an executable stack, or which does not have this
  2071   // stack attribute set, dlopen changes the stack attribute to executable. The
  2072   // read protection of the guard pages gets lost.
  2073   //
  2074   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
  2075   // may have been queued at the same time.
  2077   if (!_stack_is_executable) {
  2078     JavaThread *jt = Threads::first();
  2080     while (jt) {
  2081       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
  2082           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
  2083         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
  2084                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
  2085           warning("Attempt to reguard stack yellow zone failed.");
  2088       jt = jt->next();
  2092   return result;
  2095 /*
  2096  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  2097  * chances are you might want to run the generated bits against glibc-2.0
  2098  * libdl.so, so always use locking for any version of glibc.
  2099  */
  2100 void* os::dll_lookup(void* handle, const char* name) {
  2101   pthread_mutex_lock(&dl_mutex);
  2102   void* res = dlsym(handle, name);
  2103   pthread_mutex_unlock(&dl_mutex);
  2104   return res;
  2107 void* os::get_default_process_handle() {
  2108   return (void*)::dlopen(NULL, RTLD_LAZY);
  2111 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2112   int fd = ::open(filename, O_RDONLY);
  2113   if (fd == -1) {
  2114      return false;
  2117   char buf[32];
  2118   int bytes;
  2119   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2120     st->print_raw(buf, bytes);
  2123   ::close(fd);
  2125   return true;
  2128 void os::print_dll_info(outputStream *st) {
  2129    st->print_cr("Dynamic libraries:");
  2131    char fname[32];
  2132    pid_t pid = os::Linux::gettid();
  2134    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  2136    if (!_print_ascii_file(fname, st)) {
  2137      st->print("Can not get library information for pid = %d\n", pid);
  2141 void os::print_os_info_brief(outputStream* st) {
  2142   os::Linux::print_distro_info(st);
  2144   os::Posix::print_uname_info(st);
  2146   os::Linux::print_libversion_info(st);
  2150 void os::print_os_info(outputStream* st) {
  2151   st->print("OS:");
  2153   os::Linux::print_distro_info(st);
  2155   os::Posix::print_uname_info(st);
  2157   // Print warning if unsafe chroot environment detected
  2158   if (unsafe_chroot_detected) {
  2159     st->print("WARNING!! ");
  2160     st->print_cr(unstable_chroot_error);
  2163   os::Linux::print_libversion_info(st);
  2165   os::Posix::print_rlimit_info(st);
  2167   os::Posix::print_load_average(st);
  2169   os::Linux::print_full_memory_info(st);
  2172 // Try to identify popular distros.
  2173 // Most Linux distributions have a /etc/XXX-release file, which contains
  2174 // the OS version string. Newer Linux distributions have a /etc/lsb-release
  2175 // file that also contains the OS version string. Some have more than one
  2176 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
  2177 // /etc/redhat-release.), so the order is important.
  2178 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
  2179 // their own specific XXX-release file as well as a redhat-release file.
  2180 // Because of this the XXX-release file needs to be searched for before the
  2181 // redhat-release file.
  2182 // Since Red Hat has a lsb-release file that is not very descriptive the
  2183 // search for redhat-release needs to be before lsb-release.
  2184 // Since the lsb-release file is the new standard it needs to be searched
  2185 // before the older style release files.
  2186 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
  2187 // next to last resort.  The os-release file is a new standard that contains
  2188 // distribution information and the system-release file seems to be an old
  2189 // standard that has been replaced by the lsb-release and os-release files.
  2190 // Searching for the debian_version file is the last resort.  It contains
  2191 // an informative string like "6.0.6" or "wheezy/sid". Because of this
  2192 // "Debian " is printed before the contents of the debian_version file.
  2193 void os::Linux::print_distro_info(outputStream* st) {
  2194    if (!_print_ascii_file("/etc/oracle-release", st) &&
  2195        !_print_ascii_file("/etc/mandriva-release", st) &&
  2196        !_print_ascii_file("/etc/mandrake-release", st) &&
  2197        !_print_ascii_file("/etc/sun-release", st) &&
  2198        !_print_ascii_file("/etc/redhat-release", st) &&
  2199        !_print_ascii_file("/etc/lsb-release", st) &&
  2200        !_print_ascii_file("/etc/SuSE-release", st) &&
  2201        !_print_ascii_file("/etc/turbolinux-release", st) &&
  2202        !_print_ascii_file("/etc/gentoo-release", st) &&
  2203        !_print_ascii_file("/etc/ltib-release", st) &&
  2204        !_print_ascii_file("/etc/angstrom-version", st) &&
  2205        !_print_ascii_file("/etc/system-release", st) &&
  2206        !_print_ascii_file("/etc/os-release", st)) {
  2208        if (file_exists("/etc/debian_version")) {
  2209          st->print("Debian ");
  2210          _print_ascii_file("/etc/debian_version", st);
  2211        } else {
  2212          st->print("Linux");
  2215    st->cr();
  2218 void os::Linux::print_libversion_info(outputStream* st) {
  2219   // libc, pthread
  2220   st->print("libc:");
  2221   st->print(os::Linux::glibc_version()); st->print(" ");
  2222   st->print(os::Linux::libpthread_version()); st->print(" ");
  2223   if (os::Linux::is_LinuxThreads()) {
  2224      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2226   st->cr();
  2229 void os::Linux::print_full_memory_info(outputStream* st) {
  2230    st->print("\n/proc/meminfo:\n");
  2231    _print_ascii_file("/proc/meminfo", st);
  2232    st->cr();
  2235 void os::print_memory_info(outputStream* st) {
  2237   st->print("Memory:");
  2238   st->print(" %dk page", os::vm_page_size()>>10);
  2240   // values in struct sysinfo are "unsigned long"
  2241   struct sysinfo si;
  2242   sysinfo(&si);
  2244   st->print(", physical " UINT64_FORMAT "k",
  2245             os::physical_memory() >> 10);
  2246   st->print("(" UINT64_FORMAT "k free)",
  2247             os::available_memory() >> 10);
  2248   st->print(", swap " UINT64_FORMAT "k",
  2249             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2250   st->print("(" UINT64_FORMAT "k free)",
  2251             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2252   st->cr();
  2255 void os::pd_print_cpu_info(outputStream* st) {
  2256   st->print("\n/proc/cpuinfo:\n");
  2257   if (!_print_ascii_file("/proc/cpuinfo", st)) {
  2258     st->print("  <Not Available>");
  2260   st->cr();
  2263 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
  2264 // but they're the same for all the linux arch that we support
  2265 // and they're the same for solaris but there's no common place to put this.
  2266 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  2267                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  2268                           "ILL_COPROC", "ILL_BADSTK" };
  2270 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  2271                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  2272                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
  2274 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  2276 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  2278 void os::print_siginfo(outputStream* st, void* siginfo) {
  2279   st->print("siginfo:");
  2281   const int buflen = 100;
  2282   char buf[buflen];
  2283   siginfo_t *si = (siginfo_t*)siginfo;
  2284   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  2285   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
  2286     st->print("si_errno=%s", buf);
  2287   } else {
  2288     st->print("si_errno=%d", si->si_errno);
  2290   const int c = si->si_code;
  2291   assert(c > 0, "unexpected si_code");
  2292   switch (si->si_signo) {
  2293   case SIGILL:
  2294     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  2295     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2296     break;
  2297   case SIGFPE:
  2298     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2299     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2300     break;
  2301   case SIGSEGV:
  2302     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2303     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2304     break;
  2305   case SIGBUS:
  2306     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2307     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2308     break;
  2309   default:
  2310     st->print(", si_code=%d", si->si_code);
  2311     // no si_addr
  2314   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2315       UseSharedSpaces) {
  2316     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2317     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2318       st->print("\n\nError accessing class data sharing archive."   \
  2319                 " Mapped file inaccessible during execution, "      \
  2320                 " possible disk/network problem.");
  2323   st->cr();
  2327 static void print_signal_handler(outputStream* st, int sig,
  2328                                  char* buf, size_t buflen);
  2330 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2331   st->print_cr("Signal Handlers:");
  2332   print_signal_handler(st, SIGSEGV, buf, buflen);
  2333   print_signal_handler(st, SIGBUS , buf, buflen);
  2334   print_signal_handler(st, SIGFPE , buf, buflen);
  2335   print_signal_handler(st, SIGPIPE, buf, buflen);
  2336   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2337   print_signal_handler(st, SIGILL , buf, buflen);
  2338   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2339   print_signal_handler(st, SR_signum, buf, buflen);
  2340   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2341   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2342   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2343   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2346 static char saved_jvm_path[MAXPATHLEN] = {0};
  2348 // Find the full path to the current module, libjvm.so
  2349 void os::jvm_path(char *buf, jint buflen) {
  2350   // Error checking.
  2351   if (buflen < MAXPATHLEN) {
  2352     assert(false, "must use a large-enough buffer");
  2353     buf[0] = '\0';
  2354     return;
  2356   // Lazy resolve the path to current module.
  2357   if (saved_jvm_path[0] != 0) {
  2358     strcpy(buf, saved_jvm_path);
  2359     return;
  2362   char dli_fname[MAXPATHLEN];
  2363   bool ret = dll_address_to_library_name(
  2364                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2365                 dli_fname, sizeof(dli_fname), NULL);
  2366   assert(ret, "cannot locate libjvm");
  2367   char *rp = NULL;
  2368   if (ret && dli_fname[0] != '\0') {
  2369     rp = realpath(dli_fname, buf);
  2371   if (rp == NULL)
  2372     return;
  2374   if (Arguments::created_by_gamma_launcher()) {
  2375     // Support for the gamma launcher.  Typical value for buf is
  2376     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2377     // the right place in the string, then assume we are installed in a JDK and
  2378     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2379     // up the path so it looks like libjvm.so is installed there (append a
  2380     // fake suffix hotspot/libjvm.so).
  2381     const char *p = buf + strlen(buf) - 1;
  2382     for (int count = 0; p > buf && count < 5; ++count) {
  2383       for (--p; p > buf && *p != '/'; --p)
  2384         /* empty */ ;
  2387     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2388       // Look for JAVA_HOME in the environment.
  2389       char* java_home_var = ::getenv("JAVA_HOME");
  2390       if (java_home_var != NULL && java_home_var[0] != 0) {
  2391         char* jrelib_p;
  2392         int len;
  2394         // Check the current module name "libjvm.so".
  2395         p = strrchr(buf, '/');
  2396         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2398         rp = realpath(java_home_var, buf);
  2399         if (rp == NULL)
  2400           return;
  2402         // determine if this is a legacy image or modules image
  2403         // modules image doesn't have "jre" subdirectory
  2404         len = strlen(buf);
  2405         jrelib_p = buf + len;
  2406         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2407         if (0 != access(buf, F_OK)) {
  2408           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2411         if (0 == access(buf, F_OK)) {
  2412           // Use current module name "libjvm.so"
  2413           len = strlen(buf);
  2414           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
  2415         } else {
  2416           // Go back to path of .so
  2417           rp = realpath(dli_fname, buf);
  2418           if (rp == NULL)
  2419             return;
  2425   strcpy(saved_jvm_path, buf);
  2428 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2429   // no prefix required, not even "_"
  2432 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2433   // no suffix required
  2436 ////////////////////////////////////////////////////////////////////////////////
  2437 // sun.misc.Signal support
  2439 static volatile jint sigint_count = 0;
  2441 static void
  2442 UserHandler(int sig, void *siginfo, void *context) {
  2443   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2444   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2445   // don't want to flood the manager thread with sem_post requests.
  2446   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2447       return;
  2449   // Ctrl-C is pressed during error reporting, likely because the error
  2450   // handler fails to abort. Let VM die immediately.
  2451   if (sig == SIGINT && is_error_reported()) {
  2452      os::die();
  2455   os::signal_notify(sig);
  2458 void* os::user_handler() {
  2459   return CAST_FROM_FN_PTR(void*, UserHandler);
  2462 class Semaphore : public StackObj {
  2463   public:
  2464     Semaphore();
  2465     ~Semaphore();
  2466     void signal();
  2467     void wait();
  2468     bool trywait();
  2469     bool timedwait(unsigned int sec, int nsec);
  2470   private:
  2471     sem_t _semaphore;
  2472 };
  2475 Semaphore::Semaphore() {
  2476   sem_init(&_semaphore, 0, 0);
  2479 Semaphore::~Semaphore() {
  2480   sem_destroy(&_semaphore);
  2483 void Semaphore::signal() {
  2484   sem_post(&_semaphore);
  2487 void Semaphore::wait() {
  2488   sem_wait(&_semaphore);
  2491 bool Semaphore::trywait() {
  2492   return sem_trywait(&_semaphore) == 0;
  2495 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  2496   struct timespec ts;
  2497   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
  2499   while (1) {
  2500     int result = sem_timedwait(&_semaphore, &ts);
  2501     if (result == 0) {
  2502       return true;
  2503     } else if (errno == EINTR) {
  2504       continue;
  2505     } else if (errno == ETIMEDOUT) {
  2506       return false;
  2507     } else {
  2508       return false;
  2513 extern "C" {
  2514   typedef void (*sa_handler_t)(int);
  2515   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2518 void* os::signal(int signal_number, void* handler) {
  2519   struct sigaction sigAct, oldSigAct;
  2521   sigfillset(&(sigAct.sa_mask));
  2522   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2523   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2525   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2526     // -1 means registration failed
  2527     return (void *)-1;
  2530   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2533 void os::signal_raise(int signal_number) {
  2534   ::raise(signal_number);
  2537 /*
  2538  * The following code is moved from os.cpp for making this
  2539  * code platform specific, which it is by its very nature.
  2540  */
  2542 // Will be modified when max signal is changed to be dynamic
  2543 int os::sigexitnum_pd() {
  2544   return NSIG;
  2547 // a counter for each possible signal value
  2548 static volatile jint pending_signals[NSIG+1] = { 0 };
  2550 // Linux(POSIX) specific hand shaking semaphore.
  2551 static sem_t sig_sem;
  2552 static Semaphore sr_semaphore;
  2554 void os::signal_init_pd() {
  2555   // Initialize signal structures
  2556   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2558   // Initialize signal semaphore
  2559   ::sem_init(&sig_sem, 0, 0);
  2562 void os::signal_notify(int sig) {
  2563   Atomic::inc(&pending_signals[sig]);
  2564   ::sem_post(&sig_sem);
  2567 static int check_pending_signals(bool wait) {
  2568   Atomic::store(0, &sigint_count);
  2569   for (;;) {
  2570     for (int i = 0; i < NSIG + 1; i++) {
  2571       jint n = pending_signals[i];
  2572       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2573         return i;
  2576     if (!wait) {
  2577       return -1;
  2579     JavaThread *thread = JavaThread::current();
  2580     ThreadBlockInVM tbivm(thread);
  2582     bool threadIsSuspended;
  2583     do {
  2584       thread->set_suspend_equivalent();
  2585       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2586       ::sem_wait(&sig_sem);
  2588       // were we externally suspended while we were waiting?
  2589       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2590       if (threadIsSuspended) {
  2591         //
  2592         // The semaphore has been incremented, but while we were waiting
  2593         // another thread suspended us. We don't want to continue running
  2594         // while suspended because that would surprise the thread that
  2595         // suspended us.
  2596         //
  2597         ::sem_post(&sig_sem);
  2599         thread->java_suspend_self();
  2601     } while (threadIsSuspended);
  2605 int os::signal_lookup() {
  2606   return check_pending_signals(false);
  2609 int os::signal_wait() {
  2610   return check_pending_signals(true);
  2613 ////////////////////////////////////////////////////////////////////////////////
  2614 // Virtual Memory
  2616 int os::vm_page_size() {
  2617   // Seems redundant as all get out
  2618   assert(os::Linux::page_size() != -1, "must call os::init");
  2619   return os::Linux::page_size();
  2622 // Solaris allocates memory by pages.
  2623 int os::vm_allocation_granularity() {
  2624   assert(os::Linux::page_size() != -1, "must call os::init");
  2625   return os::Linux::page_size();
  2628 // Rationale behind this function:
  2629 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2630 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2631 //  samples for JITted code. Here we create private executable mapping over the code cache
  2632 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2633 //  info for the reporting script by storing timestamp and location of symbol
  2634 void linux_wrap_code(char* base, size_t size) {
  2635   static volatile jint cnt = 0;
  2637   if (!UseOprofile) {
  2638     return;
  2641   char buf[PATH_MAX+1];
  2642   int num = Atomic::add(1, &cnt);
  2644   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2645            os::get_temp_directory(), os::current_process_id(), num);
  2646   unlink(buf);
  2648   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2650   if (fd != -1) {
  2651     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2652     if (rv != (off_t)-1) {
  2653       if (::write(fd, "", 1) == 1) {
  2654         mmap(base, size,
  2655              PROT_READ|PROT_WRITE|PROT_EXEC,
  2656              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2659     ::close(fd);
  2660     unlink(buf);
  2664 static bool recoverable_mmap_error(int err) {
  2665   // See if the error is one we can let the caller handle. This
  2666   // list of errno values comes from JBS-6843484. I can't find a
  2667   // Linux man page that documents this specific set of errno
  2668   // values so while this list currently matches Solaris, it may
  2669   // change as we gain experience with this failure mode.
  2670   switch (err) {
  2671   case EBADF:
  2672   case EINVAL:
  2673   case ENOTSUP:
  2674     // let the caller deal with these errors
  2675     return true;
  2677   default:
  2678     // Any remaining errors on this OS can cause our reserved mapping
  2679     // to be lost. That can cause confusion where different data
  2680     // structures think they have the same memory mapped. The worst
  2681     // scenario is if both the VM and a library think they have the
  2682     // same memory mapped.
  2683     return false;
  2687 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
  2688                                     int err) {
  2689   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2690           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
  2691           strerror(err), err);
  2694 static void warn_fail_commit_memory(char* addr, size_t size,
  2695                                     size_t alignment_hint, bool exec,
  2696                                     int err) {
  2697   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2698           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
  2699           alignment_hint, exec, strerror(err), err);
  2702 // NOTE: Linux kernel does not really reserve the pages for us.
  2703 //       All it does is to check if there are enough free pages
  2704 //       left at the time of mmap(). This could be a potential
  2705 //       problem.
  2706 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
  2707   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2708   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2709                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2710   if (res != (uintptr_t) MAP_FAILED) {
  2711     if (UseNUMAInterleaving) {
  2712       numa_make_global(addr, size);
  2714     return 0;
  2717   int err = errno;  // save errno from mmap() call above
  2719   if (!recoverable_mmap_error(err)) {
  2720     warn_fail_commit_memory(addr, size, exec, err);
  2721     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
  2724   return err;
  2727 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2728   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
  2731 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  2732                                   const char* mesg) {
  2733   assert(mesg != NULL, "mesg must be specified");
  2734   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2735   if (err != 0) {
  2736     // the caller wants all commit errors to exit with the specified mesg:
  2737     warn_fail_commit_memory(addr, size, exec, err);
  2738     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2742 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2743 #ifndef MAP_HUGETLB
  2744 #define MAP_HUGETLB 0x40000
  2745 #endif
  2747 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2748 #ifndef MADV_HUGEPAGE
  2749 #define MADV_HUGEPAGE 14
  2750 #endif
  2752 int os::Linux::commit_memory_impl(char* addr, size_t size,
  2753                                   size_t alignment_hint, bool exec) {
  2754   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2755   if (err == 0) {
  2756     realign_memory(addr, size, alignment_hint);
  2758   return err;
  2761 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2762                           bool exec) {
  2763   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
  2766 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  2767                                   size_t alignment_hint, bool exec,
  2768                                   const char* mesg) {
  2769   assert(mesg != NULL, "mesg must be specified");
  2770   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
  2771   if (err != 0) {
  2772     // the caller wants all commit errors to exit with the specified mesg:
  2773     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
  2774     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2778 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2779   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
  2780     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2781     // be supported or the memory may already be backed by huge pages.
  2782     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2786 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2787   // This method works by doing an mmap over an existing mmaping and effectively discarding
  2788   // the existing pages. However it won't work for SHM-based large pages that cannot be
  2789   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
  2790   // small pages on top of the SHM segment. This method always works for small pages, so we
  2791   // allow that in any case.
  2792   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
  2793     commit_memory(addr, bytes, alignment_hint, !ExecMem);
  2797 void os::numa_make_global(char *addr, size_t bytes) {
  2798   Linux::numa_interleave_memory(addr, bytes);
  2801 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
  2802 // bind policy to MPOL_PREFERRED for the current thread.
  2803 #define USE_MPOL_PREFERRED 0
  2805 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2806   // To make NUMA and large pages more robust when both enabled, we need to ease
  2807   // the requirements on where the memory should be allocated. MPOL_BIND is the
  2808   // default policy and it will force memory to be allocated on the specified
  2809   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
  2810   // the specified node, but will not force it. Using this policy will prevent
  2811   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
  2812   // free large pages.
  2813   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
  2814   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2817 bool os::numa_topology_changed()   { return false; }
  2819 size_t os::numa_get_groups_num() {
  2820   int max_node = Linux::numa_max_node();
  2821   return max_node > 0 ? max_node + 1 : 1;
  2824 int os::numa_get_group_id() {
  2825   int cpu_id = Linux::sched_getcpu();
  2826   if (cpu_id != -1) {
  2827     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2828     if (lgrp_id != -1) {
  2829       return lgrp_id;
  2832   return 0;
  2835 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2836   for (size_t i = 0; i < size; i++) {
  2837     ids[i] = i;
  2839   return size;
  2842 bool os::get_page_info(char *start, page_info* info) {
  2843   return false;
  2846 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2847   return end;
  2851 int os::Linux::sched_getcpu_syscall(void) {
  2852   unsigned int cpu;
  2853   int retval = -1;
  2855 #if defined(IA32)
  2856 # ifndef SYS_getcpu
  2857 # define SYS_getcpu 318
  2858 # endif
  2859   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
  2860 #elif defined(AMD64)
  2861 // Unfortunately we have to bring all these macros here from vsyscall.h
  2862 // to be able to compile on old linuxes.
  2863 # define __NR_vgetcpu 2
  2864 # define VSYSCALL_START (-10UL << 20)
  2865 # define VSYSCALL_SIZE 1024
  2866 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  2867   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  2868   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  2869   retval = vgetcpu(&cpu, NULL, NULL);
  2870 #endif
  2872   return (retval == -1) ? retval : cpu;
  2875 // Something to do with the numa-aware allocator needs these symbols
  2876 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2877 extern "C" JNIEXPORT void numa_error(char *where) { }
  2878 extern "C" JNIEXPORT int fork1() { return fork(); }
  2881 // If we are running with libnuma version > 2, then we should
  2882 // be trying to use symbols with versions 1.1
  2883 // If we are running with earlier version, which did not have symbol versions,
  2884 // we should use the base version.
  2885 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2886   void *f = dlvsym(handle, name, "libnuma_1.1");
  2887   if (f == NULL) {
  2888     f = dlsym(handle, name);
  2890   return f;
  2893 bool os::Linux::libnuma_init() {
  2894   // sched_getcpu() should be in libc.
  2895   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2896                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2898   // If it's not, try a direct syscall.
  2899   if (sched_getcpu() == -1)
  2900     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
  2902   if (sched_getcpu() != -1) { // Does it work?
  2903     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2904     if (handle != NULL) {
  2905       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2906                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2907       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2908                                        libnuma_dlsym(handle, "numa_max_node")));
  2909       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2910                                         libnuma_dlsym(handle, "numa_available")));
  2911       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2912                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2913       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2914                                             libnuma_dlsym(handle, "numa_interleave_memory")));
  2915       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
  2916                                             libnuma_dlsym(handle, "numa_set_bind_policy")));
  2919       if (numa_available() != -1) {
  2920         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2921         // Create a cpu -> node mapping
  2922         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  2923         rebuild_cpu_to_node_map();
  2924         return true;
  2928   return false;
  2931 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2932 // The table is later used in get_node_by_cpu().
  2933 void os::Linux::rebuild_cpu_to_node_map() {
  2934   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2935                               // in libnuma (possible values are starting from 16,
  2936                               // and continuing up with every other power of 2, but less
  2937                               // than the maximum number of CPUs supported by kernel), and
  2938                               // is a subject to change (in libnuma version 2 the requirements
  2939                               // are more reasonable) we'll just hardcode the number they use
  2940                               // in the library.
  2941   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2943   size_t cpu_num = os::active_processor_count();
  2944   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2945   size_t cpu_map_valid_size =
  2946     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2948   cpu_to_node()->clear();
  2949   cpu_to_node()->at_grow(cpu_num - 1);
  2950   size_t node_num = numa_get_groups_num();
  2952   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
  2953   for (size_t i = 0; i < node_num; i++) {
  2954     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2955       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2956         if (cpu_map[j] != 0) {
  2957           for (size_t k = 0; k < BitsPerCLong; k++) {
  2958             if (cpu_map[j] & (1UL << k)) {
  2959               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
  2966   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
  2969 int os::Linux::get_node_by_cpu(int cpu_id) {
  2970   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2971     return cpu_to_node()->at(cpu_id);
  2973   return -1;
  2976 GrowableArray<int>* os::Linux::_cpu_to_node;
  2977 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2978 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2979 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2980 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2981 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2982 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2983 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
  2984 unsigned long* os::Linux::_numa_all_nodes;
  2986 bool os::pd_uncommit_memory(char* addr, size_t size) {
  2987   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2988                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  2989   return res  != (uintptr_t) MAP_FAILED;
  2992 static
  2993 address get_stack_commited_bottom(address bottom, size_t size) {
  2994   address nbot = bottom;
  2995   address ntop = bottom + size;
  2997   size_t page_sz = os::vm_page_size();
  2998   unsigned pages = size / page_sz;
  3000   unsigned char vec[1];
  3001   unsigned imin = 1, imax = pages + 1, imid;
  3002   int mincore_return_value;
  3004   while (imin < imax) {
  3005     imid = (imax + imin) / 2;
  3006     nbot = ntop - (imid * page_sz);
  3008     // Use a trick with mincore to check whether the page is mapped or not.
  3009     // mincore sets vec to 1 if page resides in memory and to 0 if page
  3010     // is swapped output but if page we are asking for is unmapped
  3011     // it returns -1,ENOMEM
  3012     mincore_return_value = mincore(nbot, page_sz, vec);
  3014     if (mincore_return_value == -1) {
  3015       // Page is not mapped go up
  3016       // to find first mapped page
  3017       if (errno != EAGAIN) {
  3018         assert(errno == ENOMEM, "Unexpected mincore errno");
  3019         imax = imid;
  3021     } else {
  3022       // Page is mapped go down
  3023       // to find first not mapped page
  3024       imin = imid + 1;
  3028   nbot = nbot + page_sz;
  3030   // Adjust stack bottom one page up if last checked page is not mapped
  3031   if (mincore_return_value == -1) {
  3032     nbot = nbot + page_sz;
  3035   return nbot;
  3039 // Linux uses a growable mapping for the stack, and if the mapping for
  3040 // the stack guard pages is not removed when we detach a thread the
  3041 // stack cannot grow beyond the pages where the stack guard was
  3042 // mapped.  If at some point later in the process the stack expands to
  3043 // that point, the Linux kernel cannot expand the stack any further
  3044 // because the guard pages are in the way, and a segfault occurs.
  3045 //
  3046 // However, it's essential not to split the stack region by unmapping
  3047 // a region (leaving a hole) that's already part of the stack mapping,
  3048 // so if the stack mapping has already grown beyond the guard pages at
  3049 // the time we create them, we have to truncate the stack mapping.
  3050 // So, we need to know the extent of the stack mapping when
  3051 // create_stack_guard_pages() is called.
  3053 // We only need this for stacks that are growable: at the time of
  3054 // writing thread stacks don't use growable mappings (i.e. those
  3055 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  3056 // only applies to the main thread.
  3058 // If the (growable) stack mapping already extends beyond the point
  3059 // where we're going to put our guard pages, truncate the mapping at
  3060 // that point by munmap()ping it.  This ensures that when we later
  3061 // munmap() the guard pages we don't leave a hole in the stack
  3062 // mapping. This only affects the main/initial thread
  3064 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  3066   if (os::Linux::is_initial_thread()) {
  3067     // As we manually grow stack up to bottom inside create_attached_thread(),
  3068     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
  3069     // we don't need to do anything special.
  3070     // Check it first, before calling heavy function.
  3071     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
  3072     unsigned char vec[1];
  3074     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
  3075       // Fallback to slow path on all errors, including EAGAIN
  3076       stack_extent = (uintptr_t) get_stack_commited_bottom(
  3077                                     os::Linux::initial_thread_stack_bottom(),
  3078                                     (size_t)addr - stack_extent);
  3081     if (stack_extent < (uintptr_t)addr) {
  3082       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
  3086   return os::commit_memory(addr, size, !ExecMem);
  3089 // If this is a growable mapping, remove the guard pages entirely by
  3090 // munmap()ping them.  If not, just call uncommit_memory(). This only
  3091 // affects the main/initial thread, but guard against future OS changes
  3092 // It's safe to always unmap guard pages for initial thread because we
  3093 // always place it right after end of the mapped region
  3095 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3096   uintptr_t stack_extent, stack_base;
  3098   if (os::Linux::is_initial_thread()) {
  3099     return ::munmap(addr, size) == 0;
  3102   return os::uncommit_memory(addr, size);
  3105 static address _highest_vm_reserved_address = NULL;
  3107 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  3108 // at 'requested_addr'. If there are existing memory mappings at the same
  3109 // location, however, they will be overwritten. If 'fixed' is false,
  3110 // 'requested_addr' is only treated as a hint, the return value may or
  3111 // may not start from the requested address. Unlike Linux mmap(), this
  3112 // function returns NULL to indicate failure.
  3113 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  3114   char * addr;
  3115   int flags;
  3117   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  3118   if (fixed) {
  3119     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  3120     flags |= MAP_FIXED;
  3123   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
  3124   // touch an uncommitted page. Otherwise, the read/write might
  3125   // succeed if we have enough swap space to back the physical page.
  3126   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
  3127                        flags, -1, 0);
  3129   if (addr != MAP_FAILED) {
  3130     // anon_mmap() should only get called during VM initialization,
  3131     // don't need lock (actually we can skip locking even it can be called
  3132     // from multiple threads, because _highest_vm_reserved_address is just a
  3133     // hint about the upper limit of non-stack memory regions.)
  3134     if ((address)addr + bytes > _highest_vm_reserved_address) {
  3135       _highest_vm_reserved_address = (address)addr + bytes;
  3139   return addr == MAP_FAILED ? NULL : addr;
  3142 // Don't update _highest_vm_reserved_address, because there might be memory
  3143 // regions above addr + size. If so, releasing a memory region only creates
  3144 // a hole in the address space, it doesn't help prevent heap-stack collision.
  3145 //
  3146 static int anon_munmap(char * addr, size_t size) {
  3147   return ::munmap(addr, size) == 0;
  3150 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  3151                          size_t alignment_hint) {
  3152   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  3155 bool os::pd_release_memory(char* addr, size_t size) {
  3156   return anon_munmap(addr, size);
  3159 static address highest_vm_reserved_address() {
  3160   return _highest_vm_reserved_address;
  3163 static bool linux_mprotect(char* addr, size_t size, int prot) {
  3164   // Linux wants the mprotect address argument to be page aligned.
  3165   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  3167   // According to SUSv3, mprotect() should only be used with mappings
  3168   // established by mmap(), and mmap() always maps whole pages. Unaligned
  3169   // 'addr' likely indicates problem in the VM (e.g. trying to change
  3170   // protection of malloc'ed or statically allocated memory). Check the
  3171   // caller if you hit this assert.
  3172   assert(addr == bottom, "sanity check");
  3174   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  3175   return ::mprotect(bottom, size, prot) == 0;
  3178 // Set protections specified
  3179 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3180                         bool is_committed) {
  3181   unsigned int p = 0;
  3182   switch (prot) {
  3183   case MEM_PROT_NONE: p = PROT_NONE; break;
  3184   case MEM_PROT_READ: p = PROT_READ; break;
  3185   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3186   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3187   default:
  3188     ShouldNotReachHere();
  3190   // is_committed is unused.
  3191   return linux_mprotect(addr, bytes, p);
  3194 bool os::guard_memory(char* addr, size_t size) {
  3195   return linux_mprotect(addr, size, PROT_NONE);
  3198 bool os::unguard_memory(char* addr, size_t size) {
  3199   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  3202 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
  3203   bool result = false;
  3204   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
  3205                  MAP_ANONYMOUS|MAP_PRIVATE,
  3206                  -1, 0);
  3207   if (p != MAP_FAILED) {
  3208     void *aligned_p = align_ptr_up(p, page_size);
  3210     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
  3212     munmap(p, page_size * 2);
  3215   if (warn && !result) {
  3216     warning("TransparentHugePages is not supported by the operating system.");
  3219   return result;
  3222 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  3223   bool result = false;
  3224   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
  3225                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  3226                  -1, 0);
  3228   if (p != MAP_FAILED) {
  3229     // We don't know if this really is a huge page or not.
  3230     FILE *fp = fopen("/proc/self/maps", "r");
  3231     if (fp) {
  3232       while (!feof(fp)) {
  3233         char chars[257];
  3234         long x = 0;
  3235         if (fgets(chars, sizeof(chars), fp)) {
  3236           if (sscanf(chars, "%lx-%*x", &x) == 1
  3237               && x == (long)p) {
  3238             if (strstr (chars, "hugepage")) {
  3239               result = true;
  3240               break;
  3245       fclose(fp);
  3247     munmap(p, page_size);
  3250   if (warn && !result) {
  3251     warning("HugeTLBFS is not supported by the operating system.");
  3254   return result;
  3257 /*
  3258 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  3260 * From the coredump_filter documentation:
  3262 * - (bit 0) anonymous private memory
  3263 * - (bit 1) anonymous shared memory
  3264 * - (bit 2) file-backed private memory
  3265 * - (bit 3) file-backed shared memory
  3266 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  3267 *           effective only if the bit 2 is cleared)
  3268 * - (bit 5) hugetlb private memory
  3269 * - (bit 6) hugetlb shared memory
  3270 */
  3271 static void set_coredump_filter(void) {
  3272   FILE *f;
  3273   long cdm;
  3275   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  3276     return;
  3279   if (fscanf(f, "%lx", &cdm) != 1) {
  3280     fclose(f);
  3281     return;
  3284   rewind(f);
  3286   if ((cdm & LARGEPAGES_BIT) == 0) {
  3287     cdm |= LARGEPAGES_BIT;
  3288     fprintf(f, "%#lx", cdm);
  3291   fclose(f);
  3294 // Large page support
  3296 static size_t _large_page_size = 0;
  3298 size_t os::Linux::find_large_page_size() {
  3299   size_t large_page_size = 0;
  3301   // large_page_size on Linux is used to round up heap size. x86 uses either
  3302   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  3303   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  3304   // page as large as 256M.
  3305   //
  3306   // Here we try to figure out page size by parsing /proc/meminfo and looking
  3307   // for a line with the following format:
  3308   //    Hugepagesize:     2048 kB
  3309   //
  3310   // If we can't determine the value (e.g. /proc is not mounted, or the text
  3311   // format has been changed), we'll use the largest page size supported by
  3312   // the processor.
  3314 #ifndef ZERO
  3315   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  3316                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  3317 #endif // ZERO
  3319   FILE *fp = fopen("/proc/meminfo", "r");
  3320   if (fp) {
  3321     while (!feof(fp)) {
  3322       int x = 0;
  3323       char buf[16];
  3324       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3325         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3326           large_page_size = x * K;
  3327           break;
  3329       } else {
  3330         // skip to next line
  3331         for (;;) {
  3332           int ch = fgetc(fp);
  3333           if (ch == EOF || ch == (int)'\n') break;
  3337     fclose(fp);
  3340   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
  3341     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
  3342         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
  3343         proper_unit_for_byte_size(large_page_size));
  3346   return large_page_size;
  3349 size_t os::Linux::setup_large_page_size() {
  3350   _large_page_size = Linux::find_large_page_size();
  3351   const size_t default_page_size = (size_t)Linux::page_size();
  3352   if (_large_page_size > default_page_size) {
  3353     _page_sizes[0] = _large_page_size;
  3354     _page_sizes[1] = default_page_size;
  3355     _page_sizes[2] = 0;
  3358   return _large_page_size;
  3361 bool os::Linux::setup_large_page_type(size_t page_size) {
  3362   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
  3363       FLAG_IS_DEFAULT(UseSHM) &&
  3364       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
  3366     // The type of large pages has not been specified by the user.
  3368     // Try UseHugeTLBFS and then UseSHM.
  3369     UseHugeTLBFS = UseSHM = true;
  3371     // Don't try UseTransparentHugePages since there are known
  3372     // performance issues with it turned on. This might change in the future.
  3373     UseTransparentHugePages = false;
  3376   if (UseTransparentHugePages) {
  3377     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
  3378     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
  3379       UseHugeTLBFS = false;
  3380       UseSHM = false;
  3381       return true;
  3383     UseTransparentHugePages = false;
  3386   if (UseHugeTLBFS) {
  3387     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3388     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
  3389       UseSHM = false;
  3390       return true;
  3392     UseHugeTLBFS = false;
  3395   return UseSHM;
  3398 void os::large_page_init() {
  3399   if (!UseLargePages &&
  3400       !UseTransparentHugePages &&
  3401       !UseHugeTLBFS &&
  3402       !UseSHM) {
  3403     // Not using large pages.
  3404     return;
  3407   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
  3408     // The user explicitly turned off large pages.
  3409     // Ignore the rest of the large pages flags.
  3410     UseTransparentHugePages = false;
  3411     UseHugeTLBFS = false;
  3412     UseSHM = false;
  3413     return;
  3416   size_t large_page_size = Linux::setup_large_page_size();
  3417   UseLargePages          = Linux::setup_large_page_type(large_page_size);
  3419   set_coredump_filter();
  3422 #ifndef SHM_HUGETLB
  3423 #define SHM_HUGETLB 04000
  3424 #endif
  3426 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3427   // "exec" is passed in but not used.  Creating the shared image for
  3428   // the code cache doesn't have an SHM_X executable permission to check.
  3429   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3430   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3432   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
  3433     return NULL; // Fallback to small pages.
  3436   key_t key = IPC_PRIVATE;
  3437   char *addr;
  3439   bool warn_on_failure = UseLargePages &&
  3440                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  3441                          !FLAG_IS_DEFAULT(UseSHM) ||
  3442                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  3443                         );
  3444   char msg[128];
  3446   // Create a large shared memory region to attach to based on size.
  3447   // Currently, size is the total size of the heap
  3448   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3449   if (shmid == -1) {
  3450      // Possible reasons for shmget failure:
  3451      // 1. shmmax is too small for Java heap.
  3452      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3453      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3454      // 2. not enough large page memory.
  3455      //    > check available large pages: cat /proc/meminfo
  3456      //    > increase amount of large pages:
  3457      //          echo new_value > /proc/sys/vm/nr_hugepages
  3458      //      Note 1: different Linux may use different name for this property,
  3459      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3460      //      Note 2: it's possible there's enough physical memory available but
  3461      //            they are so fragmented after a long run that they can't
  3462      //            coalesce into large pages. Try to reserve large pages when
  3463      //            the system is still "fresh".
  3464      if (warn_on_failure) {
  3465        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  3466        warning(msg);
  3468      return NULL;
  3471   // attach to the region
  3472   addr = (char*)shmat(shmid, req_addr, 0);
  3473   int err = errno;
  3475   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3476   // will be deleted when it's detached by shmdt() or when the process
  3477   // terminates. If shmat() is not successful this will remove the shared
  3478   // segment immediately.
  3479   shmctl(shmid, IPC_RMID, NULL);
  3481   if ((intptr_t)addr == -1) {
  3482      if (warn_on_failure) {
  3483        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  3484        warning(msg);
  3486      return NULL;
  3489   return addr;
  3492 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
  3493   assert(error == ENOMEM, "Only expect to fail if no memory is available");
  3495   bool warn_on_failure = UseLargePages &&
  3496       (!FLAG_IS_DEFAULT(UseLargePages) ||
  3497        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
  3498        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
  3500   if (warn_on_failure) {
  3501     char msg[128];
  3502     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
  3503         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
  3504     warning(msg);
  3508 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
  3509   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3510   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
  3511   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3513   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3514   char* addr = (char*)::mmap(req_addr, bytes, prot,
  3515                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
  3516                              -1, 0);
  3518   if (addr == MAP_FAILED) {
  3519     warn_on_large_pages_failure(req_addr, bytes, errno);
  3520     return NULL;
  3523   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
  3525   return addr;
  3528 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3529   size_t large_page_size = os::large_page_size();
  3531   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
  3533   // Allocate small pages.
  3535   char* start;
  3536   if (req_addr != NULL) {
  3537     assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3538     assert(is_size_aligned(bytes, alignment), "Must be");
  3539     start = os::reserve_memory(bytes, req_addr);
  3540     assert(start == NULL || start == req_addr, "Must be");
  3541   } else {
  3542     start = os::reserve_memory_aligned(bytes, alignment);
  3545   if (start == NULL) {
  3546     return NULL;
  3549   assert(is_ptr_aligned(start, alignment), "Must be");
  3551   // os::reserve_memory_special will record this memory area.
  3552   // Need to release it here to prevent overlapping reservations.
  3553   MemTracker::record_virtual_memory_release((address)start, bytes);
  3555   char* end = start + bytes;
  3557   // Find the regions of the allocated chunk that can be promoted to large pages.
  3558   char* lp_start = (char*)align_ptr_up(start, large_page_size);
  3559   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
  3561   size_t lp_bytes = lp_end - lp_start;
  3563   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
  3565   if (lp_bytes == 0) {
  3566     // The mapped region doesn't even span the start and the end of a large page.
  3567     // Fall back to allocate a non-special area.
  3568     ::munmap(start, end - start);
  3569     return NULL;
  3572   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3575   void* result;
  3577   if (start != lp_start) {
  3578     result = ::mmap(start, lp_start - start, prot,
  3579                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3580                     -1, 0);
  3581     if (result == MAP_FAILED) {
  3582       ::munmap(lp_start, end - lp_start);
  3583       return NULL;
  3587   result = ::mmap(lp_start, lp_bytes, prot,
  3588                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
  3589                   -1, 0);
  3590   if (result == MAP_FAILED) {
  3591     warn_on_large_pages_failure(req_addr, bytes, errno);
  3592     // If the mmap above fails, the large pages region will be unmapped and we
  3593     // have regions before and after with small pages. Release these regions.
  3594     //
  3595     // |  mapped  |  unmapped  |  mapped  |
  3596     // ^          ^            ^          ^
  3597     // start      lp_start     lp_end     end
  3598     //
  3599     ::munmap(start, lp_start - start);
  3600     ::munmap(lp_end, end - lp_end);
  3601     return NULL;
  3604   if (lp_end != end) {
  3605       result = ::mmap(lp_end, end - lp_end, prot,
  3606                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3607                       -1, 0);
  3608     if (result == MAP_FAILED) {
  3609       ::munmap(start, lp_end - start);
  3610       return NULL;
  3614   return start;
  3617 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3618   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3619   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3620   assert(is_power_of_2(alignment), "Must be");
  3621   assert(is_power_of_2(os::large_page_size()), "Must be");
  3622   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
  3624   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
  3625     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
  3626   } else {
  3627     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
  3631 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3632   assert(UseLargePages, "only for large pages");
  3634   char* addr;
  3635   if (UseSHM) {
  3636     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
  3637   } else {
  3638     assert(UseHugeTLBFS, "must be");
  3639     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
  3642   if (addr != NULL) {
  3643     if (UseNUMAInterleaving) {
  3644       numa_make_global(addr, bytes);
  3647     // The memory is committed
  3648     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
  3651   return addr;
  3654 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
  3655   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
  3656   return shmdt(base) == 0;
  3659 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
  3660   return pd_release_memory(base, bytes);
  3663 bool os::release_memory_special(char* base, size_t bytes) {
  3664   assert(UseLargePages, "only for large pages");
  3666   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  3668   bool res;
  3669   if (UseSHM) {
  3670     res = os::Linux::release_memory_special_shm(base, bytes);
  3671   } else {
  3672     assert(UseHugeTLBFS, "must be");
  3673     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
  3676   if (res) {
  3677     tkr.record((address)base, bytes);
  3678   } else {
  3679     tkr.discard();
  3682   return res;
  3685 size_t os::large_page_size() {
  3686   return _large_page_size;
  3689 // With SysV SHM the entire memory region must be allocated as shared
  3690 // memory.
  3691 // HugeTLBFS allows application to commit large page memory on demand.
  3692 // However, when committing memory with HugeTLBFS fails, the region
  3693 // that was supposed to be committed will lose the old reservation
  3694 // and allow other threads to steal that memory region. Because of this
  3695 // behavior we can't commit HugeTLBFS memory.
  3696 bool os::can_commit_large_page_memory() {
  3697   return UseTransparentHugePages;
  3700 bool os::can_execute_large_page_memory() {
  3701   return UseTransparentHugePages || UseHugeTLBFS;
  3704 // Reserve memory at an arbitrary address, only if that area is
  3705 // available (and not reserved for something else).
  3707 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3708   const int max_tries = 10;
  3709   char* base[max_tries];
  3710   size_t size[max_tries];
  3711   const size_t gap = 0x000000;
  3713   // Assert only that the size is a multiple of the page size, since
  3714   // that's all that mmap requires, and since that's all we really know
  3715   // about at this low abstraction level.  If we need higher alignment,
  3716   // we can either pass an alignment to this method or verify alignment
  3717   // in one of the methods further up the call chain.  See bug 5044738.
  3718   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3720   // Repeatedly allocate blocks until the block is allocated at the
  3721   // right spot. Give up after max_tries. Note that reserve_memory() will
  3722   // automatically update _highest_vm_reserved_address if the call is
  3723   // successful. The variable tracks the highest memory address every reserved
  3724   // by JVM. It is used to detect heap-stack collision if running with
  3725   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  3726   // space than needed, it could confuse the collision detecting code. To
  3727   // solve the problem, save current _highest_vm_reserved_address and
  3728   // calculate the correct value before return.
  3729   address old_highest = _highest_vm_reserved_address;
  3731   // Linux mmap allows caller to pass an address as hint; give it a try first,
  3732   // if kernel honors the hint then we can return immediately.
  3733   char * addr = anon_mmap(requested_addr, bytes, false);
  3734   if (addr == requested_addr) {
  3735      return requested_addr;
  3738   if (addr != NULL) {
  3739      // mmap() is successful but it fails to reserve at the requested address
  3740      anon_munmap(addr, bytes);
  3743   int i;
  3744   for (i = 0; i < max_tries; ++i) {
  3745     base[i] = reserve_memory(bytes);
  3747     if (base[i] != NULL) {
  3748       // Is this the block we wanted?
  3749       if (base[i] == requested_addr) {
  3750         size[i] = bytes;
  3751         break;
  3754       // Does this overlap the block we wanted? Give back the overlapped
  3755       // parts and try again.
  3757       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3758       if (top_overlap >= 0 && top_overlap < bytes) {
  3759         unmap_memory(base[i], top_overlap);
  3760         base[i] += top_overlap;
  3761         size[i] = bytes - top_overlap;
  3762       } else {
  3763         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3764         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3765           unmap_memory(requested_addr, bottom_overlap);
  3766           size[i] = bytes - bottom_overlap;
  3767         } else {
  3768           size[i] = bytes;
  3774   // Give back the unused reserved pieces.
  3776   for (int j = 0; j < i; ++j) {
  3777     if (base[j] != NULL) {
  3778       unmap_memory(base[j], size[j]);
  3782   if (i < max_tries) {
  3783     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  3784     return requested_addr;
  3785   } else {
  3786     _highest_vm_reserved_address = old_highest;
  3787     return NULL;
  3791 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3792   return ::read(fd, buf, nBytes);
  3795 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  3796 // Solaris uses poll(), linux uses park().
  3797 // Poll() is likely a better choice, assuming that Thread.interrupt()
  3798 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  3799 // SIGSEGV, see 4355769.
  3801 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3802   assert(thread == Thread::current(),  "thread consistency check");
  3804   ParkEvent * const slp = thread->_SleepEvent ;
  3805   slp->reset() ;
  3806   OrderAccess::fence() ;
  3808   if (interruptible) {
  3809     jlong prevtime = javaTimeNanos();
  3811     for (;;) {
  3812       if (os::is_interrupted(thread, true)) {
  3813         return OS_INTRPT;
  3816       jlong newtime = javaTimeNanos();
  3818       if (newtime - prevtime < 0) {
  3819         // time moving backwards, should only happen if no monotonic clock
  3820         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3821         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3822       } else {
  3823         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3826       if(millis <= 0) {
  3827         return OS_OK;
  3830       prevtime = newtime;
  3833         assert(thread->is_Java_thread(), "sanity check");
  3834         JavaThread *jt = (JavaThread *) thread;
  3835         ThreadBlockInVM tbivm(jt);
  3836         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3838         jt->set_suspend_equivalent();
  3839         // cleared by handle_special_suspend_equivalent_condition() or
  3840         // java_suspend_self() via check_and_wait_while_suspended()
  3842         slp->park(millis);
  3844         // were we externally suspended while we were waiting?
  3845         jt->check_and_wait_while_suspended();
  3848   } else {
  3849     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3850     jlong prevtime = javaTimeNanos();
  3852     for (;;) {
  3853       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  3854       // the 1st iteration ...
  3855       jlong newtime = javaTimeNanos();
  3857       if (newtime - prevtime < 0) {
  3858         // time moving backwards, should only happen if no monotonic clock
  3859         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3860         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3861       } else {
  3862         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3865       if(millis <= 0) break ;
  3867       prevtime = newtime;
  3868       slp->park(millis);
  3870     return OS_OK ;
  3874 int os::naked_sleep() {
  3875   // %% make the sleep time an integer flag. for now use 1 millisec.
  3876   return os::sleep(Thread::current(), 1, false);
  3879 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3880 void os::infinite_sleep() {
  3881   while (true) {    // sleep forever ...
  3882     ::sleep(100);   // ... 100 seconds at a time
  3886 // Used to convert frequent JVM_Yield() to nops
  3887 bool os::dont_yield() {
  3888   return DontYieldALot;
  3891 void os::yield() {
  3892   sched_yield();
  3895 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  3897 void os::yield_all(int attempts) {
  3898   // Yields to all threads, including threads with lower priorities
  3899   // Threads on Linux are all with same priority. The Solaris style
  3900   // os::yield_all() with nanosleep(1ms) is not necessary.
  3901   sched_yield();
  3904 // Called from the tight loops to possibly influence time-sharing heuristics
  3905 void os::loop_breaker(int attempts) {
  3906   os::yield_all(attempts);
  3909 ////////////////////////////////////////////////////////////////////////////////
  3910 // thread priority support
  3912 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  3913 // only supports dynamic priority, static priority must be zero. For real-time
  3914 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  3915 // However, for large multi-threaded applications, SCHED_RR is not only slower
  3916 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  3917 // of 5 runs - Sep 2005).
  3918 //
  3919 // The following code actually changes the niceness of kernel-thread/LWP. It
  3920 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  3921 // not the entire user process, and user level threads are 1:1 mapped to kernel
  3922 // threads. It has always been the case, but could change in the future. For
  3923 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  3924 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  3926 int os::java_to_os_priority[CriticalPriority + 1] = {
  3927   19,              // 0 Entry should never be used
  3929    4,              // 1 MinPriority
  3930    3,              // 2
  3931    2,              // 3
  3933    1,              // 4
  3934    0,              // 5 NormPriority
  3935   -1,              // 6
  3937   -2,              // 7
  3938   -3,              // 8
  3939   -4,              // 9 NearMaxPriority
  3941   -5,              // 10 MaxPriority
  3943   -5               // 11 CriticalPriority
  3944 };
  3946 static int prio_init() {
  3947   if (ThreadPriorityPolicy == 1) {
  3948     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  3949     // if effective uid is not root. Perhaps, a more elegant way of doing
  3950     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  3951     if (geteuid() != 0) {
  3952       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  3953         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  3955       ThreadPriorityPolicy = 0;
  3958   if (UseCriticalJavaThreadPriority) {
  3959     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  3961   return 0;
  3964 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  3965   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  3967   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  3968   return (ret == 0) ? OS_OK : OS_ERR;
  3971 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  3972   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  3973     *priority_ptr = java_to_os_priority[NormPriority];
  3974     return OS_OK;
  3977   errno = 0;
  3978   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  3979   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  3982 // Hint to the underlying OS that a task switch would not be good.
  3983 // Void return because it's a hint and can fail.
  3984 void os::hint_no_preempt() {}
  3986 ////////////////////////////////////////////////////////////////////////////////
  3987 // suspend/resume support
  3989 //  the low-level signal-based suspend/resume support is a remnant from the
  3990 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  3991 //  within hotspot. Now there is a single use-case for this:
  3992 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  3993 //      that runs in the watcher thread.
  3994 //  The remaining code is greatly simplified from the more general suspension
  3995 //  code that used to be used.
  3996 //
  3997 //  The protocol is quite simple:
  3998 //  - suspend:
  3999 //      - sends a signal to the target thread
  4000 //      - polls the suspend state of the osthread using a yield loop
  4001 //      - target thread signal handler (SR_handler) sets suspend state
  4002 //        and blocks in sigsuspend until continued
  4003 //  - resume:
  4004 //      - sets target osthread state to continue
  4005 //      - sends signal to end the sigsuspend loop in the SR_handler
  4006 //
  4007 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  4008 //
  4010 static void resume_clear_context(OSThread *osthread) {
  4011   osthread->set_ucontext(NULL);
  4012   osthread->set_siginfo(NULL);
  4015 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  4016   osthread->set_ucontext(context);
  4017   osthread->set_siginfo(siginfo);
  4020 //
  4021 // Handler function invoked when a thread's execution is suspended or
  4022 // resumed. We have to be careful that only async-safe functions are
  4023 // called here (Note: most pthread functions are not async safe and
  4024 // should be avoided.)
  4025 //
  4026 // Note: sigwait() is a more natural fit than sigsuspend() from an
  4027 // interface point of view, but sigwait() prevents the signal hander
  4028 // from being run. libpthread would get very confused by not having
  4029 // its signal handlers run and prevents sigwait()'s use with the
  4030 // mutex granting granting signal.
  4031 //
  4032 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
  4033 //
  4034 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  4035   // Save and restore errno to avoid confusing native code with EINTR
  4036   // after sigsuspend.
  4037   int old_errno = errno;
  4039   Thread* thread = Thread::current();
  4040   OSThread* osthread = thread->osthread();
  4041   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
  4043   os::SuspendResume::State current = osthread->sr.state();
  4044   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
  4045     suspend_save_context(osthread, siginfo, context);
  4047     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
  4048     os::SuspendResume::State state = osthread->sr.suspended();
  4049     if (state == os::SuspendResume::SR_SUSPENDED) {
  4050       sigset_t suspend_set;  // signals for sigsuspend()
  4052       // get current set of blocked signals and unblock resume signal
  4053       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  4054       sigdelset(&suspend_set, SR_signum);
  4056       sr_semaphore.signal();
  4057       // wait here until we are resumed
  4058       while (1) {
  4059         sigsuspend(&suspend_set);
  4061         os::SuspendResume::State result = osthread->sr.running();
  4062         if (result == os::SuspendResume::SR_RUNNING) {
  4063           sr_semaphore.signal();
  4064           break;
  4068     } else if (state == os::SuspendResume::SR_RUNNING) {
  4069       // request was cancelled, continue
  4070     } else {
  4071       ShouldNotReachHere();
  4074     resume_clear_context(osthread);
  4075   } else if (current == os::SuspendResume::SR_RUNNING) {
  4076     // request was cancelled, continue
  4077   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
  4078     // ignore
  4079   } else {
  4080     // ignore
  4083   errno = old_errno;
  4087 static int SR_initialize() {
  4088   struct sigaction act;
  4089   char *s;
  4090   /* Get signal number to use for suspend/resume */
  4091   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  4092     int sig = ::strtol(s, 0, 10);
  4093     if (sig > 0 || sig < _NSIG) {
  4094         SR_signum = sig;
  4098   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  4099         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  4101   sigemptyset(&SR_sigset);
  4102   sigaddset(&SR_sigset, SR_signum);
  4104   /* Set up signal handler for suspend/resume */
  4105   act.sa_flags = SA_RESTART|SA_SIGINFO;
  4106   act.sa_handler = (void (*)(int)) SR_handler;
  4108   // SR_signum is blocked by default.
  4109   // 4528190 - We also need to block pthread restart signal (32 on all
  4110   // supported Linux platforms). Note that LinuxThreads need to block
  4111   // this signal for all threads to work properly. So we don't have
  4112   // to use hard-coded signal number when setting up the mask.
  4113   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  4115   if (sigaction(SR_signum, &act, 0) == -1) {
  4116     return -1;
  4119   // Save signal flag
  4120   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  4121   return 0;
  4124 static int sr_notify(OSThread* osthread) {
  4125   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  4126   assert_status(status == 0, status, "pthread_kill");
  4127   return status;
  4130 // "Randomly" selected value for how long we want to spin
  4131 // before bailing out on suspending a thread, also how often
  4132 // we send a signal to a thread we want to resume
  4133 static const int RANDOMLY_LARGE_INTEGER = 1000000;
  4134 static const int RANDOMLY_LARGE_INTEGER2 = 100;
  4136 // returns true on success and false on error - really an error is fatal
  4137 // but this seems the normal response to library errors
  4138 static bool do_suspend(OSThread* osthread) {
  4139   assert(osthread->sr.is_running(), "thread should be running");
  4140   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
  4142   // mark as suspended and send signal
  4143   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
  4144     // failed to switch, state wasn't running?
  4145     ShouldNotReachHere();
  4146     return false;
  4149   if (sr_notify(osthread) != 0) {
  4150     ShouldNotReachHere();
  4153   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
  4154   while (true) {
  4155     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4156       break;
  4157     } else {
  4158       // timeout
  4159       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
  4160       if (cancelled == os::SuspendResume::SR_RUNNING) {
  4161         return false;
  4162       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
  4163         // make sure that we consume the signal on the semaphore as well
  4164         sr_semaphore.wait();
  4165         break;
  4166       } else {
  4167         ShouldNotReachHere();
  4168         return false;
  4173   guarantee(osthread->sr.is_suspended(), "Must be suspended");
  4174   return true;
  4177 static void do_resume(OSThread* osthread) {
  4178   assert(osthread->sr.is_suspended(), "thread should be suspended");
  4179   assert(!sr_semaphore.trywait(), "invalid semaphore state");
  4181   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
  4182     // failed to switch to WAKEUP_REQUEST
  4183     ShouldNotReachHere();
  4184     return;
  4187   while (true) {
  4188     if (sr_notify(osthread) == 0) {
  4189       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4190         if (osthread->sr.is_running()) {
  4191           return;
  4194     } else {
  4195       ShouldNotReachHere();
  4199   guarantee(osthread->sr.is_running(), "Must be running!");
  4202 ////////////////////////////////////////////////////////////////////////////////
  4203 // interrupt support
  4205 void os::interrupt(Thread* thread) {
  4206   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4207     "possibility of dangling Thread pointer");
  4209   OSThread* osthread = thread->osthread();
  4211   if (!osthread->interrupted()) {
  4212     osthread->set_interrupted(true);
  4213     // More than one thread can get here with the same value of osthread,
  4214     // resulting in multiple notifications.  We do, however, want the store
  4215     // to interrupted() to be visible to other threads before we execute unpark().
  4216     OrderAccess::fence();
  4217     ParkEvent * const slp = thread->_SleepEvent ;
  4218     if (slp != NULL) slp->unpark() ;
  4221   // For JSR166. Unpark even if interrupt status already was set
  4222   if (thread->is_Java_thread())
  4223     ((JavaThread*)thread)->parker()->unpark();
  4225   ParkEvent * ev = thread->_ParkEvent ;
  4226   if (ev != NULL) ev->unpark() ;
  4230 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4231   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4232     "possibility of dangling Thread pointer");
  4234   OSThread* osthread = thread->osthread();
  4236   bool interrupted = osthread->interrupted();
  4238   if (interrupted && clear_interrupted) {
  4239     osthread->set_interrupted(false);
  4240     // consider thread->_SleepEvent->reset() ... optional optimization
  4243   return interrupted;
  4246 ///////////////////////////////////////////////////////////////////////////////////
  4247 // signal handling (except suspend/resume)
  4249 // This routine may be used by user applications as a "hook" to catch signals.
  4250 // The user-defined signal handler must pass unrecognized signals to this
  4251 // routine, and if it returns true (non-zero), then the signal handler must
  4252 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4253 // routine will never retun false (zero), but instead will execute a VM panic
  4254 // routine kill the process.
  4255 //
  4256 // If this routine returns false, it is OK to call it again.  This allows
  4257 // the user-defined signal handler to perform checks either before or after
  4258 // the VM performs its own checks.  Naturally, the user code would be making
  4259 // a serious error if it tried to handle an exception (such as a null check
  4260 // or breakpoint) that the VM was generating for its own correct operation.
  4261 //
  4262 // This routine may recognize any of the following kinds of signals:
  4263 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  4264 // It should be consulted by handlers for any of those signals.
  4265 //
  4266 // The caller of this routine must pass in the three arguments supplied
  4267 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4268 // field of the structure passed to sigaction().  This routine assumes that
  4269 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4270 //
  4271 // Note that the VM will print warnings if it detects conflicting signal
  4272 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4273 //
  4274 extern "C" JNIEXPORT int
  4275 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  4276                         void* ucontext, int abort_if_unrecognized);
  4278 void signalHandler(int sig, siginfo_t* info, void* uc) {
  4279   assert(info != NULL && uc != NULL, "it must be old kernel");
  4280   int orig_errno = errno;  // Preserve errno value over signal handler.
  4281   JVM_handle_linux_signal(sig, info, uc, true);
  4282   errno = orig_errno;
  4286 // This boolean allows users to forward their own non-matching signals
  4287 // to JVM_handle_linux_signal, harmlessly.
  4288 bool os::Linux::signal_handlers_are_installed = false;
  4290 // For signal-chaining
  4291 struct sigaction os::Linux::sigact[MAXSIGNUM];
  4292 unsigned int os::Linux::sigs = 0;
  4293 bool os::Linux::libjsig_is_loaded = false;
  4294 typedef struct sigaction *(*get_signal_t)(int);
  4295 get_signal_t os::Linux::get_signal_action = NULL;
  4297 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  4298   struct sigaction *actp = NULL;
  4300   if (libjsig_is_loaded) {
  4301     // Retrieve the old signal handler from libjsig
  4302     actp = (*get_signal_action)(sig);
  4304   if (actp == NULL) {
  4305     // Retrieve the preinstalled signal handler from jvm
  4306     actp = get_preinstalled_handler(sig);
  4309   return actp;
  4312 static bool call_chained_handler(struct sigaction *actp, int sig,
  4313                                  siginfo_t *siginfo, void *context) {
  4314   // Call the old signal handler
  4315   if (actp->sa_handler == SIG_DFL) {
  4316     // It's more reasonable to let jvm treat it as an unexpected exception
  4317     // instead of taking the default action.
  4318     return false;
  4319   } else if (actp->sa_handler != SIG_IGN) {
  4320     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4321       // automaticlly block the signal
  4322       sigaddset(&(actp->sa_mask), sig);
  4325     sa_handler_t hand;
  4326     sa_sigaction_t sa;
  4327     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4328     // retrieve the chained handler
  4329     if (siginfo_flag_set) {
  4330       sa = actp->sa_sigaction;
  4331     } else {
  4332       hand = actp->sa_handler;
  4335     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4336       actp->sa_handler = SIG_DFL;
  4339     // try to honor the signal mask
  4340     sigset_t oset;
  4341     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4343     // call into the chained handler
  4344     if (siginfo_flag_set) {
  4345       (*sa)(sig, siginfo, context);
  4346     } else {
  4347       (*hand)(sig);
  4350     // restore the signal mask
  4351     pthread_sigmask(SIG_SETMASK, &oset, 0);
  4353   // Tell jvm's signal handler the signal is taken care of.
  4354   return true;
  4357 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4358   bool chained = false;
  4359   // signal-chaining
  4360   if (UseSignalChaining) {
  4361     struct sigaction *actp = get_chained_signal_action(sig);
  4362     if (actp != NULL) {
  4363       chained = call_chained_handler(actp, sig, siginfo, context);
  4366   return chained;
  4369 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  4370   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  4371     return &sigact[sig];
  4373   return NULL;
  4376 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4377   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4378   sigact[sig] = oldAct;
  4379   sigs |= (unsigned int)1 << sig;
  4382 // for diagnostic
  4383 int os::Linux::sigflags[MAXSIGNUM];
  4385 int os::Linux::get_our_sigflags(int sig) {
  4386   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4387   return sigflags[sig];
  4390 void os::Linux::set_our_sigflags(int sig, int flags) {
  4391   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4392   sigflags[sig] = flags;
  4395 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  4396   // Check for overwrite.
  4397   struct sigaction oldAct;
  4398   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4400   void* oldhand = oldAct.sa_sigaction
  4401                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4402                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4403   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4404       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4405       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  4406     if (AllowUserSignalHandlers || !set_installed) {
  4407       // Do not overwrite; user takes responsibility to forward to us.
  4408       return;
  4409     } else if (UseSignalChaining) {
  4410       // save the old handler in jvm
  4411       save_preinstalled_handler(sig, oldAct);
  4412       // libjsig also interposes the sigaction() call below and saves the
  4413       // old sigaction on it own.
  4414     } else {
  4415       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4416                     "%#lx for signal %d.", (long)oldhand, sig));
  4420   struct sigaction sigAct;
  4421   sigfillset(&(sigAct.sa_mask));
  4422   sigAct.sa_handler = SIG_DFL;
  4423   if (!set_installed) {
  4424     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4425   } else {
  4426     sigAct.sa_sigaction = signalHandler;
  4427     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4429   // Save flags, which are set by ours
  4430   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4431   sigflags[sig] = sigAct.sa_flags;
  4433   int ret = sigaction(sig, &sigAct, &oldAct);
  4434   assert(ret == 0, "check");
  4436   void* oldhand2  = oldAct.sa_sigaction
  4437                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4438                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4439   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4442 // install signal handlers for signals that HotSpot needs to
  4443 // handle in order to support Java-level exception handling.
  4445 void os::Linux::install_signal_handlers() {
  4446   if (!signal_handlers_are_installed) {
  4447     signal_handlers_are_installed = true;
  4449     // signal-chaining
  4450     typedef void (*signal_setting_t)();
  4451     signal_setting_t begin_signal_setting = NULL;
  4452     signal_setting_t end_signal_setting = NULL;
  4453     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4454                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4455     if (begin_signal_setting != NULL) {
  4456       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4457                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4458       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4459                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4460       libjsig_is_loaded = true;
  4461       assert(UseSignalChaining, "should enable signal-chaining");
  4463     if (libjsig_is_loaded) {
  4464       // Tell libjsig jvm is setting signal handlers
  4465       (*begin_signal_setting)();
  4468     set_signal_handler(SIGSEGV, true);
  4469     set_signal_handler(SIGPIPE, true);
  4470     set_signal_handler(SIGBUS, true);
  4471     set_signal_handler(SIGILL, true);
  4472     set_signal_handler(SIGFPE, true);
  4473     set_signal_handler(SIGXFSZ, true);
  4475     if (libjsig_is_loaded) {
  4476       // Tell libjsig jvm finishes setting signal handlers
  4477       (*end_signal_setting)();
  4480     // We don't activate signal checker if libjsig is in place, we trust ourselves
  4481     // and if UserSignalHandler is installed all bets are off.
  4482     // Log that signal checking is off only if -verbose:jni is specified.
  4483     if (CheckJNICalls) {
  4484       if (libjsig_is_loaded) {
  4485         if (PrintJNIResolving) {
  4486           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4488         check_signals = false;
  4490       if (AllowUserSignalHandlers) {
  4491         if (PrintJNIResolving) {
  4492           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4494         check_signals = false;
  4500 // This is the fastest way to get thread cpu time on Linux.
  4501 // Returns cpu time (user+sys) for any thread, not only for current.
  4502 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  4503 // It might work on 2.6.10+ with a special kernel/glibc patch.
  4504 // For reference, please, see IEEE Std 1003.1-2004:
  4505 //   http://www.unix.org/single_unix_specification
  4507 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  4508   struct timespec tp;
  4509   int rc = os::Linux::clock_gettime(clockid, &tp);
  4510   assert(rc == 0, "clock_gettime is expected to return 0 code");
  4512   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
  4515 /////
  4516 // glibc on Linux platform uses non-documented flag
  4517 // to indicate, that some special sort of signal
  4518 // trampoline is used.
  4519 // We will never set this flag, and we should
  4520 // ignore this flag in our diagnostic
  4521 #ifdef SIGNIFICANT_SIGNAL_MASK
  4522 #undef SIGNIFICANT_SIGNAL_MASK
  4523 #endif
  4524 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  4526 static const char* get_signal_handler_name(address handler,
  4527                                            char* buf, int buflen) {
  4528   int offset;
  4529   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  4530   if (found) {
  4531     // skip directory names
  4532     const char *p1, *p2;
  4533     p1 = buf;
  4534     size_t len = strlen(os::file_separator());
  4535     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  4536     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  4537   } else {
  4538     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  4540   return buf;
  4543 static void print_signal_handler(outputStream* st, int sig,
  4544                                  char* buf, size_t buflen) {
  4545   struct sigaction sa;
  4547   sigaction(sig, NULL, &sa);
  4549   // See comment for SIGNIFICANT_SIGNAL_MASK define
  4550   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4552   st->print("%s: ", os::exception_name(sig, buf, buflen));
  4554   address handler = (sa.sa_flags & SA_SIGINFO)
  4555     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  4556     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  4558   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  4559     st->print("SIG_DFL");
  4560   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  4561     st->print("SIG_IGN");
  4562   } else {
  4563     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  4566   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  4568   address rh = VMError::get_resetted_sighandler(sig);
  4569   // May be, handler was resetted by VMError?
  4570   if(rh != NULL) {
  4571     handler = rh;
  4572     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  4575   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  4577   // Check: is it our handler?
  4578   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  4579      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  4580     // It is our signal handler
  4581     // check for flags, reset system-used one!
  4582     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4583       st->print(
  4584                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  4585                 os::Linux::get_our_sigflags(sig));
  4588   st->cr();
  4592 #define DO_SIGNAL_CHECK(sig) \
  4593   if (!sigismember(&check_signal_done, sig)) \
  4594     os::Linux::check_signal_handler(sig)
  4596 // This method is a periodic task to check for misbehaving JNI applications
  4597 // under CheckJNI, we can add any periodic checks here
  4599 void os::run_periodic_checks() {
  4601   if (check_signals == false) return;
  4603   // SEGV and BUS if overridden could potentially prevent
  4604   // generation of hs*.log in the event of a crash, debugging
  4605   // such a case can be very challenging, so we absolutely
  4606   // check the following for a good measure:
  4607   DO_SIGNAL_CHECK(SIGSEGV);
  4608   DO_SIGNAL_CHECK(SIGILL);
  4609   DO_SIGNAL_CHECK(SIGFPE);
  4610   DO_SIGNAL_CHECK(SIGBUS);
  4611   DO_SIGNAL_CHECK(SIGPIPE);
  4612   DO_SIGNAL_CHECK(SIGXFSZ);
  4615   // ReduceSignalUsage allows the user to override these handlers
  4616   // see comments at the very top and jvm_solaris.h
  4617   if (!ReduceSignalUsage) {
  4618     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4619     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4620     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4621     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4624   DO_SIGNAL_CHECK(SR_signum);
  4625   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4628 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4630 static os_sigaction_t os_sigaction = NULL;
  4632 void os::Linux::check_signal_handler(int sig) {
  4633   char buf[O_BUFLEN];
  4634   address jvmHandler = NULL;
  4637   struct sigaction act;
  4638   if (os_sigaction == NULL) {
  4639     // only trust the default sigaction, in case it has been interposed
  4640     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4641     if (os_sigaction == NULL) return;
  4644   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4647   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4649   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4650     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4651     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4654   switch(sig) {
  4655   case SIGSEGV:
  4656   case SIGBUS:
  4657   case SIGFPE:
  4658   case SIGPIPE:
  4659   case SIGILL:
  4660   case SIGXFSZ:
  4661     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4662     break;
  4664   case SHUTDOWN1_SIGNAL:
  4665   case SHUTDOWN2_SIGNAL:
  4666   case SHUTDOWN3_SIGNAL:
  4667   case BREAK_SIGNAL:
  4668     jvmHandler = (address)user_handler();
  4669     break;
  4671   case INTERRUPT_SIGNAL:
  4672     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4673     break;
  4675   default:
  4676     if (sig == SR_signum) {
  4677       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4678     } else {
  4679       return;
  4681     break;
  4684   if (thisHandler != jvmHandler) {
  4685     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4686     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4687     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4688     // No need to check this sig any longer
  4689     sigaddset(&check_signal_done, sig);
  4690   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4691     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4692     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  4693     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4694     // No need to check this sig any longer
  4695     sigaddset(&check_signal_done, sig);
  4698   // Dump all the signal
  4699   if (sigismember(&check_signal_done, sig)) {
  4700     print_signal_handlers(tty, buf, O_BUFLEN);
  4704 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4706 extern bool signal_name(int signo, char* buf, size_t len);
  4708 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4709   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4710     // signal
  4711     if (!signal_name(exception_code, buf, size)) {
  4712       jio_snprintf(buf, size, "SIG%d", exception_code);
  4714     return buf;
  4715   } else {
  4716     return NULL;
  4720 // this is called _before_ the most of global arguments have been parsed
  4721 void os::init(void) {
  4722   char dummy;   /* used to get a guess on initial stack address */
  4723 //  first_hrtime = gethrtime();
  4725   // With LinuxThreads the JavaMain thread pid (primordial thread)
  4726   // is different than the pid of the java launcher thread.
  4727   // So, on Linux, the launcher thread pid is passed to the VM
  4728   // via the sun.java.launcher.pid property.
  4729   // Use this property instead of getpid() if it was correctly passed.
  4730   // See bug 6351349.
  4731   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  4733   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  4735   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  4737   init_random(1234567);
  4739   ThreadCritical::initialize();
  4741   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  4742   if (Linux::page_size() == -1) {
  4743     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  4744                   strerror(errno)));
  4746   init_page_sizes((size_t) Linux::page_size());
  4748   Linux::initialize_system_info();
  4750   // main_thread points to the aboriginal thread
  4751   Linux::_main_thread = pthread_self();
  4753   Linux::clock_init();
  4754   initial_time_count = javaTimeNanos();
  4756   // pthread_condattr initialization for monotonic clock
  4757   int status;
  4758   pthread_condattr_t* _condattr = os::Linux::condAttr();
  4759   if ((status = pthread_condattr_init(_condattr)) != 0) {
  4760     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
  4762   // Only set the clock if CLOCK_MONOTONIC is available
  4763   if (Linux::supports_monotonic_clock()) {
  4764     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
  4765       if (status == EINVAL) {
  4766         warning("Unable to use monotonic clock with relative timed-waits" \
  4767                 " - changes to the time-of-day clock may have adverse affects");
  4768       } else {
  4769         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
  4773   // else it defaults to CLOCK_REALTIME
  4775   pthread_mutex_init(&dl_mutex, NULL);
  4777   // If the pagesize of the VM is greater than 8K determine the appropriate
  4778   // number of initial guard pages.  The user can change this with the
  4779   // command line arguments, if needed.
  4780   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
  4781     StackYellowPages = 1;
  4782     StackRedPages = 1;
  4783     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
  4787 // To install functions for atexit system call
  4788 extern "C" {
  4789   static void perfMemory_exit_helper() {
  4790     perfMemory_exit();
  4794 // this is called _after_ the global arguments have been parsed
  4795 jint os::init_2(void)
  4797   Linux::fast_thread_clock_init();
  4799   // Allocate a single page and mark it as readable for safepoint polling
  4800   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4801   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  4803   os::set_polling_page( polling_page );
  4805 #ifndef PRODUCT
  4806   if(Verbose && PrintMiscellaneous)
  4807     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4808 #endif
  4810   if (!UseMembar) {
  4811     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4812     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
  4813     os::set_memory_serialize_page( mem_serialize_page );
  4815 #ifndef PRODUCT
  4816     if(Verbose && PrintMiscellaneous)
  4817       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4818 #endif
  4821   // initialize suspend/resume support - must do this before signal_sets_init()
  4822   if (SR_initialize() != 0) {
  4823     perror("SR_initialize failed");
  4824     return JNI_ERR;
  4827   Linux::signal_sets_init();
  4828   Linux::install_signal_handlers();
  4830   // Check minimum allowable stack size for thread creation and to initialize
  4831   // the java system classes, including StackOverflowError - depends on page
  4832   // size.  Add a page for compiler2 recursion in main thread.
  4833   // Add in 2*BytesPerWord times page size to account for VM stack during
  4834   // class initialization depending on 32 or 64 bit VM.
  4835   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  4836             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
  4837                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
  4839   size_t threadStackSizeInBytes = ThreadStackSize * K;
  4840   if (threadStackSizeInBytes != 0 &&
  4841       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
  4842         tty->print_cr("\nThe stack size specified is too small, "
  4843                       "Specify at least %dk",
  4844                       os::Linux::min_stack_allowed/ K);
  4845         return JNI_ERR;
  4848   // Make the stack size a multiple of the page size so that
  4849   // the yellow/red zones can be guarded.
  4850   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  4851         vm_page_size()));
  4853   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  4855 #if defined(IA32)
  4856   workaround_expand_exec_shield_cs_limit();
  4857 #endif
  4859   Linux::libpthread_init();
  4860   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  4861      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  4862           Linux::glibc_version(), Linux::libpthread_version(),
  4863           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  4866   if (UseNUMA) {
  4867     if (!Linux::libnuma_init()) {
  4868       UseNUMA = false;
  4869     } else {
  4870       if ((Linux::numa_max_node() < 1)) {
  4871         // There's only one node(they start from 0), disable NUMA.
  4872         UseNUMA = false;
  4875     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
  4876     // we can make the adaptive lgrp chunk resizing work. If the user specified
  4877     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
  4878     // disable adaptive resizing.
  4879     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
  4880       if (FLAG_IS_DEFAULT(UseNUMA)) {
  4881         UseNUMA = false;
  4882       } else {
  4883         if (FLAG_IS_DEFAULT(UseLargePages) &&
  4884             FLAG_IS_DEFAULT(UseSHM) &&
  4885             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
  4886           UseLargePages = false;
  4887         } else {
  4888           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
  4889           UseAdaptiveSizePolicy = false;
  4890           UseAdaptiveNUMAChunkSizing = false;
  4894     if (!UseNUMA && ForceNUMA) {
  4895       UseNUMA = true;
  4899   if (MaxFDLimit) {
  4900     // set the number of file descriptors to max. print out error
  4901     // if getrlimit/setrlimit fails but continue regardless.
  4902     struct rlimit nbr_files;
  4903     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  4904     if (status != 0) {
  4905       if (PrintMiscellaneous && (Verbose || WizardMode))
  4906         perror("os::init_2 getrlimit failed");
  4907     } else {
  4908       nbr_files.rlim_cur = nbr_files.rlim_max;
  4909       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  4910       if (status != 0) {
  4911         if (PrintMiscellaneous && (Verbose || WizardMode))
  4912           perror("os::init_2 setrlimit failed");
  4917   // Initialize lock used to serialize thread creation (see os::create_thread)
  4918   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  4920   // at-exit methods are called in the reverse order of their registration.
  4921   // atexit functions are called on return from main or as a result of a
  4922   // call to exit(3C). There can be only 32 of these functions registered
  4923   // and atexit() does not set errno.
  4925   if (PerfAllowAtExitRegistration) {
  4926     // only register atexit functions if PerfAllowAtExitRegistration is set.
  4927     // atexit functions can be delayed until process exit time, which
  4928     // can be problematic for embedded VM situations. Embedded VMs should
  4929     // call DestroyJavaVM() to assure that VM resources are released.
  4931     // note: perfMemory_exit_helper atexit function may be removed in
  4932     // the future if the appropriate cleanup code can be added to the
  4933     // VM_Exit VMOperation's doit method.
  4934     if (atexit(perfMemory_exit_helper) != 0) {
  4935       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  4939   // initialize thread priority policy
  4940   prio_init();
  4942   return JNI_OK;
  4945 // this is called at the end of vm_initialization
  4946 void os::init_3(void)
  4948 #ifdef JAVASE_EMBEDDED
  4949   // Start the MemNotifyThread
  4950   if (LowMemoryProtection) {
  4951     MemNotifyThread::start();
  4953   return;
  4954 #endif
  4957 // Mark the polling page as unreadable
  4958 void os::make_polling_page_unreadable(void) {
  4959   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  4960     fatal("Could not disable polling page");
  4961 };
  4963 // Mark the polling page as readable
  4964 void os::make_polling_page_readable(void) {
  4965   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  4966     fatal("Could not enable polling page");
  4968 };
  4970 int os::active_processor_count() {
  4971   // Linux doesn't yet have a (official) notion of processor sets,
  4972   // so just return the number of online processors.
  4973   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  4974   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  4975   return online_cpus;
  4978 void os::set_native_thread_name(const char *name) {
  4979   // Not yet implemented.
  4980   return;
  4983 bool os::distribute_processes(uint length, uint* distribution) {
  4984   // Not yet implemented.
  4985   return false;
  4988 bool os::bind_to_processor(uint processor_id) {
  4989   // Not yet implemented.
  4990   return false;
  4993 ///
  4995 void os::SuspendedThreadTask::internal_do_task() {
  4996   if (do_suspend(_thread->osthread())) {
  4997     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
  4998     do_task(context);
  4999     do_resume(_thread->osthread());
  5003 class PcFetcher : public os::SuspendedThreadTask {
  5004 public:
  5005   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
  5006   ExtendedPC result();
  5007 protected:
  5008   void do_task(const os::SuspendedThreadTaskContext& context);
  5009 private:
  5010   ExtendedPC _epc;
  5011 };
  5013 ExtendedPC PcFetcher::result() {
  5014   guarantee(is_done(), "task is not done yet.");
  5015   return _epc;
  5018 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
  5019   Thread* thread = context.thread();
  5020   OSThread* osthread = thread->osthread();
  5021   if (osthread->ucontext() != NULL) {
  5022     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
  5023   } else {
  5024     // NULL context is unexpected, double-check this is the VMThread
  5025     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  5029 // Suspends the target using the signal mechanism and then grabs the PC before
  5030 // resuming the target. Used by the flat-profiler only
  5031 ExtendedPC os::get_thread_pc(Thread* thread) {
  5032   // Make sure that it is called by the watcher for the VMThread
  5033   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  5034   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  5036   PcFetcher fetcher(thread);
  5037   fetcher.run();
  5038   return fetcher.result();
  5041 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  5043    if (is_NPTL()) {
  5044       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  5045    } else {
  5046       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  5047       // word back to default 64bit precision if condvar is signaled. Java
  5048       // wants 53bit precision.  Save and restore current value.
  5049       int fpu = get_fpu_control_word();
  5050       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  5051       set_fpu_control_word(fpu);
  5052       return status;
  5056 ////////////////////////////////////////////////////////////////////////////////
  5057 // debug support
  5059 bool os::find(address addr, outputStream* st) {
  5060   Dl_info dlinfo;
  5061   memset(&dlinfo, 0, sizeof(dlinfo));
  5062   if (dladdr(addr, &dlinfo) != 0) {
  5063     st->print(PTR_FORMAT ": ", addr);
  5064     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
  5065       st->print("%s+%#x", dlinfo.dli_sname,
  5066                  addr - (intptr_t)dlinfo.dli_saddr);
  5067     } else if (dlinfo.dli_fbase != NULL) {
  5068       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  5069     } else {
  5070       st->print("<absolute address>");
  5072     if (dlinfo.dli_fname != NULL) {
  5073       st->print(" in %s", dlinfo.dli_fname);
  5075     if (dlinfo.dli_fbase != NULL) {
  5076       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  5078     st->cr();
  5080     if (Verbose) {
  5081       // decode some bytes around the PC
  5082       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  5083       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  5084       address       lowest = (address) dlinfo.dli_sname;
  5085       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5086       if (begin < lowest)  begin = lowest;
  5087       Dl_info dlinfo2;
  5088       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5089           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5090         end = (address) dlinfo2.dli_saddr;
  5091       Disassembler::decode(begin, end, st);
  5093     return true;
  5095   return false;
  5098 ////////////////////////////////////////////////////////////////////////////////
  5099 // misc
  5101 // This does not do anything on Linux. This is basically a hook for being
  5102 // able to use structured exception handling (thread-local exception filters)
  5103 // on, e.g., Win32.
  5104 void
  5105 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  5106                          JavaCallArguments* args, Thread* thread) {
  5107   f(value, method, args, thread);
  5110 void os::print_statistics() {
  5113 int os::message_box(const char* title, const char* message) {
  5114   int i;
  5115   fdStream err(defaultStream::error_fd());
  5116   for (i = 0; i < 78; i++) err.print_raw("=");
  5117   err.cr();
  5118   err.print_raw_cr(title);
  5119   for (i = 0; i < 78; i++) err.print_raw("-");
  5120   err.cr();
  5121   err.print_raw_cr(message);
  5122   for (i = 0; i < 78; i++) err.print_raw("=");
  5123   err.cr();
  5125   char buf[16];
  5126   // Prevent process from exiting upon "read error" without consuming all CPU
  5127   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  5129   return buf[0] == 'y' || buf[0] == 'Y';
  5132 int os::stat(const char *path, struct stat *sbuf) {
  5133   char pathbuf[MAX_PATH];
  5134   if (strlen(path) > MAX_PATH - 1) {
  5135     errno = ENAMETOOLONG;
  5136     return -1;
  5138   os::native_path(strcpy(pathbuf, path));
  5139   return ::stat(pathbuf, sbuf);
  5142 bool os::check_heap(bool force) {
  5143   return true;
  5146 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  5147   return ::vsnprintf(buf, count, format, args);
  5150 // Is a (classpath) directory empty?
  5151 bool os::dir_is_empty(const char* path) {
  5152   DIR *dir = NULL;
  5153   struct dirent *ptr;
  5155   dir = opendir(path);
  5156   if (dir == NULL) return true;
  5158   /* Scan the directory */
  5159   bool result = true;
  5160   char buf[sizeof(struct dirent) + MAX_PATH];
  5161   while (result && (ptr = ::readdir(dir)) != NULL) {
  5162     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5163       result = false;
  5166   closedir(dir);
  5167   return result;
  5170 // This code originates from JDK's sysOpen and open64_w
  5171 // from src/solaris/hpi/src/system_md.c
  5173 #ifndef O_DELETE
  5174 #define O_DELETE 0x10000
  5175 #endif
  5177 // Open a file. Unlink the file immediately after open returns
  5178 // if the specified oflag has the O_DELETE flag set.
  5179 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5181 int os::open(const char *path, int oflag, int mode) {
  5183   if (strlen(path) > MAX_PATH - 1) {
  5184     errno = ENAMETOOLONG;
  5185     return -1;
  5187   int fd;
  5188   int o_delete = (oflag & O_DELETE);
  5189   oflag = oflag & ~O_DELETE;
  5191   fd = ::open64(path, oflag, mode);
  5192   if (fd == -1) return -1;
  5194   //If the open succeeded, the file might still be a directory
  5196     struct stat64 buf64;
  5197     int ret = ::fstat64(fd, &buf64);
  5198     int st_mode = buf64.st_mode;
  5200     if (ret != -1) {
  5201       if ((st_mode & S_IFMT) == S_IFDIR) {
  5202         errno = EISDIR;
  5203         ::close(fd);
  5204         return -1;
  5206     } else {
  5207       ::close(fd);
  5208       return -1;
  5212     /*
  5213      * All file descriptors that are opened in the JVM and not
  5214      * specifically destined for a subprocess should have the
  5215      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5216      * party native code might fork and exec without closing all
  5217      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5218      * UNIXProcess.c), and this in turn might:
  5220      * - cause end-of-file to fail to be detected on some file
  5221      *   descriptors, resulting in mysterious hangs, or
  5223      * - might cause an fopen in the subprocess to fail on a system
  5224      *   suffering from bug 1085341.
  5226      * (Yes, the default setting of the close-on-exec flag is a Unix
  5227      * design flaw)
  5229      * See:
  5230      * 1085341: 32-bit stdio routines should support file descriptors >255
  5231      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5232      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5233      */
  5234 #ifdef FD_CLOEXEC
  5236         int flags = ::fcntl(fd, F_GETFD);
  5237         if (flags != -1)
  5238             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5240 #endif
  5242   if (o_delete != 0) {
  5243     ::unlink(path);
  5245   return fd;
  5249 // create binary file, rewriting existing file if required
  5250 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5251   int oflags = O_WRONLY | O_CREAT;
  5252   if (!rewrite_existing) {
  5253     oflags |= O_EXCL;
  5255   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5258 // return current position of file pointer
  5259 jlong os::current_file_offset(int fd) {
  5260   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5263 // move file pointer to the specified offset
  5264 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5265   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5268 // This code originates from JDK's sysAvailable
  5269 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  5271 int os::available(int fd, jlong *bytes) {
  5272   jlong cur, end;
  5273   int mode;
  5274   struct stat64 buf64;
  5276   if (::fstat64(fd, &buf64) >= 0) {
  5277     mode = buf64.st_mode;
  5278     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5279       /*
  5280       * XXX: is the following call interruptible? If so, this might
  5281       * need to go through the INTERRUPT_IO() wrapper as for other
  5282       * blocking, interruptible calls in this file.
  5283       */
  5284       int n;
  5285       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  5286         *bytes = n;
  5287         return 1;
  5291   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5292     return 0;
  5293   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5294     return 0;
  5295   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5296     return 0;
  5298   *bytes = end - cur;
  5299   return 1;
  5302 int os::socket_available(int fd, jint *pbytes) {
  5303   // Linux doc says EINTR not returned, unlike Solaris
  5304   int ret = ::ioctl(fd, FIONREAD, pbytes);
  5306   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  5307   // is expected to return 0 on failure and 1 on success to the jdk.
  5308   return (ret < 0) ? 0 : 1;
  5311 // Map a block of memory.
  5312 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  5313                      char *addr, size_t bytes, bool read_only,
  5314                      bool allow_exec) {
  5315   int prot;
  5316   int flags = MAP_PRIVATE;
  5318   if (read_only) {
  5319     prot = PROT_READ;
  5320   } else {
  5321     prot = PROT_READ | PROT_WRITE;
  5324   if (allow_exec) {
  5325     prot |= PROT_EXEC;
  5328   if (addr != NULL) {
  5329     flags |= MAP_FIXED;
  5332   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5333                                      fd, file_offset);
  5334   if (mapped_address == MAP_FAILED) {
  5335     return NULL;
  5337   return mapped_address;
  5341 // Remap a block of memory.
  5342 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  5343                        char *addr, size_t bytes, bool read_only,
  5344                        bool allow_exec) {
  5345   // same as map_memory() on this OS
  5346   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5347                         allow_exec);
  5351 // Unmap a block of memory.
  5352 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  5353   return munmap(addr, bytes) == 0;
  5356 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  5358 static clockid_t thread_cpu_clockid(Thread* thread) {
  5359   pthread_t tid = thread->osthread()->pthread_id();
  5360   clockid_t clockid;
  5362   // Get thread clockid
  5363   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  5364   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  5365   return clockid;
  5368 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5369 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5370 // of a thread.
  5371 //
  5372 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  5373 // the fast estimate available on the platform.
  5375 jlong os::current_thread_cpu_time() {
  5376   if (os::Linux::supports_fast_thread_cpu_time()) {
  5377     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5378   } else {
  5379     // return user + sys since the cost is the same
  5380     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  5384 jlong os::thread_cpu_time(Thread* thread) {
  5385   // consistent with what current_thread_cpu_time() returns
  5386   if (os::Linux::supports_fast_thread_cpu_time()) {
  5387     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5388   } else {
  5389     return slow_thread_cpu_time(thread, true /* user + sys */);
  5393 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5394   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5395     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5396   } else {
  5397     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5401 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5402   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5403     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5404   } else {
  5405     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  5409 //
  5410 //  -1 on error.
  5411 //
  5413 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5414   static bool proc_task_unchecked = true;
  5415   static const char *proc_stat_path = "/proc/%d/stat";
  5416   pid_t  tid = thread->osthread()->thread_id();
  5417   char *s;
  5418   char stat[2048];
  5419   int statlen;
  5420   char proc_name[64];
  5421   int count;
  5422   long sys_time, user_time;
  5423   char cdummy;
  5424   int idummy;
  5425   long ldummy;
  5426   FILE *fp;
  5428   // The /proc/<tid>/stat aggregates per-process usage on
  5429   // new Linux kernels 2.6+ where NPTL is supported.
  5430   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  5431   // See bug 6328462.
  5432   // There possibly can be cases where there is no directory
  5433   // /proc/self/task, so we check its availability.
  5434   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  5435     // This is executed only once
  5436     proc_task_unchecked = false;
  5437     fp = fopen("/proc/self/task", "r");
  5438     if (fp != NULL) {
  5439       proc_stat_path = "/proc/self/task/%d/stat";
  5440       fclose(fp);
  5444   sprintf(proc_name, proc_stat_path, tid);
  5445   fp = fopen(proc_name, "r");
  5446   if ( fp == NULL ) return -1;
  5447   statlen = fread(stat, 1, 2047, fp);
  5448   stat[statlen] = '\0';
  5449   fclose(fp);
  5451   // Skip pid and the command string. Note that we could be dealing with
  5452   // weird command names, e.g. user could decide to rename java launcher
  5453   // to "java 1.4.2 :)", then the stat file would look like
  5454   //                1234 (java 1.4.2 :)) R ... ...
  5455   // We don't really need to know the command string, just find the last
  5456   // occurrence of ")" and then start parsing from there. See bug 4726580.
  5457   s = strrchr(stat, ')');
  5458   if (s == NULL ) return -1;
  5460   // Skip blank chars
  5461   do s++; while (isspace(*s));
  5463   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  5464                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  5465                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  5466                  &user_time, &sys_time);
  5467   if ( count != 13 ) return -1;
  5468   if (user_sys_cpu_time) {
  5469     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  5470   } else {
  5471     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  5475 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5476   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5477   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5478   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5479   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5482 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5483   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5484   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5485   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5486   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5489 bool os::is_thread_cpu_time_supported() {
  5490   return true;
  5493 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5494 // Linux doesn't yet have a (official) notion of processor sets,
  5495 // so just return the system wide load average.
  5496 int os::loadavg(double loadavg[], int nelem) {
  5497   return ::getloadavg(loadavg, nelem);
  5500 void os::pause() {
  5501   char filename[MAX_PATH];
  5502   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5503     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5504   } else {
  5505     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5508   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5509   if (fd != -1) {
  5510     struct stat buf;
  5511     ::close(fd);
  5512     while (::stat(filename, &buf) == 0) {
  5513       (void)::poll(NULL, 0, 100);
  5515   } else {
  5516     jio_fprintf(stderr,
  5517       "Could not open pause file '%s', continuing immediately.\n", filename);
  5522 // Refer to the comments in os_solaris.cpp park-unpark.
  5523 //
  5524 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  5525 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  5526 // For specifics regarding the bug see GLIBC BUGID 261237 :
  5527 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  5528 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  5529 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  5530 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  5531 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  5532 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  5533 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  5534 // of libpthread avoids the problem, but isn't practical.
  5535 //
  5536 // Possible remedies:
  5537 //
  5538 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  5539 //      This is palliative and probabilistic, however.  If the thread is preempted
  5540 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  5541 //      than the minimum period may have passed, and the abstime may be stale (in the
  5542 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  5543 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  5544 //
  5545 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  5546 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  5547 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  5548 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  5549 //      thread.
  5550 //
  5551 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  5552 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  5553 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  5554 //      This also works well.  In fact it avoids kernel-level scalability impediments
  5555 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  5556 //      timers in a graceful fashion.
  5557 //
  5558 // 4.   When the abstime value is in the past it appears that control returns
  5559 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  5560 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  5561 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  5562 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  5563 //      It may be possible to avoid reinitialization by checking the return
  5564 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  5565 //      condvar we must establish the invariant that cond_signal() is only called
  5566 //      within critical sections protected by the adjunct mutex.  This prevents
  5567 //      cond_signal() from "seeing" a condvar that's in the midst of being
  5568 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  5569 //      desirable signal-after-unlock optimization that avoids futile context switching.
  5570 //
  5571 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  5572 //      structure when a condvar is used or initialized.  cond_destroy()  would
  5573 //      release the helper structure.  Our reinitialize-after-timedwait fix
  5574 //      put excessive stress on malloc/free and locks protecting the c-heap.
  5575 //
  5576 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  5577 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  5578 // and only enabling the work-around for vulnerable environments.
  5580 // utility to compute the abstime argument to timedwait:
  5581 // millis is the relative timeout time
  5582 // abstime will be the absolute timeout time
  5583 // TODO: replace compute_abstime() with unpackTime()
  5585 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  5586   if (millis < 0)  millis = 0;
  5588   jlong seconds = millis / 1000;
  5589   millis %= 1000;
  5590   if (seconds > 50000000) { // see man cond_timedwait(3T)
  5591     seconds = 50000000;
  5594   if (os::Linux::supports_monotonic_clock()) {
  5595     struct timespec now;
  5596     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  5597     assert_status(status == 0, status, "clock_gettime");
  5598     abstime->tv_sec = now.tv_sec  + seconds;
  5599     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
  5600     if (nanos >= NANOSECS_PER_SEC) {
  5601       abstime->tv_sec += 1;
  5602       nanos -= NANOSECS_PER_SEC;
  5604     abstime->tv_nsec = nanos;
  5605   } else {
  5606     struct timeval now;
  5607     int status = gettimeofday(&now, NULL);
  5608     assert(status == 0, "gettimeofday");
  5609     abstime->tv_sec = now.tv_sec  + seconds;
  5610     long usec = now.tv_usec + millis * 1000;
  5611     if (usec >= 1000000) {
  5612       abstime->tv_sec += 1;
  5613       usec -= 1000000;
  5615     abstime->tv_nsec = usec * 1000;
  5617   return abstime;
  5621 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5622 // Conceptually TryPark() should be equivalent to park(0).
  5624 int os::PlatformEvent::TryPark() {
  5625   for (;;) {
  5626     const int v = _Event ;
  5627     guarantee ((v == 0) || (v == 1), "invariant") ;
  5628     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5632 void os::PlatformEvent::park() {       // AKA "down()"
  5633   // Invariant: Only the thread associated with the Event/PlatformEvent
  5634   // may call park().
  5635   // TODO: assert that _Assoc != NULL or _Assoc == Self
  5636   int v ;
  5637   for (;;) {
  5638       v = _Event ;
  5639       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5641   guarantee (v >= 0, "invariant") ;
  5642   if (v == 0) {
  5643      // Do this the hard way by blocking ...
  5644      int status = pthread_mutex_lock(_mutex);
  5645      assert_status(status == 0, status, "mutex_lock");
  5646      guarantee (_nParked == 0, "invariant") ;
  5647      ++ _nParked ;
  5648      while (_Event < 0) {
  5649         status = pthread_cond_wait(_cond, _mutex);
  5650         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5651         // Treat this the same as if the wait was interrupted
  5652         if (status == ETIME) { status = EINTR; }
  5653         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5655      -- _nParked ;
  5657     _Event = 0 ;
  5658      status = pthread_mutex_unlock(_mutex);
  5659      assert_status(status == 0, status, "mutex_unlock");
  5660     // Paranoia to ensure our locked and lock-free paths interact
  5661     // correctly with each other.
  5662     OrderAccess::fence();
  5664   guarantee (_Event >= 0, "invariant") ;
  5667 int os::PlatformEvent::park(jlong millis) {
  5668   guarantee (_nParked == 0, "invariant") ;
  5670   int v ;
  5671   for (;;) {
  5672       v = _Event ;
  5673       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5675   guarantee (v >= 0, "invariant") ;
  5676   if (v != 0) return OS_OK ;
  5678   // We do this the hard way, by blocking the thread.
  5679   // Consider enforcing a minimum timeout value.
  5680   struct timespec abst;
  5681   compute_abstime(&abst, millis);
  5683   int ret = OS_TIMEOUT;
  5684   int status = pthread_mutex_lock(_mutex);
  5685   assert_status(status == 0, status, "mutex_lock");
  5686   guarantee (_nParked == 0, "invariant") ;
  5687   ++_nParked ;
  5689   // Object.wait(timo) will return because of
  5690   // (a) notification
  5691   // (b) timeout
  5692   // (c) thread.interrupt
  5693   //
  5694   // Thread.interrupt and object.notify{All} both call Event::set.
  5695   // That is, we treat thread.interrupt as a special case of notification.
  5696   // The underlying Solaris implementation, cond_timedwait, admits
  5697   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  5698   // JVM from making those visible to Java code.  As such, we must
  5699   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  5700   //
  5701   // TODO: properly differentiate simultaneous notify+interrupt.
  5702   // In that case, we should propagate the notify to another waiter.
  5704   while (_Event < 0) {
  5705     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  5706     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5707       pthread_cond_destroy (_cond);
  5708       pthread_cond_init (_cond, os::Linux::condAttr()) ;
  5710     assert_status(status == 0 || status == EINTR ||
  5711                   status == ETIME || status == ETIMEDOUT,
  5712                   status, "cond_timedwait");
  5713     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  5714     if (status == ETIME || status == ETIMEDOUT) break ;
  5715     // We consume and ignore EINTR and spurious wakeups.
  5717   --_nParked ;
  5718   if (_Event >= 0) {
  5719      ret = OS_OK;
  5721   _Event = 0 ;
  5722   status = pthread_mutex_unlock(_mutex);
  5723   assert_status(status == 0, status, "mutex_unlock");
  5724   assert (_nParked == 0, "invariant") ;
  5725   // Paranoia to ensure our locked and lock-free paths interact
  5726   // correctly with each other.
  5727   OrderAccess::fence();
  5728   return ret;
  5731 void os::PlatformEvent::unpark() {
  5732   // Transitions for _Event:
  5733   //    0 :=> 1
  5734   //    1 :=> 1
  5735   //   -1 :=> either 0 or 1; must signal target thread
  5736   //          That is, we can safely transition _Event from -1 to either
  5737   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  5738   //          unpark() calls.
  5739   // See also: "Semaphores in Plan 9" by Mullender & Cox
  5740   //
  5741   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  5742   // that it will take two back-to-back park() calls for the owning
  5743   // thread to block. This has the benefit of forcing a spurious return
  5744   // from the first park() call after an unpark() call which will help
  5745   // shake out uses of park() and unpark() without condition variables.
  5747   if (Atomic::xchg(1, &_Event) >= 0) return;
  5749   // Wait for the thread associated with the event to vacate
  5750   int status = pthread_mutex_lock(_mutex);
  5751   assert_status(status == 0, status, "mutex_lock");
  5752   int AnyWaiters = _nParked;
  5753   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  5754   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  5755     AnyWaiters = 0;
  5756     pthread_cond_signal(_cond);
  5758   status = pthread_mutex_unlock(_mutex);
  5759   assert_status(status == 0, status, "mutex_unlock");
  5760   if (AnyWaiters != 0) {
  5761     status = pthread_cond_signal(_cond);
  5762     assert_status(status == 0, status, "cond_signal");
  5765   // Note that we signal() _after dropping the lock for "immortal" Events.
  5766   // This is safe and avoids a common class of  futile wakeups.  In rare
  5767   // circumstances this can cause a thread to return prematurely from
  5768   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  5769   // simply re-test the condition and re-park itself.
  5773 // JSR166
  5774 // -------------------------------------------------------
  5776 /*
  5777  * The solaris and linux implementations of park/unpark are fairly
  5778  * conservative for now, but can be improved. They currently use a
  5779  * mutex/condvar pair, plus a a count.
  5780  * Park decrements count if > 0, else does a condvar wait.  Unpark
  5781  * sets count to 1 and signals condvar.  Only one thread ever waits
  5782  * on the condvar. Contention seen when trying to park implies that someone
  5783  * is unparking you, so don't wait. And spurious returns are fine, so there
  5784  * is no need to track notifications.
  5785  */
  5787 #define MAX_SECS 100000000
  5788 /*
  5789  * This code is common to linux and solaris and will be moved to a
  5790  * common place in dolphin.
  5792  * The passed in time value is either a relative time in nanoseconds
  5793  * or an absolute time in milliseconds. Either way it has to be unpacked
  5794  * into suitable seconds and nanoseconds components and stored in the
  5795  * given timespec structure.
  5796  * Given time is a 64-bit value and the time_t used in the timespec is only
  5797  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  5798  * overflow if times way in the future are given. Further on Solaris versions
  5799  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  5800  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  5801  * As it will be 28 years before "now + 100000000" will overflow we can
  5802  * ignore overflow and just impose a hard-limit on seconds using the value
  5803  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  5804  * years from "now".
  5805  */
  5807 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  5808   assert (time > 0, "convertTime");
  5809   time_t max_secs = 0;
  5811   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
  5812     struct timeval now;
  5813     int status = gettimeofday(&now, NULL);
  5814     assert(status == 0, "gettimeofday");
  5816     max_secs = now.tv_sec + MAX_SECS;
  5818     if (isAbsolute) {
  5819       jlong secs = time / 1000;
  5820       if (secs > max_secs) {
  5821         absTime->tv_sec = max_secs;
  5822       } else {
  5823         absTime->tv_sec = secs;
  5825       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  5826     } else {
  5827       jlong secs = time / NANOSECS_PER_SEC;
  5828       if (secs >= MAX_SECS) {
  5829         absTime->tv_sec = max_secs;
  5830         absTime->tv_nsec = 0;
  5831       } else {
  5832         absTime->tv_sec = now.tv_sec + secs;
  5833         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  5834         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5835           absTime->tv_nsec -= NANOSECS_PER_SEC;
  5836           ++absTime->tv_sec; // note: this must be <= max_secs
  5840   } else {
  5841     // must be relative using monotonic clock
  5842     struct timespec now;
  5843     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  5844     assert_status(status == 0, status, "clock_gettime");
  5845     max_secs = now.tv_sec + MAX_SECS;
  5846     jlong secs = time / NANOSECS_PER_SEC;
  5847     if (secs >= MAX_SECS) {
  5848       absTime->tv_sec = max_secs;
  5849       absTime->tv_nsec = 0;
  5850     } else {
  5851       absTime->tv_sec = now.tv_sec + secs;
  5852       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
  5853       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5854         absTime->tv_nsec -= NANOSECS_PER_SEC;
  5855         ++absTime->tv_sec; // note: this must be <= max_secs
  5859   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  5860   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  5861   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  5862   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  5865 void Parker::park(bool isAbsolute, jlong time) {
  5866   // Ideally we'd do something useful while spinning, such
  5867   // as calling unpackTime().
  5869   // Optional fast-path check:
  5870   // Return immediately if a permit is available.
  5871   // We depend on Atomic::xchg() having full barrier semantics
  5872   // since we are doing a lock-free update to _counter.
  5873   if (Atomic::xchg(0, &_counter) > 0) return;
  5875   Thread* thread = Thread::current();
  5876   assert(thread->is_Java_thread(), "Must be JavaThread");
  5877   JavaThread *jt = (JavaThread *)thread;
  5879   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  5880   // Check interrupt before trying to wait
  5881   if (Thread::is_interrupted(thread, false)) {
  5882     return;
  5885   // Next, demultiplex/decode time arguments
  5886   timespec absTime;
  5887   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  5888     return;
  5890   if (time > 0) {
  5891     unpackTime(&absTime, isAbsolute, time);
  5895   // Enter safepoint region
  5896   // Beware of deadlocks such as 6317397.
  5897   // The per-thread Parker:: mutex is a classic leaf-lock.
  5898   // In particular a thread must never block on the Threads_lock while
  5899   // holding the Parker:: mutex.  If safepoints are pending both the
  5900   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  5901   ThreadBlockInVM tbivm(jt);
  5903   // Don't wait if cannot get lock since interference arises from
  5904   // unblocking.  Also. check interrupt before trying wait
  5905   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  5906     return;
  5909   int status ;
  5910   if (_counter > 0)  { // no wait needed
  5911     _counter = 0;
  5912     status = pthread_mutex_unlock(_mutex);
  5913     assert (status == 0, "invariant") ;
  5914     // Paranoia to ensure our locked and lock-free paths interact
  5915     // correctly with each other and Java-level accesses.
  5916     OrderAccess::fence();
  5917     return;
  5920 #ifdef ASSERT
  5921   // Don't catch signals while blocked; let the running threads have the signals.
  5922   // (This allows a debugger to break into the running thread.)
  5923   sigset_t oldsigs;
  5924   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  5925   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  5926 #endif
  5928   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  5929   jt->set_suspend_equivalent();
  5930   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  5932   assert(_cur_index == -1, "invariant");
  5933   if (time == 0) {
  5934     _cur_index = REL_INDEX; // arbitrary choice when not timed
  5935     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
  5936   } else {
  5937     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
  5938     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
  5939     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5940       pthread_cond_destroy (&_cond[_cur_index]) ;
  5941       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
  5944   _cur_index = -1;
  5945   assert_status(status == 0 || status == EINTR ||
  5946                 status == ETIME || status == ETIMEDOUT,
  5947                 status, "cond_timedwait");
  5949 #ifdef ASSERT
  5950   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  5951 #endif
  5953   _counter = 0 ;
  5954   status = pthread_mutex_unlock(_mutex) ;
  5955   assert_status(status == 0, status, "invariant") ;
  5956   // Paranoia to ensure our locked and lock-free paths interact
  5957   // correctly with each other and Java-level accesses.
  5958   OrderAccess::fence();
  5960   // If externally suspended while waiting, re-suspend
  5961   if (jt->handle_special_suspend_equivalent_condition()) {
  5962     jt->java_suspend_self();
  5966 void Parker::unpark() {
  5967   int s, status ;
  5968   status = pthread_mutex_lock(_mutex);
  5969   assert (status == 0, "invariant") ;
  5970   s = _counter;
  5971   _counter = 1;
  5972   if (s < 1) {
  5973     // thread might be parked
  5974     if (_cur_index != -1) {
  5975       // thread is definitely parked
  5976       if (WorkAroundNPTLTimedWaitHang) {
  5977         status = pthread_cond_signal (&_cond[_cur_index]);
  5978         assert (status == 0, "invariant");
  5979         status = pthread_mutex_unlock(_mutex);
  5980         assert (status == 0, "invariant");
  5981       } else {
  5982         status = pthread_mutex_unlock(_mutex);
  5983         assert (status == 0, "invariant");
  5984         status = pthread_cond_signal (&_cond[_cur_index]);
  5985         assert (status == 0, "invariant");
  5987     } else {
  5988       pthread_mutex_unlock(_mutex);
  5989       assert (status == 0, "invariant") ;
  5991   } else {
  5992     pthread_mutex_unlock(_mutex);
  5993     assert (status == 0, "invariant") ;
  5998 extern char** environ;
  6000 #ifndef __NR_fork
  6001 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
  6002 #endif
  6004 #ifndef __NR_execve
  6005 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
  6006 #endif
  6008 // Run the specified command in a separate process. Return its exit value,
  6009 // or -1 on failure (e.g. can't fork a new process).
  6010 // Unlike system(), this function can be called from signal handler. It
  6011 // doesn't block SIGINT et al.
  6012 int os::fork_and_exec(char* cmd) {
  6013   const char * argv[4] = {"sh", "-c", cmd, NULL};
  6015   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
  6016   // pthread_atfork handlers and reset pthread library. All we need is a
  6017   // separate process to execve. Make a direct syscall to fork process.
  6018   // On IA64 there's no fork syscall, we have to use fork() and hope for
  6019   // the best...
  6020   pid_t pid = NOT_IA64(syscall(__NR_fork);)
  6021               IA64_ONLY(fork();)
  6023   if (pid < 0) {
  6024     // fork failed
  6025     return -1;
  6027   } else if (pid == 0) {
  6028     // child process
  6030     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
  6031     // first to kill every thread on the thread list. Because this list is
  6032     // not reset by fork() (see notes above), execve() will instead kill
  6033     // every thread in the parent process. We know this is the only thread
  6034     // in the new process, so make a system call directly.
  6035     // IA64 should use normal execve() from glibc to match the glibc fork()
  6036     // above.
  6037     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
  6038     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
  6040     // execve failed
  6041     _exit(-1);
  6043   } else  {
  6044     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  6045     // care about the actual exit code, for now.
  6047     int status;
  6049     // Wait for the child process to exit.  This returns immediately if
  6050     // the child has already exited. */
  6051     while (waitpid(pid, &status, 0) < 0) {
  6052         switch (errno) {
  6053         case ECHILD: return 0;
  6054         case EINTR: break;
  6055         default: return -1;
  6059     if (WIFEXITED(status)) {
  6060        // The child exited normally; get its exit code.
  6061        return WEXITSTATUS(status);
  6062     } else if (WIFSIGNALED(status)) {
  6063        // The child exited because of a signal
  6064        // The best value to return is 0x80 + signal number,
  6065        // because that is what all Unix shells do, and because
  6066        // it allows callers to distinguish between process exit and
  6067        // process death by signal.
  6068        return 0x80 + WTERMSIG(status);
  6069     } else {
  6070        // Unknown exit code; pass it through
  6071        return status;
  6076 // is_headless_jre()
  6077 //
  6078 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  6079 // in order to report if we are running in a headless jre
  6080 //
  6081 // Since JDK8 xawt/libmawt.so was moved into the same directory
  6082 // as libawt.so, and renamed libawt_xawt.so
  6083 //
  6084 bool os::is_headless_jre() {
  6085     struct stat statbuf;
  6086     char buf[MAXPATHLEN];
  6087     char libmawtpath[MAXPATHLEN];
  6088     const char *xawtstr  = "/xawt/libmawt.so";
  6089     const char *new_xawtstr = "/libawt_xawt.so";
  6090     char *p;
  6092     // Get path to libjvm.so
  6093     os::jvm_path(buf, sizeof(buf));
  6095     // Get rid of libjvm.so
  6096     p = strrchr(buf, '/');
  6097     if (p == NULL) return false;
  6098     else *p = '\0';
  6100     // Get rid of client or server
  6101     p = strrchr(buf, '/');
  6102     if (p == NULL) return false;
  6103     else *p = '\0';
  6105     // check xawt/libmawt.so
  6106     strcpy(libmawtpath, buf);
  6107     strcat(libmawtpath, xawtstr);
  6108     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6110     // check libawt_xawt.so
  6111     strcpy(libmawtpath, buf);
  6112     strcat(libmawtpath, new_xawtstr);
  6113     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6115     return true;
  6118 // Get the default path to the core file
  6119 // Returns the length of the string
  6120 int os::get_core_path(char* buffer, size_t bufferSize) {
  6121   const char* p = get_current_directory(buffer, bufferSize);
  6123   if (p == NULL) {
  6124     assert(p != NULL, "failed to get current directory");
  6125     return 0;
  6128   return strlen(buffer);
  6131 #ifdef JAVASE_EMBEDDED
  6132 //
  6133 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
  6134 //
  6135 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
  6137 // ctor
  6138 //
  6139 MemNotifyThread::MemNotifyThread(int fd): Thread() {
  6140   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
  6141   _fd = fd;
  6143   if (os::create_thread(this, os::os_thread)) {
  6144     _memnotify_thread = this;
  6145     os::set_priority(this, NearMaxPriority);
  6146     os::start_thread(this);
  6150 // Where all the work gets done
  6151 //
  6152 void MemNotifyThread::run() {
  6153   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
  6155   // Set up the select arguments
  6156   fd_set rfds;
  6157   if (_fd != -1) {
  6158     FD_ZERO(&rfds);
  6159     FD_SET(_fd, &rfds);
  6162   // Now wait for the mem_notify device to wake up
  6163   while (1) {
  6164     // Wait for the mem_notify device to signal us..
  6165     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
  6166     if (rc == -1) {
  6167       perror("select!\n");
  6168       break;
  6169     } else if (rc) {
  6170       //ssize_t free_before = os::available_memory();
  6171       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
  6173       // The kernel is telling us there is not much memory left...
  6174       // try to do something about that
  6176       // If we are not already in a GC, try one.
  6177       if (!Universe::heap()->is_gc_active()) {
  6178         Universe::heap()->collect(GCCause::_allocation_failure);
  6180         //ssize_t free_after = os::available_memory();
  6181         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
  6182         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
  6184       // We might want to do something like the following if we find the GC's are not helping...
  6185       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
  6190 //
  6191 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
  6192 //
  6193 void MemNotifyThread::start() {
  6194   int    fd;
  6195   fd = open ("/dev/mem_notify", O_RDONLY, 0);
  6196   if (fd < 0) {
  6197       return;
  6200   if (memnotify_thread() == NULL) {
  6201     new MemNotifyThread(fd);
  6205 #endif // JAVASE_EMBEDDED
  6208 /////////////// Unit tests ///////////////
  6210 #ifndef PRODUCT
  6212 #define test_log(...) \
  6213   do {\
  6214     if (VerboseInternalVMTests) { \
  6215       tty->print_cr(__VA_ARGS__); \
  6216       tty->flush(); \
  6217     }\
  6218   } while (false)
  6220 class TestReserveMemorySpecial : AllStatic {
  6221  public:
  6222   static void small_page_write(void* addr, size_t size) {
  6223     size_t page_size = os::vm_page_size();
  6225     char* end = (char*)addr + size;
  6226     for (char* p = (char*)addr; p < end; p += page_size) {
  6227       *p = 1;
  6231   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
  6232     if (!UseHugeTLBFS) {
  6233       return;
  6236     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
  6238     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
  6240     if (addr != NULL) {
  6241       small_page_write(addr, size);
  6243       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6247   static void test_reserve_memory_special_huge_tlbfs_only() {
  6248     if (!UseHugeTLBFS) {
  6249       return;
  6252     size_t lp = os::large_page_size();
  6254     for (size_t size = lp; size <= lp * 10; size += lp) {
  6255       test_reserve_memory_special_huge_tlbfs_only(size);
  6259   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
  6260     if (!UseHugeTLBFS) {
  6261         return;
  6264     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
  6265         size, alignment);
  6267     assert(size >= os::large_page_size(), "Incorrect input to test");
  6269     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
  6271     if (addr != NULL) {
  6272       small_page_write(addr, size);
  6274       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6278   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
  6279     size_t lp = os::large_page_size();
  6280     size_t ag = os::vm_allocation_granularity();
  6282     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6283       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
  6287   static void test_reserve_memory_special_huge_tlbfs_mixed() {
  6288     size_t lp = os::large_page_size();
  6289     size_t ag = os::vm_allocation_granularity();
  6291     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
  6292     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
  6293     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
  6294     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
  6295     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
  6296     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
  6297     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
  6298     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
  6299     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
  6302   static void test_reserve_memory_special_huge_tlbfs() {
  6303     if (!UseHugeTLBFS) {
  6304       return;
  6307     test_reserve_memory_special_huge_tlbfs_only();
  6308     test_reserve_memory_special_huge_tlbfs_mixed();
  6311   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
  6312     if (!UseSHM) {
  6313       return;
  6316     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
  6318     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
  6320     if (addr != NULL) {
  6321       assert(is_ptr_aligned(addr, alignment), "Check");
  6322       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
  6324       small_page_write(addr, size);
  6326       os::Linux::release_memory_special_shm(addr, size);
  6330   static void test_reserve_memory_special_shm() {
  6331     size_t lp = os::large_page_size();
  6332     size_t ag = os::vm_allocation_granularity();
  6334     for (size_t size = ag; size < lp * 3; size += ag) {
  6335       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6336         test_reserve_memory_special_shm(size, alignment);
  6341   static void test() {
  6342     test_reserve_memory_special_huge_tlbfs();
  6343     test_reserve_memory_special_shm();
  6345 };
  6347 void TestReserveMemorySpecial_test() {
  6348   TestReserveMemorySpecial::test();
  6351 #endif

mercurial