src/os/linux/vm/os_linux.cpp

Thu, 13 Mar 2014 14:57:01 -0700

author
kvn
date
Thu, 13 Mar 2014 14:57:01 -0700
changeset 6513
bbfbe9b06038
parent 6482
935bf3340572
parent 6326
d1621038becf
child 6518
62c54fcc0a35
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_linux.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_linux.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_linux.hpp"
    40 #include "prims/jniFastGetField.hpp"
    41 #include "prims/jvm.h"
    42 #include "prims/jvm_misc.hpp"
    43 #include "runtime/arguments.hpp"
    44 #include "runtime/extendedPC.hpp"
    45 #include "runtime/globals.hpp"
    46 #include "runtime/interfaceSupport.hpp"
    47 #include "runtime/init.hpp"
    48 #include "runtime/java.hpp"
    49 #include "runtime/javaCalls.hpp"
    50 #include "runtime/mutexLocker.hpp"
    51 #include "runtime/objectMonitor.hpp"
    52 #include "runtime/osThread.hpp"
    53 #include "runtime/perfMemory.hpp"
    54 #include "runtime/sharedRuntime.hpp"
    55 #include "runtime/statSampler.hpp"
    56 #include "runtime/stubRoutines.hpp"
    57 #include "runtime/thread.inline.hpp"
    58 #include "runtime/threadCritical.hpp"
    59 #include "runtime/timer.hpp"
    60 #include "services/attachListener.hpp"
    61 #include "services/memTracker.hpp"
    62 #include "services/runtimeService.hpp"
    63 #include "utilities/decoder.hpp"
    64 #include "utilities/defaultStream.hpp"
    65 #include "utilities/events.hpp"
    66 #include "utilities/elfFile.hpp"
    67 #include "utilities/growableArray.hpp"
    68 #include "utilities/vmError.hpp"
    70 // put OS-includes here
    71 # include <sys/types.h>
    72 # include <sys/mman.h>
    73 # include <sys/stat.h>
    74 # include <sys/select.h>
    75 # include <pthread.h>
    76 # include <signal.h>
    77 # include <errno.h>
    78 # include <dlfcn.h>
    79 # include <stdio.h>
    80 # include <unistd.h>
    81 # include <sys/resource.h>
    82 # include <pthread.h>
    83 # include <sys/stat.h>
    84 # include <sys/time.h>
    85 # include <sys/times.h>
    86 # include <sys/utsname.h>
    87 # include <sys/socket.h>
    88 # include <sys/wait.h>
    89 # include <pwd.h>
    90 # include <poll.h>
    91 # include <semaphore.h>
    92 # include <fcntl.h>
    93 # include <string.h>
    94 # include <syscall.h>
    95 # include <sys/sysinfo.h>
    96 # include <gnu/libc-version.h>
    97 # include <sys/ipc.h>
    98 # include <sys/shm.h>
    99 # include <link.h>
   100 # include <stdint.h>
   101 # include <inttypes.h>
   102 # include <sys/ioctl.h>
   104 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
   105 // getrusage() is prepared to handle the associated failure.
   106 #ifndef RUSAGE_THREAD
   107 #define RUSAGE_THREAD   (1)               /* only the calling thread */
   108 #endif
   110 #define MAX_PATH    (2 * K)
   112 // for timer info max values which include all bits
   113 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   115 #define LARGEPAGES_BIT (1 << 6)
   116 ////////////////////////////////////////////////////////////////////////////////
   117 // global variables
   118 julong os::Linux::_physical_memory = 0;
   120 address   os::Linux::_initial_thread_stack_bottom = NULL;
   121 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   123 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   124 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   125 Mutex* os::Linux::_createThread_lock = NULL;
   126 pthread_t os::Linux::_main_thread;
   127 int os::Linux::_page_size = -1;
   128 const int os::Linux::_vm_default_page_size = (8 * K);
   129 bool os::Linux::_is_floating_stack = false;
   130 bool os::Linux::_is_NPTL = false;
   131 bool os::Linux::_supports_fast_thread_cpu_time = false;
   132 const char * os::Linux::_glibc_version = NULL;
   133 const char * os::Linux::_libpthread_version = NULL;
   134 pthread_condattr_t os::Linux::_condattr[1];
   136 static jlong initial_time_count=0;
   138 static int clock_tics_per_sec = 100;
   140 // For diagnostics to print a message once. see run_periodic_checks
   141 static sigset_t check_signal_done;
   142 static bool check_signals = true;
   144 static pid_t _initial_pid = 0;
   146 /* Signal number used to suspend/resume a thread */
   148 /* do not use any signal number less than SIGSEGV, see 4355769 */
   149 static int SR_signum = SIGUSR2;
   150 sigset_t SR_sigset;
   152 /* Used to protect dlsym() calls */
   153 static pthread_mutex_t dl_mutex;
   155 // Declarations
   156 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
   158 #ifdef JAVASE_EMBEDDED
   159 class MemNotifyThread: public Thread {
   160   friend class VMStructs;
   161  public:
   162   virtual void run();
   164  private:
   165   static MemNotifyThread* _memnotify_thread;
   166   int _fd;
   168  public:
   170   // Constructor
   171   MemNotifyThread(int fd);
   173   // Tester
   174   bool is_memnotify_thread() const { return true; }
   176   // Printing
   177   char* name() const { return (char*)"Linux MemNotify Thread"; }
   179   // Returns the single instance of the MemNotifyThread
   180   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
   182   // Create and start the single instance of MemNotifyThread
   183   static void start();
   184 };
   185 #endif // JAVASE_EMBEDDED
   187 // utility functions
   189 static int SR_initialize();
   191 julong os::available_memory() {
   192   return Linux::available_memory();
   193 }
   195 julong os::Linux::available_memory() {
   196   // values in struct sysinfo are "unsigned long"
   197   struct sysinfo si;
   198   sysinfo(&si);
   200   return (julong)si.freeram * si.mem_unit;
   201 }
   203 julong os::physical_memory() {
   204   return Linux::physical_memory();
   205 }
   207 ////////////////////////////////////////////////////////////////////////////////
   208 // environment support
   210 bool os::getenv(const char* name, char* buf, int len) {
   211   const char* val = ::getenv(name);
   212   if (val != NULL && strlen(val) < (size_t)len) {
   213     strcpy(buf, val);
   214     return true;
   215   }
   216   if (len > 0) buf[0] = 0;  // return a null string
   217   return false;
   218 }
   221 // Return true if user is running as root.
   223 bool os::have_special_privileges() {
   224   static bool init = false;
   225   static bool privileges = false;
   226   if (!init) {
   227     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   228     init = true;
   229   }
   230   return privileges;
   231 }
   234 #ifndef SYS_gettid
   235 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   236 #ifdef __ia64__
   237 #define SYS_gettid 1105
   238 #elif __i386__
   239 #define SYS_gettid 224
   240 #elif __amd64__
   241 #define SYS_gettid 186
   242 #elif __sparc__
   243 #define SYS_gettid 143
   244 #else
   245 #error define gettid for the arch
   246 #endif
   247 #endif
   249 // Cpu architecture string
   250 #if   defined(ZERO)
   251 static char cpu_arch[] = ZERO_LIBARCH;
   252 #elif defined(IA64)
   253 static char cpu_arch[] = "ia64";
   254 #elif defined(IA32)
   255 static char cpu_arch[] = "i386";
   256 #elif defined(AMD64)
   257 static char cpu_arch[] = "amd64";
   258 #elif defined(ARM)
   259 static char cpu_arch[] = "arm";
   260 #elif defined(PPC32)
   261 static char cpu_arch[] = "ppc";
   262 #elif defined(PPC64)
   263 static char cpu_arch[] = "ppc64";
   264 #elif defined(SPARC)
   265 #  ifdef _LP64
   266 static char cpu_arch[] = "sparcv9";
   267 #  else
   268 static char cpu_arch[] = "sparc";
   269 #  endif
   270 #else
   271 #error Add appropriate cpu_arch setting
   272 #endif
   275 // pid_t gettid()
   276 //
   277 // Returns the kernel thread id of the currently running thread. Kernel
   278 // thread id is used to access /proc.
   279 //
   280 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   281 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   282 //
   283 pid_t os::Linux::gettid() {
   284   int rslt = syscall(SYS_gettid);
   285   if (rslt == -1) {
   286      // old kernel, no NPTL support
   287      return getpid();
   288   } else {
   289      return (pid_t)rslt;
   290   }
   291 }
   293 // Most versions of linux have a bug where the number of processors are
   294 // determined by looking at the /proc file system.  In a chroot environment,
   295 // the system call returns 1.  This causes the VM to act as if it is
   296 // a single processor and elide locking (see is_MP() call).
   297 static bool unsafe_chroot_detected = false;
   298 static const char *unstable_chroot_error = "/proc file system not found.\n"
   299                      "Java may be unstable running multithreaded in a chroot "
   300                      "environment on Linux when /proc filesystem is not mounted.";
   302 void os::Linux::initialize_system_info() {
   303   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   304   if (processor_count() == 1) {
   305     pid_t pid = os::Linux::gettid();
   306     char fname[32];
   307     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   308     FILE *fp = fopen(fname, "r");
   309     if (fp == NULL) {
   310       unsafe_chroot_detected = true;
   311     } else {
   312       fclose(fp);
   313     }
   314   }
   315   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   316   assert(processor_count() > 0, "linux error");
   317 }
   319 void os::init_system_properties_values() {
   320 //  char arch[12];
   321 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   323   // The next steps are taken in the product version:
   324   //
   325   // Obtain the JAVA_HOME value from the location of libjvm.so.
   326   // This library should be located at:
   327   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   328   //
   329   // If "/jre/lib/" appears at the right place in the path, then we
   330   // assume libjvm.so is installed in a JDK and we use this path.
   331   //
   332   // Otherwise exit with message: "Could not create the Java virtual machine."
   333   //
   334   // The following extra steps are taken in the debugging version:
   335   //
   336   // If "/jre/lib/" does NOT appear at the right place in the path
   337   // instead of exit check for $JAVA_HOME environment variable.
   338   //
   339   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   340   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   341   // it looks like libjvm.so is installed there
   342   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   343   //
   344   // Otherwise exit.
   345   //
   346   // Important note: if the location of libjvm.so changes this
   347   // code needs to be changed accordingly.
   349   // The next few definitions allow the code to be verbatim:
   350 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
   351 #define getenv(n) ::getenv(n)
   353 /*
   354  * See ld(1):
   355  *      The linker uses the following search paths to locate required
   356  *      shared libraries:
   357  *        1: ...
   358  *        ...
   359  *        7: The default directories, normally /lib and /usr/lib.
   360  */
   361 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   362 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   363 #else
   364 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   365 #endif
   367 #define EXTENSIONS_DIR  "/lib/ext"
   368 #define ENDORSED_DIR    "/lib/endorsed"
   369 #define REG_DIR         "/usr/java/packages"
   371   {
   372     /* sysclasspath, java_home, dll_dir */
   373     {
   374         char *home_path;
   375         char *dll_path;
   376         char *pslash;
   377         char buf[MAXPATHLEN];
   378         os::jvm_path(buf, sizeof(buf));
   380         // Found the full path to libjvm.so.
   381         // Now cut the path to <java_home>/jre if we can.
   382         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   383         pslash = strrchr(buf, '/');
   384         if (pslash != NULL)
   385             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   386         dll_path = malloc(strlen(buf) + 1);
   387         if (dll_path == NULL)
   388             return;
   389         strcpy(dll_path, buf);
   390         Arguments::set_dll_dir(dll_path);
   392         if (pslash != NULL) {
   393             pslash = strrchr(buf, '/');
   394             if (pslash != NULL) {
   395                 *pslash = '\0';       /* get rid of /<arch> */
   396                 pslash = strrchr(buf, '/');
   397                 if (pslash != NULL)
   398                     *pslash = '\0';   /* get rid of /lib */
   399             }
   400         }
   402         home_path = malloc(strlen(buf) + 1);
   403         if (home_path == NULL)
   404             return;
   405         strcpy(home_path, buf);
   406         Arguments::set_java_home(home_path);
   408         if (!set_boot_path('/', ':'))
   409             return;
   410     }
   412     /*
   413      * Where to look for native libraries
   414      *
   415      * Note: Due to a legacy implementation, most of the library path
   416      * is set in the launcher.  This was to accomodate linking restrictions
   417      * on legacy Linux implementations (which are no longer supported).
   418      * Eventually, all the library path setting will be done here.
   419      *
   420      * However, to prevent the proliferation of improperly built native
   421      * libraries, the new path component /usr/java/packages is added here.
   422      * Eventually, all the library path setting will be done here.
   423      */
   424     {
   425         char *ld_library_path;
   427         /*
   428          * Construct the invariant part of ld_library_path. Note that the
   429          * space for the colon and the trailing null are provided by the
   430          * nulls included by the sizeof operator (so actually we allocate
   431          * a byte more than necessary).
   432          */
   433         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
   434             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
   435         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
   437         /*
   438          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
   439          * should always exist (until the legacy problem cited above is
   440          * addressed).
   441          */
   442         char *v = getenv("LD_LIBRARY_PATH");
   443         if (v != NULL) {
   444             char *t = ld_library_path;
   445             /* That's +1 for the colon and +1 for the trailing '\0' */
   446             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
   447             sprintf(ld_library_path, "%s:%s", v, t);
   448         }
   449         Arguments::set_library_path(ld_library_path);
   450     }
   452     /*
   453      * Extensions directories.
   454      *
   455      * Note that the space for the colon and the trailing null are provided
   456      * by the nulls included by the sizeof operator (so actually one byte more
   457      * than necessary is allocated).
   458      */
   459     {
   460         char *buf = malloc(strlen(Arguments::get_java_home()) +
   461             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
   462         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
   463             Arguments::get_java_home());
   464         Arguments::set_ext_dirs(buf);
   465     }
   467     /* Endorsed standards default directory. */
   468     {
   469         char * buf;
   470         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   471         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   472         Arguments::set_endorsed_dirs(buf);
   473     }
   474   }
   476 #undef malloc
   477 #undef getenv
   478 #undef EXTENSIONS_DIR
   479 #undef ENDORSED_DIR
   481   // Done
   482   return;
   483 }
   485 ////////////////////////////////////////////////////////////////////////////////
   486 // breakpoint support
   488 void os::breakpoint() {
   489   BREAKPOINT;
   490 }
   492 extern "C" void breakpoint() {
   493   // use debugger to set breakpoint here
   494 }
   496 ////////////////////////////////////////////////////////////////////////////////
   497 // signal support
   499 debug_only(static bool signal_sets_initialized = false);
   500 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   502 bool os::Linux::is_sig_ignored(int sig) {
   503       struct sigaction oact;
   504       sigaction(sig, (struct sigaction*)NULL, &oact);
   505       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   506                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   507       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   508            return true;
   509       else
   510            return false;
   511 }
   513 void os::Linux::signal_sets_init() {
   514   // Should also have an assertion stating we are still single-threaded.
   515   assert(!signal_sets_initialized, "Already initialized");
   516   // Fill in signals that are necessarily unblocked for all threads in
   517   // the VM. Currently, we unblock the following signals:
   518   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   519   //                         by -Xrs (=ReduceSignalUsage));
   520   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   521   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   522   // the dispositions or masks wrt these signals.
   523   // Programs embedding the VM that want to use the above signals for their
   524   // own purposes must, at this time, use the "-Xrs" option to prevent
   525   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   526   // (See bug 4345157, and other related bugs).
   527   // In reality, though, unblocking these signals is really a nop, since
   528   // these signals are not blocked by default.
   529   sigemptyset(&unblocked_sigs);
   530   sigemptyset(&allowdebug_blocked_sigs);
   531   sigaddset(&unblocked_sigs, SIGILL);
   532   sigaddset(&unblocked_sigs, SIGSEGV);
   533   sigaddset(&unblocked_sigs, SIGBUS);
   534   sigaddset(&unblocked_sigs, SIGFPE);
   535 #if defined(PPC64)
   536   sigaddset(&unblocked_sigs, SIGTRAP);
   537 #endif
   538   sigaddset(&unblocked_sigs, SR_signum);
   540   if (!ReduceSignalUsage) {
   541    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   542       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   543       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   544    }
   545    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   546       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   547       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   548    }
   549    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   550       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   551       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   552    }
   553   }
   554   // Fill in signals that are blocked by all but the VM thread.
   555   sigemptyset(&vm_sigs);
   556   if (!ReduceSignalUsage)
   557     sigaddset(&vm_sigs, BREAK_SIGNAL);
   558   debug_only(signal_sets_initialized = true);
   560 }
   562 // These are signals that are unblocked while a thread is running Java.
   563 // (For some reason, they get blocked by default.)
   564 sigset_t* os::Linux::unblocked_signals() {
   565   assert(signal_sets_initialized, "Not initialized");
   566   return &unblocked_sigs;
   567 }
   569 // These are the signals that are blocked while a (non-VM) thread is
   570 // running Java. Only the VM thread handles these signals.
   571 sigset_t* os::Linux::vm_signals() {
   572   assert(signal_sets_initialized, "Not initialized");
   573   return &vm_sigs;
   574 }
   576 // These are signals that are blocked during cond_wait to allow debugger in
   577 sigset_t* os::Linux::allowdebug_blocked_signals() {
   578   assert(signal_sets_initialized, "Not initialized");
   579   return &allowdebug_blocked_sigs;
   580 }
   582 void os::Linux::hotspot_sigmask(Thread* thread) {
   584   //Save caller's signal mask before setting VM signal mask
   585   sigset_t caller_sigmask;
   586   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   588   OSThread* osthread = thread->osthread();
   589   osthread->set_caller_sigmask(caller_sigmask);
   591   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   593   if (!ReduceSignalUsage) {
   594     if (thread->is_VM_thread()) {
   595       // Only the VM thread handles BREAK_SIGNAL ...
   596       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   597     } else {
   598       // ... all other threads block BREAK_SIGNAL
   599       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   600     }
   601   }
   602 }
   604 //////////////////////////////////////////////////////////////////////////////
   605 // detecting pthread library
   607 void os::Linux::libpthread_init() {
   608   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   609   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   610   // generic name for earlier versions.
   611   // Define macros here so we can build HotSpot on old systems.
   612 # ifndef _CS_GNU_LIBC_VERSION
   613 # define _CS_GNU_LIBC_VERSION 2
   614 # endif
   615 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   616 # define _CS_GNU_LIBPTHREAD_VERSION 3
   617 # endif
   619   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   620   if (n > 0) {
   621      char *str = (char *)malloc(n, mtInternal);
   622      confstr(_CS_GNU_LIBC_VERSION, str, n);
   623      os::Linux::set_glibc_version(str);
   624   } else {
   625      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   626      static char _gnu_libc_version[32];
   627      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   628               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   629      os::Linux::set_glibc_version(_gnu_libc_version);
   630   }
   632   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   633   if (n > 0) {
   634      char *str = (char *)malloc(n, mtInternal);
   635      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   636      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   637      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   638      // is the case. LinuxThreads has a hard limit on max number of threads.
   639      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   640      // On the other hand, NPTL does not have such a limit, sysconf()
   641      // will return -1 and errno is not changed. Check if it is really NPTL.
   642      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   643          strstr(str, "NPTL") &&
   644          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   645        free(str);
   646        os::Linux::set_libpthread_version("linuxthreads");
   647      } else {
   648        os::Linux::set_libpthread_version(str);
   649      }
   650   } else {
   651     // glibc before 2.3.2 only has LinuxThreads.
   652     os::Linux::set_libpthread_version("linuxthreads");
   653   }
   655   if (strstr(libpthread_version(), "NPTL")) {
   656      os::Linux::set_is_NPTL();
   657   } else {
   658      os::Linux::set_is_LinuxThreads();
   659   }
   661   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   662   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   663   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   664      os::Linux::set_is_floating_stack();
   665   }
   666 }
   668 /////////////////////////////////////////////////////////////////////////////
   669 // thread stack
   671 // Force Linux kernel to expand current thread stack. If "bottom" is close
   672 // to the stack guard, caller should block all signals.
   673 //
   674 // MAP_GROWSDOWN:
   675 //   A special mmap() flag that is used to implement thread stacks. It tells
   676 //   kernel that the memory region should extend downwards when needed. This
   677 //   allows early versions of LinuxThreads to only mmap the first few pages
   678 //   when creating a new thread. Linux kernel will automatically expand thread
   679 //   stack as needed (on page faults).
   680 //
   681 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   682 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   683 //   region, it's hard to tell if the fault is due to a legitimate stack
   684 //   access or because of reading/writing non-exist memory (e.g. buffer
   685 //   overrun). As a rule, if the fault happens below current stack pointer,
   686 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   687 //   application (see Linux kernel fault.c).
   688 //
   689 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   690 //   stack overflow detection.
   691 //
   692 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   693 //   not use this flag. However, the stack of initial thread is not created
   694 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   695 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   696 //   and then attach the thread to JVM.
   697 //
   698 // To get around the problem and allow stack banging on Linux, we need to
   699 // manually expand thread stack after receiving the SIGSEGV.
   700 //
   701 // There are two ways to expand thread stack to address "bottom", we used
   702 // both of them in JVM before 1.5:
   703 //   1. adjust stack pointer first so that it is below "bottom", and then
   704 //      touch "bottom"
   705 //   2. mmap() the page in question
   706 //
   707 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   708 // if current sp is already near the lower end of page 101, and we need to
   709 // call mmap() to map page 100, it is possible that part of the mmap() frame
   710 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   711 // That will destroy the mmap() frame and cause VM to crash.
   712 //
   713 // The following code works by adjusting sp first, then accessing the "bottom"
   714 // page to force a page fault. Linux kernel will then automatically expand the
   715 // stack mapping.
   716 //
   717 // _expand_stack_to() assumes its frame size is less than page size, which
   718 // should always be true if the function is not inlined.
   720 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   721 #define NOINLINE
   722 #else
   723 #define NOINLINE __attribute__ ((noinline))
   724 #endif
   726 static void _expand_stack_to(address bottom) NOINLINE;
   728 static void _expand_stack_to(address bottom) {
   729   address sp;
   730   size_t size;
   731   volatile char *p;
   733   // Adjust bottom to point to the largest address within the same page, it
   734   // gives us a one-page buffer if alloca() allocates slightly more memory.
   735   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   736   bottom += os::Linux::page_size() - 1;
   738   // sp might be slightly above current stack pointer; if that's the case, we
   739   // will alloca() a little more space than necessary, which is OK. Don't use
   740   // os::current_stack_pointer(), as its result can be slightly below current
   741   // stack pointer, causing us to not alloca enough to reach "bottom".
   742   sp = (address)&sp;
   744   if (sp > bottom) {
   745     size = sp - bottom;
   746     p = (volatile char *)alloca(size);
   747     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   748     p[0] = '\0';
   749   }
   750 }
   752 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   753   assert(t!=NULL, "just checking");
   754   assert(t->osthread()->expanding_stack(), "expand should be set");
   755   assert(t->stack_base() != NULL, "stack_base was not initialized");
   757   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   758     sigset_t mask_all, old_sigset;
   759     sigfillset(&mask_all);
   760     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   761     _expand_stack_to(addr);
   762     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   763     return true;
   764   }
   765   return false;
   766 }
   768 //////////////////////////////////////////////////////////////////////////////
   769 // create new thread
   771 static address highest_vm_reserved_address();
   773 // check if it's safe to start a new thread
   774 static bool _thread_safety_check(Thread* thread) {
   775   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   776     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   777     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   778     //   allocated (MAP_FIXED) from high address space. Every thread stack
   779     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   780     //   it to other values if they rebuild LinuxThreads).
   781     //
   782     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   783     // the memory region has already been mmap'ed. That means if we have too
   784     // many threads and/or very large heap, eventually thread stack will
   785     // collide with heap.
   786     //
   787     // Here we try to prevent heap/stack collision by comparing current
   788     // stack bottom with the highest address that has been mmap'ed by JVM
   789     // plus a safety margin for memory maps created by native code.
   790     //
   791     // This feature can be disabled by setting ThreadSafetyMargin to 0
   792     //
   793     if (ThreadSafetyMargin > 0) {
   794       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   796       // not safe if our stack extends below the safety margin
   797       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   798     } else {
   799       return true;
   800     }
   801   } else {
   802     // Floating stack LinuxThreads or NPTL:
   803     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   804     //   there's not enough space left, pthread_create() will fail. If we come
   805     //   here, that means enough space has been reserved for stack.
   806     return true;
   807   }
   808 }
   810 // Thread start routine for all newly created threads
   811 static void *java_start(Thread *thread) {
   812   // Try to randomize the cache line index of hot stack frames.
   813   // This helps when threads of the same stack traces evict each other's
   814   // cache lines. The threads can be either from the same JVM instance, or
   815   // from different JVM instances. The benefit is especially true for
   816   // processors with hyperthreading technology.
   817   static int counter = 0;
   818   int pid = os::current_process_id();
   819   alloca(((pid ^ counter++) & 7) * 128);
   821   ThreadLocalStorage::set_thread(thread);
   823   OSThread* osthread = thread->osthread();
   824   Monitor* sync = osthread->startThread_lock();
   826   // non floating stack LinuxThreads needs extra check, see above
   827   if (!_thread_safety_check(thread)) {
   828     // notify parent thread
   829     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   830     osthread->set_state(ZOMBIE);
   831     sync->notify_all();
   832     return NULL;
   833   }
   835   // thread_id is kernel thread id (similar to Solaris LWP id)
   836   osthread->set_thread_id(os::Linux::gettid());
   838   if (UseNUMA) {
   839     int lgrp_id = os::numa_get_group_id();
   840     if (lgrp_id != -1) {
   841       thread->set_lgrp_id(lgrp_id);
   842     }
   843   }
   844   // initialize signal mask for this thread
   845   os::Linux::hotspot_sigmask(thread);
   847   // initialize floating point control register
   848   os::Linux::init_thread_fpu_state();
   850   // handshaking with parent thread
   851   {
   852     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   854     // notify parent thread
   855     osthread->set_state(INITIALIZED);
   856     sync->notify_all();
   858     // wait until os::start_thread()
   859     while (osthread->get_state() == INITIALIZED) {
   860       sync->wait(Mutex::_no_safepoint_check_flag);
   861     }
   862   }
   864   // call one more level start routine
   865   thread->run();
   867   return 0;
   868 }
   870 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   871   assert(thread->osthread() == NULL, "caller responsible");
   873   // Allocate the OSThread object
   874   OSThread* osthread = new OSThread(NULL, NULL);
   875   if (osthread == NULL) {
   876     return false;
   877   }
   879   // set the correct thread state
   880   osthread->set_thread_type(thr_type);
   882   // Initial state is ALLOCATED but not INITIALIZED
   883   osthread->set_state(ALLOCATED);
   885   thread->set_osthread(osthread);
   887   // init thread attributes
   888   pthread_attr_t attr;
   889   pthread_attr_init(&attr);
   890   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   892   // stack size
   893   if (os::Linux::supports_variable_stack_size()) {
   894     // calculate stack size if it's not specified by caller
   895     if (stack_size == 0) {
   896       stack_size = os::Linux::default_stack_size(thr_type);
   898       switch (thr_type) {
   899       case os::java_thread:
   900         // Java threads use ThreadStackSize which default value can be
   901         // changed with the flag -Xss
   902         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   903         stack_size = JavaThread::stack_size_at_create();
   904         break;
   905       case os::compiler_thread:
   906         if (CompilerThreadStackSize > 0) {
   907           stack_size = (size_t)(CompilerThreadStackSize * K);
   908           break;
   909         } // else fall through:
   910           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   911       case os::vm_thread:
   912       case os::pgc_thread:
   913       case os::cgc_thread:
   914       case os::watcher_thread:
   915         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   916         break;
   917       }
   918     }
   920     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   921     pthread_attr_setstacksize(&attr, stack_size);
   922   } else {
   923     // let pthread_create() pick the default value.
   924   }
   926   // glibc guard page
   927   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   929   ThreadState state;
   931   {
   932     // Serialize thread creation if we are running with fixed stack LinuxThreads
   933     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   934     if (lock) {
   935       os::Linux::createThread_lock()->lock_without_safepoint_check();
   936     }
   938     pthread_t tid;
   939     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   941     pthread_attr_destroy(&attr);
   943     if (ret != 0) {
   944       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   945         perror("pthread_create()");
   946       }
   947       // Need to clean up stuff we've allocated so far
   948       thread->set_osthread(NULL);
   949       delete osthread;
   950       if (lock) os::Linux::createThread_lock()->unlock();
   951       return false;
   952     }
   954     // Store pthread info into the OSThread
   955     osthread->set_pthread_id(tid);
   957     // Wait until child thread is either initialized or aborted
   958     {
   959       Monitor* sync_with_child = osthread->startThread_lock();
   960       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   961       while ((state = osthread->get_state()) == ALLOCATED) {
   962         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   963       }
   964     }
   966     if (lock) {
   967       os::Linux::createThread_lock()->unlock();
   968     }
   969   }
   971   // Aborted due to thread limit being reached
   972   if (state == ZOMBIE) {
   973       thread->set_osthread(NULL);
   974       delete osthread;
   975       return false;
   976   }
   978   // The thread is returned suspended (in state INITIALIZED),
   979   // and is started higher up in the call chain
   980   assert(state == INITIALIZED, "race condition");
   981   return true;
   982 }
   984 /////////////////////////////////////////////////////////////////////////////
   985 // attach existing thread
   987 // bootstrap the main thread
   988 bool os::create_main_thread(JavaThread* thread) {
   989   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   990   return create_attached_thread(thread);
   991 }
   993 bool os::create_attached_thread(JavaThread* thread) {
   994 #ifdef ASSERT
   995     thread->verify_not_published();
   996 #endif
   998   // Allocate the OSThread object
   999   OSThread* osthread = new OSThread(NULL, NULL);
  1001   if (osthread == NULL) {
  1002     return false;
  1005   // Store pthread info into the OSThread
  1006   osthread->set_thread_id(os::Linux::gettid());
  1007   osthread->set_pthread_id(::pthread_self());
  1009   // initialize floating point control register
  1010   os::Linux::init_thread_fpu_state();
  1012   // Initial thread state is RUNNABLE
  1013   osthread->set_state(RUNNABLE);
  1015   thread->set_osthread(osthread);
  1017   if (UseNUMA) {
  1018     int lgrp_id = os::numa_get_group_id();
  1019     if (lgrp_id != -1) {
  1020       thread->set_lgrp_id(lgrp_id);
  1024   if (os::Linux::is_initial_thread()) {
  1025     // If current thread is initial thread, its stack is mapped on demand,
  1026     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
  1027     // the entire stack region to avoid SEGV in stack banging.
  1028     // It is also useful to get around the heap-stack-gap problem on SuSE
  1029     // kernel (see 4821821 for details). We first expand stack to the top
  1030     // of yellow zone, then enable stack yellow zone (order is significant,
  1031     // enabling yellow zone first will crash JVM on SuSE Linux), so there
  1032     // is no gap between the last two virtual memory regions.
  1034     JavaThread *jt = (JavaThread *)thread;
  1035     address addr = jt->stack_yellow_zone_base();
  1036     assert(addr != NULL, "initialization problem?");
  1037     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
  1039     osthread->set_expanding_stack();
  1040     os::Linux::manually_expand_stack(jt, addr);
  1041     osthread->clear_expanding_stack();
  1044   // initialize signal mask for this thread
  1045   // and save the caller's signal mask
  1046   os::Linux::hotspot_sigmask(thread);
  1048   return true;
  1051 void os::pd_start_thread(Thread* thread) {
  1052   OSThread * osthread = thread->osthread();
  1053   assert(osthread->get_state() != INITIALIZED, "just checking");
  1054   Monitor* sync_with_child = osthread->startThread_lock();
  1055   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
  1056   sync_with_child->notify();
  1059 // Free Linux resources related to the OSThread
  1060 void os::free_thread(OSThread* osthread) {
  1061   assert(osthread != NULL, "osthread not set");
  1063   if (Thread::current()->osthread() == osthread) {
  1064     // Restore caller's signal mask
  1065     sigset_t sigmask = osthread->caller_sigmask();
  1066     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
  1069   delete osthread;
  1072 //////////////////////////////////////////////////////////////////////////////
  1073 // thread local storage
  1075 int os::allocate_thread_local_storage() {
  1076   pthread_key_t key;
  1077   int rslt = pthread_key_create(&key, NULL);
  1078   assert(rslt == 0, "cannot allocate thread local storage");
  1079   return (int)key;
  1082 // Note: This is currently not used by VM, as we don't destroy TLS key
  1083 // on VM exit.
  1084 void os::free_thread_local_storage(int index) {
  1085   int rslt = pthread_key_delete((pthread_key_t)index);
  1086   assert(rslt == 0, "invalid index");
  1089 void os::thread_local_storage_at_put(int index, void* value) {
  1090   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1091   assert(rslt == 0, "pthread_setspecific failed");
  1094 extern "C" Thread* get_thread() {
  1095   return ThreadLocalStorage::thread();
  1098 //////////////////////////////////////////////////////////////////////////////
  1099 // initial thread
  1101 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1102 bool os::Linux::is_initial_thread(void) {
  1103   char dummy;
  1104   // If called before init complete, thread stack bottom will be null.
  1105   // Can be called if fatal error occurs before initialization.
  1106   if (initial_thread_stack_bottom() == NULL) return false;
  1107   assert(initial_thread_stack_bottom() != NULL &&
  1108          initial_thread_stack_size()   != 0,
  1109          "os::init did not locate initial thread's stack region");
  1110   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1111       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1112        return true;
  1113   else return false;
  1116 // Find the virtual memory area that contains addr
  1117 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1118   FILE *fp = fopen("/proc/self/maps", "r");
  1119   if (fp) {
  1120     address low, high;
  1121     while (!feof(fp)) {
  1122       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1123         if (low <= addr && addr < high) {
  1124            if (vma_low)  *vma_low  = low;
  1125            if (vma_high) *vma_high = high;
  1126            fclose (fp);
  1127            return true;
  1130       for (;;) {
  1131         int ch = fgetc(fp);
  1132         if (ch == EOF || ch == (int)'\n') break;
  1135     fclose(fp);
  1137   return false;
  1140 // Locate initial thread stack. This special handling of initial thread stack
  1141 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1142 // bogus value for initial thread.
  1143 void os::Linux::capture_initial_stack(size_t max_size) {
  1144   // stack size is the easy part, get it from RLIMIT_STACK
  1145   size_t stack_size;
  1146   struct rlimit rlim;
  1147   getrlimit(RLIMIT_STACK, &rlim);
  1148   stack_size = rlim.rlim_cur;
  1150   // 6308388: a bug in ld.so will relocate its own .data section to the
  1151   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1152   //   so we won't install guard page on ld.so's data section.
  1153   stack_size -= 2 * page_size();
  1155   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
  1156   //   7.1, in both cases we will get 2G in return value.
  1157   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
  1158   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
  1159   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
  1160   //   in case other parts in glibc still assumes 2M max stack size.
  1161   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
  1162   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
  1163   if (stack_size > 2 * K * K IA64_ONLY(*2))
  1164       stack_size = 2 * K * K IA64_ONLY(*2);
  1165   // Try to figure out where the stack base (top) is. This is harder.
  1166   //
  1167   // When an application is started, glibc saves the initial stack pointer in
  1168   // a global variable "__libc_stack_end", which is then used by system
  1169   // libraries. __libc_stack_end should be pretty close to stack top. The
  1170   // variable is available since the very early days. However, because it is
  1171   // a private interface, it could disappear in the future.
  1172   //
  1173   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1174   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1175   // stack top. Note that /proc may not exist if VM is running as a chroot
  1176   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1177   // /proc/<pid>/stat could change in the future (though unlikely).
  1178   //
  1179   // We try __libc_stack_end first. If that doesn't work, look for
  1180   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1181   // as a hint, which should work well in most cases.
  1183   uintptr_t stack_start;
  1185   // try __libc_stack_end first
  1186   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1187   if (p && *p) {
  1188     stack_start = *p;
  1189   } else {
  1190     // see if we can get the start_stack field from /proc/self/stat
  1191     FILE *fp;
  1192     int pid;
  1193     char state;
  1194     int ppid;
  1195     int pgrp;
  1196     int session;
  1197     int nr;
  1198     int tpgrp;
  1199     unsigned long flags;
  1200     unsigned long minflt;
  1201     unsigned long cminflt;
  1202     unsigned long majflt;
  1203     unsigned long cmajflt;
  1204     unsigned long utime;
  1205     unsigned long stime;
  1206     long cutime;
  1207     long cstime;
  1208     long prio;
  1209     long nice;
  1210     long junk;
  1211     long it_real;
  1212     uintptr_t start;
  1213     uintptr_t vsize;
  1214     intptr_t rss;
  1215     uintptr_t rsslim;
  1216     uintptr_t scodes;
  1217     uintptr_t ecode;
  1218     int i;
  1220     // Figure what the primordial thread stack base is. Code is inspired
  1221     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1222     // followed by command name surrounded by parentheses, state, etc.
  1223     char stat[2048];
  1224     int statlen;
  1226     fp = fopen("/proc/self/stat", "r");
  1227     if (fp) {
  1228       statlen = fread(stat, 1, 2047, fp);
  1229       stat[statlen] = '\0';
  1230       fclose(fp);
  1232       // Skip pid and the command string. Note that we could be dealing with
  1233       // weird command names, e.g. user could decide to rename java launcher
  1234       // to "java 1.4.2 :)", then the stat file would look like
  1235       //                1234 (java 1.4.2 :)) R ... ...
  1236       // We don't really need to know the command string, just find the last
  1237       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1238       char * s = strrchr(stat, ')');
  1240       i = 0;
  1241       if (s) {
  1242         // Skip blank chars
  1243         do s++; while (isspace(*s));
  1245 #define _UFM UINTX_FORMAT
  1246 #define _DFM INTX_FORMAT
  1248         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1249         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1250         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1251              &state,          /* 3  %c  */
  1252              &ppid,           /* 4  %d  */
  1253              &pgrp,           /* 5  %d  */
  1254              &session,        /* 6  %d  */
  1255              &nr,             /* 7  %d  */
  1256              &tpgrp,          /* 8  %d  */
  1257              &flags,          /* 9  %lu  */
  1258              &minflt,         /* 10 %lu  */
  1259              &cminflt,        /* 11 %lu  */
  1260              &majflt,         /* 12 %lu  */
  1261              &cmajflt,        /* 13 %lu  */
  1262              &utime,          /* 14 %lu  */
  1263              &stime,          /* 15 %lu  */
  1264              &cutime,         /* 16 %ld  */
  1265              &cstime,         /* 17 %ld  */
  1266              &prio,           /* 18 %ld  */
  1267              &nice,           /* 19 %ld  */
  1268              &junk,           /* 20 %ld  */
  1269              &it_real,        /* 21 %ld  */
  1270              &start,          /* 22 UINTX_FORMAT */
  1271              &vsize,          /* 23 UINTX_FORMAT */
  1272              &rss,            /* 24 INTX_FORMAT  */
  1273              &rsslim,         /* 25 UINTX_FORMAT */
  1274              &scodes,         /* 26 UINTX_FORMAT */
  1275              &ecode,          /* 27 UINTX_FORMAT */
  1276              &stack_start);   /* 28 UINTX_FORMAT */
  1279 #undef _UFM
  1280 #undef _DFM
  1282       if (i != 28 - 2) {
  1283          assert(false, "Bad conversion from /proc/self/stat");
  1284          // product mode - assume we are the initial thread, good luck in the
  1285          // embedded case.
  1286          warning("Can't detect initial thread stack location - bad conversion");
  1287          stack_start = (uintptr_t) &rlim;
  1289     } else {
  1290       // For some reason we can't open /proc/self/stat (for example, running on
  1291       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1292       // most cases, so don't abort:
  1293       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1294       stack_start = (uintptr_t) &rlim;
  1298   // Now we have a pointer (stack_start) very close to the stack top, the
  1299   // next thing to do is to figure out the exact location of stack top. We
  1300   // can find out the virtual memory area that contains stack_start by
  1301   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1302   // and its upper limit is the real stack top. (again, this would fail if
  1303   // running inside chroot, because /proc may not exist.)
  1305   uintptr_t stack_top;
  1306   address low, high;
  1307   if (find_vma((address)stack_start, &low, &high)) {
  1308     // success, "high" is the true stack top. (ignore "low", because initial
  1309     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1310     stack_top = (uintptr_t)high;
  1311   } else {
  1312     // failed, likely because /proc/self/maps does not exist
  1313     warning("Can't detect initial thread stack location - find_vma failed");
  1314     // best effort: stack_start is normally within a few pages below the real
  1315     // stack top, use it as stack top, and reduce stack size so we won't put
  1316     // guard page outside stack.
  1317     stack_top = stack_start;
  1318     stack_size -= 16 * page_size();
  1321   // stack_top could be partially down the page so align it
  1322   stack_top = align_size_up(stack_top, page_size());
  1324   if (max_size && stack_size > max_size) {
  1325      _initial_thread_stack_size = max_size;
  1326   } else {
  1327      _initial_thread_stack_size = stack_size;
  1330   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1331   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1334 ////////////////////////////////////////////////////////////////////////////////
  1335 // time support
  1337 // Time since start-up in seconds to a fine granularity.
  1338 // Used by VMSelfDestructTimer and the MemProfiler.
  1339 double os::elapsedTime() {
  1341   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
  1344 jlong os::elapsed_counter() {
  1345   return javaTimeNanos() - initial_time_count;
  1348 jlong os::elapsed_frequency() {
  1349   return NANOSECS_PER_SEC; // nanosecond resolution
  1352 bool os::supports_vtime() { return true; }
  1353 bool os::enable_vtime()   { return false; }
  1354 bool os::vtime_enabled()  { return false; }
  1356 double os::elapsedVTime() {
  1357   struct rusage usage;
  1358   int retval = getrusage(RUSAGE_THREAD, &usage);
  1359   if (retval == 0) {
  1360     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
  1361   } else {
  1362     // better than nothing, but not much
  1363     return elapsedTime();
  1367 jlong os::javaTimeMillis() {
  1368   timeval time;
  1369   int status = gettimeofday(&time, NULL);
  1370   assert(status != -1, "linux error");
  1371   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1374 #ifndef CLOCK_MONOTONIC
  1375 #define CLOCK_MONOTONIC (1)
  1376 #endif
  1378 void os::Linux::clock_init() {
  1379   // we do dlopen's in this particular order due to bug in linux
  1380   // dynamical loader (see 6348968) leading to crash on exit
  1381   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1382   if (handle == NULL) {
  1383     handle = dlopen("librt.so", RTLD_LAZY);
  1386   if (handle) {
  1387     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1388            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1389     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1390            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1391     if (clock_getres_func && clock_gettime_func) {
  1392       // See if monotonic clock is supported by the kernel. Note that some
  1393       // early implementations simply return kernel jiffies (updated every
  1394       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1395       // for nano time (though the monotonic property is still nice to have).
  1396       // It's fixed in newer kernels, however clock_getres() still returns
  1397       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1398       // resolution for now. Hopefully as people move to new kernels, this
  1399       // won't be a problem.
  1400       struct timespec res;
  1401       struct timespec tp;
  1402       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1403           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1404         // yes, monotonic clock is supported
  1405         _clock_gettime = clock_gettime_func;
  1406         return;
  1407       } else {
  1408         // close librt if there is no monotonic clock
  1409         dlclose(handle);
  1413   warning("No monotonic clock was available - timed services may " \
  1414           "be adversely affected if the time-of-day clock changes");
  1417 #ifndef SYS_clock_getres
  1419 #if defined(IA32) || defined(AMD64)
  1420 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1421 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1422 #else
  1423 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1424 #define sys_clock_getres(x,y)  -1
  1425 #endif
  1427 #else
  1428 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1429 #endif
  1431 void os::Linux::fast_thread_clock_init() {
  1432   if (!UseLinuxPosixThreadCPUClocks) {
  1433     return;
  1435   clockid_t clockid;
  1436   struct timespec tp;
  1437   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1438       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1440   // Switch to using fast clocks for thread cpu time if
  1441   // the sys_clock_getres() returns 0 error code.
  1442   // Note, that some kernels may support the current thread
  1443   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1444   // returned by the pthread_getcpuclockid().
  1445   // If the fast Posix clocks are supported then the sys_clock_getres()
  1446   // must return at least tp.tv_sec == 0 which means a resolution
  1447   // better than 1 sec. This is extra check for reliability.
  1449   if(pthread_getcpuclockid_func &&
  1450      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1451      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1453     _supports_fast_thread_cpu_time = true;
  1454     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1458 jlong os::javaTimeNanos() {
  1459   if (Linux::supports_monotonic_clock()) {
  1460     struct timespec tp;
  1461     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1462     assert(status == 0, "gettime error");
  1463     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1464     return result;
  1465   } else {
  1466     timeval time;
  1467     int status = gettimeofday(&time, NULL);
  1468     assert(status != -1, "linux error");
  1469     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1470     return 1000 * usecs;
  1474 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1475   if (Linux::supports_monotonic_clock()) {
  1476     info_ptr->max_value = ALL_64_BITS;
  1478     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1479     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1480     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1481   } else {
  1482     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1483     info_ptr->max_value = ALL_64_BITS;
  1485     // gettimeofday is a real time clock so it skips
  1486     info_ptr->may_skip_backward = true;
  1487     info_ptr->may_skip_forward = true;
  1490   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1493 // Return the real, user, and system times in seconds from an
  1494 // arbitrary fixed point in the past.
  1495 bool os::getTimesSecs(double* process_real_time,
  1496                       double* process_user_time,
  1497                       double* process_system_time) {
  1498   struct tms ticks;
  1499   clock_t real_ticks = times(&ticks);
  1501   if (real_ticks == (clock_t) (-1)) {
  1502     return false;
  1503   } else {
  1504     double ticks_per_second = (double) clock_tics_per_sec;
  1505     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1506     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1507     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1509     return true;
  1514 char * os::local_time_string(char *buf, size_t buflen) {
  1515   struct tm t;
  1516   time_t long_time;
  1517   time(&long_time);
  1518   localtime_r(&long_time, &t);
  1519   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1520                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1521                t.tm_hour, t.tm_min, t.tm_sec);
  1522   return buf;
  1525 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1526   return localtime_r(clock, res);
  1529 ////////////////////////////////////////////////////////////////////////////////
  1530 // runtime exit support
  1532 // Note: os::shutdown() might be called very early during initialization, or
  1533 // called from signal handler. Before adding something to os::shutdown(), make
  1534 // sure it is async-safe and can handle partially initialized VM.
  1535 void os::shutdown() {
  1537   // allow PerfMemory to attempt cleanup of any persistent resources
  1538   perfMemory_exit();
  1540   // needs to remove object in file system
  1541   AttachListener::abort();
  1543   // flush buffered output, finish log files
  1544   ostream_abort();
  1546   // Check for abort hook
  1547   abort_hook_t abort_hook = Arguments::abort_hook();
  1548   if (abort_hook != NULL) {
  1549     abort_hook();
  1554 // Note: os::abort() might be called very early during initialization, or
  1555 // called from signal handler. Before adding something to os::abort(), make
  1556 // sure it is async-safe and can handle partially initialized VM.
  1557 void os::abort(bool dump_core) {
  1558   os::shutdown();
  1559   if (dump_core) {
  1560 #ifndef PRODUCT
  1561     fdStream out(defaultStream::output_fd());
  1562     out.print_raw("Current thread is ");
  1563     char buf[16];
  1564     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1565     out.print_raw_cr(buf);
  1566     out.print_raw_cr("Dumping core ...");
  1567 #endif
  1568     ::abort(); // dump core
  1571   ::exit(1);
  1574 // Die immediately, no exit hook, no abort hook, no cleanup.
  1575 void os::die() {
  1576   // _exit() on LinuxThreads only kills current thread
  1577   ::abort();
  1580 // unused on linux for now.
  1581 void os::set_error_file(const char *logfile) {}
  1584 // This method is a copy of JDK's sysGetLastErrorString
  1585 // from src/solaris/hpi/src/system_md.c
  1587 size_t os::lasterror(char *buf, size_t len) {
  1589   if (errno == 0)  return 0;
  1591   const char *s = ::strerror(errno);
  1592   size_t n = ::strlen(s);
  1593   if (n >= len) {
  1594     n = len - 1;
  1596   ::strncpy(buf, s, n);
  1597   buf[n] = '\0';
  1598   return n;
  1601 intx os::current_thread_id() { return (intx)pthread_self(); }
  1602 int os::current_process_id() {
  1604   // Under the old linux thread library, linux gives each thread
  1605   // its own process id. Because of this each thread will return
  1606   // a different pid if this method were to return the result
  1607   // of getpid(2). Linux provides no api that returns the pid
  1608   // of the launcher thread for the vm. This implementation
  1609   // returns a unique pid, the pid of the launcher thread
  1610   // that starts the vm 'process'.
  1612   // Under the NPTL, getpid() returns the same pid as the
  1613   // launcher thread rather than a unique pid per thread.
  1614   // Use gettid() if you want the old pre NPTL behaviour.
  1616   // if you are looking for the result of a call to getpid() that
  1617   // returns a unique pid for the calling thread, then look at the
  1618   // OSThread::thread_id() method in osThread_linux.hpp file
  1620   return (int)(_initial_pid ? _initial_pid : getpid());
  1623 // DLL functions
  1625 const char* os::dll_file_extension() { return ".so"; }
  1627 // This must be hard coded because it's the system's temporary
  1628 // directory not the java application's temp directory, ala java.io.tmpdir.
  1629 const char* os::get_temp_directory() { return "/tmp"; }
  1631 static bool file_exists(const char* filename) {
  1632   struct stat statbuf;
  1633   if (filename == NULL || strlen(filename) == 0) {
  1634     return false;
  1636   return os::stat(filename, &statbuf) == 0;
  1639 bool os::dll_build_name(char* buffer, size_t buflen,
  1640                         const char* pname, const char* fname) {
  1641   bool retval = false;
  1642   // Copied from libhpi
  1643   const size_t pnamelen = pname ? strlen(pname) : 0;
  1645   // Return error on buffer overflow.
  1646   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1647     return retval;
  1650   if (pnamelen == 0) {
  1651     snprintf(buffer, buflen, "lib%s.so", fname);
  1652     retval = true;
  1653   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1654     int n;
  1655     char** pelements = split_path(pname, &n);
  1656     if (pelements == NULL) {
  1657       return false;
  1659     for (int i = 0 ; i < n ; i++) {
  1660       // Really shouldn't be NULL, but check can't hurt
  1661       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1662         continue; // skip the empty path values
  1664       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1665       if (file_exists(buffer)) {
  1666         retval = true;
  1667         break;
  1670     // release the storage
  1671     for (int i = 0 ; i < n ; i++) {
  1672       if (pelements[i] != NULL) {
  1673         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1676     if (pelements != NULL) {
  1677       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1679   } else {
  1680     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1681     retval = true;
  1683   return retval;
  1686 // check if addr is inside libjvm.so
  1687 bool os::address_is_in_vm(address addr) {
  1688   static address libjvm_base_addr;
  1689   Dl_info dlinfo;
  1691   if (libjvm_base_addr == NULL) {
  1692     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
  1693       libjvm_base_addr = (address)dlinfo.dli_fbase;
  1695     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1698   if (dladdr((void *)addr, &dlinfo) != 0) {
  1699     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1702   return false;
  1705 bool os::dll_address_to_function_name(address addr, char *buf,
  1706                                       int buflen, int *offset) {
  1707   // buf is not optional, but offset is optional
  1708   assert(buf != NULL, "sanity check");
  1710   Dl_info dlinfo;
  1712   if (dladdr((void*)addr, &dlinfo) != 0) {
  1713     // see if we have a matching symbol
  1714     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
  1715       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1716         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1718       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1719       return true;
  1721     // no matching symbol so try for just file info
  1722     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
  1723       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1724                           buf, buflen, offset, dlinfo.dli_fname)) {
  1725         return true;
  1730   buf[0] = '\0';
  1731   if (offset != NULL) *offset = -1;
  1732   return false;
  1735 struct _address_to_library_name {
  1736   address addr;          // input : memory address
  1737   size_t  buflen;        //         size of fname
  1738   char*   fname;         // output: library name
  1739   address base;          //         library base addr
  1740 };
  1742 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1743                                             size_t size, void *data) {
  1744   int i;
  1745   bool found = false;
  1746   address libbase = NULL;
  1747   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1749   // iterate through all loadable segments
  1750   for (i = 0; i < info->dlpi_phnum; i++) {
  1751     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1752     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1753       // base address of a library is the lowest address of its loaded
  1754       // segments.
  1755       if (libbase == NULL || libbase > segbase) {
  1756         libbase = segbase;
  1758       // see if 'addr' is within current segment
  1759       if (segbase <= d->addr &&
  1760           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1761         found = true;
  1766   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1767   // so dll_address_to_library_name() can fall through to use dladdr() which
  1768   // can figure out executable name from argv[0].
  1769   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1770     d->base = libbase;
  1771     if (d->fname) {
  1772       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1774     return 1;
  1776   return 0;
  1779 bool os::dll_address_to_library_name(address addr, char* buf,
  1780                                      int buflen, int* offset) {
  1781   // buf is not optional, but offset is optional
  1782   assert(buf != NULL, "sanity check");
  1784   Dl_info dlinfo;
  1785   struct _address_to_library_name data;
  1787   // There is a bug in old glibc dladdr() implementation that it could resolve
  1788   // to wrong library name if the .so file has a base address != NULL. Here
  1789   // we iterate through the program headers of all loaded libraries to find
  1790   // out which library 'addr' really belongs to. This workaround can be
  1791   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1792   data.addr = addr;
  1793   data.fname = buf;
  1794   data.buflen = buflen;
  1795   data.base = NULL;
  1796   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1798   if (rslt) {
  1799      // buf already contains library name
  1800      if (offset) *offset = addr - data.base;
  1801      return true;
  1803   if (dladdr((void*)addr, &dlinfo) != 0) {
  1804     if (dlinfo.dli_fname != NULL) {
  1805       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1807     if (dlinfo.dli_fbase != NULL && offset != NULL) {
  1808       *offset = addr - (address)dlinfo.dli_fbase;
  1810     return true;
  1813   buf[0] = '\0';
  1814   if (offset) *offset = -1;
  1815   return false;
  1818   // Loads .dll/.so and
  1819   // in case of error it checks if .dll/.so was built for the
  1820   // same architecture as Hotspot is running on
  1823 // Remember the stack's state. The Linux dynamic linker will change
  1824 // the stack to 'executable' at most once, so we must safepoint only once.
  1825 bool os::Linux::_stack_is_executable = false;
  1827 // VM operation that loads a library.  This is necessary if stack protection
  1828 // of the Java stacks can be lost during loading the library.  If we
  1829 // do not stop the Java threads, they can stack overflow before the stacks
  1830 // are protected again.
  1831 class VM_LinuxDllLoad: public VM_Operation {
  1832  private:
  1833   const char *_filename;
  1834   char *_ebuf;
  1835   int _ebuflen;
  1836   void *_lib;
  1837  public:
  1838   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
  1839     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
  1840   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
  1841   void doit() {
  1842     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
  1843     os::Linux::_stack_is_executable = true;
  1845   void* loaded_library() { return _lib; }
  1846 };
  1848 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1850   void * result = NULL;
  1851   bool load_attempted = false;
  1853   // Check whether the library to load might change execution rights
  1854   // of the stack. If they are changed, the protection of the stack
  1855   // guard pages will be lost. We need a safepoint to fix this.
  1856   //
  1857   // See Linux man page execstack(8) for more info.
  1858   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
  1859     ElfFile ef(filename);
  1860     if (!ef.specifies_noexecstack()) {
  1861       if (!is_init_completed()) {
  1862         os::Linux::_stack_is_executable = true;
  1863         // This is OK - No Java threads have been created yet, and hence no
  1864         // stack guard pages to fix.
  1865         //
  1866         // This should happen only when you are building JDK7 using a very
  1867         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
  1868         //
  1869         // Dynamic loader will make all stacks executable after
  1870         // this function returns, and will not do that again.
  1871         assert(Threads::first() == NULL, "no Java threads should exist yet.");
  1872       } else {
  1873         warning("You have loaded library %s which might have disabled stack guard. "
  1874                 "The VM will try to fix the stack guard now.\n"
  1875                 "It's highly recommended that you fix the library with "
  1876                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
  1877                 filename);
  1879         assert(Thread::current()->is_Java_thread(), "must be Java thread");
  1880         JavaThread *jt = JavaThread::current();
  1881         if (jt->thread_state() != _thread_in_native) {
  1882           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
  1883           // that requires ExecStack. Cannot enter safe point. Let's give up.
  1884           warning("Unable to fix stack guard. Giving up.");
  1885         } else {
  1886           if (!LoadExecStackDllInVMThread) {
  1887             // This is for the case where the DLL has an static
  1888             // constructor function that executes JNI code. We cannot
  1889             // load such DLLs in the VMThread.
  1890             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1893           ThreadInVMfromNative tiv(jt);
  1894           debug_only(VMNativeEntryWrapper vew;)
  1896           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
  1897           VMThread::execute(&op);
  1898           if (LoadExecStackDllInVMThread) {
  1899             result = op.loaded_library();
  1901           load_attempted = true;
  1907   if (!load_attempted) {
  1908     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1911   if (result != NULL) {
  1912     // Successful loading
  1913     return result;
  1916   Elf32_Ehdr elf_head;
  1917   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1918   char* diag_msg_buf=ebuf+strlen(ebuf);
  1920   if (diag_msg_max_length==0) {
  1921     // No more space in ebuf for additional diagnostics message
  1922     return NULL;
  1926   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1928   if (file_descriptor < 0) {
  1929     // Can't open library, report dlerror() message
  1930     return NULL;
  1933   bool failed_to_read_elf_head=
  1934     (sizeof(elf_head)!=
  1935         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1937   ::close(file_descriptor);
  1938   if (failed_to_read_elf_head) {
  1939     // file i/o error - report dlerror() msg
  1940     return NULL;
  1943   typedef struct {
  1944     Elf32_Half  code;         // Actual value as defined in elf.h
  1945     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1946     char        elf_class;    // 32 or 64 bit
  1947     char        endianess;    // MSB or LSB
  1948     char*       name;         // String representation
  1949   } arch_t;
  1951   #ifndef EM_486
  1952   #define EM_486          6               /* Intel 80486 */
  1953   #endif
  1955   static const arch_t arch_array[]={
  1956     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1957     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1958     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1959     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1960     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1961     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1962     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1963     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1964     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1965     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1966     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1967     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1968     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1969     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1970     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1971     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1972   };
  1974   #if  (defined IA32)
  1975     static  Elf32_Half running_arch_code=EM_386;
  1976   #elif   (defined AMD64)
  1977     static  Elf32_Half running_arch_code=EM_X86_64;
  1978   #elif  (defined IA64)
  1979     static  Elf32_Half running_arch_code=EM_IA_64;
  1980   #elif  (defined __sparc) && (defined _LP64)
  1981     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1982   #elif  (defined __sparc) && (!defined _LP64)
  1983     static  Elf32_Half running_arch_code=EM_SPARC;
  1984   #elif  (defined __powerpc64__)
  1985     static  Elf32_Half running_arch_code=EM_PPC64;
  1986   #elif  (defined __powerpc__)
  1987     static  Elf32_Half running_arch_code=EM_PPC;
  1988   #elif  (defined ARM)
  1989     static  Elf32_Half running_arch_code=EM_ARM;
  1990   #elif  (defined S390)
  1991     static  Elf32_Half running_arch_code=EM_S390;
  1992   #elif  (defined ALPHA)
  1993     static  Elf32_Half running_arch_code=EM_ALPHA;
  1994   #elif  (defined MIPSEL)
  1995     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1996   #elif  (defined PARISC)
  1997     static  Elf32_Half running_arch_code=EM_PARISC;
  1998   #elif  (defined MIPS)
  1999     static  Elf32_Half running_arch_code=EM_MIPS;
  2000   #elif  (defined M68K)
  2001     static  Elf32_Half running_arch_code=EM_68K;
  2002   #else
  2003     #error Method os::dll_load requires that one of following is defined:\
  2004          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  2005   #endif
  2007   // Identify compatability class for VM's architecture and library's architecture
  2008   // Obtain string descriptions for architectures
  2010   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  2011   int running_arch_index=-1;
  2013   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  2014     if (running_arch_code == arch_array[i].code) {
  2015       running_arch_index    = i;
  2017     if (lib_arch.code == arch_array[i].code) {
  2018       lib_arch.compat_class = arch_array[i].compat_class;
  2019       lib_arch.name         = arch_array[i].name;
  2023   assert(running_arch_index != -1,
  2024     "Didn't find running architecture code (running_arch_code) in arch_array");
  2025   if (running_arch_index == -1) {
  2026     // Even though running architecture detection failed
  2027     // we may still continue with reporting dlerror() message
  2028     return NULL;
  2031   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  2032     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  2033     return NULL;
  2036 #ifndef S390
  2037   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  2038     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  2039     return NULL;
  2041 #endif // !S390
  2043   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  2044     if ( lib_arch.name!=NULL ) {
  2045       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2046         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  2047         lib_arch.name, arch_array[running_arch_index].name);
  2048     } else {
  2049       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2050       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  2051         lib_arch.code,
  2052         arch_array[running_arch_index].name);
  2056   return NULL;
  2059 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
  2060   void * result = ::dlopen(filename, RTLD_LAZY);
  2061   if (result == NULL) {
  2062     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
  2063     ebuf[ebuflen-1] = '\0';
  2065   return result;
  2068 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
  2069   void * result = NULL;
  2070   if (LoadExecStackDllInVMThread) {
  2071     result = dlopen_helper(filename, ebuf, ebuflen);
  2074   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
  2075   // library that requires an executable stack, or which does not have this
  2076   // stack attribute set, dlopen changes the stack attribute to executable. The
  2077   // read protection of the guard pages gets lost.
  2078   //
  2079   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
  2080   // may have been queued at the same time.
  2082   if (!_stack_is_executable) {
  2083     JavaThread *jt = Threads::first();
  2085     while (jt) {
  2086       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
  2087           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
  2088         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
  2089                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
  2090           warning("Attempt to reguard stack yellow zone failed.");
  2093       jt = jt->next();
  2097   return result;
  2100 /*
  2101  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  2102  * chances are you might want to run the generated bits against glibc-2.0
  2103  * libdl.so, so always use locking for any version of glibc.
  2104  */
  2105 void* os::dll_lookup(void* handle, const char* name) {
  2106   pthread_mutex_lock(&dl_mutex);
  2107   void* res = dlsym(handle, name);
  2108   pthread_mutex_unlock(&dl_mutex);
  2109   return res;
  2112 void* os::get_default_process_handle() {
  2113   return (void*)::dlopen(NULL, RTLD_LAZY);
  2116 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2117   int fd = ::open(filename, O_RDONLY);
  2118   if (fd == -1) {
  2119      return false;
  2122   char buf[32];
  2123   int bytes;
  2124   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2125     st->print_raw(buf, bytes);
  2128   ::close(fd);
  2130   return true;
  2133 void os::print_dll_info(outputStream *st) {
  2134    st->print_cr("Dynamic libraries:");
  2136    char fname[32];
  2137    pid_t pid = os::Linux::gettid();
  2139    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  2141    if (!_print_ascii_file(fname, st)) {
  2142      st->print("Can not get library information for pid = %d\n", pid);
  2146 void os::print_os_info_brief(outputStream* st) {
  2147   os::Linux::print_distro_info(st);
  2149   os::Posix::print_uname_info(st);
  2151   os::Linux::print_libversion_info(st);
  2155 void os::print_os_info(outputStream* st) {
  2156   st->print("OS:");
  2158   os::Linux::print_distro_info(st);
  2160   os::Posix::print_uname_info(st);
  2162   // Print warning if unsafe chroot environment detected
  2163   if (unsafe_chroot_detected) {
  2164     st->print("WARNING!! ");
  2165     st->print_cr(unstable_chroot_error);
  2168   os::Linux::print_libversion_info(st);
  2170   os::Posix::print_rlimit_info(st);
  2172   os::Posix::print_load_average(st);
  2174   os::Linux::print_full_memory_info(st);
  2177 // Try to identify popular distros.
  2178 // Most Linux distributions have a /etc/XXX-release file, which contains
  2179 // the OS version string. Newer Linux distributions have a /etc/lsb-release
  2180 // file that also contains the OS version string. Some have more than one
  2181 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
  2182 // /etc/redhat-release.), so the order is important.
  2183 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
  2184 // their own specific XXX-release file as well as a redhat-release file.
  2185 // Because of this the XXX-release file needs to be searched for before the
  2186 // redhat-release file.
  2187 // Since Red Hat has a lsb-release file that is not very descriptive the
  2188 // search for redhat-release needs to be before lsb-release.
  2189 // Since the lsb-release file is the new standard it needs to be searched
  2190 // before the older style release files.
  2191 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
  2192 // next to last resort.  The os-release file is a new standard that contains
  2193 // distribution information and the system-release file seems to be an old
  2194 // standard that has been replaced by the lsb-release and os-release files.
  2195 // Searching for the debian_version file is the last resort.  It contains
  2196 // an informative string like "6.0.6" or "wheezy/sid". Because of this
  2197 // "Debian " is printed before the contents of the debian_version file.
  2198 void os::Linux::print_distro_info(outputStream* st) {
  2199    if (!_print_ascii_file("/etc/oracle-release", st) &&
  2200        !_print_ascii_file("/etc/mandriva-release", st) &&
  2201        !_print_ascii_file("/etc/mandrake-release", st) &&
  2202        !_print_ascii_file("/etc/sun-release", st) &&
  2203        !_print_ascii_file("/etc/redhat-release", st) &&
  2204        !_print_ascii_file("/etc/lsb-release", st) &&
  2205        !_print_ascii_file("/etc/SuSE-release", st) &&
  2206        !_print_ascii_file("/etc/turbolinux-release", st) &&
  2207        !_print_ascii_file("/etc/gentoo-release", st) &&
  2208        !_print_ascii_file("/etc/ltib-release", st) &&
  2209        !_print_ascii_file("/etc/angstrom-version", st) &&
  2210        !_print_ascii_file("/etc/system-release", st) &&
  2211        !_print_ascii_file("/etc/os-release", st)) {
  2213        if (file_exists("/etc/debian_version")) {
  2214          st->print("Debian ");
  2215          _print_ascii_file("/etc/debian_version", st);
  2216        } else {
  2217          st->print("Linux");
  2220    st->cr();
  2223 void os::Linux::print_libversion_info(outputStream* st) {
  2224   // libc, pthread
  2225   st->print("libc:");
  2226   st->print(os::Linux::glibc_version()); st->print(" ");
  2227   st->print(os::Linux::libpthread_version()); st->print(" ");
  2228   if (os::Linux::is_LinuxThreads()) {
  2229      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2231   st->cr();
  2234 void os::Linux::print_full_memory_info(outputStream* st) {
  2235    st->print("\n/proc/meminfo:\n");
  2236    _print_ascii_file("/proc/meminfo", st);
  2237    st->cr();
  2240 void os::print_memory_info(outputStream* st) {
  2242   st->print("Memory:");
  2243   st->print(" %dk page", os::vm_page_size()>>10);
  2245   // values in struct sysinfo are "unsigned long"
  2246   struct sysinfo si;
  2247   sysinfo(&si);
  2249   st->print(", physical " UINT64_FORMAT "k",
  2250             os::physical_memory() >> 10);
  2251   st->print("(" UINT64_FORMAT "k free)",
  2252             os::available_memory() >> 10);
  2253   st->print(", swap " UINT64_FORMAT "k",
  2254             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2255   st->print("(" UINT64_FORMAT "k free)",
  2256             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2257   st->cr();
  2260 void os::pd_print_cpu_info(outputStream* st) {
  2261   st->print("\n/proc/cpuinfo:\n");
  2262   if (!_print_ascii_file("/proc/cpuinfo", st)) {
  2263     st->print("  <Not Available>");
  2265   st->cr();
  2268 void os::print_siginfo(outputStream* st, void* siginfo) {
  2269   const siginfo_t* si = (const siginfo_t*)siginfo;
  2271   os::Posix::print_siginfo_brief(st, si);
  2273   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2274       UseSharedSpaces) {
  2275     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2276     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2277       st->print("\n\nError accessing class data sharing archive."   \
  2278                 " Mapped file inaccessible during execution, "      \
  2279                 " possible disk/network problem.");
  2282   st->cr();
  2286 static void print_signal_handler(outputStream* st, int sig,
  2287                                  char* buf, size_t buflen);
  2289 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2290   st->print_cr("Signal Handlers:");
  2291   print_signal_handler(st, SIGSEGV, buf, buflen);
  2292   print_signal_handler(st, SIGBUS , buf, buflen);
  2293   print_signal_handler(st, SIGFPE , buf, buflen);
  2294   print_signal_handler(st, SIGPIPE, buf, buflen);
  2295   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2296   print_signal_handler(st, SIGILL , buf, buflen);
  2297   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2298   print_signal_handler(st, SR_signum, buf, buflen);
  2299   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2300   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2301   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2302   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2303 #if defined(PPC64)
  2304   print_signal_handler(st, SIGTRAP, buf, buflen);
  2305 #endif
  2308 static char saved_jvm_path[MAXPATHLEN] = {0};
  2310 // Find the full path to the current module, libjvm.so
  2311 void os::jvm_path(char *buf, jint buflen) {
  2312   // Error checking.
  2313   if (buflen < MAXPATHLEN) {
  2314     assert(false, "must use a large-enough buffer");
  2315     buf[0] = '\0';
  2316     return;
  2318   // Lazy resolve the path to current module.
  2319   if (saved_jvm_path[0] != 0) {
  2320     strcpy(buf, saved_jvm_path);
  2321     return;
  2324   char dli_fname[MAXPATHLEN];
  2325   bool ret = dll_address_to_library_name(
  2326                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2327                 dli_fname, sizeof(dli_fname), NULL);
  2328   assert(ret, "cannot locate libjvm");
  2329   char *rp = NULL;
  2330   if (ret && dli_fname[0] != '\0') {
  2331     rp = realpath(dli_fname, buf);
  2333   if (rp == NULL)
  2334     return;
  2336   if (Arguments::created_by_gamma_launcher()) {
  2337     // Support for the gamma launcher.  Typical value for buf is
  2338     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2339     // the right place in the string, then assume we are installed in a JDK and
  2340     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2341     // up the path so it looks like libjvm.so is installed there (append a
  2342     // fake suffix hotspot/libjvm.so).
  2343     const char *p = buf + strlen(buf) - 1;
  2344     for (int count = 0; p > buf && count < 5; ++count) {
  2345       for (--p; p > buf && *p != '/'; --p)
  2346         /* empty */ ;
  2349     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2350       // Look for JAVA_HOME in the environment.
  2351       char* java_home_var = ::getenv("JAVA_HOME");
  2352       if (java_home_var != NULL && java_home_var[0] != 0) {
  2353         char* jrelib_p;
  2354         int len;
  2356         // Check the current module name "libjvm.so".
  2357         p = strrchr(buf, '/');
  2358         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2360         rp = realpath(java_home_var, buf);
  2361         if (rp == NULL)
  2362           return;
  2364         // determine if this is a legacy image or modules image
  2365         // modules image doesn't have "jre" subdirectory
  2366         len = strlen(buf);
  2367         jrelib_p = buf + len;
  2368         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2369         if (0 != access(buf, F_OK)) {
  2370           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2373         if (0 == access(buf, F_OK)) {
  2374           // Use current module name "libjvm.so"
  2375           len = strlen(buf);
  2376           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
  2377         } else {
  2378           // Go back to path of .so
  2379           rp = realpath(dli_fname, buf);
  2380           if (rp == NULL)
  2381             return;
  2387   strcpy(saved_jvm_path, buf);
  2390 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2391   // no prefix required, not even "_"
  2394 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2395   // no suffix required
  2398 ////////////////////////////////////////////////////////////////////////////////
  2399 // sun.misc.Signal support
  2401 static volatile jint sigint_count = 0;
  2403 static void
  2404 UserHandler(int sig, void *siginfo, void *context) {
  2405   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2406   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2407   // don't want to flood the manager thread with sem_post requests.
  2408   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2409       return;
  2411   // Ctrl-C is pressed during error reporting, likely because the error
  2412   // handler fails to abort. Let VM die immediately.
  2413   if (sig == SIGINT && is_error_reported()) {
  2414      os::die();
  2417   os::signal_notify(sig);
  2420 void* os::user_handler() {
  2421   return CAST_FROM_FN_PTR(void*, UserHandler);
  2424 class Semaphore : public StackObj {
  2425   public:
  2426     Semaphore();
  2427     ~Semaphore();
  2428     void signal();
  2429     void wait();
  2430     bool trywait();
  2431     bool timedwait(unsigned int sec, int nsec);
  2432   private:
  2433     sem_t _semaphore;
  2434 };
  2437 Semaphore::Semaphore() {
  2438   sem_init(&_semaphore, 0, 0);
  2441 Semaphore::~Semaphore() {
  2442   sem_destroy(&_semaphore);
  2445 void Semaphore::signal() {
  2446   sem_post(&_semaphore);
  2449 void Semaphore::wait() {
  2450   sem_wait(&_semaphore);
  2453 bool Semaphore::trywait() {
  2454   return sem_trywait(&_semaphore) == 0;
  2457 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  2458   struct timespec ts;
  2459   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
  2461   while (1) {
  2462     int result = sem_timedwait(&_semaphore, &ts);
  2463     if (result == 0) {
  2464       return true;
  2465     } else if (errno == EINTR) {
  2466       continue;
  2467     } else if (errno == ETIMEDOUT) {
  2468       return false;
  2469     } else {
  2470       return false;
  2475 extern "C" {
  2476   typedef void (*sa_handler_t)(int);
  2477   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2480 void* os::signal(int signal_number, void* handler) {
  2481   struct sigaction sigAct, oldSigAct;
  2483   sigfillset(&(sigAct.sa_mask));
  2484   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2485   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2487   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2488     // -1 means registration failed
  2489     return (void *)-1;
  2492   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2495 void os::signal_raise(int signal_number) {
  2496   ::raise(signal_number);
  2499 /*
  2500  * The following code is moved from os.cpp for making this
  2501  * code platform specific, which it is by its very nature.
  2502  */
  2504 // Will be modified when max signal is changed to be dynamic
  2505 int os::sigexitnum_pd() {
  2506   return NSIG;
  2509 // a counter for each possible signal value
  2510 static volatile jint pending_signals[NSIG+1] = { 0 };
  2512 // Linux(POSIX) specific hand shaking semaphore.
  2513 static sem_t sig_sem;
  2514 static Semaphore sr_semaphore;
  2516 void os::signal_init_pd() {
  2517   // Initialize signal structures
  2518   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2520   // Initialize signal semaphore
  2521   ::sem_init(&sig_sem, 0, 0);
  2524 void os::signal_notify(int sig) {
  2525   Atomic::inc(&pending_signals[sig]);
  2526   ::sem_post(&sig_sem);
  2529 static int check_pending_signals(bool wait) {
  2530   Atomic::store(0, &sigint_count);
  2531   for (;;) {
  2532     for (int i = 0; i < NSIG + 1; i++) {
  2533       jint n = pending_signals[i];
  2534       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2535         return i;
  2538     if (!wait) {
  2539       return -1;
  2541     JavaThread *thread = JavaThread::current();
  2542     ThreadBlockInVM tbivm(thread);
  2544     bool threadIsSuspended;
  2545     do {
  2546       thread->set_suspend_equivalent();
  2547       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2548       ::sem_wait(&sig_sem);
  2550       // were we externally suspended while we were waiting?
  2551       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2552       if (threadIsSuspended) {
  2553         //
  2554         // The semaphore has been incremented, but while we were waiting
  2555         // another thread suspended us. We don't want to continue running
  2556         // while suspended because that would surprise the thread that
  2557         // suspended us.
  2558         //
  2559         ::sem_post(&sig_sem);
  2561         thread->java_suspend_self();
  2563     } while (threadIsSuspended);
  2567 int os::signal_lookup() {
  2568   return check_pending_signals(false);
  2571 int os::signal_wait() {
  2572   return check_pending_signals(true);
  2575 ////////////////////////////////////////////////////////////////////////////////
  2576 // Virtual Memory
  2578 int os::vm_page_size() {
  2579   // Seems redundant as all get out
  2580   assert(os::Linux::page_size() != -1, "must call os::init");
  2581   return os::Linux::page_size();
  2584 // Solaris allocates memory by pages.
  2585 int os::vm_allocation_granularity() {
  2586   assert(os::Linux::page_size() != -1, "must call os::init");
  2587   return os::Linux::page_size();
  2590 // Rationale behind this function:
  2591 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2592 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2593 //  samples for JITted code. Here we create private executable mapping over the code cache
  2594 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2595 //  info for the reporting script by storing timestamp and location of symbol
  2596 void linux_wrap_code(char* base, size_t size) {
  2597   static volatile jint cnt = 0;
  2599   if (!UseOprofile) {
  2600     return;
  2603   char buf[PATH_MAX+1];
  2604   int num = Atomic::add(1, &cnt);
  2606   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2607            os::get_temp_directory(), os::current_process_id(), num);
  2608   unlink(buf);
  2610   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2612   if (fd != -1) {
  2613     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2614     if (rv != (off_t)-1) {
  2615       if (::write(fd, "", 1) == 1) {
  2616         mmap(base, size,
  2617              PROT_READ|PROT_WRITE|PROT_EXEC,
  2618              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2621     ::close(fd);
  2622     unlink(buf);
  2626 static bool recoverable_mmap_error(int err) {
  2627   // See if the error is one we can let the caller handle. This
  2628   // list of errno values comes from JBS-6843484. I can't find a
  2629   // Linux man page that documents this specific set of errno
  2630   // values so while this list currently matches Solaris, it may
  2631   // change as we gain experience with this failure mode.
  2632   switch (err) {
  2633   case EBADF:
  2634   case EINVAL:
  2635   case ENOTSUP:
  2636     // let the caller deal with these errors
  2637     return true;
  2639   default:
  2640     // Any remaining errors on this OS can cause our reserved mapping
  2641     // to be lost. That can cause confusion where different data
  2642     // structures think they have the same memory mapped. The worst
  2643     // scenario is if both the VM and a library think they have the
  2644     // same memory mapped.
  2645     return false;
  2649 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
  2650                                     int err) {
  2651   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2652           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
  2653           strerror(err), err);
  2656 static void warn_fail_commit_memory(char* addr, size_t size,
  2657                                     size_t alignment_hint, bool exec,
  2658                                     int err) {
  2659   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2660           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
  2661           alignment_hint, exec, strerror(err), err);
  2664 // NOTE: Linux kernel does not really reserve the pages for us.
  2665 //       All it does is to check if there are enough free pages
  2666 //       left at the time of mmap(). This could be a potential
  2667 //       problem.
  2668 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
  2669   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2670   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2671                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2672   if (res != (uintptr_t) MAP_FAILED) {
  2673     if (UseNUMAInterleaving) {
  2674       numa_make_global(addr, size);
  2676     return 0;
  2679   int err = errno;  // save errno from mmap() call above
  2681   if (!recoverable_mmap_error(err)) {
  2682     warn_fail_commit_memory(addr, size, exec, err);
  2683     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
  2686   return err;
  2689 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2690   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
  2693 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  2694                                   const char* mesg) {
  2695   assert(mesg != NULL, "mesg must be specified");
  2696   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2697   if (err != 0) {
  2698     // the caller wants all commit errors to exit with the specified mesg:
  2699     warn_fail_commit_memory(addr, size, exec, err);
  2700     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2704 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2705 #ifndef MAP_HUGETLB
  2706 #define MAP_HUGETLB 0x40000
  2707 #endif
  2709 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2710 #ifndef MADV_HUGEPAGE
  2711 #define MADV_HUGEPAGE 14
  2712 #endif
  2714 int os::Linux::commit_memory_impl(char* addr, size_t size,
  2715                                   size_t alignment_hint, bool exec) {
  2716   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2717   if (err == 0) {
  2718     realign_memory(addr, size, alignment_hint);
  2720   return err;
  2723 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2724                           bool exec) {
  2725   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
  2728 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  2729                                   size_t alignment_hint, bool exec,
  2730                                   const char* mesg) {
  2731   assert(mesg != NULL, "mesg must be specified");
  2732   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
  2733   if (err != 0) {
  2734     // the caller wants all commit errors to exit with the specified mesg:
  2735     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
  2736     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2740 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2741   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
  2742     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2743     // be supported or the memory may already be backed by huge pages.
  2744     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2748 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2749   // This method works by doing an mmap over an existing mmaping and effectively discarding
  2750   // the existing pages. However it won't work for SHM-based large pages that cannot be
  2751   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
  2752   // small pages on top of the SHM segment. This method always works for small pages, so we
  2753   // allow that in any case.
  2754   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
  2755     commit_memory(addr, bytes, alignment_hint, !ExecMem);
  2759 void os::numa_make_global(char *addr, size_t bytes) {
  2760   Linux::numa_interleave_memory(addr, bytes);
  2763 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
  2764 // bind policy to MPOL_PREFERRED for the current thread.
  2765 #define USE_MPOL_PREFERRED 0
  2767 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2768   // To make NUMA and large pages more robust when both enabled, we need to ease
  2769   // the requirements on where the memory should be allocated. MPOL_BIND is the
  2770   // default policy and it will force memory to be allocated on the specified
  2771   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
  2772   // the specified node, but will not force it. Using this policy will prevent
  2773   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
  2774   // free large pages.
  2775   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
  2776   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2779 bool os::numa_topology_changed()   { return false; }
  2781 size_t os::numa_get_groups_num() {
  2782   int max_node = Linux::numa_max_node();
  2783   return max_node > 0 ? max_node + 1 : 1;
  2786 int os::numa_get_group_id() {
  2787   int cpu_id = Linux::sched_getcpu();
  2788   if (cpu_id != -1) {
  2789     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2790     if (lgrp_id != -1) {
  2791       return lgrp_id;
  2794   return 0;
  2797 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2798   for (size_t i = 0; i < size; i++) {
  2799     ids[i] = i;
  2801   return size;
  2804 bool os::get_page_info(char *start, page_info* info) {
  2805   return false;
  2808 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2809   return end;
  2813 int os::Linux::sched_getcpu_syscall(void) {
  2814   unsigned int cpu;
  2815   int retval = -1;
  2817 #if defined(IA32)
  2818 # ifndef SYS_getcpu
  2819 # define SYS_getcpu 318
  2820 # endif
  2821   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
  2822 #elif defined(AMD64)
  2823 // Unfortunately we have to bring all these macros here from vsyscall.h
  2824 // to be able to compile on old linuxes.
  2825 # define __NR_vgetcpu 2
  2826 # define VSYSCALL_START (-10UL << 20)
  2827 # define VSYSCALL_SIZE 1024
  2828 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  2829   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  2830   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  2831   retval = vgetcpu(&cpu, NULL, NULL);
  2832 #endif
  2834   return (retval == -1) ? retval : cpu;
  2837 // Something to do with the numa-aware allocator needs these symbols
  2838 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2839 extern "C" JNIEXPORT void numa_error(char *where) { }
  2840 extern "C" JNIEXPORT int fork1() { return fork(); }
  2843 // If we are running with libnuma version > 2, then we should
  2844 // be trying to use symbols with versions 1.1
  2845 // If we are running with earlier version, which did not have symbol versions,
  2846 // we should use the base version.
  2847 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2848   void *f = dlvsym(handle, name, "libnuma_1.1");
  2849   if (f == NULL) {
  2850     f = dlsym(handle, name);
  2852   return f;
  2855 bool os::Linux::libnuma_init() {
  2856   // sched_getcpu() should be in libc.
  2857   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2858                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2860   // If it's not, try a direct syscall.
  2861   if (sched_getcpu() == -1)
  2862     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
  2864   if (sched_getcpu() != -1) { // Does it work?
  2865     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2866     if (handle != NULL) {
  2867       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2868                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2869       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2870                                        libnuma_dlsym(handle, "numa_max_node")));
  2871       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2872                                         libnuma_dlsym(handle, "numa_available")));
  2873       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2874                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2875       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2876                                             libnuma_dlsym(handle, "numa_interleave_memory")));
  2877       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
  2878                                             libnuma_dlsym(handle, "numa_set_bind_policy")));
  2881       if (numa_available() != -1) {
  2882         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2883         // Create a cpu -> node mapping
  2884         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  2885         rebuild_cpu_to_node_map();
  2886         return true;
  2890   return false;
  2893 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2894 // The table is later used in get_node_by_cpu().
  2895 void os::Linux::rebuild_cpu_to_node_map() {
  2896   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2897                               // in libnuma (possible values are starting from 16,
  2898                               // and continuing up with every other power of 2, but less
  2899                               // than the maximum number of CPUs supported by kernel), and
  2900                               // is a subject to change (in libnuma version 2 the requirements
  2901                               // are more reasonable) we'll just hardcode the number they use
  2902                               // in the library.
  2903   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2905   size_t cpu_num = os::active_processor_count();
  2906   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2907   size_t cpu_map_valid_size =
  2908     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2910   cpu_to_node()->clear();
  2911   cpu_to_node()->at_grow(cpu_num - 1);
  2912   size_t node_num = numa_get_groups_num();
  2914   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
  2915   for (size_t i = 0; i < node_num; i++) {
  2916     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2917       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2918         if (cpu_map[j] != 0) {
  2919           for (size_t k = 0; k < BitsPerCLong; k++) {
  2920             if (cpu_map[j] & (1UL << k)) {
  2921               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
  2928   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
  2931 int os::Linux::get_node_by_cpu(int cpu_id) {
  2932   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2933     return cpu_to_node()->at(cpu_id);
  2935   return -1;
  2938 GrowableArray<int>* os::Linux::_cpu_to_node;
  2939 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2940 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2941 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2942 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2943 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2944 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2945 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
  2946 unsigned long* os::Linux::_numa_all_nodes;
  2948 bool os::pd_uncommit_memory(char* addr, size_t size) {
  2949   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2950                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  2951   return res  != (uintptr_t) MAP_FAILED;
  2954 static
  2955 address get_stack_commited_bottom(address bottom, size_t size) {
  2956   address nbot = bottom;
  2957   address ntop = bottom + size;
  2959   size_t page_sz = os::vm_page_size();
  2960   unsigned pages = size / page_sz;
  2962   unsigned char vec[1];
  2963   unsigned imin = 1, imax = pages + 1, imid;
  2964   int mincore_return_value;
  2966   while (imin < imax) {
  2967     imid = (imax + imin) / 2;
  2968     nbot = ntop - (imid * page_sz);
  2970     // Use a trick with mincore to check whether the page is mapped or not.
  2971     // mincore sets vec to 1 if page resides in memory and to 0 if page
  2972     // is swapped output but if page we are asking for is unmapped
  2973     // it returns -1,ENOMEM
  2974     mincore_return_value = mincore(nbot, page_sz, vec);
  2976     if (mincore_return_value == -1) {
  2977       // Page is not mapped go up
  2978       // to find first mapped page
  2979       if (errno != EAGAIN) {
  2980         assert(errno == ENOMEM, "Unexpected mincore errno");
  2981         imax = imid;
  2983     } else {
  2984       // Page is mapped go down
  2985       // to find first not mapped page
  2986       imin = imid + 1;
  2990   nbot = nbot + page_sz;
  2992   // Adjust stack bottom one page up if last checked page is not mapped
  2993   if (mincore_return_value == -1) {
  2994     nbot = nbot + page_sz;
  2997   return nbot;
  3001 // Linux uses a growable mapping for the stack, and if the mapping for
  3002 // the stack guard pages is not removed when we detach a thread the
  3003 // stack cannot grow beyond the pages where the stack guard was
  3004 // mapped.  If at some point later in the process the stack expands to
  3005 // that point, the Linux kernel cannot expand the stack any further
  3006 // because the guard pages are in the way, and a segfault occurs.
  3007 //
  3008 // However, it's essential not to split the stack region by unmapping
  3009 // a region (leaving a hole) that's already part of the stack mapping,
  3010 // so if the stack mapping has already grown beyond the guard pages at
  3011 // the time we create them, we have to truncate the stack mapping.
  3012 // So, we need to know the extent of the stack mapping when
  3013 // create_stack_guard_pages() is called.
  3015 // We only need this for stacks that are growable: at the time of
  3016 // writing thread stacks don't use growable mappings (i.e. those
  3017 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  3018 // only applies to the main thread.
  3020 // If the (growable) stack mapping already extends beyond the point
  3021 // where we're going to put our guard pages, truncate the mapping at
  3022 // that point by munmap()ping it.  This ensures that when we later
  3023 // munmap() the guard pages we don't leave a hole in the stack
  3024 // mapping. This only affects the main/initial thread
  3026 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  3028   if (os::Linux::is_initial_thread()) {
  3029     // As we manually grow stack up to bottom inside create_attached_thread(),
  3030     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
  3031     // we don't need to do anything special.
  3032     // Check it first, before calling heavy function.
  3033     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
  3034     unsigned char vec[1];
  3036     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
  3037       // Fallback to slow path on all errors, including EAGAIN
  3038       stack_extent = (uintptr_t) get_stack_commited_bottom(
  3039                                     os::Linux::initial_thread_stack_bottom(),
  3040                                     (size_t)addr - stack_extent);
  3043     if (stack_extent < (uintptr_t)addr) {
  3044       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
  3048   return os::commit_memory(addr, size, !ExecMem);
  3051 // If this is a growable mapping, remove the guard pages entirely by
  3052 // munmap()ping them.  If not, just call uncommit_memory(). This only
  3053 // affects the main/initial thread, but guard against future OS changes
  3054 // It's safe to always unmap guard pages for initial thread because we
  3055 // always place it right after end of the mapped region
  3057 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3058   uintptr_t stack_extent, stack_base;
  3060   if (os::Linux::is_initial_thread()) {
  3061     return ::munmap(addr, size) == 0;
  3064   return os::uncommit_memory(addr, size);
  3067 static address _highest_vm_reserved_address = NULL;
  3069 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  3070 // at 'requested_addr'. If there are existing memory mappings at the same
  3071 // location, however, they will be overwritten. If 'fixed' is false,
  3072 // 'requested_addr' is only treated as a hint, the return value may or
  3073 // may not start from the requested address. Unlike Linux mmap(), this
  3074 // function returns NULL to indicate failure.
  3075 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  3076   char * addr;
  3077   int flags;
  3079   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  3080   if (fixed) {
  3081     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  3082     flags |= MAP_FIXED;
  3085   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
  3086   // touch an uncommitted page. Otherwise, the read/write might
  3087   // succeed if we have enough swap space to back the physical page.
  3088   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
  3089                        flags, -1, 0);
  3091   if (addr != MAP_FAILED) {
  3092     // anon_mmap() should only get called during VM initialization,
  3093     // don't need lock (actually we can skip locking even it can be called
  3094     // from multiple threads, because _highest_vm_reserved_address is just a
  3095     // hint about the upper limit of non-stack memory regions.)
  3096     if ((address)addr + bytes > _highest_vm_reserved_address) {
  3097       _highest_vm_reserved_address = (address)addr + bytes;
  3101   return addr == MAP_FAILED ? NULL : addr;
  3104 // Don't update _highest_vm_reserved_address, because there might be memory
  3105 // regions above addr + size. If so, releasing a memory region only creates
  3106 // a hole in the address space, it doesn't help prevent heap-stack collision.
  3107 //
  3108 static int anon_munmap(char * addr, size_t size) {
  3109   return ::munmap(addr, size) == 0;
  3112 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  3113                          size_t alignment_hint) {
  3114   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  3117 bool os::pd_release_memory(char* addr, size_t size) {
  3118   return anon_munmap(addr, size);
  3121 static address highest_vm_reserved_address() {
  3122   return _highest_vm_reserved_address;
  3125 static bool linux_mprotect(char* addr, size_t size, int prot) {
  3126   // Linux wants the mprotect address argument to be page aligned.
  3127   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  3129   // According to SUSv3, mprotect() should only be used with mappings
  3130   // established by mmap(), and mmap() always maps whole pages. Unaligned
  3131   // 'addr' likely indicates problem in the VM (e.g. trying to change
  3132   // protection of malloc'ed or statically allocated memory). Check the
  3133   // caller if you hit this assert.
  3134   assert(addr == bottom, "sanity check");
  3136   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  3137   return ::mprotect(bottom, size, prot) == 0;
  3140 // Set protections specified
  3141 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3142                         bool is_committed) {
  3143   unsigned int p = 0;
  3144   switch (prot) {
  3145   case MEM_PROT_NONE: p = PROT_NONE; break;
  3146   case MEM_PROT_READ: p = PROT_READ; break;
  3147   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3148   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3149   default:
  3150     ShouldNotReachHere();
  3152   // is_committed is unused.
  3153   return linux_mprotect(addr, bytes, p);
  3156 bool os::guard_memory(char* addr, size_t size) {
  3157   return linux_mprotect(addr, size, PROT_NONE);
  3160 bool os::unguard_memory(char* addr, size_t size) {
  3161   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  3164 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
  3165   bool result = false;
  3166   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
  3167                  MAP_ANONYMOUS|MAP_PRIVATE,
  3168                  -1, 0);
  3169   if (p != MAP_FAILED) {
  3170     void *aligned_p = align_ptr_up(p, page_size);
  3172     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
  3174     munmap(p, page_size * 2);
  3177   if (warn && !result) {
  3178     warning("TransparentHugePages is not supported by the operating system.");
  3181   return result;
  3184 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  3185   bool result = false;
  3186   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
  3187                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  3188                  -1, 0);
  3190   if (p != MAP_FAILED) {
  3191     // We don't know if this really is a huge page or not.
  3192     FILE *fp = fopen("/proc/self/maps", "r");
  3193     if (fp) {
  3194       while (!feof(fp)) {
  3195         char chars[257];
  3196         long x = 0;
  3197         if (fgets(chars, sizeof(chars), fp)) {
  3198           if (sscanf(chars, "%lx-%*x", &x) == 1
  3199               && x == (long)p) {
  3200             if (strstr (chars, "hugepage")) {
  3201               result = true;
  3202               break;
  3207       fclose(fp);
  3209     munmap(p, page_size);
  3212   if (warn && !result) {
  3213     warning("HugeTLBFS is not supported by the operating system.");
  3216   return result;
  3219 /*
  3220 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  3222 * From the coredump_filter documentation:
  3224 * - (bit 0) anonymous private memory
  3225 * - (bit 1) anonymous shared memory
  3226 * - (bit 2) file-backed private memory
  3227 * - (bit 3) file-backed shared memory
  3228 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  3229 *           effective only if the bit 2 is cleared)
  3230 * - (bit 5) hugetlb private memory
  3231 * - (bit 6) hugetlb shared memory
  3232 */
  3233 static void set_coredump_filter(void) {
  3234   FILE *f;
  3235   long cdm;
  3237   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  3238     return;
  3241   if (fscanf(f, "%lx", &cdm) != 1) {
  3242     fclose(f);
  3243     return;
  3246   rewind(f);
  3248   if ((cdm & LARGEPAGES_BIT) == 0) {
  3249     cdm |= LARGEPAGES_BIT;
  3250     fprintf(f, "%#lx", cdm);
  3253   fclose(f);
  3256 // Large page support
  3258 static size_t _large_page_size = 0;
  3260 size_t os::Linux::find_large_page_size() {
  3261   size_t large_page_size = 0;
  3263   // large_page_size on Linux is used to round up heap size. x86 uses either
  3264   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  3265   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  3266   // page as large as 256M.
  3267   //
  3268   // Here we try to figure out page size by parsing /proc/meminfo and looking
  3269   // for a line with the following format:
  3270   //    Hugepagesize:     2048 kB
  3271   //
  3272   // If we can't determine the value (e.g. /proc is not mounted, or the text
  3273   // format has been changed), we'll use the largest page size supported by
  3274   // the processor.
  3276 #ifndef ZERO
  3277   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  3278                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  3279 #endif // ZERO
  3281   FILE *fp = fopen("/proc/meminfo", "r");
  3282   if (fp) {
  3283     while (!feof(fp)) {
  3284       int x = 0;
  3285       char buf[16];
  3286       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3287         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3288           large_page_size = x * K;
  3289           break;
  3291       } else {
  3292         // skip to next line
  3293         for (;;) {
  3294           int ch = fgetc(fp);
  3295           if (ch == EOF || ch == (int)'\n') break;
  3299     fclose(fp);
  3302   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
  3303     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
  3304         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
  3305         proper_unit_for_byte_size(large_page_size));
  3308   return large_page_size;
  3311 size_t os::Linux::setup_large_page_size() {
  3312   _large_page_size = Linux::find_large_page_size();
  3313   const size_t default_page_size = (size_t)Linux::page_size();
  3314   if (_large_page_size > default_page_size) {
  3315     _page_sizes[0] = _large_page_size;
  3316     _page_sizes[1] = default_page_size;
  3317     _page_sizes[2] = 0;
  3320   return _large_page_size;
  3323 bool os::Linux::setup_large_page_type(size_t page_size) {
  3324   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
  3325       FLAG_IS_DEFAULT(UseSHM) &&
  3326       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
  3328     // The type of large pages has not been specified by the user.
  3330     // Try UseHugeTLBFS and then UseSHM.
  3331     UseHugeTLBFS = UseSHM = true;
  3333     // Don't try UseTransparentHugePages since there are known
  3334     // performance issues with it turned on. This might change in the future.
  3335     UseTransparentHugePages = false;
  3338   if (UseTransparentHugePages) {
  3339     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
  3340     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
  3341       UseHugeTLBFS = false;
  3342       UseSHM = false;
  3343       return true;
  3345     UseTransparentHugePages = false;
  3348   if (UseHugeTLBFS) {
  3349     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3350     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
  3351       UseSHM = false;
  3352       return true;
  3354     UseHugeTLBFS = false;
  3357   return UseSHM;
  3360 void os::large_page_init() {
  3361   if (!UseLargePages &&
  3362       !UseTransparentHugePages &&
  3363       !UseHugeTLBFS &&
  3364       !UseSHM) {
  3365     // Not using large pages.
  3366     return;
  3369   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
  3370     // The user explicitly turned off large pages.
  3371     // Ignore the rest of the large pages flags.
  3372     UseTransparentHugePages = false;
  3373     UseHugeTLBFS = false;
  3374     UseSHM = false;
  3375     return;
  3378   size_t large_page_size = Linux::setup_large_page_size();
  3379   UseLargePages          = Linux::setup_large_page_type(large_page_size);
  3381   set_coredump_filter();
  3384 #ifndef SHM_HUGETLB
  3385 #define SHM_HUGETLB 04000
  3386 #endif
  3388 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3389   // "exec" is passed in but not used.  Creating the shared image for
  3390   // the code cache doesn't have an SHM_X executable permission to check.
  3391   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3392   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3394   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
  3395     return NULL; // Fallback to small pages.
  3398   key_t key = IPC_PRIVATE;
  3399   char *addr;
  3401   bool warn_on_failure = UseLargePages &&
  3402                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  3403                          !FLAG_IS_DEFAULT(UseSHM) ||
  3404                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  3405                         );
  3406   char msg[128];
  3408   // Create a large shared memory region to attach to based on size.
  3409   // Currently, size is the total size of the heap
  3410   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3411   if (shmid == -1) {
  3412      // Possible reasons for shmget failure:
  3413      // 1. shmmax is too small for Java heap.
  3414      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3415      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3416      // 2. not enough large page memory.
  3417      //    > check available large pages: cat /proc/meminfo
  3418      //    > increase amount of large pages:
  3419      //          echo new_value > /proc/sys/vm/nr_hugepages
  3420      //      Note 1: different Linux may use different name for this property,
  3421      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3422      //      Note 2: it's possible there's enough physical memory available but
  3423      //            they are so fragmented after a long run that they can't
  3424      //            coalesce into large pages. Try to reserve large pages when
  3425      //            the system is still "fresh".
  3426      if (warn_on_failure) {
  3427        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  3428        warning(msg);
  3430      return NULL;
  3433   // attach to the region
  3434   addr = (char*)shmat(shmid, req_addr, 0);
  3435   int err = errno;
  3437   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3438   // will be deleted when it's detached by shmdt() or when the process
  3439   // terminates. If shmat() is not successful this will remove the shared
  3440   // segment immediately.
  3441   shmctl(shmid, IPC_RMID, NULL);
  3443   if ((intptr_t)addr == -1) {
  3444      if (warn_on_failure) {
  3445        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  3446        warning(msg);
  3448      return NULL;
  3451   return addr;
  3454 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
  3455   assert(error == ENOMEM, "Only expect to fail if no memory is available");
  3457   bool warn_on_failure = UseLargePages &&
  3458       (!FLAG_IS_DEFAULT(UseLargePages) ||
  3459        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
  3460        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
  3462   if (warn_on_failure) {
  3463     char msg[128];
  3464     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
  3465         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
  3466     warning(msg);
  3470 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
  3471   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3472   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
  3473   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3475   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3476   char* addr = (char*)::mmap(req_addr, bytes, prot,
  3477                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
  3478                              -1, 0);
  3480   if (addr == MAP_FAILED) {
  3481     warn_on_large_pages_failure(req_addr, bytes, errno);
  3482     return NULL;
  3485   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
  3487   return addr;
  3490 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3491   size_t large_page_size = os::large_page_size();
  3493   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
  3495   // Allocate small pages.
  3497   char* start;
  3498   if (req_addr != NULL) {
  3499     assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3500     assert(is_size_aligned(bytes, alignment), "Must be");
  3501     start = os::reserve_memory(bytes, req_addr);
  3502     assert(start == NULL || start == req_addr, "Must be");
  3503   } else {
  3504     start = os::reserve_memory_aligned(bytes, alignment);
  3507   if (start == NULL) {
  3508     return NULL;
  3511   assert(is_ptr_aligned(start, alignment), "Must be");
  3513   // os::reserve_memory_special will record this memory area.
  3514   // Need to release it here to prevent overlapping reservations.
  3515   MemTracker::record_virtual_memory_release((address)start, bytes);
  3517   char* end = start + bytes;
  3519   // Find the regions of the allocated chunk that can be promoted to large pages.
  3520   char* lp_start = (char*)align_ptr_up(start, large_page_size);
  3521   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
  3523   size_t lp_bytes = lp_end - lp_start;
  3525   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
  3527   if (lp_bytes == 0) {
  3528     // The mapped region doesn't even span the start and the end of a large page.
  3529     // Fall back to allocate a non-special area.
  3530     ::munmap(start, end - start);
  3531     return NULL;
  3534   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3537   void* result;
  3539   if (start != lp_start) {
  3540     result = ::mmap(start, lp_start - start, prot,
  3541                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3542                     -1, 0);
  3543     if (result == MAP_FAILED) {
  3544       ::munmap(lp_start, end - lp_start);
  3545       return NULL;
  3549   result = ::mmap(lp_start, lp_bytes, prot,
  3550                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
  3551                   -1, 0);
  3552   if (result == MAP_FAILED) {
  3553     warn_on_large_pages_failure(req_addr, bytes, errno);
  3554     // If the mmap above fails, the large pages region will be unmapped and we
  3555     // have regions before and after with small pages. Release these regions.
  3556     //
  3557     // |  mapped  |  unmapped  |  mapped  |
  3558     // ^          ^            ^          ^
  3559     // start      lp_start     lp_end     end
  3560     //
  3561     ::munmap(start, lp_start - start);
  3562     ::munmap(lp_end, end - lp_end);
  3563     return NULL;
  3566   if (lp_end != end) {
  3567       result = ::mmap(lp_end, end - lp_end, prot,
  3568                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3569                       -1, 0);
  3570     if (result == MAP_FAILED) {
  3571       ::munmap(start, lp_end - start);
  3572       return NULL;
  3576   return start;
  3579 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3580   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3581   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3582   assert(is_power_of_2(alignment), "Must be");
  3583   assert(is_power_of_2(os::large_page_size()), "Must be");
  3584   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
  3586   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
  3587     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
  3588   } else {
  3589     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
  3593 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3594   assert(UseLargePages, "only for large pages");
  3596   char* addr;
  3597   if (UseSHM) {
  3598     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
  3599   } else {
  3600     assert(UseHugeTLBFS, "must be");
  3601     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
  3604   if (addr != NULL) {
  3605     if (UseNUMAInterleaving) {
  3606       numa_make_global(addr, bytes);
  3609     // The memory is committed
  3610     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
  3613   return addr;
  3616 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
  3617   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
  3618   return shmdt(base) == 0;
  3621 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
  3622   return pd_release_memory(base, bytes);
  3625 bool os::release_memory_special(char* base, size_t bytes) {
  3626   assert(UseLargePages, "only for large pages");
  3628   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  3630   bool res;
  3631   if (UseSHM) {
  3632     res = os::Linux::release_memory_special_shm(base, bytes);
  3633   } else {
  3634     assert(UseHugeTLBFS, "must be");
  3635     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
  3638   if (res) {
  3639     tkr.record((address)base, bytes);
  3640   } else {
  3641     tkr.discard();
  3644   return res;
  3647 size_t os::large_page_size() {
  3648   return _large_page_size;
  3651 // With SysV SHM the entire memory region must be allocated as shared
  3652 // memory.
  3653 // HugeTLBFS allows application to commit large page memory on demand.
  3654 // However, when committing memory with HugeTLBFS fails, the region
  3655 // that was supposed to be committed will lose the old reservation
  3656 // and allow other threads to steal that memory region. Because of this
  3657 // behavior we can't commit HugeTLBFS memory.
  3658 bool os::can_commit_large_page_memory() {
  3659   return UseTransparentHugePages;
  3662 bool os::can_execute_large_page_memory() {
  3663   return UseTransparentHugePages || UseHugeTLBFS;
  3666 // Reserve memory at an arbitrary address, only if that area is
  3667 // available (and not reserved for something else).
  3669 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3670   const int max_tries = 10;
  3671   char* base[max_tries];
  3672   size_t size[max_tries];
  3673   const size_t gap = 0x000000;
  3675   // Assert only that the size is a multiple of the page size, since
  3676   // that's all that mmap requires, and since that's all we really know
  3677   // about at this low abstraction level.  If we need higher alignment,
  3678   // we can either pass an alignment to this method or verify alignment
  3679   // in one of the methods further up the call chain.  See bug 5044738.
  3680   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3682   // Repeatedly allocate blocks until the block is allocated at the
  3683   // right spot. Give up after max_tries. Note that reserve_memory() will
  3684   // automatically update _highest_vm_reserved_address if the call is
  3685   // successful. The variable tracks the highest memory address every reserved
  3686   // by JVM. It is used to detect heap-stack collision if running with
  3687   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  3688   // space than needed, it could confuse the collision detecting code. To
  3689   // solve the problem, save current _highest_vm_reserved_address and
  3690   // calculate the correct value before return.
  3691   address old_highest = _highest_vm_reserved_address;
  3693   // Linux mmap allows caller to pass an address as hint; give it a try first,
  3694   // if kernel honors the hint then we can return immediately.
  3695   char * addr = anon_mmap(requested_addr, bytes, false);
  3696   if (addr == requested_addr) {
  3697      return requested_addr;
  3700   if (addr != NULL) {
  3701      // mmap() is successful but it fails to reserve at the requested address
  3702      anon_munmap(addr, bytes);
  3705   int i;
  3706   for (i = 0; i < max_tries; ++i) {
  3707     base[i] = reserve_memory(bytes);
  3709     if (base[i] != NULL) {
  3710       // Is this the block we wanted?
  3711       if (base[i] == requested_addr) {
  3712         size[i] = bytes;
  3713         break;
  3716       // Does this overlap the block we wanted? Give back the overlapped
  3717       // parts and try again.
  3719       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3720       if (top_overlap >= 0 && top_overlap < bytes) {
  3721         unmap_memory(base[i], top_overlap);
  3722         base[i] += top_overlap;
  3723         size[i] = bytes - top_overlap;
  3724       } else {
  3725         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3726         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3727           unmap_memory(requested_addr, bottom_overlap);
  3728           size[i] = bytes - bottom_overlap;
  3729         } else {
  3730           size[i] = bytes;
  3736   // Give back the unused reserved pieces.
  3738   for (int j = 0; j < i; ++j) {
  3739     if (base[j] != NULL) {
  3740       unmap_memory(base[j], size[j]);
  3744   if (i < max_tries) {
  3745     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  3746     return requested_addr;
  3747   } else {
  3748     _highest_vm_reserved_address = old_highest;
  3749     return NULL;
  3753 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3754   return ::read(fd, buf, nBytes);
  3757 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  3758 // Solaris uses poll(), linux uses park().
  3759 // Poll() is likely a better choice, assuming that Thread.interrupt()
  3760 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  3761 // SIGSEGV, see 4355769.
  3763 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3764   assert(thread == Thread::current(),  "thread consistency check");
  3766   ParkEvent * const slp = thread->_SleepEvent ;
  3767   slp->reset() ;
  3768   OrderAccess::fence() ;
  3770   if (interruptible) {
  3771     jlong prevtime = javaTimeNanos();
  3773     for (;;) {
  3774       if (os::is_interrupted(thread, true)) {
  3775         return OS_INTRPT;
  3778       jlong newtime = javaTimeNanos();
  3780       if (newtime - prevtime < 0) {
  3781         // time moving backwards, should only happen if no monotonic clock
  3782         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3783         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3784       } else {
  3785         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3788       if(millis <= 0) {
  3789         return OS_OK;
  3792       prevtime = newtime;
  3795         assert(thread->is_Java_thread(), "sanity check");
  3796         JavaThread *jt = (JavaThread *) thread;
  3797         ThreadBlockInVM tbivm(jt);
  3798         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3800         jt->set_suspend_equivalent();
  3801         // cleared by handle_special_suspend_equivalent_condition() or
  3802         // java_suspend_self() via check_and_wait_while_suspended()
  3804         slp->park(millis);
  3806         // were we externally suspended while we were waiting?
  3807         jt->check_and_wait_while_suspended();
  3810   } else {
  3811     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3812     jlong prevtime = javaTimeNanos();
  3814     for (;;) {
  3815       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  3816       // the 1st iteration ...
  3817       jlong newtime = javaTimeNanos();
  3819       if (newtime - prevtime < 0) {
  3820         // time moving backwards, should only happen if no monotonic clock
  3821         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3822         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3823       } else {
  3824         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3827       if(millis <= 0) break ;
  3829       prevtime = newtime;
  3830       slp->park(millis);
  3832     return OS_OK ;
  3836 int os::naked_sleep() {
  3837   // %% make the sleep time an integer flag. for now use 1 millisec.
  3838   return os::sleep(Thread::current(), 1, false);
  3841 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3842 void os::infinite_sleep() {
  3843   while (true) {    // sleep forever ...
  3844     ::sleep(100);   // ... 100 seconds at a time
  3848 // Used to convert frequent JVM_Yield() to nops
  3849 bool os::dont_yield() {
  3850   return DontYieldALot;
  3853 void os::yield() {
  3854   sched_yield();
  3857 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  3859 void os::yield_all(int attempts) {
  3860   // Yields to all threads, including threads with lower priorities
  3861   // Threads on Linux are all with same priority. The Solaris style
  3862   // os::yield_all() with nanosleep(1ms) is not necessary.
  3863   sched_yield();
  3866 // Called from the tight loops to possibly influence time-sharing heuristics
  3867 void os::loop_breaker(int attempts) {
  3868   os::yield_all(attempts);
  3871 ////////////////////////////////////////////////////////////////////////////////
  3872 // thread priority support
  3874 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  3875 // only supports dynamic priority, static priority must be zero. For real-time
  3876 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  3877 // However, for large multi-threaded applications, SCHED_RR is not only slower
  3878 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  3879 // of 5 runs - Sep 2005).
  3880 //
  3881 // The following code actually changes the niceness of kernel-thread/LWP. It
  3882 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  3883 // not the entire user process, and user level threads are 1:1 mapped to kernel
  3884 // threads. It has always been the case, but could change in the future. For
  3885 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  3886 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  3888 int os::java_to_os_priority[CriticalPriority + 1] = {
  3889   19,              // 0 Entry should never be used
  3891    4,              // 1 MinPriority
  3892    3,              // 2
  3893    2,              // 3
  3895    1,              // 4
  3896    0,              // 5 NormPriority
  3897   -1,              // 6
  3899   -2,              // 7
  3900   -3,              // 8
  3901   -4,              // 9 NearMaxPriority
  3903   -5,              // 10 MaxPriority
  3905   -5               // 11 CriticalPriority
  3906 };
  3908 static int prio_init() {
  3909   if (ThreadPriorityPolicy == 1) {
  3910     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  3911     // if effective uid is not root. Perhaps, a more elegant way of doing
  3912     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  3913     if (geteuid() != 0) {
  3914       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  3915         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  3917       ThreadPriorityPolicy = 0;
  3920   if (UseCriticalJavaThreadPriority) {
  3921     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  3923   return 0;
  3926 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  3927   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  3929   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  3930   return (ret == 0) ? OS_OK : OS_ERR;
  3933 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  3934   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  3935     *priority_ptr = java_to_os_priority[NormPriority];
  3936     return OS_OK;
  3939   errno = 0;
  3940   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  3941   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  3944 // Hint to the underlying OS that a task switch would not be good.
  3945 // Void return because it's a hint and can fail.
  3946 void os::hint_no_preempt() {}
  3948 ////////////////////////////////////////////////////////////////////////////////
  3949 // suspend/resume support
  3951 //  the low-level signal-based suspend/resume support is a remnant from the
  3952 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  3953 //  within hotspot. Now there is a single use-case for this:
  3954 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  3955 //      that runs in the watcher thread.
  3956 //  The remaining code is greatly simplified from the more general suspension
  3957 //  code that used to be used.
  3958 //
  3959 //  The protocol is quite simple:
  3960 //  - suspend:
  3961 //      - sends a signal to the target thread
  3962 //      - polls the suspend state of the osthread using a yield loop
  3963 //      - target thread signal handler (SR_handler) sets suspend state
  3964 //        and blocks in sigsuspend until continued
  3965 //  - resume:
  3966 //      - sets target osthread state to continue
  3967 //      - sends signal to end the sigsuspend loop in the SR_handler
  3968 //
  3969 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  3970 //
  3972 static void resume_clear_context(OSThread *osthread) {
  3973   osthread->set_ucontext(NULL);
  3974   osthread->set_siginfo(NULL);
  3977 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  3978   osthread->set_ucontext(context);
  3979   osthread->set_siginfo(siginfo);
  3982 //
  3983 // Handler function invoked when a thread's execution is suspended or
  3984 // resumed. We have to be careful that only async-safe functions are
  3985 // called here (Note: most pthread functions are not async safe and
  3986 // should be avoided.)
  3987 //
  3988 // Note: sigwait() is a more natural fit than sigsuspend() from an
  3989 // interface point of view, but sigwait() prevents the signal hander
  3990 // from being run. libpthread would get very confused by not having
  3991 // its signal handlers run and prevents sigwait()'s use with the
  3992 // mutex granting granting signal.
  3993 //
  3994 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
  3995 //
  3996 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  3997   // Save and restore errno to avoid confusing native code with EINTR
  3998   // after sigsuspend.
  3999   int old_errno = errno;
  4001   Thread* thread = Thread::current();
  4002   OSThread* osthread = thread->osthread();
  4003   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
  4005   os::SuspendResume::State current = osthread->sr.state();
  4006   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
  4007     suspend_save_context(osthread, siginfo, context);
  4009     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
  4010     os::SuspendResume::State state = osthread->sr.suspended();
  4011     if (state == os::SuspendResume::SR_SUSPENDED) {
  4012       sigset_t suspend_set;  // signals for sigsuspend()
  4014       // get current set of blocked signals and unblock resume signal
  4015       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  4016       sigdelset(&suspend_set, SR_signum);
  4018       sr_semaphore.signal();
  4019       // wait here until we are resumed
  4020       while (1) {
  4021         sigsuspend(&suspend_set);
  4023         os::SuspendResume::State result = osthread->sr.running();
  4024         if (result == os::SuspendResume::SR_RUNNING) {
  4025           sr_semaphore.signal();
  4026           break;
  4030     } else if (state == os::SuspendResume::SR_RUNNING) {
  4031       // request was cancelled, continue
  4032     } else {
  4033       ShouldNotReachHere();
  4036     resume_clear_context(osthread);
  4037   } else if (current == os::SuspendResume::SR_RUNNING) {
  4038     // request was cancelled, continue
  4039   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
  4040     // ignore
  4041   } else {
  4042     // ignore
  4045   errno = old_errno;
  4049 static int SR_initialize() {
  4050   struct sigaction act;
  4051   char *s;
  4052   /* Get signal number to use for suspend/resume */
  4053   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  4054     int sig = ::strtol(s, 0, 10);
  4055     if (sig > 0 || sig < _NSIG) {
  4056         SR_signum = sig;
  4060   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  4061         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  4063   sigemptyset(&SR_sigset);
  4064   sigaddset(&SR_sigset, SR_signum);
  4066   /* Set up signal handler for suspend/resume */
  4067   act.sa_flags = SA_RESTART|SA_SIGINFO;
  4068   act.sa_handler = (void (*)(int)) SR_handler;
  4070   // SR_signum is blocked by default.
  4071   // 4528190 - We also need to block pthread restart signal (32 on all
  4072   // supported Linux platforms). Note that LinuxThreads need to block
  4073   // this signal for all threads to work properly. So we don't have
  4074   // to use hard-coded signal number when setting up the mask.
  4075   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  4077   if (sigaction(SR_signum, &act, 0) == -1) {
  4078     return -1;
  4081   // Save signal flag
  4082   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  4083   return 0;
  4086 static int sr_notify(OSThread* osthread) {
  4087   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  4088   assert_status(status == 0, status, "pthread_kill");
  4089   return status;
  4092 // "Randomly" selected value for how long we want to spin
  4093 // before bailing out on suspending a thread, also how often
  4094 // we send a signal to a thread we want to resume
  4095 static const int RANDOMLY_LARGE_INTEGER = 1000000;
  4096 static const int RANDOMLY_LARGE_INTEGER2 = 100;
  4098 // returns true on success and false on error - really an error is fatal
  4099 // but this seems the normal response to library errors
  4100 static bool do_suspend(OSThread* osthread) {
  4101   assert(osthread->sr.is_running(), "thread should be running");
  4102   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
  4104   // mark as suspended and send signal
  4105   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
  4106     // failed to switch, state wasn't running?
  4107     ShouldNotReachHere();
  4108     return false;
  4111   if (sr_notify(osthread) != 0) {
  4112     ShouldNotReachHere();
  4115   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
  4116   while (true) {
  4117     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4118       break;
  4119     } else {
  4120       // timeout
  4121       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
  4122       if (cancelled == os::SuspendResume::SR_RUNNING) {
  4123         return false;
  4124       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
  4125         // make sure that we consume the signal on the semaphore as well
  4126         sr_semaphore.wait();
  4127         break;
  4128       } else {
  4129         ShouldNotReachHere();
  4130         return false;
  4135   guarantee(osthread->sr.is_suspended(), "Must be suspended");
  4136   return true;
  4139 static void do_resume(OSThread* osthread) {
  4140   assert(osthread->sr.is_suspended(), "thread should be suspended");
  4141   assert(!sr_semaphore.trywait(), "invalid semaphore state");
  4143   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
  4144     // failed to switch to WAKEUP_REQUEST
  4145     ShouldNotReachHere();
  4146     return;
  4149   while (true) {
  4150     if (sr_notify(osthread) == 0) {
  4151       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4152         if (osthread->sr.is_running()) {
  4153           return;
  4156     } else {
  4157       ShouldNotReachHere();
  4161   guarantee(osthread->sr.is_running(), "Must be running!");
  4164 ////////////////////////////////////////////////////////////////////////////////
  4165 // interrupt support
  4167 void os::interrupt(Thread* thread) {
  4168   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4169     "possibility of dangling Thread pointer");
  4171   OSThread* osthread = thread->osthread();
  4173   if (!osthread->interrupted()) {
  4174     osthread->set_interrupted(true);
  4175     // More than one thread can get here with the same value of osthread,
  4176     // resulting in multiple notifications.  We do, however, want the store
  4177     // to interrupted() to be visible to other threads before we execute unpark().
  4178     OrderAccess::fence();
  4179     ParkEvent * const slp = thread->_SleepEvent ;
  4180     if (slp != NULL) slp->unpark() ;
  4183   // For JSR166. Unpark even if interrupt status already was set
  4184   if (thread->is_Java_thread())
  4185     ((JavaThread*)thread)->parker()->unpark();
  4187   ParkEvent * ev = thread->_ParkEvent ;
  4188   if (ev != NULL) ev->unpark() ;
  4192 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4193   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4194     "possibility of dangling Thread pointer");
  4196   OSThread* osthread = thread->osthread();
  4198   bool interrupted = osthread->interrupted();
  4200   if (interrupted && clear_interrupted) {
  4201     osthread->set_interrupted(false);
  4202     // consider thread->_SleepEvent->reset() ... optional optimization
  4205   return interrupted;
  4208 ///////////////////////////////////////////////////////////////////////////////////
  4209 // signal handling (except suspend/resume)
  4211 // This routine may be used by user applications as a "hook" to catch signals.
  4212 // The user-defined signal handler must pass unrecognized signals to this
  4213 // routine, and if it returns true (non-zero), then the signal handler must
  4214 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4215 // routine will never retun false (zero), but instead will execute a VM panic
  4216 // routine kill the process.
  4217 //
  4218 // If this routine returns false, it is OK to call it again.  This allows
  4219 // the user-defined signal handler to perform checks either before or after
  4220 // the VM performs its own checks.  Naturally, the user code would be making
  4221 // a serious error if it tried to handle an exception (such as a null check
  4222 // or breakpoint) that the VM was generating for its own correct operation.
  4223 //
  4224 // This routine may recognize any of the following kinds of signals:
  4225 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  4226 // It should be consulted by handlers for any of those signals.
  4227 //
  4228 // The caller of this routine must pass in the three arguments supplied
  4229 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4230 // field of the structure passed to sigaction().  This routine assumes that
  4231 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4232 //
  4233 // Note that the VM will print warnings if it detects conflicting signal
  4234 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4235 //
  4236 extern "C" JNIEXPORT int
  4237 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  4238                         void* ucontext, int abort_if_unrecognized);
  4240 void signalHandler(int sig, siginfo_t* info, void* uc) {
  4241   assert(info != NULL && uc != NULL, "it must be old kernel");
  4242   int orig_errno = errno;  // Preserve errno value over signal handler.
  4243   JVM_handle_linux_signal(sig, info, uc, true);
  4244   errno = orig_errno;
  4248 // This boolean allows users to forward their own non-matching signals
  4249 // to JVM_handle_linux_signal, harmlessly.
  4250 bool os::Linux::signal_handlers_are_installed = false;
  4252 // For signal-chaining
  4253 struct sigaction os::Linux::sigact[MAXSIGNUM];
  4254 unsigned int os::Linux::sigs = 0;
  4255 bool os::Linux::libjsig_is_loaded = false;
  4256 typedef struct sigaction *(*get_signal_t)(int);
  4257 get_signal_t os::Linux::get_signal_action = NULL;
  4259 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  4260   struct sigaction *actp = NULL;
  4262   if (libjsig_is_loaded) {
  4263     // Retrieve the old signal handler from libjsig
  4264     actp = (*get_signal_action)(sig);
  4266   if (actp == NULL) {
  4267     // Retrieve the preinstalled signal handler from jvm
  4268     actp = get_preinstalled_handler(sig);
  4271   return actp;
  4274 static bool call_chained_handler(struct sigaction *actp, int sig,
  4275                                  siginfo_t *siginfo, void *context) {
  4276   // Call the old signal handler
  4277   if (actp->sa_handler == SIG_DFL) {
  4278     // It's more reasonable to let jvm treat it as an unexpected exception
  4279     // instead of taking the default action.
  4280     return false;
  4281   } else if (actp->sa_handler != SIG_IGN) {
  4282     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4283       // automaticlly block the signal
  4284       sigaddset(&(actp->sa_mask), sig);
  4287     sa_handler_t hand;
  4288     sa_sigaction_t sa;
  4289     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4290     // retrieve the chained handler
  4291     if (siginfo_flag_set) {
  4292       sa = actp->sa_sigaction;
  4293     } else {
  4294       hand = actp->sa_handler;
  4297     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4298       actp->sa_handler = SIG_DFL;
  4301     // try to honor the signal mask
  4302     sigset_t oset;
  4303     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4305     // call into the chained handler
  4306     if (siginfo_flag_set) {
  4307       (*sa)(sig, siginfo, context);
  4308     } else {
  4309       (*hand)(sig);
  4312     // restore the signal mask
  4313     pthread_sigmask(SIG_SETMASK, &oset, 0);
  4315   // Tell jvm's signal handler the signal is taken care of.
  4316   return true;
  4319 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4320   bool chained = false;
  4321   // signal-chaining
  4322   if (UseSignalChaining) {
  4323     struct sigaction *actp = get_chained_signal_action(sig);
  4324     if (actp != NULL) {
  4325       chained = call_chained_handler(actp, sig, siginfo, context);
  4328   return chained;
  4331 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  4332   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  4333     return &sigact[sig];
  4335   return NULL;
  4338 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4339   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4340   sigact[sig] = oldAct;
  4341   sigs |= (unsigned int)1 << sig;
  4344 // for diagnostic
  4345 int os::Linux::sigflags[MAXSIGNUM];
  4347 int os::Linux::get_our_sigflags(int sig) {
  4348   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4349   return sigflags[sig];
  4352 void os::Linux::set_our_sigflags(int sig, int flags) {
  4353   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4354   sigflags[sig] = flags;
  4357 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  4358   // Check for overwrite.
  4359   struct sigaction oldAct;
  4360   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4362   void* oldhand = oldAct.sa_sigaction
  4363                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4364                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4365   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4366       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4367       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  4368     if (AllowUserSignalHandlers || !set_installed) {
  4369       // Do not overwrite; user takes responsibility to forward to us.
  4370       return;
  4371     } else if (UseSignalChaining) {
  4372       // save the old handler in jvm
  4373       save_preinstalled_handler(sig, oldAct);
  4374       // libjsig also interposes the sigaction() call below and saves the
  4375       // old sigaction on it own.
  4376     } else {
  4377       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4378                     "%#lx for signal %d.", (long)oldhand, sig));
  4382   struct sigaction sigAct;
  4383   sigfillset(&(sigAct.sa_mask));
  4384   sigAct.sa_handler = SIG_DFL;
  4385   if (!set_installed) {
  4386     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4387   } else {
  4388     sigAct.sa_sigaction = signalHandler;
  4389     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4391   // Save flags, which are set by ours
  4392   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4393   sigflags[sig] = sigAct.sa_flags;
  4395   int ret = sigaction(sig, &sigAct, &oldAct);
  4396   assert(ret == 0, "check");
  4398   void* oldhand2  = oldAct.sa_sigaction
  4399                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4400                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4401   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4404 // install signal handlers for signals that HotSpot needs to
  4405 // handle in order to support Java-level exception handling.
  4407 void os::Linux::install_signal_handlers() {
  4408   if (!signal_handlers_are_installed) {
  4409     signal_handlers_are_installed = true;
  4411     // signal-chaining
  4412     typedef void (*signal_setting_t)();
  4413     signal_setting_t begin_signal_setting = NULL;
  4414     signal_setting_t end_signal_setting = NULL;
  4415     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4416                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4417     if (begin_signal_setting != NULL) {
  4418       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4419                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4420       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4421                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4422       libjsig_is_loaded = true;
  4423       assert(UseSignalChaining, "should enable signal-chaining");
  4425     if (libjsig_is_loaded) {
  4426       // Tell libjsig jvm is setting signal handlers
  4427       (*begin_signal_setting)();
  4430     set_signal_handler(SIGSEGV, true);
  4431     set_signal_handler(SIGPIPE, true);
  4432     set_signal_handler(SIGBUS, true);
  4433     set_signal_handler(SIGILL, true);
  4434     set_signal_handler(SIGFPE, true);
  4435 #if defined(PPC64)
  4436     set_signal_handler(SIGTRAP, true);
  4437 #endif
  4438     set_signal_handler(SIGXFSZ, true);
  4440     if (libjsig_is_loaded) {
  4441       // Tell libjsig jvm finishes setting signal handlers
  4442       (*end_signal_setting)();
  4445     // We don't activate signal checker if libjsig is in place, we trust ourselves
  4446     // and if UserSignalHandler is installed all bets are off.
  4447     // Log that signal checking is off only if -verbose:jni is specified.
  4448     if (CheckJNICalls) {
  4449       if (libjsig_is_loaded) {
  4450         if (PrintJNIResolving) {
  4451           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4453         check_signals = false;
  4455       if (AllowUserSignalHandlers) {
  4456         if (PrintJNIResolving) {
  4457           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4459         check_signals = false;
  4465 // This is the fastest way to get thread cpu time on Linux.
  4466 // Returns cpu time (user+sys) for any thread, not only for current.
  4467 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  4468 // It might work on 2.6.10+ with a special kernel/glibc patch.
  4469 // For reference, please, see IEEE Std 1003.1-2004:
  4470 //   http://www.unix.org/single_unix_specification
  4472 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  4473   struct timespec tp;
  4474   int rc = os::Linux::clock_gettime(clockid, &tp);
  4475   assert(rc == 0, "clock_gettime is expected to return 0 code");
  4477   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
  4480 /////
  4481 // glibc on Linux platform uses non-documented flag
  4482 // to indicate, that some special sort of signal
  4483 // trampoline is used.
  4484 // We will never set this flag, and we should
  4485 // ignore this flag in our diagnostic
  4486 #ifdef SIGNIFICANT_SIGNAL_MASK
  4487 #undef SIGNIFICANT_SIGNAL_MASK
  4488 #endif
  4489 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  4491 static const char* get_signal_handler_name(address handler,
  4492                                            char* buf, int buflen) {
  4493   int offset;
  4494   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  4495   if (found) {
  4496     // skip directory names
  4497     const char *p1, *p2;
  4498     p1 = buf;
  4499     size_t len = strlen(os::file_separator());
  4500     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  4501     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  4502   } else {
  4503     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  4505   return buf;
  4508 static void print_signal_handler(outputStream* st, int sig,
  4509                                  char* buf, size_t buflen) {
  4510   struct sigaction sa;
  4512   sigaction(sig, NULL, &sa);
  4514   // See comment for SIGNIFICANT_SIGNAL_MASK define
  4515   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4517   st->print("%s: ", os::exception_name(sig, buf, buflen));
  4519   address handler = (sa.sa_flags & SA_SIGINFO)
  4520     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  4521     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  4523   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  4524     st->print("SIG_DFL");
  4525   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  4526     st->print("SIG_IGN");
  4527   } else {
  4528     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  4531   st->print(", sa_mask[0]=");
  4532   os::Posix::print_signal_set_short(st, &sa.sa_mask);
  4534   address rh = VMError::get_resetted_sighandler(sig);
  4535   // May be, handler was resetted by VMError?
  4536   if(rh != NULL) {
  4537     handler = rh;
  4538     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  4541   st->print(", sa_flags=");
  4542   os::Posix::print_sa_flags(st, sa.sa_flags);
  4544   // Check: is it our handler?
  4545   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  4546      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  4547     // It is our signal handler
  4548     // check for flags, reset system-used one!
  4549     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4550       st->print(
  4551                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  4552                 os::Linux::get_our_sigflags(sig));
  4555   st->cr();
  4559 #define DO_SIGNAL_CHECK(sig) \
  4560   if (!sigismember(&check_signal_done, sig)) \
  4561     os::Linux::check_signal_handler(sig)
  4563 // This method is a periodic task to check for misbehaving JNI applications
  4564 // under CheckJNI, we can add any periodic checks here
  4566 void os::run_periodic_checks() {
  4568   if (check_signals == false) return;
  4570   // SEGV and BUS if overridden could potentially prevent
  4571   // generation of hs*.log in the event of a crash, debugging
  4572   // such a case can be very challenging, so we absolutely
  4573   // check the following for a good measure:
  4574   DO_SIGNAL_CHECK(SIGSEGV);
  4575   DO_SIGNAL_CHECK(SIGILL);
  4576   DO_SIGNAL_CHECK(SIGFPE);
  4577   DO_SIGNAL_CHECK(SIGBUS);
  4578   DO_SIGNAL_CHECK(SIGPIPE);
  4579   DO_SIGNAL_CHECK(SIGXFSZ);
  4580 #if defined(PPC64)
  4581   DO_SIGNAL_CHECK(SIGTRAP);
  4582 #endif
  4584   // ReduceSignalUsage allows the user to override these handlers
  4585   // see comments at the very top and jvm_solaris.h
  4586   if (!ReduceSignalUsage) {
  4587     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4588     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4589     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4590     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4593   DO_SIGNAL_CHECK(SR_signum);
  4594   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4597 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4599 static os_sigaction_t os_sigaction = NULL;
  4601 void os::Linux::check_signal_handler(int sig) {
  4602   char buf[O_BUFLEN];
  4603   address jvmHandler = NULL;
  4606   struct sigaction act;
  4607   if (os_sigaction == NULL) {
  4608     // only trust the default sigaction, in case it has been interposed
  4609     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4610     if (os_sigaction == NULL) return;
  4613   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4616   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4618   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4619     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4620     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4623   switch(sig) {
  4624   case SIGSEGV:
  4625   case SIGBUS:
  4626   case SIGFPE:
  4627   case SIGPIPE:
  4628   case SIGILL:
  4629   case SIGXFSZ:
  4630     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4631     break;
  4633   case SHUTDOWN1_SIGNAL:
  4634   case SHUTDOWN2_SIGNAL:
  4635   case SHUTDOWN3_SIGNAL:
  4636   case BREAK_SIGNAL:
  4637     jvmHandler = (address)user_handler();
  4638     break;
  4640   case INTERRUPT_SIGNAL:
  4641     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4642     break;
  4644   default:
  4645     if (sig == SR_signum) {
  4646       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4647     } else {
  4648       return;
  4650     break;
  4653   if (thisHandler != jvmHandler) {
  4654     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4655     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4656     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4657     // No need to check this sig any longer
  4658     sigaddset(&check_signal_done, sig);
  4659   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4660     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4661     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  4662     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4663     // No need to check this sig any longer
  4664     sigaddset(&check_signal_done, sig);
  4667   // Dump all the signal
  4668   if (sigismember(&check_signal_done, sig)) {
  4669     print_signal_handlers(tty, buf, O_BUFLEN);
  4673 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4675 extern bool signal_name(int signo, char* buf, size_t len);
  4677 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4678   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4679     // signal
  4680     if (!signal_name(exception_code, buf, size)) {
  4681       jio_snprintf(buf, size, "SIG%d", exception_code);
  4683     return buf;
  4684   } else {
  4685     return NULL;
  4689 // this is called _before_ the most of global arguments have been parsed
  4690 void os::init(void) {
  4691   char dummy;   /* used to get a guess on initial stack address */
  4692 //  first_hrtime = gethrtime();
  4694   // With LinuxThreads the JavaMain thread pid (primordial thread)
  4695   // is different than the pid of the java launcher thread.
  4696   // So, on Linux, the launcher thread pid is passed to the VM
  4697   // via the sun.java.launcher.pid property.
  4698   // Use this property instead of getpid() if it was correctly passed.
  4699   // See bug 6351349.
  4700   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  4702   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  4704   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  4706   init_random(1234567);
  4708   ThreadCritical::initialize();
  4710   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  4711   if (Linux::page_size() == -1) {
  4712     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  4713                   strerror(errno)));
  4715   init_page_sizes((size_t) Linux::page_size());
  4717   Linux::initialize_system_info();
  4719   // main_thread points to the aboriginal thread
  4720   Linux::_main_thread = pthread_self();
  4722   Linux::clock_init();
  4723   initial_time_count = javaTimeNanos();
  4725   // pthread_condattr initialization for monotonic clock
  4726   int status;
  4727   pthread_condattr_t* _condattr = os::Linux::condAttr();
  4728   if ((status = pthread_condattr_init(_condattr)) != 0) {
  4729     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
  4731   // Only set the clock if CLOCK_MONOTONIC is available
  4732   if (Linux::supports_monotonic_clock()) {
  4733     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
  4734       if (status == EINVAL) {
  4735         warning("Unable to use monotonic clock with relative timed-waits" \
  4736                 " - changes to the time-of-day clock may have adverse affects");
  4737       } else {
  4738         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
  4742   // else it defaults to CLOCK_REALTIME
  4744   pthread_mutex_init(&dl_mutex, NULL);
  4746   // If the pagesize of the VM is greater than 8K determine the appropriate
  4747   // number of initial guard pages.  The user can change this with the
  4748   // command line arguments, if needed.
  4749   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
  4750     StackYellowPages = 1;
  4751     StackRedPages = 1;
  4752     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
  4756 // To install functions for atexit system call
  4757 extern "C" {
  4758   static void perfMemory_exit_helper() {
  4759     perfMemory_exit();
  4763 // this is called _after_ the global arguments have been parsed
  4764 jint os::init_2(void)
  4766   Linux::fast_thread_clock_init();
  4768   // Allocate a single page and mark it as readable for safepoint polling
  4769   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4770   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  4772   os::set_polling_page( polling_page );
  4774 #ifndef PRODUCT
  4775   if(Verbose && PrintMiscellaneous)
  4776     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4777 #endif
  4779   if (!UseMembar) {
  4780     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4781     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
  4782     os::set_memory_serialize_page( mem_serialize_page );
  4784 #ifndef PRODUCT
  4785     if(Verbose && PrintMiscellaneous)
  4786       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4787 #endif
  4790   // initialize suspend/resume support - must do this before signal_sets_init()
  4791   if (SR_initialize() != 0) {
  4792     perror("SR_initialize failed");
  4793     return JNI_ERR;
  4796   Linux::signal_sets_init();
  4797   Linux::install_signal_handlers();
  4799   // Check minimum allowable stack size for thread creation and to initialize
  4800   // the java system classes, including StackOverflowError - depends on page
  4801   // size.  Add a page for compiler2 recursion in main thread.
  4802   // Add in 2*BytesPerWord times page size to account for VM stack during
  4803   // class initialization depending on 32 or 64 bit VM.
  4804   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  4805             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
  4806                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
  4808   size_t threadStackSizeInBytes = ThreadStackSize * K;
  4809   if (threadStackSizeInBytes != 0 &&
  4810       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
  4811         tty->print_cr("\nThe stack size specified is too small, "
  4812                       "Specify at least %dk",
  4813                       os::Linux::min_stack_allowed/ K);
  4814         return JNI_ERR;
  4817   // Make the stack size a multiple of the page size so that
  4818   // the yellow/red zones can be guarded.
  4819   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  4820         vm_page_size()));
  4822   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  4824 #if defined(IA32)
  4825   workaround_expand_exec_shield_cs_limit();
  4826 #endif
  4828   Linux::libpthread_init();
  4829   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  4830      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  4831           Linux::glibc_version(), Linux::libpthread_version(),
  4832           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  4835   if (UseNUMA) {
  4836     if (!Linux::libnuma_init()) {
  4837       UseNUMA = false;
  4838     } else {
  4839       if ((Linux::numa_max_node() < 1)) {
  4840         // There's only one node(they start from 0), disable NUMA.
  4841         UseNUMA = false;
  4844     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
  4845     // we can make the adaptive lgrp chunk resizing work. If the user specified
  4846     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
  4847     // disable adaptive resizing.
  4848     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
  4849       if (FLAG_IS_DEFAULT(UseNUMA)) {
  4850         UseNUMA = false;
  4851       } else {
  4852         if (FLAG_IS_DEFAULT(UseLargePages) &&
  4853             FLAG_IS_DEFAULT(UseSHM) &&
  4854             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
  4855           UseLargePages = false;
  4856         } else {
  4857           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
  4858           UseAdaptiveSizePolicy = false;
  4859           UseAdaptiveNUMAChunkSizing = false;
  4863     if (!UseNUMA && ForceNUMA) {
  4864       UseNUMA = true;
  4868   if (MaxFDLimit) {
  4869     // set the number of file descriptors to max. print out error
  4870     // if getrlimit/setrlimit fails but continue regardless.
  4871     struct rlimit nbr_files;
  4872     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  4873     if (status != 0) {
  4874       if (PrintMiscellaneous && (Verbose || WizardMode))
  4875         perror("os::init_2 getrlimit failed");
  4876     } else {
  4877       nbr_files.rlim_cur = nbr_files.rlim_max;
  4878       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  4879       if (status != 0) {
  4880         if (PrintMiscellaneous && (Verbose || WizardMode))
  4881           perror("os::init_2 setrlimit failed");
  4886   // Initialize lock used to serialize thread creation (see os::create_thread)
  4887   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  4889   // at-exit methods are called in the reverse order of their registration.
  4890   // atexit functions are called on return from main or as a result of a
  4891   // call to exit(3C). There can be only 32 of these functions registered
  4892   // and atexit() does not set errno.
  4894   if (PerfAllowAtExitRegistration) {
  4895     // only register atexit functions if PerfAllowAtExitRegistration is set.
  4896     // atexit functions can be delayed until process exit time, which
  4897     // can be problematic for embedded VM situations. Embedded VMs should
  4898     // call DestroyJavaVM() to assure that VM resources are released.
  4900     // note: perfMemory_exit_helper atexit function may be removed in
  4901     // the future if the appropriate cleanup code can be added to the
  4902     // VM_Exit VMOperation's doit method.
  4903     if (atexit(perfMemory_exit_helper) != 0) {
  4904       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  4908   // initialize thread priority policy
  4909   prio_init();
  4911   return JNI_OK;
  4914 // this is called at the end of vm_initialization
  4915 void os::init_3(void) {
  4916 #ifdef JAVASE_EMBEDDED
  4917   // Start the MemNotifyThread
  4918   if (LowMemoryProtection) {
  4919     MemNotifyThread::start();
  4921   return;
  4922 #endif
  4925 // Mark the polling page as unreadable
  4926 void os::make_polling_page_unreadable(void) {
  4927   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  4928     fatal("Could not disable polling page");
  4929 };
  4931 // Mark the polling page as readable
  4932 void os::make_polling_page_readable(void) {
  4933   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  4934     fatal("Could not enable polling page");
  4936 };
  4938 int os::active_processor_count() {
  4939   // Linux doesn't yet have a (official) notion of processor sets,
  4940   // so just return the number of online processors.
  4941   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  4942   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  4943   return online_cpus;
  4946 void os::set_native_thread_name(const char *name) {
  4947   // Not yet implemented.
  4948   return;
  4951 bool os::distribute_processes(uint length, uint* distribution) {
  4952   // Not yet implemented.
  4953   return false;
  4956 bool os::bind_to_processor(uint processor_id) {
  4957   // Not yet implemented.
  4958   return false;
  4961 ///
  4963 void os::SuspendedThreadTask::internal_do_task() {
  4964   if (do_suspend(_thread->osthread())) {
  4965     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
  4966     do_task(context);
  4967     do_resume(_thread->osthread());
  4971 class PcFetcher : public os::SuspendedThreadTask {
  4972 public:
  4973   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
  4974   ExtendedPC result();
  4975 protected:
  4976   void do_task(const os::SuspendedThreadTaskContext& context);
  4977 private:
  4978   ExtendedPC _epc;
  4979 };
  4981 ExtendedPC PcFetcher::result() {
  4982   guarantee(is_done(), "task is not done yet.");
  4983   return _epc;
  4986 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
  4987   Thread* thread = context.thread();
  4988   OSThread* osthread = thread->osthread();
  4989   if (osthread->ucontext() != NULL) {
  4990     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
  4991   } else {
  4992     // NULL context is unexpected, double-check this is the VMThread
  4993     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  4997 // Suspends the target using the signal mechanism and then grabs the PC before
  4998 // resuming the target. Used by the flat-profiler only
  4999 ExtendedPC os::get_thread_pc(Thread* thread) {
  5000   // Make sure that it is called by the watcher for the VMThread
  5001   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  5002   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  5004   PcFetcher fetcher(thread);
  5005   fetcher.run();
  5006   return fetcher.result();
  5009 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  5011    if (is_NPTL()) {
  5012       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  5013    } else {
  5014       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  5015       // word back to default 64bit precision if condvar is signaled. Java
  5016       // wants 53bit precision.  Save and restore current value.
  5017       int fpu = get_fpu_control_word();
  5018       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  5019       set_fpu_control_word(fpu);
  5020       return status;
  5024 ////////////////////////////////////////////////////////////////////////////////
  5025 // debug support
  5027 bool os::find(address addr, outputStream* st) {
  5028   Dl_info dlinfo;
  5029   memset(&dlinfo, 0, sizeof(dlinfo));
  5030   if (dladdr(addr, &dlinfo) != 0) {
  5031     st->print(PTR_FORMAT ": ", addr);
  5032     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
  5033       st->print("%s+%#x", dlinfo.dli_sname,
  5034                  addr - (intptr_t)dlinfo.dli_saddr);
  5035     } else if (dlinfo.dli_fbase != NULL) {
  5036       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  5037     } else {
  5038       st->print("<absolute address>");
  5040     if (dlinfo.dli_fname != NULL) {
  5041       st->print(" in %s", dlinfo.dli_fname);
  5043     if (dlinfo.dli_fbase != NULL) {
  5044       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  5046     st->cr();
  5048     if (Verbose) {
  5049       // decode some bytes around the PC
  5050       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  5051       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  5052       address       lowest = (address) dlinfo.dli_sname;
  5053       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5054       if (begin < lowest)  begin = lowest;
  5055       Dl_info dlinfo2;
  5056       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5057           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5058         end = (address) dlinfo2.dli_saddr;
  5059       Disassembler::decode(begin, end, st);
  5061     return true;
  5063   return false;
  5066 ////////////////////////////////////////////////////////////////////////////////
  5067 // misc
  5069 // This does not do anything on Linux. This is basically a hook for being
  5070 // able to use structured exception handling (thread-local exception filters)
  5071 // on, e.g., Win32.
  5072 void
  5073 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  5074                          JavaCallArguments* args, Thread* thread) {
  5075   f(value, method, args, thread);
  5078 void os::print_statistics() {
  5081 int os::message_box(const char* title, const char* message) {
  5082   int i;
  5083   fdStream err(defaultStream::error_fd());
  5084   for (i = 0; i < 78; i++) err.print_raw("=");
  5085   err.cr();
  5086   err.print_raw_cr(title);
  5087   for (i = 0; i < 78; i++) err.print_raw("-");
  5088   err.cr();
  5089   err.print_raw_cr(message);
  5090   for (i = 0; i < 78; i++) err.print_raw("=");
  5091   err.cr();
  5093   char buf[16];
  5094   // Prevent process from exiting upon "read error" without consuming all CPU
  5095   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  5097   return buf[0] == 'y' || buf[0] == 'Y';
  5100 int os::stat(const char *path, struct stat *sbuf) {
  5101   char pathbuf[MAX_PATH];
  5102   if (strlen(path) > MAX_PATH - 1) {
  5103     errno = ENAMETOOLONG;
  5104     return -1;
  5106   os::native_path(strcpy(pathbuf, path));
  5107   return ::stat(pathbuf, sbuf);
  5110 bool os::check_heap(bool force) {
  5111   return true;
  5114 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  5115   return ::vsnprintf(buf, count, format, args);
  5118 // Is a (classpath) directory empty?
  5119 bool os::dir_is_empty(const char* path) {
  5120   DIR *dir = NULL;
  5121   struct dirent *ptr;
  5123   dir = opendir(path);
  5124   if (dir == NULL) return true;
  5126   /* Scan the directory */
  5127   bool result = true;
  5128   char buf[sizeof(struct dirent) + MAX_PATH];
  5129   while (result && (ptr = ::readdir(dir)) != NULL) {
  5130     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5131       result = false;
  5134   closedir(dir);
  5135   return result;
  5138 // This code originates from JDK's sysOpen and open64_w
  5139 // from src/solaris/hpi/src/system_md.c
  5141 #ifndef O_DELETE
  5142 #define O_DELETE 0x10000
  5143 #endif
  5145 // Open a file. Unlink the file immediately after open returns
  5146 // if the specified oflag has the O_DELETE flag set.
  5147 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5149 int os::open(const char *path, int oflag, int mode) {
  5151   if (strlen(path) > MAX_PATH - 1) {
  5152     errno = ENAMETOOLONG;
  5153     return -1;
  5155   int fd;
  5156   int o_delete = (oflag & O_DELETE);
  5157   oflag = oflag & ~O_DELETE;
  5159   fd = ::open64(path, oflag, mode);
  5160   if (fd == -1) return -1;
  5162   //If the open succeeded, the file might still be a directory
  5164     struct stat64 buf64;
  5165     int ret = ::fstat64(fd, &buf64);
  5166     int st_mode = buf64.st_mode;
  5168     if (ret != -1) {
  5169       if ((st_mode & S_IFMT) == S_IFDIR) {
  5170         errno = EISDIR;
  5171         ::close(fd);
  5172         return -1;
  5174     } else {
  5175       ::close(fd);
  5176       return -1;
  5180     /*
  5181      * All file descriptors that are opened in the JVM and not
  5182      * specifically destined for a subprocess should have the
  5183      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5184      * party native code might fork and exec without closing all
  5185      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5186      * UNIXProcess.c), and this in turn might:
  5188      * - cause end-of-file to fail to be detected on some file
  5189      *   descriptors, resulting in mysterious hangs, or
  5191      * - might cause an fopen in the subprocess to fail on a system
  5192      *   suffering from bug 1085341.
  5194      * (Yes, the default setting of the close-on-exec flag is a Unix
  5195      * design flaw)
  5197      * See:
  5198      * 1085341: 32-bit stdio routines should support file descriptors >255
  5199      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5200      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5201      */
  5202 #ifdef FD_CLOEXEC
  5204         int flags = ::fcntl(fd, F_GETFD);
  5205         if (flags != -1)
  5206             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5208 #endif
  5210   if (o_delete != 0) {
  5211     ::unlink(path);
  5213   return fd;
  5217 // create binary file, rewriting existing file if required
  5218 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5219   int oflags = O_WRONLY | O_CREAT;
  5220   if (!rewrite_existing) {
  5221     oflags |= O_EXCL;
  5223   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5226 // return current position of file pointer
  5227 jlong os::current_file_offset(int fd) {
  5228   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5231 // move file pointer to the specified offset
  5232 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5233   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5236 // This code originates from JDK's sysAvailable
  5237 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  5239 int os::available(int fd, jlong *bytes) {
  5240   jlong cur, end;
  5241   int mode;
  5242   struct stat64 buf64;
  5244   if (::fstat64(fd, &buf64) >= 0) {
  5245     mode = buf64.st_mode;
  5246     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5247       /*
  5248       * XXX: is the following call interruptible? If so, this might
  5249       * need to go through the INTERRUPT_IO() wrapper as for other
  5250       * blocking, interruptible calls in this file.
  5251       */
  5252       int n;
  5253       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  5254         *bytes = n;
  5255         return 1;
  5259   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5260     return 0;
  5261   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5262     return 0;
  5263   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5264     return 0;
  5266   *bytes = end - cur;
  5267   return 1;
  5270 int os::socket_available(int fd, jint *pbytes) {
  5271   // Linux doc says EINTR not returned, unlike Solaris
  5272   int ret = ::ioctl(fd, FIONREAD, pbytes);
  5274   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  5275   // is expected to return 0 on failure and 1 on success to the jdk.
  5276   return (ret < 0) ? 0 : 1;
  5279 // Map a block of memory.
  5280 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  5281                      char *addr, size_t bytes, bool read_only,
  5282                      bool allow_exec) {
  5283   int prot;
  5284   int flags = MAP_PRIVATE;
  5286   if (read_only) {
  5287     prot = PROT_READ;
  5288   } else {
  5289     prot = PROT_READ | PROT_WRITE;
  5292   if (allow_exec) {
  5293     prot |= PROT_EXEC;
  5296   if (addr != NULL) {
  5297     flags |= MAP_FIXED;
  5300   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5301                                      fd, file_offset);
  5302   if (mapped_address == MAP_FAILED) {
  5303     return NULL;
  5305   return mapped_address;
  5309 // Remap a block of memory.
  5310 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  5311                        char *addr, size_t bytes, bool read_only,
  5312                        bool allow_exec) {
  5313   // same as map_memory() on this OS
  5314   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5315                         allow_exec);
  5319 // Unmap a block of memory.
  5320 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  5321   return munmap(addr, bytes) == 0;
  5324 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  5326 static clockid_t thread_cpu_clockid(Thread* thread) {
  5327   pthread_t tid = thread->osthread()->pthread_id();
  5328   clockid_t clockid;
  5330   // Get thread clockid
  5331   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  5332   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  5333   return clockid;
  5336 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5337 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5338 // of a thread.
  5339 //
  5340 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  5341 // the fast estimate available on the platform.
  5343 jlong os::current_thread_cpu_time() {
  5344   if (os::Linux::supports_fast_thread_cpu_time()) {
  5345     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5346   } else {
  5347     // return user + sys since the cost is the same
  5348     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  5352 jlong os::thread_cpu_time(Thread* thread) {
  5353   // consistent with what current_thread_cpu_time() returns
  5354   if (os::Linux::supports_fast_thread_cpu_time()) {
  5355     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5356   } else {
  5357     return slow_thread_cpu_time(thread, true /* user + sys */);
  5361 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5362   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5363     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5364   } else {
  5365     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5369 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5370   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5371     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5372   } else {
  5373     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  5377 //
  5378 //  -1 on error.
  5379 //
  5381 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5382   static bool proc_task_unchecked = true;
  5383   static const char *proc_stat_path = "/proc/%d/stat";
  5384   pid_t  tid = thread->osthread()->thread_id();
  5385   char *s;
  5386   char stat[2048];
  5387   int statlen;
  5388   char proc_name[64];
  5389   int count;
  5390   long sys_time, user_time;
  5391   char cdummy;
  5392   int idummy;
  5393   long ldummy;
  5394   FILE *fp;
  5396   // The /proc/<tid>/stat aggregates per-process usage on
  5397   // new Linux kernels 2.6+ where NPTL is supported.
  5398   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  5399   // See bug 6328462.
  5400   // There possibly can be cases where there is no directory
  5401   // /proc/self/task, so we check its availability.
  5402   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  5403     // This is executed only once
  5404     proc_task_unchecked = false;
  5405     fp = fopen("/proc/self/task", "r");
  5406     if (fp != NULL) {
  5407       proc_stat_path = "/proc/self/task/%d/stat";
  5408       fclose(fp);
  5412   sprintf(proc_name, proc_stat_path, tid);
  5413   fp = fopen(proc_name, "r");
  5414   if ( fp == NULL ) return -1;
  5415   statlen = fread(stat, 1, 2047, fp);
  5416   stat[statlen] = '\0';
  5417   fclose(fp);
  5419   // Skip pid and the command string. Note that we could be dealing with
  5420   // weird command names, e.g. user could decide to rename java launcher
  5421   // to "java 1.4.2 :)", then the stat file would look like
  5422   //                1234 (java 1.4.2 :)) R ... ...
  5423   // We don't really need to know the command string, just find the last
  5424   // occurrence of ")" and then start parsing from there. See bug 4726580.
  5425   s = strrchr(stat, ')');
  5426   if (s == NULL ) return -1;
  5428   // Skip blank chars
  5429   do s++; while (isspace(*s));
  5431   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  5432                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  5433                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  5434                  &user_time, &sys_time);
  5435   if ( count != 13 ) return -1;
  5436   if (user_sys_cpu_time) {
  5437     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  5438   } else {
  5439     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  5443 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5444   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5445   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5446   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5447   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5450 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5451   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5452   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5453   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5454   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5457 bool os::is_thread_cpu_time_supported() {
  5458   return true;
  5461 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5462 // Linux doesn't yet have a (official) notion of processor sets,
  5463 // so just return the system wide load average.
  5464 int os::loadavg(double loadavg[], int nelem) {
  5465   return ::getloadavg(loadavg, nelem);
  5468 void os::pause() {
  5469   char filename[MAX_PATH];
  5470   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5471     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5472   } else {
  5473     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5476   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5477   if (fd != -1) {
  5478     struct stat buf;
  5479     ::close(fd);
  5480     while (::stat(filename, &buf) == 0) {
  5481       (void)::poll(NULL, 0, 100);
  5483   } else {
  5484     jio_fprintf(stderr,
  5485       "Could not open pause file '%s', continuing immediately.\n", filename);
  5490 // Refer to the comments in os_solaris.cpp park-unpark.
  5491 //
  5492 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  5493 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  5494 // For specifics regarding the bug see GLIBC BUGID 261237 :
  5495 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  5496 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  5497 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  5498 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  5499 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  5500 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  5501 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  5502 // of libpthread avoids the problem, but isn't practical.
  5503 //
  5504 // Possible remedies:
  5505 //
  5506 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  5507 //      This is palliative and probabilistic, however.  If the thread is preempted
  5508 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  5509 //      than the minimum period may have passed, and the abstime may be stale (in the
  5510 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  5511 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  5512 //
  5513 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  5514 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  5515 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  5516 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  5517 //      thread.
  5518 //
  5519 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  5520 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  5521 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  5522 //      This also works well.  In fact it avoids kernel-level scalability impediments
  5523 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  5524 //      timers in a graceful fashion.
  5525 //
  5526 // 4.   When the abstime value is in the past it appears that control returns
  5527 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  5528 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  5529 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  5530 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  5531 //      It may be possible to avoid reinitialization by checking the return
  5532 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  5533 //      condvar we must establish the invariant that cond_signal() is only called
  5534 //      within critical sections protected by the adjunct mutex.  This prevents
  5535 //      cond_signal() from "seeing" a condvar that's in the midst of being
  5536 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  5537 //      desirable signal-after-unlock optimization that avoids futile context switching.
  5538 //
  5539 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  5540 //      structure when a condvar is used or initialized.  cond_destroy()  would
  5541 //      release the helper structure.  Our reinitialize-after-timedwait fix
  5542 //      put excessive stress on malloc/free and locks protecting the c-heap.
  5543 //
  5544 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  5545 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  5546 // and only enabling the work-around for vulnerable environments.
  5548 // utility to compute the abstime argument to timedwait:
  5549 // millis is the relative timeout time
  5550 // abstime will be the absolute timeout time
  5551 // TODO: replace compute_abstime() with unpackTime()
  5553 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  5554   if (millis < 0)  millis = 0;
  5556   jlong seconds = millis / 1000;
  5557   millis %= 1000;
  5558   if (seconds > 50000000) { // see man cond_timedwait(3T)
  5559     seconds = 50000000;
  5562   if (os::Linux::supports_monotonic_clock()) {
  5563     struct timespec now;
  5564     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  5565     assert_status(status == 0, status, "clock_gettime");
  5566     abstime->tv_sec = now.tv_sec  + seconds;
  5567     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
  5568     if (nanos >= NANOSECS_PER_SEC) {
  5569       abstime->tv_sec += 1;
  5570       nanos -= NANOSECS_PER_SEC;
  5572     abstime->tv_nsec = nanos;
  5573   } else {
  5574     struct timeval now;
  5575     int status = gettimeofday(&now, NULL);
  5576     assert(status == 0, "gettimeofday");
  5577     abstime->tv_sec = now.tv_sec  + seconds;
  5578     long usec = now.tv_usec + millis * 1000;
  5579     if (usec >= 1000000) {
  5580       abstime->tv_sec += 1;
  5581       usec -= 1000000;
  5583     abstime->tv_nsec = usec * 1000;
  5585   return abstime;
  5589 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5590 // Conceptually TryPark() should be equivalent to park(0).
  5592 int os::PlatformEvent::TryPark() {
  5593   for (;;) {
  5594     const int v = _Event ;
  5595     guarantee ((v == 0) || (v == 1), "invariant") ;
  5596     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5600 void os::PlatformEvent::park() {       // AKA "down()"
  5601   // Invariant: Only the thread associated with the Event/PlatformEvent
  5602   // may call park().
  5603   // TODO: assert that _Assoc != NULL or _Assoc == Self
  5604   int v ;
  5605   for (;;) {
  5606       v = _Event ;
  5607       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5609   guarantee (v >= 0, "invariant") ;
  5610   if (v == 0) {
  5611      // Do this the hard way by blocking ...
  5612      int status = pthread_mutex_lock(_mutex);
  5613      assert_status(status == 0, status, "mutex_lock");
  5614      guarantee (_nParked == 0, "invariant") ;
  5615      ++ _nParked ;
  5616      while (_Event < 0) {
  5617         status = pthread_cond_wait(_cond, _mutex);
  5618         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5619         // Treat this the same as if the wait was interrupted
  5620         if (status == ETIME) { status = EINTR; }
  5621         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5623      -- _nParked ;
  5625     _Event = 0 ;
  5626      status = pthread_mutex_unlock(_mutex);
  5627      assert_status(status == 0, status, "mutex_unlock");
  5628     // Paranoia to ensure our locked and lock-free paths interact
  5629     // correctly with each other.
  5630     OrderAccess::fence();
  5632   guarantee (_Event >= 0, "invariant") ;
  5635 int os::PlatformEvent::park(jlong millis) {
  5636   guarantee (_nParked == 0, "invariant") ;
  5638   int v ;
  5639   for (;;) {
  5640       v = _Event ;
  5641       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5643   guarantee (v >= 0, "invariant") ;
  5644   if (v != 0) return OS_OK ;
  5646   // We do this the hard way, by blocking the thread.
  5647   // Consider enforcing a minimum timeout value.
  5648   struct timespec abst;
  5649   compute_abstime(&abst, millis);
  5651   int ret = OS_TIMEOUT;
  5652   int status = pthread_mutex_lock(_mutex);
  5653   assert_status(status == 0, status, "mutex_lock");
  5654   guarantee (_nParked == 0, "invariant") ;
  5655   ++_nParked ;
  5657   // Object.wait(timo) will return because of
  5658   // (a) notification
  5659   // (b) timeout
  5660   // (c) thread.interrupt
  5661   //
  5662   // Thread.interrupt and object.notify{All} both call Event::set.
  5663   // That is, we treat thread.interrupt as a special case of notification.
  5664   // The underlying Solaris implementation, cond_timedwait, admits
  5665   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  5666   // JVM from making those visible to Java code.  As such, we must
  5667   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  5668   //
  5669   // TODO: properly differentiate simultaneous notify+interrupt.
  5670   // In that case, we should propagate the notify to another waiter.
  5672   while (_Event < 0) {
  5673     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  5674     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5675       pthread_cond_destroy (_cond);
  5676       pthread_cond_init (_cond, os::Linux::condAttr()) ;
  5678     assert_status(status == 0 || status == EINTR ||
  5679                   status == ETIME || status == ETIMEDOUT,
  5680                   status, "cond_timedwait");
  5681     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  5682     if (status == ETIME || status == ETIMEDOUT) break ;
  5683     // We consume and ignore EINTR and spurious wakeups.
  5685   --_nParked ;
  5686   if (_Event >= 0) {
  5687      ret = OS_OK;
  5689   _Event = 0 ;
  5690   status = pthread_mutex_unlock(_mutex);
  5691   assert_status(status == 0, status, "mutex_unlock");
  5692   assert (_nParked == 0, "invariant") ;
  5693   // Paranoia to ensure our locked and lock-free paths interact
  5694   // correctly with each other.
  5695   OrderAccess::fence();
  5696   return ret;
  5699 void os::PlatformEvent::unpark() {
  5700   // Transitions for _Event:
  5701   //    0 :=> 1
  5702   //    1 :=> 1
  5703   //   -1 :=> either 0 or 1; must signal target thread
  5704   //          That is, we can safely transition _Event from -1 to either
  5705   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  5706   //          unpark() calls.
  5707   // See also: "Semaphores in Plan 9" by Mullender & Cox
  5708   //
  5709   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  5710   // that it will take two back-to-back park() calls for the owning
  5711   // thread to block. This has the benefit of forcing a spurious return
  5712   // from the first park() call after an unpark() call which will help
  5713   // shake out uses of park() and unpark() without condition variables.
  5715   if (Atomic::xchg(1, &_Event) >= 0) return;
  5717   // Wait for the thread associated with the event to vacate
  5718   int status = pthread_mutex_lock(_mutex);
  5719   assert_status(status == 0, status, "mutex_lock");
  5720   int AnyWaiters = _nParked;
  5721   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  5722   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  5723     AnyWaiters = 0;
  5724     pthread_cond_signal(_cond);
  5726   status = pthread_mutex_unlock(_mutex);
  5727   assert_status(status == 0, status, "mutex_unlock");
  5728   if (AnyWaiters != 0) {
  5729     status = pthread_cond_signal(_cond);
  5730     assert_status(status == 0, status, "cond_signal");
  5733   // Note that we signal() _after dropping the lock for "immortal" Events.
  5734   // This is safe and avoids a common class of  futile wakeups.  In rare
  5735   // circumstances this can cause a thread to return prematurely from
  5736   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  5737   // simply re-test the condition and re-park itself.
  5741 // JSR166
  5742 // -------------------------------------------------------
  5744 /*
  5745  * The solaris and linux implementations of park/unpark are fairly
  5746  * conservative for now, but can be improved. They currently use a
  5747  * mutex/condvar pair, plus a a count.
  5748  * Park decrements count if > 0, else does a condvar wait.  Unpark
  5749  * sets count to 1 and signals condvar.  Only one thread ever waits
  5750  * on the condvar. Contention seen when trying to park implies that someone
  5751  * is unparking you, so don't wait. And spurious returns are fine, so there
  5752  * is no need to track notifications.
  5753  */
  5755 #define MAX_SECS 100000000
  5756 /*
  5757  * This code is common to linux and solaris and will be moved to a
  5758  * common place in dolphin.
  5760  * The passed in time value is either a relative time in nanoseconds
  5761  * or an absolute time in milliseconds. Either way it has to be unpacked
  5762  * into suitable seconds and nanoseconds components and stored in the
  5763  * given timespec structure.
  5764  * Given time is a 64-bit value and the time_t used in the timespec is only
  5765  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  5766  * overflow if times way in the future are given. Further on Solaris versions
  5767  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  5768  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  5769  * As it will be 28 years before "now + 100000000" will overflow we can
  5770  * ignore overflow and just impose a hard-limit on seconds using the value
  5771  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  5772  * years from "now".
  5773  */
  5775 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  5776   assert (time > 0, "convertTime");
  5777   time_t max_secs = 0;
  5779   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
  5780     struct timeval now;
  5781     int status = gettimeofday(&now, NULL);
  5782     assert(status == 0, "gettimeofday");
  5784     max_secs = now.tv_sec + MAX_SECS;
  5786     if (isAbsolute) {
  5787       jlong secs = time / 1000;
  5788       if (secs > max_secs) {
  5789         absTime->tv_sec = max_secs;
  5790       } else {
  5791         absTime->tv_sec = secs;
  5793       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  5794     } else {
  5795       jlong secs = time / NANOSECS_PER_SEC;
  5796       if (secs >= MAX_SECS) {
  5797         absTime->tv_sec = max_secs;
  5798         absTime->tv_nsec = 0;
  5799       } else {
  5800         absTime->tv_sec = now.tv_sec + secs;
  5801         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  5802         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5803           absTime->tv_nsec -= NANOSECS_PER_SEC;
  5804           ++absTime->tv_sec; // note: this must be <= max_secs
  5808   } else {
  5809     // must be relative using monotonic clock
  5810     struct timespec now;
  5811     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  5812     assert_status(status == 0, status, "clock_gettime");
  5813     max_secs = now.tv_sec + MAX_SECS;
  5814     jlong secs = time / NANOSECS_PER_SEC;
  5815     if (secs >= MAX_SECS) {
  5816       absTime->tv_sec = max_secs;
  5817       absTime->tv_nsec = 0;
  5818     } else {
  5819       absTime->tv_sec = now.tv_sec + secs;
  5820       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
  5821       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5822         absTime->tv_nsec -= NANOSECS_PER_SEC;
  5823         ++absTime->tv_sec; // note: this must be <= max_secs
  5827   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  5828   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  5829   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  5830   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  5833 void Parker::park(bool isAbsolute, jlong time) {
  5834   // Ideally we'd do something useful while spinning, such
  5835   // as calling unpackTime().
  5837   // Optional fast-path check:
  5838   // Return immediately if a permit is available.
  5839   // We depend on Atomic::xchg() having full barrier semantics
  5840   // since we are doing a lock-free update to _counter.
  5841   if (Atomic::xchg(0, &_counter) > 0) return;
  5843   Thread* thread = Thread::current();
  5844   assert(thread->is_Java_thread(), "Must be JavaThread");
  5845   JavaThread *jt = (JavaThread *)thread;
  5847   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  5848   // Check interrupt before trying to wait
  5849   if (Thread::is_interrupted(thread, false)) {
  5850     return;
  5853   // Next, demultiplex/decode time arguments
  5854   timespec absTime;
  5855   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  5856     return;
  5858   if (time > 0) {
  5859     unpackTime(&absTime, isAbsolute, time);
  5863   // Enter safepoint region
  5864   // Beware of deadlocks such as 6317397.
  5865   // The per-thread Parker:: mutex is a classic leaf-lock.
  5866   // In particular a thread must never block on the Threads_lock while
  5867   // holding the Parker:: mutex.  If safepoints are pending both the
  5868   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  5869   ThreadBlockInVM tbivm(jt);
  5871   // Don't wait if cannot get lock since interference arises from
  5872   // unblocking.  Also. check interrupt before trying wait
  5873   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  5874     return;
  5877   int status ;
  5878   if (_counter > 0)  { // no wait needed
  5879     _counter = 0;
  5880     status = pthread_mutex_unlock(_mutex);
  5881     assert (status == 0, "invariant") ;
  5882     // Paranoia to ensure our locked and lock-free paths interact
  5883     // correctly with each other and Java-level accesses.
  5884     OrderAccess::fence();
  5885     return;
  5888 #ifdef ASSERT
  5889   // Don't catch signals while blocked; let the running threads have the signals.
  5890   // (This allows a debugger to break into the running thread.)
  5891   sigset_t oldsigs;
  5892   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  5893   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  5894 #endif
  5896   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  5897   jt->set_suspend_equivalent();
  5898   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  5900   assert(_cur_index == -1, "invariant");
  5901   if (time == 0) {
  5902     _cur_index = REL_INDEX; // arbitrary choice when not timed
  5903     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
  5904   } else {
  5905     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
  5906     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
  5907     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5908       pthread_cond_destroy (&_cond[_cur_index]) ;
  5909       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
  5912   _cur_index = -1;
  5913   assert_status(status == 0 || status == EINTR ||
  5914                 status == ETIME || status == ETIMEDOUT,
  5915                 status, "cond_timedwait");
  5917 #ifdef ASSERT
  5918   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  5919 #endif
  5921   _counter = 0 ;
  5922   status = pthread_mutex_unlock(_mutex) ;
  5923   assert_status(status == 0, status, "invariant") ;
  5924   // Paranoia to ensure our locked and lock-free paths interact
  5925   // correctly with each other and Java-level accesses.
  5926   OrderAccess::fence();
  5928   // If externally suspended while waiting, re-suspend
  5929   if (jt->handle_special_suspend_equivalent_condition()) {
  5930     jt->java_suspend_self();
  5934 void Parker::unpark() {
  5935   int s, status ;
  5936   status = pthread_mutex_lock(_mutex);
  5937   assert (status == 0, "invariant") ;
  5938   s = _counter;
  5939   _counter = 1;
  5940   if (s < 1) {
  5941     // thread might be parked
  5942     if (_cur_index != -1) {
  5943       // thread is definitely parked
  5944       if (WorkAroundNPTLTimedWaitHang) {
  5945         status = pthread_cond_signal (&_cond[_cur_index]);
  5946         assert (status == 0, "invariant");
  5947         status = pthread_mutex_unlock(_mutex);
  5948         assert (status == 0, "invariant");
  5949       } else {
  5950         status = pthread_mutex_unlock(_mutex);
  5951         assert (status == 0, "invariant");
  5952         status = pthread_cond_signal (&_cond[_cur_index]);
  5953         assert (status == 0, "invariant");
  5955     } else {
  5956       pthread_mutex_unlock(_mutex);
  5957       assert (status == 0, "invariant") ;
  5959   } else {
  5960     pthread_mutex_unlock(_mutex);
  5961     assert (status == 0, "invariant") ;
  5966 extern char** environ;
  5968 #ifndef __NR_fork
  5969 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
  5970 #endif
  5972 #ifndef __NR_execve
  5973 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
  5974 #endif
  5976 // Run the specified command in a separate process. Return its exit value,
  5977 // or -1 on failure (e.g. can't fork a new process).
  5978 // Unlike system(), this function can be called from signal handler. It
  5979 // doesn't block SIGINT et al.
  5980 int os::fork_and_exec(char* cmd) {
  5981   const char * argv[4] = {"sh", "-c", cmd, NULL};
  5983   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
  5984   // pthread_atfork handlers and reset pthread library. All we need is a
  5985   // separate process to execve. Make a direct syscall to fork process.
  5986   // On IA64 there's no fork syscall, we have to use fork() and hope for
  5987   // the best...
  5988   pid_t pid = NOT_IA64(syscall(__NR_fork);)
  5989               IA64_ONLY(fork();)
  5991   if (pid < 0) {
  5992     // fork failed
  5993     return -1;
  5995   } else if (pid == 0) {
  5996     // child process
  5998     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
  5999     // first to kill every thread on the thread list. Because this list is
  6000     // not reset by fork() (see notes above), execve() will instead kill
  6001     // every thread in the parent process. We know this is the only thread
  6002     // in the new process, so make a system call directly.
  6003     // IA64 should use normal execve() from glibc to match the glibc fork()
  6004     // above.
  6005     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
  6006     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
  6008     // execve failed
  6009     _exit(-1);
  6011   } else  {
  6012     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  6013     // care about the actual exit code, for now.
  6015     int status;
  6017     // Wait for the child process to exit.  This returns immediately if
  6018     // the child has already exited. */
  6019     while (waitpid(pid, &status, 0) < 0) {
  6020         switch (errno) {
  6021         case ECHILD: return 0;
  6022         case EINTR: break;
  6023         default: return -1;
  6027     if (WIFEXITED(status)) {
  6028        // The child exited normally; get its exit code.
  6029        return WEXITSTATUS(status);
  6030     } else if (WIFSIGNALED(status)) {
  6031        // The child exited because of a signal
  6032        // The best value to return is 0x80 + signal number,
  6033        // because that is what all Unix shells do, and because
  6034        // it allows callers to distinguish between process exit and
  6035        // process death by signal.
  6036        return 0x80 + WTERMSIG(status);
  6037     } else {
  6038        // Unknown exit code; pass it through
  6039        return status;
  6044 // is_headless_jre()
  6045 //
  6046 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  6047 // in order to report if we are running in a headless jre
  6048 //
  6049 // Since JDK8 xawt/libmawt.so was moved into the same directory
  6050 // as libawt.so, and renamed libawt_xawt.so
  6051 //
  6052 bool os::is_headless_jre() {
  6053     struct stat statbuf;
  6054     char buf[MAXPATHLEN];
  6055     char libmawtpath[MAXPATHLEN];
  6056     const char *xawtstr  = "/xawt/libmawt.so";
  6057     const char *new_xawtstr = "/libawt_xawt.so";
  6058     char *p;
  6060     // Get path to libjvm.so
  6061     os::jvm_path(buf, sizeof(buf));
  6063     // Get rid of libjvm.so
  6064     p = strrchr(buf, '/');
  6065     if (p == NULL) return false;
  6066     else *p = '\0';
  6068     // Get rid of client or server
  6069     p = strrchr(buf, '/');
  6070     if (p == NULL) return false;
  6071     else *p = '\0';
  6073     // check xawt/libmawt.so
  6074     strcpy(libmawtpath, buf);
  6075     strcat(libmawtpath, xawtstr);
  6076     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6078     // check libawt_xawt.so
  6079     strcpy(libmawtpath, buf);
  6080     strcat(libmawtpath, new_xawtstr);
  6081     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6083     return true;
  6086 // Get the default path to the core file
  6087 // Returns the length of the string
  6088 int os::get_core_path(char* buffer, size_t bufferSize) {
  6089   const char* p = get_current_directory(buffer, bufferSize);
  6091   if (p == NULL) {
  6092     assert(p != NULL, "failed to get current directory");
  6093     return 0;
  6096   return strlen(buffer);
  6099 #ifdef JAVASE_EMBEDDED
  6100 //
  6101 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
  6102 //
  6103 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
  6105 // ctor
  6106 //
  6107 MemNotifyThread::MemNotifyThread(int fd): Thread() {
  6108   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
  6109   _fd = fd;
  6111   if (os::create_thread(this, os::os_thread)) {
  6112     _memnotify_thread = this;
  6113     os::set_priority(this, NearMaxPriority);
  6114     os::start_thread(this);
  6118 // Where all the work gets done
  6119 //
  6120 void MemNotifyThread::run() {
  6121   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
  6123   // Set up the select arguments
  6124   fd_set rfds;
  6125   if (_fd != -1) {
  6126     FD_ZERO(&rfds);
  6127     FD_SET(_fd, &rfds);
  6130   // Now wait for the mem_notify device to wake up
  6131   while (1) {
  6132     // Wait for the mem_notify device to signal us..
  6133     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
  6134     if (rc == -1) {
  6135       perror("select!\n");
  6136       break;
  6137     } else if (rc) {
  6138       //ssize_t free_before = os::available_memory();
  6139       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
  6141       // The kernel is telling us there is not much memory left...
  6142       // try to do something about that
  6144       // If we are not already in a GC, try one.
  6145       if (!Universe::heap()->is_gc_active()) {
  6146         Universe::heap()->collect(GCCause::_allocation_failure);
  6148         //ssize_t free_after = os::available_memory();
  6149         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
  6150         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
  6152       // We might want to do something like the following if we find the GC's are not helping...
  6153       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
  6158 //
  6159 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
  6160 //
  6161 void MemNotifyThread::start() {
  6162   int    fd;
  6163   fd = open ("/dev/mem_notify", O_RDONLY, 0);
  6164   if (fd < 0) {
  6165       return;
  6168   if (memnotify_thread() == NULL) {
  6169     new MemNotifyThread(fd);
  6173 #endif // JAVASE_EMBEDDED
  6176 /////////////// Unit tests ///////////////
  6178 #ifndef PRODUCT
  6180 #define test_log(...) \
  6181   do {\
  6182     if (VerboseInternalVMTests) { \
  6183       tty->print_cr(__VA_ARGS__); \
  6184       tty->flush(); \
  6185     }\
  6186   } while (false)
  6188 class TestReserveMemorySpecial : AllStatic {
  6189  public:
  6190   static void small_page_write(void* addr, size_t size) {
  6191     size_t page_size = os::vm_page_size();
  6193     char* end = (char*)addr + size;
  6194     for (char* p = (char*)addr; p < end; p += page_size) {
  6195       *p = 1;
  6199   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
  6200     if (!UseHugeTLBFS) {
  6201       return;
  6204     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
  6206     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
  6208     if (addr != NULL) {
  6209       small_page_write(addr, size);
  6211       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6215   static void test_reserve_memory_special_huge_tlbfs_only() {
  6216     if (!UseHugeTLBFS) {
  6217       return;
  6220     size_t lp = os::large_page_size();
  6222     for (size_t size = lp; size <= lp * 10; size += lp) {
  6223       test_reserve_memory_special_huge_tlbfs_only(size);
  6227   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
  6228     if (!UseHugeTLBFS) {
  6229         return;
  6232     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
  6233         size, alignment);
  6235     assert(size >= os::large_page_size(), "Incorrect input to test");
  6237     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
  6239     if (addr != NULL) {
  6240       small_page_write(addr, size);
  6242       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6246   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
  6247     size_t lp = os::large_page_size();
  6248     size_t ag = os::vm_allocation_granularity();
  6250     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6251       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
  6255   static void test_reserve_memory_special_huge_tlbfs_mixed() {
  6256     size_t lp = os::large_page_size();
  6257     size_t ag = os::vm_allocation_granularity();
  6259     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
  6260     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
  6261     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
  6262     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
  6263     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
  6264     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
  6265     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
  6266     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
  6267     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
  6270   static void test_reserve_memory_special_huge_tlbfs() {
  6271     if (!UseHugeTLBFS) {
  6272       return;
  6275     test_reserve_memory_special_huge_tlbfs_only();
  6276     test_reserve_memory_special_huge_tlbfs_mixed();
  6279   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
  6280     if (!UseSHM) {
  6281       return;
  6284     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
  6286     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
  6288     if (addr != NULL) {
  6289       assert(is_ptr_aligned(addr, alignment), "Check");
  6290       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
  6292       small_page_write(addr, size);
  6294       os::Linux::release_memory_special_shm(addr, size);
  6298   static void test_reserve_memory_special_shm() {
  6299     size_t lp = os::large_page_size();
  6300     size_t ag = os::vm_allocation_granularity();
  6302     for (size_t size = ag; size < lp * 3; size += ag) {
  6303       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6304         test_reserve_memory_special_shm(size, alignment);
  6309   static void test() {
  6310     test_reserve_memory_special_huge_tlbfs();
  6311     test_reserve_memory_special_shm();
  6313 };
  6315 void TestReserveMemorySpecial_test() {
  6316   TestReserveMemorySpecial::test();
  6319 #endif

mercurial