src/share/vm/opto/parse2.cpp

Wed, 02 Jul 2008 12:55:16 -0700

author
xdono
date
Wed, 02 Jul 2008 12:55:16 -0700
changeset 631
d1605aabd0a1
parent 564
c0939256690b
child 670
9c2ecc2ffb12
permissions
-rw-r--r--

6719955: Update copyright year
Summary: Update copyright year for files that have been modified in 2008
Reviewed-by: ohair, tbell

     1 /*
     2  * Copyright 1998-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_parse2.cpp.incl"
    28 extern int explicit_null_checks_inserted,
    29            explicit_null_checks_elided;
    31 //---------------------------------array_load----------------------------------
    32 void Parse::array_load(BasicType elem_type) {
    33   const Type* elem = Type::TOP;
    34   Node* adr = array_addressing(elem_type, 0, &elem);
    35   if (stopped())  return;     // guarenteed null or range check
    36   _sp -= 2;                   // Pop array and index
    37   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
    38   Node* ld = make_load(control(), adr, elem, elem_type, adr_type);
    39   push(ld);
    40 }
    43 //--------------------------------array_store----------------------------------
    44 void Parse::array_store(BasicType elem_type) {
    45   Node* adr = array_addressing(elem_type, 1);
    46   if (stopped())  return;     // guarenteed null or range check
    47   Node* val = pop();
    48   _sp -= 2;                   // Pop array and index
    49   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
    50   store_to_memory(control(), adr, val, elem_type, adr_type);
    51 }
    54 //------------------------------array_addressing-------------------------------
    55 // Pull array and index from the stack.  Compute pointer-to-element.
    56 Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
    57   Node *idx   = peek(0+vals);   // Get from stack without popping
    58   Node *ary   = peek(1+vals);   // in case of exception
    60   // Null check the array base, with correct stack contents
    61   ary = do_null_check(ary, T_ARRAY);
    62   // Compile-time detect of null-exception?
    63   if (stopped())  return top();
    65   const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
    66   const TypeInt*    sizetype = arytype->size();
    67   const Type*       elemtype = arytype->elem();
    69   if (UseUniqueSubclasses && result2 != NULL) {
    70     const Type* el = elemtype;
    71     if (elemtype->isa_narrowoop()) {
    72       el = elemtype->is_narrowoop()->make_oopptr();
    73     }
    74     const TypeInstPtr* toop = el->isa_instptr();
    75     if (toop) {
    76       if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
    77         // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
    78         const Type* subklass = Type::get_const_type(toop->klass());
    79         elemtype = subklass->join(el);
    80       }
    81     }
    82   }
    84   // Check for big class initializers with all constant offsets
    85   // feeding into a known-size array.
    86   const TypeInt* idxtype = _gvn.type(idx)->is_int();
    87   // See if the highest idx value is less than the lowest array bound,
    88   // and if the idx value cannot be negative:
    89   bool need_range_check = true;
    90   if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
    91     need_range_check = false;
    92     if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
    93   }
    95   if (!arytype->klass()->is_loaded()) {
    96     // Only fails for some -Xcomp runs
    97     // The class is unloaded.  We have to run this bytecode in the interpreter.
    98     uncommon_trap(Deoptimization::Reason_unloaded,
    99                   Deoptimization::Action_reinterpret,
   100                   arytype->klass(), "!loaded array");
   101     return top();
   102   }
   104   // Do the range check
   105   if (GenerateRangeChecks && need_range_check) {
   106     // Range is constant in array-oop, so we can use the original state of mem
   107     Node* len = load_array_length(ary);
   108     Node* tst;
   109     if (sizetype->_hi <= 0) {
   110       // If the greatest array bound is negative, we can conclude that we're
   111       // compiling unreachable code, but the unsigned compare trick used below
   112       // only works with non-negative lengths.  Instead, hack "tst" to be zero so
   113       // the uncommon_trap path will always be taken.
   114       tst = _gvn.intcon(0);
   115     } else {
   116       // Test length vs index (standard trick using unsigned compare)
   117       Node* chk = _gvn.transform( new (C, 3) CmpUNode(idx, len) );
   118       BoolTest::mask btest = BoolTest::lt;
   119       tst = _gvn.transform( new (C, 2) BoolNode(chk, btest) );
   120     }
   121     // Branch to failure if out of bounds
   122     { BuildCutout unless(this, tst, PROB_MAX);
   123       if (C->allow_range_check_smearing()) {
   124         // Do not use builtin_throw, since range checks are sometimes
   125         // made more stringent by an optimistic transformation.
   126         // This creates "tentative" range checks at this point,
   127         // which are not guaranteed to throw exceptions.
   128         // See IfNode::Ideal, is_range_check, adjust_check.
   129         uncommon_trap(Deoptimization::Reason_range_check,
   130                       Deoptimization::Action_make_not_entrant,
   131                       NULL, "range_check");
   132       } else {
   133         // If we have already recompiled with the range-check-widening
   134         // heroic optimization turned off, then we must really be throwing
   135         // range check exceptions.
   136         builtin_throw(Deoptimization::Reason_range_check, idx);
   137       }
   138     }
   139   }
   140   // Check for always knowing you are throwing a range-check exception
   141   if (stopped())  return top();
   143   Node* ptr = array_element_address( ary, idx, type, sizetype);
   145   if (result2 != NULL)  *result2 = elemtype;
   146   return ptr;
   147 }
   150 // returns IfNode
   151 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
   152   Node   *cmp = _gvn.transform( new (C, 3) CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
   153   Node   *tst = _gvn.transform( new (C, 2) BoolNode( cmp, mask));
   154   IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
   155   return iff;
   156 }
   158 // return Region node
   159 Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
   160   Node *region  = new (C, 3) RegionNode(3); // 2 results
   161   record_for_igvn(region);
   162   region->init_req(1, iffalse);
   163   region->init_req(2, iftrue );
   164   _gvn.set_type(region, Type::CONTROL);
   165   region = _gvn.transform(region);
   166   set_control (region);
   167   return region;
   168 }
   171 //------------------------------helper for tableswitch-------------------------
   172 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
   173   // True branch, use existing map info
   174   { PreserveJVMState pjvms(this);
   175     Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
   176     set_control( iftrue );
   177     profile_switch_case(prof_table_index);
   178     merge_new_path(dest_bci_if_true);
   179   }
   181   // False branch
   182   Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   183   set_control( iffalse );
   184 }
   186 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
   187   // True branch, use existing map info
   188   { PreserveJVMState pjvms(this);
   189     Node *iffalse  = _gvn.transform( new (C, 1) IfFalseNode (iff) );
   190     set_control( iffalse );
   191     profile_switch_case(prof_table_index);
   192     merge_new_path(dest_bci_if_true);
   193   }
   195   // False branch
   196   Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   197   set_control( iftrue );
   198 }
   200 void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
   201   // False branch, use existing map and control()
   202   profile_switch_case(prof_table_index);
   203   merge_new_path(dest_bci);
   204 }
   207 extern "C" {
   208   static int jint_cmp(const void *i, const void *j) {
   209     int a = *(jint *)i;
   210     int b = *(jint *)j;
   211     return a > b ? 1 : a < b ? -1 : 0;
   212   }
   213 }
   216 // Default value for methodData switch indexing. Must be a negative value to avoid
   217 // conflict with any legal switch index.
   218 #define NullTableIndex -1
   220 class SwitchRange : public StackObj {
   221   // a range of integers coupled with a bci destination
   222   jint _lo;                     // inclusive lower limit
   223   jint _hi;                     // inclusive upper limit
   224   int _dest;
   225   int _table_index;             // index into method data table
   227 public:
   228   jint lo() const              { return _lo;   }
   229   jint hi() const              { return _hi;   }
   230   int  dest() const            { return _dest; }
   231   int  table_index() const     { return _table_index; }
   232   bool is_singleton() const    { return _lo == _hi; }
   234   void setRange(jint lo, jint hi, int dest, int table_index) {
   235     assert(lo <= hi, "must be a non-empty range");
   236     _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
   237   }
   238   bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
   239     assert(lo <= hi, "must be a non-empty range");
   240     if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
   241       _hi = hi;
   242       return true;
   243     }
   244     return false;
   245   }
   247   void set (jint value, int dest, int table_index) {
   248     setRange(value, value, dest, table_index);
   249   }
   250   bool adjoin(jint value, int dest, int table_index) {
   251     return adjoinRange(value, value, dest, table_index);
   252   }
   254   void print(ciEnv* env) {
   255     if (is_singleton())
   256       tty->print(" {%d}=>%d", lo(), dest());
   257     else if (lo() == min_jint)
   258       tty->print(" {..%d}=>%d", hi(), dest());
   259     else if (hi() == max_jint)
   260       tty->print(" {%d..}=>%d", lo(), dest());
   261     else
   262       tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
   263   }
   264 };
   267 //-------------------------------do_tableswitch--------------------------------
   268 void Parse::do_tableswitch() {
   269   Node* lookup = pop();
   271   // Get information about tableswitch
   272   int default_dest = iter().get_dest_table(0);
   273   int lo_index     = iter().get_int_table(1);
   274   int hi_index     = iter().get_int_table(2);
   275   int len          = hi_index - lo_index + 1;
   277   if (len < 1) {
   278     // If this is a backward branch, add safepoint
   279     maybe_add_safepoint(default_dest);
   280     merge(default_dest);
   281     return;
   282   }
   284   // generate decision tree, using trichotomy when possible
   285   int rnum = len+2;
   286   bool makes_backward_branch = false;
   287   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
   288   int rp = -1;
   289   if (lo_index != min_jint) {
   290     ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
   291   }
   292   for (int j = 0; j < len; j++) {
   293     jint match_int = lo_index+j;
   294     int  dest      = iter().get_dest_table(j+3);
   295     makes_backward_branch |= (dest <= bci());
   296     int  table_index = method_data_update() ? j : NullTableIndex;
   297     if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
   298       ranges[++rp].set(match_int, dest, table_index);
   299     }
   300   }
   301   jint highest = lo_index+(len-1);
   302   assert(ranges[rp].hi() == highest, "");
   303   if (highest != max_jint
   304       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
   305     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
   306   }
   307   assert(rp < len+2, "not too many ranges");
   309   // Safepoint in case if backward branch observed
   310   if( makes_backward_branch && UseLoopSafepoints )
   311     add_safepoint();
   313   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
   314 }
   317 //------------------------------do_lookupswitch--------------------------------
   318 void Parse::do_lookupswitch() {
   319   Node *lookup = pop();         // lookup value
   320   // Get information about lookupswitch
   321   int default_dest = iter().get_dest_table(0);
   322   int len          = iter().get_int_table(1);
   324   if (len < 1) {    // If this is a backward branch, add safepoint
   325     maybe_add_safepoint(default_dest);
   326     merge(default_dest);
   327     return;
   328   }
   330   // generate decision tree, using trichotomy when possible
   331   jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
   332   {
   333     for( int j = 0; j < len; j++ ) {
   334       table[j+j+0] = iter().get_int_table(2+j+j);
   335       table[j+j+1] = iter().get_dest_table(2+j+j+1);
   336     }
   337     qsort( table, len, 2*sizeof(table[0]), jint_cmp );
   338   }
   340   int rnum = len*2+1;
   341   bool makes_backward_branch = false;
   342   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
   343   int rp = -1;
   344   for( int j = 0; j < len; j++ ) {
   345     jint match_int   = table[j+j+0];
   346     int  dest        = table[j+j+1];
   347     int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
   348     int  table_index = method_data_update() ? j : NullTableIndex;
   349     makes_backward_branch |= (dest <= bci());
   350     if( match_int != next_lo ) {
   351       ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
   352     }
   353     if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
   354       ranges[++rp].set(match_int, dest, table_index);
   355     }
   356   }
   357   jint highest = table[2*(len-1)];
   358   assert(ranges[rp].hi() == highest, "");
   359   if( highest != max_jint
   360       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
   361     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
   362   }
   363   assert(rp < rnum, "not too many ranges");
   365   // Safepoint in case backward branch observed
   366   if( makes_backward_branch && UseLoopSafepoints )
   367     add_safepoint();
   369   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
   370 }
   372 //----------------------------create_jump_tables-------------------------------
   373 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
   374   // Are jumptables enabled
   375   if (!UseJumpTables)  return false;
   377   // Are jumptables supported
   378   if (!Matcher::has_match_rule(Op_Jump))  return false;
   380   // Don't make jump table if profiling
   381   if (method_data_update())  return false;
   383   // Decide if a guard is needed to lop off big ranges at either (or
   384   // both) end(s) of the input set. We'll call this the default target
   385   // even though we can't be sure that it is the true "default".
   387   bool needs_guard = false;
   388   int default_dest;
   389   int64 total_outlier_size = 0;
   390   int64 hi_size = ((int64)hi->hi()) - ((int64)hi->lo()) + 1;
   391   int64 lo_size = ((int64)lo->hi()) - ((int64)lo->lo()) + 1;
   393   if (lo->dest() == hi->dest()) {
   394     total_outlier_size = hi_size + lo_size;
   395     default_dest = lo->dest();
   396   } else if (lo_size > hi_size) {
   397     total_outlier_size = lo_size;
   398     default_dest = lo->dest();
   399   } else {
   400     total_outlier_size = hi_size;
   401     default_dest = hi->dest();
   402   }
   404   // If a guard test will eliminate very sparse end ranges, then
   405   // it is worth the cost of an extra jump.
   406   if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
   407     needs_guard = true;
   408     if (default_dest == lo->dest()) lo++;
   409     if (default_dest == hi->dest()) hi--;
   410   }
   412   // Find the total number of cases and ranges
   413   int64 num_cases = ((int64)hi->hi()) - ((int64)lo->lo()) + 1;
   414   int num_range = hi - lo + 1;
   416   // Don't create table if: too large, too small, or too sparse.
   417   if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
   418     return false;
   419   if (num_cases > (MaxJumpTableSparseness * num_range))
   420     return false;
   422   // Normalize table lookups to zero
   423   int lowval = lo->lo();
   424   key_val = _gvn.transform( new (C, 3) SubINode(key_val, _gvn.intcon(lowval)) );
   426   // Generate a guard to protect against input keyvals that aren't
   427   // in the switch domain.
   428   if (needs_guard) {
   429     Node*   size = _gvn.intcon(num_cases);
   430     Node*   cmp = _gvn.transform( new (C, 3) CmpUNode(key_val, size) );
   431     Node*   tst = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ge) );
   432     IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
   433     jump_if_true_fork(iff, default_dest, NullTableIndex);
   434   }
   436   // Create an ideal node JumpTable that has projections
   437   // of all possible ranges for a switch statement
   438   // The key_val input must be converted to a pointer offset and scaled.
   439   // Compare Parse::array_addressing above.
   440 #ifdef _LP64
   441   // Clean the 32-bit int into a real 64-bit offset.
   442   // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
   443   const TypeLong* lkeytype = TypeLong::make(CONST64(0), num_cases-1, Type::WidenMin);
   444   key_val       = _gvn.transform( new (C, 2) ConvI2LNode(key_val, lkeytype) );
   445 #endif
   446   // Shift the value by wordsize so we have an index into the table, rather
   447   // than a switch value
   448   Node *shiftWord = _gvn.MakeConX(wordSize);
   449   key_val = _gvn.transform( new (C, 3) MulXNode( key_val, shiftWord));
   451   // Create the JumpNode
   452   Node* jtn = _gvn.transform( new (C, 2) JumpNode(control(), key_val, num_cases) );
   454   // These are the switch destinations hanging off the jumpnode
   455   int i = 0;
   456   for (SwitchRange* r = lo; r <= hi; r++) {
   457     for (int j = r->lo(); j <= r->hi(); j++, i++) {
   458       Node* input = _gvn.transform(new (C, 1) JumpProjNode(jtn, i, r->dest(), j - lowval));
   459       {
   460         PreserveJVMState pjvms(this);
   461         set_control(input);
   462         jump_if_always_fork(r->dest(), r->table_index());
   463       }
   464     }
   465   }
   466   assert(i == num_cases, "miscount of cases");
   467   stop_and_kill_map();  // no more uses for this JVMS
   468   return true;
   469 }
   471 //----------------------------jump_switch_ranges-------------------------------
   472 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
   473   Block* switch_block = block();
   475   if (switch_depth == 0) {
   476     // Do special processing for the top-level call.
   477     assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
   478     assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
   480     // Decrement pred-numbers for the unique set of nodes.
   481 #ifdef ASSERT
   482     // Ensure that the block's successors are a (duplicate-free) set.
   483     int successors_counted = 0;  // block occurrences in [hi..lo]
   484     int unique_successors = switch_block->num_successors();
   485     for (int i = 0; i < unique_successors; i++) {
   486       Block* target = switch_block->successor_at(i);
   488       // Check that the set of successors is the same in both places.
   489       int successors_found = 0;
   490       for (SwitchRange* p = lo; p <= hi; p++) {
   491         if (p->dest() == target->start())  successors_found++;
   492       }
   493       assert(successors_found > 0, "successor must be known");
   494       successors_counted += successors_found;
   495     }
   496     assert(successors_counted == (hi-lo)+1, "no unexpected successors");
   497 #endif
   499     // Maybe prune the inputs, based on the type of key_val.
   500     jint min_val = min_jint;
   501     jint max_val = max_jint;
   502     const TypeInt* ti = key_val->bottom_type()->isa_int();
   503     if (ti != NULL) {
   504       min_val = ti->_lo;
   505       max_val = ti->_hi;
   506       assert(min_val <= max_val, "invalid int type");
   507     }
   508     while (lo->hi() < min_val)  lo++;
   509     if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
   510     while (hi->lo() > max_val)  hi--;
   511     if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
   512   }
   514 #ifndef PRODUCT
   515   if (switch_depth == 0) {
   516     _max_switch_depth = 0;
   517     _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
   518   }
   519 #endif
   521   assert(lo <= hi, "must be a non-empty set of ranges");
   522   if (lo == hi) {
   523     jump_if_always_fork(lo->dest(), lo->table_index());
   524   } else {
   525     assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
   526     assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
   528     if (create_jump_tables(key_val, lo, hi)) return;
   530     int nr = hi - lo + 1;
   532     SwitchRange* mid = lo + nr/2;
   533     // if there is an easy choice, pivot at a singleton:
   534     if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
   536     assert(lo < mid && mid <= hi, "good pivot choice");
   537     assert(nr != 2 || mid == hi,   "should pick higher of 2");
   538     assert(nr != 3 || mid == hi-1, "should pick middle of 3");
   540     Node *test_val = _gvn.intcon(mid->lo());
   542     if (mid->is_singleton()) {
   543       IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
   544       jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
   546       // Special Case:  If there are exactly three ranges, and the high
   547       // and low range each go to the same place, omit the "gt" test,
   548       // since it will not discriminate anything.
   549       bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
   550       if (eq_test_only) {
   551         assert(mid == hi-1, "");
   552       }
   554       // if there is a higher range, test for it and process it:
   555       if (mid < hi && !eq_test_only) {
   556         // two comparisons of same values--should enable 1 test for 2 branches
   557         // Use BoolTest::le instead of BoolTest::gt
   558         IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
   559         Node   *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_le) );
   560         Node   *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_le) );
   561         { PreserveJVMState pjvms(this);
   562           set_control(iffalse);
   563           jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
   564         }
   565         set_control(iftrue);
   566       }
   568     } else {
   569       // mid is a range, not a singleton, so treat mid..hi as a unit
   570       IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
   572       // if there is a higher range, test for it and process it:
   573       if (mid == hi) {
   574         jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
   575       } else {
   576         Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_ge) );
   577         Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_ge) );
   578         { PreserveJVMState pjvms(this);
   579           set_control(iftrue);
   580           jump_switch_ranges(key_val, mid, hi, switch_depth+1);
   581         }
   582         set_control(iffalse);
   583       }
   584     }
   586     // in any case, process the lower range
   587     jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
   588   }
   590   // Decrease pred_count for each successor after all is done.
   591   if (switch_depth == 0) {
   592     int unique_successors = switch_block->num_successors();
   593     for (int i = 0; i < unique_successors; i++) {
   594       Block* target = switch_block->successor_at(i);
   595       // Throw away the pre-allocated path for each unique successor.
   596       target->next_path_num();
   597     }
   598   }
   600 #ifndef PRODUCT
   601   _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
   602   if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
   603     SwitchRange* r;
   604     int nsing = 0;
   605     for( r = lo; r <= hi; r++ ) {
   606       if( r->is_singleton() )  nsing++;
   607     }
   608     tty->print(">>> ");
   609     _method->print_short_name();
   610     tty->print_cr(" switch decision tree");
   611     tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
   612                   hi-lo+1, nsing, _max_switch_depth, _est_switch_depth);
   613     if (_max_switch_depth > _est_switch_depth) {
   614       tty->print_cr("******** BAD SWITCH DEPTH ********");
   615     }
   616     tty->print("   ");
   617     for( r = lo; r <= hi; r++ ) {
   618       r->print(env());
   619     }
   620     tty->print_cr("");
   621   }
   622 #endif
   623 }
   625 void Parse::modf() {
   626   Node *f2 = pop();
   627   Node *f1 = pop();
   628   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
   629                               CAST_FROM_FN_PTR(address, SharedRuntime::frem),
   630                               "frem", NULL, //no memory effects
   631                               f1, f2);
   632   Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   634   push(res);
   635 }
   637 void Parse::modd() {
   638   Node *d2 = pop_pair();
   639   Node *d1 = pop_pair();
   640   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
   641                               CAST_FROM_FN_PTR(address, SharedRuntime::drem),
   642                               "drem", NULL, //no memory effects
   643                               d1, top(), d2, top());
   644   Node* res_d   = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   646 #ifdef ASSERT
   647   Node* res_top = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 1));
   648   assert(res_top == top(), "second value must be top");
   649 #endif
   651   push_pair(res_d);
   652 }
   654 void Parse::l2f() {
   655   Node* f2 = pop();
   656   Node* f1 = pop();
   657   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
   658                               CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
   659                               "l2f", NULL, //no memory effects
   660                               f1, f2);
   661   Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   663   push(res);
   664 }
   666 void Parse::do_irem() {
   667   // Must keep both values on the expression-stack during null-check
   668   do_null_check(peek(), T_INT);
   669   // Compile-time detect of null-exception?
   670   if (stopped())  return;
   672   Node* b = pop();
   673   Node* a = pop();
   675   const Type *t = _gvn.type(b);
   676   if (t != Type::TOP) {
   677     const TypeInt *ti = t->is_int();
   678     if (ti->is_con()) {
   679       int divisor = ti->get_con();
   680       // check for positive power of 2
   681       if (divisor > 0 &&
   682           (divisor & ~(divisor-1)) == divisor) {
   683         // yes !
   684         Node *mask = _gvn.intcon((divisor - 1));
   685         // Sigh, must handle negative dividends
   686         Node *zero = _gvn.intcon(0);
   687         IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
   688         Node *iff = _gvn.transform( new (C, 1) IfFalseNode(ifff) );
   689         Node *ift = _gvn.transform( new (C, 1) IfTrueNode (ifff) );
   690         Node *reg = jump_if_join(ift, iff);
   691         Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
   692         // Negative path; negate/and/negate
   693         Node *neg = _gvn.transform( new (C, 3) SubINode(zero, a) );
   694         Node *andn= _gvn.transform( new (C, 3) AndINode(neg, mask) );
   695         Node *negn= _gvn.transform( new (C, 3) SubINode(zero, andn) );
   696         phi->init_req(1, negn);
   697         // Fast positive case
   698         Node *andx = _gvn.transform( new (C, 3) AndINode(a, mask) );
   699         phi->init_req(2, andx);
   700         // Push the merge
   701         push( _gvn.transform(phi) );
   702         return;
   703       }
   704     }
   705   }
   706   // Default case
   707   push( _gvn.transform( new (C, 3) ModINode(control(),a,b) ) );
   708 }
   710 // Handle jsr and jsr_w bytecode
   711 void Parse::do_jsr() {
   712   assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
   714   // Store information about current state, tagged with new _jsr_bci
   715   int return_bci = iter().next_bci();
   716   int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
   718   // Update method data
   719   profile_taken_branch(jsr_bci);
   721   // The way we do things now, there is only one successor block
   722   // for the jsr, because the target code is cloned by ciTypeFlow.
   723   Block* target = successor_for_bci(jsr_bci);
   725   // What got pushed?
   726   const Type* ret_addr = target->peek();
   727   assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
   729   // Effect on jsr on stack
   730   push(_gvn.makecon(ret_addr));
   732   // Flow to the jsr.
   733   merge(jsr_bci);
   734 }
   736 // Handle ret bytecode
   737 void Parse::do_ret() {
   738   // Find to whom we return.
   739 #if 0 // %%%% MAKE THIS WORK
   740   Node* con = local();
   741   const TypePtr* tp = con->bottom_type()->isa_ptr();
   742   assert(tp && tp->singleton(), "");
   743   int return_bci = (int) tp->get_con();
   744   merge(return_bci);
   745 #else
   746   assert(block()->num_successors() == 1, "a ret can only go one place now");
   747   Block* target = block()->successor_at(0);
   748   assert(!target->is_ready(), "our arrival must be expected");
   749   profile_ret(target->flow()->start());
   750   int pnum = target->next_path_num();
   751   merge_common(target, pnum);
   752 #endif
   753 }
   755 //--------------------------dynamic_branch_prediction--------------------------
   756 // Try to gather dynamic branch prediction behavior.  Return a probability
   757 // of the branch being taken and set the "cnt" field.  Returns a -1.0
   758 // if we need to use static prediction for some reason.
   759 float Parse::dynamic_branch_prediction(float &cnt) {
   760   ResourceMark rm;
   762   cnt  = COUNT_UNKNOWN;
   764   // Use MethodData information if it is available
   765   // FIXME: free the ProfileData structure
   766   ciMethodData* methodData = method()->method_data();
   767   if (!methodData->is_mature())  return PROB_UNKNOWN;
   768   ciProfileData* data = methodData->bci_to_data(bci());
   769   if (!data->is_JumpData())  return PROB_UNKNOWN;
   771   // get taken and not taken values
   772   int     taken = data->as_JumpData()->taken();
   773   int not_taken = 0;
   774   if (data->is_BranchData()) {
   775     not_taken = data->as_BranchData()->not_taken();
   776   }
   778   // scale the counts to be commensurate with invocation counts:
   779   taken = method()->scale_count(taken);
   780   not_taken = method()->scale_count(not_taken);
   782   // Give up if too few counts to be meaningful
   783   if (taken + not_taken < 40) {
   784     if (C->log() != NULL) {
   785       C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
   786     }
   787     return PROB_UNKNOWN;
   788   }
   790   // Compute frequency that we arrive here
   791   int sum = taken + not_taken;
   792   // Adjust, if this block is a cloned private block but the
   793   // Jump counts are shared.  Taken the private counts for
   794   // just this path instead of the shared counts.
   795   if( block()->count() > 0 )
   796     sum = block()->count();
   797   cnt = (float)sum / (float)FreqCountInvocations;
   799   // Pin probability to sane limits
   800   float prob;
   801   if( !taken )
   802     prob = (0+PROB_MIN) / 2;
   803   else if( !not_taken )
   804     prob = (1+PROB_MAX) / 2;
   805   else {                         // Compute probability of true path
   806     prob = (float)taken / (float)(taken + not_taken);
   807     if (prob > PROB_MAX)  prob = PROB_MAX;
   808     if (prob < PROB_MIN)   prob = PROB_MIN;
   809   }
   811   assert((cnt > 0.0f) && (prob > 0.0f),
   812          "Bad frequency assignment in if");
   814   if (C->log() != NULL) {
   815     const char* prob_str = NULL;
   816     if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
   817     if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
   818     char prob_str_buf[30];
   819     if (prob_str == NULL) {
   820       sprintf(prob_str_buf, "%g", prob);
   821       prob_str = prob_str_buf;
   822     }
   823     C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'",
   824                    iter().get_dest(), taken, not_taken, cnt, prob_str);
   825   }
   826   return prob;
   827 }
   829 //-----------------------------branch_prediction-------------------------------
   830 float Parse::branch_prediction(float& cnt,
   831                                BoolTest::mask btest,
   832                                int target_bci) {
   833   float prob = dynamic_branch_prediction(cnt);
   834   // If prob is unknown, switch to static prediction
   835   if (prob != PROB_UNKNOWN)  return prob;
   837   prob = PROB_FAIR;                   // Set default value
   838   if (btest == BoolTest::eq)          // Exactly equal test?
   839     prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
   840   else if (btest == BoolTest::ne)
   841     prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
   843   // If this is a conditional test guarding a backwards branch,
   844   // assume its a loop-back edge.  Make it a likely taken branch.
   845   if (target_bci < bci()) {
   846     if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
   847       // Since it's an OSR, we probably have profile data, but since
   848       // branch_prediction returned PROB_UNKNOWN, the counts are too small.
   849       // Let's make a special check here for completely zero counts.
   850       ciMethodData* methodData = method()->method_data();
   851       if (!methodData->is_empty()) {
   852         ciProfileData* data = methodData->bci_to_data(bci());
   853         // Only stop for truly zero counts, which mean an unknown part
   854         // of the OSR-ed method, and we want to deopt to gather more stats.
   855         // If you have ANY counts, then this loop is simply 'cold' relative
   856         // to the OSR loop.
   857         if (data->as_BranchData()->taken() +
   858             data->as_BranchData()->not_taken() == 0 ) {
   859           // This is the only way to return PROB_UNKNOWN:
   860           return PROB_UNKNOWN;
   861         }
   862       }
   863     }
   864     prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
   865   }
   867   assert(prob != PROB_UNKNOWN, "must have some guess at this point");
   868   return prob;
   869 }
   871 // The magic constants are chosen so as to match the output of
   872 // branch_prediction() when the profile reports a zero taken count.
   873 // It is important to distinguish zero counts unambiguously, because
   874 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce
   875 // very small but nonzero probabilities, which if confused with zero
   876 // counts would keep the program recompiling indefinitely.
   877 bool Parse::seems_never_taken(float prob) {
   878   return prob < PROB_MIN;
   879 }
   881 inline void Parse::repush_if_args() {
   882 #ifndef PRODUCT
   883   if (PrintOpto && WizardMode) {
   884     tty->print("defending against excessive implicit null exceptions on %s @%d in ",
   885                Bytecodes::name(iter().cur_bc()), iter().cur_bci());
   886     method()->print_name(); tty->cr();
   887   }
   888 #endif
   889   int bc_depth = - Bytecodes::depth(iter().cur_bc());
   890   assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
   891   DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
   892   assert(argument(0) != NULL, "must exist");
   893   assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
   894   _sp += bc_depth;
   895 }
   897 //----------------------------------do_ifnull----------------------------------
   898 void Parse::do_ifnull(BoolTest::mask btest) {
   899   int target_bci = iter().get_dest();
   901   Block* branch_block = successor_for_bci(target_bci);
   902   Block* next_block   = successor_for_bci(iter().next_bci());
   904   float cnt;
   905   float prob = branch_prediction(cnt, btest, target_bci);
   906   if (prob == PROB_UNKNOWN) {
   907     // (An earlier version of do_ifnull omitted this trap for OSR methods.)
   908 #ifndef PRODUCT
   909     if (PrintOpto && Verbose)
   910       tty->print_cr("Never-taken backedge stops compilation at bci %d",bci());
   911 #endif
   912     repush_if_args(); // to gather stats on loop
   913     // We need to mark this branch as taken so that if we recompile we will
   914     // see that it is possible. In the tiered system the interpreter doesn't
   915     // do profiling and by the time we get to the lower tier from the interpreter
   916     // the path may be cold again. Make sure it doesn't look untaken
   917     profile_taken_branch(target_bci, !ProfileInterpreter);
   918     uncommon_trap(Deoptimization::Reason_unreached,
   919                   Deoptimization::Action_reinterpret,
   920                   NULL, "cold");
   921     if (EliminateAutoBox) {
   922       // Mark the successor blocks as parsed
   923       branch_block->next_path_num();
   924       next_block->next_path_num();
   925     }
   926     return;
   927   }
   929   // If this is a backwards branch in the bytecodes, add Safepoint
   930   maybe_add_safepoint(target_bci);
   932   explicit_null_checks_inserted++;
   933   Node* a = null();
   934   Node* b = pop();
   935   Node* c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
   937   // Make a cast-away-nullness that is control dependent on the test
   938   const Type *t = _gvn.type(b);
   939   const Type *t_not_null = t->join(TypePtr::NOTNULL);
   940   Node *cast = new (C, 2) CastPPNode(b,t_not_null);
   942   // Generate real control flow
   943   Node   *tst = _gvn.transform( new (C, 2) BoolNode( c, btest ) );
   945   // Sanity check the probability value
   946   assert(prob > 0.0f,"Bad probability in Parser");
   947  // Need xform to put node in hash table
   948   IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
   949   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
   950   // True branch
   951   { PreserveJVMState pjvms(this);
   952     Node* iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
   953     set_control(iftrue);
   955     if (stopped()) {            // Path is dead?
   956       explicit_null_checks_elided++;
   957       if (EliminateAutoBox) {
   958         // Mark the successor block as parsed
   959         branch_block->next_path_num();
   960       }
   961     } else {                    // Path is live.
   962       // Update method data
   963       profile_taken_branch(target_bci);
   964       adjust_map_after_if(btest, c, prob, branch_block, next_block);
   965       if (!stopped())
   966         merge(target_bci);
   967     }
   968   }
   970   // False branch
   971   Node* iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   972   set_control(iffalse);
   974   if (stopped()) {              // Path is dead?
   975     explicit_null_checks_elided++;
   976     if (EliminateAutoBox) {
   977       // Mark the successor block as parsed
   978       next_block->next_path_num();
   979     }
   980   } else  {                     // Path is live.
   981     // Update method data
   982     profile_not_taken_branch();
   983     adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
   984                         next_block, branch_block);
   985   }
   986 }
   988 //------------------------------------do_if------------------------------------
   989 void Parse::do_if(BoolTest::mask btest, Node* c) {
   990   int target_bci = iter().get_dest();
   992   Block* branch_block = successor_for_bci(target_bci);
   993   Block* next_block   = successor_for_bci(iter().next_bci());
   995   float cnt;
   996   float prob = branch_prediction(cnt, btest, target_bci);
   997   float untaken_prob = 1.0 - prob;
   999   if (prob == PROB_UNKNOWN) {
  1000 #ifndef PRODUCT
  1001     if (PrintOpto && Verbose)
  1002       tty->print_cr("Never-taken backedge stops compilation at bci %d",bci());
  1003 #endif
  1004     repush_if_args(); // to gather stats on loop
  1005     // We need to mark this branch as taken so that if we recompile we will
  1006     // see that it is possible. In the tiered system the interpreter doesn't
  1007     // do profiling and by the time we get to the lower tier from the interpreter
  1008     // the path may be cold again. Make sure it doesn't look untaken
  1009     profile_taken_branch(target_bci, !ProfileInterpreter);
  1010     uncommon_trap(Deoptimization::Reason_unreached,
  1011                   Deoptimization::Action_reinterpret,
  1012                   NULL, "cold");
  1013     if (EliminateAutoBox) {
  1014       // Mark the successor blocks as parsed
  1015       branch_block->next_path_num();
  1016       next_block->next_path_num();
  1018     return;
  1021   // Sanity check the probability value
  1022   assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
  1024   bool taken_if_true = true;
  1025   // Convert BoolTest to canonical form:
  1026   if (!BoolTest(btest).is_canonical()) {
  1027     btest         = BoolTest(btest).negate();
  1028     taken_if_true = false;
  1029     // prob is NOT updated here; it remains the probability of the taken
  1030     // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
  1032   assert(btest != BoolTest::eq, "!= is the only canonical exact test");
  1034   Node* tst0 = new (C, 2) BoolNode(c, btest);
  1035   Node* tst = _gvn.transform(tst0);
  1036   BoolTest::mask taken_btest   = BoolTest::illegal;
  1037   BoolTest::mask untaken_btest = BoolTest::illegal;
  1039   if (tst->is_Bool()) {
  1040     // Refresh c from the transformed bool node, since it may be
  1041     // simpler than the original c.  Also re-canonicalize btest.
  1042     // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
  1043     // That can arise from statements like: if (x instanceof C) ...
  1044     if (tst != tst0) {
  1045       // Canonicalize one more time since transform can change it.
  1046       btest = tst->as_Bool()->_test._test;
  1047       if (!BoolTest(btest).is_canonical()) {
  1048         // Reverse edges one more time...
  1049         tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
  1050         btest = tst->as_Bool()->_test._test;
  1051         assert(BoolTest(btest).is_canonical(), "sanity");
  1052         taken_if_true = !taken_if_true;
  1054       c = tst->in(1);
  1056     BoolTest::mask neg_btest = BoolTest(btest).negate();
  1057     taken_btest   = taken_if_true ?     btest : neg_btest;
  1058     untaken_btest = taken_if_true ? neg_btest :     btest;
  1061   // Generate real control flow
  1062   float true_prob = (taken_if_true ? prob : untaken_prob);
  1063   IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
  1064   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
  1065   Node* taken_branch   = new (C, 1) IfTrueNode(iff);
  1066   Node* untaken_branch = new (C, 1) IfFalseNode(iff);
  1067   if (!taken_if_true) {  // Finish conversion to canonical form
  1068     Node* tmp      = taken_branch;
  1069     taken_branch   = untaken_branch;
  1070     untaken_branch = tmp;
  1073   // Branch is taken:
  1074   { PreserveJVMState pjvms(this);
  1075     taken_branch = _gvn.transform(taken_branch);
  1076     set_control(taken_branch);
  1078     if (stopped()) {
  1079       if (EliminateAutoBox) {
  1080         // Mark the successor block as parsed
  1081         branch_block->next_path_num();
  1083     } else {
  1084       // Update method data
  1085       profile_taken_branch(target_bci);
  1086       adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
  1087       if (!stopped())
  1088         merge(target_bci);
  1092   untaken_branch = _gvn.transform(untaken_branch);
  1093   set_control(untaken_branch);
  1095   // Branch not taken.
  1096   if (stopped()) {
  1097     if (EliminateAutoBox) {
  1098       // Mark the successor block as parsed
  1099       next_block->next_path_num();
  1101   } else {
  1102     // Update method data
  1103     profile_not_taken_branch();
  1104     adjust_map_after_if(untaken_btest, c, untaken_prob,
  1105                         next_block, branch_block);
  1109 //----------------------------adjust_map_after_if------------------------------
  1110 // Adjust the JVM state to reflect the result of taking this path.
  1111 // Basically, it means inspecting the CmpNode controlling this
  1112 // branch, seeing how it constrains a tested value, and then
  1113 // deciding if it's worth our while to encode this constraint
  1114 // as graph nodes in the current abstract interpretation map.
  1115 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
  1116                                 Block* path, Block* other_path) {
  1117   if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
  1118     return;                             // nothing to do
  1120   bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
  1122   int cop = c->Opcode();
  1123   if (seems_never_taken(prob) && cop == Op_CmpP && btest == BoolTest::eq) {
  1124     // (An earlier version of do_if omitted '&& btest == BoolTest::eq'.)
  1125     //
  1126     // If this might possibly turn into an implicit null check,
  1127     // and the null has never yet been seen, we need to generate
  1128     // an uncommon trap, so as to recompile instead of suffering
  1129     // with very slow branches.  (We'll get the slow branches if
  1130     // the program ever changes phase and starts seeing nulls here.)
  1131     //
  1132     // The tests we worry about are of the form (p == null).
  1133     // We do not simply inspect for a null constant, since a node may
  1134     // optimize to 'null' later on.
  1135     repush_if_args();
  1136     // We need to mark this branch as taken so that if we recompile we will
  1137     // see that it is possible. In the tiered system the interpreter doesn't
  1138     // do profiling and by the time we get to the lower tier from the interpreter
  1139     // the path may be cold again. Make sure it doesn't look untaken
  1140     if (is_fallthrough) {
  1141       profile_not_taken_branch(!ProfileInterpreter);
  1142     } else {
  1143       profile_taken_branch(iter().get_dest(), !ProfileInterpreter);
  1145     uncommon_trap(Deoptimization::Reason_unreached,
  1146                   Deoptimization::Action_reinterpret,
  1147                   NULL,
  1148                   (is_fallthrough ? "taken always" : "taken never"));
  1149     return;
  1152   Node* val = c->in(1);
  1153   Node* con = c->in(2);
  1154   const Type* tcon = _gvn.type(con);
  1155   const Type* tval = _gvn.type(val);
  1156   bool have_con = tcon->singleton();
  1157   if (tval->singleton()) {
  1158     if (!have_con) {
  1159       // Swap, so constant is in con.
  1160       con  = val;
  1161       tcon = tval;
  1162       val  = c->in(2);
  1163       tval = _gvn.type(val);
  1164       btest = BoolTest(btest).commute();
  1165       have_con = true;
  1166     } else {
  1167       // Do we have two constants?  Then leave well enough alone.
  1168       have_con = false;
  1171   if (!have_con)                        // remaining adjustments need a con
  1172     return;
  1175   int val_in_map = map()->find_edge(val);
  1176   if (val_in_map < 0)  return;          // replace_in_map would be useless
  1178     JVMState* jvms = this->jvms();
  1179     if (!(jvms->is_loc(val_in_map) ||
  1180           jvms->is_stk(val_in_map)))
  1181       return;                           // again, it would be useless
  1184   // Check for a comparison to a constant, and "know" that the compared
  1185   // value is constrained on this path.
  1186   assert(tcon->singleton(), "");
  1187   ConstraintCastNode* ccast = NULL;
  1188   Node* cast = NULL;
  1190   switch (btest) {
  1191   case BoolTest::eq:                    // Constant test?
  1193       const Type* tboth = tcon->join(tval);
  1194       if (tboth == tval)  break;        // Nothing to gain.
  1195       if (tcon->isa_int()) {
  1196         ccast = new (C, 2) CastIINode(val, tboth);
  1197       } else if (tcon == TypePtr::NULL_PTR) {
  1198         // Cast to null, but keep the pointer identity temporarily live.
  1199         ccast = new (C, 2) CastPPNode(val, tboth);
  1200       } else {
  1201         const TypeF* tf = tcon->isa_float_constant();
  1202         const TypeD* td = tcon->isa_double_constant();
  1203         // Exclude tests vs float/double 0 as these could be
  1204         // either +0 or -0.  Just because you are equal to +0
  1205         // doesn't mean you ARE +0!
  1206         if ((!tf || tf->_f != 0.0) &&
  1207             (!td || td->_d != 0.0))
  1208           cast = con;                   // Replace non-constant val by con.
  1211     break;
  1213   case BoolTest::ne:
  1214     if (tcon == TypePtr::NULL_PTR) {
  1215       cast = cast_not_null(val, false);
  1217     break;
  1219   default:
  1220     // (At this point we could record int range types with CastII.)
  1221     break;
  1224   if (ccast != NULL) {
  1225     const Type* tcc = ccast->as_Type()->type();
  1226     assert(tcc != tval && tcc->higher_equal(tval), "must improve");
  1227     // Delay transform() call to allow recovery of pre-cast value
  1228     // at the control merge.
  1229     ccast->set_req(0, control());
  1230     _gvn.set_type_bottom(ccast);
  1231     record_for_igvn(ccast);
  1232     cast = ccast;
  1235   if (cast != NULL) {                   // Here's the payoff.
  1236     replace_in_map(val, cast);
  1241 //------------------------------do_one_bytecode--------------------------------
  1242 // Parse this bytecode, and alter the Parsers JVM->Node mapping
  1243 void Parse::do_one_bytecode() {
  1244   Node *a, *b, *c, *d;          // Handy temps
  1245   BoolTest::mask btest;
  1246   int i;
  1248   assert(!has_exceptions(), "bytecode entry state must be clear of throws");
  1250   if (C->check_node_count(NodeLimitFudgeFactor * 5,
  1251                           "out of nodes parsing method")) {
  1252     return;
  1255 #ifdef ASSERT
  1256   // for setting breakpoints
  1257   if (TraceOptoParse) {
  1258     tty->print(" @");
  1259     dump_bci(bci());
  1261 #endif
  1263   switch (bc()) {
  1264   case Bytecodes::_nop:
  1265     // do nothing
  1266     break;
  1267   case Bytecodes::_lconst_0:
  1268     push_pair(longcon(0));
  1269     break;
  1271   case Bytecodes::_lconst_1:
  1272     push_pair(longcon(1));
  1273     break;
  1275   case Bytecodes::_fconst_0:
  1276     push(zerocon(T_FLOAT));
  1277     break;
  1279   case Bytecodes::_fconst_1:
  1280     push(makecon(TypeF::ONE));
  1281     break;
  1283   case Bytecodes::_fconst_2:
  1284     push(makecon(TypeF::make(2.0f)));
  1285     break;
  1287   case Bytecodes::_dconst_0:
  1288     push_pair(zerocon(T_DOUBLE));
  1289     break;
  1291   case Bytecodes::_dconst_1:
  1292     push_pair(makecon(TypeD::ONE));
  1293     break;
  1295   case Bytecodes::_iconst_m1:push(intcon(-1)); break;
  1296   case Bytecodes::_iconst_0: push(intcon( 0)); break;
  1297   case Bytecodes::_iconst_1: push(intcon( 1)); break;
  1298   case Bytecodes::_iconst_2: push(intcon( 2)); break;
  1299   case Bytecodes::_iconst_3: push(intcon( 3)); break;
  1300   case Bytecodes::_iconst_4: push(intcon( 4)); break;
  1301   case Bytecodes::_iconst_5: push(intcon( 5)); break;
  1302   case Bytecodes::_bipush:   push(intcon( iter().get_byte())); break;
  1303   case Bytecodes::_sipush:   push(intcon( iter().get_short())); break;
  1304   case Bytecodes::_aconst_null: push(null());  break;
  1305   case Bytecodes::_ldc:
  1306   case Bytecodes::_ldc_w:
  1307   case Bytecodes::_ldc2_w:
  1308     // If the constant is unresolved, run this BC once in the interpreter.
  1309     if (iter().is_unresolved_string()) {
  1310       uncommon_trap(Deoptimization::make_trap_request
  1311                     (Deoptimization::Reason_unloaded,
  1312                      Deoptimization::Action_reinterpret,
  1313                      iter().get_constant_index()),
  1314                     NULL, "unresolved_string");
  1315       break;
  1316     } else {
  1317       ciConstant constant = iter().get_constant();
  1318       if (constant.basic_type() == T_OBJECT) {
  1319         ciObject* c = constant.as_object();
  1320         if (c->is_klass()) {
  1321           // The constant returned for a klass is the ciKlass for the
  1322           // entry.  We want the java_mirror so get it.
  1323           ciKlass* klass = c->as_klass();
  1324           if (klass->is_loaded()) {
  1325             constant = ciConstant(T_OBJECT, klass->java_mirror());
  1326           } else {
  1327             uncommon_trap(Deoptimization::make_trap_request
  1328                           (Deoptimization::Reason_unloaded,
  1329                            Deoptimization::Action_reinterpret,
  1330                            iter().get_constant_index()),
  1331                           NULL, "unresolved_klass");
  1332             break;
  1336       push_constant(constant);
  1339     break;
  1341   case Bytecodes::_aload_0:
  1342     push( local(0) );
  1343     break;
  1344   case Bytecodes::_aload_1:
  1345     push( local(1) );
  1346     break;
  1347   case Bytecodes::_aload_2:
  1348     push( local(2) );
  1349     break;
  1350   case Bytecodes::_aload_3:
  1351     push( local(3) );
  1352     break;
  1353   case Bytecodes::_aload:
  1354     push( local(iter().get_index()) );
  1355     break;
  1357   case Bytecodes::_fload_0:
  1358   case Bytecodes::_iload_0:
  1359     push( local(0) );
  1360     break;
  1361   case Bytecodes::_fload_1:
  1362   case Bytecodes::_iload_1:
  1363     push( local(1) );
  1364     break;
  1365   case Bytecodes::_fload_2:
  1366   case Bytecodes::_iload_2:
  1367     push( local(2) );
  1368     break;
  1369   case Bytecodes::_fload_3:
  1370   case Bytecodes::_iload_3:
  1371     push( local(3) );
  1372     break;
  1373   case Bytecodes::_fload:
  1374   case Bytecodes::_iload:
  1375     push( local(iter().get_index()) );
  1376     break;
  1377   case Bytecodes::_lload_0:
  1378     push_pair_local( 0 );
  1379     break;
  1380   case Bytecodes::_lload_1:
  1381     push_pair_local( 1 );
  1382     break;
  1383   case Bytecodes::_lload_2:
  1384     push_pair_local( 2 );
  1385     break;
  1386   case Bytecodes::_lload_3:
  1387     push_pair_local( 3 );
  1388     break;
  1389   case Bytecodes::_lload:
  1390     push_pair_local( iter().get_index() );
  1391     break;
  1393   case Bytecodes::_dload_0:
  1394     push_pair_local(0);
  1395     break;
  1396   case Bytecodes::_dload_1:
  1397     push_pair_local(1);
  1398     break;
  1399   case Bytecodes::_dload_2:
  1400     push_pair_local(2);
  1401     break;
  1402   case Bytecodes::_dload_3:
  1403     push_pair_local(3);
  1404     break;
  1405   case Bytecodes::_dload:
  1406     push_pair_local(iter().get_index());
  1407     break;
  1408   case Bytecodes::_fstore_0:
  1409   case Bytecodes::_istore_0:
  1410   case Bytecodes::_astore_0:
  1411     set_local( 0, pop() );
  1412     break;
  1413   case Bytecodes::_fstore_1:
  1414   case Bytecodes::_istore_1:
  1415   case Bytecodes::_astore_1:
  1416     set_local( 1, pop() );
  1417     break;
  1418   case Bytecodes::_fstore_2:
  1419   case Bytecodes::_istore_2:
  1420   case Bytecodes::_astore_2:
  1421     set_local( 2, pop() );
  1422     break;
  1423   case Bytecodes::_fstore_3:
  1424   case Bytecodes::_istore_3:
  1425   case Bytecodes::_astore_3:
  1426     set_local( 3, pop() );
  1427     break;
  1428   case Bytecodes::_fstore:
  1429   case Bytecodes::_istore:
  1430   case Bytecodes::_astore:
  1431     set_local( iter().get_index(), pop() );
  1432     break;
  1433   // long stores
  1434   case Bytecodes::_lstore_0:
  1435     set_pair_local( 0, pop_pair() );
  1436     break;
  1437   case Bytecodes::_lstore_1:
  1438     set_pair_local( 1, pop_pair() );
  1439     break;
  1440   case Bytecodes::_lstore_2:
  1441     set_pair_local( 2, pop_pair() );
  1442     break;
  1443   case Bytecodes::_lstore_3:
  1444     set_pair_local( 3, pop_pair() );
  1445     break;
  1446   case Bytecodes::_lstore:
  1447     set_pair_local( iter().get_index(), pop_pair() );
  1448     break;
  1450   // double stores
  1451   case Bytecodes::_dstore_0:
  1452     set_pair_local( 0, dstore_rounding(pop_pair()) );
  1453     break;
  1454   case Bytecodes::_dstore_1:
  1455     set_pair_local( 1, dstore_rounding(pop_pair()) );
  1456     break;
  1457   case Bytecodes::_dstore_2:
  1458     set_pair_local( 2, dstore_rounding(pop_pair()) );
  1459     break;
  1460   case Bytecodes::_dstore_3:
  1461     set_pair_local( 3, dstore_rounding(pop_pair()) );
  1462     break;
  1463   case Bytecodes::_dstore:
  1464     set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
  1465     break;
  1467   case Bytecodes::_pop:  _sp -= 1;   break;
  1468   case Bytecodes::_pop2: _sp -= 2;   break;
  1469   case Bytecodes::_swap:
  1470     a = pop();
  1471     b = pop();
  1472     push(a);
  1473     push(b);
  1474     break;
  1475   case Bytecodes::_dup:
  1476     a = pop();
  1477     push(a);
  1478     push(a);
  1479     break;
  1480   case Bytecodes::_dup_x1:
  1481     a = pop();
  1482     b = pop();
  1483     push( a );
  1484     push( b );
  1485     push( a );
  1486     break;
  1487   case Bytecodes::_dup_x2:
  1488     a = pop();
  1489     b = pop();
  1490     c = pop();
  1491     push( a );
  1492     push( c );
  1493     push( b );
  1494     push( a );
  1495     break;
  1496   case Bytecodes::_dup2:
  1497     a = pop();
  1498     b = pop();
  1499     push( b );
  1500     push( a );
  1501     push( b );
  1502     push( a );
  1503     break;
  1505   case Bytecodes::_dup2_x1:
  1506     // before: .. c, b, a
  1507     // after:  .. b, a, c, b, a
  1508     // not tested
  1509     a = pop();
  1510     b = pop();
  1511     c = pop();
  1512     push( b );
  1513     push( a );
  1514     push( c );
  1515     push( b );
  1516     push( a );
  1517     break;
  1518   case Bytecodes::_dup2_x2:
  1519     // before: .. d, c, b, a
  1520     // after:  .. b, a, d, c, b, a
  1521     // not tested
  1522     a = pop();
  1523     b = pop();
  1524     c = pop();
  1525     d = pop();
  1526     push( b );
  1527     push( a );
  1528     push( d );
  1529     push( c );
  1530     push( b );
  1531     push( a );
  1532     break;
  1534   case Bytecodes::_arraylength: {
  1535     // Must do null-check with value on expression stack
  1536     Node *ary = do_null_check(peek(), T_ARRAY);
  1537     // Compile-time detect of null-exception?
  1538     if (stopped())  return;
  1539     a = pop();
  1540     push(load_array_length(a));
  1541     break;
  1544   case Bytecodes::_baload: array_load(T_BYTE);   break;
  1545   case Bytecodes::_caload: array_load(T_CHAR);   break;
  1546   case Bytecodes::_iaload: array_load(T_INT);    break;
  1547   case Bytecodes::_saload: array_load(T_SHORT);  break;
  1548   case Bytecodes::_faload: array_load(T_FLOAT);  break;
  1549   case Bytecodes::_aaload: array_load(T_OBJECT); break;
  1550   case Bytecodes::_laload: {
  1551     a = array_addressing(T_LONG, 0);
  1552     if (stopped())  return;     // guarenteed null or range check
  1553     _sp -= 2;                   // Pop array and index
  1554     push_pair( make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS));
  1555     break;
  1557   case Bytecodes::_daload: {
  1558     a = array_addressing(T_DOUBLE, 0);
  1559     if (stopped())  return;     // guarenteed null or range check
  1560     _sp -= 2;                   // Pop array and index
  1561     push_pair( make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES));
  1562     break;
  1564   case Bytecodes::_bastore: array_store(T_BYTE);  break;
  1565   case Bytecodes::_castore: array_store(T_CHAR);  break;
  1566   case Bytecodes::_iastore: array_store(T_INT);   break;
  1567   case Bytecodes::_sastore: array_store(T_SHORT); break;
  1568   case Bytecodes::_fastore: array_store(T_FLOAT); break;
  1569   case Bytecodes::_aastore: {
  1570     d = array_addressing(T_OBJECT, 1);
  1571     if (stopped())  return;     // guarenteed null or range check
  1572     array_store_check();
  1573     c = pop();                  // Oop to store
  1574     b = pop();                  // index (already used)
  1575     a = pop();                  // the array itself
  1576     const Type* elemtype  = _gvn.type(a)->is_aryptr()->elem();
  1577     const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
  1578     Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT);
  1579     break;
  1581   case Bytecodes::_lastore: {
  1582     a = array_addressing(T_LONG, 2);
  1583     if (stopped())  return;     // guarenteed null or range check
  1584     c = pop_pair();
  1585     _sp -= 2;                   // Pop array and index
  1586     store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS);
  1587     break;
  1589   case Bytecodes::_dastore: {
  1590     a = array_addressing(T_DOUBLE, 2);
  1591     if (stopped())  return;     // guarenteed null or range check
  1592     c = pop_pair();
  1593     _sp -= 2;                   // Pop array and index
  1594     c = dstore_rounding(c);
  1595     store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES);
  1596     break;
  1598   case Bytecodes::_getfield:
  1599     do_getfield();
  1600     break;
  1602   case Bytecodes::_getstatic:
  1603     do_getstatic();
  1604     break;
  1606   case Bytecodes::_putfield:
  1607     do_putfield();
  1608     break;
  1610   case Bytecodes::_putstatic:
  1611     do_putstatic();
  1612     break;
  1614   case Bytecodes::_irem:
  1615     do_irem();
  1616     break;
  1617   case Bytecodes::_idiv:
  1618     // Must keep both values on the expression-stack during null-check
  1619     do_null_check(peek(), T_INT);
  1620     // Compile-time detect of null-exception?
  1621     if (stopped())  return;
  1622     b = pop();
  1623     a = pop();
  1624     push( _gvn.transform( new (C, 3) DivINode(control(),a,b) ) );
  1625     break;
  1626   case Bytecodes::_imul:
  1627     b = pop(); a = pop();
  1628     push( _gvn.transform( new (C, 3) MulINode(a,b) ) );
  1629     break;
  1630   case Bytecodes::_iadd:
  1631     b = pop(); a = pop();
  1632     push( _gvn.transform( new (C, 3) AddINode(a,b) ) );
  1633     break;
  1634   case Bytecodes::_ineg:
  1635     a = pop();
  1636     push( _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),a)) );
  1637     break;
  1638   case Bytecodes::_isub:
  1639     b = pop(); a = pop();
  1640     push( _gvn.transform( new (C, 3) SubINode(a,b) ) );
  1641     break;
  1642   case Bytecodes::_iand:
  1643     b = pop(); a = pop();
  1644     push( _gvn.transform( new (C, 3) AndINode(a,b) ) );
  1645     break;
  1646   case Bytecodes::_ior:
  1647     b = pop(); a = pop();
  1648     push( _gvn.transform( new (C, 3) OrINode(a,b) ) );
  1649     break;
  1650   case Bytecodes::_ixor:
  1651     b = pop(); a = pop();
  1652     push( _gvn.transform( new (C, 3) XorINode(a,b) ) );
  1653     break;
  1654   case Bytecodes::_ishl:
  1655     b = pop(); a = pop();
  1656     push( _gvn.transform( new (C, 3) LShiftINode(a,b) ) );
  1657     break;
  1658   case Bytecodes::_ishr:
  1659     b = pop(); a = pop();
  1660     push( _gvn.transform( new (C, 3) RShiftINode(a,b) ) );
  1661     break;
  1662   case Bytecodes::_iushr:
  1663     b = pop(); a = pop();
  1664     push( _gvn.transform( new (C, 3) URShiftINode(a,b) ) );
  1665     break;
  1667   case Bytecodes::_fneg:
  1668     a = pop();
  1669     b = _gvn.transform(new (C, 2) NegFNode (a));
  1670     push(b);
  1671     break;
  1673   case Bytecodes::_fsub:
  1674     b = pop();
  1675     a = pop();
  1676     c = _gvn.transform( new (C, 3) SubFNode(a,b) );
  1677     d = precision_rounding(c);
  1678     push( d );
  1679     break;
  1681   case Bytecodes::_fadd:
  1682     b = pop();
  1683     a = pop();
  1684     c = _gvn.transform( new (C, 3) AddFNode(a,b) );
  1685     d = precision_rounding(c);
  1686     push( d );
  1687     break;
  1689   case Bytecodes::_fmul:
  1690     b = pop();
  1691     a = pop();
  1692     c = _gvn.transform( new (C, 3) MulFNode(a,b) );
  1693     d = precision_rounding(c);
  1694     push( d );
  1695     break;
  1697   case Bytecodes::_fdiv:
  1698     b = pop();
  1699     a = pop();
  1700     c = _gvn.transform( new (C, 3) DivFNode(0,a,b) );
  1701     d = precision_rounding(c);
  1702     push( d );
  1703     break;
  1705   case Bytecodes::_frem:
  1706     if (Matcher::has_match_rule(Op_ModF)) {
  1707       // Generate a ModF node.
  1708       b = pop();
  1709       a = pop();
  1710       c = _gvn.transform( new (C, 3) ModFNode(0,a,b) );
  1711       d = precision_rounding(c);
  1712       push( d );
  1714     else {
  1715       // Generate a call.
  1716       modf();
  1718     break;
  1720   case Bytecodes::_fcmpl:
  1721     b = pop();
  1722     a = pop();
  1723     c = _gvn.transform( new (C, 3) CmpF3Node( a, b));
  1724     push(c);
  1725     break;
  1726   case Bytecodes::_fcmpg:
  1727     b = pop();
  1728     a = pop();
  1730     // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
  1731     // which negates the result sign except for unordered.  Flip the unordered
  1732     // as well by using CmpF3 which implements unordered-lesser instead of
  1733     // unordered-greater semantics.  Finally, commute the result bits.  Result
  1734     // is same as using a CmpF3Greater except we did it with CmpF3 alone.
  1735     c = _gvn.transform( new (C, 3) CmpF3Node( b, a));
  1736     c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
  1737     push(c);
  1738     break;
  1740   case Bytecodes::_f2i:
  1741     a = pop();
  1742     push(_gvn.transform(new (C, 2) ConvF2INode(a)));
  1743     break;
  1745   case Bytecodes::_d2i:
  1746     a = pop_pair();
  1747     b = _gvn.transform(new (C, 2) ConvD2INode(a));
  1748     push( b );
  1749     break;
  1751   case Bytecodes::_f2d:
  1752     a = pop();
  1753     b = _gvn.transform( new (C, 2) ConvF2DNode(a));
  1754     push_pair( b );
  1755     break;
  1757   case Bytecodes::_d2f:
  1758     a = pop_pair();
  1759     b = _gvn.transform( new (C, 2) ConvD2FNode(a));
  1760     // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
  1761     //b = _gvn.transform(new (C, 2) RoundFloatNode(0, b) );
  1762     push( b );
  1763     break;
  1765   case Bytecodes::_l2f:
  1766     if (Matcher::convL2FSupported()) {
  1767       a = pop_pair();
  1768       b = _gvn.transform( new (C, 2) ConvL2FNode(a));
  1769       // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
  1770       // Rather than storing the result into an FP register then pushing
  1771       // out to memory to round, the machine instruction that implements
  1772       // ConvL2D is responsible for rounding.
  1773       // c = precision_rounding(b);
  1774       c = _gvn.transform(b);
  1775       push(c);
  1776     } else {
  1777       l2f();
  1779     break;
  1781   case Bytecodes::_l2d:
  1782     a = pop_pair();
  1783     b = _gvn.transform( new (C, 2) ConvL2DNode(a));
  1784     // For i486.ad, rounding is always necessary (see _l2f above).
  1785     // c = dprecision_rounding(b);
  1786     c = _gvn.transform(b);
  1787     push_pair(c);
  1788     break;
  1790   case Bytecodes::_f2l:
  1791     a = pop();
  1792     b = _gvn.transform( new (C, 2) ConvF2LNode(a));
  1793     push_pair(b);
  1794     break;
  1796   case Bytecodes::_d2l:
  1797     a = pop_pair();
  1798     b = _gvn.transform( new (C, 2) ConvD2LNode(a));
  1799     push_pair(b);
  1800     break;
  1802   case Bytecodes::_dsub:
  1803     b = pop_pair();
  1804     a = pop_pair();
  1805     c = _gvn.transform( new (C, 3) SubDNode(a,b) );
  1806     d = dprecision_rounding(c);
  1807     push_pair( d );
  1808     break;
  1810   case Bytecodes::_dadd:
  1811     b = pop_pair();
  1812     a = pop_pair();
  1813     c = _gvn.transform( new (C, 3) AddDNode(a,b) );
  1814     d = dprecision_rounding(c);
  1815     push_pair( d );
  1816     break;
  1818   case Bytecodes::_dmul:
  1819     b = pop_pair();
  1820     a = pop_pair();
  1821     c = _gvn.transform( new (C, 3) MulDNode(a,b) );
  1822     d = dprecision_rounding(c);
  1823     push_pair( d );
  1824     break;
  1826   case Bytecodes::_ddiv:
  1827     b = pop_pair();
  1828     a = pop_pair();
  1829     c = _gvn.transform( new (C, 3) DivDNode(0,a,b) );
  1830     d = dprecision_rounding(c);
  1831     push_pair( d );
  1832     break;
  1834   case Bytecodes::_dneg:
  1835     a = pop_pair();
  1836     b = _gvn.transform(new (C, 2) NegDNode (a));
  1837     push_pair(b);
  1838     break;
  1840   case Bytecodes::_drem:
  1841     if (Matcher::has_match_rule(Op_ModD)) {
  1842       // Generate a ModD node.
  1843       b = pop_pair();
  1844       a = pop_pair();
  1845       // a % b
  1847       c = _gvn.transform( new (C, 3) ModDNode(0,a,b) );
  1848       d = dprecision_rounding(c);
  1849       push_pair( d );
  1851     else {
  1852       // Generate a call.
  1853       modd();
  1855     break;
  1857   case Bytecodes::_dcmpl:
  1858     b = pop_pair();
  1859     a = pop_pair();
  1860     c = _gvn.transform( new (C, 3) CmpD3Node( a, b));
  1861     push(c);
  1862     break;
  1864   case Bytecodes::_dcmpg:
  1865     b = pop_pair();
  1866     a = pop_pair();
  1867     // Same as dcmpl but need to flip the unordered case.
  1868     // Commute the inputs, which negates the result sign except for unordered.
  1869     // Flip the unordered as well by using CmpD3 which implements
  1870     // unordered-lesser instead of unordered-greater semantics.
  1871     // Finally, negate the result bits.  Result is same as using a
  1872     // CmpD3Greater except we did it with CmpD3 alone.
  1873     c = _gvn.transform( new (C, 3) CmpD3Node( b, a));
  1874     c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
  1875     push(c);
  1876     break;
  1879     // Note for longs -> lo word is on TOS, hi word is on TOS - 1
  1880   case Bytecodes::_land:
  1881     b = pop_pair();
  1882     a = pop_pair();
  1883     c = _gvn.transform( new (C, 3) AndLNode(a,b) );
  1884     push_pair(c);
  1885     break;
  1886   case Bytecodes::_lor:
  1887     b = pop_pair();
  1888     a = pop_pair();
  1889     c = _gvn.transform( new (C, 3) OrLNode(a,b) );
  1890     push_pair(c);
  1891     break;
  1892   case Bytecodes::_lxor:
  1893     b = pop_pair();
  1894     a = pop_pair();
  1895     c = _gvn.transform( new (C, 3) XorLNode(a,b) );
  1896     push_pair(c);
  1897     break;
  1899   case Bytecodes::_lshl:
  1900     b = pop();                  // the shift count
  1901     a = pop_pair();             // value to be shifted
  1902     c = _gvn.transform( new (C, 3) LShiftLNode(a,b) );
  1903     push_pair(c);
  1904     break;
  1905   case Bytecodes::_lshr:
  1906     b = pop();                  // the shift count
  1907     a = pop_pair();             // value to be shifted
  1908     c = _gvn.transform( new (C, 3) RShiftLNode(a,b) );
  1909     push_pair(c);
  1910     break;
  1911   case Bytecodes::_lushr:
  1912     b = pop();                  // the shift count
  1913     a = pop_pair();             // value to be shifted
  1914     c = _gvn.transform( new (C, 3) URShiftLNode(a,b) );
  1915     push_pair(c);
  1916     break;
  1917   case Bytecodes::_lmul:
  1918     b = pop_pair();
  1919     a = pop_pair();
  1920     c = _gvn.transform( new (C, 3) MulLNode(a,b) );
  1921     push_pair(c);
  1922     break;
  1924   case Bytecodes::_lrem:
  1925     // Must keep both values on the expression-stack during null-check
  1926     assert(peek(0) == top(), "long word order");
  1927     do_null_check(peek(1), T_LONG);
  1928     // Compile-time detect of null-exception?
  1929     if (stopped())  return;
  1930     b = pop_pair();
  1931     a = pop_pair();
  1932     c = _gvn.transform( new (C, 3) ModLNode(control(),a,b) );
  1933     push_pair(c);
  1934     break;
  1936   case Bytecodes::_ldiv:
  1937     // Must keep both values on the expression-stack during null-check
  1938     assert(peek(0) == top(), "long word order");
  1939     do_null_check(peek(1), T_LONG);
  1940     // Compile-time detect of null-exception?
  1941     if (stopped())  return;
  1942     b = pop_pair();
  1943     a = pop_pair();
  1944     c = _gvn.transform( new (C, 3) DivLNode(control(),a,b) );
  1945     push_pair(c);
  1946     break;
  1948   case Bytecodes::_ladd:
  1949     b = pop_pair();
  1950     a = pop_pair();
  1951     c = _gvn.transform( new (C, 3) AddLNode(a,b) );
  1952     push_pair(c);
  1953     break;
  1954   case Bytecodes::_lsub:
  1955     b = pop_pair();
  1956     a = pop_pair();
  1957     c = _gvn.transform( new (C, 3) SubLNode(a,b) );
  1958     push_pair(c);
  1959     break;
  1960   case Bytecodes::_lcmp:
  1961     // Safepoints are now inserted _before_ branches.  The long-compare
  1962     // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
  1963     // slew of control flow.  These are usually followed by a CmpI vs zero and
  1964     // a branch; this pattern then optimizes to the obvious long-compare and
  1965     // branch.  However, if the branch is backwards there's a Safepoint
  1966     // inserted.  The inserted Safepoint captures the JVM state at the
  1967     // pre-branch point, i.e. it captures the 3-way value.  Thus if a
  1968     // long-compare is used to control a loop the debug info will force
  1969     // computation of the 3-way value, even though the generated code uses a
  1970     // long-compare and branch.  We try to rectify the situation by inserting
  1971     // a SafePoint here and have it dominate and kill the safepoint added at a
  1972     // following backwards branch.  At this point the JVM state merely holds 2
  1973     // longs but not the 3-way value.
  1974     if( UseLoopSafepoints ) {
  1975       switch( iter().next_bc() ) {
  1976       case Bytecodes::_ifgt:
  1977       case Bytecodes::_iflt:
  1978       case Bytecodes::_ifge:
  1979       case Bytecodes::_ifle:
  1980       case Bytecodes::_ifne:
  1981       case Bytecodes::_ifeq:
  1982         // If this is a backwards branch in the bytecodes, add Safepoint
  1983         maybe_add_safepoint(iter().next_get_dest());
  1986     b = pop_pair();
  1987     a = pop_pair();
  1988     c = _gvn.transform( new (C, 3) CmpL3Node( a, b ));
  1989     push(c);
  1990     break;
  1992   case Bytecodes::_lneg:
  1993     a = pop_pair();
  1994     b = _gvn.transform( new (C, 3) SubLNode(longcon(0),a));
  1995     push_pair(b);
  1996     break;
  1997   case Bytecodes::_l2i:
  1998     a = pop_pair();
  1999     push( _gvn.transform( new (C, 2) ConvL2INode(a)));
  2000     break;
  2001   case Bytecodes::_i2l:
  2002     a = pop();
  2003     b = _gvn.transform( new (C, 2) ConvI2LNode(a));
  2004     push_pair(b);
  2005     break;
  2006   case Bytecodes::_i2b:
  2007     // Sign extend
  2008     a = pop();
  2009     a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(24)) );
  2010     a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(24)) );
  2011     push( a );
  2012     break;
  2013   case Bytecodes::_i2s:
  2014     a = pop();
  2015     a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(16)) );
  2016     a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(16)) );
  2017     push( a );
  2018     break;
  2019   case Bytecodes::_i2c:
  2020     a = pop();
  2021     push( _gvn.transform( new (C, 3) AndINode(a,_gvn.intcon(0xFFFF)) ) );
  2022     break;
  2024   case Bytecodes::_i2f:
  2025     a = pop();
  2026     b = _gvn.transform( new (C, 2) ConvI2FNode(a) ) ;
  2027     c = precision_rounding(b);
  2028     push (b);
  2029     break;
  2031   case Bytecodes::_i2d:
  2032     a = pop();
  2033     b = _gvn.transform( new (C, 2) ConvI2DNode(a));
  2034     push_pair(b);
  2035     break;
  2037   case Bytecodes::_iinc:        // Increment local
  2038     i = iter().get_index();     // Get local index
  2039     set_local( i, _gvn.transform( new (C, 3) AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
  2040     break;
  2042   // Exit points of synchronized methods must have an unlock node
  2043   case Bytecodes::_return:
  2044     return_current(NULL);
  2045     break;
  2047   case Bytecodes::_ireturn:
  2048   case Bytecodes::_areturn:
  2049   case Bytecodes::_freturn:
  2050     return_current(pop());
  2051     break;
  2052   case Bytecodes::_lreturn:
  2053     return_current(pop_pair());
  2054     break;
  2055   case Bytecodes::_dreturn:
  2056     return_current(pop_pair());
  2057     break;
  2059   case Bytecodes::_athrow:
  2060     // null exception oop throws NULL pointer exception
  2061     do_null_check(peek(), T_OBJECT);
  2062     if (stopped())  return;
  2063     if (JvmtiExport::can_post_exceptions()) {
  2064       // "Full-speed throwing" is not necessary here,
  2065       // since we're notifying the VM on every throw.
  2066       uncommon_trap(Deoptimization::Reason_unhandled,
  2067                     Deoptimization::Action_none);
  2068       return;
  2070     // Hook the thrown exception directly to subsequent handlers.
  2071     if (BailoutToInterpreterForThrows) {
  2072       // Keep method interpreted from now on.
  2073       uncommon_trap(Deoptimization::Reason_unhandled,
  2074                     Deoptimization::Action_make_not_compilable);
  2075       return;
  2077     add_exception_state(make_exception_state(peek()));
  2078     break;
  2080   case Bytecodes::_goto:   // fall through
  2081   case Bytecodes::_goto_w: {
  2082     int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
  2084     // If this is a backwards branch in the bytecodes, add Safepoint
  2085     maybe_add_safepoint(target_bci);
  2087     // Update method data
  2088     profile_taken_branch(target_bci);
  2090     // Merge the current control into the target basic block
  2091     merge(target_bci);
  2093     // See if we can get some profile data and hand it off to the next block
  2094     Block *target_block = block()->successor_for_bci(target_bci);
  2095     if (target_block->pred_count() != 1)  break;
  2096     ciMethodData* methodData = method()->method_data();
  2097     if (!methodData->is_mature())  break;
  2098     ciProfileData* data = methodData->bci_to_data(bci());
  2099     assert( data->is_JumpData(), "" );
  2100     int taken = ((ciJumpData*)data)->taken();
  2101     taken = method()->scale_count(taken);
  2102     target_block->set_count(taken);
  2103     break;
  2106   case Bytecodes::_ifnull:
  2107     do_ifnull(BoolTest::eq);
  2108     break;
  2109   case Bytecodes::_ifnonnull:
  2110     do_ifnull(BoolTest::ne);
  2111     break;
  2113   case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
  2114   case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
  2115   handle_if_acmp:
  2116     // If this is a backwards branch in the bytecodes, add Safepoint
  2117     maybe_add_safepoint(iter().get_dest());
  2118     a = pop();
  2119     b = pop();
  2120     c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
  2121     do_if(btest, c);
  2122     break;
  2124   case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
  2125   case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
  2126   case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
  2127   case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
  2128   case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
  2129   case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
  2130   handle_ifxx:
  2131     // If this is a backwards branch in the bytecodes, add Safepoint
  2132     maybe_add_safepoint(iter().get_dest());
  2133     a = _gvn.intcon(0);
  2134     b = pop();
  2135     c = _gvn.transform( new (C, 3) CmpINode(b, a) );
  2136     do_if(btest, c);
  2137     break;
  2139   case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
  2140   case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
  2141   case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
  2142   case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
  2143   case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
  2144   case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
  2145   handle_if_icmp:
  2146     // If this is a backwards branch in the bytecodes, add Safepoint
  2147     maybe_add_safepoint(iter().get_dest());
  2148     a = pop();
  2149     b = pop();
  2150     c = _gvn.transform( new (C, 3) CmpINode( b, a ) );
  2151     do_if(btest, c);
  2152     break;
  2154   case Bytecodes::_tableswitch:
  2155     do_tableswitch();
  2156     break;
  2158   case Bytecodes::_lookupswitch:
  2159     do_lookupswitch();
  2160     break;
  2162   case Bytecodes::_invokestatic:
  2163   case Bytecodes::_invokespecial:
  2164   case Bytecodes::_invokevirtual:
  2165   case Bytecodes::_invokeinterface:
  2166     do_call();
  2167     break;
  2168   case Bytecodes::_checkcast:
  2169     do_checkcast();
  2170     break;
  2171   case Bytecodes::_instanceof:
  2172     do_instanceof();
  2173     break;
  2174   case Bytecodes::_anewarray:
  2175     do_anewarray();
  2176     break;
  2177   case Bytecodes::_newarray:
  2178     do_newarray((BasicType)iter().get_index());
  2179     break;
  2180   case Bytecodes::_multianewarray:
  2181     do_multianewarray();
  2182     break;
  2183   case Bytecodes::_new:
  2184     do_new();
  2185     break;
  2187   case Bytecodes::_jsr:
  2188   case Bytecodes::_jsr_w:
  2189     do_jsr();
  2190     break;
  2192   case Bytecodes::_ret:
  2193     do_ret();
  2194     break;
  2197   case Bytecodes::_monitorenter:
  2198     do_monitor_enter();
  2199     break;
  2201   case Bytecodes::_monitorexit:
  2202     do_monitor_exit();
  2203     break;
  2205   case Bytecodes::_breakpoint:
  2206     // Breakpoint set concurrently to compile
  2207     // %%% use an uncommon trap?
  2208     C->record_failure("breakpoint in method");
  2209     return;
  2211   default:
  2212 #ifndef PRODUCT
  2213     map()->dump(99);
  2214 #endif
  2215     tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
  2216     ShouldNotReachHere();
  2219 #ifndef PRODUCT
  2220   IdealGraphPrinter *printer = IdealGraphPrinter::printer();
  2221   if(printer) {
  2222     char buffer[256];
  2223     sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
  2224     bool old = printer->traverse_outs();
  2225     printer->set_traverse_outs(true);
  2226     printer->print_method(C, buffer, 3);
  2227     printer->set_traverse_outs(old);
  2229 #endif

mercurial