src/share/vm/opto/parse2.cpp

Fri, 11 Jul 2008 01:14:44 -0700

author
trims
date
Fri, 11 Jul 2008 01:14:44 -0700
changeset 670
9c2ecc2ffb12
parent 631
d1605aabd0a1
parent 657
2a1a77d3458f
child 681
9b66e6287f4a
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 1998-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_parse2.cpp.incl"
    28 extern int explicit_null_checks_inserted,
    29            explicit_null_checks_elided;
    31 //---------------------------------array_load----------------------------------
    32 void Parse::array_load(BasicType elem_type) {
    33   const Type* elem = Type::TOP;
    34   Node* adr = array_addressing(elem_type, 0, &elem);
    35   if (stopped())  return;     // guarenteed null or range check
    36   _sp -= 2;                   // Pop array and index
    37   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
    38   Node* ld = make_load(control(), adr, elem, elem_type, adr_type);
    39   push(ld);
    40 }
    43 //--------------------------------array_store----------------------------------
    44 void Parse::array_store(BasicType elem_type) {
    45   Node* adr = array_addressing(elem_type, 1);
    46   if (stopped())  return;     // guarenteed null or range check
    47   Node* val = pop();
    48   _sp -= 2;                   // Pop array and index
    49   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
    50   store_to_memory(control(), adr, val, elem_type, adr_type);
    51 }
    54 //------------------------------array_addressing-------------------------------
    55 // Pull array and index from the stack.  Compute pointer-to-element.
    56 Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
    57   Node *idx   = peek(0+vals);   // Get from stack without popping
    58   Node *ary   = peek(1+vals);   // in case of exception
    60   // Null check the array base, with correct stack contents
    61   ary = do_null_check(ary, T_ARRAY);
    62   // Compile-time detect of null-exception?
    63   if (stopped())  return top();
    65   const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
    66   const TypeInt*    sizetype = arytype->size();
    67   const Type*       elemtype = arytype->elem();
    69   if (UseUniqueSubclasses && result2 != NULL) {
    70     const Type* el = elemtype->make_ptr();
    71     if (el && el->isa_instptr()) {
    72       const TypeInstPtr* toop = el->is_instptr();
    73       if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
    74         // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
    75         const Type* subklass = Type::get_const_type(toop->klass());
    76         elemtype = subklass->join(el);
    77       }
    78     }
    79   }
    81   // Check for big class initializers with all constant offsets
    82   // feeding into a known-size array.
    83   const TypeInt* idxtype = _gvn.type(idx)->is_int();
    84   // See if the highest idx value is less than the lowest array bound,
    85   // and if the idx value cannot be negative:
    86   bool need_range_check = true;
    87   if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
    88     need_range_check = false;
    89     if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
    90   }
    92   if (!arytype->klass()->is_loaded()) {
    93     // Only fails for some -Xcomp runs
    94     // The class is unloaded.  We have to run this bytecode in the interpreter.
    95     uncommon_trap(Deoptimization::Reason_unloaded,
    96                   Deoptimization::Action_reinterpret,
    97                   arytype->klass(), "!loaded array");
    98     return top();
    99   }
   101   // Do the range check
   102   if (GenerateRangeChecks && need_range_check) {
   103     // Range is constant in array-oop, so we can use the original state of mem
   104     Node* len = load_array_length(ary);
   105     Node* tst;
   106     if (sizetype->_hi <= 0) {
   107       // If the greatest array bound is negative, we can conclude that we're
   108       // compiling unreachable code, but the unsigned compare trick used below
   109       // only works with non-negative lengths.  Instead, hack "tst" to be zero so
   110       // the uncommon_trap path will always be taken.
   111       tst = _gvn.intcon(0);
   112     } else {
   113       // Test length vs index (standard trick using unsigned compare)
   114       Node* chk = _gvn.transform( new (C, 3) CmpUNode(idx, len) );
   115       BoolTest::mask btest = BoolTest::lt;
   116       tst = _gvn.transform( new (C, 2) BoolNode(chk, btest) );
   117     }
   118     // Branch to failure if out of bounds
   119     { BuildCutout unless(this, tst, PROB_MAX);
   120       if (C->allow_range_check_smearing()) {
   121         // Do not use builtin_throw, since range checks are sometimes
   122         // made more stringent by an optimistic transformation.
   123         // This creates "tentative" range checks at this point,
   124         // which are not guaranteed to throw exceptions.
   125         // See IfNode::Ideal, is_range_check, adjust_check.
   126         uncommon_trap(Deoptimization::Reason_range_check,
   127                       Deoptimization::Action_make_not_entrant,
   128                       NULL, "range_check");
   129       } else {
   130         // If we have already recompiled with the range-check-widening
   131         // heroic optimization turned off, then we must really be throwing
   132         // range check exceptions.
   133         builtin_throw(Deoptimization::Reason_range_check, idx);
   134       }
   135     }
   136   }
   137   // Check for always knowing you are throwing a range-check exception
   138   if (stopped())  return top();
   140   Node* ptr = array_element_address( ary, idx, type, sizetype);
   142   if (result2 != NULL)  *result2 = elemtype;
   143   return ptr;
   144 }
   147 // returns IfNode
   148 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
   149   Node   *cmp = _gvn.transform( new (C, 3) CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
   150   Node   *tst = _gvn.transform( new (C, 2) BoolNode( cmp, mask));
   151   IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
   152   return iff;
   153 }
   155 // return Region node
   156 Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
   157   Node *region  = new (C, 3) RegionNode(3); // 2 results
   158   record_for_igvn(region);
   159   region->init_req(1, iffalse);
   160   region->init_req(2, iftrue );
   161   _gvn.set_type(region, Type::CONTROL);
   162   region = _gvn.transform(region);
   163   set_control (region);
   164   return region;
   165 }
   168 //------------------------------helper for tableswitch-------------------------
   169 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
   170   // True branch, use existing map info
   171   { PreserveJVMState pjvms(this);
   172     Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
   173     set_control( iftrue );
   174     profile_switch_case(prof_table_index);
   175     merge_new_path(dest_bci_if_true);
   176   }
   178   // False branch
   179   Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   180   set_control( iffalse );
   181 }
   183 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
   184   // True branch, use existing map info
   185   { PreserveJVMState pjvms(this);
   186     Node *iffalse  = _gvn.transform( new (C, 1) IfFalseNode (iff) );
   187     set_control( iffalse );
   188     profile_switch_case(prof_table_index);
   189     merge_new_path(dest_bci_if_true);
   190   }
   192   // False branch
   193   Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   194   set_control( iftrue );
   195 }
   197 void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
   198   // False branch, use existing map and control()
   199   profile_switch_case(prof_table_index);
   200   merge_new_path(dest_bci);
   201 }
   204 extern "C" {
   205   static int jint_cmp(const void *i, const void *j) {
   206     int a = *(jint *)i;
   207     int b = *(jint *)j;
   208     return a > b ? 1 : a < b ? -1 : 0;
   209   }
   210 }
   213 // Default value for methodData switch indexing. Must be a negative value to avoid
   214 // conflict with any legal switch index.
   215 #define NullTableIndex -1
   217 class SwitchRange : public StackObj {
   218   // a range of integers coupled with a bci destination
   219   jint _lo;                     // inclusive lower limit
   220   jint _hi;                     // inclusive upper limit
   221   int _dest;
   222   int _table_index;             // index into method data table
   224 public:
   225   jint lo() const              { return _lo;   }
   226   jint hi() const              { return _hi;   }
   227   int  dest() const            { return _dest; }
   228   int  table_index() const     { return _table_index; }
   229   bool is_singleton() const    { return _lo == _hi; }
   231   void setRange(jint lo, jint hi, int dest, int table_index) {
   232     assert(lo <= hi, "must be a non-empty range");
   233     _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
   234   }
   235   bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
   236     assert(lo <= hi, "must be a non-empty range");
   237     if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
   238       _hi = hi;
   239       return true;
   240     }
   241     return false;
   242   }
   244   void set (jint value, int dest, int table_index) {
   245     setRange(value, value, dest, table_index);
   246   }
   247   bool adjoin(jint value, int dest, int table_index) {
   248     return adjoinRange(value, value, dest, table_index);
   249   }
   251   void print(ciEnv* env) {
   252     if (is_singleton())
   253       tty->print(" {%d}=>%d", lo(), dest());
   254     else if (lo() == min_jint)
   255       tty->print(" {..%d}=>%d", hi(), dest());
   256     else if (hi() == max_jint)
   257       tty->print(" {%d..}=>%d", lo(), dest());
   258     else
   259       tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
   260   }
   261 };
   264 //-------------------------------do_tableswitch--------------------------------
   265 void Parse::do_tableswitch() {
   266   Node* lookup = pop();
   268   // Get information about tableswitch
   269   int default_dest = iter().get_dest_table(0);
   270   int lo_index     = iter().get_int_table(1);
   271   int hi_index     = iter().get_int_table(2);
   272   int len          = hi_index - lo_index + 1;
   274   if (len < 1) {
   275     // If this is a backward branch, add safepoint
   276     maybe_add_safepoint(default_dest);
   277     merge(default_dest);
   278     return;
   279   }
   281   // generate decision tree, using trichotomy when possible
   282   int rnum = len+2;
   283   bool makes_backward_branch = false;
   284   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
   285   int rp = -1;
   286   if (lo_index != min_jint) {
   287     ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
   288   }
   289   for (int j = 0; j < len; j++) {
   290     jint match_int = lo_index+j;
   291     int  dest      = iter().get_dest_table(j+3);
   292     makes_backward_branch |= (dest <= bci());
   293     int  table_index = method_data_update() ? j : NullTableIndex;
   294     if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
   295       ranges[++rp].set(match_int, dest, table_index);
   296     }
   297   }
   298   jint highest = lo_index+(len-1);
   299   assert(ranges[rp].hi() == highest, "");
   300   if (highest != max_jint
   301       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
   302     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
   303   }
   304   assert(rp < len+2, "not too many ranges");
   306   // Safepoint in case if backward branch observed
   307   if( makes_backward_branch && UseLoopSafepoints )
   308     add_safepoint();
   310   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
   311 }
   314 //------------------------------do_lookupswitch--------------------------------
   315 void Parse::do_lookupswitch() {
   316   Node *lookup = pop();         // lookup value
   317   // Get information about lookupswitch
   318   int default_dest = iter().get_dest_table(0);
   319   int len          = iter().get_int_table(1);
   321   if (len < 1) {    // If this is a backward branch, add safepoint
   322     maybe_add_safepoint(default_dest);
   323     merge(default_dest);
   324     return;
   325   }
   327   // generate decision tree, using trichotomy when possible
   328   jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
   329   {
   330     for( int j = 0; j < len; j++ ) {
   331       table[j+j+0] = iter().get_int_table(2+j+j);
   332       table[j+j+1] = iter().get_dest_table(2+j+j+1);
   333     }
   334     qsort( table, len, 2*sizeof(table[0]), jint_cmp );
   335   }
   337   int rnum = len*2+1;
   338   bool makes_backward_branch = false;
   339   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
   340   int rp = -1;
   341   for( int j = 0; j < len; j++ ) {
   342     jint match_int   = table[j+j+0];
   343     int  dest        = table[j+j+1];
   344     int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
   345     int  table_index = method_data_update() ? j : NullTableIndex;
   346     makes_backward_branch |= (dest <= bci());
   347     if( match_int != next_lo ) {
   348       ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
   349     }
   350     if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
   351       ranges[++rp].set(match_int, dest, table_index);
   352     }
   353   }
   354   jint highest = table[2*(len-1)];
   355   assert(ranges[rp].hi() == highest, "");
   356   if( highest != max_jint
   357       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
   358     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
   359   }
   360   assert(rp < rnum, "not too many ranges");
   362   // Safepoint in case backward branch observed
   363   if( makes_backward_branch && UseLoopSafepoints )
   364     add_safepoint();
   366   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
   367 }
   369 //----------------------------create_jump_tables-------------------------------
   370 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
   371   // Are jumptables enabled
   372   if (!UseJumpTables)  return false;
   374   // Are jumptables supported
   375   if (!Matcher::has_match_rule(Op_Jump))  return false;
   377   // Don't make jump table if profiling
   378   if (method_data_update())  return false;
   380   // Decide if a guard is needed to lop off big ranges at either (or
   381   // both) end(s) of the input set. We'll call this the default target
   382   // even though we can't be sure that it is the true "default".
   384   bool needs_guard = false;
   385   int default_dest;
   386   int64 total_outlier_size = 0;
   387   int64 hi_size = ((int64)hi->hi()) - ((int64)hi->lo()) + 1;
   388   int64 lo_size = ((int64)lo->hi()) - ((int64)lo->lo()) + 1;
   390   if (lo->dest() == hi->dest()) {
   391     total_outlier_size = hi_size + lo_size;
   392     default_dest = lo->dest();
   393   } else if (lo_size > hi_size) {
   394     total_outlier_size = lo_size;
   395     default_dest = lo->dest();
   396   } else {
   397     total_outlier_size = hi_size;
   398     default_dest = hi->dest();
   399   }
   401   // If a guard test will eliminate very sparse end ranges, then
   402   // it is worth the cost of an extra jump.
   403   if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
   404     needs_guard = true;
   405     if (default_dest == lo->dest()) lo++;
   406     if (default_dest == hi->dest()) hi--;
   407   }
   409   // Find the total number of cases and ranges
   410   int64 num_cases = ((int64)hi->hi()) - ((int64)lo->lo()) + 1;
   411   int num_range = hi - lo + 1;
   413   // Don't create table if: too large, too small, or too sparse.
   414   if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
   415     return false;
   416   if (num_cases > (MaxJumpTableSparseness * num_range))
   417     return false;
   419   // Normalize table lookups to zero
   420   int lowval = lo->lo();
   421   key_val = _gvn.transform( new (C, 3) SubINode(key_val, _gvn.intcon(lowval)) );
   423   // Generate a guard to protect against input keyvals that aren't
   424   // in the switch domain.
   425   if (needs_guard) {
   426     Node*   size = _gvn.intcon(num_cases);
   427     Node*   cmp = _gvn.transform( new (C, 3) CmpUNode(key_val, size) );
   428     Node*   tst = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ge) );
   429     IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
   430     jump_if_true_fork(iff, default_dest, NullTableIndex);
   431   }
   433   // Create an ideal node JumpTable that has projections
   434   // of all possible ranges for a switch statement
   435   // The key_val input must be converted to a pointer offset and scaled.
   436   // Compare Parse::array_addressing above.
   437 #ifdef _LP64
   438   // Clean the 32-bit int into a real 64-bit offset.
   439   // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
   440   const TypeLong* lkeytype = TypeLong::make(CONST64(0), num_cases-1, Type::WidenMin);
   441   key_val       = _gvn.transform( new (C, 2) ConvI2LNode(key_val, lkeytype) );
   442 #endif
   443   // Shift the value by wordsize so we have an index into the table, rather
   444   // than a switch value
   445   Node *shiftWord = _gvn.MakeConX(wordSize);
   446   key_val = _gvn.transform( new (C, 3) MulXNode( key_val, shiftWord));
   448   // Create the JumpNode
   449   Node* jtn = _gvn.transform( new (C, 2) JumpNode(control(), key_val, num_cases) );
   451   // These are the switch destinations hanging off the jumpnode
   452   int i = 0;
   453   for (SwitchRange* r = lo; r <= hi; r++) {
   454     for (int j = r->lo(); j <= r->hi(); j++, i++) {
   455       Node* input = _gvn.transform(new (C, 1) JumpProjNode(jtn, i, r->dest(), j - lowval));
   456       {
   457         PreserveJVMState pjvms(this);
   458         set_control(input);
   459         jump_if_always_fork(r->dest(), r->table_index());
   460       }
   461     }
   462   }
   463   assert(i == num_cases, "miscount of cases");
   464   stop_and_kill_map();  // no more uses for this JVMS
   465   return true;
   466 }
   468 //----------------------------jump_switch_ranges-------------------------------
   469 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
   470   Block* switch_block = block();
   472   if (switch_depth == 0) {
   473     // Do special processing for the top-level call.
   474     assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
   475     assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
   477     // Decrement pred-numbers for the unique set of nodes.
   478 #ifdef ASSERT
   479     // Ensure that the block's successors are a (duplicate-free) set.
   480     int successors_counted = 0;  // block occurrences in [hi..lo]
   481     int unique_successors = switch_block->num_successors();
   482     for (int i = 0; i < unique_successors; i++) {
   483       Block* target = switch_block->successor_at(i);
   485       // Check that the set of successors is the same in both places.
   486       int successors_found = 0;
   487       for (SwitchRange* p = lo; p <= hi; p++) {
   488         if (p->dest() == target->start())  successors_found++;
   489       }
   490       assert(successors_found > 0, "successor must be known");
   491       successors_counted += successors_found;
   492     }
   493     assert(successors_counted == (hi-lo)+1, "no unexpected successors");
   494 #endif
   496     // Maybe prune the inputs, based on the type of key_val.
   497     jint min_val = min_jint;
   498     jint max_val = max_jint;
   499     const TypeInt* ti = key_val->bottom_type()->isa_int();
   500     if (ti != NULL) {
   501       min_val = ti->_lo;
   502       max_val = ti->_hi;
   503       assert(min_val <= max_val, "invalid int type");
   504     }
   505     while (lo->hi() < min_val)  lo++;
   506     if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
   507     while (hi->lo() > max_val)  hi--;
   508     if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
   509   }
   511 #ifndef PRODUCT
   512   if (switch_depth == 0) {
   513     _max_switch_depth = 0;
   514     _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
   515   }
   516 #endif
   518   assert(lo <= hi, "must be a non-empty set of ranges");
   519   if (lo == hi) {
   520     jump_if_always_fork(lo->dest(), lo->table_index());
   521   } else {
   522     assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
   523     assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
   525     if (create_jump_tables(key_val, lo, hi)) return;
   527     int nr = hi - lo + 1;
   529     SwitchRange* mid = lo + nr/2;
   530     // if there is an easy choice, pivot at a singleton:
   531     if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
   533     assert(lo < mid && mid <= hi, "good pivot choice");
   534     assert(nr != 2 || mid == hi,   "should pick higher of 2");
   535     assert(nr != 3 || mid == hi-1, "should pick middle of 3");
   537     Node *test_val = _gvn.intcon(mid->lo());
   539     if (mid->is_singleton()) {
   540       IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
   541       jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
   543       // Special Case:  If there are exactly three ranges, and the high
   544       // and low range each go to the same place, omit the "gt" test,
   545       // since it will not discriminate anything.
   546       bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
   547       if (eq_test_only) {
   548         assert(mid == hi-1, "");
   549       }
   551       // if there is a higher range, test for it and process it:
   552       if (mid < hi && !eq_test_only) {
   553         // two comparisons of same values--should enable 1 test for 2 branches
   554         // Use BoolTest::le instead of BoolTest::gt
   555         IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
   556         Node   *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_le) );
   557         Node   *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_le) );
   558         { PreserveJVMState pjvms(this);
   559           set_control(iffalse);
   560           jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
   561         }
   562         set_control(iftrue);
   563       }
   565     } else {
   566       // mid is a range, not a singleton, so treat mid..hi as a unit
   567       IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
   569       // if there is a higher range, test for it and process it:
   570       if (mid == hi) {
   571         jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
   572       } else {
   573         Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_ge) );
   574         Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_ge) );
   575         { PreserveJVMState pjvms(this);
   576           set_control(iftrue);
   577           jump_switch_ranges(key_val, mid, hi, switch_depth+1);
   578         }
   579         set_control(iffalse);
   580       }
   581     }
   583     // in any case, process the lower range
   584     jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
   585   }
   587   // Decrease pred_count for each successor after all is done.
   588   if (switch_depth == 0) {
   589     int unique_successors = switch_block->num_successors();
   590     for (int i = 0; i < unique_successors; i++) {
   591       Block* target = switch_block->successor_at(i);
   592       // Throw away the pre-allocated path for each unique successor.
   593       target->next_path_num();
   594     }
   595   }
   597 #ifndef PRODUCT
   598   _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
   599   if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
   600     SwitchRange* r;
   601     int nsing = 0;
   602     for( r = lo; r <= hi; r++ ) {
   603       if( r->is_singleton() )  nsing++;
   604     }
   605     tty->print(">>> ");
   606     _method->print_short_name();
   607     tty->print_cr(" switch decision tree");
   608     tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
   609                   hi-lo+1, nsing, _max_switch_depth, _est_switch_depth);
   610     if (_max_switch_depth > _est_switch_depth) {
   611       tty->print_cr("******** BAD SWITCH DEPTH ********");
   612     }
   613     tty->print("   ");
   614     for( r = lo; r <= hi; r++ ) {
   615       r->print(env());
   616     }
   617     tty->print_cr("");
   618   }
   619 #endif
   620 }
   622 void Parse::modf() {
   623   Node *f2 = pop();
   624   Node *f1 = pop();
   625   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
   626                               CAST_FROM_FN_PTR(address, SharedRuntime::frem),
   627                               "frem", NULL, //no memory effects
   628                               f1, f2);
   629   Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   631   push(res);
   632 }
   634 void Parse::modd() {
   635   Node *d2 = pop_pair();
   636   Node *d1 = pop_pair();
   637   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
   638                               CAST_FROM_FN_PTR(address, SharedRuntime::drem),
   639                               "drem", NULL, //no memory effects
   640                               d1, top(), d2, top());
   641   Node* res_d   = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   643 #ifdef ASSERT
   644   Node* res_top = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 1));
   645   assert(res_top == top(), "second value must be top");
   646 #endif
   648   push_pair(res_d);
   649 }
   651 void Parse::l2f() {
   652   Node* f2 = pop();
   653   Node* f1 = pop();
   654   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
   655                               CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
   656                               "l2f", NULL, //no memory effects
   657                               f1, f2);
   658   Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
   660   push(res);
   661 }
   663 void Parse::do_irem() {
   664   // Must keep both values on the expression-stack during null-check
   665   do_null_check(peek(), T_INT);
   666   // Compile-time detect of null-exception?
   667   if (stopped())  return;
   669   Node* b = pop();
   670   Node* a = pop();
   672   const Type *t = _gvn.type(b);
   673   if (t != Type::TOP) {
   674     const TypeInt *ti = t->is_int();
   675     if (ti->is_con()) {
   676       int divisor = ti->get_con();
   677       // check for positive power of 2
   678       if (divisor > 0 &&
   679           (divisor & ~(divisor-1)) == divisor) {
   680         // yes !
   681         Node *mask = _gvn.intcon((divisor - 1));
   682         // Sigh, must handle negative dividends
   683         Node *zero = _gvn.intcon(0);
   684         IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
   685         Node *iff = _gvn.transform( new (C, 1) IfFalseNode(ifff) );
   686         Node *ift = _gvn.transform( new (C, 1) IfTrueNode (ifff) );
   687         Node *reg = jump_if_join(ift, iff);
   688         Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
   689         // Negative path; negate/and/negate
   690         Node *neg = _gvn.transform( new (C, 3) SubINode(zero, a) );
   691         Node *andn= _gvn.transform( new (C, 3) AndINode(neg, mask) );
   692         Node *negn= _gvn.transform( new (C, 3) SubINode(zero, andn) );
   693         phi->init_req(1, negn);
   694         // Fast positive case
   695         Node *andx = _gvn.transform( new (C, 3) AndINode(a, mask) );
   696         phi->init_req(2, andx);
   697         // Push the merge
   698         push( _gvn.transform(phi) );
   699         return;
   700       }
   701     }
   702   }
   703   // Default case
   704   push( _gvn.transform( new (C, 3) ModINode(control(),a,b) ) );
   705 }
   707 // Handle jsr and jsr_w bytecode
   708 void Parse::do_jsr() {
   709   assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
   711   // Store information about current state, tagged with new _jsr_bci
   712   int return_bci = iter().next_bci();
   713   int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
   715   // Update method data
   716   profile_taken_branch(jsr_bci);
   718   // The way we do things now, there is only one successor block
   719   // for the jsr, because the target code is cloned by ciTypeFlow.
   720   Block* target = successor_for_bci(jsr_bci);
   722   // What got pushed?
   723   const Type* ret_addr = target->peek();
   724   assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
   726   // Effect on jsr on stack
   727   push(_gvn.makecon(ret_addr));
   729   // Flow to the jsr.
   730   merge(jsr_bci);
   731 }
   733 // Handle ret bytecode
   734 void Parse::do_ret() {
   735   // Find to whom we return.
   736 #if 0 // %%%% MAKE THIS WORK
   737   Node* con = local();
   738   const TypePtr* tp = con->bottom_type()->isa_ptr();
   739   assert(tp && tp->singleton(), "");
   740   int return_bci = (int) tp->get_con();
   741   merge(return_bci);
   742 #else
   743   assert(block()->num_successors() == 1, "a ret can only go one place now");
   744   Block* target = block()->successor_at(0);
   745   assert(!target->is_ready(), "our arrival must be expected");
   746   profile_ret(target->flow()->start());
   747   int pnum = target->next_path_num();
   748   merge_common(target, pnum);
   749 #endif
   750 }
   752 //--------------------------dynamic_branch_prediction--------------------------
   753 // Try to gather dynamic branch prediction behavior.  Return a probability
   754 // of the branch being taken and set the "cnt" field.  Returns a -1.0
   755 // if we need to use static prediction for some reason.
   756 float Parse::dynamic_branch_prediction(float &cnt) {
   757   ResourceMark rm;
   759   cnt  = COUNT_UNKNOWN;
   761   // Use MethodData information if it is available
   762   // FIXME: free the ProfileData structure
   763   ciMethodData* methodData = method()->method_data();
   764   if (!methodData->is_mature())  return PROB_UNKNOWN;
   765   ciProfileData* data = methodData->bci_to_data(bci());
   766   if (!data->is_JumpData())  return PROB_UNKNOWN;
   768   // get taken and not taken values
   769   int     taken = data->as_JumpData()->taken();
   770   int not_taken = 0;
   771   if (data->is_BranchData()) {
   772     not_taken = data->as_BranchData()->not_taken();
   773   }
   775   // scale the counts to be commensurate with invocation counts:
   776   taken = method()->scale_count(taken);
   777   not_taken = method()->scale_count(not_taken);
   779   // Give up if too few counts to be meaningful
   780   if (taken + not_taken < 40) {
   781     if (C->log() != NULL) {
   782       C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
   783     }
   784     return PROB_UNKNOWN;
   785   }
   787   // Compute frequency that we arrive here
   788   int sum = taken + not_taken;
   789   // Adjust, if this block is a cloned private block but the
   790   // Jump counts are shared.  Taken the private counts for
   791   // just this path instead of the shared counts.
   792   if( block()->count() > 0 )
   793     sum = block()->count();
   794   cnt = (float)sum / (float)FreqCountInvocations;
   796   // Pin probability to sane limits
   797   float prob;
   798   if( !taken )
   799     prob = (0+PROB_MIN) / 2;
   800   else if( !not_taken )
   801     prob = (1+PROB_MAX) / 2;
   802   else {                         // Compute probability of true path
   803     prob = (float)taken / (float)(taken + not_taken);
   804     if (prob > PROB_MAX)  prob = PROB_MAX;
   805     if (prob < PROB_MIN)   prob = PROB_MIN;
   806   }
   808   assert((cnt > 0.0f) && (prob > 0.0f),
   809          "Bad frequency assignment in if");
   811   if (C->log() != NULL) {
   812     const char* prob_str = NULL;
   813     if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
   814     if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
   815     char prob_str_buf[30];
   816     if (prob_str == NULL) {
   817       sprintf(prob_str_buf, "%g", prob);
   818       prob_str = prob_str_buf;
   819     }
   820     C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'",
   821                    iter().get_dest(), taken, not_taken, cnt, prob_str);
   822   }
   823   return prob;
   824 }
   826 //-----------------------------branch_prediction-------------------------------
   827 float Parse::branch_prediction(float& cnt,
   828                                BoolTest::mask btest,
   829                                int target_bci) {
   830   float prob = dynamic_branch_prediction(cnt);
   831   // If prob is unknown, switch to static prediction
   832   if (prob != PROB_UNKNOWN)  return prob;
   834   prob = PROB_FAIR;                   // Set default value
   835   if (btest == BoolTest::eq)          // Exactly equal test?
   836     prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
   837   else if (btest == BoolTest::ne)
   838     prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
   840   // If this is a conditional test guarding a backwards branch,
   841   // assume its a loop-back edge.  Make it a likely taken branch.
   842   if (target_bci < bci()) {
   843     if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
   844       // Since it's an OSR, we probably have profile data, but since
   845       // branch_prediction returned PROB_UNKNOWN, the counts are too small.
   846       // Let's make a special check here for completely zero counts.
   847       ciMethodData* methodData = method()->method_data();
   848       if (!methodData->is_empty()) {
   849         ciProfileData* data = methodData->bci_to_data(bci());
   850         // Only stop for truly zero counts, which mean an unknown part
   851         // of the OSR-ed method, and we want to deopt to gather more stats.
   852         // If you have ANY counts, then this loop is simply 'cold' relative
   853         // to the OSR loop.
   854         if (data->as_BranchData()->taken() +
   855             data->as_BranchData()->not_taken() == 0 ) {
   856           // This is the only way to return PROB_UNKNOWN:
   857           return PROB_UNKNOWN;
   858         }
   859       }
   860     }
   861     prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
   862   }
   864   assert(prob != PROB_UNKNOWN, "must have some guess at this point");
   865   return prob;
   866 }
   868 // The magic constants are chosen so as to match the output of
   869 // branch_prediction() when the profile reports a zero taken count.
   870 // It is important to distinguish zero counts unambiguously, because
   871 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce
   872 // very small but nonzero probabilities, which if confused with zero
   873 // counts would keep the program recompiling indefinitely.
   874 bool Parse::seems_never_taken(float prob) {
   875   return prob < PROB_MIN;
   876 }
   878 inline void Parse::repush_if_args() {
   879 #ifndef PRODUCT
   880   if (PrintOpto && WizardMode) {
   881     tty->print("defending against excessive implicit null exceptions on %s @%d in ",
   882                Bytecodes::name(iter().cur_bc()), iter().cur_bci());
   883     method()->print_name(); tty->cr();
   884   }
   885 #endif
   886   int bc_depth = - Bytecodes::depth(iter().cur_bc());
   887   assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
   888   DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
   889   assert(argument(0) != NULL, "must exist");
   890   assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
   891   _sp += bc_depth;
   892 }
   894 //----------------------------------do_ifnull----------------------------------
   895 void Parse::do_ifnull(BoolTest::mask btest) {
   896   int target_bci = iter().get_dest();
   898   Block* branch_block = successor_for_bci(target_bci);
   899   Block* next_block   = successor_for_bci(iter().next_bci());
   901   float cnt;
   902   float prob = branch_prediction(cnt, btest, target_bci);
   903   if (prob == PROB_UNKNOWN) {
   904     // (An earlier version of do_ifnull omitted this trap for OSR methods.)
   905 #ifndef PRODUCT
   906     if (PrintOpto && Verbose)
   907       tty->print_cr("Never-taken backedge stops compilation at bci %d",bci());
   908 #endif
   909     repush_if_args(); // to gather stats on loop
   910     // We need to mark this branch as taken so that if we recompile we will
   911     // see that it is possible. In the tiered system the interpreter doesn't
   912     // do profiling and by the time we get to the lower tier from the interpreter
   913     // the path may be cold again. Make sure it doesn't look untaken
   914     profile_taken_branch(target_bci, !ProfileInterpreter);
   915     uncommon_trap(Deoptimization::Reason_unreached,
   916                   Deoptimization::Action_reinterpret,
   917                   NULL, "cold");
   918     if (EliminateAutoBox) {
   919       // Mark the successor blocks as parsed
   920       branch_block->next_path_num();
   921       next_block->next_path_num();
   922     }
   923     return;
   924   }
   926   // If this is a backwards branch in the bytecodes, add Safepoint
   927   maybe_add_safepoint(target_bci);
   929   explicit_null_checks_inserted++;
   930   Node* a = null();
   931   Node* b = pop();
   932   Node* c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
   934   // Make a cast-away-nullness that is control dependent on the test
   935   const Type *t = _gvn.type(b);
   936   const Type *t_not_null = t->join(TypePtr::NOTNULL);
   937   Node *cast = new (C, 2) CastPPNode(b,t_not_null);
   939   // Generate real control flow
   940   Node   *tst = _gvn.transform( new (C, 2) BoolNode( c, btest ) );
   942   // Sanity check the probability value
   943   assert(prob > 0.0f,"Bad probability in Parser");
   944  // Need xform to put node in hash table
   945   IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
   946   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
   947   // True branch
   948   { PreserveJVMState pjvms(this);
   949     Node* iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
   950     set_control(iftrue);
   952     if (stopped()) {            // Path is dead?
   953       explicit_null_checks_elided++;
   954       if (EliminateAutoBox) {
   955         // Mark the successor block as parsed
   956         branch_block->next_path_num();
   957       }
   958     } else {                    // Path is live.
   959       // Update method data
   960       profile_taken_branch(target_bci);
   961       adjust_map_after_if(btest, c, prob, branch_block, next_block);
   962       if (!stopped())
   963         merge(target_bci);
   964     }
   965   }
   967   // False branch
   968   Node* iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   969   set_control(iffalse);
   971   if (stopped()) {              // Path is dead?
   972     explicit_null_checks_elided++;
   973     if (EliminateAutoBox) {
   974       // Mark the successor block as parsed
   975       next_block->next_path_num();
   976     }
   977   } else  {                     // Path is live.
   978     // Update method data
   979     profile_not_taken_branch();
   980     adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
   981                         next_block, branch_block);
   982   }
   983 }
   985 //------------------------------------do_if------------------------------------
   986 void Parse::do_if(BoolTest::mask btest, Node* c) {
   987   int target_bci = iter().get_dest();
   989   Block* branch_block = successor_for_bci(target_bci);
   990   Block* next_block   = successor_for_bci(iter().next_bci());
   992   float cnt;
   993   float prob = branch_prediction(cnt, btest, target_bci);
   994   float untaken_prob = 1.0 - prob;
   996   if (prob == PROB_UNKNOWN) {
   997 #ifndef PRODUCT
   998     if (PrintOpto && Verbose)
   999       tty->print_cr("Never-taken backedge stops compilation at bci %d",bci());
  1000 #endif
  1001     repush_if_args(); // to gather stats on loop
  1002     // We need to mark this branch as taken so that if we recompile we will
  1003     // see that it is possible. In the tiered system the interpreter doesn't
  1004     // do profiling and by the time we get to the lower tier from the interpreter
  1005     // the path may be cold again. Make sure it doesn't look untaken
  1006     profile_taken_branch(target_bci, !ProfileInterpreter);
  1007     uncommon_trap(Deoptimization::Reason_unreached,
  1008                   Deoptimization::Action_reinterpret,
  1009                   NULL, "cold");
  1010     if (EliminateAutoBox) {
  1011       // Mark the successor blocks as parsed
  1012       branch_block->next_path_num();
  1013       next_block->next_path_num();
  1015     return;
  1018   // Sanity check the probability value
  1019   assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
  1021   bool taken_if_true = true;
  1022   // Convert BoolTest to canonical form:
  1023   if (!BoolTest(btest).is_canonical()) {
  1024     btest         = BoolTest(btest).negate();
  1025     taken_if_true = false;
  1026     // prob is NOT updated here; it remains the probability of the taken
  1027     // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
  1029   assert(btest != BoolTest::eq, "!= is the only canonical exact test");
  1031   Node* tst0 = new (C, 2) BoolNode(c, btest);
  1032   Node* tst = _gvn.transform(tst0);
  1033   BoolTest::mask taken_btest   = BoolTest::illegal;
  1034   BoolTest::mask untaken_btest = BoolTest::illegal;
  1036   if (tst->is_Bool()) {
  1037     // Refresh c from the transformed bool node, since it may be
  1038     // simpler than the original c.  Also re-canonicalize btest.
  1039     // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
  1040     // That can arise from statements like: if (x instanceof C) ...
  1041     if (tst != tst0) {
  1042       // Canonicalize one more time since transform can change it.
  1043       btest = tst->as_Bool()->_test._test;
  1044       if (!BoolTest(btest).is_canonical()) {
  1045         // Reverse edges one more time...
  1046         tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
  1047         btest = tst->as_Bool()->_test._test;
  1048         assert(BoolTest(btest).is_canonical(), "sanity");
  1049         taken_if_true = !taken_if_true;
  1051       c = tst->in(1);
  1053     BoolTest::mask neg_btest = BoolTest(btest).negate();
  1054     taken_btest   = taken_if_true ?     btest : neg_btest;
  1055     untaken_btest = taken_if_true ? neg_btest :     btest;
  1058   // Generate real control flow
  1059   float true_prob = (taken_if_true ? prob : untaken_prob);
  1060   IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
  1061   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
  1062   Node* taken_branch   = new (C, 1) IfTrueNode(iff);
  1063   Node* untaken_branch = new (C, 1) IfFalseNode(iff);
  1064   if (!taken_if_true) {  // Finish conversion to canonical form
  1065     Node* tmp      = taken_branch;
  1066     taken_branch   = untaken_branch;
  1067     untaken_branch = tmp;
  1070   // Branch is taken:
  1071   { PreserveJVMState pjvms(this);
  1072     taken_branch = _gvn.transform(taken_branch);
  1073     set_control(taken_branch);
  1075     if (stopped()) {
  1076       if (EliminateAutoBox) {
  1077         // Mark the successor block as parsed
  1078         branch_block->next_path_num();
  1080     } else {
  1081       // Update method data
  1082       profile_taken_branch(target_bci);
  1083       adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
  1084       if (!stopped())
  1085         merge(target_bci);
  1089   untaken_branch = _gvn.transform(untaken_branch);
  1090   set_control(untaken_branch);
  1092   // Branch not taken.
  1093   if (stopped()) {
  1094     if (EliminateAutoBox) {
  1095       // Mark the successor block as parsed
  1096       next_block->next_path_num();
  1098   } else {
  1099     // Update method data
  1100     profile_not_taken_branch();
  1101     adjust_map_after_if(untaken_btest, c, untaken_prob,
  1102                         next_block, branch_block);
  1106 //----------------------------adjust_map_after_if------------------------------
  1107 // Adjust the JVM state to reflect the result of taking this path.
  1108 // Basically, it means inspecting the CmpNode controlling this
  1109 // branch, seeing how it constrains a tested value, and then
  1110 // deciding if it's worth our while to encode this constraint
  1111 // as graph nodes in the current abstract interpretation map.
  1112 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
  1113                                 Block* path, Block* other_path) {
  1114   if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
  1115     return;                             // nothing to do
  1117   bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
  1119   int cop = c->Opcode();
  1120   if (seems_never_taken(prob) && cop == Op_CmpP && btest == BoolTest::eq) {
  1121     // (An earlier version of do_if omitted '&& btest == BoolTest::eq'.)
  1122     //
  1123     // If this might possibly turn into an implicit null check,
  1124     // and the null has never yet been seen, we need to generate
  1125     // an uncommon trap, so as to recompile instead of suffering
  1126     // with very slow branches.  (We'll get the slow branches if
  1127     // the program ever changes phase and starts seeing nulls here.)
  1128     //
  1129     // The tests we worry about are of the form (p == null).
  1130     // We do not simply inspect for a null constant, since a node may
  1131     // optimize to 'null' later on.
  1132     repush_if_args();
  1133     // We need to mark this branch as taken so that if we recompile we will
  1134     // see that it is possible. In the tiered system the interpreter doesn't
  1135     // do profiling and by the time we get to the lower tier from the interpreter
  1136     // the path may be cold again. Make sure it doesn't look untaken
  1137     if (is_fallthrough) {
  1138       profile_not_taken_branch(!ProfileInterpreter);
  1139     } else {
  1140       profile_taken_branch(iter().get_dest(), !ProfileInterpreter);
  1142     uncommon_trap(Deoptimization::Reason_unreached,
  1143                   Deoptimization::Action_reinterpret,
  1144                   NULL,
  1145                   (is_fallthrough ? "taken always" : "taken never"));
  1146     return;
  1149   Node* val = c->in(1);
  1150   Node* con = c->in(2);
  1151   const Type* tcon = _gvn.type(con);
  1152   const Type* tval = _gvn.type(val);
  1153   bool have_con = tcon->singleton();
  1154   if (tval->singleton()) {
  1155     if (!have_con) {
  1156       // Swap, so constant is in con.
  1157       con  = val;
  1158       tcon = tval;
  1159       val  = c->in(2);
  1160       tval = _gvn.type(val);
  1161       btest = BoolTest(btest).commute();
  1162       have_con = true;
  1163     } else {
  1164       // Do we have two constants?  Then leave well enough alone.
  1165       have_con = false;
  1168   if (!have_con)                        // remaining adjustments need a con
  1169     return;
  1172   int val_in_map = map()->find_edge(val);
  1173   if (val_in_map < 0)  return;          // replace_in_map would be useless
  1175     JVMState* jvms = this->jvms();
  1176     if (!(jvms->is_loc(val_in_map) ||
  1177           jvms->is_stk(val_in_map)))
  1178       return;                           // again, it would be useless
  1181   // Check for a comparison to a constant, and "know" that the compared
  1182   // value is constrained on this path.
  1183   assert(tcon->singleton(), "");
  1184   ConstraintCastNode* ccast = NULL;
  1185   Node* cast = NULL;
  1187   switch (btest) {
  1188   case BoolTest::eq:                    // Constant test?
  1190       const Type* tboth = tcon->join(tval);
  1191       if (tboth == tval)  break;        // Nothing to gain.
  1192       if (tcon->isa_int()) {
  1193         ccast = new (C, 2) CastIINode(val, tboth);
  1194       } else if (tcon == TypePtr::NULL_PTR) {
  1195         // Cast to null, but keep the pointer identity temporarily live.
  1196         ccast = new (C, 2) CastPPNode(val, tboth);
  1197       } else {
  1198         const TypeF* tf = tcon->isa_float_constant();
  1199         const TypeD* td = tcon->isa_double_constant();
  1200         // Exclude tests vs float/double 0 as these could be
  1201         // either +0 or -0.  Just because you are equal to +0
  1202         // doesn't mean you ARE +0!
  1203         if ((!tf || tf->_f != 0.0) &&
  1204             (!td || td->_d != 0.0))
  1205           cast = con;                   // Replace non-constant val by con.
  1208     break;
  1210   case BoolTest::ne:
  1211     if (tcon == TypePtr::NULL_PTR) {
  1212       cast = cast_not_null(val, false);
  1214     break;
  1216   default:
  1217     // (At this point we could record int range types with CastII.)
  1218     break;
  1221   if (ccast != NULL) {
  1222     const Type* tcc = ccast->as_Type()->type();
  1223     assert(tcc != tval && tcc->higher_equal(tval), "must improve");
  1224     // Delay transform() call to allow recovery of pre-cast value
  1225     // at the control merge.
  1226     ccast->set_req(0, control());
  1227     _gvn.set_type_bottom(ccast);
  1228     record_for_igvn(ccast);
  1229     cast = ccast;
  1232   if (cast != NULL) {                   // Here's the payoff.
  1233     replace_in_map(val, cast);
  1238 //------------------------------do_one_bytecode--------------------------------
  1239 // Parse this bytecode, and alter the Parsers JVM->Node mapping
  1240 void Parse::do_one_bytecode() {
  1241   Node *a, *b, *c, *d;          // Handy temps
  1242   BoolTest::mask btest;
  1243   int i;
  1245   assert(!has_exceptions(), "bytecode entry state must be clear of throws");
  1247   if (C->check_node_count(NodeLimitFudgeFactor * 5,
  1248                           "out of nodes parsing method")) {
  1249     return;
  1252 #ifdef ASSERT
  1253   // for setting breakpoints
  1254   if (TraceOptoParse) {
  1255     tty->print(" @");
  1256     dump_bci(bci());
  1258 #endif
  1260   switch (bc()) {
  1261   case Bytecodes::_nop:
  1262     // do nothing
  1263     break;
  1264   case Bytecodes::_lconst_0:
  1265     push_pair(longcon(0));
  1266     break;
  1268   case Bytecodes::_lconst_1:
  1269     push_pair(longcon(1));
  1270     break;
  1272   case Bytecodes::_fconst_0:
  1273     push(zerocon(T_FLOAT));
  1274     break;
  1276   case Bytecodes::_fconst_1:
  1277     push(makecon(TypeF::ONE));
  1278     break;
  1280   case Bytecodes::_fconst_2:
  1281     push(makecon(TypeF::make(2.0f)));
  1282     break;
  1284   case Bytecodes::_dconst_0:
  1285     push_pair(zerocon(T_DOUBLE));
  1286     break;
  1288   case Bytecodes::_dconst_1:
  1289     push_pair(makecon(TypeD::ONE));
  1290     break;
  1292   case Bytecodes::_iconst_m1:push(intcon(-1)); break;
  1293   case Bytecodes::_iconst_0: push(intcon( 0)); break;
  1294   case Bytecodes::_iconst_1: push(intcon( 1)); break;
  1295   case Bytecodes::_iconst_2: push(intcon( 2)); break;
  1296   case Bytecodes::_iconst_3: push(intcon( 3)); break;
  1297   case Bytecodes::_iconst_4: push(intcon( 4)); break;
  1298   case Bytecodes::_iconst_5: push(intcon( 5)); break;
  1299   case Bytecodes::_bipush:   push(intcon( iter().get_byte())); break;
  1300   case Bytecodes::_sipush:   push(intcon( iter().get_short())); break;
  1301   case Bytecodes::_aconst_null: push(null());  break;
  1302   case Bytecodes::_ldc:
  1303   case Bytecodes::_ldc_w:
  1304   case Bytecodes::_ldc2_w:
  1305     // If the constant is unresolved, run this BC once in the interpreter.
  1306     if (iter().is_unresolved_string()) {
  1307       uncommon_trap(Deoptimization::make_trap_request
  1308                     (Deoptimization::Reason_unloaded,
  1309                      Deoptimization::Action_reinterpret,
  1310                      iter().get_constant_index()),
  1311                     NULL, "unresolved_string");
  1312       break;
  1313     } else {
  1314       ciConstant constant = iter().get_constant();
  1315       if (constant.basic_type() == T_OBJECT) {
  1316         ciObject* c = constant.as_object();
  1317         if (c->is_klass()) {
  1318           // The constant returned for a klass is the ciKlass for the
  1319           // entry.  We want the java_mirror so get it.
  1320           ciKlass* klass = c->as_klass();
  1321           if (klass->is_loaded()) {
  1322             constant = ciConstant(T_OBJECT, klass->java_mirror());
  1323           } else {
  1324             uncommon_trap(Deoptimization::make_trap_request
  1325                           (Deoptimization::Reason_unloaded,
  1326                            Deoptimization::Action_reinterpret,
  1327                            iter().get_constant_index()),
  1328                           NULL, "unresolved_klass");
  1329             break;
  1333       push_constant(constant);
  1336     break;
  1338   case Bytecodes::_aload_0:
  1339     push( local(0) );
  1340     break;
  1341   case Bytecodes::_aload_1:
  1342     push( local(1) );
  1343     break;
  1344   case Bytecodes::_aload_2:
  1345     push( local(2) );
  1346     break;
  1347   case Bytecodes::_aload_3:
  1348     push( local(3) );
  1349     break;
  1350   case Bytecodes::_aload:
  1351     push( local(iter().get_index()) );
  1352     break;
  1354   case Bytecodes::_fload_0:
  1355   case Bytecodes::_iload_0:
  1356     push( local(0) );
  1357     break;
  1358   case Bytecodes::_fload_1:
  1359   case Bytecodes::_iload_1:
  1360     push( local(1) );
  1361     break;
  1362   case Bytecodes::_fload_2:
  1363   case Bytecodes::_iload_2:
  1364     push( local(2) );
  1365     break;
  1366   case Bytecodes::_fload_3:
  1367   case Bytecodes::_iload_3:
  1368     push( local(3) );
  1369     break;
  1370   case Bytecodes::_fload:
  1371   case Bytecodes::_iload:
  1372     push( local(iter().get_index()) );
  1373     break;
  1374   case Bytecodes::_lload_0:
  1375     push_pair_local( 0 );
  1376     break;
  1377   case Bytecodes::_lload_1:
  1378     push_pair_local( 1 );
  1379     break;
  1380   case Bytecodes::_lload_2:
  1381     push_pair_local( 2 );
  1382     break;
  1383   case Bytecodes::_lload_3:
  1384     push_pair_local( 3 );
  1385     break;
  1386   case Bytecodes::_lload:
  1387     push_pair_local( iter().get_index() );
  1388     break;
  1390   case Bytecodes::_dload_0:
  1391     push_pair_local(0);
  1392     break;
  1393   case Bytecodes::_dload_1:
  1394     push_pair_local(1);
  1395     break;
  1396   case Bytecodes::_dload_2:
  1397     push_pair_local(2);
  1398     break;
  1399   case Bytecodes::_dload_3:
  1400     push_pair_local(3);
  1401     break;
  1402   case Bytecodes::_dload:
  1403     push_pair_local(iter().get_index());
  1404     break;
  1405   case Bytecodes::_fstore_0:
  1406   case Bytecodes::_istore_0:
  1407   case Bytecodes::_astore_0:
  1408     set_local( 0, pop() );
  1409     break;
  1410   case Bytecodes::_fstore_1:
  1411   case Bytecodes::_istore_1:
  1412   case Bytecodes::_astore_1:
  1413     set_local( 1, pop() );
  1414     break;
  1415   case Bytecodes::_fstore_2:
  1416   case Bytecodes::_istore_2:
  1417   case Bytecodes::_astore_2:
  1418     set_local( 2, pop() );
  1419     break;
  1420   case Bytecodes::_fstore_3:
  1421   case Bytecodes::_istore_3:
  1422   case Bytecodes::_astore_3:
  1423     set_local( 3, pop() );
  1424     break;
  1425   case Bytecodes::_fstore:
  1426   case Bytecodes::_istore:
  1427   case Bytecodes::_astore:
  1428     set_local( iter().get_index(), pop() );
  1429     break;
  1430   // long stores
  1431   case Bytecodes::_lstore_0:
  1432     set_pair_local( 0, pop_pair() );
  1433     break;
  1434   case Bytecodes::_lstore_1:
  1435     set_pair_local( 1, pop_pair() );
  1436     break;
  1437   case Bytecodes::_lstore_2:
  1438     set_pair_local( 2, pop_pair() );
  1439     break;
  1440   case Bytecodes::_lstore_3:
  1441     set_pair_local( 3, pop_pair() );
  1442     break;
  1443   case Bytecodes::_lstore:
  1444     set_pair_local( iter().get_index(), pop_pair() );
  1445     break;
  1447   // double stores
  1448   case Bytecodes::_dstore_0:
  1449     set_pair_local( 0, dstore_rounding(pop_pair()) );
  1450     break;
  1451   case Bytecodes::_dstore_1:
  1452     set_pair_local( 1, dstore_rounding(pop_pair()) );
  1453     break;
  1454   case Bytecodes::_dstore_2:
  1455     set_pair_local( 2, dstore_rounding(pop_pair()) );
  1456     break;
  1457   case Bytecodes::_dstore_3:
  1458     set_pair_local( 3, dstore_rounding(pop_pair()) );
  1459     break;
  1460   case Bytecodes::_dstore:
  1461     set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
  1462     break;
  1464   case Bytecodes::_pop:  _sp -= 1;   break;
  1465   case Bytecodes::_pop2: _sp -= 2;   break;
  1466   case Bytecodes::_swap:
  1467     a = pop();
  1468     b = pop();
  1469     push(a);
  1470     push(b);
  1471     break;
  1472   case Bytecodes::_dup:
  1473     a = pop();
  1474     push(a);
  1475     push(a);
  1476     break;
  1477   case Bytecodes::_dup_x1:
  1478     a = pop();
  1479     b = pop();
  1480     push( a );
  1481     push( b );
  1482     push( a );
  1483     break;
  1484   case Bytecodes::_dup_x2:
  1485     a = pop();
  1486     b = pop();
  1487     c = pop();
  1488     push( a );
  1489     push( c );
  1490     push( b );
  1491     push( a );
  1492     break;
  1493   case Bytecodes::_dup2:
  1494     a = pop();
  1495     b = pop();
  1496     push( b );
  1497     push( a );
  1498     push( b );
  1499     push( a );
  1500     break;
  1502   case Bytecodes::_dup2_x1:
  1503     // before: .. c, b, a
  1504     // after:  .. b, a, c, b, a
  1505     // not tested
  1506     a = pop();
  1507     b = pop();
  1508     c = pop();
  1509     push( b );
  1510     push( a );
  1511     push( c );
  1512     push( b );
  1513     push( a );
  1514     break;
  1515   case Bytecodes::_dup2_x2:
  1516     // before: .. d, c, b, a
  1517     // after:  .. b, a, d, c, b, a
  1518     // not tested
  1519     a = pop();
  1520     b = pop();
  1521     c = pop();
  1522     d = pop();
  1523     push( b );
  1524     push( a );
  1525     push( d );
  1526     push( c );
  1527     push( b );
  1528     push( a );
  1529     break;
  1531   case Bytecodes::_arraylength: {
  1532     // Must do null-check with value on expression stack
  1533     Node *ary = do_null_check(peek(), T_ARRAY);
  1534     // Compile-time detect of null-exception?
  1535     if (stopped())  return;
  1536     a = pop();
  1537     push(load_array_length(a));
  1538     break;
  1541   case Bytecodes::_baload: array_load(T_BYTE);   break;
  1542   case Bytecodes::_caload: array_load(T_CHAR);   break;
  1543   case Bytecodes::_iaload: array_load(T_INT);    break;
  1544   case Bytecodes::_saload: array_load(T_SHORT);  break;
  1545   case Bytecodes::_faload: array_load(T_FLOAT);  break;
  1546   case Bytecodes::_aaload: array_load(T_OBJECT); break;
  1547   case Bytecodes::_laload: {
  1548     a = array_addressing(T_LONG, 0);
  1549     if (stopped())  return;     // guarenteed null or range check
  1550     _sp -= 2;                   // Pop array and index
  1551     push_pair( make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS));
  1552     break;
  1554   case Bytecodes::_daload: {
  1555     a = array_addressing(T_DOUBLE, 0);
  1556     if (stopped())  return;     // guarenteed null or range check
  1557     _sp -= 2;                   // Pop array and index
  1558     push_pair( make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES));
  1559     break;
  1561   case Bytecodes::_bastore: array_store(T_BYTE);  break;
  1562   case Bytecodes::_castore: array_store(T_CHAR);  break;
  1563   case Bytecodes::_iastore: array_store(T_INT);   break;
  1564   case Bytecodes::_sastore: array_store(T_SHORT); break;
  1565   case Bytecodes::_fastore: array_store(T_FLOAT); break;
  1566   case Bytecodes::_aastore: {
  1567     d = array_addressing(T_OBJECT, 1);
  1568     if (stopped())  return;     // guarenteed null or range check
  1569     array_store_check();
  1570     c = pop();                  // Oop to store
  1571     b = pop();                  // index (already used)
  1572     a = pop();                  // the array itself
  1573     const Type* elemtype  = _gvn.type(a)->is_aryptr()->elem();
  1574     const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
  1575     Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT);
  1576     break;
  1578   case Bytecodes::_lastore: {
  1579     a = array_addressing(T_LONG, 2);
  1580     if (stopped())  return;     // guarenteed null or range check
  1581     c = pop_pair();
  1582     _sp -= 2;                   // Pop array and index
  1583     store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS);
  1584     break;
  1586   case Bytecodes::_dastore: {
  1587     a = array_addressing(T_DOUBLE, 2);
  1588     if (stopped())  return;     // guarenteed null or range check
  1589     c = pop_pair();
  1590     _sp -= 2;                   // Pop array and index
  1591     c = dstore_rounding(c);
  1592     store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES);
  1593     break;
  1595   case Bytecodes::_getfield:
  1596     do_getfield();
  1597     break;
  1599   case Bytecodes::_getstatic:
  1600     do_getstatic();
  1601     break;
  1603   case Bytecodes::_putfield:
  1604     do_putfield();
  1605     break;
  1607   case Bytecodes::_putstatic:
  1608     do_putstatic();
  1609     break;
  1611   case Bytecodes::_irem:
  1612     do_irem();
  1613     break;
  1614   case Bytecodes::_idiv:
  1615     // Must keep both values on the expression-stack during null-check
  1616     do_null_check(peek(), T_INT);
  1617     // Compile-time detect of null-exception?
  1618     if (stopped())  return;
  1619     b = pop();
  1620     a = pop();
  1621     push( _gvn.transform( new (C, 3) DivINode(control(),a,b) ) );
  1622     break;
  1623   case Bytecodes::_imul:
  1624     b = pop(); a = pop();
  1625     push( _gvn.transform( new (C, 3) MulINode(a,b) ) );
  1626     break;
  1627   case Bytecodes::_iadd:
  1628     b = pop(); a = pop();
  1629     push( _gvn.transform( new (C, 3) AddINode(a,b) ) );
  1630     break;
  1631   case Bytecodes::_ineg:
  1632     a = pop();
  1633     push( _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),a)) );
  1634     break;
  1635   case Bytecodes::_isub:
  1636     b = pop(); a = pop();
  1637     push( _gvn.transform( new (C, 3) SubINode(a,b) ) );
  1638     break;
  1639   case Bytecodes::_iand:
  1640     b = pop(); a = pop();
  1641     push( _gvn.transform( new (C, 3) AndINode(a,b) ) );
  1642     break;
  1643   case Bytecodes::_ior:
  1644     b = pop(); a = pop();
  1645     push( _gvn.transform( new (C, 3) OrINode(a,b) ) );
  1646     break;
  1647   case Bytecodes::_ixor:
  1648     b = pop(); a = pop();
  1649     push( _gvn.transform( new (C, 3) XorINode(a,b) ) );
  1650     break;
  1651   case Bytecodes::_ishl:
  1652     b = pop(); a = pop();
  1653     push( _gvn.transform( new (C, 3) LShiftINode(a,b) ) );
  1654     break;
  1655   case Bytecodes::_ishr:
  1656     b = pop(); a = pop();
  1657     push( _gvn.transform( new (C, 3) RShiftINode(a,b) ) );
  1658     break;
  1659   case Bytecodes::_iushr:
  1660     b = pop(); a = pop();
  1661     push( _gvn.transform( new (C, 3) URShiftINode(a,b) ) );
  1662     break;
  1664   case Bytecodes::_fneg:
  1665     a = pop();
  1666     b = _gvn.transform(new (C, 2) NegFNode (a));
  1667     push(b);
  1668     break;
  1670   case Bytecodes::_fsub:
  1671     b = pop();
  1672     a = pop();
  1673     c = _gvn.transform( new (C, 3) SubFNode(a,b) );
  1674     d = precision_rounding(c);
  1675     push( d );
  1676     break;
  1678   case Bytecodes::_fadd:
  1679     b = pop();
  1680     a = pop();
  1681     c = _gvn.transform( new (C, 3) AddFNode(a,b) );
  1682     d = precision_rounding(c);
  1683     push( d );
  1684     break;
  1686   case Bytecodes::_fmul:
  1687     b = pop();
  1688     a = pop();
  1689     c = _gvn.transform( new (C, 3) MulFNode(a,b) );
  1690     d = precision_rounding(c);
  1691     push( d );
  1692     break;
  1694   case Bytecodes::_fdiv:
  1695     b = pop();
  1696     a = pop();
  1697     c = _gvn.transform( new (C, 3) DivFNode(0,a,b) );
  1698     d = precision_rounding(c);
  1699     push( d );
  1700     break;
  1702   case Bytecodes::_frem:
  1703     if (Matcher::has_match_rule(Op_ModF)) {
  1704       // Generate a ModF node.
  1705       b = pop();
  1706       a = pop();
  1707       c = _gvn.transform( new (C, 3) ModFNode(0,a,b) );
  1708       d = precision_rounding(c);
  1709       push( d );
  1711     else {
  1712       // Generate a call.
  1713       modf();
  1715     break;
  1717   case Bytecodes::_fcmpl:
  1718     b = pop();
  1719     a = pop();
  1720     c = _gvn.transform( new (C, 3) CmpF3Node( a, b));
  1721     push(c);
  1722     break;
  1723   case Bytecodes::_fcmpg:
  1724     b = pop();
  1725     a = pop();
  1727     // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
  1728     // which negates the result sign except for unordered.  Flip the unordered
  1729     // as well by using CmpF3 which implements unordered-lesser instead of
  1730     // unordered-greater semantics.  Finally, commute the result bits.  Result
  1731     // is same as using a CmpF3Greater except we did it with CmpF3 alone.
  1732     c = _gvn.transform( new (C, 3) CmpF3Node( b, a));
  1733     c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
  1734     push(c);
  1735     break;
  1737   case Bytecodes::_f2i:
  1738     a = pop();
  1739     push(_gvn.transform(new (C, 2) ConvF2INode(a)));
  1740     break;
  1742   case Bytecodes::_d2i:
  1743     a = pop_pair();
  1744     b = _gvn.transform(new (C, 2) ConvD2INode(a));
  1745     push( b );
  1746     break;
  1748   case Bytecodes::_f2d:
  1749     a = pop();
  1750     b = _gvn.transform( new (C, 2) ConvF2DNode(a));
  1751     push_pair( b );
  1752     break;
  1754   case Bytecodes::_d2f:
  1755     a = pop_pair();
  1756     b = _gvn.transform( new (C, 2) ConvD2FNode(a));
  1757     // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
  1758     //b = _gvn.transform(new (C, 2) RoundFloatNode(0, b) );
  1759     push( b );
  1760     break;
  1762   case Bytecodes::_l2f:
  1763     if (Matcher::convL2FSupported()) {
  1764       a = pop_pair();
  1765       b = _gvn.transform( new (C, 2) ConvL2FNode(a));
  1766       // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
  1767       // Rather than storing the result into an FP register then pushing
  1768       // out to memory to round, the machine instruction that implements
  1769       // ConvL2D is responsible for rounding.
  1770       // c = precision_rounding(b);
  1771       c = _gvn.transform(b);
  1772       push(c);
  1773     } else {
  1774       l2f();
  1776     break;
  1778   case Bytecodes::_l2d:
  1779     a = pop_pair();
  1780     b = _gvn.transform( new (C, 2) ConvL2DNode(a));
  1781     // For i486.ad, rounding is always necessary (see _l2f above).
  1782     // c = dprecision_rounding(b);
  1783     c = _gvn.transform(b);
  1784     push_pair(c);
  1785     break;
  1787   case Bytecodes::_f2l:
  1788     a = pop();
  1789     b = _gvn.transform( new (C, 2) ConvF2LNode(a));
  1790     push_pair(b);
  1791     break;
  1793   case Bytecodes::_d2l:
  1794     a = pop_pair();
  1795     b = _gvn.transform( new (C, 2) ConvD2LNode(a));
  1796     push_pair(b);
  1797     break;
  1799   case Bytecodes::_dsub:
  1800     b = pop_pair();
  1801     a = pop_pair();
  1802     c = _gvn.transform( new (C, 3) SubDNode(a,b) );
  1803     d = dprecision_rounding(c);
  1804     push_pair( d );
  1805     break;
  1807   case Bytecodes::_dadd:
  1808     b = pop_pair();
  1809     a = pop_pair();
  1810     c = _gvn.transform( new (C, 3) AddDNode(a,b) );
  1811     d = dprecision_rounding(c);
  1812     push_pair( d );
  1813     break;
  1815   case Bytecodes::_dmul:
  1816     b = pop_pair();
  1817     a = pop_pair();
  1818     c = _gvn.transform( new (C, 3) MulDNode(a,b) );
  1819     d = dprecision_rounding(c);
  1820     push_pair( d );
  1821     break;
  1823   case Bytecodes::_ddiv:
  1824     b = pop_pair();
  1825     a = pop_pair();
  1826     c = _gvn.transform( new (C, 3) DivDNode(0,a,b) );
  1827     d = dprecision_rounding(c);
  1828     push_pair( d );
  1829     break;
  1831   case Bytecodes::_dneg:
  1832     a = pop_pair();
  1833     b = _gvn.transform(new (C, 2) NegDNode (a));
  1834     push_pair(b);
  1835     break;
  1837   case Bytecodes::_drem:
  1838     if (Matcher::has_match_rule(Op_ModD)) {
  1839       // Generate a ModD node.
  1840       b = pop_pair();
  1841       a = pop_pair();
  1842       // a % b
  1844       c = _gvn.transform( new (C, 3) ModDNode(0,a,b) );
  1845       d = dprecision_rounding(c);
  1846       push_pair( d );
  1848     else {
  1849       // Generate a call.
  1850       modd();
  1852     break;
  1854   case Bytecodes::_dcmpl:
  1855     b = pop_pair();
  1856     a = pop_pair();
  1857     c = _gvn.transform( new (C, 3) CmpD3Node( a, b));
  1858     push(c);
  1859     break;
  1861   case Bytecodes::_dcmpg:
  1862     b = pop_pair();
  1863     a = pop_pair();
  1864     // Same as dcmpl but need to flip the unordered case.
  1865     // Commute the inputs, which negates the result sign except for unordered.
  1866     // Flip the unordered as well by using CmpD3 which implements
  1867     // unordered-lesser instead of unordered-greater semantics.
  1868     // Finally, negate the result bits.  Result is same as using a
  1869     // CmpD3Greater except we did it with CmpD3 alone.
  1870     c = _gvn.transform( new (C, 3) CmpD3Node( b, a));
  1871     c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
  1872     push(c);
  1873     break;
  1876     // Note for longs -> lo word is on TOS, hi word is on TOS - 1
  1877   case Bytecodes::_land:
  1878     b = pop_pair();
  1879     a = pop_pair();
  1880     c = _gvn.transform( new (C, 3) AndLNode(a,b) );
  1881     push_pair(c);
  1882     break;
  1883   case Bytecodes::_lor:
  1884     b = pop_pair();
  1885     a = pop_pair();
  1886     c = _gvn.transform( new (C, 3) OrLNode(a,b) );
  1887     push_pair(c);
  1888     break;
  1889   case Bytecodes::_lxor:
  1890     b = pop_pair();
  1891     a = pop_pair();
  1892     c = _gvn.transform( new (C, 3) XorLNode(a,b) );
  1893     push_pair(c);
  1894     break;
  1896   case Bytecodes::_lshl:
  1897     b = pop();                  // the shift count
  1898     a = pop_pair();             // value to be shifted
  1899     c = _gvn.transform( new (C, 3) LShiftLNode(a,b) );
  1900     push_pair(c);
  1901     break;
  1902   case Bytecodes::_lshr:
  1903     b = pop();                  // the shift count
  1904     a = pop_pair();             // value to be shifted
  1905     c = _gvn.transform( new (C, 3) RShiftLNode(a,b) );
  1906     push_pair(c);
  1907     break;
  1908   case Bytecodes::_lushr:
  1909     b = pop();                  // the shift count
  1910     a = pop_pair();             // value to be shifted
  1911     c = _gvn.transform( new (C, 3) URShiftLNode(a,b) );
  1912     push_pair(c);
  1913     break;
  1914   case Bytecodes::_lmul:
  1915     b = pop_pair();
  1916     a = pop_pair();
  1917     c = _gvn.transform( new (C, 3) MulLNode(a,b) );
  1918     push_pair(c);
  1919     break;
  1921   case Bytecodes::_lrem:
  1922     // Must keep both values on the expression-stack during null-check
  1923     assert(peek(0) == top(), "long word order");
  1924     do_null_check(peek(1), T_LONG);
  1925     // Compile-time detect of null-exception?
  1926     if (stopped())  return;
  1927     b = pop_pair();
  1928     a = pop_pair();
  1929     c = _gvn.transform( new (C, 3) ModLNode(control(),a,b) );
  1930     push_pair(c);
  1931     break;
  1933   case Bytecodes::_ldiv:
  1934     // Must keep both values on the expression-stack during null-check
  1935     assert(peek(0) == top(), "long word order");
  1936     do_null_check(peek(1), T_LONG);
  1937     // Compile-time detect of null-exception?
  1938     if (stopped())  return;
  1939     b = pop_pair();
  1940     a = pop_pair();
  1941     c = _gvn.transform( new (C, 3) DivLNode(control(),a,b) );
  1942     push_pair(c);
  1943     break;
  1945   case Bytecodes::_ladd:
  1946     b = pop_pair();
  1947     a = pop_pair();
  1948     c = _gvn.transform( new (C, 3) AddLNode(a,b) );
  1949     push_pair(c);
  1950     break;
  1951   case Bytecodes::_lsub:
  1952     b = pop_pair();
  1953     a = pop_pair();
  1954     c = _gvn.transform( new (C, 3) SubLNode(a,b) );
  1955     push_pair(c);
  1956     break;
  1957   case Bytecodes::_lcmp:
  1958     // Safepoints are now inserted _before_ branches.  The long-compare
  1959     // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
  1960     // slew of control flow.  These are usually followed by a CmpI vs zero and
  1961     // a branch; this pattern then optimizes to the obvious long-compare and
  1962     // branch.  However, if the branch is backwards there's a Safepoint
  1963     // inserted.  The inserted Safepoint captures the JVM state at the
  1964     // pre-branch point, i.e. it captures the 3-way value.  Thus if a
  1965     // long-compare is used to control a loop the debug info will force
  1966     // computation of the 3-way value, even though the generated code uses a
  1967     // long-compare and branch.  We try to rectify the situation by inserting
  1968     // a SafePoint here and have it dominate and kill the safepoint added at a
  1969     // following backwards branch.  At this point the JVM state merely holds 2
  1970     // longs but not the 3-way value.
  1971     if( UseLoopSafepoints ) {
  1972       switch( iter().next_bc() ) {
  1973       case Bytecodes::_ifgt:
  1974       case Bytecodes::_iflt:
  1975       case Bytecodes::_ifge:
  1976       case Bytecodes::_ifle:
  1977       case Bytecodes::_ifne:
  1978       case Bytecodes::_ifeq:
  1979         // If this is a backwards branch in the bytecodes, add Safepoint
  1980         maybe_add_safepoint(iter().next_get_dest());
  1983     b = pop_pair();
  1984     a = pop_pair();
  1985     c = _gvn.transform( new (C, 3) CmpL3Node( a, b ));
  1986     push(c);
  1987     break;
  1989   case Bytecodes::_lneg:
  1990     a = pop_pair();
  1991     b = _gvn.transform( new (C, 3) SubLNode(longcon(0),a));
  1992     push_pair(b);
  1993     break;
  1994   case Bytecodes::_l2i:
  1995     a = pop_pair();
  1996     push( _gvn.transform( new (C, 2) ConvL2INode(a)));
  1997     break;
  1998   case Bytecodes::_i2l:
  1999     a = pop();
  2000     b = _gvn.transform( new (C, 2) ConvI2LNode(a));
  2001     push_pair(b);
  2002     break;
  2003   case Bytecodes::_i2b:
  2004     // Sign extend
  2005     a = pop();
  2006     a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(24)) );
  2007     a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(24)) );
  2008     push( a );
  2009     break;
  2010   case Bytecodes::_i2s:
  2011     a = pop();
  2012     a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(16)) );
  2013     a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(16)) );
  2014     push( a );
  2015     break;
  2016   case Bytecodes::_i2c:
  2017     a = pop();
  2018     push( _gvn.transform( new (C, 3) AndINode(a,_gvn.intcon(0xFFFF)) ) );
  2019     break;
  2021   case Bytecodes::_i2f:
  2022     a = pop();
  2023     b = _gvn.transform( new (C, 2) ConvI2FNode(a) ) ;
  2024     c = precision_rounding(b);
  2025     push (b);
  2026     break;
  2028   case Bytecodes::_i2d:
  2029     a = pop();
  2030     b = _gvn.transform( new (C, 2) ConvI2DNode(a));
  2031     push_pair(b);
  2032     break;
  2034   case Bytecodes::_iinc:        // Increment local
  2035     i = iter().get_index();     // Get local index
  2036     set_local( i, _gvn.transform( new (C, 3) AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
  2037     break;
  2039   // Exit points of synchronized methods must have an unlock node
  2040   case Bytecodes::_return:
  2041     return_current(NULL);
  2042     break;
  2044   case Bytecodes::_ireturn:
  2045   case Bytecodes::_areturn:
  2046   case Bytecodes::_freturn:
  2047     return_current(pop());
  2048     break;
  2049   case Bytecodes::_lreturn:
  2050     return_current(pop_pair());
  2051     break;
  2052   case Bytecodes::_dreturn:
  2053     return_current(pop_pair());
  2054     break;
  2056   case Bytecodes::_athrow:
  2057     // null exception oop throws NULL pointer exception
  2058     do_null_check(peek(), T_OBJECT);
  2059     if (stopped())  return;
  2060     if (JvmtiExport::can_post_exceptions()) {
  2061       // "Full-speed throwing" is not necessary here,
  2062       // since we're notifying the VM on every throw.
  2063       uncommon_trap(Deoptimization::Reason_unhandled,
  2064                     Deoptimization::Action_none);
  2065       return;
  2067     // Hook the thrown exception directly to subsequent handlers.
  2068     if (BailoutToInterpreterForThrows) {
  2069       // Keep method interpreted from now on.
  2070       uncommon_trap(Deoptimization::Reason_unhandled,
  2071                     Deoptimization::Action_make_not_compilable);
  2072       return;
  2074     add_exception_state(make_exception_state(peek()));
  2075     break;
  2077   case Bytecodes::_goto:   // fall through
  2078   case Bytecodes::_goto_w: {
  2079     int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
  2081     // If this is a backwards branch in the bytecodes, add Safepoint
  2082     maybe_add_safepoint(target_bci);
  2084     // Update method data
  2085     profile_taken_branch(target_bci);
  2087     // Merge the current control into the target basic block
  2088     merge(target_bci);
  2090     // See if we can get some profile data and hand it off to the next block
  2091     Block *target_block = block()->successor_for_bci(target_bci);
  2092     if (target_block->pred_count() != 1)  break;
  2093     ciMethodData* methodData = method()->method_data();
  2094     if (!methodData->is_mature())  break;
  2095     ciProfileData* data = methodData->bci_to_data(bci());
  2096     assert( data->is_JumpData(), "" );
  2097     int taken = ((ciJumpData*)data)->taken();
  2098     taken = method()->scale_count(taken);
  2099     target_block->set_count(taken);
  2100     break;
  2103   case Bytecodes::_ifnull:
  2104     do_ifnull(BoolTest::eq);
  2105     break;
  2106   case Bytecodes::_ifnonnull:
  2107     do_ifnull(BoolTest::ne);
  2108     break;
  2110   case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
  2111   case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
  2112   handle_if_acmp:
  2113     // If this is a backwards branch in the bytecodes, add Safepoint
  2114     maybe_add_safepoint(iter().get_dest());
  2115     a = pop();
  2116     b = pop();
  2117     c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
  2118     do_if(btest, c);
  2119     break;
  2121   case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
  2122   case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
  2123   case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
  2124   case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
  2125   case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
  2126   case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
  2127   handle_ifxx:
  2128     // If this is a backwards branch in the bytecodes, add Safepoint
  2129     maybe_add_safepoint(iter().get_dest());
  2130     a = _gvn.intcon(0);
  2131     b = pop();
  2132     c = _gvn.transform( new (C, 3) CmpINode(b, a) );
  2133     do_if(btest, c);
  2134     break;
  2136   case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
  2137   case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
  2138   case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
  2139   case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
  2140   case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
  2141   case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
  2142   handle_if_icmp:
  2143     // If this is a backwards branch in the bytecodes, add Safepoint
  2144     maybe_add_safepoint(iter().get_dest());
  2145     a = pop();
  2146     b = pop();
  2147     c = _gvn.transform( new (C, 3) CmpINode( b, a ) );
  2148     do_if(btest, c);
  2149     break;
  2151   case Bytecodes::_tableswitch:
  2152     do_tableswitch();
  2153     break;
  2155   case Bytecodes::_lookupswitch:
  2156     do_lookupswitch();
  2157     break;
  2159   case Bytecodes::_invokestatic:
  2160   case Bytecodes::_invokespecial:
  2161   case Bytecodes::_invokevirtual:
  2162   case Bytecodes::_invokeinterface:
  2163     do_call();
  2164     break;
  2165   case Bytecodes::_checkcast:
  2166     do_checkcast();
  2167     break;
  2168   case Bytecodes::_instanceof:
  2169     do_instanceof();
  2170     break;
  2171   case Bytecodes::_anewarray:
  2172     do_anewarray();
  2173     break;
  2174   case Bytecodes::_newarray:
  2175     do_newarray((BasicType)iter().get_index());
  2176     break;
  2177   case Bytecodes::_multianewarray:
  2178     do_multianewarray();
  2179     break;
  2180   case Bytecodes::_new:
  2181     do_new();
  2182     break;
  2184   case Bytecodes::_jsr:
  2185   case Bytecodes::_jsr_w:
  2186     do_jsr();
  2187     break;
  2189   case Bytecodes::_ret:
  2190     do_ret();
  2191     break;
  2194   case Bytecodes::_monitorenter:
  2195     do_monitor_enter();
  2196     break;
  2198   case Bytecodes::_monitorexit:
  2199     do_monitor_exit();
  2200     break;
  2202   case Bytecodes::_breakpoint:
  2203     // Breakpoint set concurrently to compile
  2204     // %%% use an uncommon trap?
  2205     C->record_failure("breakpoint in method");
  2206     return;
  2208   default:
  2209 #ifndef PRODUCT
  2210     map()->dump(99);
  2211 #endif
  2212     tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
  2213     ShouldNotReachHere();
  2216 #ifndef PRODUCT
  2217   IdealGraphPrinter *printer = IdealGraphPrinter::printer();
  2218   if(printer) {
  2219     char buffer[256];
  2220     sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
  2221     bool old = printer->traverse_outs();
  2222     printer->set_traverse_outs(true);
  2223     printer->print_method(C, buffer, 4);
  2224     printer->set_traverse_outs(old);
  2226 #endif

mercurial