src/cpu/x86/vm/x86_32.ad

Thu, 26 Mar 2009 14:31:45 -0700

author
never
date
Thu, 26 Mar 2009 14:31:45 -0700
changeset 1106
d0994e5bebce
parent 1082
bd441136a5ce
child 1116
fbde8ec322d0
permissions
-rw-r--r--

6822204: volatile fences should prefer lock:addl to actual mfence instructions
Reviewed-by: kvn, phh

     1 //
     2 // Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20 // CA 95054 USA or visit www.sun.com if you need additional information or
    21 // have any questions.
    22 //
    23 //
    25 // X86 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
    64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
    67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
    68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
    69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
    70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
    71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
    72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
    73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
    74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
    75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
    77 // Special Registers
    78 reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
    80 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
    81 // allocator, and only shows up in the encodings.
    82 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    83 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    84 // Ok so here's the trick FPR1 is really st(0) except in the midst
    85 // of emission of assembly for a machnode. During the emission the fpu stack
    86 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
    87 // the stack will not have this element so FPR1 == st(0) from the
    88 // oopMap viewpoint. This same weirdness with numbering causes
    89 // instruction encoding to have to play games with the register
    90 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
    91 // where it does flt->flt moves to see an example
    92 //
    93 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
    94 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
    95 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
    96 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
    97 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
    98 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
    99 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
   100 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
   101 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
   102 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
   103 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
   104 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
   105 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
   106 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
   108 // XMM registers.  128-bit registers or 4 words each, labeled a-d.
   109 // Word a in each register holds a Float, words ab hold a Double.
   110 // We currently do not use the SIMD capabilities, so registers cd
   111 // are unused at the moment.
   112 reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
   113 reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
   114 reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
   115 reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
   116 reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
   117 reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
   118 reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
   119 reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
   120 reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
   121 reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
   122 reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
   123 reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
   124 reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
   125 reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
   126 reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
   127 reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
   129 // Specify priority of register selection within phases of register
   130 // allocation.  Highest priority is first.  A useful heuristic is to
   131 // give registers a low priority when they are required by machine
   132 // instructions, like EAX and EDX.  Registers which are used as
   133 // pairs must fall on an even boundary (witness the FPR#L's in this list).
   134 // For the Intel integer registers, the equivalent Long pairs are
   135 // EDX:EAX, EBX:ECX, and EDI:EBP.
   136 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
   137                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
   138                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
   139                     FPR6L, FPR6H, FPR7L, FPR7H );
   141 alloc_class chunk1( XMM0a, XMM0b,
   142                     XMM1a, XMM1b,
   143                     XMM2a, XMM2b,
   144                     XMM3a, XMM3b,
   145                     XMM4a, XMM4b,
   146                     XMM5a, XMM5b,
   147                     XMM6a, XMM6b,
   148                     XMM7a, XMM7b, EFLAGS);
   151 //----------Architecture Description Register Classes--------------------------
   152 // Several register classes are automatically defined based upon information in
   153 // this architecture description.
   154 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   155 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   156 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   157 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   158 //
   159 // Class for all registers
   160 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
   161 // Class for general registers
   162 reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
   163 // Class for general registers which may be used for implicit null checks on win95
   164 // Also safe for use by tailjump. We don't want to allocate in rbp,
   165 reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
   166 // Class of "X" registers
   167 reg_class x_reg(EBX, ECX, EDX, EAX);
   168 // Class of registers that can appear in an address with no offset.
   169 // EBP and ESP require an extra instruction byte for zero offset.
   170 // Used in fast-unlock
   171 reg_class p_reg(EDX, EDI, ESI, EBX);
   172 // Class for general registers not including ECX
   173 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
   174 // Class for general registers not including EAX
   175 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
   176 // Class for general registers not including EAX or EBX.
   177 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
   178 // Class of EAX (for multiply and divide operations)
   179 reg_class eax_reg(EAX);
   180 // Class of EBX (for atomic add)
   181 reg_class ebx_reg(EBX);
   182 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
   183 reg_class ecx_reg(ECX);
   184 // Class of EDX (for multiply and divide operations)
   185 reg_class edx_reg(EDX);
   186 // Class of EDI (for synchronization)
   187 reg_class edi_reg(EDI);
   188 // Class of ESI (for synchronization)
   189 reg_class esi_reg(ESI);
   190 // Singleton class for interpreter's stack pointer
   191 reg_class ebp_reg(EBP);
   192 // Singleton class for stack pointer
   193 reg_class sp_reg(ESP);
   194 // Singleton class for instruction pointer
   195 // reg_class ip_reg(EIP);
   196 // Singleton class for condition codes
   197 reg_class int_flags(EFLAGS);
   198 // Class of integer register pairs
   199 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
   200 // Class of integer register pairs that aligns with calling convention
   201 reg_class eadx_reg( EAX,EDX );
   202 reg_class ebcx_reg( ECX,EBX );
   203 // Not AX or DX, used in divides
   204 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
   206 // Floating point registers.  Notice FPR0 is not a choice.
   207 // FPR0 is not ever allocated; we use clever encodings to fake
   208 // a 2-address instructions out of Intels FP stack.
   209 reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
   211 // make a register class for SSE registers
   212 reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
   214 // make a double register class for SSE2 registers
   215 reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
   216                   XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
   218 reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
   219                    FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
   220                    FPR7L,FPR7H );
   222 reg_class flt_reg0( FPR1L );
   223 reg_class dbl_reg0( FPR1L,FPR1H );
   224 reg_class dbl_reg1( FPR2L,FPR2H );
   225 reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
   226                        FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
   228 // XMM6 and XMM7 could be used as temporary registers for long, float and
   229 // double values for SSE2.
   230 reg_class xdb_reg6( XMM6a,XMM6b );
   231 reg_class xdb_reg7( XMM7a,XMM7b );
   232 %}
   235 //----------SOURCE BLOCK-------------------------------------------------------
   236 // This is a block of C++ code which provides values, functions, and
   237 // definitions necessary in the rest of the architecture description
   238 source %{
   239 #define   RELOC_IMM32    Assembler::imm_operand
   240 #define   RELOC_DISP32   Assembler::disp32_operand
   242 #define __ _masm.
   244 // How to find the high register of a Long pair, given the low register
   245 #define   HIGH_FROM_LOW(x) ((x)+2)
   247 // These masks are used to provide 128-bit aligned bitmasks to the XMM
   248 // instructions, to allow sign-masking or sign-bit flipping.  They allow
   249 // fast versions of NegF/NegD and AbsF/AbsD.
   251 // Note: 'double' and 'long long' have 32-bits alignment on x86.
   252 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
   253   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
   254   // of 128-bits operands for SSE instructions.
   255   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
   256   // Store the value to a 128-bits operand.
   257   operand[0] = lo;
   258   operand[1] = hi;
   259   return operand;
   260 }
   262 // Buffer for 128-bits masks used by SSE instructions.
   263 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
   265 // Static initialization during VM startup.
   266 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
   267 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
   268 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
   269 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
   271 // !!!!! Special hack to get all type of calls to specify the byte offset
   272 //       from the start of the call to the point where the return address
   273 //       will point.
   274 int MachCallStaticJavaNode::ret_addr_offset() {
   275   return 5 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0);  // 5 bytes from start of call to where return address points
   276 }
   278 int MachCallDynamicJavaNode::ret_addr_offset() {
   279   return 10 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0);  // 10 bytes from start of call to where return address points
   280 }
   282 static int sizeof_FFree_Float_Stack_All = -1;
   284 int MachCallRuntimeNode::ret_addr_offset() {
   285   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
   286   return sizeof_FFree_Float_Stack_All + 5 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0);
   287 }
   289 // Indicate if the safepoint node needs the polling page as an input.
   290 // Since x86 does have absolute addressing, it doesn't.
   291 bool SafePointNode::needs_polling_address_input() {
   292   return false;
   293 }
   295 //
   296 // Compute padding required for nodes which need alignment
   297 //
   299 // The address of the call instruction needs to be 4-byte aligned to
   300 // ensure that it does not span a cache line so that it can be patched.
   301 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   302   if (Compile::current()->in_24_bit_fp_mode())
   303     current_offset += 6;    // skip fldcw in pre_call_FPU, if any
   304   current_offset += 1;      // skip call opcode byte
   305   return round_to(current_offset, alignment_required()) - current_offset;
   306 }
   308 // The address of the call instruction needs to be 4-byte aligned to
   309 // ensure that it does not span a cache line so that it can be patched.
   310 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   311   if (Compile::current()->in_24_bit_fp_mode())
   312     current_offset += 6;    // skip fldcw in pre_call_FPU, if any
   313   current_offset += 5;      // skip MOV instruction
   314   current_offset += 1;      // skip call opcode byte
   315   return round_to(current_offset, alignment_required()) - current_offset;
   316 }
   318 #ifndef PRODUCT
   319 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
   320   st->print("INT3");
   321 }
   322 #endif
   324 // EMIT_RM()
   325 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
   326   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
   327   *(cbuf.code_end()) = c;
   328   cbuf.set_code_end(cbuf.code_end() + 1);
   329 }
   331 // EMIT_CC()
   332 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
   333   unsigned char c = (unsigned char)( f1 | f2 );
   334   *(cbuf.code_end()) = c;
   335   cbuf.set_code_end(cbuf.code_end() + 1);
   336 }
   338 // EMIT_OPCODE()
   339 void emit_opcode(CodeBuffer &cbuf, int code) {
   340   *(cbuf.code_end()) = (unsigned char)code;
   341   cbuf.set_code_end(cbuf.code_end() + 1);
   342 }
   344 // EMIT_OPCODE() w/ relocation information
   345 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
   346   cbuf.relocate(cbuf.inst_mark() + offset, reloc);
   347   emit_opcode(cbuf, code);
   348 }
   350 // EMIT_D8()
   351 void emit_d8(CodeBuffer &cbuf, int d8) {
   352   *(cbuf.code_end()) = (unsigned char)d8;
   353   cbuf.set_code_end(cbuf.code_end() + 1);
   354 }
   356 // EMIT_D16()
   357 void emit_d16(CodeBuffer &cbuf, int d16) {
   358   *((short *)(cbuf.code_end())) = d16;
   359   cbuf.set_code_end(cbuf.code_end() + 2);
   360 }
   362 // EMIT_D32()
   363 void emit_d32(CodeBuffer &cbuf, int d32) {
   364   *((int *)(cbuf.code_end())) = d32;
   365   cbuf.set_code_end(cbuf.code_end() + 4);
   366 }
   368 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   369 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
   370         int format) {
   371   cbuf.relocate(cbuf.inst_mark(), reloc, format);
   373   *((int *)(cbuf.code_end())) = d32;
   374   cbuf.set_code_end(cbuf.code_end() + 4);
   375 }
   377 // emit 32 bit value and construct relocation entry from RelocationHolder
   378 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
   379         int format) {
   380 #ifdef ASSERT
   381   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
   382     assert(oop(d32)->is_oop() && oop(d32)->is_perm(), "cannot embed non-perm oops in code");
   383   }
   384 #endif
   385   cbuf.relocate(cbuf.inst_mark(), rspec, format);
   387   *((int *)(cbuf.code_end())) = d32;
   388   cbuf.set_code_end(cbuf.code_end() + 4);
   389 }
   391 // Access stack slot for load or store
   392 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
   393   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
   394   if( -128 <= disp && disp <= 127 ) {
   395     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
   396     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   397     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
   398   } else {
   399     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
   400     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   401     emit_d32(cbuf, disp);     // Displacement  // R/M byte
   402   }
   403 }
   405    // eRegI ereg, memory mem) %{    // emit_reg_mem
   406 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
   407   // There is no index & no scale, use form without SIB byte
   408   if ((index == 0x4) &&
   409       (scale == 0) && (base != ESP_enc)) {
   410     // If no displacement, mode is 0x0; unless base is [EBP]
   411     if ( (displace == 0) && (base != EBP_enc) ) {
   412       emit_rm(cbuf, 0x0, reg_encoding, base);
   413     }
   414     else {                    // If 8-bit displacement, mode 0x1
   415       if ((displace >= -128) && (displace <= 127)
   416           && !(displace_is_oop) ) {
   417         emit_rm(cbuf, 0x1, reg_encoding, base);
   418         emit_d8(cbuf, displace);
   419       }
   420       else {                  // If 32-bit displacement
   421         if (base == -1) { // Special flag for absolute address
   422           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
   423           // (manual lies; no SIB needed here)
   424           if ( displace_is_oop ) {
   425             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   426           } else {
   427             emit_d32      (cbuf, displace);
   428           }
   429         }
   430         else {                // Normal base + offset
   431           emit_rm(cbuf, 0x2, reg_encoding, base);
   432           if ( displace_is_oop ) {
   433             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   434           } else {
   435             emit_d32      (cbuf, displace);
   436           }
   437         }
   438       }
   439     }
   440   }
   441   else {                      // Else, encode with the SIB byte
   442     // If no displacement, mode is 0x0; unless base is [EBP]
   443     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
   444       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
   445       emit_rm(cbuf, scale, index, base);
   446     }
   447     else {                    // If 8-bit displacement, mode 0x1
   448       if ((displace >= -128) && (displace <= 127)
   449           && !(displace_is_oop) ) {
   450         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
   451         emit_rm(cbuf, scale, index, base);
   452         emit_d8(cbuf, displace);
   453       }
   454       else {                  // If 32-bit displacement
   455         if (base == 0x04 ) {
   456           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   457           emit_rm(cbuf, scale, index, 0x04);
   458         } else {
   459           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   460           emit_rm(cbuf, scale, index, base);
   461         }
   462         if ( displace_is_oop ) {
   463           emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   464         } else {
   465           emit_d32      (cbuf, displace);
   466         }
   467       }
   468     }
   469   }
   470 }
   473 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   474   if( dst_encoding == src_encoding ) {
   475     // reg-reg copy, use an empty encoding
   476   } else {
   477     emit_opcode( cbuf, 0x8B );
   478     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
   479   }
   480 }
   482 void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   483   if( dst_encoding == src_encoding ) {
   484     // reg-reg copy, use an empty encoding
   485   } else {
   486     MacroAssembler _masm(&cbuf);
   488     __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
   489   }
   490 }
   493 //=============================================================================
   494 #ifndef PRODUCT
   495 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   496   Compile* C = ra_->C;
   497   if( C->in_24_bit_fp_mode() ) {
   498     st->print("FLDCW  24 bit fpu control word");
   499     st->print_cr(""); st->print("\t");
   500   }
   502   int framesize = C->frame_slots() << LogBytesPerInt;
   503   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   504   // Remove two words for return addr and rbp,
   505   framesize -= 2*wordSize;
   507   // Calls to C2R adapters often do not accept exceptional returns.
   508   // We require that their callers must bang for them.  But be careful, because
   509   // some VM calls (such as call site linkage) can use several kilobytes of
   510   // stack.  But the stack safety zone should account for that.
   511   // See bugs 4446381, 4468289, 4497237.
   512   if (C->need_stack_bang(framesize)) {
   513     st->print_cr("# stack bang"); st->print("\t");
   514   }
   515   st->print_cr("PUSHL  EBP"); st->print("\t");
   517   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
   518     st->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
   519     st->print_cr(""); st->print("\t");
   520     framesize -= wordSize;
   521   }
   523   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
   524     if (framesize) {
   525       st->print("SUB    ESP,%d\t# Create frame",framesize);
   526     }
   527   } else {
   528     st->print("SUB    ESP,%d\t# Create frame",framesize);
   529   }
   530 }
   531 #endif
   534 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   535   Compile* C = ra_->C;
   537   if (UseSSE >= 2 && VerifyFPU) {
   538     MacroAssembler masm(&cbuf);
   539     masm.verify_FPU(0, "FPU stack must be clean on entry");
   540   }
   542   // WARNING: Initial instruction MUST be 5 bytes or longer so that
   543   // NativeJump::patch_verified_entry will be able to patch out the entry
   544   // code safely. The fldcw is ok at 6 bytes, the push to verify stack
   545   // depth is ok at 5 bytes, the frame allocation can be either 3 or
   546   // 6 bytes. So if we don't do the fldcw or the push then we must
   547   // use the 6 byte frame allocation even if we have no frame. :-(
   548   // If method sets FPU control word do it now
   549   if( C->in_24_bit_fp_mode() ) {
   550     MacroAssembler masm(&cbuf);
   551     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   552   }
   554   int framesize = C->frame_slots() << LogBytesPerInt;
   555   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   556   // Remove two words for return addr and rbp,
   557   framesize -= 2*wordSize;
   559   // Calls to C2R adapters often do not accept exceptional returns.
   560   // We require that their callers must bang for them.  But be careful, because
   561   // some VM calls (such as call site linkage) can use several kilobytes of
   562   // stack.  But the stack safety zone should account for that.
   563   // See bugs 4446381, 4468289, 4497237.
   564   if (C->need_stack_bang(framesize)) {
   565     MacroAssembler masm(&cbuf);
   566     masm.generate_stack_overflow_check(framesize);
   567   }
   569   // We always push rbp, so that on return to interpreter rbp, will be
   570   // restored correctly and we can correct the stack.
   571   emit_opcode(cbuf, 0x50 | EBP_enc);
   573   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
   574     emit_opcode(cbuf, 0x68); // push 0xbadb100d
   575     emit_d32(cbuf, 0xbadb100d);
   576     framesize -= wordSize;
   577   }
   579   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
   580     if (framesize) {
   581       emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
   582       emit_rm(cbuf, 0x3, 0x05, ESP_enc);
   583       emit_d8(cbuf, framesize);
   584     }
   585   } else {
   586     emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
   587     emit_rm(cbuf, 0x3, 0x05, ESP_enc);
   588     emit_d32(cbuf, framesize);
   589   }
   590   C->set_frame_complete(cbuf.code_end() - cbuf.code_begin());
   592 #ifdef ASSERT
   593   if (VerifyStackAtCalls) {
   594     Label L;
   595     MacroAssembler masm(&cbuf);
   596     masm.push(rax);
   597     masm.mov(rax, rsp);
   598     masm.andptr(rax, StackAlignmentInBytes-1);
   599     masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
   600     masm.pop(rax);
   601     masm.jcc(Assembler::equal, L);
   602     masm.stop("Stack is not properly aligned!");
   603     masm.bind(L);
   604   }
   605 #endif
   607 }
   609 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
   610   return MachNode::size(ra_); // too many variables; just compute it the hard way
   611 }
   613 int MachPrologNode::reloc() const {
   614   return 0; // a large enough number
   615 }
   617 //=============================================================================
   618 #ifndef PRODUCT
   619 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   620   Compile *C = ra_->C;
   621   int framesize = C->frame_slots() << LogBytesPerInt;
   622   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   623   // Remove two words for return addr and rbp,
   624   framesize -= 2*wordSize;
   626   if( C->in_24_bit_fp_mode() ) {
   627     st->print("FLDCW  standard control word");
   628     st->cr(); st->print("\t");
   629   }
   630   if( framesize ) {
   631     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
   632     st->cr(); st->print("\t");
   633   }
   634   st->print_cr("POPL   EBP"); st->print("\t");
   635   if( do_polling() && C->is_method_compilation() ) {
   636     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
   637     st->cr(); st->print("\t");
   638   }
   639 }
   640 #endif
   642 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   643   Compile *C = ra_->C;
   645   // If method set FPU control word, restore to standard control word
   646   if( C->in_24_bit_fp_mode() ) {
   647     MacroAssembler masm(&cbuf);
   648     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   649   }
   651   int framesize = C->frame_slots() << LogBytesPerInt;
   652   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   653   // Remove two words for return addr and rbp,
   654   framesize -= 2*wordSize;
   656   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
   658   if( framesize >= 128 ) {
   659     emit_opcode(cbuf, 0x81); // add  SP, #framesize
   660     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   661     emit_d32(cbuf, framesize);
   662   }
   663   else if( framesize ) {
   664     emit_opcode(cbuf, 0x83); // add  SP, #framesize
   665     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   666     emit_d8(cbuf, framesize);
   667   }
   669   emit_opcode(cbuf, 0x58 | EBP_enc);
   671   if( do_polling() && C->is_method_compilation() ) {
   672     cbuf.relocate(cbuf.code_end(), relocInfo::poll_return_type, 0);
   673     emit_opcode(cbuf,0x85);
   674     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
   675     emit_d32(cbuf, (intptr_t)os::get_polling_page());
   676   }
   677 }
   679 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
   680   Compile *C = ra_->C;
   681   // If method set FPU control word, restore to standard control word
   682   int size = C->in_24_bit_fp_mode() ? 6 : 0;
   683   if( do_polling() && C->is_method_compilation() ) size += 6;
   685   int framesize = C->frame_slots() << LogBytesPerInt;
   686   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   687   // Remove two words for return addr and rbp,
   688   framesize -= 2*wordSize;
   690   size++; // popl rbp,
   692   if( framesize >= 128 ) {
   693     size += 6;
   694   } else {
   695     size += framesize ? 3 : 0;
   696   }
   697   return size;
   698 }
   700 int MachEpilogNode::reloc() const {
   701   return 0; // a large enough number
   702 }
   704 const Pipeline * MachEpilogNode::pipeline() const {
   705   return MachNode::pipeline_class();
   706 }
   708 int MachEpilogNode::safepoint_offset() const { return 0; }
   710 //=============================================================================
   712 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
   713 static enum RC rc_class( OptoReg::Name reg ) {
   715   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   716   if (OptoReg::is_stack(reg)) return rc_stack;
   718   VMReg r = OptoReg::as_VMReg(reg);
   719   if (r->is_Register()) return rc_int;
   720   if (r->is_FloatRegister()) {
   721     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
   722     return rc_float;
   723   }
   724   assert(r->is_XMMRegister(), "must be");
   725   return rc_xmm;
   726 }
   728 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
   729                         int opcode, const char *op_str, int size, outputStream* st ) {
   730   if( cbuf ) {
   731     emit_opcode  (*cbuf, opcode );
   732     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
   733 #ifndef PRODUCT
   734   } else if( !do_size ) {
   735     if( size != 0 ) st->print("\n\t");
   736     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
   737       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
   738       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
   739     } else { // FLD, FST, PUSH, POP
   740       st->print("%s [ESP + #%d]",op_str,offset);
   741     }
   742 #endif
   743   }
   744   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   745   return size+3+offset_size;
   746 }
   748 // Helper for XMM registers.  Extra opcode bits, limited syntax.
   749 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
   750                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
   751   if( cbuf ) {
   752     if( reg_lo+1 == reg_hi ) { // double move?
   753       if( is_load && !UseXmmLoadAndClearUpper )
   754         emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
   755       else
   756         emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
   757     } else {
   758       emit_opcode(*cbuf, 0xF3 );
   759     }
   760     emit_opcode(*cbuf, 0x0F );
   761     if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
   762       emit_opcode(*cbuf, 0x12 );   // use 'movlpd' for load
   763     else
   764       emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
   765     encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
   766 #ifndef PRODUCT
   767   } else if( !do_size ) {
   768     if( size != 0 ) st->print("\n\t");
   769     if( reg_lo+1 == reg_hi ) { // double move?
   770       if( is_load ) st->print("%s %s,[ESP + #%d]",
   771                                UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
   772                                Matcher::regName[reg_lo], offset);
   773       else          st->print("MOVSD  [ESP + #%d],%s",
   774                                offset, Matcher::regName[reg_lo]);
   775     } else {
   776       if( is_load ) st->print("MOVSS  %s,[ESP + #%d]",
   777                                Matcher::regName[reg_lo], offset);
   778       else          st->print("MOVSS  [ESP + #%d],%s",
   779                                offset, Matcher::regName[reg_lo]);
   780     }
   781 #endif
   782   }
   783   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   784   return size+5+offset_size;
   785 }
   788 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   789                             int src_hi, int dst_hi, int size, outputStream* st ) {
   790   if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
   791     if( cbuf ) {
   792       if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
   793         emit_opcode(*cbuf, 0x66 );
   794       }
   795       emit_opcode(*cbuf, 0x0F );
   796       emit_opcode(*cbuf, 0x28 );
   797       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
   798 #ifndef PRODUCT
   799     } else if( !do_size ) {
   800       if( size != 0 ) st->print("\n\t");
   801       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   802         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   803       } else {
   804         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   805       }
   806 #endif
   807     }
   808     return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
   809   } else {
   810     if( cbuf ) {
   811       emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
   812       emit_opcode(*cbuf, 0x0F );
   813       emit_opcode(*cbuf, 0x10 );
   814       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
   815 #ifndef PRODUCT
   816     } else if( !do_size ) {
   817       if( size != 0 ) st->print("\n\t");
   818       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   819         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   820       } else {
   821         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   822       }
   823 #endif
   824     }
   825     return size+4;
   826   }
   827 }
   829 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
   830   if( cbuf ) {
   831     emit_opcode(*cbuf, 0x8B );
   832     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
   833 #ifndef PRODUCT
   834   } else if( !do_size ) {
   835     if( size != 0 ) st->print("\n\t");
   836     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
   837 #endif
   838   }
   839   return size+2;
   840 }
   842 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
   843                                  int offset, int size, outputStream* st ) {
   844   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
   845     if( cbuf ) {
   846       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
   847       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
   848 #ifndef PRODUCT
   849     } else if( !do_size ) {
   850       if( size != 0 ) st->print("\n\t");
   851       st->print("FLD    %s",Matcher::regName[src_lo]);
   852 #endif
   853     }
   854     size += 2;
   855   }
   857   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
   858   const char *op_str;
   859   int op;
   860   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
   861     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
   862     op = 0xDD;
   863   } else {                   // 32-bit store
   864     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
   865     op = 0xD9;
   866     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
   867   }
   869   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
   870 }
   872 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   873   // Get registers to move
   874   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   875   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   876   OptoReg::Name dst_second = ra_->get_reg_second(this );
   877   OptoReg::Name dst_first = ra_->get_reg_first(this );
   879   enum RC src_second_rc = rc_class(src_second);
   880   enum RC src_first_rc = rc_class(src_first);
   881   enum RC dst_second_rc = rc_class(dst_second);
   882   enum RC dst_first_rc = rc_class(dst_first);
   884   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
   886   // Generate spill code!
   887   int size = 0;
   889   if( src_first == dst_first && src_second == dst_second )
   890     return size;            // Self copy, no move
   892   // --------------------------------------
   893   // Check for mem-mem move.  push/pop to move.
   894   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
   895     if( src_second == dst_first ) { // overlapping stack copy ranges
   896       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
   897       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   898       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   899       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
   900     }
   901     // move low bits
   902     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
   903     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
   904     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
   905       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   906       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   907     }
   908     return size;
   909   }
   911   // --------------------------------------
   912   // Check for integer reg-reg copy
   913   if( src_first_rc == rc_int && dst_first_rc == rc_int )
   914     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
   916   // Check for integer store
   917   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
   918     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
   920   // Check for integer load
   921   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
   922     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
   924   // --------------------------------------
   925   // Check for float reg-reg copy
   926   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
   927     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
   928             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
   929     if( cbuf ) {
   931       // Note the mucking with the register encode to compensate for the 0/1
   932       // indexing issue mentioned in a comment in the reg_def sections
   933       // for FPR registers many lines above here.
   935       if( src_first != FPR1L_num ) {
   936         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
   937         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
   938         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
   939         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
   940      } else {
   941         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
   942         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
   943      }
   944 #ifndef PRODUCT
   945     } else if( !do_size ) {
   946       if( size != 0 ) st->print("\n\t");
   947       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
   948       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
   949 #endif
   950     }
   951     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
   952   }
   954   // Check for float store
   955   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
   956     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
   957   }
   959   // Check for float load
   960   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
   961     int offset = ra_->reg2offset(src_first);
   962     const char *op_str;
   963     int op;
   964     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
   965       op_str = "FLD_D";
   966       op = 0xDD;
   967     } else {                   // 32-bit load
   968       op_str = "FLD_S";
   969       op = 0xD9;
   970       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
   971     }
   972     if( cbuf ) {
   973       emit_opcode  (*cbuf, op );
   974       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
   975       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
   976       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
   977 #ifndef PRODUCT
   978     } else if( !do_size ) {
   979       if( size != 0 ) st->print("\n\t");
   980       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
   981 #endif
   982     }
   983     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   984     return size + 3+offset_size+2;
   985   }
   987   // Check for xmm reg-reg copy
   988   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
   989     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
   990             (src_first+1 == src_second && dst_first+1 == dst_second),
   991             "no non-adjacent float-moves" );
   992     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
   993   }
   995   // Check for xmm store
   996   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
   997     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
   998   }
  1000   // Check for float xmm load
  1001   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
  1002     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
  1005   // Copy from float reg to xmm reg
  1006   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
  1007     // copy to the top of stack from floating point reg
  1008     // and use LEA to preserve flags
  1009     if( cbuf ) {
  1010       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
  1011       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1012       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1013       emit_d8(*cbuf,0xF8);
  1014 #ifndef PRODUCT
  1015     } else if( !do_size ) {
  1016       if( size != 0 ) st->print("\n\t");
  1017       st->print("LEA    ESP,[ESP-8]");
  1018 #endif
  1020     size += 4;
  1022     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
  1024     // Copy from the temp memory to the xmm reg.
  1025     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
  1027     if( cbuf ) {
  1028       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
  1029       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1030       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1031       emit_d8(*cbuf,0x08);
  1032 #ifndef PRODUCT
  1033     } else if( !do_size ) {
  1034       if( size != 0 ) st->print("\n\t");
  1035       st->print("LEA    ESP,[ESP+8]");
  1036 #endif
  1038     size += 4;
  1039     return size;
  1042   assert( size > 0, "missed a case" );
  1044   // --------------------------------------------------------------------
  1045   // Check for second bits still needing moving.
  1046   if( src_second == dst_second )
  1047     return size;               // Self copy; no move
  1048   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1050   // Check for second word int-int move
  1051   if( src_second_rc == rc_int && dst_second_rc == rc_int )
  1052     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
  1054   // Check for second word integer store
  1055   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1056     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
  1058   // Check for second word integer load
  1059   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1060     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
  1063   Unimplemented();
  1066 #ifndef PRODUCT
  1067 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1068   implementation( NULL, ra_, false, st );
  1070 #endif
  1072 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1073   implementation( &cbuf, ra_, false, NULL );
  1076 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1077   return implementation( NULL, ra_, true, NULL );
  1080 //=============================================================================
  1081 #ifndef PRODUCT
  1082 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1083   st->print("NOP \t# %d bytes pad for loops and calls", _count);
  1085 #endif
  1087 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1088   MacroAssembler _masm(&cbuf);
  1089   __ nop(_count);
  1092 uint MachNopNode::size(PhaseRegAlloc *) const {
  1093   return _count;
  1097 //=============================================================================
  1098 #ifndef PRODUCT
  1099 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1100   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1101   int reg = ra_->get_reg_first(this);
  1102   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
  1104 #endif
  1106 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1107   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1108   int reg = ra_->get_encode(this);
  1109   if( offset >= 128 ) {
  1110     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1111     emit_rm(cbuf, 0x2, reg, 0x04);
  1112     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1113     emit_d32(cbuf, offset);
  1115   else {
  1116     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1117     emit_rm(cbuf, 0x1, reg, 0x04);
  1118     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1119     emit_d8(cbuf, offset);
  1123 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1124   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1125   if( offset >= 128 ) {
  1126     return 7;
  1128   else {
  1129     return 4;
  1133 //=============================================================================
  1135 // emit call stub, compiled java to interpreter
  1136 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1137   // Stub is fixed up when the corresponding call is converted from calling
  1138   // compiled code to calling interpreted code.
  1139   // mov rbx,0
  1140   // jmp -1
  1142   address mark = cbuf.inst_mark();  // get mark within main instrs section
  1144   // Note that the code buffer's inst_mark is always relative to insts.
  1145   // That's why we must use the macroassembler to generate a stub.
  1146   MacroAssembler _masm(&cbuf);
  1148   address base =
  1149   __ start_a_stub(Compile::MAX_stubs_size);
  1150   if (base == NULL)  return;  // CodeBuffer::expand failed
  1151   // static stub relocation stores the instruction address of the call
  1152   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
  1153   // static stub relocation also tags the methodOop in the code-stream.
  1154   __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
  1155   // This is recognized as unresolved by relocs/nativeInst/ic code
  1156   __ jump(RuntimeAddress(__ pc()));
  1158   __ end_a_stub();
  1159   // Update current stubs pointer and restore code_end.
  1161 // size of call stub, compiled java to interpretor
  1162 uint size_java_to_interp() {
  1163   return 10;  // movl; jmp
  1165 // relocation entries for call stub, compiled java to interpretor
  1166 uint reloc_java_to_interp() {
  1167   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
  1170 //=============================================================================
  1171 #ifndef PRODUCT
  1172 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1173   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  1174   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  1175   st->print_cr("\tNOP");
  1176   st->print_cr("\tNOP");
  1177   if( !OptoBreakpoint )
  1178     st->print_cr("\tNOP");
  1180 #endif
  1182 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1183   MacroAssembler masm(&cbuf);
  1184 #ifdef ASSERT
  1185   uint code_size = cbuf.code_size();
  1186 #endif
  1187   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
  1188   masm.jump_cc(Assembler::notEqual,
  1189                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1190   /* WARNING these NOPs are critical so that verified entry point is properly
  1191      aligned for patching by NativeJump::patch_verified_entry() */
  1192   int nops_cnt = 2;
  1193   if( !OptoBreakpoint ) // Leave space for int3
  1194      nops_cnt += 1;
  1195   masm.nop(nops_cnt);
  1197   assert(cbuf.code_size() - code_size == size(ra_), "checking code size of inline cache node");
  1200 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1201   return OptoBreakpoint ? 11 : 12;
  1205 //=============================================================================
  1206 uint size_exception_handler() {
  1207   // NativeCall instruction size is the same as NativeJump.
  1208   // exception handler starts out as jump and can be patched to
  1209   // a call be deoptimization.  (4932387)
  1210   // Note that this value is also credited (in output.cpp) to
  1211   // the size of the code section.
  1212   return NativeJump::instruction_size;
  1215 // Emit exception handler code.  Stuff framesize into a register
  1216 // and call a VM stub routine.
  1217 int emit_exception_handler(CodeBuffer& cbuf) {
  1219   // Note that the code buffer's inst_mark is always relative to insts.
  1220   // That's why we must use the macroassembler to generate a handler.
  1221   MacroAssembler _masm(&cbuf);
  1222   address base =
  1223   __ start_a_stub(size_exception_handler());
  1224   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1225   int offset = __ offset();
  1226   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin()));
  1227   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1228   __ end_a_stub();
  1229   return offset;
  1232 uint size_deopt_handler() {
  1233   // NativeCall instruction size is the same as NativeJump.
  1234   // exception handler starts out as jump and can be patched to
  1235   // a call be deoptimization.  (4932387)
  1236   // Note that this value is also credited (in output.cpp) to
  1237   // the size of the code section.
  1238   return 5 + NativeJump::instruction_size; // pushl(); jmp;
  1241 // Emit deopt handler code.
  1242 int emit_deopt_handler(CodeBuffer& cbuf) {
  1244   // Note that the code buffer's inst_mark is always relative to insts.
  1245   // That's why we must use the macroassembler to generate a handler.
  1246   MacroAssembler _masm(&cbuf);
  1247   address base =
  1248   __ start_a_stub(size_exception_handler());
  1249   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1250   int offset = __ offset();
  1251   InternalAddress here(__ pc());
  1252   __ pushptr(here.addr());
  1254   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1255   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1256   __ end_a_stub();
  1257   return offset;
  1261 static void emit_double_constant(CodeBuffer& cbuf, double x) {
  1262   int mark = cbuf.insts()->mark_off();
  1263   MacroAssembler _masm(&cbuf);
  1264   address double_address = __ double_constant(x);
  1265   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1266   emit_d32_reloc(cbuf,
  1267                  (int)double_address,
  1268                  internal_word_Relocation::spec(double_address),
  1269                  RELOC_DISP32);
  1272 static void emit_float_constant(CodeBuffer& cbuf, float x) {
  1273   int mark = cbuf.insts()->mark_off();
  1274   MacroAssembler _masm(&cbuf);
  1275   address float_address = __ float_constant(x);
  1276   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1277   emit_d32_reloc(cbuf,
  1278                  (int)float_address,
  1279                  internal_word_Relocation::spec(float_address),
  1280                  RELOC_DISP32);
  1284 int Matcher::regnum_to_fpu_offset(int regnum) {
  1285   return regnum - 32; // The FP registers are in the second chunk
  1288 bool is_positive_zero_float(jfloat f) {
  1289   return jint_cast(f) == jint_cast(0.0F);
  1292 bool is_positive_one_float(jfloat f) {
  1293   return jint_cast(f) == jint_cast(1.0F);
  1296 bool is_positive_zero_double(jdouble d) {
  1297   return jlong_cast(d) == jlong_cast(0.0);
  1300 bool is_positive_one_double(jdouble d) {
  1301   return jlong_cast(d) == jlong_cast(1.0);
  1304 // This is UltraSparc specific, true just means we have fast l2f conversion
  1305 const bool Matcher::convL2FSupported(void) {
  1306   return true;
  1309 // Vector width in bytes
  1310 const uint Matcher::vector_width_in_bytes(void) {
  1311   return UseSSE >= 2 ? 8 : 0;
  1314 // Vector ideal reg
  1315 const uint Matcher::vector_ideal_reg(void) {
  1316   return Op_RegD;
  1319 // Is this branch offset short enough that a short branch can be used?
  1320 //
  1321 // NOTE: If the platform does not provide any short branch variants, then
  1322 //       this method should return false for offset 0.
  1323 bool Matcher::is_short_branch_offset(int rule, int offset) {
  1324   // the short version of jmpConUCF2 contains multiple branches,
  1325   // making the reach slightly less
  1326   if (rule == jmpConUCF2_rule)
  1327     return (-126 <= offset && offset <= 125);
  1328   return (-128 <= offset && offset <= 127);
  1331 const bool Matcher::isSimpleConstant64(jlong value) {
  1332   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1333   return false;
  1336 // The ecx parameter to rep stos for the ClearArray node is in dwords.
  1337 const bool Matcher::init_array_count_is_in_bytes = false;
  1339 // Threshold size for cleararray.
  1340 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1342 // Should the Matcher clone shifts on addressing modes, expecting them to
  1343 // be subsumed into complex addressing expressions or compute them into
  1344 // registers?  True for Intel but false for most RISCs
  1345 const bool Matcher::clone_shift_expressions = true;
  1347 // Is it better to copy float constants, or load them directly from memory?
  1348 // Intel can load a float constant from a direct address, requiring no
  1349 // extra registers.  Most RISCs will have to materialize an address into a
  1350 // register first, so they would do better to copy the constant from stack.
  1351 const bool Matcher::rematerialize_float_constants = true;
  1353 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1354 // needed.  Else we split the double into 2 integer pieces and move it
  1355 // piece-by-piece.  Only happens when passing doubles into C code as the
  1356 // Java calling convention forces doubles to be aligned.
  1357 const bool Matcher::misaligned_doubles_ok = true;
  1360 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1361   // Get the memory operand from the node
  1362   uint numopnds = node->num_opnds();        // Virtual call for number of operands
  1363   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  1364   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  1365   uint opcnt     = 1;                 // First operand
  1366   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  1367   while( idx >= skipped+num_edges ) {
  1368     skipped += num_edges;
  1369     opcnt++;                          // Bump operand count
  1370     assert( opcnt < numopnds, "Accessing non-existent operand" );
  1371     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  1374   MachOper *memory = node->_opnds[opcnt];
  1375   MachOper *new_memory = NULL;
  1376   switch (memory->opcode()) {
  1377   case DIRECT:
  1378   case INDOFFSET32X:
  1379     // No transformation necessary.
  1380     return;
  1381   case INDIRECT:
  1382     new_memory = new (C) indirect_win95_safeOper( );
  1383     break;
  1384   case INDOFFSET8:
  1385     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
  1386     break;
  1387   case INDOFFSET32:
  1388     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
  1389     break;
  1390   case INDINDEXOFFSET:
  1391     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
  1392     break;
  1393   case INDINDEXSCALE:
  1394     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
  1395     break;
  1396   case INDINDEXSCALEOFFSET:
  1397     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
  1398     break;
  1399   case LOAD_LONG_INDIRECT:
  1400   case LOAD_LONG_INDOFFSET32:
  1401     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
  1402     return;
  1403   default:
  1404     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
  1405     return;
  1407   node->_opnds[opcnt] = new_memory;
  1410 // Advertise here if the CPU requires explicit rounding operations
  1411 // to implement the UseStrictFP mode.
  1412 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  1414 // Do floats take an entire double register or just half?
  1415 const bool Matcher::float_in_double = true;
  1416 // Do ints take an entire long register or just half?
  1417 const bool Matcher::int_in_long = false;
  1419 // Return whether or not this register is ever used as an argument.  This
  1420 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1421 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1422 // arguments in those registers not be available to the callee.
  1423 bool Matcher::can_be_java_arg( int reg ) {
  1424   if(  reg == ECX_num   || reg == EDX_num   ) return true;
  1425   if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
  1426   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  1427   return false;
  1430 bool Matcher::is_spillable_arg( int reg ) {
  1431   return can_be_java_arg(reg);
  1434 // Register for DIVI projection of divmodI
  1435 RegMask Matcher::divI_proj_mask() {
  1436   return EAX_REG_mask;
  1439 // Register for MODI projection of divmodI
  1440 RegMask Matcher::modI_proj_mask() {
  1441   return EDX_REG_mask;
  1444 // Register for DIVL projection of divmodL
  1445 RegMask Matcher::divL_proj_mask() {
  1446   ShouldNotReachHere();
  1447   return RegMask();
  1450 // Register for MODL projection of divmodL
  1451 RegMask Matcher::modL_proj_mask() {
  1452   ShouldNotReachHere();
  1453   return RegMask();
  1456 %}
  1458 //----------ENCODING BLOCK-----------------------------------------------------
  1459 // This block specifies the encoding classes used by the compiler to output
  1460 // byte streams.  Encoding classes generate functions which are called by
  1461 // Machine Instruction Nodes in order to generate the bit encoding of the
  1462 // instruction.  Operands specify their base encoding interface with the
  1463 // interface keyword.  There are currently supported four interfaces,
  1464 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1465 // operand to generate a function which returns its register number when
  1466 // queried.   CONST_INTER causes an operand to generate a function which
  1467 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1468 // operand to generate four functions which return the Base Register, the
  1469 // Index Register, the Scale Value, and the Offset Value of the operand when
  1470 // queried.  COND_INTER causes an operand to generate six functions which
  1471 // return the encoding code (ie - encoding bits for the instruction)
  1472 // associated with each basic boolean condition for a conditional instruction.
  1473 // Instructions specify two basic values for encoding.  They use the
  1474 // ins_encode keyword to specify their encoding class (which must be one of
  1475 // the class names specified in the encoding block), and they use the
  1476 // opcode keyword to specify, in order, their primary, secondary, and
  1477 // tertiary opcode.  Only the opcode sections which a particular instruction
  1478 // needs for encoding need to be specified.
  1479 encode %{
  1480   // Build emit functions for each basic byte or larger field in the intel
  1481   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  1482   // code in the enc_class source block.  Emit functions will live in the
  1483   // main source block for now.  In future, we can generalize this by
  1484   // adding a syntax that specifies the sizes of fields in an order,
  1485   // so that the adlc can build the emit functions automagically
  1487   // Emit primary opcode
  1488   enc_class OpcP %{
  1489     emit_opcode(cbuf, $primary);
  1490   %}
  1492   // Emit secondary opcode
  1493   enc_class OpcS %{
  1494     emit_opcode(cbuf, $secondary);
  1495   %}
  1497   // Emit opcode directly
  1498   enc_class Opcode(immI d8) %{
  1499     emit_opcode(cbuf, $d8$$constant);
  1500   %}
  1502   enc_class SizePrefix %{
  1503     emit_opcode(cbuf,0x66);
  1504   %}
  1506   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  1507     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1508   %}
  1510   enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
  1511     emit_opcode(cbuf,$opcode$$constant);
  1512     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1513   %}
  1515   enc_class mov_r32_imm0( eRegI dst ) %{
  1516     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
  1517     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  1518   %}
  1520   enc_class cdq_enc %{
  1521     // Full implementation of Java idiv and irem; checks for
  1522     // special case as described in JVM spec., p.243 & p.271.
  1523     //
  1524     //         normal case                           special case
  1525     //
  1526     // input : rax,: dividend                         min_int
  1527     //         reg: divisor                          -1
  1528     //
  1529     // output: rax,: quotient  (= rax, idiv reg)       min_int
  1530     //         rdx: remainder (= rax, irem reg)       0
  1531     //
  1532     //  Code sequnce:
  1533     //
  1534     //  81 F8 00 00 00 80    cmp         rax,80000000h
  1535     //  0F 85 0B 00 00 00    jne         normal_case
  1536     //  33 D2                xor         rdx,edx
  1537     //  83 F9 FF             cmp         rcx,0FFh
  1538     //  0F 84 03 00 00 00    je          done
  1539     //                  normal_case:
  1540     //  99                   cdq
  1541     //  F7 F9                idiv        rax,ecx
  1542     //                  done:
  1543     //
  1544     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
  1545     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
  1546     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
  1547     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
  1548     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
  1549     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
  1550     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
  1551     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
  1552     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
  1553     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
  1554     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
  1555     // normal_case:
  1556     emit_opcode(cbuf,0x99);                                         // cdq
  1557     // idiv (note: must be emitted by the user of this rule)
  1558     // normal:
  1559   %}
  1561   // Dense encoding for older common ops
  1562   enc_class Opc_plus(immI opcode, eRegI reg) %{
  1563     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  1564   %}
  1567   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  1568   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
  1569     // Check for 8-bit immediate, and set sign extend bit in opcode
  1570     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1571       emit_opcode(cbuf, $primary | 0x02);
  1573     else {                          // If 32-bit immediate
  1574       emit_opcode(cbuf, $primary);
  1576   %}
  1578   enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
  1579     // Emit primary opcode and set sign-extend bit
  1580     // Check for 8-bit immediate, and set sign extend bit in opcode
  1581     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1582       emit_opcode(cbuf, $primary | 0x02);    }
  1583     else {                          // If 32-bit immediate
  1584       emit_opcode(cbuf, $primary);
  1586     // Emit r/m byte with secondary opcode, after primary opcode.
  1587     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1588   %}
  1590   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
  1591     // Check for 8-bit immediate, and set sign extend bit in opcode
  1592     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1593       $$$emit8$imm$$constant;
  1595     else {                          // If 32-bit immediate
  1596       // Output immediate
  1597       $$$emit32$imm$$constant;
  1599   %}
  1601   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
  1602     // Emit primary opcode and set sign-extend bit
  1603     // Check for 8-bit immediate, and set sign extend bit in opcode
  1604     int con = (int)$imm$$constant; // Throw away top bits
  1605     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1606     // Emit r/m byte with secondary opcode, after primary opcode.
  1607     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1608     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1609     else                               emit_d32(cbuf,con);
  1610   %}
  1612   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
  1613     // Emit primary opcode and set sign-extend bit
  1614     // Check for 8-bit immediate, and set sign extend bit in opcode
  1615     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
  1616     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1617     // Emit r/m byte with tertiary opcode, after primary opcode.
  1618     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
  1619     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1620     else                               emit_d32(cbuf,con);
  1621   %}
  1623   enc_class Lbl (label labl) %{ // JMP, CALL
  1624     Label *l = $labl$$label;
  1625     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
  1626   %}
  1628   enc_class LblShort (label labl) %{ // JMP, CALL
  1629     Label *l = $labl$$label;
  1630     int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
  1631     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  1632     emit_d8(cbuf, disp);
  1633   %}
  1635   enc_class OpcSReg (eRegI dst) %{    // BSWAP
  1636     emit_cc(cbuf, $secondary, $dst$$reg );
  1637   %}
  1639   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
  1640     int destlo = $dst$$reg;
  1641     int desthi = HIGH_FROM_LOW(destlo);
  1642     // bswap lo
  1643     emit_opcode(cbuf, 0x0F);
  1644     emit_cc(cbuf, 0xC8, destlo);
  1645     // bswap hi
  1646     emit_opcode(cbuf, 0x0F);
  1647     emit_cc(cbuf, 0xC8, desthi);
  1648     // xchg lo and hi
  1649     emit_opcode(cbuf, 0x87);
  1650     emit_rm(cbuf, 0x3, destlo, desthi);
  1651   %}
  1653   enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
  1654     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  1655   %}
  1657   enc_class Jcc (cmpOp cop, label labl) %{    // JCC
  1658     Label *l = $labl$$label;
  1659     $$$emit8$primary;
  1660     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1661     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
  1662   %}
  1664   enc_class JccShort (cmpOp cop, label labl) %{    // JCC
  1665     Label *l = $labl$$label;
  1666     emit_cc(cbuf, $primary, $cop$$cmpcode);
  1667     int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
  1668     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  1669     emit_d8(cbuf, disp);
  1670   %}
  1672   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
  1673     $$$emit8$primary;
  1674     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1675   %}
  1677   enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
  1678     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
  1679     emit_d8(cbuf, op >> 8 );
  1680     emit_d8(cbuf, op & 255);
  1681   %}
  1683   // emulate a CMOV with a conditional branch around a MOV
  1684   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
  1685     // Invert sense of branch from sense of CMOV
  1686     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
  1687     emit_d8( cbuf, $brOffs$$constant );
  1688   %}
  1690   enc_class enc_PartialSubtypeCheck( ) %{
  1691     Register Redi = as_Register(EDI_enc); // result register
  1692     Register Reax = as_Register(EAX_enc); // super class
  1693     Register Recx = as_Register(ECX_enc); // killed
  1694     Register Resi = as_Register(ESI_enc); // sub class
  1695     Label miss;
  1697     MacroAssembler _masm(&cbuf);
  1698     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
  1699                                      NULL, &miss,
  1700                                      /*set_cond_codes:*/ true);
  1701     if ($primary) {
  1702       __ xorptr(Redi, Redi);
  1704     __ bind(miss);
  1705   %}
  1707   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
  1708     MacroAssembler masm(&cbuf);
  1709     int start = masm.offset();
  1710     if (UseSSE >= 2) {
  1711       if (VerifyFPU) {
  1712         masm.verify_FPU(0, "must be empty in SSE2+ mode");
  1714     } else {
  1715       // External c_calling_convention expects the FPU stack to be 'clean'.
  1716       // Compiled code leaves it dirty.  Do cleanup now.
  1717       masm.empty_FPU_stack();
  1719     if (sizeof_FFree_Float_Stack_All == -1) {
  1720       sizeof_FFree_Float_Stack_All = masm.offset() - start;
  1721     } else {
  1722       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
  1724   %}
  1726   enc_class Verify_FPU_For_Leaf %{
  1727     if( VerifyFPU ) {
  1728       MacroAssembler masm(&cbuf);
  1729       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
  1731   %}
  1733   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  1734     // This is the instruction starting address for relocation info.
  1735     cbuf.set_inst_mark();
  1736     $$$emit8$primary;
  1737     // CALL directly to the runtime
  1738     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1739                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1741     if (UseSSE >= 2) {
  1742       MacroAssembler _masm(&cbuf);
  1743       BasicType rt = tf()->return_type();
  1745       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
  1746         // A C runtime call where the return value is unused.  In SSE2+
  1747         // mode the result needs to be removed from the FPU stack.  It's
  1748         // likely that this function call could be removed by the
  1749         // optimizer if the C function is a pure function.
  1750         __ ffree(0);
  1751       } else if (rt == T_FLOAT) {
  1752         __ lea(rsp, Address(rsp, -4));
  1753         __ fstp_s(Address(rsp, 0));
  1754         __ movflt(xmm0, Address(rsp, 0));
  1755         __ lea(rsp, Address(rsp,  4));
  1756       } else if (rt == T_DOUBLE) {
  1757         __ lea(rsp, Address(rsp, -8));
  1758         __ fstp_d(Address(rsp, 0));
  1759         __ movdbl(xmm0, Address(rsp, 0));
  1760         __ lea(rsp, Address(rsp,  8));
  1763   %}
  1766   enc_class pre_call_FPU %{
  1767     // If method sets FPU control word restore it here
  1768     if( Compile::current()->in_24_bit_fp_mode() ) {
  1769       MacroAssembler masm(&cbuf);
  1770       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1772   %}
  1774   enc_class post_call_FPU %{
  1775     // If method sets FPU control word do it here also
  1776     if( Compile::current()->in_24_bit_fp_mode() ) {
  1777       MacroAssembler masm(&cbuf);
  1778       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  1780   %}
  1782   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1783     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1784     // who we intended to call.
  1785     cbuf.set_inst_mark();
  1786     $$$emit8$primary;
  1787     if ( !_method ) {
  1788       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1789                      runtime_call_Relocation::spec(), RELOC_IMM32 );
  1790     } else if(_optimized_virtual) {
  1791       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1792                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  1793     } else {
  1794       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1795                      static_call_Relocation::spec(), RELOC_IMM32 );
  1797     if( _method ) {  // Emit stub for static call
  1798       emit_java_to_interp(cbuf);
  1800   %}
  1802   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1803     // !!!!!
  1804     // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
  1805     // emit_call_dynamic_prologue( cbuf );
  1806     cbuf.set_inst_mark();
  1807     emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
  1808     emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
  1809     address  virtual_call_oop_addr = cbuf.inst_mark();
  1810     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1811     // who we intended to call.
  1812     cbuf.set_inst_mark();
  1813     $$$emit8$primary;
  1814     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1815                 virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
  1816   %}
  1818   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1819     int disp = in_bytes(methodOopDesc::from_compiled_offset());
  1820     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
  1822     // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
  1823     cbuf.set_inst_mark();
  1824     $$$emit8$primary;
  1825     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
  1826     emit_d8(cbuf, disp);             // Displacement
  1828   %}
  1830   enc_class Xor_Reg (eRegI dst) %{
  1831     emit_opcode(cbuf, 0x33);
  1832     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  1833   %}
  1835 //   Following encoding is no longer used, but may be restored if calling
  1836 //   convention changes significantly.
  1837 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
  1838 //
  1839 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
  1840 //     // int ic_reg     = Matcher::inline_cache_reg();
  1841 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
  1842 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
  1843 //     // int imo_encode = Matcher::_regEncode[imo_reg];
  1844 //
  1845 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
  1846 //     // // so we load it immediately before the call
  1847 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
  1848 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
  1849 //
  1850 //     // xor rbp,ebp
  1851 //     emit_opcode(cbuf, 0x33);
  1852 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
  1853 //
  1854 //     // CALL to interpreter.
  1855 //     cbuf.set_inst_mark();
  1856 //     $$$emit8$primary;
  1857 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.code_end()) - 4),
  1858 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1859 //   %}
  1861   enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
  1862     $$$emit8$primary;
  1863     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1864     $$$emit8$shift$$constant;
  1865   %}
  1867   enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
  1868     // Load immediate does not have a zero or sign extended version
  1869     // for 8-bit immediates
  1870     emit_opcode(cbuf, 0xB8 + $dst$$reg);
  1871     $$$emit32$src$$constant;
  1872   %}
  1874   enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
  1875     // Load immediate does not have a zero or sign extended version
  1876     // for 8-bit immediates
  1877     emit_opcode(cbuf, $primary + $dst$$reg);
  1878     $$$emit32$src$$constant;
  1879   %}
  1881   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
  1882     // Load immediate does not have a zero or sign extended version
  1883     // for 8-bit immediates
  1884     int dst_enc = $dst$$reg;
  1885     int src_con = $src$$constant & 0x0FFFFFFFFL;
  1886     if (src_con == 0) {
  1887       // xor dst, dst
  1888       emit_opcode(cbuf, 0x33);
  1889       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1890     } else {
  1891       emit_opcode(cbuf, $primary + dst_enc);
  1892       emit_d32(cbuf, src_con);
  1894   %}
  1896   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
  1897     // Load immediate does not have a zero or sign extended version
  1898     // for 8-bit immediates
  1899     int dst_enc = $dst$$reg + 2;
  1900     int src_con = ((julong)($src$$constant)) >> 32;
  1901     if (src_con == 0) {
  1902       // xor dst, dst
  1903       emit_opcode(cbuf, 0x33);
  1904       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1905     } else {
  1906       emit_opcode(cbuf, $primary + dst_enc);
  1907       emit_d32(cbuf, src_con);
  1909   %}
  1912   enc_class LdImmD (immD src) %{    // Load Immediate
  1913     if( is_positive_zero_double($src$$constant)) {
  1914       // FLDZ
  1915       emit_opcode(cbuf,0xD9);
  1916       emit_opcode(cbuf,0xEE);
  1917     } else if( is_positive_one_double($src$$constant)) {
  1918       // FLD1
  1919       emit_opcode(cbuf,0xD9);
  1920       emit_opcode(cbuf,0xE8);
  1921     } else {
  1922       emit_opcode(cbuf,0xDD);
  1923       emit_rm(cbuf, 0x0, 0x0, 0x5);
  1924       emit_double_constant(cbuf, $src$$constant);
  1926   %}
  1929   enc_class LdImmF (immF src) %{    // Load Immediate
  1930     if( is_positive_zero_float($src$$constant)) {
  1931       emit_opcode(cbuf,0xD9);
  1932       emit_opcode(cbuf,0xEE);
  1933     } else if( is_positive_one_float($src$$constant)) {
  1934       emit_opcode(cbuf,0xD9);
  1935       emit_opcode(cbuf,0xE8);
  1936     } else {
  1937       $$$emit8$primary;
  1938       // Load immediate does not have a zero or sign extended version
  1939       // for 8-bit immediates
  1940       // First load to TOS, then move to dst
  1941       emit_rm(cbuf, 0x0, 0x0, 0x5);
  1942       emit_float_constant(cbuf, $src$$constant);
  1944   %}
  1946   enc_class LdImmX (regX dst, immXF con) %{    // Load Immediate
  1947     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  1948     emit_float_constant(cbuf, $con$$constant);
  1949   %}
  1951   enc_class LdImmXD (regXD dst, immXD con) %{    // Load Immediate
  1952     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  1953     emit_double_constant(cbuf, $con$$constant);
  1954   %}
  1956   enc_class load_conXD (regXD dst, immXD con) %{ // Load double constant
  1957     // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
  1958     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  1959     emit_opcode(cbuf, 0x0F);
  1960     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  1961     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  1962     emit_double_constant(cbuf, $con$$constant);
  1963   %}
  1965   enc_class Opc_MemImm_F(immF src) %{
  1966     cbuf.set_inst_mark();
  1967     $$$emit8$primary;
  1968     emit_rm(cbuf, 0x0, $secondary, 0x5);
  1969     emit_float_constant(cbuf, $src$$constant);
  1970   %}
  1973   enc_class MovI2X_reg(regX dst, eRegI src) %{
  1974     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
  1975     emit_opcode(cbuf, 0x0F );
  1976     emit_opcode(cbuf, 0x6E );
  1977     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1978   %}
  1980   enc_class MovX2I_reg(eRegI dst, regX src) %{
  1981     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
  1982     emit_opcode(cbuf, 0x0F );
  1983     emit_opcode(cbuf, 0x7E );
  1984     emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
  1985   %}
  1987   enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
  1988     { // MOVD $dst,$src.lo
  1989       emit_opcode(cbuf,0x66);
  1990       emit_opcode(cbuf,0x0F);
  1991       emit_opcode(cbuf,0x6E);
  1992       emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1994     { // MOVD $tmp,$src.hi
  1995       emit_opcode(cbuf,0x66);
  1996       emit_opcode(cbuf,0x0F);
  1997       emit_opcode(cbuf,0x6E);
  1998       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  2000     { // PUNPCKLDQ $dst,$tmp
  2001       emit_opcode(cbuf,0x66);
  2002       emit_opcode(cbuf,0x0F);
  2003       emit_opcode(cbuf,0x62);
  2004       emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
  2006   %}
  2008   enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
  2009     { // MOVD $dst.lo,$src
  2010       emit_opcode(cbuf,0x66);
  2011       emit_opcode(cbuf,0x0F);
  2012       emit_opcode(cbuf,0x7E);
  2013       emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
  2015     { // PSHUFLW $tmp,$src,0x4E  (01001110b)
  2016       emit_opcode(cbuf,0xF2);
  2017       emit_opcode(cbuf,0x0F);
  2018       emit_opcode(cbuf,0x70);
  2019       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  2020       emit_d8(cbuf, 0x4E);
  2022     { // MOVD $dst.hi,$tmp
  2023       emit_opcode(cbuf,0x66);
  2024       emit_opcode(cbuf,0x0F);
  2025       emit_opcode(cbuf,0x7E);
  2026       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
  2028   %}
  2031   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2032   enc_class enc_Copy( eRegI dst, eRegI src ) %{
  2033     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2034   %}
  2036   enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
  2037     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2038   %}
  2040   // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
  2041   enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
  2042     encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
  2043   %}
  2045   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  2046     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2047   %}
  2049   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
  2050     $$$emit8$primary;
  2051     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2052   %}
  2054   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
  2055     $$$emit8$secondary;
  2056     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2057   %}
  2059   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2060     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2061   %}
  2063   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2064     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2065   %}
  2067   enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
  2068     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  2069   %}
  2071   enc_class Con32 (immI src) %{    // Con32(storeImmI)
  2072     // Output immediate
  2073     $$$emit32$src$$constant;
  2074   %}
  2076   enc_class Con32F_as_bits(immF src) %{        // storeF_imm
  2077     // Output Float immediate bits
  2078     jfloat jf = $src$$constant;
  2079     int    jf_as_bits = jint_cast( jf );
  2080     emit_d32(cbuf, jf_as_bits);
  2081   %}
  2083   enc_class Con32XF_as_bits(immXF src) %{      // storeX_imm
  2084     // Output Float immediate bits
  2085     jfloat jf = $src$$constant;
  2086     int    jf_as_bits = jint_cast( jf );
  2087     emit_d32(cbuf, jf_as_bits);
  2088   %}
  2090   enc_class Con16 (immI src) %{    // Con16(storeImmI)
  2091     // Output immediate
  2092     $$$emit16$src$$constant;
  2093   %}
  2095   enc_class Con_d32(immI src) %{
  2096     emit_d32(cbuf,$src$$constant);
  2097   %}
  2099   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
  2100     // Output immediate memory reference
  2101     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2102     emit_d32(cbuf, 0x00);
  2103   %}
  2105   enc_class lock_prefix( ) %{
  2106     if( os::is_MP() )
  2107       emit_opcode(cbuf,0xF0);         // [Lock]
  2108   %}
  2110   // Cmp-xchg long value.
  2111   // Note: we need to swap rbx, and rcx before and after the
  2112   //       cmpxchg8 instruction because the instruction uses
  2113   //       rcx as the high order word of the new value to store but
  2114   //       our register encoding uses rbx,.
  2115   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
  2117     // XCHG  rbx,ecx
  2118     emit_opcode(cbuf,0x87);
  2119     emit_opcode(cbuf,0xD9);
  2120     // [Lock]
  2121     if( os::is_MP() )
  2122       emit_opcode(cbuf,0xF0);
  2123     // CMPXCHG8 [Eptr]
  2124     emit_opcode(cbuf,0x0F);
  2125     emit_opcode(cbuf,0xC7);
  2126     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2127     // XCHG  rbx,ecx
  2128     emit_opcode(cbuf,0x87);
  2129     emit_opcode(cbuf,0xD9);
  2130   %}
  2132   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
  2133     // [Lock]
  2134     if( os::is_MP() )
  2135       emit_opcode(cbuf,0xF0);
  2137     // CMPXCHG [Eptr]
  2138     emit_opcode(cbuf,0x0F);
  2139     emit_opcode(cbuf,0xB1);
  2140     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2141   %}
  2143   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
  2144     int res_encoding = $res$$reg;
  2146     // MOV  res,0
  2147     emit_opcode( cbuf, 0xB8 + res_encoding);
  2148     emit_d32( cbuf, 0 );
  2149     // JNE,s  fail
  2150     emit_opcode(cbuf,0x75);
  2151     emit_d8(cbuf, 5 );
  2152     // MOV  res,1
  2153     emit_opcode( cbuf, 0xB8 + res_encoding);
  2154     emit_d32( cbuf, 1 );
  2155     // fail:
  2156   %}
  2158   enc_class set_instruction_start( ) %{
  2159     cbuf.set_inst_mark();            // Mark start of opcode for reloc info in mem operand
  2160   %}
  2162   enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
  2163     int reg_encoding = $ereg$$reg;
  2164     int base  = $mem$$base;
  2165     int index = $mem$$index;
  2166     int scale = $mem$$scale;
  2167     int displace = $mem$$disp;
  2168     bool disp_is_oop = $mem->disp_is_oop();
  2169     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2170   %}
  2172   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
  2173     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
  2174     int base  = $mem$$base;
  2175     int index = $mem$$index;
  2176     int scale = $mem$$scale;
  2177     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
  2178     assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
  2179     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
  2180   %}
  2182   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
  2183     int r1, r2;
  2184     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2185     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2186     emit_opcode(cbuf,0x0F);
  2187     emit_opcode(cbuf,$tertiary);
  2188     emit_rm(cbuf, 0x3, r1, r2);
  2189     emit_d8(cbuf,$cnt$$constant);
  2190     emit_d8(cbuf,$primary);
  2191     emit_rm(cbuf, 0x3, $secondary, r1);
  2192     emit_d8(cbuf,$cnt$$constant);
  2193   %}
  2195   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
  2196     emit_opcode( cbuf, 0x8B ); // Move
  2197     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2198     emit_d8(cbuf,$primary);
  2199     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  2200     emit_d8(cbuf,$cnt$$constant-32);
  2201     emit_d8(cbuf,$primary);
  2202     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
  2203     emit_d8(cbuf,31);
  2204   %}
  2206   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
  2207     int r1, r2;
  2208     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2209     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2211     emit_opcode( cbuf, 0x8B ); // Move r1,r2
  2212     emit_rm(cbuf, 0x3, r1, r2);
  2213     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2214       emit_opcode(cbuf,$primary);
  2215       emit_rm(cbuf, 0x3, $secondary, r1);
  2216       emit_d8(cbuf,$cnt$$constant-32);
  2218     emit_opcode(cbuf,0x33);  // XOR r2,r2
  2219     emit_rm(cbuf, 0x3, r2, r2);
  2220   %}
  2222   // Clone of RegMem but accepts an extra parameter to access each
  2223   // half of a double in memory; it never needs relocation info.
  2224   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
  2225     emit_opcode(cbuf,$opcode$$constant);
  2226     int reg_encoding = $rm_reg$$reg;
  2227     int base     = $mem$$base;
  2228     int index    = $mem$$index;
  2229     int scale    = $mem$$scale;
  2230     int displace = $mem$$disp + $disp_for_half$$constant;
  2231     bool disp_is_oop = false;
  2232     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2233   %}
  2235   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  2236   //
  2237   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  2238   // and it never needs relocation information.
  2239   // Frequently used to move data between FPU's Stack Top and memory.
  2240   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
  2241     int rm_byte_opcode = $rm_opcode$$constant;
  2242     int base     = $mem$$base;
  2243     int index    = $mem$$index;
  2244     int scale    = $mem$$scale;
  2245     int displace = $mem$$disp;
  2246     assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
  2247     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
  2248   %}
  2250   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
  2251     int rm_byte_opcode = $rm_opcode$$constant;
  2252     int base     = $mem$$base;
  2253     int index    = $mem$$index;
  2254     int scale    = $mem$$scale;
  2255     int displace = $mem$$disp;
  2256     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2257     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  2258   %}
  2260   enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
  2261     int reg_encoding = $dst$$reg;
  2262     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  2263     int index        = 0x04;            // 0x04 indicates no index
  2264     int scale        = 0x00;            // 0x00 indicates no scale
  2265     int displace     = $src1$$constant; // 0x00 indicates no displacement
  2266     bool disp_is_oop = false;
  2267     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2268   %}
  2270   enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
  2271     // Compare dst,src
  2272     emit_opcode(cbuf,0x3B);
  2273     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2274     // jmp dst < src around move
  2275     emit_opcode(cbuf,0x7C);
  2276     emit_d8(cbuf,2);
  2277     // move dst,src
  2278     emit_opcode(cbuf,0x8B);
  2279     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2280   %}
  2282   enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
  2283     // Compare dst,src
  2284     emit_opcode(cbuf,0x3B);
  2285     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2286     // jmp dst > src around move
  2287     emit_opcode(cbuf,0x7F);
  2288     emit_d8(cbuf,2);
  2289     // move dst,src
  2290     emit_opcode(cbuf,0x8B);
  2291     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2292   %}
  2294   enc_class enc_FP_store(memory mem, regD src) %{
  2295     // If src is FPR1, we can just FST to store it.
  2296     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
  2297     int reg_encoding = 0x2; // Just store
  2298     int base  = $mem$$base;
  2299     int index = $mem$$index;
  2300     int scale = $mem$$scale;
  2301     int displace = $mem$$disp;
  2302     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2303     if( $src$$reg != FPR1L_enc ) {
  2304       reg_encoding = 0x3;  // Store & pop
  2305       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
  2306       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2308     cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
  2309     emit_opcode(cbuf,$primary);
  2310     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2311   %}
  2313   enc_class neg_reg(eRegI dst) %{
  2314     // NEG $dst
  2315     emit_opcode(cbuf,0xF7);
  2316     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  2317   %}
  2319   enc_class setLT_reg(eCXRegI dst) %{
  2320     // SETLT $dst
  2321     emit_opcode(cbuf,0x0F);
  2322     emit_opcode(cbuf,0x9C);
  2323     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  2324   %}
  2326   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
  2327     int tmpReg = $tmp$$reg;
  2329     // SUB $p,$q
  2330     emit_opcode(cbuf,0x2B);
  2331     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2332     // SBB $tmp,$tmp
  2333     emit_opcode(cbuf,0x1B);
  2334     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2335     // AND $tmp,$y
  2336     emit_opcode(cbuf,0x23);
  2337     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
  2338     // ADD $p,$tmp
  2339     emit_opcode(cbuf,0x03);
  2340     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2341   %}
  2343   enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
  2344     int tmpReg = $tmp$$reg;
  2346     // SUB $p,$q
  2347     emit_opcode(cbuf,0x2B);
  2348     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2349     // SBB $tmp,$tmp
  2350     emit_opcode(cbuf,0x1B);
  2351     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2352     // AND $tmp,$y
  2353     cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
  2354     emit_opcode(cbuf,0x23);
  2355     int reg_encoding = tmpReg;
  2356     int base  = $mem$$base;
  2357     int index = $mem$$index;
  2358     int scale = $mem$$scale;
  2359     int displace = $mem$$disp;
  2360     bool disp_is_oop = $mem->disp_is_oop();
  2361     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2362     // ADD $p,$tmp
  2363     emit_opcode(cbuf,0x03);
  2364     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2365   %}
  2367   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
  2368     // TEST shift,32
  2369     emit_opcode(cbuf,0xF7);
  2370     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2371     emit_d32(cbuf,0x20);
  2372     // JEQ,s small
  2373     emit_opcode(cbuf, 0x74);
  2374     emit_d8(cbuf, 0x04);
  2375     // MOV    $dst.hi,$dst.lo
  2376     emit_opcode( cbuf, 0x8B );
  2377     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2378     // CLR    $dst.lo
  2379     emit_opcode(cbuf, 0x33);
  2380     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  2381 // small:
  2382     // SHLD   $dst.hi,$dst.lo,$shift
  2383     emit_opcode(cbuf,0x0F);
  2384     emit_opcode(cbuf,0xA5);
  2385     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2386     // SHL    $dst.lo,$shift"
  2387     emit_opcode(cbuf,0xD3);
  2388     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  2389   %}
  2391   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
  2392     // TEST shift,32
  2393     emit_opcode(cbuf,0xF7);
  2394     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2395     emit_d32(cbuf,0x20);
  2396     // JEQ,s small
  2397     emit_opcode(cbuf, 0x74);
  2398     emit_d8(cbuf, 0x04);
  2399     // MOV    $dst.lo,$dst.hi
  2400     emit_opcode( cbuf, 0x8B );
  2401     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2402     // CLR    $dst.hi
  2403     emit_opcode(cbuf, 0x33);
  2404     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
  2405 // small:
  2406     // SHRD   $dst.lo,$dst.hi,$shift
  2407     emit_opcode(cbuf,0x0F);
  2408     emit_opcode(cbuf,0xAD);
  2409     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2410     // SHR    $dst.hi,$shift"
  2411     emit_opcode(cbuf,0xD3);
  2412     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  2413   %}
  2415   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
  2416     // TEST shift,32
  2417     emit_opcode(cbuf,0xF7);
  2418     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2419     emit_d32(cbuf,0x20);
  2420     // JEQ,s small
  2421     emit_opcode(cbuf, 0x74);
  2422     emit_d8(cbuf, 0x05);
  2423     // MOV    $dst.lo,$dst.hi
  2424     emit_opcode( cbuf, 0x8B );
  2425     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2426     // SAR    $dst.hi,31
  2427     emit_opcode(cbuf, 0xC1);
  2428     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
  2429     emit_d8(cbuf, 0x1F );
  2430 // small:
  2431     // SHRD   $dst.lo,$dst.hi,$shift
  2432     emit_opcode(cbuf,0x0F);
  2433     emit_opcode(cbuf,0xAD);
  2434     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2435     // SAR    $dst.hi,$shift"
  2436     emit_opcode(cbuf,0xD3);
  2437     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  2438   %}
  2441   // ----------------- Encodings for floating point unit -----------------
  2442   // May leave result in FPU-TOS or FPU reg depending on opcodes
  2443   enc_class OpcReg_F (regF src) %{    // FMUL, FDIV
  2444     $$$emit8$primary;
  2445     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  2446   %}
  2448   // Pop argument in FPR0 with FSTP ST(0)
  2449   enc_class PopFPU() %{
  2450     emit_opcode( cbuf, 0xDD );
  2451     emit_d8( cbuf, 0xD8 );
  2452   %}
  2454   // !!!!! equivalent to Pop_Reg_F
  2455   enc_class Pop_Reg_D( regD dst ) %{
  2456     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2457     emit_d8( cbuf, 0xD8+$dst$$reg );
  2458   %}
  2460   enc_class Push_Reg_D( regD dst ) %{
  2461     emit_opcode( cbuf, 0xD9 );
  2462     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  2463   %}
  2465   enc_class strictfp_bias1( regD dst ) %{
  2466     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2467     emit_opcode( cbuf, 0x2D );
  2468     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
  2469     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2470     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2471   %}
  2473   enc_class strictfp_bias2( regD dst ) %{
  2474     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2475     emit_opcode( cbuf, 0x2D );
  2476     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
  2477     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2478     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2479   %}
  2481   // Special case for moving an integer register to a stack slot.
  2482   enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2483     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  2484   %}
  2486   // Special case for moving a register to a stack slot.
  2487   enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2488     // Opcode already emitted
  2489     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
  2490     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
  2491     emit_d32(cbuf, $dst$$disp);   // Displacement
  2492   %}
  2494   // Push the integer in stackSlot 'src' onto FP-stack
  2495   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
  2496     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  2497   %}
  2499   // Push the float in stackSlot 'src' onto FP-stack
  2500   enc_class Push_Mem_F( memory src ) %{    // FLD_S   [ESP+src]
  2501     store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
  2502   %}
  2504   // Push the double in stackSlot 'src' onto FP-stack
  2505   enc_class Push_Mem_D( memory src ) %{    // FLD_D   [ESP+src]
  2506     store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
  2507   %}
  2509   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  2510   enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
  2511     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  2512   %}
  2514   // Same as Pop_Mem_F except for opcode
  2515   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  2516   enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
  2517     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  2518   %}
  2520   enc_class Pop_Reg_F( regF dst ) %{
  2521     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2522     emit_d8( cbuf, 0xD8+$dst$$reg );
  2523   %}
  2525   enc_class Push_Reg_F( regF dst ) %{
  2526     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
  2527     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2528   %}
  2530   // Push FPU's float to a stack-slot, and pop FPU-stack
  2531   enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
  2532     int pop = 0x02;
  2533     if ($src$$reg != FPR1L_enc) {
  2534       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2535       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2536       pop = 0x03;
  2538     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  2539   %}
  2541   // Push FPU's double to a stack-slot, and pop FPU-stack
  2542   enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
  2543     int pop = 0x02;
  2544     if ($src$$reg != FPR1L_enc) {
  2545       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2546       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2547       pop = 0x03;
  2549     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  2550   %}
  2552   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  2553   enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
  2554     int pop = 0xD0 - 1; // -1 since we skip FLD
  2555     if ($src$$reg != FPR1L_enc) {
  2556       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
  2557       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2558       pop = 0xD8;
  2560     emit_opcode( cbuf, 0xDD );
  2561     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  2562   %}
  2565   enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
  2566     MacroAssembler masm(&cbuf);
  2567     masm.fld_s(  $src1$$reg-1);   // nothing at TOS, load TOS from src1.reg
  2568     masm.fmul(   $src2$$reg+0);   // value at TOS
  2569     masm.fadd(   $src$$reg+0);    // value at TOS
  2570     masm.fstp_d( $dst$$reg+0);    // value at TOS, popped off after store
  2571   %}
  2574   enc_class Push_Reg_Mod_D( regD dst, regD src) %{
  2575     // load dst in FPR0
  2576     emit_opcode( cbuf, 0xD9 );
  2577     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2578     if ($src$$reg != FPR1L_enc) {
  2579       // fincstp
  2580       emit_opcode (cbuf, 0xD9);
  2581       emit_opcode (cbuf, 0xF7);
  2582       // swap src with FPR1:
  2583       // FXCH FPR1 with src
  2584       emit_opcode(cbuf, 0xD9);
  2585       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2586       // fdecstp
  2587       emit_opcode (cbuf, 0xD9);
  2588       emit_opcode (cbuf, 0xF6);
  2590   %}
  2592   enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
  2593     // Allocate a word
  2594     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2595     emit_opcode(cbuf,0xEC);
  2596     emit_d8(cbuf,0x08);
  2598     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src1
  2599     emit_opcode  (cbuf, 0x0F );
  2600     emit_opcode  (cbuf, 0x11 );
  2601     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
  2603     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2604     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2606     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src0
  2607     emit_opcode  (cbuf, 0x0F );
  2608     emit_opcode  (cbuf, 0x11 );
  2609     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
  2611     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2612     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2614   %}
  2616   enc_class Push_ModX_encoding( regX src0, regX src1) %{
  2617     // Allocate a word
  2618     emit_opcode(cbuf,0x83);            // SUB ESP,4
  2619     emit_opcode(cbuf,0xEC);
  2620     emit_d8(cbuf,0x04);
  2622     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src1
  2623     emit_opcode  (cbuf, 0x0F );
  2624     emit_opcode  (cbuf, 0x11 );
  2625     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
  2627     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
  2628     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2630     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src0
  2631     emit_opcode  (cbuf, 0x0F );
  2632     emit_opcode  (cbuf, 0x11 );
  2633     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
  2635     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
  2636     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2638   %}
  2640   enc_class Push_ResultXD(regXD dst) %{
  2641     store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]
  2643     // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
  2644     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  2645     emit_opcode  (cbuf, 0x0F );
  2646     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  2647     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  2649     emit_opcode(cbuf,0x83);    // ADD ESP,8
  2650     emit_opcode(cbuf,0xC4);
  2651     emit_d8(cbuf,0x08);
  2652   %}
  2654   enc_class Push_ResultX(regX dst, immI d8) %{
  2655     store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]
  2657     emit_opcode  (cbuf, 0xF3 );     // MOVSS dst(xmm), [ESP]
  2658     emit_opcode  (cbuf, 0x0F );
  2659     emit_opcode  (cbuf, 0x10 );
  2660     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  2662     emit_opcode(cbuf,0x83);    // ADD ESP,d8 (4 or 8)
  2663     emit_opcode(cbuf,0xC4);
  2664     emit_d8(cbuf,$d8$$constant);
  2665   %}
  2667   enc_class Push_SrcXD(regXD src) %{
  2668     // Allocate a word
  2669     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2670     emit_opcode(cbuf,0xEC);
  2671     emit_d8(cbuf,0x08);
  2673     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src
  2674     emit_opcode  (cbuf, 0x0F );
  2675     emit_opcode  (cbuf, 0x11 );
  2676     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  2678     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2679     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2680   %}
  2682   enc_class push_stack_temp_qword() %{
  2683     emit_opcode(cbuf,0x83);     // SUB ESP,8
  2684     emit_opcode(cbuf,0xEC);
  2685     emit_d8    (cbuf,0x08);
  2686   %}
  2688   enc_class pop_stack_temp_qword() %{
  2689     emit_opcode(cbuf,0x83);     // ADD ESP,8
  2690     emit_opcode(cbuf,0xC4);
  2691     emit_d8    (cbuf,0x08);
  2692   %}
  2694   enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
  2695     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], xmm_src
  2696     emit_opcode  (cbuf, 0x0F );
  2697     emit_opcode  (cbuf, 0x11 );
  2698     encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);
  2700     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2701     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2702   %}
  2704   // Compute X^Y using Intel's fast hardware instructions, if possible.
  2705   // Otherwise return a NaN.
  2706   enc_class pow_exp_core_encoding %{
  2707     // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
  2708     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
  2709     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
  2710     emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
  2711     emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
  2712     emit_opcode(cbuf,0x1C);
  2713     emit_d8(cbuf,0x24);
  2714     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
  2715     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
  2716     emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
  2717     emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
  2718     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
  2719     emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
  2720     emit_rm(cbuf, 0x3, 0x0, ECX_enc);
  2721     emit_d32(cbuf,0xFFFFF800);
  2722     emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
  2723     emit_rm(cbuf, 0x3, 0x0, EAX_enc);
  2724     emit_d32(cbuf,1023);
  2725     emit_opcode(cbuf,0x8B);                          // mov rbx,eax
  2726     emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
  2727     emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
  2728     emit_rm(cbuf,0x3,0x4,EAX_enc);
  2729     emit_d8(cbuf,20);
  2730     emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
  2731     emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
  2732     emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
  2733     emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
  2734     emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
  2735     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
  2736     emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
  2737     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2738     emit_d32(cbuf,0);
  2739     emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
  2740     encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
  2741   %}
  2743 //   enc_class Pop_Reg_Mod_D( regD dst, regD src)
  2744 //   was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()
  2746   enc_class Push_Result_Mod_D( regD src) %{
  2747     if ($src$$reg != FPR1L_enc) {
  2748       // fincstp
  2749       emit_opcode (cbuf, 0xD9);
  2750       emit_opcode (cbuf, 0xF7);
  2751       // FXCH FPR1 with src
  2752       emit_opcode(cbuf, 0xD9);
  2753       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2754       // fdecstp
  2755       emit_opcode (cbuf, 0xD9);
  2756       emit_opcode (cbuf, 0xF6);
  2758     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
  2759     // // FSTP   FPR$dst$$reg
  2760     // emit_opcode( cbuf, 0xDD );
  2761     // emit_d8( cbuf, 0xD8+$dst$$reg );
  2762   %}
  2764   enc_class fnstsw_sahf_skip_parity() %{
  2765     // fnstsw ax
  2766     emit_opcode( cbuf, 0xDF );
  2767     emit_opcode( cbuf, 0xE0 );
  2768     // sahf
  2769     emit_opcode( cbuf, 0x9E );
  2770     // jnp  ::skip
  2771     emit_opcode( cbuf, 0x7B );
  2772     emit_opcode( cbuf, 0x05 );
  2773   %}
  2775   enc_class emitModD() %{
  2776     // fprem must be iterative
  2777     // :: loop
  2778     // fprem
  2779     emit_opcode( cbuf, 0xD9 );
  2780     emit_opcode( cbuf, 0xF8 );
  2781     // wait
  2782     emit_opcode( cbuf, 0x9b );
  2783     // fnstsw ax
  2784     emit_opcode( cbuf, 0xDF );
  2785     emit_opcode( cbuf, 0xE0 );
  2786     // sahf
  2787     emit_opcode( cbuf, 0x9E );
  2788     // jp  ::loop
  2789     emit_opcode( cbuf, 0x0F );
  2790     emit_opcode( cbuf, 0x8A );
  2791     emit_opcode( cbuf, 0xF4 );
  2792     emit_opcode( cbuf, 0xFF );
  2793     emit_opcode( cbuf, 0xFF );
  2794     emit_opcode( cbuf, 0xFF );
  2795   %}
  2797   enc_class fpu_flags() %{
  2798     // fnstsw_ax
  2799     emit_opcode( cbuf, 0xDF);
  2800     emit_opcode( cbuf, 0xE0);
  2801     // test ax,0x0400
  2802     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
  2803     emit_opcode( cbuf, 0xA9 );
  2804     emit_d16   ( cbuf, 0x0400 );
  2805     // // // This sequence works, but stalls for 12-16 cycles on PPro
  2806     // // test rax,0x0400
  2807     // emit_opcode( cbuf, 0xA9 );
  2808     // emit_d32   ( cbuf, 0x00000400 );
  2809     //
  2810     // jz exit (no unordered comparison)
  2811     emit_opcode( cbuf, 0x74 );
  2812     emit_d8    ( cbuf, 0x02 );
  2813     // mov ah,1 - treat as LT case (set carry flag)
  2814     emit_opcode( cbuf, 0xB4 );
  2815     emit_d8    ( cbuf, 0x01 );
  2816     // sahf
  2817     emit_opcode( cbuf, 0x9E);
  2818   %}
  2820   enc_class cmpF_P6_fixup() %{
  2821     // Fixup the integer flags in case comparison involved a NaN
  2822     //
  2823     // JNP exit (no unordered comparison, P-flag is set by NaN)
  2824     emit_opcode( cbuf, 0x7B );
  2825     emit_d8    ( cbuf, 0x03 );
  2826     // MOV AH,1 - treat as LT case (set carry flag)
  2827     emit_opcode( cbuf, 0xB4 );
  2828     emit_d8    ( cbuf, 0x01 );
  2829     // SAHF
  2830     emit_opcode( cbuf, 0x9E);
  2831     // NOP     // target for branch to avoid branch to branch
  2832     emit_opcode( cbuf, 0x90);
  2833   %}
  2835 //     fnstsw_ax();
  2836 //     sahf();
  2837 //     movl(dst, nan_result);
  2838 //     jcc(Assembler::parity, exit);
  2839 //     movl(dst, less_result);
  2840 //     jcc(Assembler::below, exit);
  2841 //     movl(dst, equal_result);
  2842 //     jcc(Assembler::equal, exit);
  2843 //     movl(dst, greater_result);
  2845 // less_result     =  1;
  2846 // greater_result  = -1;
  2847 // equal_result    = 0;
  2848 // nan_result      = -1;
  2850   enc_class CmpF_Result(eRegI dst) %{
  2851     // fnstsw_ax();
  2852     emit_opcode( cbuf, 0xDF);
  2853     emit_opcode( cbuf, 0xE0);
  2854     // sahf
  2855     emit_opcode( cbuf, 0x9E);
  2856     // movl(dst, nan_result);
  2857     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2858     emit_d32( cbuf, -1 );
  2859     // jcc(Assembler::parity, exit);
  2860     emit_opcode( cbuf, 0x7A );
  2861     emit_d8    ( cbuf, 0x13 );
  2862     // movl(dst, less_result);
  2863     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2864     emit_d32( cbuf, -1 );
  2865     // jcc(Assembler::below, exit);
  2866     emit_opcode( cbuf, 0x72 );
  2867     emit_d8    ( cbuf, 0x0C );
  2868     // movl(dst, equal_result);
  2869     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2870     emit_d32( cbuf, 0 );
  2871     // jcc(Assembler::equal, exit);
  2872     emit_opcode( cbuf, 0x74 );
  2873     emit_d8    ( cbuf, 0x05 );
  2874     // movl(dst, greater_result);
  2875     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2876     emit_d32( cbuf, 1 );
  2877   %}
  2880   // XMM version of CmpF_Result. Because the XMM compare
  2881   // instructions set the EFLAGS directly. It becomes simpler than
  2882   // the float version above.
  2883   enc_class CmpX_Result(eRegI dst) %{
  2884     MacroAssembler _masm(&cbuf);
  2885     Label nan, inc, done;
  2887     __ jccb(Assembler::parity, nan);
  2888     __ jccb(Assembler::equal,  done);
  2889     __ jccb(Assembler::above,  inc);
  2890     __ bind(nan);
  2891     __ decrement(as_Register($dst$$reg)); // NO L qqq
  2892     __ jmpb(done);
  2893     __ bind(inc);
  2894     __ increment(as_Register($dst$$reg)); // NO L qqq
  2895     __ bind(done);
  2896   %}
  2898   // Compare the longs and set flags
  2899   // BROKEN!  Do Not use as-is
  2900   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
  2901     // CMP    $src1.hi,$src2.hi
  2902     emit_opcode( cbuf, 0x3B );
  2903     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2904     // JNE,s  done
  2905     emit_opcode(cbuf,0x75);
  2906     emit_d8(cbuf, 2 );
  2907     // CMP    $src1.lo,$src2.lo
  2908     emit_opcode( cbuf, 0x3B );
  2909     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2910 // done:
  2911   %}
  2913   enc_class convert_int_long( regL dst, eRegI src ) %{
  2914     // mov $dst.lo,$src
  2915     int dst_encoding = $dst$$reg;
  2916     int src_encoding = $src$$reg;
  2917     encode_Copy( cbuf, dst_encoding  , src_encoding );
  2918     // mov $dst.hi,$src
  2919     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
  2920     // sar $dst.hi,31
  2921     emit_opcode( cbuf, 0xC1 );
  2922     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
  2923     emit_d8(cbuf, 0x1F );
  2924   %}
  2926   enc_class convert_long_double( eRegL src ) %{
  2927     // push $src.hi
  2928     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2929     // push $src.lo
  2930     emit_opcode(cbuf, 0x50+$src$$reg  );
  2931     // fild 64-bits at [SP]
  2932     emit_opcode(cbuf,0xdf);
  2933     emit_d8(cbuf, 0x6C);
  2934     emit_d8(cbuf, 0x24);
  2935     emit_d8(cbuf, 0x00);
  2936     // pop stack
  2937     emit_opcode(cbuf, 0x83); // add  SP, #8
  2938     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2939     emit_d8(cbuf, 0x8);
  2940   %}
  2942   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
  2943     // IMUL   EDX:EAX,$src1
  2944     emit_opcode( cbuf, 0xF7 );
  2945     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
  2946     // SAR    EDX,$cnt-32
  2947     int shift_count = ((int)$cnt$$constant) - 32;
  2948     if (shift_count > 0) {
  2949       emit_opcode(cbuf, 0xC1);
  2950       emit_rm(cbuf, 0x3, 7, $dst$$reg );
  2951       emit_d8(cbuf, shift_count);
  2953   %}
  2955   // this version doesn't have add sp, 8
  2956   enc_class convert_long_double2( eRegL src ) %{
  2957     // push $src.hi
  2958     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2959     // push $src.lo
  2960     emit_opcode(cbuf, 0x50+$src$$reg  );
  2961     // fild 64-bits at [SP]
  2962     emit_opcode(cbuf,0xdf);
  2963     emit_d8(cbuf, 0x6C);
  2964     emit_d8(cbuf, 0x24);
  2965     emit_d8(cbuf, 0x00);
  2966   %}
  2968   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
  2969     // Basic idea: long = (long)int * (long)int
  2970     // IMUL EDX:EAX, src
  2971     emit_opcode( cbuf, 0xF7 );
  2972     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  2973   %}
  2975   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
  2976     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  2977     // MUL EDX:EAX, src
  2978     emit_opcode( cbuf, 0xF7 );
  2979     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  2980   %}
  2982   enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
  2983     // Basic idea: lo(result) = lo(x_lo * y_lo)
  2984     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  2985     // MOV    $tmp,$src.lo
  2986     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
  2987     // IMUL   $tmp,EDX
  2988     emit_opcode( cbuf, 0x0F );
  2989     emit_opcode( cbuf, 0xAF );
  2990     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2991     // MOV    EDX,$src.hi
  2992     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
  2993     // IMUL   EDX,EAX
  2994     emit_opcode( cbuf, 0x0F );
  2995     emit_opcode( cbuf, 0xAF );
  2996     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2997     // ADD    $tmp,EDX
  2998     emit_opcode( cbuf, 0x03 );
  2999     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3000     // MUL   EDX:EAX,$src.lo
  3001     emit_opcode( cbuf, 0xF7 );
  3002     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
  3003     // ADD    EDX,ESI
  3004     emit_opcode( cbuf, 0x03 );
  3005     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  3006   %}
  3008   enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
  3009     // Basic idea: lo(result) = lo(src * y_lo)
  3010     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
  3011     // IMUL   $tmp,EDX,$src
  3012     emit_opcode( cbuf, 0x6B );
  3013     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3014     emit_d8( cbuf, (int)$src$$constant );
  3015     // MOV    EDX,$src
  3016     emit_opcode(cbuf, 0xB8 + EDX_enc);
  3017     emit_d32( cbuf, (int)$src$$constant );
  3018     // MUL   EDX:EAX,EDX
  3019     emit_opcode( cbuf, 0xF7 );
  3020     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
  3021     // ADD    EDX,ESI
  3022     emit_opcode( cbuf, 0x03 );
  3023     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  3024   %}
  3026   enc_class long_div( eRegL src1, eRegL src2 ) %{
  3027     // PUSH src1.hi
  3028     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  3029     // PUSH src1.lo
  3030     emit_opcode(cbuf,               0x50+$src1$$reg  );
  3031     // PUSH src2.hi
  3032     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  3033     // PUSH src2.lo
  3034     emit_opcode(cbuf,               0x50+$src2$$reg  );
  3035     // CALL directly to the runtime
  3036     cbuf.set_inst_mark();
  3037     emit_opcode(cbuf,0xE8);       // Call into runtime
  3038     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3039     // Restore stack
  3040     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  3041     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3042     emit_d8(cbuf, 4*4);
  3043   %}
  3045   enc_class long_mod( eRegL src1, eRegL src2 ) %{
  3046     // PUSH src1.hi
  3047     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  3048     // PUSH src1.lo
  3049     emit_opcode(cbuf,               0x50+$src1$$reg  );
  3050     // PUSH src2.hi
  3051     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  3052     // PUSH src2.lo
  3053     emit_opcode(cbuf,               0x50+$src2$$reg  );
  3054     // CALL directly to the runtime
  3055     cbuf.set_inst_mark();
  3056     emit_opcode(cbuf,0xE8);       // Call into runtime
  3057     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3058     // Restore stack
  3059     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  3060     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3061     emit_d8(cbuf, 4*4);
  3062   %}
  3064   enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
  3065     // MOV   $tmp,$src.lo
  3066     emit_opcode(cbuf, 0x8B);
  3067     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  3068     // OR    $tmp,$src.hi
  3069     emit_opcode(cbuf, 0x0B);
  3070     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  3071   %}
  3073   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
  3074     // CMP    $src1.lo,$src2.lo
  3075     emit_opcode( cbuf, 0x3B );
  3076     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3077     // JNE,s  skip
  3078     emit_cc(cbuf, 0x70, 0x5);
  3079     emit_d8(cbuf,2);
  3080     // CMP    $src1.hi,$src2.hi
  3081     emit_opcode( cbuf, 0x3B );
  3082     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  3083   %}
  3085   enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
  3086     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
  3087     emit_opcode( cbuf, 0x3B );
  3088     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3089     // MOV    $tmp,$src1.hi
  3090     emit_opcode( cbuf, 0x8B );
  3091     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
  3092     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
  3093     emit_opcode( cbuf, 0x1B );
  3094     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  3095   %}
  3097   enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
  3098     // XOR    $tmp,$tmp
  3099     emit_opcode(cbuf,0x33);  // XOR
  3100     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
  3101     // CMP    $tmp,$src.lo
  3102     emit_opcode( cbuf, 0x3B );
  3103     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
  3104     // SBB    $tmp,$src.hi
  3105     emit_opcode( cbuf, 0x1B );
  3106     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  3107   %}
  3109  // Sniff, sniff... smells like Gnu Superoptimizer
  3110   enc_class neg_long( eRegL dst ) %{
  3111     emit_opcode(cbuf,0xF7);    // NEG hi
  3112     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  3113     emit_opcode(cbuf,0xF7);    // NEG lo
  3114     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
  3115     emit_opcode(cbuf,0x83);    // SBB hi,0
  3116     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  3117     emit_d8    (cbuf,0 );
  3118   %}
  3120   enc_class movq_ld(regXD dst, memory mem) %{
  3121     MacroAssembler _masm(&cbuf);
  3122     __ movq($dst$$XMMRegister, $mem$$Address);
  3123   %}
  3125   enc_class movq_st(memory mem, regXD src) %{
  3126     MacroAssembler _masm(&cbuf);
  3127     __ movq($mem$$Address, $src$$XMMRegister);
  3128   %}
  3130   enc_class pshufd_8x8(regX dst, regX src) %{
  3131     MacroAssembler _masm(&cbuf);
  3133     encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
  3134     __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
  3135     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
  3136   %}
  3138   enc_class pshufd_4x16(regX dst, regX src) %{
  3139     MacroAssembler _masm(&cbuf);
  3141     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
  3142   %}
  3144   enc_class pshufd(regXD dst, regXD src, int mode) %{
  3145     MacroAssembler _masm(&cbuf);
  3147     __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
  3148   %}
  3150   enc_class pxor(regXD dst, regXD src) %{
  3151     MacroAssembler _masm(&cbuf);
  3153     __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
  3154   %}
  3156   enc_class mov_i2x(regXD dst, eRegI src) %{
  3157     MacroAssembler _masm(&cbuf);
  3159     __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
  3160   %}
  3163   // Because the transitions from emitted code to the runtime
  3164   // monitorenter/exit helper stubs are so slow it's critical that
  3165   // we inline both the stack-locking fast-path and the inflated fast path.
  3166   //
  3167   // See also: cmpFastLock and cmpFastUnlock.
  3168   //
  3169   // What follows is a specialized inline transliteration of the code
  3170   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  3171   // another option would be to emit TrySlowEnter and TrySlowExit methods
  3172   // at startup-time.  These methods would accept arguments as
  3173   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  3174   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  3175   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  3176   // In practice, however, the # of lock sites is bounded and is usually small.
  3177   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  3178   // if the processor uses simple bimodal branch predictors keyed by EIP
  3179   // Since the helper routines would be called from multiple synchronization
  3180   // sites.
  3181   //
  3182   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  3183   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  3184   // to those specialized methods.  That'd give us a mostly platform-independent
  3185   // implementation that the JITs could optimize and inline at their pleasure.
  3186   // Done correctly, the only time we'd need to cross to native could would be
  3187   // to park() or unpark() threads.  We'd also need a few more unsafe operators
  3188   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  3189   // (b) explicit barriers or fence operations.
  3190   //
  3191   // TODO:
  3192   //
  3193   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  3194   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  3195   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  3196   //    the lock operators would typically be faster than reifying Self.
  3197   //
  3198   // *  Ideally I'd define the primitives as:
  3199   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  3200   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  3201   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  3202   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  3203   //    Furthermore the register assignments are overconstrained, possibly resulting in
  3204   //    sub-optimal code near the synchronization site.
  3205   //
  3206   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  3207   //    Alternately, use a better sp-proximity test.
  3208   //
  3209   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  3210   //    Either one is sufficient to uniquely identify a thread.
  3211   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  3212   //
  3213   // *  Intrinsify notify() and notifyAll() for the common cases where the
  3214   //    object is locked by the calling thread but the waitlist is empty.
  3215   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  3216   //
  3217   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  3218   //    But beware of excessive branch density on AMD Opterons.
  3219   //
  3220   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  3221   //    or failure of the fast-path.  If the fast-path fails then we pass
  3222   //    control to the slow-path, typically in C.  In Fast_Lock and
  3223   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  3224   //    will emit a conditional branch immediately after the node.
  3225   //    So we have branches to branches and lots of ICC.ZF games.
  3226   //    Instead, it might be better to have C2 pass a "FailureLabel"
  3227   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  3228   //    will drop through the node.  ICC.ZF is undefined at exit.
  3229   //    In the case of failure, the node will branch directly to the
  3230   //    FailureLabel
  3233   // obj: object to lock
  3234   // box: on-stack box address (displaced header location) - KILLED
  3235   // rax,: tmp -- KILLED
  3236   // scr: tmp -- KILLED
  3237   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
  3239     Register objReg = as_Register($obj$$reg);
  3240     Register boxReg = as_Register($box$$reg);
  3241     Register tmpReg = as_Register($tmp$$reg);
  3242     Register scrReg = as_Register($scr$$reg);
  3244     // Ensure the register assignents are disjoint
  3245     guarantee (objReg != boxReg, "") ;
  3246     guarantee (objReg != tmpReg, "") ;
  3247     guarantee (objReg != scrReg, "") ;
  3248     guarantee (boxReg != tmpReg, "") ;
  3249     guarantee (boxReg != scrReg, "") ;
  3250     guarantee (tmpReg == as_Register(EAX_enc), "") ;
  3252     MacroAssembler masm(&cbuf);
  3254     if (_counters != NULL) {
  3255       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
  3257     if (EmitSync & 1) {
  3258         // set box->dhw = unused_mark (3)
  3259         // Force all sync thru slow-path: slow_enter() and slow_exit() 
  3260         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
  3261         masm.cmpptr (rsp, (int32_t)0) ;                        
  3262     } else 
  3263     if (EmitSync & 2) { 
  3264         Label DONE_LABEL ;           
  3265         if (UseBiasedLocking) {
  3266            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  3267            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3270         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
  3271         masm.orptr (tmpReg, 0x1);
  3272         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
  3273         if (os::is_MP()) { masm.lock();  }
  3274         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
  3275         masm.jcc(Assembler::equal, DONE_LABEL);
  3276         // Recursive locking
  3277         masm.subptr(tmpReg, rsp);
  3278         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
  3279         masm.movptr(Address(boxReg, 0), tmpReg);
  3280         masm.bind(DONE_LABEL) ; 
  3281     } else {  
  3282       // Possible cases that we'll encounter in fast_lock 
  3283       // ------------------------------------------------
  3284       // * Inflated
  3285       //    -- unlocked
  3286       //    -- Locked
  3287       //       = by self
  3288       //       = by other
  3289       // * biased
  3290       //    -- by Self
  3291       //    -- by other
  3292       // * neutral
  3293       // * stack-locked
  3294       //    -- by self
  3295       //       = sp-proximity test hits
  3296       //       = sp-proximity test generates false-negative
  3297       //    -- by other
  3298       //
  3300       Label IsInflated, DONE_LABEL, PopDone ;
  3302       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  3303       // order to reduce the number of conditional branches in the most common cases.
  3304       // Beware -- there's a subtle invariant that fetch of the markword
  3305       // at [FETCH], below, will never observe a biased encoding (*101b).
  3306       // If this invariant is not held we risk exclusion (safety) failure.
  3307       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3308         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3311       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
  3312       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
  3313       masm.jccb  (Assembler::notZero, IsInflated) ;
  3315       // Attempt stack-locking ...
  3316       masm.orptr (tmpReg, 0x1);
  3317       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
  3318       if (os::is_MP()) { masm.lock();  }
  3319       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
  3320       if (_counters != NULL) {
  3321         masm.cond_inc32(Assembler::equal,
  3322                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3324       masm.jccb (Assembler::equal, DONE_LABEL);
  3326       // Recursive locking
  3327       masm.subptr(tmpReg, rsp);
  3328       masm.andptr(tmpReg, 0xFFFFF003 );
  3329       masm.movptr(Address(boxReg, 0), tmpReg);
  3330       if (_counters != NULL) {
  3331         masm.cond_inc32(Assembler::equal,
  3332                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3334       masm.jmp  (DONE_LABEL) ;
  3336       masm.bind (IsInflated) ;
  3338       // The object is inflated.
  3339       //
  3340       // TODO-FIXME: eliminate the ugly use of manifest constants:
  3341       //   Use markOopDesc::monitor_value instead of "2".
  3342       //   use markOop::unused_mark() instead of "3".
  3343       // The tmpReg value is an objectMonitor reference ORed with
  3344       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
  3345       // objectmonitor pointer by masking off the "2" bit or we can just
  3346       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
  3347       // field offsets with "-2" to compensate for and annul the low-order tag bit.
  3348       //
  3349       // I use the latter as it avoids AGI stalls.
  3350       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
  3351       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
  3352       //
  3353       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
  3355       // boxReg refers to the on-stack BasicLock in the current frame.
  3356       // We'd like to write:
  3357       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
  3358       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
  3359       // additional latency as we have another ST in the store buffer that must drain.
  3361       if (EmitSync & 8192) { 
  3362          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
  3363          masm.get_thread (scrReg) ; 
  3364          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
  3365          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
  3366          if (os::is_MP()) { masm.lock(); } 
  3367          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3368       } else 
  3369       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
  3370          masm.movptr(scrReg, boxReg) ; 
  3371          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
  3373          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3374          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
  3375             // prefetchw [eax + Offset(_owner)-2]
  3376             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3379          if ((EmitSync & 64) == 0) {
  3380            // Optimistic form: consider XORL tmpReg,tmpReg
  3381            masm.movptr(tmpReg, NULL_WORD) ; 
  3382          } else { 
  3383            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3384            // Test-And-CAS instead of CAS
  3385            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3386            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3387            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3390          // Appears unlocked - try to swing _owner from null to non-null.
  3391          // Ideally, I'd manifest "Self" with get_thread and then attempt
  3392          // to CAS the register containing Self into m->Owner.
  3393          // But we don't have enough registers, so instead we can either try to CAS
  3394          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
  3395          // we later store "Self" into m->Owner.  Transiently storing a stack address
  3396          // (rsp or the address of the box) into  m->owner is harmless.
  3397          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3398          if (os::is_MP()) { masm.lock();  }
  3399          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3400          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
  3401          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3402          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
  3403          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
  3404          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
  3406          // If the CAS fails we can either retry or pass control to the slow-path.  
  3407          // We use the latter tactic.  
  3408          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3409          // If the CAS was successful ...
  3410          //   Self has acquired the lock
  3411          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3412          // Intentional fall-through into DONE_LABEL ...
  3413       } else {
  3414          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
  3415          masm.movptr(boxReg, tmpReg) ; 
  3417          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3418          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
  3419             // prefetchw [eax + Offset(_owner)-2]
  3420             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3423          if ((EmitSync & 64) == 0) {
  3424            // Optimistic form
  3425            masm.xorptr  (tmpReg, tmpReg) ; 
  3426          } else { 
  3427            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3428            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3429            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3430            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3433          // Appears unlocked - try to swing _owner from null to non-null.
  3434          // Use either "Self" (in scr) or rsp as thread identity in _owner.
  3435          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3436          masm.get_thread (scrReg) ;
  3437          if (os::is_MP()) { masm.lock(); }
  3438          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3440          // If the CAS fails we can either retry or pass control to the slow-path.
  3441          // We use the latter tactic.
  3442          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3443          // If the CAS was successful ...
  3444          //   Self has acquired the lock
  3445          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3446          // Intentional fall-through into DONE_LABEL ...
  3449       // DONE_LABEL is a hot target - we'd really like to place it at the
  3450       // start of cache line by padding with NOPs.
  3451       // See the AMD and Intel software optimization manuals for the
  3452       // most efficient "long" NOP encodings.
  3453       // Unfortunately none of our alignment mechanisms suffice.
  3454       masm.bind(DONE_LABEL);
  3456       // Avoid branch-to-branch on AMD processors
  3457       // This appears to be superstition.
  3458       if (EmitSync & 32) masm.nop() ;
  3461       // At DONE_LABEL the icc ZFlag is set as follows ...
  3462       // Fast_Unlock uses the same protocol.
  3463       // ZFlag == 1 -> Success
  3464       // ZFlag == 0 -> Failure - force control through the slow-path
  3466   %}
  3468   // obj: object to unlock
  3469   // box: box address (displaced header location), killed.  Must be EAX.
  3470   // rbx,: killed tmp; cannot be obj nor box.
  3471   //
  3472   // Some commentary on balanced locking:
  3473   //
  3474   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  3475   // Methods that don't have provably balanced locking are forced to run in the
  3476   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  3477   // The interpreter provides two properties:
  3478   // I1:  At return-time the interpreter automatically and quietly unlocks any
  3479   //      objects acquired the current activation (frame).  Recall that the
  3480   //      interpreter maintains an on-stack list of locks currently held by
  3481   //      a frame.
  3482   // I2:  If a method attempts to unlock an object that is not held by the
  3483   //      the frame the interpreter throws IMSX.
  3484   //
  3485   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  3486   // B() doesn't have provably balanced locking so it runs in the interpreter.
  3487   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  3488   // is still locked by A().
  3489   //
  3490   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  3491   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  3492   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  3493   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  3495   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
  3497     Register objReg = as_Register($obj$$reg);
  3498     Register boxReg = as_Register($box$$reg);
  3499     Register tmpReg = as_Register($tmp$$reg);
  3501     guarantee (objReg != boxReg, "") ;
  3502     guarantee (objReg != tmpReg, "") ;
  3503     guarantee (boxReg != tmpReg, "") ;
  3504     guarantee (boxReg == as_Register(EAX_enc), "") ;
  3505     MacroAssembler masm(&cbuf);
  3507     if (EmitSync & 4) {
  3508       // Disable - inhibit all inlining.  Force control through the slow-path
  3509       masm.cmpptr (rsp, 0) ; 
  3510     } else 
  3511     if (EmitSync & 8) {
  3512       Label DONE_LABEL ;
  3513       if (UseBiasedLocking) {
  3514          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3516       // classic stack-locking code ...
  3517       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3518       masm.testptr(tmpReg, tmpReg) ;
  3519       masm.jcc   (Assembler::zero, DONE_LABEL) ;
  3520       if (os::is_MP()) { masm.lock(); }
  3521       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
  3522       masm.bind(DONE_LABEL);
  3523     } else {
  3524       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
  3526       // Critically, the biased locking test must have precedence over
  3527       // and appear before the (box->dhw == 0) recursive stack-lock test.
  3528       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3529          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3532       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
  3533       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
  3534       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
  3536       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
  3537       masm.jccb  (Assembler::zero, Stacked) ;
  3539       masm.bind  (Inflated) ;
  3540       // It's inflated.
  3541       // Despite our balanced locking property we still check that m->_owner == Self
  3542       // as java routines or native JNI code called by this thread might
  3543       // have released the lock.
  3544       // Refer to the comments in synchronizer.cpp for how we might encode extra
  3545       // state in _succ so we can avoid fetching EntryList|cxq.
  3546       //
  3547       // I'd like to add more cases in fast_lock() and fast_unlock() --
  3548       // such as recursive enter and exit -- but we have to be wary of
  3549       // I$ bloat, T$ effects and BP$ effects.
  3550       //
  3551       // If there's no contention try a 1-0 exit.  That is, exit without
  3552       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  3553       // we detect and recover from the race that the 1-0 exit admits.
  3554       //
  3555       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  3556       // before it STs null into _owner, releasing the lock.  Updates
  3557       // to data protected by the critical section must be visible before
  3558       // we drop the lock (and thus before any other thread could acquire
  3559       // the lock and observe the fields protected by the lock).
  3560       // IA32's memory-model is SPO, so STs are ordered with respect to
  3561       // each other and there's no need for an explicit barrier (fence).
  3562       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  3564       masm.get_thread (boxReg) ;
  3565       if ((EmitSync & 4096) && VM_Version::supports_3dnow() && os::is_MP()) {
  3566         // prefetchw [ebx + Offset(_owner)-2]
  3567         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
  3570       // Note that we could employ various encoding schemes to reduce
  3571       // the number of loads below (currently 4) to just 2 or 3.
  3572       // Refer to the comments in synchronizer.cpp.
  3573       // In practice the chain of fetches doesn't seem to impact performance, however.
  3574       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
  3575          // Attempt to reduce branch density - AMD's branch predictor.
  3576          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3577          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3578          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3579          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3580          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3581          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3582          masm.jmpb  (DONE_LABEL) ; 
  3583       } else { 
  3584          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3585          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3586          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3587          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3588          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3589          masm.jccb  (Assembler::notZero, CheckSucc) ; 
  3590          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3591          masm.jmpb  (DONE_LABEL) ; 
  3594       // The Following code fragment (EmitSync & 65536) improves the performance of
  3595       // contended applications and contended synchronization microbenchmarks.
  3596       // Unfortunately the emission of the code - even though not executed - causes regressions
  3597       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
  3598       // with an equal number of never-executed NOPs results in the same regression.
  3599       // We leave it off by default.
  3601       if ((EmitSync & 65536) != 0) {
  3602          Label LSuccess, LGoSlowPath ;
  3604          masm.bind  (CheckSucc) ;
  3606          // Optional pre-test ... it's safe to elide this
  3607          if ((EmitSync & 16) == 0) { 
  3608             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3609             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
  3612          // We have a classic Dekker-style idiom:
  3613          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
  3614          // There are a number of ways to implement the barrier:
  3615          // (1) lock:andl &m->_owner, 0
  3616          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
  3617          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
  3618          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
  3619          // (2) If supported, an explicit MFENCE is appealing.
  3620          //     In older IA32 processors MFENCE is slower than lock:add or xchg
  3621          //     particularly if the write-buffer is full as might be the case if
  3622          //     if stores closely precede the fence or fence-equivalent instruction.
  3623          //     In more modern implementations MFENCE appears faster, however.
  3624          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
  3625          //     The $lines underlying the top-of-stack should be in M-state.
  3626          //     The locked add instruction is serializing, of course.
  3627          // (4) Use xchg, which is serializing
  3628          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
  3629          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
  3630          //     The integer condition codes will tell us if succ was 0.
  3631          //     Since _succ and _owner should reside in the same $line and
  3632          //     we just stored into _owner, it's likely that the $line
  3633          //     remains in M-state for the lock:orl.
  3634          //
  3635          // We currently use (3), although it's likely that switching to (2)
  3636          // is correct for the future.
  3638          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3639          if (os::is_MP()) { 
  3640             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
  3641               masm.mfence();
  3642             } else { 
  3643               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
  3646          // Ratify _succ remains non-null
  3647          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3648          masm.jccb  (Assembler::notZero, LSuccess) ; 
  3650          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
  3651          if (os::is_MP()) { masm.lock(); }
  3652          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  3653          masm.jccb  (Assembler::notEqual, LSuccess) ;
  3654          // Since we're low on registers we installed rsp as a placeholding in _owner.
  3655          // Now install Self over rsp.  This is safe as we're transitioning from
  3656          // non-null to non=null
  3657          masm.get_thread (boxReg) ;
  3658          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
  3659          // Intentional fall-through into LGoSlowPath ...
  3661          masm.bind  (LGoSlowPath) ; 
  3662          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
  3663          masm.jmpb  (DONE_LABEL) ; 
  3665          masm.bind  (LSuccess) ; 
  3666          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
  3667          masm.jmpb  (DONE_LABEL) ; 
  3670       masm.bind (Stacked) ;
  3671       // It's not inflated and it's not recursively stack-locked and it's not biased.
  3672       // It must be stack-locked.
  3673       // Try to reset the header to displaced header.
  3674       // The "box" value on the stack is stable, so we can reload
  3675       // and be assured we observe the same value as above.
  3676       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3677       if (os::is_MP()) {   masm.lock();    }
  3678       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
  3679       // Intention fall-thru into DONE_LABEL
  3682       // DONE_LABEL is a hot target - we'd really like to place it at the
  3683       // start of cache line by padding with NOPs.
  3684       // See the AMD and Intel software optimization manuals for the
  3685       // most efficient "long" NOP encodings.
  3686       // Unfortunately none of our alignment mechanisms suffice.
  3687       if ((EmitSync & 65536) == 0) {
  3688          masm.bind (CheckSucc) ;
  3690       masm.bind(DONE_LABEL);
  3692       // Avoid branch to branch on AMD processors
  3693       if (EmitSync & 32768) { masm.nop() ; }
  3695   %}
  3697   enc_class enc_String_Compare() %{
  3698     Label ECX_GOOD_LABEL, LENGTH_DIFF_LABEL,
  3699           POP_LABEL, DONE_LABEL, CONT_LABEL,
  3700           WHILE_HEAD_LABEL;
  3701     MacroAssembler masm(&cbuf);
  3703     // Get the first character position in both strings
  3704     //         [8] char array, [12] offset, [16] count
  3705     int value_offset  = java_lang_String::value_offset_in_bytes();
  3706     int offset_offset = java_lang_String::offset_offset_in_bytes();
  3707     int count_offset  = java_lang_String::count_offset_in_bytes();
  3708     int base_offset   = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3710     masm.movptr(rax, Address(rsi, value_offset));
  3711     masm.movl(rcx, Address(rsi, offset_offset));
  3712     masm.lea(rax, Address(rax, rcx, Address::times_2, base_offset));
  3713     masm.movptr(rbx, Address(rdi, value_offset));
  3714     masm.movl(rcx, Address(rdi, offset_offset));
  3715     masm.lea(rbx, Address(rbx, rcx, Address::times_2, base_offset));
  3717     // Compute the minimum of the string lengths(rsi) and the
  3718     // difference of the string lengths (stack)
  3721     if (VM_Version::supports_cmov()) {
  3722       masm.movl(rdi, Address(rdi, count_offset));
  3723       masm.movl(rsi, Address(rsi, count_offset));
  3724       masm.movl(rcx, rdi);
  3725       masm.subl(rdi, rsi);
  3726       masm.push(rdi);
  3727       masm.cmovl(Assembler::lessEqual, rsi, rcx);
  3728     } else {
  3729       masm.movl(rdi, Address(rdi, count_offset));
  3730       masm.movl(rcx, Address(rsi, count_offset));
  3731       masm.movl(rsi, rdi);
  3732       masm.subl(rdi, rcx);
  3733       masm.push(rdi);
  3734       masm.jcc(Assembler::lessEqual, ECX_GOOD_LABEL);
  3735       masm.movl(rsi, rcx);
  3736       // rsi holds min, rcx is unused
  3739     // Is the minimum length zero?
  3740     masm.bind(ECX_GOOD_LABEL);
  3741     masm.testl(rsi, rsi);
  3742     masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  3744     // Load first characters
  3745     masm.load_unsigned_short(rcx, Address(rbx, 0));
  3746     masm.load_unsigned_short(rdi, Address(rax, 0));
  3748     // Compare first characters
  3749     masm.subl(rcx, rdi);
  3750     masm.jcc(Assembler::notZero,  POP_LABEL);
  3751     masm.decrementl(rsi);
  3752     masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  3755       // Check after comparing first character to see if strings are equivalent
  3756       Label LSkip2;
  3757       // Check if the strings start at same location
  3758       masm.cmpptr(rbx,rax);
  3759       masm.jcc(Assembler::notEqual, LSkip2);
  3761       // Check if the length difference is zero (from stack)
  3762       masm.cmpl(Address(rsp, 0), 0x0);
  3763       masm.jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
  3765       // Strings might not be equivalent
  3766       masm.bind(LSkip2);
  3769     // Shift rax, and rbx, to the end of the arrays, negate min
  3770     masm.lea(rax, Address(rax, rsi, Address::times_2, 2));
  3771     masm.lea(rbx, Address(rbx, rsi, Address::times_2, 2));
  3772     masm.negl(rsi);
  3774     // Compare the rest of the characters
  3775     masm.bind(WHILE_HEAD_LABEL);
  3776     masm.load_unsigned_short(rcx, Address(rbx, rsi, Address::times_2, 0));
  3777     masm.load_unsigned_short(rdi, Address(rax, rsi, Address::times_2, 0));
  3778     masm.subl(rcx, rdi);
  3779     masm.jcc(Assembler::notZero, POP_LABEL);
  3780     masm.incrementl(rsi);
  3781     masm.jcc(Assembler::notZero, WHILE_HEAD_LABEL);
  3783     // Strings are equal up to min length.  Return the length difference.
  3784     masm.bind(LENGTH_DIFF_LABEL);
  3785     masm.pop(rcx);
  3786     masm.jmp(DONE_LABEL);
  3788     // Discard the stored length difference
  3789     masm.bind(POP_LABEL);
  3790     masm.addptr(rsp, 4);
  3792     // That's it
  3793     masm.bind(DONE_LABEL);
  3794   %}
  3796   enc_class enc_Array_Equals(eDIRegP ary1, eSIRegP ary2, eAXRegI tmp1, eBXRegI tmp2, eCXRegI result) %{
  3797     Label TRUE_LABEL, FALSE_LABEL, DONE_LABEL, COMPARE_LOOP_HDR, COMPARE_LOOP;
  3798     MacroAssembler masm(&cbuf);
  3800     Register ary1Reg   = as_Register($ary1$$reg);
  3801     Register ary2Reg   = as_Register($ary2$$reg);
  3802     Register tmp1Reg   = as_Register($tmp1$$reg);
  3803     Register tmp2Reg   = as_Register($tmp2$$reg);
  3804     Register resultReg = as_Register($result$$reg);
  3806     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3807     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3809     // Check the input args
  3810     masm.cmpl(ary1Reg, ary2Reg);
  3811     masm.jcc(Assembler::equal, TRUE_LABEL);
  3812     masm.testl(ary1Reg, ary1Reg);
  3813     masm.jcc(Assembler::zero, FALSE_LABEL);
  3814     masm.testl(ary2Reg, ary2Reg);
  3815     masm.jcc(Assembler::zero, FALSE_LABEL);
  3817     // Check the lengths
  3818     masm.movl(tmp2Reg, Address(ary1Reg, length_offset));
  3819     masm.movl(resultReg, Address(ary2Reg, length_offset));
  3820     masm.cmpl(tmp2Reg, resultReg);
  3821     masm.jcc(Assembler::notEqual, FALSE_LABEL);
  3822     masm.testl(resultReg, resultReg);
  3823     masm.jcc(Assembler::zero, TRUE_LABEL);
  3825     // Get the number of 4 byte vectors to compare
  3826     masm.shrl(resultReg, 1);
  3828     // Check for odd-length arrays
  3829     masm.andl(tmp2Reg, 1);
  3830     masm.testl(tmp2Reg, tmp2Reg);
  3831     masm.jcc(Assembler::zero, COMPARE_LOOP_HDR);
  3833     // Compare 2-byte "tail" at end of arrays
  3834     masm.load_unsigned_short(tmp1Reg, Address(ary1Reg, resultReg, Address::times_4, base_offset));
  3835     masm.load_unsigned_short(tmp2Reg, Address(ary2Reg, resultReg, Address::times_4, base_offset));
  3836     masm.cmpl(tmp1Reg, tmp2Reg);
  3837     masm.jcc(Assembler::notEqual, FALSE_LABEL);
  3838     masm.testl(resultReg, resultReg);
  3839     masm.jcc(Assembler::zero, TRUE_LABEL);
  3841     // Setup compare loop
  3842     masm.bind(COMPARE_LOOP_HDR);
  3843     // Shift tmp1Reg and tmp2Reg to the last 4-byte boundary of the arrays
  3844     masm.leal(tmp1Reg, Address(ary1Reg, resultReg, Address::times_4, base_offset));
  3845     masm.leal(tmp2Reg, Address(ary2Reg, resultReg, Address::times_4, base_offset));
  3846     masm.negl(resultReg);
  3848     // 4-byte-wide compare loop
  3849     masm.bind(COMPARE_LOOP);
  3850     masm.movl(ary1Reg, Address(tmp1Reg, resultReg, Address::times_4, 0));
  3851     masm.movl(ary2Reg, Address(tmp2Reg, resultReg, Address::times_4, 0));
  3852     masm.cmpl(ary1Reg, ary2Reg);
  3853     masm.jcc(Assembler::notEqual, FALSE_LABEL);
  3854     masm.increment(resultReg);
  3855     masm.jcc(Assembler::notZero, COMPARE_LOOP);
  3857     masm.bind(TRUE_LABEL);
  3858     masm.movl(resultReg, 1);   // return true
  3859     masm.jmp(DONE_LABEL);
  3861     masm.bind(FALSE_LABEL);
  3862     masm.xorl(resultReg, resultReg); // return false
  3864     // That's it
  3865     masm.bind(DONE_LABEL);
  3866   %}
  3868   enc_class enc_pop_rdx() %{
  3869     emit_opcode(cbuf,0x5A);
  3870   %}
  3872   enc_class enc_rethrow() %{
  3873     cbuf.set_inst_mark();
  3874     emit_opcode(cbuf, 0xE9);        // jmp    entry
  3875     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.code_end())-4,
  3876                    runtime_call_Relocation::spec(), RELOC_IMM32 );
  3877   %}
  3880   // Convert a double to an int.  Java semantics require we do complex
  3881   // manglelations in the corner cases.  So we set the rounding mode to
  3882   // 'zero', store the darned double down as an int, and reset the
  3883   // rounding mode to 'nearest'.  The hardware throws an exception which
  3884   // patches up the correct value directly to the stack.
  3885   enc_class D2I_encoding( regD src ) %{
  3886     // Flip to round-to-zero mode.  We attempted to allow invalid-op
  3887     // exceptions here, so that a NAN or other corner-case value will
  3888     // thrown an exception (but normal values get converted at full speed).
  3889     // However, I2C adapters and other float-stack manglers leave pending
  3890     // invalid-op exceptions hanging.  We would have to clear them before
  3891     // enabling them and that is more expensive than just testing for the
  3892     // invalid value Intel stores down in the corner cases.
  3893     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3894     emit_opcode(cbuf,0x2D);
  3895     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3896     // Allocate a word
  3897     emit_opcode(cbuf,0x83);            // SUB ESP,4
  3898     emit_opcode(cbuf,0xEC);
  3899     emit_d8(cbuf,0x04);
  3900     // Encoding assumes a double has been pushed into FPR0.
  3901     // Store down the double as an int, popping the FPU stack
  3902     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
  3903     emit_opcode(cbuf,0x1C);
  3904     emit_d8(cbuf,0x24);
  3905     // Restore the rounding mode; mask the exception
  3906     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3907     emit_opcode(cbuf,0x2D);
  3908     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3909         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3910         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3912     // Load the converted int; adjust CPU stack
  3913     emit_opcode(cbuf,0x58);       // POP EAX
  3914     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
  3915     emit_d32   (cbuf,0x80000000); //         0x80000000
  3916     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3917     emit_d8    (cbuf,0x07);       // Size of slow_call
  3918     // Push src onto stack slow-path
  3919     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3920     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3921     // CALL directly to the runtime
  3922     cbuf.set_inst_mark();
  3923     emit_opcode(cbuf,0xE8);       // Call into runtime
  3924     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3925     // Carry on here...
  3926   %}
  3928   enc_class D2L_encoding( regD src ) %{
  3929     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3930     emit_opcode(cbuf,0x2D);
  3931     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3932     // Allocate a word
  3933     emit_opcode(cbuf,0x83);            // SUB ESP,8
  3934     emit_opcode(cbuf,0xEC);
  3935     emit_d8(cbuf,0x08);
  3936     // Encoding assumes a double has been pushed into FPR0.
  3937     // Store down the double as a long, popping the FPU stack
  3938     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
  3939     emit_opcode(cbuf,0x3C);
  3940     emit_d8(cbuf,0x24);
  3941     // Restore the rounding mode; mask the exception
  3942     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3943     emit_opcode(cbuf,0x2D);
  3944     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3945         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3946         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3948     // Load the converted int; adjust CPU stack
  3949     emit_opcode(cbuf,0x58);       // POP EAX
  3950     emit_opcode(cbuf,0x5A);       // POP EDX
  3951     emit_opcode(cbuf,0x81);       // CMP EDX,imm
  3952     emit_d8    (cbuf,0xFA);       // rdx
  3953     emit_d32   (cbuf,0x80000000); //         0x80000000
  3954     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3955     emit_d8    (cbuf,0x07+4);     // Size of slow_call
  3956     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
  3957     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
  3958     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3959     emit_d8    (cbuf,0x07);       // Size of slow_call
  3960     // Push src onto stack slow-path
  3961     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3962     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3963     // CALL directly to the runtime
  3964     cbuf.set_inst_mark();
  3965     emit_opcode(cbuf,0xE8);       // Call into runtime
  3966     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3967     // Carry on here...
  3968   %}
  3970   enc_class X2L_encoding( regX src ) %{
  3971     // Allocate a word
  3972     emit_opcode(cbuf,0x83);      // SUB ESP,8
  3973     emit_opcode(cbuf,0xEC);
  3974     emit_d8(cbuf,0x08);
  3976     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
  3977     emit_opcode  (cbuf, 0x0F );
  3978     emit_opcode  (cbuf, 0x11 );
  3979     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3981     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
  3982     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3984     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
  3985     emit_opcode(cbuf,0x2D);
  3986     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3988     // Encoding assumes a double has been pushed into FPR0.
  3989     // Store down the double as a long, popping the FPU stack
  3990     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
  3991     emit_opcode(cbuf,0x3C);
  3992     emit_d8(cbuf,0x24);
  3994     // Restore the rounding mode; mask the exception
  3995     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
  3996     emit_opcode(cbuf,0x2D);
  3997     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3998       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3999       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  4001     // Load the converted int; adjust CPU stack
  4002     emit_opcode(cbuf,0x58);      // POP EAX
  4004     emit_opcode(cbuf,0x5A);      // POP EDX
  4006     emit_opcode(cbuf,0x81);      // CMP EDX,imm
  4007     emit_d8    (cbuf,0xFA);      // rdx
  4008     emit_d32   (cbuf,0x80000000);//         0x80000000
  4010     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  4011     emit_d8    (cbuf,0x13+4);    // Size of slow_call
  4013     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
  4014     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
  4016     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  4017     emit_d8    (cbuf,0x13);      // Size of slow_call
  4019     // Allocate a word
  4020     emit_opcode(cbuf,0x83);      // SUB ESP,4
  4021     emit_opcode(cbuf,0xEC);
  4022     emit_d8(cbuf,0x04);
  4024     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
  4025     emit_opcode  (cbuf, 0x0F );
  4026     emit_opcode  (cbuf, 0x11 );
  4027     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4029     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
  4030     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4032     emit_opcode(cbuf,0x83);      // ADD ESP,4
  4033     emit_opcode(cbuf,0xC4);
  4034     emit_d8(cbuf,0x04);
  4036     // CALL directly to the runtime
  4037     cbuf.set_inst_mark();
  4038     emit_opcode(cbuf,0xE8);       // Call into runtime
  4039     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  4040     // Carry on here...
  4041   %}
  4043   enc_class XD2L_encoding( regXD src ) %{
  4044     // Allocate a word
  4045     emit_opcode(cbuf,0x83);      // SUB ESP,8
  4046     emit_opcode(cbuf,0xEC);
  4047     emit_d8(cbuf,0x08);
  4049     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
  4050     emit_opcode  (cbuf, 0x0F );
  4051     emit_opcode  (cbuf, 0x11 );
  4052     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4054     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
  4055     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4057     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
  4058     emit_opcode(cbuf,0x2D);
  4059     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  4061     // Encoding assumes a double has been pushed into FPR0.
  4062     // Store down the double as a long, popping the FPU stack
  4063     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
  4064     emit_opcode(cbuf,0x3C);
  4065     emit_d8(cbuf,0x24);
  4067     // Restore the rounding mode; mask the exception
  4068     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
  4069     emit_opcode(cbuf,0x2D);
  4070     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  4071       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  4072       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  4074     // Load the converted int; adjust CPU stack
  4075     emit_opcode(cbuf,0x58);      // POP EAX
  4077     emit_opcode(cbuf,0x5A);      // POP EDX
  4079     emit_opcode(cbuf,0x81);      // CMP EDX,imm
  4080     emit_d8    (cbuf,0xFA);      // rdx
  4081     emit_d32   (cbuf,0x80000000); //         0x80000000
  4083     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  4084     emit_d8    (cbuf,0x13+4);    // Size of slow_call
  4086     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
  4087     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
  4089     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  4090     emit_d8    (cbuf,0x13);      // Size of slow_call
  4092     // Push src onto stack slow-path
  4093     // Allocate a word
  4094     emit_opcode(cbuf,0x83);      // SUB ESP,8
  4095     emit_opcode(cbuf,0xEC);
  4096     emit_d8(cbuf,0x08);
  4098     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
  4099     emit_opcode  (cbuf, 0x0F );
  4100     emit_opcode  (cbuf, 0x11 );
  4101     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4103     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
  4104     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4106     emit_opcode(cbuf,0x83);      // ADD ESP,8
  4107     emit_opcode(cbuf,0xC4);
  4108     emit_d8(cbuf,0x08);
  4110     // CALL directly to the runtime
  4111     cbuf.set_inst_mark();
  4112     emit_opcode(cbuf,0xE8);      // Call into runtime
  4113     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  4114     // Carry on here...
  4115   %}
  4117   enc_class D2X_encoding( regX dst, regD src ) %{
  4118     // Allocate a word
  4119     emit_opcode(cbuf,0x83);            // SUB ESP,4
  4120     emit_opcode(cbuf,0xEC);
  4121     emit_d8(cbuf,0x04);
  4122     int pop = 0x02;
  4123     if ($src$$reg != FPR1L_enc) {
  4124       emit_opcode( cbuf, 0xD9 );       // FLD    ST(i-1)
  4125       emit_d8( cbuf, 0xC0-1+$src$$reg );
  4126       pop = 0x03;
  4128     store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S  [ESP]
  4130     emit_opcode  (cbuf, 0xF3 );        // MOVSS dst(xmm), [ESP]
  4131     emit_opcode  (cbuf, 0x0F );
  4132     emit_opcode  (cbuf, 0x10 );
  4133     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  4135     emit_opcode(cbuf,0x83);            // ADD ESP,4
  4136     emit_opcode(cbuf,0xC4);
  4137     emit_d8(cbuf,0x04);
  4138     // Carry on here...
  4139   %}
  4141   enc_class FX2I_encoding( regX src, eRegI dst ) %{
  4142     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  4144     // Compare the result to see if we need to go to the slow path
  4145     emit_opcode(cbuf,0x81);       // CMP dst,imm
  4146     emit_rm    (cbuf,0x3,0x7,$dst$$reg);
  4147     emit_d32   (cbuf,0x80000000); //         0x80000000
  4149     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  4150     emit_d8    (cbuf,0x13);       // Size of slow_call
  4151     // Store xmm to a temp memory
  4152     // location and push it onto stack.
  4154     emit_opcode(cbuf,0x83);  // SUB ESP,4
  4155     emit_opcode(cbuf,0xEC);
  4156     emit_d8(cbuf, $primary ? 0x8 : 0x4);
  4158     emit_opcode  (cbuf, $primary ? 0xF2 : 0xF3 );   // MOVSS [ESP], xmm
  4159     emit_opcode  (cbuf, 0x0F );
  4160     emit_opcode  (cbuf, 0x11 );
  4161     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4163     emit_opcode(cbuf, $primary ? 0xDD : 0xD9 );      // FLD [ESP]
  4164     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4166     emit_opcode(cbuf,0x83);    // ADD ESP,4
  4167     emit_opcode(cbuf,0xC4);
  4168     emit_d8(cbuf, $primary ? 0x8 : 0x4);
  4170     // CALL directly to the runtime
  4171     cbuf.set_inst_mark();
  4172     emit_opcode(cbuf,0xE8);       // Call into runtime
  4173     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  4175     // Carry on here...
  4176   %}
  4178   enc_class X2D_encoding( regD dst, regX src ) %{
  4179     // Allocate a word
  4180     emit_opcode(cbuf,0x83);     // SUB ESP,4
  4181     emit_opcode(cbuf,0xEC);
  4182     emit_d8(cbuf,0x04);
  4184     emit_opcode  (cbuf, 0xF3 ); // MOVSS [ESP], xmm
  4185     emit_opcode  (cbuf, 0x0F );
  4186     emit_opcode  (cbuf, 0x11 );
  4187     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4189     emit_opcode(cbuf,0xD9 );    // FLD_S [ESP]
  4190     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4192     emit_opcode(cbuf,0x83);     // ADD ESP,4
  4193     emit_opcode(cbuf,0xC4);
  4194     emit_d8(cbuf,0x04);
  4196     // Carry on here...
  4197   %}
  4199   enc_class AbsXF_encoding(regX dst) %{
  4200     address signmask_address=(address)float_signmask_pool;
  4201     // andpd:\tANDPS  $dst,[signconst]
  4202     emit_opcode(cbuf, 0x0F);
  4203     emit_opcode(cbuf, 0x54);
  4204     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4205     emit_d32(cbuf, (int)signmask_address);
  4206   %}
  4208   enc_class AbsXD_encoding(regXD dst) %{
  4209     address signmask_address=(address)double_signmask_pool;
  4210     // andpd:\tANDPD  $dst,[signconst]
  4211     emit_opcode(cbuf, 0x66);
  4212     emit_opcode(cbuf, 0x0F);
  4213     emit_opcode(cbuf, 0x54);
  4214     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4215     emit_d32(cbuf, (int)signmask_address);
  4216   %}
  4218   enc_class NegXF_encoding(regX dst) %{
  4219     address signmask_address=(address)float_signflip_pool;
  4220     // andpd:\tXORPS  $dst,[signconst]
  4221     emit_opcode(cbuf, 0x0F);
  4222     emit_opcode(cbuf, 0x57);
  4223     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4224     emit_d32(cbuf, (int)signmask_address);
  4225   %}
  4227   enc_class NegXD_encoding(regXD dst) %{
  4228     address signmask_address=(address)double_signflip_pool;
  4229     // andpd:\tXORPD  $dst,[signconst]
  4230     emit_opcode(cbuf, 0x66);
  4231     emit_opcode(cbuf, 0x0F);
  4232     emit_opcode(cbuf, 0x57);
  4233     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4234     emit_d32(cbuf, (int)signmask_address);
  4235   %}
  4237   enc_class FMul_ST_reg( eRegF src1 ) %{
  4238     // Operand was loaded from memory into fp ST (stack top)
  4239     // FMUL   ST,$src  /* D8 C8+i */
  4240     emit_opcode(cbuf, 0xD8);
  4241     emit_opcode(cbuf, 0xC8 + $src1$$reg);
  4242   %}
  4244   enc_class FAdd_ST_reg( eRegF src2 ) %{
  4245     // FADDP  ST,src2  /* D8 C0+i */
  4246     emit_opcode(cbuf, 0xD8);
  4247     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  4248     //could use FADDP  src2,fpST  /* DE C0+i */
  4249   %}
  4251   enc_class FAddP_reg_ST( eRegF src2 ) %{
  4252     // FADDP  src2,ST  /* DE C0+i */
  4253     emit_opcode(cbuf, 0xDE);
  4254     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  4255   %}
  4257   enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
  4258     // Operand has been loaded into fp ST (stack top)
  4259       // FSUB   ST,$src1
  4260       emit_opcode(cbuf, 0xD8);
  4261       emit_opcode(cbuf, 0xE0 + $src1$$reg);
  4263       // FDIV
  4264       emit_opcode(cbuf, 0xD8);
  4265       emit_opcode(cbuf, 0xF0 + $src2$$reg);
  4266   %}
  4268   enc_class MulFAddF (eRegF src1, eRegF src2) %{
  4269     // Operand was loaded from memory into fp ST (stack top)
  4270     // FADD   ST,$src  /* D8 C0+i */
  4271     emit_opcode(cbuf, 0xD8);
  4272     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  4274     // FMUL  ST,src2  /* D8 C*+i */
  4275     emit_opcode(cbuf, 0xD8);
  4276     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  4277   %}
  4280   enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
  4281     // Operand was loaded from memory into fp ST (stack top)
  4282     // FADD   ST,$src  /* D8 C0+i */
  4283     emit_opcode(cbuf, 0xD8);
  4284     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  4286     // FMULP  src2,ST  /* DE C8+i */
  4287     emit_opcode(cbuf, 0xDE);
  4288     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  4289   %}
  4291   // Atomically load the volatile long
  4292   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
  4293     emit_opcode(cbuf,0xDF);
  4294     int rm_byte_opcode = 0x05;
  4295     int base     = $mem$$base;
  4296     int index    = $mem$$index;
  4297     int scale    = $mem$$scale;
  4298     int displace = $mem$$disp;
  4299     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4300     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  4301     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  4302   %}
  4304   enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
  4305     { // Atomic long load
  4306       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
  4307       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4308       emit_opcode(cbuf,0x0F);
  4309       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4310       int base     = $mem$$base;
  4311       int index    = $mem$$index;
  4312       int scale    = $mem$$scale;
  4313       int displace = $mem$$disp;
  4314       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4315       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4317     { // MOVSD $dst,$tmp ! atomic long store
  4318       emit_opcode(cbuf,0xF2);
  4319       emit_opcode(cbuf,0x0F);
  4320       emit_opcode(cbuf,0x11);
  4321       int base     = $dst$$base;
  4322       int index    = $dst$$index;
  4323       int scale    = $dst$$scale;
  4324       int displace = $dst$$disp;
  4325       bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
  4326       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4328   %}
  4330   enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
  4331     { // Atomic long load
  4332       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
  4333       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4334       emit_opcode(cbuf,0x0F);
  4335       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4336       int base     = $mem$$base;
  4337       int index    = $mem$$index;
  4338       int scale    = $mem$$scale;
  4339       int displace = $mem$$disp;
  4340       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4341       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4343     { // MOVD $dst.lo,$tmp
  4344       emit_opcode(cbuf,0x66);
  4345       emit_opcode(cbuf,0x0F);
  4346       emit_opcode(cbuf,0x7E);
  4347       emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
  4349     { // PSRLQ $tmp,32
  4350       emit_opcode(cbuf,0x66);
  4351       emit_opcode(cbuf,0x0F);
  4352       emit_opcode(cbuf,0x73);
  4353       emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
  4354       emit_d8(cbuf, 0x20);
  4356     { // MOVD $dst.hi,$tmp
  4357       emit_opcode(cbuf,0x66);
  4358       emit_opcode(cbuf,0x0F);
  4359       emit_opcode(cbuf,0x7E);
  4360       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
  4362   %}
  4364   // Volatile Store Long.  Must be atomic, so move it into
  4365   // the FP TOS and then do a 64-bit FIST.  Has to probe the
  4366   // target address before the store (for null-ptr checks)
  4367   // so the memory operand is used twice in the encoding.
  4368   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
  4369     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
  4370     cbuf.set_inst_mark();            // Mark start of FIST in case $mem has an oop
  4371     emit_opcode(cbuf,0xDF);
  4372     int rm_byte_opcode = 0x07;
  4373     int base     = $mem$$base;
  4374     int index    = $mem$$index;
  4375     int scale    = $mem$$scale;
  4376     int displace = $mem$$disp;
  4377     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4378     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  4379   %}
  4381   enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
  4382     { // Atomic long load
  4383       // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
  4384       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4385       emit_opcode(cbuf,0x0F);
  4386       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4387       int base     = $src$$base;
  4388       int index    = $src$$index;
  4389       int scale    = $src$$scale;
  4390       int displace = $src$$disp;
  4391       bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
  4392       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4394     cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
  4395     { // MOVSD $mem,$tmp ! atomic long store
  4396       emit_opcode(cbuf,0xF2);
  4397       emit_opcode(cbuf,0x0F);
  4398       emit_opcode(cbuf,0x11);
  4399       int base     = $mem$$base;
  4400       int index    = $mem$$index;
  4401       int scale    = $mem$$scale;
  4402       int displace = $mem$$disp;
  4403       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4404       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4406   %}
  4408   enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
  4409     { // MOVD $tmp,$src.lo
  4410       emit_opcode(cbuf,0x66);
  4411       emit_opcode(cbuf,0x0F);
  4412       emit_opcode(cbuf,0x6E);
  4413       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  4415     { // MOVD $tmp2,$src.hi
  4416       emit_opcode(cbuf,0x66);
  4417       emit_opcode(cbuf,0x0F);
  4418       emit_opcode(cbuf,0x6E);
  4419       emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
  4421     { // PUNPCKLDQ $tmp,$tmp2
  4422       emit_opcode(cbuf,0x66);
  4423       emit_opcode(cbuf,0x0F);
  4424       emit_opcode(cbuf,0x62);
  4425       emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
  4427     cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
  4428     { // MOVSD $mem,$tmp ! atomic long store
  4429       emit_opcode(cbuf,0xF2);
  4430       emit_opcode(cbuf,0x0F);
  4431       emit_opcode(cbuf,0x11);
  4432       int base     = $mem$$base;
  4433       int index    = $mem$$index;
  4434       int scale    = $mem$$scale;
  4435       int displace = $mem$$disp;
  4436       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4437       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4439   %}
  4441   // Safepoint Poll.  This polls the safepoint page, and causes an
  4442   // exception if it is not readable. Unfortunately, it kills the condition code
  4443   // in the process
  4444   // We current use TESTL [spp],EDI
  4445   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
  4447   enc_class Safepoint_Poll() %{
  4448     cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0);
  4449     emit_opcode(cbuf,0x85);
  4450     emit_rm (cbuf, 0x0, 0x7, 0x5);
  4451     emit_d32(cbuf, (intptr_t)os::get_polling_page());
  4452   %}
  4453 %}
  4456 //----------FRAME--------------------------------------------------------------
  4457 // Definition of frame structure and management information.
  4458 //
  4459 //  S T A C K   L A Y O U T    Allocators stack-slot number
  4460 //                             |   (to get allocators register number
  4461 //  G  Owned by    |        |  v    add OptoReg::stack0())
  4462 //  r   CALLER     |        |
  4463 //  o     |        +--------+      pad to even-align allocators stack-slot
  4464 //  w     V        |  pad0  |        numbers; owned by CALLER
  4465 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  4466 //  h     ^        |   in   |  5
  4467 //        |        |  args  |  4   Holes in incoming args owned by SELF
  4468 //  |     |        |        |  3
  4469 //  |     |        +--------+
  4470 //  V     |        | old out|      Empty on Intel, window on Sparc
  4471 //        |    old |preserve|      Must be even aligned.
  4472 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  4473 //        |        |   in   |  3   area for Intel ret address
  4474 //     Owned by    |preserve|      Empty on Sparc.
  4475 //       SELF      +--------+
  4476 //        |        |  pad2  |  2   pad to align old SP
  4477 //        |        +--------+  1
  4478 //        |        | locks  |  0
  4479 //        |        +--------+----> OptoReg::stack0(), even aligned
  4480 //        |        |  pad1  | 11   pad to align new SP
  4481 //        |        +--------+
  4482 //        |        |        | 10
  4483 //        |        | spills |  9   spills
  4484 //        V        |        |  8   (pad0 slot for callee)
  4485 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  4486 //        ^        |  out   |  7
  4487 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  4488 //     Owned by    +--------+
  4489 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  4490 //        |    new |preserve|      Must be even-aligned.
  4491 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  4492 //        |        |        |
  4493 //
  4494 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  4495 //         known from SELF's arguments and the Java calling convention.
  4496 //         Region 6-7 is determined per call site.
  4497 // Note 2: If the calling convention leaves holes in the incoming argument
  4498 //         area, those holes are owned by SELF.  Holes in the outgoing area
  4499 //         are owned by the CALLEE.  Holes should not be nessecary in the
  4500 //         incoming area, as the Java calling convention is completely under
  4501 //         the control of the AD file.  Doubles can be sorted and packed to
  4502 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  4503 //         varargs C calling conventions.
  4504 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  4505 //         even aligned with pad0 as needed.
  4506 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  4507 //         region 6-11 is even aligned; it may be padded out more so that
  4508 //         the region from SP to FP meets the minimum stack alignment.
  4510 frame %{
  4511   // What direction does stack grow in (assumed to be same for C & Java)
  4512   stack_direction(TOWARDS_LOW);
  4514   // These three registers define part of the calling convention
  4515   // between compiled code and the interpreter.
  4516   inline_cache_reg(EAX);                // Inline Cache Register
  4517   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
  4519   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  4520   cisc_spilling_operand_name(indOffset32);
  4522   // Number of stack slots consumed by locking an object
  4523   sync_stack_slots(1);
  4525   // Compiled code's Frame Pointer
  4526   frame_pointer(ESP);
  4527   // Interpreter stores its frame pointer in a register which is
  4528   // stored to the stack by I2CAdaptors.
  4529   // I2CAdaptors convert from interpreted java to compiled java.
  4530   interpreter_frame_pointer(EBP);
  4532   // Stack alignment requirement
  4533   // Alignment size in bytes (128-bit -> 16 bytes)
  4534   stack_alignment(StackAlignmentInBytes);
  4536   // Number of stack slots between incoming argument block and the start of
  4537   // a new frame.  The PROLOG must add this many slots to the stack.  The
  4538   // EPILOG must remove this many slots.  Intel needs one slot for
  4539   // return address and one for rbp, (must save rbp)
  4540   in_preserve_stack_slots(2+VerifyStackAtCalls);
  4542   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  4543   // for calls to C.  Supports the var-args backing area for register parms.
  4544   varargs_C_out_slots_killed(0);
  4546   // The after-PROLOG location of the return address.  Location of
  4547   // return address specifies a type (REG or STACK) and a number
  4548   // representing the register number (i.e. - use a register name) or
  4549   // stack slot.
  4550   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  4551   // Otherwise, it is above the locks and verification slot and alignment word
  4552   return_addr(STACK - 1 +
  4553               round_to(1+VerifyStackAtCalls+
  4554               Compile::current()->fixed_slots(),
  4555               (StackAlignmentInBytes/wordSize)));
  4557   // Body of function which returns an integer array locating
  4558   // arguments either in registers or in stack slots.  Passed an array
  4559   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4560   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4561   // arguments for a CALLEE.  Incoming stack arguments are
  4562   // automatically biased by the preserve_stack_slots field above.
  4563   calling_convention %{
  4564     // No difference between ingoing/outgoing just pass false
  4565     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  4566   %}
  4569   // Body of function which returns an integer array locating
  4570   // arguments either in registers or in stack slots.  Passed an array
  4571   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4572   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4573   // arguments for a CALLEE.  Incoming stack arguments are
  4574   // automatically biased by the preserve_stack_slots field above.
  4575   c_calling_convention %{
  4576     // This is obviously always outgoing
  4577     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  4578   %}
  4580   // Location of C & interpreter return values
  4581   c_return_value %{
  4582     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  4583     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  4584     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  4586     // in SSE2+ mode we want to keep the FPU stack clean so pretend
  4587     // that C functions return float and double results in XMM0.
  4588     if( ideal_reg == Op_RegD && UseSSE>=2 )
  4589       return OptoRegPair(XMM0b_num,XMM0a_num);
  4590     if( ideal_reg == Op_RegF && UseSSE>=2 )
  4591       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  4593     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  4594   %}
  4596   // Location of return values
  4597   return_value %{
  4598     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  4599     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  4600     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  4601     if( ideal_reg == Op_RegD && UseSSE>=2 )
  4602       return OptoRegPair(XMM0b_num,XMM0a_num);
  4603     if( ideal_reg == Op_RegF && UseSSE>=1 )
  4604       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  4605     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  4606   %}
  4608 %}
  4610 //----------ATTRIBUTES---------------------------------------------------------
  4611 //----------Operand Attributes-------------------------------------------------
  4612 op_attrib op_cost(0);        // Required cost attribute
  4614 //----------Instruction Attributes---------------------------------------------
  4615 ins_attrib ins_cost(100);       // Required cost attribute
  4616 ins_attrib ins_size(8);         // Required size attribute (in bits)
  4617 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
  4618 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  4619                                 // non-matching short branch variant of some
  4620                                                             // long branch?
  4621 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
  4622                                 // specifies the alignment that some part of the instruction (not
  4623                                 // necessarily the start) requires.  If > 1, a compute_padding()
  4624                                 // function must be provided for the instruction
  4626 //----------OPERANDS-----------------------------------------------------------
  4627 // Operand definitions must precede instruction definitions for correct parsing
  4628 // in the ADLC because operands constitute user defined types which are used in
  4629 // instruction definitions.
  4631 //----------Simple Operands----------------------------------------------------
  4632 // Immediate Operands
  4633 // Integer Immediate
  4634 operand immI() %{
  4635   match(ConI);
  4637   op_cost(10);
  4638   format %{ %}
  4639   interface(CONST_INTER);
  4640 %}
  4642 // Constant for test vs zero
  4643 operand immI0() %{
  4644   predicate(n->get_int() == 0);
  4645   match(ConI);
  4647   op_cost(0);
  4648   format %{ %}
  4649   interface(CONST_INTER);
  4650 %}
  4652 // Constant for increment
  4653 operand immI1() %{
  4654   predicate(n->get_int() == 1);
  4655   match(ConI);
  4657   op_cost(0);
  4658   format %{ %}
  4659   interface(CONST_INTER);
  4660 %}
  4662 // Constant for decrement
  4663 operand immI_M1() %{
  4664   predicate(n->get_int() == -1);
  4665   match(ConI);
  4667   op_cost(0);
  4668   format %{ %}
  4669   interface(CONST_INTER);
  4670 %}
  4672 // Valid scale values for addressing modes
  4673 operand immI2() %{
  4674   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  4675   match(ConI);
  4677   format %{ %}
  4678   interface(CONST_INTER);
  4679 %}
  4681 operand immI8() %{
  4682   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  4683   match(ConI);
  4685   op_cost(5);
  4686   format %{ %}
  4687   interface(CONST_INTER);
  4688 %}
  4690 operand immI16() %{
  4691   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  4692   match(ConI);
  4694   op_cost(10);
  4695   format %{ %}
  4696   interface(CONST_INTER);
  4697 %}
  4699 // Constant for long shifts
  4700 operand immI_32() %{
  4701   predicate( n->get_int() == 32 );
  4702   match(ConI);
  4704   op_cost(0);
  4705   format %{ %}
  4706   interface(CONST_INTER);
  4707 %}
  4709 operand immI_1_31() %{
  4710   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  4711   match(ConI);
  4713   op_cost(0);
  4714   format %{ %}
  4715   interface(CONST_INTER);
  4716 %}
  4718 operand immI_32_63() %{
  4719   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  4720   match(ConI);
  4721   op_cost(0);
  4723   format %{ %}
  4724   interface(CONST_INTER);
  4725 %}
  4727 operand immI_1() %{
  4728   predicate( n->get_int() == 1 );
  4729   match(ConI);
  4731   op_cost(0);
  4732   format %{ %}
  4733   interface(CONST_INTER);
  4734 %}
  4736 operand immI_2() %{
  4737   predicate( n->get_int() == 2 );
  4738   match(ConI);
  4740   op_cost(0);
  4741   format %{ %}
  4742   interface(CONST_INTER);
  4743 %}
  4745 operand immI_3() %{
  4746   predicate( n->get_int() == 3 );
  4747   match(ConI);
  4749   op_cost(0);
  4750   format %{ %}
  4751   interface(CONST_INTER);
  4752 %}
  4754 // Pointer Immediate
  4755 operand immP() %{
  4756   match(ConP);
  4758   op_cost(10);
  4759   format %{ %}
  4760   interface(CONST_INTER);
  4761 %}
  4763 // NULL Pointer Immediate
  4764 operand immP0() %{
  4765   predicate( n->get_ptr() == 0 );
  4766   match(ConP);
  4767   op_cost(0);
  4769   format %{ %}
  4770   interface(CONST_INTER);
  4771 %}
  4773 // Long Immediate
  4774 operand immL() %{
  4775   match(ConL);
  4777   op_cost(20);
  4778   format %{ %}
  4779   interface(CONST_INTER);
  4780 %}
  4782 // Long Immediate zero
  4783 operand immL0() %{
  4784   predicate( n->get_long() == 0L );
  4785   match(ConL);
  4786   op_cost(0);
  4788   format %{ %}
  4789   interface(CONST_INTER);
  4790 %}
  4792 // Long Immediate zero
  4793 operand immL_M1() %{
  4794   predicate( n->get_long() == -1L );
  4795   match(ConL);
  4796   op_cost(0);
  4798   format %{ %}
  4799   interface(CONST_INTER);
  4800 %}
  4802 // Long immediate from 0 to 127.
  4803 // Used for a shorter form of long mul by 10.
  4804 operand immL_127() %{
  4805   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  4806   match(ConL);
  4807   op_cost(0);
  4809   format %{ %}
  4810   interface(CONST_INTER);
  4811 %}
  4813 // Long Immediate: low 32-bit mask
  4814 operand immL_32bits() %{
  4815   predicate(n->get_long() == 0xFFFFFFFFL);
  4816   match(ConL);
  4817   op_cost(0);
  4819   format %{ %}
  4820   interface(CONST_INTER);
  4821 %}
  4823 // Long Immediate: low 32-bit mask
  4824 operand immL32() %{
  4825   predicate(n->get_long() == (int)(n->get_long()));
  4826   match(ConL);
  4827   op_cost(20);
  4829   format %{ %}
  4830   interface(CONST_INTER);
  4831 %}
  4833 //Double Immediate zero
  4834 operand immD0() %{
  4835   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4836   // bug that generates code such that NaNs compare equal to 0.0
  4837   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  4838   match(ConD);
  4840   op_cost(5);
  4841   format %{ %}
  4842   interface(CONST_INTER);
  4843 %}
  4845 // Double Immediate
  4846 operand immD1() %{
  4847   predicate( UseSSE<=1 && n->getd() == 1.0 );
  4848   match(ConD);
  4850   op_cost(5);
  4851   format %{ %}
  4852   interface(CONST_INTER);
  4853 %}
  4855 // Double Immediate
  4856 operand immD() %{
  4857   predicate(UseSSE<=1);
  4858   match(ConD);
  4860   op_cost(5);
  4861   format %{ %}
  4862   interface(CONST_INTER);
  4863 %}
  4865 operand immXD() %{
  4866   predicate(UseSSE>=2);
  4867   match(ConD);
  4869   op_cost(5);
  4870   format %{ %}
  4871   interface(CONST_INTER);
  4872 %}
  4874 // Double Immediate zero
  4875 operand immXD0() %{
  4876   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4877   // bug that generates code such that NaNs compare equal to 0.0 AND do not
  4878   // compare equal to -0.0.
  4879   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  4880   match(ConD);
  4882   format %{ %}
  4883   interface(CONST_INTER);
  4884 %}
  4886 // Float Immediate zero
  4887 operand immF0() %{
  4888   predicate( UseSSE == 0 && n->getf() == 0.0 );
  4889   match(ConF);
  4891   op_cost(5);
  4892   format %{ %}
  4893   interface(CONST_INTER);
  4894 %}
  4896 // Float Immediate
  4897 operand immF() %{
  4898   predicate( UseSSE == 0 );
  4899   match(ConF);
  4901   op_cost(5);
  4902   format %{ %}
  4903   interface(CONST_INTER);
  4904 %}
  4906 // Float Immediate
  4907 operand immXF() %{
  4908   predicate(UseSSE >= 1);
  4909   match(ConF);
  4911   op_cost(5);
  4912   format %{ %}
  4913   interface(CONST_INTER);
  4914 %}
  4916 // Float Immediate zero.  Zero and not -0.0
  4917 operand immXF0() %{
  4918   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  4919   match(ConF);
  4921   op_cost(5);
  4922   format %{ %}
  4923   interface(CONST_INTER);
  4924 %}
  4926 // Immediates for special shifts (sign extend)
  4928 // Constants for increment
  4929 operand immI_16() %{
  4930   predicate( n->get_int() == 16 );
  4931   match(ConI);
  4933   format %{ %}
  4934   interface(CONST_INTER);
  4935 %}
  4937 operand immI_24() %{
  4938   predicate( n->get_int() == 24 );
  4939   match(ConI);
  4941   format %{ %}
  4942   interface(CONST_INTER);
  4943 %}
  4945 // Constant for byte-wide masking
  4946 operand immI_255() %{
  4947   predicate( n->get_int() == 255 );
  4948   match(ConI);
  4950   format %{ %}
  4951   interface(CONST_INTER);
  4952 %}
  4954 // Register Operands
  4955 // Integer Register
  4956 operand eRegI() %{
  4957   constraint(ALLOC_IN_RC(e_reg));
  4958   match(RegI);
  4959   match(xRegI);
  4960   match(eAXRegI);
  4961   match(eBXRegI);
  4962   match(eCXRegI);
  4963   match(eDXRegI);
  4964   match(eDIRegI);
  4965   match(eSIRegI);
  4967   format %{ %}
  4968   interface(REG_INTER);
  4969 %}
  4971 // Subset of Integer Register
  4972 operand xRegI(eRegI reg) %{
  4973   constraint(ALLOC_IN_RC(x_reg));
  4974   match(reg);
  4975   match(eAXRegI);
  4976   match(eBXRegI);
  4977   match(eCXRegI);
  4978   match(eDXRegI);
  4980   format %{ %}
  4981   interface(REG_INTER);
  4982 %}
  4984 // Special Registers
  4985 operand eAXRegI(xRegI reg) %{
  4986   constraint(ALLOC_IN_RC(eax_reg));
  4987   match(reg);
  4988   match(eRegI);
  4990   format %{ "EAX" %}
  4991   interface(REG_INTER);
  4992 %}
  4994 // Special Registers
  4995 operand eBXRegI(xRegI reg) %{
  4996   constraint(ALLOC_IN_RC(ebx_reg));
  4997   match(reg);
  4998   match(eRegI);
  5000   format %{ "EBX" %}
  5001   interface(REG_INTER);
  5002 %}
  5004 operand eCXRegI(xRegI reg) %{
  5005   constraint(ALLOC_IN_RC(ecx_reg));
  5006   match(reg);
  5007   match(eRegI);
  5009   format %{ "ECX" %}
  5010   interface(REG_INTER);
  5011 %}
  5013 operand eDXRegI(xRegI reg) %{
  5014   constraint(ALLOC_IN_RC(edx_reg));
  5015   match(reg);
  5016   match(eRegI);
  5018   format %{ "EDX" %}
  5019   interface(REG_INTER);
  5020 %}
  5022 operand eDIRegI(xRegI reg) %{
  5023   constraint(ALLOC_IN_RC(edi_reg));
  5024   match(reg);
  5025   match(eRegI);
  5027   format %{ "EDI" %}
  5028   interface(REG_INTER);
  5029 %}
  5031 operand naxRegI() %{
  5032   constraint(ALLOC_IN_RC(nax_reg));
  5033   match(RegI);
  5034   match(eCXRegI);
  5035   match(eDXRegI);
  5036   match(eSIRegI);
  5037   match(eDIRegI);
  5039   format %{ %}
  5040   interface(REG_INTER);
  5041 %}
  5043 operand nadxRegI() %{
  5044   constraint(ALLOC_IN_RC(nadx_reg));
  5045   match(RegI);
  5046   match(eBXRegI);
  5047   match(eCXRegI);
  5048   match(eSIRegI);
  5049   match(eDIRegI);
  5051   format %{ %}
  5052   interface(REG_INTER);
  5053 %}
  5055 operand ncxRegI() %{
  5056   constraint(ALLOC_IN_RC(ncx_reg));
  5057   match(RegI);
  5058   match(eAXRegI);
  5059   match(eDXRegI);
  5060   match(eSIRegI);
  5061   match(eDIRegI);
  5063   format %{ %}
  5064   interface(REG_INTER);
  5065 %}
  5067 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
  5068 // //
  5069 operand eSIRegI(xRegI reg) %{
  5070    constraint(ALLOC_IN_RC(esi_reg));
  5071    match(reg);
  5072    match(eRegI);
  5074    format %{ "ESI" %}
  5075    interface(REG_INTER);
  5076 %}
  5078 // Pointer Register
  5079 operand anyRegP() %{
  5080   constraint(ALLOC_IN_RC(any_reg));
  5081   match(RegP);
  5082   match(eAXRegP);
  5083   match(eBXRegP);
  5084   match(eCXRegP);
  5085   match(eDIRegP);
  5086   match(eRegP);
  5088   format %{ %}
  5089   interface(REG_INTER);
  5090 %}
  5092 operand eRegP() %{
  5093   constraint(ALLOC_IN_RC(e_reg));
  5094   match(RegP);
  5095   match(eAXRegP);
  5096   match(eBXRegP);
  5097   match(eCXRegP);
  5098   match(eDIRegP);
  5100   format %{ %}
  5101   interface(REG_INTER);
  5102 %}
  5104 // On windows95, EBP is not safe to use for implicit null tests.
  5105 operand eRegP_no_EBP() %{
  5106   constraint(ALLOC_IN_RC(e_reg_no_rbp));
  5107   match(RegP);
  5108   match(eAXRegP);
  5109   match(eBXRegP);
  5110   match(eCXRegP);
  5111   match(eDIRegP);
  5113   op_cost(100);
  5114   format %{ %}
  5115   interface(REG_INTER);
  5116 %}
  5118 operand naxRegP() %{
  5119   constraint(ALLOC_IN_RC(nax_reg));
  5120   match(RegP);
  5121   match(eBXRegP);
  5122   match(eDXRegP);
  5123   match(eCXRegP);
  5124   match(eSIRegP);
  5125   match(eDIRegP);
  5127   format %{ %}
  5128   interface(REG_INTER);
  5129 %}
  5131 operand nabxRegP() %{
  5132   constraint(ALLOC_IN_RC(nabx_reg));
  5133   match(RegP);
  5134   match(eCXRegP);
  5135   match(eDXRegP);
  5136   match(eSIRegP);
  5137   match(eDIRegP);
  5139   format %{ %}
  5140   interface(REG_INTER);
  5141 %}
  5143 operand pRegP() %{
  5144   constraint(ALLOC_IN_RC(p_reg));
  5145   match(RegP);
  5146   match(eBXRegP);
  5147   match(eDXRegP);
  5148   match(eSIRegP);
  5149   match(eDIRegP);
  5151   format %{ %}
  5152   interface(REG_INTER);
  5153 %}
  5155 // Special Registers
  5156 // Return a pointer value
  5157 operand eAXRegP(eRegP reg) %{
  5158   constraint(ALLOC_IN_RC(eax_reg));
  5159   match(reg);
  5160   format %{ "EAX" %}
  5161   interface(REG_INTER);
  5162 %}
  5164 // Used in AtomicAdd
  5165 operand eBXRegP(eRegP reg) %{
  5166   constraint(ALLOC_IN_RC(ebx_reg));
  5167   match(reg);
  5168   format %{ "EBX" %}
  5169   interface(REG_INTER);
  5170 %}
  5172 // Tail-call (interprocedural jump) to interpreter
  5173 operand eCXRegP(eRegP reg) %{
  5174   constraint(ALLOC_IN_RC(ecx_reg));
  5175   match(reg);
  5176   format %{ "ECX" %}
  5177   interface(REG_INTER);
  5178 %}
  5180 operand eSIRegP(eRegP reg) %{
  5181   constraint(ALLOC_IN_RC(esi_reg));
  5182   match(reg);
  5183   format %{ "ESI" %}
  5184   interface(REG_INTER);
  5185 %}
  5187 // Used in rep stosw
  5188 operand eDIRegP(eRegP reg) %{
  5189   constraint(ALLOC_IN_RC(edi_reg));
  5190   match(reg);
  5191   format %{ "EDI" %}
  5192   interface(REG_INTER);
  5193 %}
  5195 operand eBPRegP() %{
  5196   constraint(ALLOC_IN_RC(ebp_reg));
  5197   match(RegP);
  5198   format %{ "EBP" %}
  5199   interface(REG_INTER);
  5200 %}
  5202 operand eRegL() %{
  5203   constraint(ALLOC_IN_RC(long_reg));
  5204   match(RegL);
  5205   match(eADXRegL);
  5207   format %{ %}
  5208   interface(REG_INTER);
  5209 %}
  5211 operand eADXRegL( eRegL reg ) %{
  5212   constraint(ALLOC_IN_RC(eadx_reg));
  5213   match(reg);
  5215   format %{ "EDX:EAX" %}
  5216   interface(REG_INTER);
  5217 %}
  5219 operand eBCXRegL( eRegL reg ) %{
  5220   constraint(ALLOC_IN_RC(ebcx_reg));
  5221   match(reg);
  5223   format %{ "EBX:ECX" %}
  5224   interface(REG_INTER);
  5225 %}
  5227 // Special case for integer high multiply
  5228 operand eADXRegL_low_only() %{
  5229   constraint(ALLOC_IN_RC(eadx_reg));
  5230   match(RegL);
  5232   format %{ "EAX" %}
  5233   interface(REG_INTER);
  5234 %}
  5236 // Flags register, used as output of compare instructions
  5237 operand eFlagsReg() %{
  5238   constraint(ALLOC_IN_RC(int_flags));
  5239   match(RegFlags);
  5241   format %{ "EFLAGS" %}
  5242   interface(REG_INTER);
  5243 %}
  5245 // Flags register, used as output of FLOATING POINT compare instructions
  5246 operand eFlagsRegU() %{
  5247   constraint(ALLOC_IN_RC(int_flags));
  5248   match(RegFlags);
  5250   format %{ "EFLAGS_U" %}
  5251   interface(REG_INTER);
  5252 %}
  5254 operand eFlagsRegUCF() %{
  5255   constraint(ALLOC_IN_RC(int_flags));
  5256   match(RegFlags);
  5257   predicate(false);
  5259   format %{ "EFLAGS_U_CF" %}
  5260   interface(REG_INTER);
  5261 %}
  5263 // Condition Code Register used by long compare
  5264 operand flagsReg_long_LTGE() %{
  5265   constraint(ALLOC_IN_RC(int_flags));
  5266   match(RegFlags);
  5267   format %{ "FLAGS_LTGE" %}
  5268   interface(REG_INTER);
  5269 %}
  5270 operand flagsReg_long_EQNE() %{
  5271   constraint(ALLOC_IN_RC(int_flags));
  5272   match(RegFlags);
  5273   format %{ "FLAGS_EQNE" %}
  5274   interface(REG_INTER);
  5275 %}
  5276 operand flagsReg_long_LEGT() %{
  5277   constraint(ALLOC_IN_RC(int_flags));
  5278   match(RegFlags);
  5279   format %{ "FLAGS_LEGT" %}
  5280   interface(REG_INTER);
  5281 %}
  5283 // Float register operands
  5284 operand regD() %{
  5285   predicate( UseSSE < 2 );
  5286   constraint(ALLOC_IN_RC(dbl_reg));
  5287   match(RegD);
  5288   match(regDPR1);
  5289   match(regDPR2);
  5290   format %{ %}
  5291   interface(REG_INTER);
  5292 %}
  5294 operand regDPR1(regD reg) %{
  5295   predicate( UseSSE < 2 );
  5296   constraint(ALLOC_IN_RC(dbl_reg0));
  5297   match(reg);
  5298   format %{ "FPR1" %}
  5299   interface(REG_INTER);
  5300 %}
  5302 operand regDPR2(regD reg) %{
  5303   predicate( UseSSE < 2 );
  5304   constraint(ALLOC_IN_RC(dbl_reg1));
  5305   match(reg);
  5306   format %{ "FPR2" %}
  5307   interface(REG_INTER);
  5308 %}
  5310 operand regnotDPR1(regD reg) %{
  5311   predicate( UseSSE < 2 );
  5312   constraint(ALLOC_IN_RC(dbl_notreg0));
  5313   match(reg);
  5314   format %{ %}
  5315   interface(REG_INTER);
  5316 %}
  5318 // XMM Double register operands
  5319 operand regXD() %{
  5320   predicate( UseSSE>=2 );
  5321   constraint(ALLOC_IN_RC(xdb_reg));
  5322   match(RegD);
  5323   match(regXD6);
  5324   match(regXD7);
  5325   format %{ %}
  5326   interface(REG_INTER);
  5327 %}
  5329 // XMM6 double register operands
  5330 operand regXD6(regXD reg) %{
  5331   predicate( UseSSE>=2 );
  5332   constraint(ALLOC_IN_RC(xdb_reg6));
  5333   match(reg);
  5334   format %{ "XMM6" %}
  5335   interface(REG_INTER);
  5336 %}
  5338 // XMM7 double register operands
  5339 operand regXD7(regXD reg) %{
  5340   predicate( UseSSE>=2 );
  5341   constraint(ALLOC_IN_RC(xdb_reg7));
  5342   match(reg);
  5343   format %{ "XMM7" %}
  5344   interface(REG_INTER);
  5345 %}
  5347 // Float register operands
  5348 operand regF() %{
  5349   predicate( UseSSE < 2 );
  5350   constraint(ALLOC_IN_RC(flt_reg));
  5351   match(RegF);
  5352   match(regFPR1);
  5353   format %{ %}
  5354   interface(REG_INTER);
  5355 %}
  5357 // Float register operands
  5358 operand regFPR1(regF reg) %{
  5359   predicate( UseSSE < 2 );
  5360   constraint(ALLOC_IN_RC(flt_reg0));
  5361   match(reg);
  5362   format %{ "FPR1" %}
  5363   interface(REG_INTER);
  5364 %}
  5366 // XMM register operands
  5367 operand regX() %{
  5368   predicate( UseSSE>=1 );
  5369   constraint(ALLOC_IN_RC(xmm_reg));
  5370   match(RegF);
  5371   format %{ %}
  5372   interface(REG_INTER);
  5373 %}
  5376 //----------Memory Operands----------------------------------------------------
  5377 // Direct Memory Operand
  5378 operand direct(immP addr) %{
  5379   match(addr);
  5381   format %{ "[$addr]" %}
  5382   interface(MEMORY_INTER) %{
  5383     base(0xFFFFFFFF);
  5384     index(0x4);
  5385     scale(0x0);
  5386     disp($addr);
  5387   %}
  5388 %}
  5390 // Indirect Memory Operand
  5391 operand indirect(eRegP reg) %{
  5392   constraint(ALLOC_IN_RC(e_reg));
  5393   match(reg);
  5395   format %{ "[$reg]" %}
  5396   interface(MEMORY_INTER) %{
  5397     base($reg);
  5398     index(0x4);
  5399     scale(0x0);
  5400     disp(0x0);
  5401   %}
  5402 %}
  5404 // Indirect Memory Plus Short Offset Operand
  5405 operand indOffset8(eRegP reg, immI8 off) %{
  5406   match(AddP reg off);
  5408   format %{ "[$reg + $off]" %}
  5409   interface(MEMORY_INTER) %{
  5410     base($reg);
  5411     index(0x4);
  5412     scale(0x0);
  5413     disp($off);
  5414   %}
  5415 %}
  5417 // Indirect Memory Plus Long Offset Operand
  5418 operand indOffset32(eRegP reg, immI off) %{
  5419   match(AddP reg off);
  5421   format %{ "[$reg + $off]" %}
  5422   interface(MEMORY_INTER) %{
  5423     base($reg);
  5424     index(0x4);
  5425     scale(0x0);
  5426     disp($off);
  5427   %}
  5428 %}
  5430 // Indirect Memory Plus Long Offset Operand
  5431 operand indOffset32X(eRegI reg, immP off) %{
  5432   match(AddP off reg);
  5434   format %{ "[$reg + $off]" %}
  5435   interface(MEMORY_INTER) %{
  5436     base($reg);
  5437     index(0x4);
  5438     scale(0x0);
  5439     disp($off);
  5440   %}
  5441 %}
  5443 // Indirect Memory Plus Index Register Plus Offset Operand
  5444 operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
  5445   match(AddP (AddP reg ireg) off);
  5447   op_cost(10);
  5448   format %{"[$reg + $off + $ireg]" %}
  5449   interface(MEMORY_INTER) %{
  5450     base($reg);
  5451     index($ireg);
  5452     scale(0x0);
  5453     disp($off);
  5454   %}
  5455 %}
  5457 // Indirect Memory Plus Index Register Plus Offset Operand
  5458 operand indIndex(eRegP reg, eRegI ireg) %{
  5459   match(AddP reg ireg);
  5461   op_cost(10);
  5462   format %{"[$reg + $ireg]" %}
  5463   interface(MEMORY_INTER) %{
  5464     base($reg);
  5465     index($ireg);
  5466     scale(0x0);
  5467     disp(0x0);
  5468   %}
  5469 %}
  5471 // // -------------------------------------------------------------------------
  5472 // // 486 architecture doesn't support "scale * index + offset" with out a base
  5473 // // -------------------------------------------------------------------------
  5474 // // Scaled Memory Operands
  5475 // // Indirect Memory Times Scale Plus Offset Operand
  5476 // operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
  5477 //   match(AddP off (LShiftI ireg scale));
  5478 //
  5479 //   op_cost(10);
  5480 //   format %{"[$off + $ireg << $scale]" %}
  5481 //   interface(MEMORY_INTER) %{
  5482 //     base(0x4);
  5483 //     index($ireg);
  5484 //     scale($scale);
  5485 //     disp($off);
  5486 //   %}
  5487 // %}
  5489 // Indirect Memory Times Scale Plus Index Register
  5490 operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
  5491   match(AddP reg (LShiftI ireg scale));
  5493   op_cost(10);
  5494   format %{"[$reg + $ireg << $scale]" %}
  5495   interface(MEMORY_INTER) %{
  5496     base($reg);
  5497     index($ireg);
  5498     scale($scale);
  5499     disp(0x0);
  5500   %}
  5501 %}
  5503 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5504 operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
  5505   match(AddP (AddP reg (LShiftI ireg scale)) off);
  5507   op_cost(10);
  5508   format %{"[$reg + $off + $ireg << $scale]" %}
  5509   interface(MEMORY_INTER) %{
  5510     base($reg);
  5511     index($ireg);
  5512     scale($scale);
  5513     disp($off);
  5514   %}
  5515 %}
  5517 //----------Load Long Memory Operands------------------------------------------
  5518 // The load-long idiom will use it's address expression again after loading
  5519 // the first word of the long.  If the load-long destination overlaps with
  5520 // registers used in the addressing expression, the 2nd half will be loaded
  5521 // from a clobbered address.  Fix this by requiring that load-long use
  5522 // address registers that do not overlap with the load-long target.
  5524 // load-long support
  5525 operand load_long_RegP() %{
  5526   constraint(ALLOC_IN_RC(esi_reg));
  5527   match(RegP);
  5528   match(eSIRegP);
  5529   op_cost(100);
  5530   format %{  %}
  5531   interface(REG_INTER);
  5532 %}
  5534 // Indirect Memory Operand Long
  5535 operand load_long_indirect(load_long_RegP reg) %{
  5536   constraint(ALLOC_IN_RC(esi_reg));
  5537   match(reg);
  5539   format %{ "[$reg]" %}
  5540   interface(MEMORY_INTER) %{
  5541     base($reg);
  5542     index(0x4);
  5543     scale(0x0);
  5544     disp(0x0);
  5545   %}
  5546 %}
  5548 // Indirect Memory Plus Long Offset Operand
  5549 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  5550   match(AddP reg off);
  5552   format %{ "[$reg + $off]" %}
  5553   interface(MEMORY_INTER) %{
  5554     base($reg);
  5555     index(0x4);
  5556     scale(0x0);
  5557     disp($off);
  5558   %}
  5559 %}
  5561 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
  5564 //----------Special Memory Operands--------------------------------------------
  5565 // Stack Slot Operand - This operand is used for loading and storing temporary
  5566 //                      values on the stack where a match requires a value to
  5567 //                      flow through memory.
  5568 operand stackSlotP(sRegP reg) %{
  5569   constraint(ALLOC_IN_RC(stack_slots));
  5570   // No match rule because this operand is only generated in matching
  5571   format %{ "[$reg]" %}
  5572   interface(MEMORY_INTER) %{
  5573     base(0x4);   // ESP
  5574     index(0x4);  // No Index
  5575     scale(0x0);  // No Scale
  5576     disp($reg);  // Stack Offset
  5577   %}
  5578 %}
  5580 operand stackSlotI(sRegI reg) %{
  5581   constraint(ALLOC_IN_RC(stack_slots));
  5582   // No match rule because this operand is only generated in matching
  5583   format %{ "[$reg]" %}
  5584   interface(MEMORY_INTER) %{
  5585     base(0x4);   // ESP
  5586     index(0x4);  // No Index
  5587     scale(0x0);  // No Scale
  5588     disp($reg);  // Stack Offset
  5589   %}
  5590 %}
  5592 operand stackSlotF(sRegF reg) %{
  5593   constraint(ALLOC_IN_RC(stack_slots));
  5594   // No match rule because this operand is only generated in matching
  5595   format %{ "[$reg]" %}
  5596   interface(MEMORY_INTER) %{
  5597     base(0x4);   // ESP
  5598     index(0x4);  // No Index
  5599     scale(0x0);  // No Scale
  5600     disp($reg);  // Stack Offset
  5601   %}
  5602 %}
  5604 operand stackSlotD(sRegD reg) %{
  5605   constraint(ALLOC_IN_RC(stack_slots));
  5606   // No match rule because this operand is only generated in matching
  5607   format %{ "[$reg]" %}
  5608   interface(MEMORY_INTER) %{
  5609     base(0x4);   // ESP
  5610     index(0x4);  // No Index
  5611     scale(0x0);  // No Scale
  5612     disp($reg);  // Stack Offset
  5613   %}
  5614 %}
  5616 operand stackSlotL(sRegL reg) %{
  5617   constraint(ALLOC_IN_RC(stack_slots));
  5618   // No match rule because this operand is only generated in matching
  5619   format %{ "[$reg]" %}
  5620   interface(MEMORY_INTER) %{
  5621     base(0x4);   // ESP
  5622     index(0x4);  // No Index
  5623     scale(0x0);  // No Scale
  5624     disp($reg);  // Stack Offset
  5625   %}
  5626 %}
  5628 //----------Memory Operands - Win95 Implicit Null Variants----------------
  5629 // Indirect Memory Operand
  5630 operand indirect_win95_safe(eRegP_no_EBP reg)
  5631 %{
  5632   constraint(ALLOC_IN_RC(e_reg));
  5633   match(reg);
  5635   op_cost(100);
  5636   format %{ "[$reg]" %}
  5637   interface(MEMORY_INTER) %{
  5638     base($reg);
  5639     index(0x4);
  5640     scale(0x0);
  5641     disp(0x0);
  5642   %}
  5643 %}
  5645 // Indirect Memory Plus Short Offset Operand
  5646 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
  5647 %{
  5648   match(AddP reg off);
  5650   op_cost(100);
  5651   format %{ "[$reg + $off]" %}
  5652   interface(MEMORY_INTER) %{
  5653     base($reg);
  5654     index(0x4);
  5655     scale(0x0);
  5656     disp($off);
  5657   %}
  5658 %}
  5660 // Indirect Memory Plus Long Offset Operand
  5661 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
  5662 %{
  5663   match(AddP reg off);
  5665   op_cost(100);
  5666   format %{ "[$reg + $off]" %}
  5667   interface(MEMORY_INTER) %{
  5668     base($reg);
  5669     index(0x4);
  5670     scale(0x0);
  5671     disp($off);
  5672   %}
  5673 %}
  5675 // Indirect Memory Plus Index Register Plus Offset Operand
  5676 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
  5677 %{
  5678   match(AddP (AddP reg ireg) off);
  5680   op_cost(100);
  5681   format %{"[$reg + $off + $ireg]" %}
  5682   interface(MEMORY_INTER) %{
  5683     base($reg);
  5684     index($ireg);
  5685     scale(0x0);
  5686     disp($off);
  5687   %}
  5688 %}
  5690 // Indirect Memory Times Scale Plus Index Register
  5691 operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
  5692 %{
  5693   match(AddP reg (LShiftI ireg scale));
  5695   op_cost(100);
  5696   format %{"[$reg + $ireg << $scale]" %}
  5697   interface(MEMORY_INTER) %{
  5698     base($reg);
  5699     index($ireg);
  5700     scale($scale);
  5701     disp(0x0);
  5702   %}
  5703 %}
  5705 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5706 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
  5707 %{
  5708   match(AddP (AddP reg (LShiftI ireg scale)) off);
  5710   op_cost(100);
  5711   format %{"[$reg + $off + $ireg << $scale]" %}
  5712   interface(MEMORY_INTER) %{
  5713     base($reg);
  5714     index($ireg);
  5715     scale($scale);
  5716     disp($off);
  5717   %}
  5718 %}
  5720 //----------Conditional Branch Operands----------------------------------------
  5721 // Comparison Op  - This is the operation of the comparison, and is limited to
  5722 //                  the following set of codes:
  5723 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  5724 //
  5725 // Other attributes of the comparison, such as unsignedness, are specified
  5726 // by the comparison instruction that sets a condition code flags register.
  5727 // That result is represented by a flags operand whose subtype is appropriate
  5728 // to the unsignedness (etc.) of the comparison.
  5729 //
  5730 // Later, the instruction which matches both the Comparison Op (a Bool) and
  5731 // the flags (produced by the Cmp) specifies the coding of the comparison op
  5732 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  5734 // Comparision Code
  5735 operand cmpOp() %{
  5736   match(Bool);
  5738   format %{ "" %}
  5739   interface(COND_INTER) %{
  5740     equal(0x4, "e");
  5741     not_equal(0x5, "ne");
  5742     less(0xC, "l");
  5743     greater_equal(0xD, "ge");
  5744     less_equal(0xE, "le");
  5745     greater(0xF, "g");
  5746   %}
  5747 %}
  5749 // Comparison Code, unsigned compare.  Used by FP also, with
  5750 // C2 (unordered) turned into GT or LT already.  The other bits
  5751 // C0 and C3 are turned into Carry & Zero flags.
  5752 operand cmpOpU() %{
  5753   match(Bool);
  5755   format %{ "" %}
  5756   interface(COND_INTER) %{
  5757     equal(0x4, "e");
  5758     not_equal(0x5, "ne");
  5759     less(0x2, "b");
  5760     greater_equal(0x3, "nb");
  5761     less_equal(0x6, "be");
  5762     greater(0x7, "nbe");
  5763   %}
  5764 %}
  5766 // Floating comparisons that don't require any fixup for the unordered case
  5767 operand cmpOpUCF() %{
  5768   match(Bool);
  5769   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  5770             n->as_Bool()->_test._test == BoolTest::ge ||
  5771             n->as_Bool()->_test._test == BoolTest::le ||
  5772             n->as_Bool()->_test._test == BoolTest::gt);
  5773   format %{ "" %}
  5774   interface(COND_INTER) %{
  5775     equal(0x4, "e");
  5776     not_equal(0x5, "ne");
  5777     less(0x2, "b");
  5778     greater_equal(0x3, "nb");
  5779     less_equal(0x6, "be");
  5780     greater(0x7, "nbe");
  5781   %}
  5782 %}
  5785 // Floating comparisons that can be fixed up with extra conditional jumps
  5786 operand cmpOpUCF2() %{
  5787   match(Bool);
  5788   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  5789             n->as_Bool()->_test._test == BoolTest::eq);
  5790   format %{ "" %}
  5791   interface(COND_INTER) %{
  5792     equal(0x4, "e");
  5793     not_equal(0x5, "ne");
  5794     less(0x2, "b");
  5795     greater_equal(0x3, "nb");
  5796     less_equal(0x6, "be");
  5797     greater(0x7, "nbe");
  5798   %}
  5799 %}
  5801 // Comparison Code for FP conditional move
  5802 operand cmpOp_fcmov() %{
  5803   match(Bool);
  5805   format %{ "" %}
  5806   interface(COND_INTER) %{
  5807     equal        (0x0C8);
  5808     not_equal    (0x1C8);
  5809     less         (0x0C0);
  5810     greater_equal(0x1C0);
  5811     less_equal   (0x0D0);
  5812     greater      (0x1D0);
  5813   %}
  5814 %}
  5816 // Comparision Code used in long compares
  5817 operand cmpOp_commute() %{
  5818   match(Bool);
  5820   format %{ "" %}
  5821   interface(COND_INTER) %{
  5822     equal(0x4, "e");
  5823     not_equal(0x5, "ne");
  5824     less(0xF, "g");
  5825     greater_equal(0xE, "le");
  5826     less_equal(0xD, "ge");
  5827     greater(0xC, "l");
  5828   %}
  5829 %}
  5831 //----------OPERAND CLASSES----------------------------------------------------
  5832 // Operand Classes are groups of operands that are used as to simplify
  5833 // instruction definitions by not requiring the AD writer to specify separate
  5834 // instructions for every form of operand when the instruction accepts
  5835 // multiple operand types with the same basic encoding and format.  The classic
  5836 // case of this is memory operands.
  5838 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
  5839                indIndex, indIndexScale, indIndexScaleOffset);
  5841 // Long memory operations are encoded in 2 instructions and a +4 offset.
  5842 // This means some kind of offset is always required and you cannot use
  5843 // an oop as the offset (done when working on static globals).
  5844 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
  5845                     indIndex, indIndexScale, indIndexScaleOffset);
  5848 //----------PIPELINE-----------------------------------------------------------
  5849 // Rules which define the behavior of the target architectures pipeline.
  5850 pipeline %{
  5852 //----------ATTRIBUTES---------------------------------------------------------
  5853 attributes %{
  5854   variable_size_instructions;        // Fixed size instructions
  5855   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  5856   instruction_unit_size = 1;         // An instruction is 1 bytes long
  5857   instruction_fetch_unit_size = 16;  // The processor fetches one line
  5858   instruction_fetch_units = 1;       // of 16 bytes
  5860   // List of nop instructions
  5861   nops( MachNop );
  5862 %}
  5864 //----------RESOURCES----------------------------------------------------------
  5865 // Resources are the functional units available to the machine
  5867 // Generic P2/P3 pipeline
  5868 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  5869 // 3 instructions decoded per cycle.
  5870 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  5871 // 2 ALU op, only ALU0 handles mul/div instructions.
  5872 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  5873            MS0, MS1, MEM = MS0 | MS1,
  5874            BR, FPU,
  5875            ALU0, ALU1, ALU = ALU0 | ALU1 );
  5877 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5878 // Pipeline Description specifies the stages in the machine's pipeline
  5880 // Generic P2/P3 pipeline
  5881 pipe_desc(S0, S1, S2, S3, S4, S5);
  5883 //----------PIPELINE CLASSES---------------------------------------------------
  5884 // Pipeline Classes describe the stages in which input and output are
  5885 // referenced by the hardware pipeline.
  5887 // Naming convention: ialu or fpu
  5888 // Then: _reg
  5889 // Then: _reg if there is a 2nd register
  5890 // Then: _long if it's a pair of instructions implementing a long
  5891 // Then: _fat if it requires the big decoder
  5892 //   Or: _mem if it requires the big decoder and a memory unit.
  5894 // Integer ALU reg operation
  5895 pipe_class ialu_reg(eRegI dst) %{
  5896     single_instruction;
  5897     dst    : S4(write);
  5898     dst    : S3(read);
  5899     DECODE : S0;        // any decoder
  5900     ALU    : S3;        // any alu
  5901 %}
  5903 // Long ALU reg operation
  5904 pipe_class ialu_reg_long(eRegL dst) %{
  5905     instruction_count(2);
  5906     dst    : S4(write);
  5907     dst    : S3(read);
  5908     DECODE : S0(2);     // any 2 decoders
  5909     ALU    : S3(2);     // both alus
  5910 %}
  5912 // Integer ALU reg operation using big decoder
  5913 pipe_class ialu_reg_fat(eRegI dst) %{
  5914     single_instruction;
  5915     dst    : S4(write);
  5916     dst    : S3(read);
  5917     D0     : S0;        // big decoder only
  5918     ALU    : S3;        // any alu
  5919 %}
  5921 // Long ALU reg operation using big decoder
  5922 pipe_class ialu_reg_long_fat(eRegL dst) %{
  5923     instruction_count(2);
  5924     dst    : S4(write);
  5925     dst    : S3(read);
  5926     D0     : S0(2);     // big decoder only; twice
  5927     ALU    : S3(2);     // any 2 alus
  5928 %}
  5930 // Integer ALU reg-reg operation
  5931 pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
  5932     single_instruction;
  5933     dst    : S4(write);
  5934     src    : S3(read);
  5935     DECODE : S0;        // any decoder
  5936     ALU    : S3;        // any alu
  5937 %}
  5939 // Long ALU reg-reg operation
  5940 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
  5941     instruction_count(2);
  5942     dst    : S4(write);
  5943     src    : S3(read);
  5944     DECODE : S0(2);     // any 2 decoders
  5945     ALU    : S3(2);     // both alus
  5946 %}
  5948 // Integer ALU reg-reg operation
  5949 pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
  5950     single_instruction;
  5951     dst    : S4(write);
  5952     src    : S3(read);
  5953     D0     : S0;        // big decoder only
  5954     ALU    : S3;        // any alu
  5955 %}
  5957 // Long ALU reg-reg operation
  5958 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
  5959     instruction_count(2);
  5960     dst    : S4(write);
  5961     src    : S3(read);
  5962     D0     : S0(2);     // big decoder only; twice
  5963     ALU    : S3(2);     // both alus
  5964 %}
  5966 // Integer ALU reg-mem operation
  5967 pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
  5968     single_instruction;
  5969     dst    : S5(write);
  5970     mem    : S3(read);
  5971     D0     : S0;        // big decoder only
  5972     ALU    : S4;        // any alu
  5973     MEM    : S3;        // any mem
  5974 %}
  5976 // Long ALU reg-mem operation
  5977 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
  5978     instruction_count(2);
  5979     dst    : S5(write);
  5980     mem    : S3(read);
  5981     D0     : S0(2);     // big decoder only; twice
  5982     ALU    : S4(2);     // any 2 alus
  5983     MEM    : S3(2);     // both mems
  5984 %}
  5986 // Integer mem operation (prefetch)
  5987 pipe_class ialu_mem(memory mem)
  5988 %{
  5989     single_instruction;
  5990     mem    : S3(read);
  5991     D0     : S0;        // big decoder only
  5992     MEM    : S3;        // any mem
  5993 %}
  5995 // Integer Store to Memory
  5996 pipe_class ialu_mem_reg(memory mem, eRegI src) %{
  5997     single_instruction;
  5998     mem    : S3(read);
  5999     src    : S5(read);
  6000     D0     : S0;        // big decoder only
  6001     ALU    : S4;        // any alu
  6002     MEM    : S3;
  6003 %}
  6005 // Long Store to Memory
  6006 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
  6007     instruction_count(2);
  6008     mem    : S3(read);
  6009     src    : S5(read);
  6010     D0     : S0(2);     // big decoder only; twice
  6011     ALU    : S4(2);     // any 2 alus
  6012     MEM    : S3(2);     // Both mems
  6013 %}
  6015 // Integer Store to Memory
  6016 pipe_class ialu_mem_imm(memory mem) %{
  6017     single_instruction;
  6018     mem    : S3(read);
  6019     D0     : S0;        // big decoder only
  6020     ALU    : S4;        // any alu
  6021     MEM    : S3;
  6022 %}
  6024 // Integer ALU0 reg-reg operation
  6025 pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
  6026     single_instruction;
  6027     dst    : S4(write);
  6028     src    : S3(read);
  6029     D0     : S0;        // Big decoder only
  6030     ALU0   : S3;        // only alu0
  6031 %}
  6033 // Integer ALU0 reg-mem operation
  6034 pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
  6035     single_instruction;
  6036     dst    : S5(write);
  6037     mem    : S3(read);
  6038     D0     : S0;        // big decoder only
  6039     ALU0   : S4;        // ALU0 only
  6040     MEM    : S3;        // any mem
  6041 %}
  6043 // Integer ALU reg-reg operation
  6044 pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
  6045     single_instruction;
  6046     cr     : S4(write);
  6047     src1   : S3(read);
  6048     src2   : S3(read);
  6049     DECODE : S0;        // any decoder
  6050     ALU    : S3;        // any alu
  6051 %}
  6053 // Integer ALU reg-imm operation
  6054 pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
  6055     single_instruction;
  6056     cr     : S4(write);
  6057     src1   : S3(read);
  6058     DECODE : S0;        // any decoder
  6059     ALU    : S3;        // any alu
  6060 %}
  6062 // Integer ALU reg-mem operation
  6063 pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
  6064     single_instruction;
  6065     cr     : S4(write);
  6066     src1   : S3(read);
  6067     src2   : S3(read);
  6068     D0     : S0;        // big decoder only
  6069     ALU    : S4;        // any alu
  6070     MEM    : S3;
  6071 %}
  6073 // Conditional move reg-reg
  6074 pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
  6075     instruction_count(4);
  6076     y      : S4(read);
  6077     q      : S3(read);
  6078     p      : S3(read);
  6079     DECODE : S0(4);     // any decoder
  6080 %}
  6082 // Conditional move reg-reg
  6083 pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
  6084     single_instruction;
  6085     dst    : S4(write);
  6086     src    : S3(read);
  6087     cr     : S3(read);
  6088     DECODE : S0;        // any decoder
  6089 %}
  6091 // Conditional move reg-mem
  6092 pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
  6093     single_instruction;
  6094     dst    : S4(write);
  6095     src    : S3(read);
  6096     cr     : S3(read);
  6097     DECODE : S0;        // any decoder
  6098     MEM    : S3;
  6099 %}
  6101 // Conditional move reg-reg long
  6102 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
  6103     single_instruction;
  6104     dst    : S4(write);
  6105     src    : S3(read);
  6106     cr     : S3(read);
  6107     DECODE : S0(2);     // any 2 decoders
  6108 %}
  6110 // Conditional move double reg-reg
  6111 pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
  6112     single_instruction;
  6113     dst    : S4(write);
  6114     src    : S3(read);
  6115     cr     : S3(read);
  6116     DECODE : S0;        // any decoder
  6117 %}
  6119 // Float reg-reg operation
  6120 pipe_class fpu_reg(regD dst) %{
  6121     instruction_count(2);
  6122     dst    : S3(read);
  6123     DECODE : S0(2);     // any 2 decoders
  6124     FPU    : S3;
  6125 %}
  6127 // Float reg-reg operation
  6128 pipe_class fpu_reg_reg(regD dst, regD src) %{
  6129     instruction_count(2);
  6130     dst    : S4(write);
  6131     src    : S3(read);
  6132     DECODE : S0(2);     // any 2 decoders
  6133     FPU    : S3;
  6134 %}
  6136 // Float reg-reg operation
  6137 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
  6138     instruction_count(3);
  6139     dst    : S4(write);
  6140     src1   : S3(read);
  6141     src2   : S3(read);
  6142     DECODE : S0(3);     // any 3 decoders
  6143     FPU    : S3(2);
  6144 %}
  6146 // Float reg-reg operation
  6147 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
  6148     instruction_count(4);
  6149     dst    : S4(write);
  6150     src1   : S3(read);
  6151     src2   : S3(read);
  6152     src3   : S3(read);
  6153     DECODE : S0(4);     // any 3 decoders
  6154     FPU    : S3(2);
  6155 %}
  6157 // Float reg-reg operation
  6158 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
  6159     instruction_count(4);
  6160     dst    : S4(write);
  6161     src1   : S3(read);
  6162     src2   : S3(read);
  6163     src3   : S3(read);
  6164     DECODE : S1(3);     // any 3 decoders
  6165     D0     : S0;        // Big decoder only
  6166     FPU    : S3(2);
  6167     MEM    : S3;
  6168 %}
  6170 // Float reg-mem operation
  6171 pipe_class fpu_reg_mem(regD dst, memory mem) %{
  6172     instruction_count(2);
  6173     dst    : S5(write);
  6174     mem    : S3(read);
  6175     D0     : S0;        // big decoder only
  6176     DECODE : S1;        // any decoder for FPU POP
  6177     FPU    : S4;
  6178     MEM    : S3;        // any mem
  6179 %}
  6181 // Float reg-mem operation
  6182 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
  6183     instruction_count(3);
  6184     dst    : S5(write);
  6185     src1   : S3(read);
  6186     mem    : S3(read);
  6187     D0     : S0;        // big decoder only
  6188     DECODE : S1(2);     // any decoder for FPU POP
  6189     FPU    : S4;
  6190     MEM    : S3;        // any mem
  6191 %}
  6193 // Float mem-reg operation
  6194 pipe_class fpu_mem_reg(memory mem, regD src) %{
  6195     instruction_count(2);
  6196     src    : S5(read);
  6197     mem    : S3(read);
  6198     DECODE : S0;        // any decoder for FPU PUSH
  6199     D0     : S1;        // big decoder only
  6200     FPU    : S4;
  6201     MEM    : S3;        // any mem
  6202 %}
  6204 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
  6205     instruction_count(3);
  6206     src1   : S3(read);
  6207     src2   : S3(read);
  6208     mem    : S3(read);
  6209     DECODE : S0(2);     // any decoder for FPU PUSH
  6210     D0     : S1;        // big decoder only
  6211     FPU    : S4;
  6212     MEM    : S3;        // any mem
  6213 %}
  6215 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
  6216     instruction_count(3);
  6217     src1   : S3(read);
  6218     src2   : S3(read);
  6219     mem    : S4(read);
  6220     DECODE : S0;        // any decoder for FPU PUSH
  6221     D0     : S0(2);     // big decoder only
  6222     FPU    : S4;
  6223     MEM    : S3(2);     // any mem
  6224 %}
  6226 pipe_class fpu_mem_mem(memory dst, memory src1) %{
  6227     instruction_count(2);
  6228     src1   : S3(read);
  6229     dst    : S4(read);
  6230     D0     : S0(2);     // big decoder only
  6231     MEM    : S3(2);     // any mem
  6232 %}
  6234 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
  6235     instruction_count(3);
  6236     src1   : S3(read);
  6237     src2   : S3(read);
  6238     dst    : S4(read);
  6239     D0     : S0(3);     // big decoder only
  6240     FPU    : S4;
  6241     MEM    : S3(3);     // any mem
  6242 %}
  6244 pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
  6245     instruction_count(3);
  6246     src1   : S4(read);
  6247     mem    : S4(read);
  6248     DECODE : S0;        // any decoder for FPU PUSH
  6249     D0     : S0(2);     // big decoder only
  6250     FPU    : S4;
  6251     MEM    : S3(2);     // any mem
  6252 %}
  6254 // Float load constant
  6255 pipe_class fpu_reg_con(regD dst) %{
  6256     instruction_count(2);
  6257     dst    : S5(write);
  6258     D0     : S0;        // big decoder only for the load
  6259     DECODE : S1;        // any decoder for FPU POP
  6260     FPU    : S4;
  6261     MEM    : S3;        // any mem
  6262 %}
  6264 // Float load constant
  6265 pipe_class fpu_reg_reg_con(regD dst, regD src) %{
  6266     instruction_count(3);
  6267     dst    : S5(write);
  6268     src    : S3(read);
  6269     D0     : S0;        // big decoder only for the load
  6270     DECODE : S1(2);     // any decoder for FPU POP
  6271     FPU    : S4;
  6272     MEM    : S3;        // any mem
  6273 %}
  6275 // UnConditional branch
  6276 pipe_class pipe_jmp( label labl ) %{
  6277     single_instruction;
  6278     BR   : S3;
  6279 %}
  6281 // Conditional branch
  6282 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
  6283     single_instruction;
  6284     cr    : S1(read);
  6285     BR    : S3;
  6286 %}
  6288 // Allocation idiom
  6289 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
  6290     instruction_count(1); force_serialization;
  6291     fixed_latency(6);
  6292     heap_ptr : S3(read);
  6293     DECODE   : S0(3);
  6294     D0       : S2;
  6295     MEM      : S3;
  6296     ALU      : S3(2);
  6297     dst      : S5(write);
  6298     BR       : S5;
  6299 %}
  6301 // Generic big/slow expanded idiom
  6302 pipe_class pipe_slow(  ) %{
  6303     instruction_count(10); multiple_bundles; force_serialization;
  6304     fixed_latency(100);
  6305     D0  : S0(2);
  6306     MEM : S3(2);
  6307 %}
  6309 // The real do-nothing guy
  6310 pipe_class empty( ) %{
  6311     instruction_count(0);
  6312 %}
  6314 // Define the class for the Nop node
  6315 define %{
  6316    MachNop = empty;
  6317 %}
  6319 %}
  6321 //----------INSTRUCTIONS-------------------------------------------------------
  6322 //
  6323 // match      -- States which machine-independent subtree may be replaced
  6324 //               by this instruction.
  6325 // ins_cost   -- The estimated cost of this instruction is used by instruction
  6326 //               selection to identify a minimum cost tree of machine
  6327 //               instructions that matches a tree of machine-independent
  6328 //               instructions.
  6329 // format     -- A string providing the disassembly for this instruction.
  6330 //               The value of an instruction's operand may be inserted
  6331 //               by referring to it with a '$' prefix.
  6332 // opcode     -- Three instruction opcodes may be provided.  These are referred
  6333 //               to within an encode class as $primary, $secondary, and $tertiary
  6334 //               respectively.  The primary opcode is commonly used to
  6335 //               indicate the type of machine instruction, while secondary
  6336 //               and tertiary are often used for prefix options or addressing
  6337 //               modes.
  6338 // ins_encode -- A list of encode classes with parameters. The encode class
  6339 //               name must have been defined in an 'enc_class' specification
  6340 //               in the encode section of the architecture description.
  6342 //----------BSWAP-Instruction--------------------------------------------------
  6343 instruct bytes_reverse_int(eRegI dst) %{
  6344   match(Set dst (ReverseBytesI dst));
  6346   format %{ "BSWAP  $dst" %}
  6347   opcode(0x0F, 0xC8);
  6348   ins_encode( OpcP, OpcSReg(dst) );
  6349   ins_pipe( ialu_reg );
  6350 %}
  6352 instruct bytes_reverse_long(eRegL dst) %{
  6353   match(Set dst (ReverseBytesL dst));
  6355   format %{ "BSWAP  $dst.lo\n\t"
  6356             "BSWAP  $dst.hi\n\t"
  6357             "XCHG   $dst.lo $dst.hi" %}
  6359   ins_cost(125);
  6360   ins_encode( bswap_long_bytes(dst) );
  6361   ins_pipe( ialu_reg_reg);
  6362 %}
  6365 //---------- Population Count Instructions -------------------------------------
  6367 instruct popCountI(eRegI dst, eRegI src) %{
  6368   predicate(UsePopCountInstruction);
  6369   match(Set dst (PopCountI src));
  6371   format %{ "POPCNT $dst, $src" %}
  6372   ins_encode %{
  6373     __ popcntl($dst$$Register, $src$$Register);
  6374   %}
  6375   ins_pipe(ialu_reg);
  6376 %}
  6378 instruct popCountI_mem(eRegI dst, memory mem) %{
  6379   predicate(UsePopCountInstruction);
  6380   match(Set dst (PopCountI (LoadI mem)));
  6382   format %{ "POPCNT $dst, $mem" %}
  6383   ins_encode %{
  6384     __ popcntl($dst$$Register, $mem$$Address);
  6385   %}
  6386   ins_pipe(ialu_reg);
  6387 %}
  6389 // Note: Long.bitCount(long) returns an int.
  6390 instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  6391   predicate(UsePopCountInstruction);
  6392   match(Set dst (PopCountL src));
  6393   effect(KILL cr, TEMP tmp, TEMP dst);
  6395   format %{ "POPCNT $dst, $src.lo\n\t"
  6396             "POPCNT $tmp, $src.hi\n\t"
  6397             "ADD    $dst, $tmp" %}
  6398   ins_encode %{
  6399     __ popcntl($dst$$Register, $src$$Register);
  6400     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  6401     __ addl($dst$$Register, $tmp$$Register);
  6402   %}
  6403   ins_pipe(ialu_reg);
  6404 %}
  6406 // Note: Long.bitCount(long) returns an int.
  6407 instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{
  6408   predicate(UsePopCountInstruction);
  6409   match(Set dst (PopCountL (LoadL mem)));
  6410   effect(KILL cr, TEMP tmp, TEMP dst);
  6412   format %{ "POPCNT $dst, $mem\n\t"
  6413             "POPCNT $tmp, $mem+4\n\t"
  6414             "ADD    $dst, $tmp" %}
  6415   ins_encode %{
  6416     //__ popcntl($dst$$Register, $mem$$Address$$first);
  6417     //__ popcntl($tmp$$Register, $mem$$Address$$second);
  6418     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
  6419     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
  6420     __ addl($dst$$Register, $tmp$$Register);
  6421   %}
  6422   ins_pipe(ialu_reg);
  6423 %}
  6426 //----------Load/Store/Move Instructions---------------------------------------
  6427 //----------Load Instructions--------------------------------------------------
  6428 // Load Byte (8bit signed)
  6429 instruct loadB(xRegI dst, memory mem) %{
  6430   match(Set dst (LoadB mem));
  6432   ins_cost(125);
  6433   format %{ "MOVSX8 $dst,$mem\t# byte" %}
  6435   ins_encode %{
  6436     __ movsbl($dst$$Register, $mem$$Address);
  6437   %}
  6439   ins_pipe(ialu_reg_mem);
  6440 %}
  6442 // Load Byte (8bit signed) into Long Register
  6443 instruct loadB2L(eRegL dst, memory mem) %{
  6444   match(Set dst (ConvI2L (LoadB mem)));
  6446   ins_cost(375);
  6447   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
  6448             "MOV    $dst.hi,$dst.lo\n\t"
  6449             "SAR    $dst.hi,7" %}
  6451   ins_encode %{
  6452     __ movsbl($dst$$Register, $mem$$Address);
  6453     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6454     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  6455   %}
  6457   ins_pipe(ialu_reg_mem);
  6458 %}
  6460 // Load Unsigned Byte (8bit UNsigned)
  6461 instruct loadUB(xRegI dst, memory mem) %{
  6462   match(Set dst (LoadUB mem));
  6464   ins_cost(125);
  6465   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
  6467   ins_encode %{
  6468     __ movzbl($dst$$Register, $mem$$Address);
  6469   %}
  6471   ins_pipe(ialu_reg_mem);
  6472 %}
  6474 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  6475 instruct loadUB2L(eRegL dst, memory mem)
  6476 %{
  6477   match(Set dst (ConvI2L (LoadUB mem)));
  6479   ins_cost(250);
  6480   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
  6481             "XOR    $dst.hi,$dst.hi" %}
  6483   ins_encode %{
  6484     __ movzbl($dst$$Register, $mem$$Address);
  6485     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6486   %}
  6488   ins_pipe(ialu_reg_mem);
  6489 %}
  6491 // Load Short (16bit signed)
  6492 instruct loadS(eRegI dst, memory mem) %{
  6493   match(Set dst (LoadS mem));
  6495   ins_cost(125);
  6496   format %{ "MOVSX  $dst,$mem\t# short" %}
  6498   ins_encode %{
  6499     __ movswl($dst$$Register, $mem$$Address);
  6500   %}
  6502   ins_pipe(ialu_reg_mem);
  6503 %}
  6505 // Load Short (16bit signed) into Long Register
  6506 instruct loadS2L(eRegL dst, memory mem) %{
  6507   match(Set dst (ConvI2L (LoadS mem)));
  6509   ins_cost(375);
  6510   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
  6511             "MOV    $dst.hi,$dst.lo\n\t"
  6512             "SAR    $dst.hi,15" %}
  6514   ins_encode %{
  6515     __ movswl($dst$$Register, $mem$$Address);
  6516     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6517     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  6518   %}
  6520   ins_pipe(ialu_reg_mem);
  6521 %}
  6523 // Load Unsigned Short/Char (16bit unsigned)
  6524 instruct loadUS(eRegI dst, memory mem) %{
  6525   match(Set dst (LoadUS mem));
  6527   ins_cost(125);
  6528   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
  6530   ins_encode %{
  6531     __ movzwl($dst$$Register, $mem$$Address);
  6532   %}
  6534   ins_pipe(ialu_reg_mem);
  6535 %}
  6537 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  6538 instruct loadUS2L(eRegL dst, memory mem)
  6539 %{
  6540   match(Set dst (ConvI2L (LoadUS mem)));
  6542   ins_cost(250);
  6543   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
  6544             "XOR    $dst.hi,$dst.hi" %}
  6546   ins_encode %{
  6547     __ movzwl($dst$$Register, $mem$$Address);
  6548     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6549   %}
  6551   ins_pipe(ialu_reg_mem);
  6552 %}
  6554 // Load Integer
  6555 instruct loadI(eRegI dst, memory mem) %{
  6556   match(Set dst (LoadI mem));
  6558   ins_cost(125);
  6559   format %{ "MOV    $dst,$mem\t# int" %}
  6561   ins_encode %{
  6562     __ movl($dst$$Register, $mem$$Address);
  6563   %}
  6565   ins_pipe(ialu_reg_mem);
  6566 %}
  6568 // Load Integer into Long Register
  6569 instruct loadI2L(eRegL dst, memory mem) %{
  6570   match(Set dst (ConvI2L (LoadI mem)));
  6572   ins_cost(375);
  6573   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
  6574             "MOV    $dst.hi,$dst.lo\n\t"
  6575             "SAR    $dst.hi,31" %}
  6577   ins_encode %{
  6578     __ movl($dst$$Register, $mem$$Address);
  6579     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6580     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  6581   %}
  6583   ins_pipe(ialu_reg_mem);
  6584 %}
  6586 // Load Unsigned Integer into Long Register
  6587 instruct loadUI2L(eRegL dst, memory mem) %{
  6588   match(Set dst (LoadUI2L mem));
  6590   ins_cost(250);
  6591   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
  6592             "XOR    $dst.hi,$dst.hi" %}
  6594   ins_encode %{
  6595     __ movl($dst$$Register, $mem$$Address);
  6596     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6597   %}
  6599   ins_pipe(ialu_reg_mem);
  6600 %}
  6602 // Load Long.  Cannot clobber address while loading, so restrict address
  6603 // register to ESI
  6604 instruct loadL(eRegL dst, load_long_memory mem) %{
  6605   predicate(!((LoadLNode*)n)->require_atomic_access());
  6606   match(Set dst (LoadL mem));
  6608   ins_cost(250);
  6609   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
  6610             "MOV    $dst.hi,$mem+4" %}
  6612   ins_encode %{
  6613     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
  6614     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
  6615     __ movl($dst$$Register, Amemlo);
  6616     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  6617   %}
  6619   ins_pipe(ialu_reg_long_mem);
  6620 %}
  6622 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
  6623 // then store it down to the stack and reload on the int
  6624 // side.
  6625 instruct loadL_volatile(stackSlotL dst, memory mem) %{
  6626   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  6627   match(Set dst (LoadL mem));
  6629   ins_cost(200);
  6630   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  6631             "FISTp  $dst" %}
  6632   ins_encode(enc_loadL_volatile(mem,dst));
  6633   ins_pipe( fpu_reg_mem );
  6634 %}
  6636 instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
  6637   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6638   match(Set dst (LoadL mem));
  6639   effect(TEMP tmp);
  6640   ins_cost(180);
  6641   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6642             "MOVSD  $dst,$tmp" %}
  6643   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
  6644   ins_pipe( pipe_slow );
  6645 %}
  6647 instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
  6648   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6649   match(Set dst (LoadL mem));
  6650   effect(TEMP tmp);
  6651   ins_cost(160);
  6652   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6653             "MOVD   $dst.lo,$tmp\n\t"
  6654             "PSRLQ  $tmp,32\n\t"
  6655             "MOVD   $dst.hi,$tmp" %}
  6656   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
  6657   ins_pipe( pipe_slow );
  6658 %}
  6660 // Load Range
  6661 instruct loadRange(eRegI dst, memory mem) %{
  6662   match(Set dst (LoadRange mem));
  6664   ins_cost(125);
  6665   format %{ "MOV    $dst,$mem" %}
  6666   opcode(0x8B);
  6667   ins_encode( OpcP, RegMem(dst,mem));
  6668   ins_pipe( ialu_reg_mem );
  6669 %}
  6672 // Load Pointer
  6673 instruct loadP(eRegP dst, memory mem) %{
  6674   match(Set dst (LoadP mem));
  6676   ins_cost(125);
  6677   format %{ "MOV    $dst,$mem" %}
  6678   opcode(0x8B);
  6679   ins_encode( OpcP, RegMem(dst,mem));
  6680   ins_pipe( ialu_reg_mem );
  6681 %}
  6683 // Load Klass Pointer
  6684 instruct loadKlass(eRegP dst, memory mem) %{
  6685   match(Set dst (LoadKlass mem));
  6687   ins_cost(125);
  6688   format %{ "MOV    $dst,$mem" %}
  6689   opcode(0x8B);
  6690   ins_encode( OpcP, RegMem(dst,mem));
  6691   ins_pipe( ialu_reg_mem );
  6692 %}
  6694 // Load Double
  6695 instruct loadD(regD dst, memory mem) %{
  6696   predicate(UseSSE<=1);
  6697   match(Set dst (LoadD mem));
  6699   ins_cost(150);
  6700   format %{ "FLD_D  ST,$mem\n\t"
  6701             "FSTP   $dst" %}
  6702   opcode(0xDD);               /* DD /0 */
  6703   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6704               Pop_Reg_D(dst) );
  6705   ins_pipe( fpu_reg_mem );
  6706 %}
  6708 // Load Double to XMM
  6709 instruct loadXD(regXD dst, memory mem) %{
  6710   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  6711   match(Set dst (LoadD mem));
  6712   ins_cost(145);
  6713   format %{ "MOVSD  $dst,$mem" %}
  6714   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
  6715   ins_pipe( pipe_slow );
  6716 %}
  6718 instruct loadXD_partial(regXD dst, memory mem) %{
  6719   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  6720   match(Set dst (LoadD mem));
  6721   ins_cost(145);
  6722   format %{ "MOVLPD $dst,$mem" %}
  6723   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
  6724   ins_pipe( pipe_slow );
  6725 %}
  6727 // Load to XMM register (single-precision floating point)
  6728 // MOVSS instruction
  6729 instruct loadX(regX dst, memory mem) %{
  6730   predicate(UseSSE>=1);
  6731   match(Set dst (LoadF mem));
  6732   ins_cost(145);
  6733   format %{ "MOVSS  $dst,$mem" %}
  6734   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
  6735   ins_pipe( pipe_slow );
  6736 %}
  6738 // Load Float
  6739 instruct loadF(regF dst, memory mem) %{
  6740   predicate(UseSSE==0);
  6741   match(Set dst (LoadF mem));
  6743   ins_cost(150);
  6744   format %{ "FLD_S  ST,$mem\n\t"
  6745             "FSTP   $dst" %}
  6746   opcode(0xD9);               /* D9 /0 */
  6747   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6748               Pop_Reg_F(dst) );
  6749   ins_pipe( fpu_reg_mem );
  6750 %}
  6752 // Load Aligned Packed Byte to XMM register
  6753 instruct loadA8B(regXD dst, memory mem) %{
  6754   predicate(UseSSE>=1);
  6755   match(Set dst (Load8B mem));
  6756   ins_cost(125);
  6757   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
  6758   ins_encode( movq_ld(dst, mem));
  6759   ins_pipe( pipe_slow );
  6760 %}
  6762 // Load Aligned Packed Short to XMM register
  6763 instruct loadA4S(regXD dst, memory mem) %{
  6764   predicate(UseSSE>=1);
  6765   match(Set dst (Load4S mem));
  6766   ins_cost(125);
  6767   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
  6768   ins_encode( movq_ld(dst, mem));
  6769   ins_pipe( pipe_slow );
  6770 %}
  6772 // Load Aligned Packed Char to XMM register
  6773 instruct loadA4C(regXD dst, memory mem) %{
  6774   predicate(UseSSE>=1);
  6775   match(Set dst (Load4C mem));
  6776   ins_cost(125);
  6777   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
  6778   ins_encode( movq_ld(dst, mem));
  6779   ins_pipe( pipe_slow );
  6780 %}
  6782 // Load Aligned Packed Integer to XMM register
  6783 instruct load2IU(regXD dst, memory mem) %{
  6784   predicate(UseSSE>=1);
  6785   match(Set dst (Load2I mem));
  6786   ins_cost(125);
  6787   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
  6788   ins_encode( movq_ld(dst, mem));
  6789   ins_pipe( pipe_slow );
  6790 %}
  6792 // Load Aligned Packed Single to XMM
  6793 instruct loadA2F(regXD dst, memory mem) %{
  6794   predicate(UseSSE>=1);
  6795   match(Set dst (Load2F mem));
  6796   ins_cost(145);
  6797   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
  6798   ins_encode( movq_ld(dst, mem));
  6799   ins_pipe( pipe_slow );
  6800 %}
  6802 // Load Effective Address
  6803 instruct leaP8(eRegP dst, indOffset8 mem) %{
  6804   match(Set dst mem);
  6806   ins_cost(110);
  6807   format %{ "LEA    $dst,$mem" %}
  6808   opcode(0x8D);
  6809   ins_encode( OpcP, RegMem(dst,mem));
  6810   ins_pipe( ialu_reg_reg_fat );
  6811 %}
  6813 instruct leaP32(eRegP dst, indOffset32 mem) %{
  6814   match(Set dst mem);
  6816   ins_cost(110);
  6817   format %{ "LEA    $dst,$mem" %}
  6818   opcode(0x8D);
  6819   ins_encode( OpcP, RegMem(dst,mem));
  6820   ins_pipe( ialu_reg_reg_fat );
  6821 %}
  6823 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  6824   match(Set dst mem);
  6826   ins_cost(110);
  6827   format %{ "LEA    $dst,$mem" %}
  6828   opcode(0x8D);
  6829   ins_encode( OpcP, RegMem(dst,mem));
  6830   ins_pipe( ialu_reg_reg_fat );
  6831 %}
  6833 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  6834   match(Set dst mem);
  6836   ins_cost(110);
  6837   format %{ "LEA    $dst,$mem" %}
  6838   opcode(0x8D);
  6839   ins_encode( OpcP, RegMem(dst,mem));
  6840   ins_pipe( ialu_reg_reg_fat );
  6841 %}
  6843 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  6844   match(Set dst mem);
  6846   ins_cost(110);
  6847   format %{ "LEA    $dst,$mem" %}
  6848   opcode(0x8D);
  6849   ins_encode( OpcP, RegMem(dst,mem));
  6850   ins_pipe( ialu_reg_reg_fat );
  6851 %}
  6853 // Load Constant
  6854 instruct loadConI(eRegI dst, immI src) %{
  6855   match(Set dst src);
  6857   format %{ "MOV    $dst,$src" %}
  6858   ins_encode( LdImmI(dst, src) );
  6859   ins_pipe( ialu_reg_fat );
  6860 %}
  6862 // Load Constant zero
  6863 instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
  6864   match(Set dst src);
  6865   effect(KILL cr);
  6867   ins_cost(50);
  6868   format %{ "XOR    $dst,$dst" %}
  6869   opcode(0x33);  /* + rd */
  6870   ins_encode( OpcP, RegReg( dst, dst ) );
  6871   ins_pipe( ialu_reg );
  6872 %}
  6874 instruct loadConP(eRegP dst, immP src) %{
  6875   match(Set dst src);
  6877   format %{ "MOV    $dst,$src" %}
  6878   opcode(0xB8);  /* + rd */
  6879   ins_encode( LdImmP(dst, src) );
  6880   ins_pipe( ialu_reg_fat );
  6881 %}
  6883 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  6884   match(Set dst src);
  6885   effect(KILL cr);
  6886   ins_cost(200);
  6887   format %{ "MOV    $dst.lo,$src.lo\n\t"
  6888             "MOV    $dst.hi,$src.hi" %}
  6889   opcode(0xB8);
  6890   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  6891   ins_pipe( ialu_reg_long_fat );
  6892 %}
  6894 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  6895   match(Set dst src);
  6896   effect(KILL cr);
  6897   ins_cost(150);
  6898   format %{ "XOR    $dst.lo,$dst.lo\n\t"
  6899             "XOR    $dst.hi,$dst.hi" %}
  6900   opcode(0x33,0x33);
  6901   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  6902   ins_pipe( ialu_reg_long );
  6903 %}
  6905 // The instruction usage is guarded by predicate in operand immF().
  6906 instruct loadConF(regF dst, immF src) %{
  6907   match(Set dst src);
  6908   ins_cost(125);
  6910   format %{ "FLD_S  ST,$src\n\t"
  6911             "FSTP   $dst" %}
  6912   opcode(0xD9, 0x00);       /* D9 /0 */
  6913   ins_encode(LdImmF(src), Pop_Reg_F(dst) );
  6914   ins_pipe( fpu_reg_con );
  6915 %}
  6917 // The instruction usage is guarded by predicate in operand immXF().
  6918 instruct loadConX(regX dst, immXF con) %{
  6919   match(Set dst con);
  6920   ins_cost(125);
  6921   format %{ "MOVSS  $dst,[$con]" %}
  6922   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), LdImmX(dst, con));
  6923   ins_pipe( pipe_slow );
  6924 %}
  6926 // The instruction usage is guarded by predicate in operand immXF0().
  6927 instruct loadConX0(regX dst, immXF0 src) %{
  6928   match(Set dst src);
  6929   ins_cost(100);
  6930   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  6931   ins_encode( Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
  6932   ins_pipe( pipe_slow );
  6933 %}
  6935 // The instruction usage is guarded by predicate in operand immD().
  6936 instruct loadConD(regD dst, immD src) %{
  6937   match(Set dst src);
  6938   ins_cost(125);
  6940   format %{ "FLD_D  ST,$src\n\t"
  6941             "FSTP   $dst" %}
  6942   ins_encode(LdImmD(src), Pop_Reg_D(dst) );
  6943   ins_pipe( fpu_reg_con );
  6944 %}
  6946 // The instruction usage is guarded by predicate in operand immXD().
  6947 instruct loadConXD(regXD dst, immXD con) %{
  6948   match(Set dst con);
  6949   ins_cost(125);
  6950   format %{ "MOVSD  $dst,[$con]" %}
  6951   ins_encode(load_conXD(dst, con));
  6952   ins_pipe( pipe_slow );
  6953 %}
  6955 // The instruction usage is guarded by predicate in operand immXD0().
  6956 instruct loadConXD0(regXD dst, immXD0 src) %{
  6957   match(Set dst src);
  6958   ins_cost(100);
  6959   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  6960   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
  6961   ins_pipe( pipe_slow );
  6962 %}
  6964 // Load Stack Slot
  6965 instruct loadSSI(eRegI dst, stackSlotI src) %{
  6966   match(Set dst src);
  6967   ins_cost(125);
  6969   format %{ "MOV    $dst,$src" %}
  6970   opcode(0x8B);
  6971   ins_encode( OpcP, RegMem(dst,src));
  6972   ins_pipe( ialu_reg_mem );
  6973 %}
  6975 instruct loadSSL(eRegL dst, stackSlotL src) %{
  6976   match(Set dst src);
  6978   ins_cost(200);
  6979   format %{ "MOV    $dst,$src.lo\n\t"
  6980             "MOV    $dst+4,$src.hi" %}
  6981   opcode(0x8B, 0x8B);
  6982   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  6983   ins_pipe( ialu_mem_long_reg );
  6984 %}
  6986 // Load Stack Slot
  6987 instruct loadSSP(eRegP dst, stackSlotP src) %{
  6988   match(Set dst src);
  6989   ins_cost(125);
  6991   format %{ "MOV    $dst,$src" %}
  6992   opcode(0x8B);
  6993   ins_encode( OpcP, RegMem(dst,src));
  6994   ins_pipe( ialu_reg_mem );
  6995 %}
  6997 // Load Stack Slot
  6998 instruct loadSSF(regF dst, stackSlotF src) %{
  6999   match(Set dst src);
  7000   ins_cost(125);
  7002   format %{ "FLD_S  $src\n\t"
  7003             "FSTP   $dst" %}
  7004   opcode(0xD9);               /* D9 /0, FLD m32real */
  7005   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  7006               Pop_Reg_F(dst) );
  7007   ins_pipe( fpu_reg_mem );
  7008 %}
  7010 // Load Stack Slot
  7011 instruct loadSSD(regD dst, stackSlotD src) %{
  7012   match(Set dst src);
  7013   ins_cost(125);
  7015   format %{ "FLD_D  $src\n\t"
  7016             "FSTP   $dst" %}
  7017   opcode(0xDD);               /* DD /0, FLD m64real */
  7018   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  7019               Pop_Reg_D(dst) );
  7020   ins_pipe( fpu_reg_mem );
  7021 %}
  7023 // Prefetch instructions.
  7024 // Must be safe to execute with invalid address (cannot fault).
  7026 instruct prefetchr0( memory mem ) %{
  7027   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
  7028   match(PrefetchRead mem);
  7029   ins_cost(0);
  7030   size(0);
  7031   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  7032   ins_encode();
  7033   ins_pipe(empty);
  7034 %}
  7036 instruct prefetchr( memory mem ) %{
  7037   predicate(UseSSE==0 && VM_Version::supports_3dnow() || ReadPrefetchInstr==3);
  7038   match(PrefetchRead mem);
  7039   ins_cost(100);
  7041   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  7042   opcode(0x0F, 0x0d);     /* Opcode 0F 0d /0 */
  7043   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7044   ins_pipe(ialu_mem);
  7045 %}
  7047 instruct prefetchrNTA( memory mem ) %{
  7048   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  7049   match(PrefetchRead mem);
  7050   ins_cost(100);
  7052   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  7053   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  7054   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7055   ins_pipe(ialu_mem);
  7056 %}
  7058 instruct prefetchrT0( memory mem ) %{
  7059   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  7060   match(PrefetchRead mem);
  7061   ins_cost(100);
  7063   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  7064   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  7065   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7066   ins_pipe(ialu_mem);
  7067 %}
  7069 instruct prefetchrT2( memory mem ) %{
  7070   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  7071   match(PrefetchRead mem);
  7072   ins_cost(100);
  7074   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  7075   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  7076   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
  7077   ins_pipe(ialu_mem);
  7078 %}
  7080 instruct prefetchw0( memory mem ) %{
  7081   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
  7082   match(PrefetchWrite mem);
  7083   ins_cost(0);
  7084   size(0);
  7085   format %{ "Prefetch (non-SSE is empty encoding)" %}
  7086   ins_encode();
  7087   ins_pipe(empty);
  7088 %}
  7090 instruct prefetchw( memory mem ) %{
  7091   predicate(UseSSE==0 && VM_Version::supports_3dnow() || AllocatePrefetchInstr==3);
  7092   match( PrefetchWrite mem );
  7093   ins_cost(100);
  7095   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  7096   opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
  7097   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7098   ins_pipe(ialu_mem);
  7099 %}
  7101 instruct prefetchwNTA( memory mem ) %{
  7102   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  7103   match(PrefetchWrite mem);
  7104   ins_cost(100);
  7106   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  7107   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  7108   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7109   ins_pipe(ialu_mem);
  7110 %}
  7112 instruct prefetchwT0( memory mem ) %{
  7113   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  7114   match(PrefetchWrite mem);
  7115   ins_cost(100);
  7117   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %}
  7118   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  7119   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7120   ins_pipe(ialu_mem);
  7121 %}
  7123 instruct prefetchwT2( memory mem ) %{
  7124   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  7125   match(PrefetchWrite mem);
  7126   ins_cost(100);
  7128   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %}
  7129   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  7130   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
  7131   ins_pipe(ialu_mem);
  7132 %}
  7134 //----------Store Instructions-------------------------------------------------
  7136 // Store Byte
  7137 instruct storeB(memory mem, xRegI src) %{
  7138   match(Set mem (StoreB mem src));
  7140   ins_cost(125);
  7141   format %{ "MOV8   $mem,$src" %}
  7142   opcode(0x88);
  7143   ins_encode( OpcP, RegMem( src, mem ) );
  7144   ins_pipe( ialu_mem_reg );
  7145 %}
  7147 // Store Char/Short
  7148 instruct storeC(memory mem, eRegI src) %{
  7149   match(Set mem (StoreC mem src));
  7151   ins_cost(125);
  7152   format %{ "MOV16  $mem,$src" %}
  7153   opcode(0x89, 0x66);
  7154   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  7155   ins_pipe( ialu_mem_reg );
  7156 %}
  7158 // Store Integer
  7159 instruct storeI(memory mem, eRegI src) %{
  7160   match(Set mem (StoreI mem src));
  7162   ins_cost(125);
  7163   format %{ "MOV    $mem,$src" %}
  7164   opcode(0x89);
  7165   ins_encode( OpcP, RegMem( src, mem ) );
  7166   ins_pipe( ialu_mem_reg );
  7167 %}
  7169 // Store Long
  7170 instruct storeL(long_memory mem, eRegL src) %{
  7171   predicate(!((StoreLNode*)n)->require_atomic_access());
  7172   match(Set mem (StoreL mem src));
  7174   ins_cost(200);
  7175   format %{ "MOV    $mem,$src.lo\n\t"
  7176             "MOV    $mem+4,$src.hi" %}
  7177   opcode(0x89, 0x89);
  7178   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  7179   ins_pipe( ialu_mem_long_reg );
  7180 %}
  7182 // Volatile Store Long.  Must be atomic, so move it into
  7183 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  7184 // target address before the store (for null-ptr checks)
  7185 // so the memory operand is used twice in the encoding.
  7186 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  7187   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  7188   match(Set mem (StoreL mem src));
  7189   effect( KILL cr );
  7190   ins_cost(400);
  7191   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7192             "FILD   $src\n\t"
  7193             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  7194   opcode(0x3B);
  7195   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  7196   ins_pipe( fpu_reg_mem );
  7197 %}
  7199 instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
  7200   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  7201   match(Set mem (StoreL mem src));
  7202   effect( TEMP tmp, KILL cr );
  7203   ins_cost(380);
  7204   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7205             "MOVSD  $tmp,$src\n\t"
  7206             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  7207   opcode(0x3B);
  7208   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
  7209   ins_pipe( pipe_slow );
  7210 %}
  7212 instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
  7213   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  7214   match(Set mem (StoreL mem src));
  7215   effect( TEMP tmp2 , TEMP tmp, KILL cr );
  7216   ins_cost(360);
  7217   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7218             "MOVD   $tmp,$src.lo\n\t"
  7219             "MOVD   $tmp2,$src.hi\n\t"
  7220             "PUNPCKLDQ $tmp,$tmp2\n\t"
  7221             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  7222   opcode(0x3B);
  7223   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
  7224   ins_pipe( pipe_slow );
  7225 %}
  7227 // Store Pointer; for storing unknown oops and raw pointers
  7228 instruct storeP(memory mem, anyRegP src) %{
  7229   match(Set mem (StoreP mem src));
  7231   ins_cost(125);
  7232   format %{ "MOV    $mem,$src" %}
  7233   opcode(0x89);
  7234   ins_encode( OpcP, RegMem( src, mem ) );
  7235   ins_pipe( ialu_mem_reg );
  7236 %}
  7238 // Store Integer Immediate
  7239 instruct storeImmI(memory mem, immI src) %{
  7240   match(Set mem (StoreI mem src));
  7242   ins_cost(150);
  7243   format %{ "MOV    $mem,$src" %}
  7244   opcode(0xC7);               /* C7 /0 */
  7245   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7246   ins_pipe( ialu_mem_imm );
  7247 %}
  7249 // Store Short/Char Immediate
  7250 instruct storeImmI16(memory mem, immI16 src) %{
  7251   predicate(UseStoreImmI16);
  7252   match(Set mem (StoreC mem src));
  7254   ins_cost(150);
  7255   format %{ "MOV16  $mem,$src" %}
  7256   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  7257   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  7258   ins_pipe( ialu_mem_imm );
  7259 %}
  7261 // Store Pointer Immediate; null pointers or constant oops that do not
  7262 // need card-mark barriers.
  7263 instruct storeImmP(memory mem, immP src) %{
  7264   match(Set mem (StoreP mem src));
  7266   ins_cost(150);
  7267   format %{ "MOV    $mem,$src" %}
  7268   opcode(0xC7);               /* C7 /0 */
  7269   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7270   ins_pipe( ialu_mem_imm );
  7271 %}
  7273 // Store Byte Immediate
  7274 instruct storeImmB(memory mem, immI8 src) %{
  7275   match(Set mem (StoreB mem src));
  7277   ins_cost(150);
  7278   format %{ "MOV8   $mem,$src" %}
  7279   opcode(0xC6);               /* C6 /0 */
  7280   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7281   ins_pipe( ialu_mem_imm );
  7282 %}
  7284 // Store Aligned Packed Byte XMM register to memory
  7285 instruct storeA8B(memory mem, regXD src) %{
  7286   predicate(UseSSE>=1);
  7287   match(Set mem (Store8B mem src));
  7288   ins_cost(145);
  7289   format %{ "MOVQ  $mem,$src\t! packed8B" %}
  7290   ins_encode( movq_st(mem, src));
  7291   ins_pipe( pipe_slow );
  7292 %}
  7294 // Store Aligned Packed Char/Short XMM register to memory
  7295 instruct storeA4C(memory mem, regXD src) %{
  7296   predicate(UseSSE>=1);
  7297   match(Set mem (Store4C mem src));
  7298   ins_cost(145);
  7299   format %{ "MOVQ  $mem,$src\t! packed4C" %}
  7300   ins_encode( movq_st(mem, src));
  7301   ins_pipe( pipe_slow );
  7302 %}
  7304 // Store Aligned Packed Integer XMM register to memory
  7305 instruct storeA2I(memory mem, regXD src) %{
  7306   predicate(UseSSE>=1);
  7307   match(Set mem (Store2I mem src));
  7308   ins_cost(145);
  7309   format %{ "MOVQ  $mem,$src\t! packed2I" %}
  7310   ins_encode( movq_st(mem, src));
  7311   ins_pipe( pipe_slow );
  7312 %}
  7314 // Store CMS card-mark Immediate
  7315 instruct storeImmCM(memory mem, immI8 src) %{
  7316   match(Set mem (StoreCM mem src));
  7318   ins_cost(150);
  7319   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  7320   opcode(0xC6);               /* C6 /0 */
  7321   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7322   ins_pipe( ialu_mem_imm );
  7323 %}
  7325 // Store Double
  7326 instruct storeD( memory mem, regDPR1 src) %{
  7327   predicate(UseSSE<=1);
  7328   match(Set mem (StoreD mem src));
  7330   ins_cost(100);
  7331   format %{ "FST_D  $mem,$src" %}
  7332   opcode(0xDD);       /* DD /2 */
  7333   ins_encode( enc_FP_store(mem,src) );
  7334   ins_pipe( fpu_mem_reg );
  7335 %}
  7337 // Store double does rounding on x86
  7338 instruct storeD_rounded( memory mem, regDPR1 src) %{
  7339   predicate(UseSSE<=1);
  7340   match(Set mem (StoreD mem (RoundDouble src)));
  7342   ins_cost(100);
  7343   format %{ "FST_D  $mem,$src\t# round" %}
  7344   opcode(0xDD);       /* DD /2 */
  7345   ins_encode( enc_FP_store(mem,src) );
  7346   ins_pipe( fpu_mem_reg );
  7347 %}
  7349 // Store XMM register to memory (double-precision floating points)
  7350 // MOVSD instruction
  7351 instruct storeXD(memory mem, regXD src) %{
  7352   predicate(UseSSE>=2);
  7353   match(Set mem (StoreD mem src));
  7354   ins_cost(95);
  7355   format %{ "MOVSD  $mem,$src" %}
  7356   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
  7357   ins_pipe( pipe_slow );
  7358 %}
  7360 // Store XMM register to memory (single-precision floating point)
  7361 // MOVSS instruction
  7362 instruct storeX(memory mem, regX src) %{
  7363   predicate(UseSSE>=1);
  7364   match(Set mem (StoreF mem src));
  7365   ins_cost(95);
  7366   format %{ "MOVSS  $mem,$src" %}
  7367   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
  7368   ins_pipe( pipe_slow );
  7369 %}
  7371 // Store Aligned Packed Single Float XMM register to memory
  7372 instruct storeA2F(memory mem, regXD src) %{
  7373   predicate(UseSSE>=1);
  7374   match(Set mem (Store2F mem src));
  7375   ins_cost(145);
  7376   format %{ "MOVQ  $mem,$src\t! packed2F" %}
  7377   ins_encode( movq_st(mem, src));
  7378   ins_pipe( pipe_slow );
  7379 %}
  7381 // Store Float
  7382 instruct storeF( memory mem, regFPR1 src) %{
  7383   predicate(UseSSE==0);
  7384   match(Set mem (StoreF mem src));
  7386   ins_cost(100);
  7387   format %{ "FST_S  $mem,$src" %}
  7388   opcode(0xD9);       /* D9 /2 */
  7389   ins_encode( enc_FP_store(mem,src) );
  7390   ins_pipe( fpu_mem_reg );
  7391 %}
  7393 // Store Float does rounding on x86
  7394 instruct storeF_rounded( memory mem, regFPR1 src) %{
  7395   predicate(UseSSE==0);
  7396   match(Set mem (StoreF mem (RoundFloat src)));
  7398   ins_cost(100);
  7399   format %{ "FST_S  $mem,$src\t# round" %}
  7400   opcode(0xD9);       /* D9 /2 */
  7401   ins_encode( enc_FP_store(mem,src) );
  7402   ins_pipe( fpu_mem_reg );
  7403 %}
  7405 // Store Float does rounding on x86
  7406 instruct storeF_Drounded( memory mem, regDPR1 src) %{
  7407   predicate(UseSSE<=1);
  7408   match(Set mem (StoreF mem (ConvD2F src)));
  7410   ins_cost(100);
  7411   format %{ "FST_S  $mem,$src\t# D-round" %}
  7412   opcode(0xD9);       /* D9 /2 */
  7413   ins_encode( enc_FP_store(mem,src) );
  7414   ins_pipe( fpu_mem_reg );
  7415 %}
  7417 // Store immediate Float value (it is faster than store from FPU register)
  7418 // The instruction usage is guarded by predicate in operand immF().
  7419 instruct storeF_imm( memory mem, immF src) %{
  7420   match(Set mem (StoreF mem src));
  7422   ins_cost(50);
  7423   format %{ "MOV    $mem,$src\t# store float" %}
  7424   opcode(0xC7);               /* C7 /0 */
  7425   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  7426   ins_pipe( ialu_mem_imm );
  7427 %}
  7429 // Store immediate Float value (it is faster than store from XMM register)
  7430 // The instruction usage is guarded by predicate in operand immXF().
  7431 instruct storeX_imm( memory mem, immXF src) %{
  7432   match(Set mem (StoreF mem src));
  7434   ins_cost(50);
  7435   format %{ "MOV    $mem,$src\t# store float" %}
  7436   opcode(0xC7);               /* C7 /0 */
  7437   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32XF_as_bits( src ));
  7438   ins_pipe( ialu_mem_imm );
  7439 %}
  7441 // Store Integer to stack slot
  7442 instruct storeSSI(stackSlotI dst, eRegI src) %{
  7443   match(Set dst src);
  7445   ins_cost(100);
  7446   format %{ "MOV    $dst,$src" %}
  7447   opcode(0x89);
  7448   ins_encode( OpcPRegSS( dst, src ) );
  7449   ins_pipe( ialu_mem_reg );
  7450 %}
  7452 // Store Integer to stack slot
  7453 instruct storeSSP(stackSlotP dst, eRegP src) %{
  7454   match(Set dst src);
  7456   ins_cost(100);
  7457   format %{ "MOV    $dst,$src" %}
  7458   opcode(0x89);
  7459   ins_encode( OpcPRegSS( dst, src ) );
  7460   ins_pipe( ialu_mem_reg );
  7461 %}
  7463 // Store Long to stack slot
  7464 instruct storeSSL(stackSlotL dst, eRegL src) %{
  7465   match(Set dst src);
  7467   ins_cost(200);
  7468   format %{ "MOV    $dst,$src.lo\n\t"
  7469             "MOV    $dst+4,$src.hi" %}
  7470   opcode(0x89, 0x89);
  7471   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  7472   ins_pipe( ialu_mem_long_reg );
  7473 %}
  7475 //----------MemBar Instructions-----------------------------------------------
  7476 // Memory barrier flavors
  7478 instruct membar_acquire() %{
  7479   match(MemBarAcquire);
  7480   ins_cost(400);
  7482   size(0);
  7483   format %{ "MEMBAR-acquire ! (empty encoding)" %}
  7484   ins_encode();
  7485   ins_pipe(empty);
  7486 %}
  7488 instruct membar_acquire_lock() %{
  7489   match(MemBarAcquire);
  7490   predicate(Matcher::prior_fast_lock(n));
  7491   ins_cost(0);
  7493   size(0);
  7494   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  7495   ins_encode( );
  7496   ins_pipe(empty);
  7497 %}
  7499 instruct membar_release() %{
  7500   match(MemBarRelease);
  7501   ins_cost(400);
  7503   size(0);
  7504   format %{ "MEMBAR-release ! (empty encoding)" %}
  7505   ins_encode( );
  7506   ins_pipe(empty);
  7507 %}
  7509 instruct membar_release_lock() %{
  7510   match(MemBarRelease);
  7511   predicate(Matcher::post_fast_unlock(n));
  7512   ins_cost(0);
  7514   size(0);
  7515   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  7516   ins_encode( );
  7517   ins_pipe(empty);
  7518 %}
  7520 instruct membar_volatile(eFlagsReg cr) %{
  7521   match(MemBarVolatile);
  7522   effect(KILL cr);
  7523   ins_cost(400);
  7525   format %{ 
  7526     $$template
  7527     if (os::is_MP()) {
  7528       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
  7529     } else {
  7530       $$emit$$"MEMBAR-volatile ! (empty encoding)"
  7532   %}
  7533   ins_encode %{
  7534     __ membar(Assembler::StoreLoad);
  7535   %}
  7536   ins_pipe(pipe_slow);
  7537 %}
  7539 instruct unnecessary_membar_volatile() %{
  7540   match(MemBarVolatile);
  7541   predicate(Matcher::post_store_load_barrier(n));
  7542   ins_cost(0);
  7544   size(0);
  7545   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  7546   ins_encode( );
  7547   ins_pipe(empty);
  7548 %}
  7550 //----------Move Instructions--------------------------------------------------
  7551 instruct castX2P(eAXRegP dst, eAXRegI src) %{
  7552   match(Set dst (CastX2P src));
  7553   format %{ "# X2P  $dst, $src" %}
  7554   ins_encode( /*empty encoding*/ );
  7555   ins_cost(0);
  7556   ins_pipe(empty);
  7557 %}
  7559 instruct castP2X(eRegI dst, eRegP src ) %{
  7560   match(Set dst (CastP2X src));
  7561   ins_cost(50);
  7562   format %{ "MOV    $dst, $src\t# CastP2X" %}
  7563   ins_encode( enc_Copy( dst, src) );
  7564   ins_pipe( ialu_reg_reg );
  7565 %}
  7567 //----------Conditional Move---------------------------------------------------
  7568 // Conditional move
  7569 instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
  7570   predicate(VM_Version::supports_cmov() );
  7571   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7572   ins_cost(200);
  7573   format %{ "CMOV$cop $dst,$src" %}
  7574   opcode(0x0F,0x40);
  7575   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7576   ins_pipe( pipe_cmov_reg );
  7577 %}
  7579 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
  7580   predicate(VM_Version::supports_cmov() );
  7581   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7582   ins_cost(200);
  7583   format %{ "CMOV$cop $dst,$src" %}
  7584   opcode(0x0F,0x40);
  7585   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7586   ins_pipe( pipe_cmov_reg );
  7587 %}
  7589 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
  7590   predicate(VM_Version::supports_cmov() );
  7591   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7592   ins_cost(200);
  7593   expand %{
  7594     cmovI_regU(cop, cr, dst, src);
  7595   %}
  7596 %}
  7598 // Conditional move
  7599 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
  7600   predicate(VM_Version::supports_cmov() );
  7601   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7602   ins_cost(250);
  7603   format %{ "CMOV$cop $dst,$src" %}
  7604   opcode(0x0F,0x40);
  7605   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7606   ins_pipe( pipe_cmov_mem );
  7607 %}
  7609 // Conditional move
  7610 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
  7611   predicate(VM_Version::supports_cmov() );
  7612   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7613   ins_cost(250);
  7614   format %{ "CMOV$cop $dst,$src" %}
  7615   opcode(0x0F,0x40);
  7616   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7617   ins_pipe( pipe_cmov_mem );
  7618 %}
  7620 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
  7621   predicate(VM_Version::supports_cmov() );
  7622   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7623   ins_cost(250);
  7624   expand %{
  7625     cmovI_memU(cop, cr, dst, src);
  7626   %}
  7627 %}
  7629 // Conditional move
  7630 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7631   predicate(VM_Version::supports_cmov() );
  7632   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7633   ins_cost(200);
  7634   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7635   opcode(0x0F,0x40);
  7636   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7637   ins_pipe( pipe_cmov_reg );
  7638 %}
  7640 // Conditional move (non-P6 version)
  7641 // Note:  a CMoveP is generated for  stubs and native wrappers
  7642 //        regardless of whether we are on a P6, so we
  7643 //        emulate a cmov here
  7644 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7645   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7646   ins_cost(300);
  7647   format %{ "Jn$cop   skip\n\t"
  7648           "MOV    $dst,$src\t# pointer\n"
  7649       "skip:" %}
  7650   opcode(0x8b);
  7651   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  7652   ins_pipe( pipe_cmov_reg );
  7653 %}
  7655 // Conditional move
  7656 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
  7657   predicate(VM_Version::supports_cmov() );
  7658   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7659   ins_cost(200);
  7660   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7661   opcode(0x0F,0x40);
  7662   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7663   ins_pipe( pipe_cmov_reg );
  7664 %}
  7666 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  7667   predicate(VM_Version::supports_cmov() );
  7668   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7669   ins_cost(200);
  7670   expand %{
  7671     cmovP_regU(cop, cr, dst, src);
  7672   %}
  7673 %}
  7675 // DISABLED: Requires the ADLC to emit a bottom_type call that
  7676 // correctly meets the two pointer arguments; one is an incoming
  7677 // register but the other is a memory operand.  ALSO appears to
  7678 // be buggy with implicit null checks.
  7679 //
  7680 //// Conditional move
  7681 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
  7682 //  predicate(VM_Version::supports_cmov() );
  7683 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7684 //  ins_cost(250);
  7685 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7686 //  opcode(0x0F,0x40);
  7687 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7688 //  ins_pipe( pipe_cmov_mem );
  7689 //%}
  7690 //
  7691 //// Conditional move
  7692 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
  7693 //  predicate(VM_Version::supports_cmov() );
  7694 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7695 //  ins_cost(250);
  7696 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7697 //  opcode(0x0F,0x40);
  7698 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7699 //  ins_pipe( pipe_cmov_mem );
  7700 //%}
  7702 // Conditional move
  7703 instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
  7704   predicate(UseSSE<=1);
  7705   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7706   ins_cost(200);
  7707   format %{ "FCMOV$cop $dst,$src\t# double" %}
  7708   opcode(0xDA);
  7709   ins_encode( enc_cmov_d(cop,src) );
  7710   ins_pipe( pipe_cmovD_reg );
  7711 %}
  7713 // Conditional move
  7714 instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
  7715   predicate(UseSSE==0);
  7716   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7717   ins_cost(200);
  7718   format %{ "FCMOV$cop $dst,$src\t# float" %}
  7719   opcode(0xDA);
  7720   ins_encode( enc_cmov_d(cop,src) );
  7721   ins_pipe( pipe_cmovD_reg );
  7722 %}
  7724 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7725 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  7726   predicate(UseSSE<=1);
  7727   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7728   ins_cost(200);
  7729   format %{ "Jn$cop   skip\n\t"
  7730             "MOV    $dst,$src\t# double\n"
  7731       "skip:" %}
  7732   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7733   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
  7734   ins_pipe( pipe_cmovD_reg );
  7735 %}
  7737 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7738 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  7739   predicate(UseSSE==0);
  7740   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7741   ins_cost(200);
  7742   format %{ "Jn$cop    skip\n\t"
  7743             "MOV    $dst,$src\t# float\n"
  7744       "skip:" %}
  7745   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7746   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
  7747   ins_pipe( pipe_cmovD_reg );
  7748 %}
  7750 // No CMOVE with SSE/SSE2
  7751 instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
  7752   predicate (UseSSE>=1);
  7753   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7754   ins_cost(200);
  7755   format %{ "Jn$cop   skip\n\t"
  7756             "MOVSS  $dst,$src\t# float\n"
  7757       "skip:" %}
  7758   ins_encode %{
  7759     Label skip;
  7760     // Invert sense of branch from sense of CMOV
  7761     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7762     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  7763     __ bind(skip);
  7764   %}
  7765   ins_pipe( pipe_slow );
  7766 %}
  7768 // No CMOVE with SSE/SSE2
  7769 instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
  7770   predicate (UseSSE>=2);
  7771   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7772   ins_cost(200);
  7773   format %{ "Jn$cop   skip\n\t"
  7774             "MOVSD  $dst,$src\t# float\n"
  7775       "skip:" %}
  7776   ins_encode %{
  7777     Label skip;
  7778     // Invert sense of branch from sense of CMOV
  7779     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7780     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  7781     __ bind(skip);
  7782   %}
  7783   ins_pipe( pipe_slow );
  7784 %}
  7786 // unsigned version
  7787 instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
  7788   predicate (UseSSE>=1);
  7789   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7790   ins_cost(200);
  7791   format %{ "Jn$cop   skip\n\t"
  7792             "MOVSS  $dst,$src\t# float\n"
  7793       "skip:" %}
  7794   ins_encode %{
  7795     Label skip;
  7796     // Invert sense of branch from sense of CMOV
  7797     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7798     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  7799     __ bind(skip);
  7800   %}
  7801   ins_pipe( pipe_slow );
  7802 %}
  7804 instruct fcmovX_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regX dst, regX src) %{
  7805   predicate (UseSSE>=1);
  7806   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7807   ins_cost(200);
  7808   expand %{
  7809     fcmovX_regU(cop, cr, dst, src);
  7810   %}
  7811 %}
  7813 // unsigned version
  7814 instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
  7815   predicate (UseSSE>=2);
  7816   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7817   ins_cost(200);
  7818   format %{ "Jn$cop   skip\n\t"
  7819             "MOVSD  $dst,$src\t# float\n"
  7820       "skip:" %}
  7821   ins_encode %{
  7822     Label skip;
  7823     // Invert sense of branch from sense of CMOV
  7824     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7825     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  7826     __ bind(skip);
  7827   %}
  7828   ins_pipe( pipe_slow );
  7829 %}
  7831 instruct fcmovXD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regXD dst, regXD src) %{
  7832   predicate (UseSSE>=2);
  7833   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7834   ins_cost(200);
  7835   expand %{
  7836     fcmovXD_regU(cop, cr, dst, src);
  7837   %}
  7838 %}
  7840 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  7841   predicate(VM_Version::supports_cmov() );
  7842   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7843   ins_cost(200);
  7844   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7845             "CMOV$cop $dst.hi,$src.hi" %}
  7846   opcode(0x0F,0x40);
  7847   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7848   ins_pipe( pipe_cmov_reg_long );
  7849 %}
  7851 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  7852   predicate(VM_Version::supports_cmov() );
  7853   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7854   ins_cost(200);
  7855   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7856             "CMOV$cop $dst.hi,$src.hi" %}
  7857   opcode(0x0F,0x40);
  7858   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7859   ins_pipe( pipe_cmov_reg_long );
  7860 %}
  7862 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  7863   predicate(VM_Version::supports_cmov() );
  7864   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7865   ins_cost(200);
  7866   expand %{
  7867     cmovL_regU(cop, cr, dst, src);
  7868   %}
  7869 %}
  7871 //----------Arithmetic Instructions--------------------------------------------
  7872 //----------Addition Instructions----------------------------------------------
  7873 // Integer Addition Instructions
  7874 instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  7875   match(Set dst (AddI dst src));
  7876   effect(KILL cr);
  7878   size(2);
  7879   format %{ "ADD    $dst,$src" %}
  7880   opcode(0x03);
  7881   ins_encode( OpcP, RegReg( dst, src) );
  7882   ins_pipe( ialu_reg_reg );
  7883 %}
  7885 instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  7886   match(Set dst (AddI dst src));
  7887   effect(KILL cr);
  7889   format %{ "ADD    $dst,$src" %}
  7890   opcode(0x81, 0x00); /* /0 id */
  7891   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7892   ins_pipe( ialu_reg );
  7893 %}
  7895 instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  7896   predicate(UseIncDec);
  7897   match(Set dst (AddI dst src));
  7898   effect(KILL cr);
  7900   size(1);
  7901   format %{ "INC    $dst" %}
  7902   opcode(0x40); /*  */
  7903   ins_encode( Opc_plus( primary, dst ) );
  7904   ins_pipe( ialu_reg );
  7905 %}
  7907 instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
  7908   match(Set dst (AddI src0 src1));
  7909   ins_cost(110);
  7911   format %{ "LEA    $dst,[$src0 + $src1]" %}
  7912   opcode(0x8D); /* 0x8D /r */
  7913   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7914   ins_pipe( ialu_reg_reg );
  7915 %}
  7917 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  7918   match(Set dst (AddP src0 src1));
  7919   ins_cost(110);
  7921   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  7922   opcode(0x8D); /* 0x8D /r */
  7923   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7924   ins_pipe( ialu_reg_reg );
  7925 %}
  7927 instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
  7928   predicate(UseIncDec);
  7929   match(Set dst (AddI dst src));
  7930   effect(KILL cr);
  7932   size(1);
  7933   format %{ "DEC    $dst" %}
  7934   opcode(0x48); /*  */
  7935   ins_encode( Opc_plus( primary, dst ) );
  7936   ins_pipe( ialu_reg );
  7937 %}
  7939 instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
  7940   match(Set dst (AddP dst src));
  7941   effect(KILL cr);
  7943   size(2);
  7944   format %{ "ADD    $dst,$src" %}
  7945   opcode(0x03);
  7946   ins_encode( OpcP, RegReg( dst, src) );
  7947   ins_pipe( ialu_reg_reg );
  7948 %}
  7950 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  7951   match(Set dst (AddP dst src));
  7952   effect(KILL cr);
  7954   format %{ "ADD    $dst,$src" %}
  7955   opcode(0x81,0x00); /* Opcode 81 /0 id */
  7956   // ins_encode( RegImm( dst, src) );
  7957   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7958   ins_pipe( ialu_reg );
  7959 %}
  7961 instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  7962   match(Set dst (AddI dst (LoadI src)));
  7963   effect(KILL cr);
  7965   ins_cost(125);
  7966   format %{ "ADD    $dst,$src" %}
  7967   opcode(0x03);
  7968   ins_encode( OpcP, RegMem( dst, src) );
  7969   ins_pipe( ialu_reg_mem );
  7970 %}
  7972 instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  7973   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7974   effect(KILL cr);
  7976   ins_cost(150);
  7977   format %{ "ADD    $dst,$src" %}
  7978   opcode(0x01);  /* Opcode 01 /r */
  7979   ins_encode( OpcP, RegMem( src, dst ) );
  7980   ins_pipe( ialu_mem_reg );
  7981 %}
  7983 // Add Memory with Immediate
  7984 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  7985   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7986   effect(KILL cr);
  7988   ins_cost(125);
  7989   format %{ "ADD    $dst,$src" %}
  7990   opcode(0x81);               /* Opcode 81 /0 id */
  7991   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  7992   ins_pipe( ialu_mem_imm );
  7993 %}
  7995 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  7996   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7997   effect(KILL cr);
  7999   ins_cost(125);
  8000   format %{ "INC    $dst" %}
  8001   opcode(0xFF);               /* Opcode FF /0 */
  8002   ins_encode( OpcP, RMopc_Mem(0x00,dst));
  8003   ins_pipe( ialu_mem_imm );
  8004 %}
  8006 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  8007   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8008   effect(KILL cr);
  8010   ins_cost(125);
  8011   format %{ "DEC    $dst" %}
  8012   opcode(0xFF);               /* Opcode FF /1 */
  8013   ins_encode( OpcP, RMopc_Mem(0x01,dst));
  8014   ins_pipe( ialu_mem_imm );
  8015 %}
  8018 instruct checkCastPP( eRegP dst ) %{
  8019   match(Set dst (CheckCastPP dst));
  8021   size(0);
  8022   format %{ "#checkcastPP of $dst" %}
  8023   ins_encode( /*empty encoding*/ );
  8024   ins_pipe( empty );
  8025 %}
  8027 instruct castPP( eRegP dst ) %{
  8028   match(Set dst (CastPP dst));
  8029   format %{ "#castPP of $dst" %}
  8030   ins_encode( /*empty encoding*/ );
  8031   ins_pipe( empty );
  8032 %}
  8034 instruct castII( eRegI dst ) %{
  8035   match(Set dst (CastII dst));
  8036   format %{ "#castII of $dst" %}
  8037   ins_encode( /*empty encoding*/ );
  8038   ins_cost(0);
  8039   ins_pipe( empty );
  8040 %}
  8043 // Load-locked - same as a regular pointer load when used with compare-swap
  8044 instruct loadPLocked(eRegP dst, memory mem) %{
  8045   match(Set dst (LoadPLocked mem));
  8047   ins_cost(125);
  8048   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  8049   opcode(0x8B);
  8050   ins_encode( OpcP, RegMem(dst,mem));
  8051   ins_pipe( ialu_reg_mem );
  8052 %}
  8054 // LoadLong-locked - same as a volatile long load when used with compare-swap
  8055 instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
  8056   predicate(UseSSE<=1);
  8057   match(Set dst (LoadLLocked mem));
  8059   ins_cost(200);
  8060   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  8061             "FISTp  $dst" %}
  8062   ins_encode(enc_loadL_volatile(mem,dst));
  8063   ins_pipe( fpu_reg_mem );
  8064 %}
  8066 instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
  8067   predicate(UseSSE>=2);
  8068   match(Set dst (LoadLLocked mem));
  8069   effect(TEMP tmp);
  8070   ins_cost(180);
  8071   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  8072             "MOVSD  $dst,$tmp" %}
  8073   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
  8074   ins_pipe( pipe_slow );
  8075 %}
  8077 instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
  8078   predicate(UseSSE>=2);
  8079   match(Set dst (LoadLLocked mem));
  8080   effect(TEMP tmp);
  8081   ins_cost(160);
  8082   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  8083             "MOVD   $dst.lo,$tmp\n\t"
  8084             "PSRLQ  $tmp,32\n\t"
  8085             "MOVD   $dst.hi,$tmp" %}
  8086   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
  8087   ins_pipe( pipe_slow );
  8088 %}
  8090 // Conditional-store of the updated heap-top.
  8091 // Used during allocation of the shared heap.
  8092 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  8093 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  8094   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  8095   // EAX is killed if there is contention, but then it's also unused.
  8096   // In the common case of no contention, EAX holds the new oop address.
  8097   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  8098   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  8099   ins_pipe( pipe_cmpxchg );
  8100 %}
  8102 // Conditional-store of an int value.
  8103 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
  8104 instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
  8105   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  8106   effect(KILL oldval);
  8107   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  8108   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
  8109   ins_pipe( pipe_cmpxchg );
  8110 %}
  8112 // Conditional-store of a long value.
  8113 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
  8114 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  8115   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  8116   effect(KILL oldval);
  8117   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
  8118             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
  8119             "XCHG   EBX,ECX"
  8120   %}
  8121   ins_encode %{
  8122     // Note: we need to swap rbx, and rcx before and after the
  8123     //       cmpxchg8 instruction because the instruction uses
  8124     //       rcx as the high order word of the new value to store but
  8125     //       our register encoding uses rbx.
  8126     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  8127     if( os::is_MP() )
  8128       __ lock();
  8129     __ cmpxchg8($mem$$Address);
  8130     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  8131   %}
  8132   ins_pipe( pipe_cmpxchg );
  8133 %}
  8135 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  8137 instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  8138   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  8139   effect(KILL cr, KILL oldval);
  8140   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8141             "MOV    $res,0\n\t"
  8142             "JNE,s  fail\n\t"
  8143             "MOV    $res,1\n"
  8144           "fail:" %}
  8145   ins_encode( enc_cmpxchg8(mem_ptr),
  8146               enc_flags_ne_to_boolean(res) );
  8147   ins_pipe( pipe_cmpxchg );
  8148 %}
  8150 instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  8151   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  8152   effect(KILL cr, KILL oldval);
  8153   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8154             "MOV    $res,0\n\t"
  8155             "JNE,s  fail\n\t"
  8156             "MOV    $res,1\n"
  8157           "fail:" %}
  8158   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  8159   ins_pipe( pipe_cmpxchg );
  8160 %}
  8162 instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  8163   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  8164   effect(KILL cr, KILL oldval);
  8165   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8166             "MOV    $res,0\n\t"
  8167             "JNE,s  fail\n\t"
  8168             "MOV    $res,1\n"
  8169           "fail:" %}
  8170   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  8171   ins_pipe( pipe_cmpxchg );
  8172 %}
  8174 //----------Subtraction Instructions-------------------------------------------
  8175 // Integer Subtraction Instructions
  8176 instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8177   match(Set dst (SubI dst src));
  8178   effect(KILL cr);
  8180   size(2);
  8181   format %{ "SUB    $dst,$src" %}
  8182   opcode(0x2B);
  8183   ins_encode( OpcP, RegReg( dst, src) );
  8184   ins_pipe( ialu_reg_reg );
  8185 %}
  8187 instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8188   match(Set dst (SubI dst src));
  8189   effect(KILL cr);
  8191   format %{ "SUB    $dst,$src" %}
  8192   opcode(0x81,0x05);  /* Opcode 81 /5 */
  8193   // ins_encode( RegImm( dst, src) );
  8194   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8195   ins_pipe( ialu_reg );
  8196 %}
  8198 instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8199   match(Set dst (SubI dst (LoadI src)));
  8200   effect(KILL cr);
  8202   ins_cost(125);
  8203   format %{ "SUB    $dst,$src" %}
  8204   opcode(0x2B);
  8205   ins_encode( OpcP, RegMem( dst, src) );
  8206   ins_pipe( ialu_reg_mem );
  8207 %}
  8209 instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8210   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  8211   effect(KILL cr);
  8213   ins_cost(150);
  8214   format %{ "SUB    $dst,$src" %}
  8215   opcode(0x29);  /* Opcode 29 /r */
  8216   ins_encode( OpcP, RegMem( src, dst ) );
  8217   ins_pipe( ialu_mem_reg );
  8218 %}
  8220 // Subtract from a pointer
  8221 instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
  8222   match(Set dst (AddP dst (SubI zero src)));
  8223   effect(KILL cr);
  8225   size(2);
  8226   format %{ "SUB    $dst,$src" %}
  8227   opcode(0x2B);
  8228   ins_encode( OpcP, RegReg( dst, src) );
  8229   ins_pipe( ialu_reg_reg );
  8230 %}
  8232 instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
  8233   match(Set dst (SubI zero dst));
  8234   effect(KILL cr);
  8236   size(2);
  8237   format %{ "NEG    $dst" %}
  8238   opcode(0xF7,0x03);  // Opcode F7 /3
  8239   ins_encode( OpcP, RegOpc( dst ) );
  8240   ins_pipe( ialu_reg );
  8241 %}
  8244 //----------Multiplication/Division Instructions-------------------------------
  8245 // Integer Multiplication Instructions
  8246 // Multiply Register
  8247 instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8248   match(Set dst (MulI dst src));
  8249   effect(KILL cr);
  8251   size(3);
  8252   ins_cost(300);
  8253   format %{ "IMUL   $dst,$src" %}
  8254   opcode(0xAF, 0x0F);
  8255   ins_encode( OpcS, OpcP, RegReg( dst, src) );
  8256   ins_pipe( ialu_reg_reg_alu0 );
  8257 %}
  8259 // Multiply 32-bit Immediate
  8260 instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
  8261   match(Set dst (MulI src imm));
  8262   effect(KILL cr);
  8264   ins_cost(300);
  8265   format %{ "IMUL   $dst,$src,$imm" %}
  8266   opcode(0x69);  /* 69 /r id */
  8267   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  8268   ins_pipe( ialu_reg_reg_alu0 );
  8269 %}
  8271 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  8272   match(Set dst src);
  8273   effect(KILL cr);
  8275   // Note that this is artificially increased to make it more expensive than loadConL
  8276   ins_cost(250);
  8277   format %{ "MOV    EAX,$src\t// low word only" %}
  8278   opcode(0xB8);
  8279   ins_encode( LdImmL_Lo(dst, src) );
  8280   ins_pipe( ialu_reg_fat );
  8281 %}
  8283 // Multiply by 32-bit Immediate, taking the shifted high order results
  8284 //  (special case for shift by 32)
  8285 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  8286   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8287   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8288              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8289              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8290   effect(USE src1, KILL cr);
  8292   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8293   ins_cost(0*100 + 1*400 - 150);
  8294   format %{ "IMUL   EDX:EAX,$src1" %}
  8295   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8296   ins_pipe( pipe_slow );
  8297 %}
  8299 // Multiply by 32-bit Immediate, taking the shifted high order results
  8300 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  8301   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8302   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8303              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8304              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8305   effect(USE src1, KILL cr);
  8307   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8308   ins_cost(1*100 + 1*400 - 150);
  8309   format %{ "IMUL   EDX:EAX,$src1\n\t"
  8310             "SAR    EDX,$cnt-32" %}
  8311   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8312   ins_pipe( pipe_slow );
  8313 %}
  8315 // Multiply Memory 32-bit Immediate
  8316 instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
  8317   match(Set dst (MulI (LoadI src) imm));
  8318   effect(KILL cr);
  8320   ins_cost(300);
  8321   format %{ "IMUL   $dst,$src,$imm" %}
  8322   opcode(0x69);  /* 69 /r id */
  8323   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  8324   ins_pipe( ialu_reg_mem_alu0 );
  8325 %}
  8327 // Multiply Memory
  8328 instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
  8329   match(Set dst (MulI dst (LoadI src)));
  8330   effect(KILL cr);
  8332   ins_cost(350);
  8333   format %{ "IMUL   $dst,$src" %}
  8334   opcode(0xAF, 0x0F);
  8335   ins_encode( OpcS, OpcP, RegMem( dst, src) );
  8336   ins_pipe( ialu_reg_mem_alu0 );
  8337 %}
  8339 // Multiply Register Int to Long
  8340 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  8341   // Basic Idea: long = (long)int * (long)int
  8342   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  8343   effect(DEF dst, USE src, USE src1, KILL flags);
  8345   ins_cost(300);
  8346   format %{ "IMUL   $dst,$src1" %}
  8348   ins_encode( long_int_multiply( dst, src1 ) );
  8349   ins_pipe( ialu_reg_reg_alu0 );
  8350 %}
  8352 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  8353   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  8354   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  8355   effect(KILL flags);
  8357   ins_cost(300);
  8358   format %{ "MUL    $dst,$src1" %}
  8360   ins_encode( long_uint_multiply(dst, src1) );
  8361   ins_pipe( ialu_reg_reg_alu0 );
  8362 %}
  8364 // Multiply Register Long
  8365 instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8366   match(Set dst (MulL dst src));
  8367   effect(KILL cr, TEMP tmp);
  8368   ins_cost(4*100+3*400);
  8369 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8370 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  8371   format %{ "MOV    $tmp,$src.lo\n\t"
  8372             "IMUL   $tmp,EDX\n\t"
  8373             "MOV    EDX,$src.hi\n\t"
  8374             "IMUL   EDX,EAX\n\t"
  8375             "ADD    $tmp,EDX\n\t"
  8376             "MUL    EDX:EAX,$src.lo\n\t"
  8377             "ADD    EDX,$tmp" %}
  8378   ins_encode( long_multiply( dst, src, tmp ) );
  8379   ins_pipe( pipe_slow );
  8380 %}
  8382 // Multiply Register Long by small constant
  8383 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
  8384   match(Set dst (MulL dst src));
  8385   effect(KILL cr, TEMP tmp);
  8386   ins_cost(2*100+2*400);
  8387   size(12);
  8388 // Basic idea: lo(result) = lo(src * EAX)
  8389 //             hi(result) = hi(src * EAX) + lo(src * EDX)
  8390   format %{ "IMUL   $tmp,EDX,$src\n\t"
  8391             "MOV    EDX,$src\n\t"
  8392             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
  8393             "ADD    EDX,$tmp" %}
  8394   ins_encode( long_multiply_con( dst, src, tmp ) );
  8395   ins_pipe( pipe_slow );
  8396 %}
  8398 // Integer DIV with Register
  8399 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8400   match(Set rax (DivI rax div));
  8401   effect(KILL rdx, KILL cr);
  8402   size(26);
  8403   ins_cost(30*100+10*100);
  8404   format %{ "CMP    EAX,0x80000000\n\t"
  8405             "JNE,s  normal\n\t"
  8406             "XOR    EDX,EDX\n\t"
  8407             "CMP    ECX,-1\n\t"
  8408             "JE,s   done\n"
  8409     "normal: CDQ\n\t"
  8410             "IDIV   $div\n\t"
  8411     "done:"        %}
  8412   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8413   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8414   ins_pipe( ialu_reg_reg_alu0 );
  8415 %}
  8417 // Divide Register Long
  8418 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8419   match(Set dst (DivL src1 src2));
  8420   effect( KILL cr, KILL cx, KILL bx );
  8421   ins_cost(10000);
  8422   format %{ "PUSH   $src1.hi\n\t"
  8423             "PUSH   $src1.lo\n\t"
  8424             "PUSH   $src2.hi\n\t"
  8425             "PUSH   $src2.lo\n\t"
  8426             "CALL   SharedRuntime::ldiv\n\t"
  8427             "ADD    ESP,16" %}
  8428   ins_encode( long_div(src1,src2) );
  8429   ins_pipe( pipe_slow );
  8430 %}
  8432 // Integer DIVMOD with Register, both quotient and mod results
  8433 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8434   match(DivModI rax div);
  8435   effect(KILL cr);
  8436   size(26);
  8437   ins_cost(30*100+10*100);
  8438   format %{ "CMP    EAX,0x80000000\n\t"
  8439             "JNE,s  normal\n\t"
  8440             "XOR    EDX,EDX\n\t"
  8441             "CMP    ECX,-1\n\t"
  8442             "JE,s   done\n"
  8443     "normal: CDQ\n\t"
  8444             "IDIV   $div\n\t"
  8445     "done:"        %}
  8446   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8447   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8448   ins_pipe( pipe_slow );
  8449 %}
  8451 // Integer MOD with Register
  8452 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  8453   match(Set rdx (ModI rax div));
  8454   effect(KILL rax, KILL cr);
  8456   size(26);
  8457   ins_cost(300);
  8458   format %{ "CDQ\n\t"
  8459             "IDIV   $div" %}
  8460   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8461   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8462   ins_pipe( ialu_reg_reg_alu0 );
  8463 %}
  8465 // Remainder Register Long
  8466 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8467   match(Set dst (ModL src1 src2));
  8468   effect( KILL cr, KILL cx, KILL bx );
  8469   ins_cost(10000);
  8470   format %{ "PUSH   $src1.hi\n\t"
  8471             "PUSH   $src1.lo\n\t"
  8472             "PUSH   $src2.hi\n\t"
  8473             "PUSH   $src2.lo\n\t"
  8474             "CALL   SharedRuntime::lrem\n\t"
  8475             "ADD    ESP,16" %}
  8476   ins_encode( long_mod(src1,src2) );
  8477   ins_pipe( pipe_slow );
  8478 %}
  8480 // Integer Shift Instructions
  8481 // Shift Left by one
  8482 instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8483   match(Set dst (LShiftI dst shift));
  8484   effect(KILL cr);
  8486   size(2);
  8487   format %{ "SHL    $dst,$shift" %}
  8488   opcode(0xD1, 0x4);  /* D1 /4 */
  8489   ins_encode( OpcP, RegOpc( dst ) );
  8490   ins_pipe( ialu_reg );
  8491 %}
  8493 // Shift Left by 8-bit immediate
  8494 instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8495   match(Set dst (LShiftI dst shift));
  8496   effect(KILL cr);
  8498   size(3);
  8499   format %{ "SHL    $dst,$shift" %}
  8500   opcode(0xC1, 0x4);  /* C1 /4 ib */
  8501   ins_encode( RegOpcImm( dst, shift) );
  8502   ins_pipe( ialu_reg );
  8503 %}
  8505 // Shift Left by variable
  8506 instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8507   match(Set dst (LShiftI dst shift));
  8508   effect(KILL cr);
  8510   size(2);
  8511   format %{ "SHL    $dst,$shift" %}
  8512   opcode(0xD3, 0x4);  /* D3 /4 */
  8513   ins_encode( OpcP, RegOpc( dst ) );
  8514   ins_pipe( ialu_reg_reg );
  8515 %}
  8517 // Arithmetic shift right by one
  8518 instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8519   match(Set dst (RShiftI dst shift));
  8520   effect(KILL cr);
  8522   size(2);
  8523   format %{ "SAR    $dst,$shift" %}
  8524   opcode(0xD1, 0x7);  /* D1 /7 */
  8525   ins_encode( OpcP, RegOpc( dst ) );
  8526   ins_pipe( ialu_reg );
  8527 %}
  8529 // Arithmetic shift right by one
  8530 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  8531   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8532   effect(KILL cr);
  8533   format %{ "SAR    $dst,$shift" %}
  8534   opcode(0xD1, 0x7);  /* D1 /7 */
  8535   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  8536   ins_pipe( ialu_mem_imm );
  8537 %}
  8539 // Arithmetic Shift Right by 8-bit immediate
  8540 instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8541   match(Set dst (RShiftI dst shift));
  8542   effect(KILL cr);
  8544   size(3);
  8545   format %{ "SAR    $dst,$shift" %}
  8546   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8547   ins_encode( RegOpcImm( dst, shift ) );
  8548   ins_pipe( ialu_mem_imm );
  8549 %}
  8551 // Arithmetic Shift Right by 8-bit immediate
  8552 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  8553   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8554   effect(KILL cr);
  8556   format %{ "SAR    $dst,$shift" %}
  8557   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8558   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  8559   ins_pipe( ialu_mem_imm );
  8560 %}
  8562 // Arithmetic Shift Right by variable
  8563 instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8564   match(Set dst (RShiftI dst shift));
  8565   effect(KILL cr);
  8567   size(2);
  8568   format %{ "SAR    $dst,$shift" %}
  8569   opcode(0xD3, 0x7);  /* D3 /7 */
  8570   ins_encode( OpcP, RegOpc( dst ) );
  8571   ins_pipe( ialu_reg_reg );
  8572 %}
  8574 // Logical shift right by one
  8575 instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8576   match(Set dst (URShiftI dst shift));
  8577   effect(KILL cr);
  8579   size(2);
  8580   format %{ "SHR    $dst,$shift" %}
  8581   opcode(0xD1, 0x5);  /* D1 /5 */
  8582   ins_encode( OpcP, RegOpc( dst ) );
  8583   ins_pipe( ialu_reg );
  8584 %}
  8586 // Logical Shift Right by 8-bit immediate
  8587 instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8588   match(Set dst (URShiftI dst shift));
  8589   effect(KILL cr);
  8591   size(3);
  8592   format %{ "SHR    $dst,$shift" %}
  8593   opcode(0xC1, 0x5);  /* C1 /5 ib */
  8594   ins_encode( RegOpcImm( dst, shift) );
  8595   ins_pipe( ialu_reg );
  8596 %}
  8599 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  8600 // This idiom is used by the compiler for the i2b bytecode.
  8601 instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour, eFlagsReg cr) %{
  8602   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  8603   effect(KILL cr);
  8605   size(3);
  8606   format %{ "MOVSX  $dst,$src :8" %}
  8607   opcode(0xBE, 0x0F);
  8608   ins_encode( OpcS, OpcP, RegReg( dst, src));
  8609   ins_pipe( ialu_reg_reg );
  8610 %}
  8612 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  8613 // This idiom is used by the compiler the i2s bytecode.
  8614 instruct i2s(eRegI dst, xRegI src, immI_16 sixteen, eFlagsReg cr) %{
  8615   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  8616   effect(KILL cr);
  8618   size(3);
  8619   format %{ "MOVSX  $dst,$src :16" %}
  8620   opcode(0xBF, 0x0F);
  8621   ins_encode( OpcS, OpcP, RegReg( dst, src));
  8622   ins_pipe( ialu_reg_reg );
  8623 %}
  8626 // Logical Shift Right by variable
  8627 instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8628   match(Set dst (URShiftI dst shift));
  8629   effect(KILL cr);
  8631   size(2);
  8632   format %{ "SHR    $dst,$shift" %}
  8633   opcode(0xD3, 0x5);  /* D3 /5 */
  8634   ins_encode( OpcP, RegOpc( dst ) );
  8635   ins_pipe( ialu_reg_reg );
  8636 %}
  8639 //----------Logical Instructions-----------------------------------------------
  8640 //----------Integer Logical Instructions---------------------------------------
  8641 // And Instructions
  8642 // And Register with Register
  8643 instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8644   match(Set dst (AndI dst src));
  8645   effect(KILL cr);
  8647   size(2);
  8648   format %{ "AND    $dst,$src" %}
  8649   opcode(0x23);
  8650   ins_encode( OpcP, RegReg( dst, src) );
  8651   ins_pipe( ialu_reg_reg );
  8652 %}
  8654 // And Register with Immediate
  8655 instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8656   match(Set dst (AndI dst src));
  8657   effect(KILL cr);
  8659   format %{ "AND    $dst,$src" %}
  8660   opcode(0x81,0x04);  /* Opcode 81 /4 */
  8661   // ins_encode( RegImm( dst, src) );
  8662   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8663   ins_pipe( ialu_reg );
  8664 %}
  8666 // And Register with Memory
  8667 instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8668   match(Set dst (AndI dst (LoadI src)));
  8669   effect(KILL cr);
  8671   ins_cost(125);
  8672   format %{ "AND    $dst,$src" %}
  8673   opcode(0x23);
  8674   ins_encode( OpcP, RegMem( dst, src) );
  8675   ins_pipe( ialu_reg_mem );
  8676 %}
  8678 // And Memory with Register
  8679 instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8680   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8681   effect(KILL cr);
  8683   ins_cost(150);
  8684   format %{ "AND    $dst,$src" %}
  8685   opcode(0x21);  /* Opcode 21 /r */
  8686   ins_encode( OpcP, RegMem( src, dst ) );
  8687   ins_pipe( ialu_mem_reg );
  8688 %}
  8690 // And Memory with Immediate
  8691 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8692   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8693   effect(KILL cr);
  8695   ins_cost(125);
  8696   format %{ "AND    $dst,$src" %}
  8697   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  8698   // ins_encode( MemImm( dst, src) );
  8699   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8700   ins_pipe( ialu_mem_imm );
  8701 %}
  8703 // Or Instructions
  8704 // Or Register with Register
  8705 instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8706   match(Set dst (OrI dst src));
  8707   effect(KILL cr);
  8709   size(2);
  8710   format %{ "OR     $dst,$src" %}
  8711   opcode(0x0B);
  8712   ins_encode( OpcP, RegReg( dst, src) );
  8713   ins_pipe( ialu_reg_reg );
  8714 %}
  8716 instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
  8717   match(Set dst (OrI dst (CastP2X src)));
  8718   effect(KILL cr);
  8720   size(2);
  8721   format %{ "OR     $dst,$src" %}
  8722   opcode(0x0B);
  8723   ins_encode( OpcP, RegReg( dst, src) );
  8724   ins_pipe( ialu_reg_reg );
  8725 %}
  8728 // Or Register with Immediate
  8729 instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8730   match(Set dst (OrI dst src));
  8731   effect(KILL cr);
  8733   format %{ "OR     $dst,$src" %}
  8734   opcode(0x81,0x01);  /* Opcode 81 /1 id */
  8735   // ins_encode( RegImm( dst, src) );
  8736   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8737   ins_pipe( ialu_reg );
  8738 %}
  8740 // Or Register with Memory
  8741 instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8742   match(Set dst (OrI dst (LoadI src)));
  8743   effect(KILL cr);
  8745   ins_cost(125);
  8746   format %{ "OR     $dst,$src" %}
  8747   opcode(0x0B);
  8748   ins_encode( OpcP, RegMem( dst, src) );
  8749   ins_pipe( ialu_reg_mem );
  8750 %}
  8752 // Or Memory with Register
  8753 instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8754   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8755   effect(KILL cr);
  8757   ins_cost(150);
  8758   format %{ "OR     $dst,$src" %}
  8759   opcode(0x09);  /* Opcode 09 /r */
  8760   ins_encode( OpcP, RegMem( src, dst ) );
  8761   ins_pipe( ialu_mem_reg );
  8762 %}
  8764 // Or Memory with Immediate
  8765 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8766   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8767   effect(KILL cr);
  8769   ins_cost(125);
  8770   format %{ "OR     $dst,$src" %}
  8771   opcode(0x81,0x1);  /* Opcode 81 /1 id */
  8772   // ins_encode( MemImm( dst, src) );
  8773   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8774   ins_pipe( ialu_mem_imm );
  8775 %}
  8777 // ROL/ROR
  8778 // ROL expand
  8779 instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8780   effect(USE_DEF dst, USE shift, KILL cr);
  8782   format %{ "ROL    $dst, $shift" %}
  8783   opcode(0xD1, 0x0); /* Opcode D1 /0 */
  8784   ins_encode( OpcP, RegOpc( dst ));
  8785   ins_pipe( ialu_reg );
  8786 %}
  8788 instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8789   effect(USE_DEF dst, USE shift, KILL cr);
  8791   format %{ "ROL    $dst, $shift" %}
  8792   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  8793   ins_encode( RegOpcImm(dst, shift) );
  8794   ins_pipe(ialu_reg);
  8795 %}
  8797 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8798   effect(USE_DEF dst, USE shift, KILL cr);
  8800   format %{ "ROL    $dst, $shift" %}
  8801   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  8802   ins_encode(OpcP, RegOpc(dst));
  8803   ins_pipe( ialu_reg_reg );
  8804 %}
  8805 // end of ROL expand
  8807 // ROL 32bit by one once
  8808 instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  8809   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8811   expand %{
  8812     rolI_eReg_imm1(dst, lshift, cr);
  8813   %}
  8814 %}
  8816 // ROL 32bit var by imm8 once
  8817 instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  8818   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8819   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8821   expand %{
  8822     rolI_eReg_imm8(dst, lshift, cr);
  8823   %}
  8824 %}
  8826 // ROL 32bit var by var once
  8827 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8828   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  8830   expand %{
  8831     rolI_eReg_CL(dst, shift, cr);
  8832   %}
  8833 %}
  8835 // ROL 32bit var by var once
  8836 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8837   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  8839   expand %{
  8840     rolI_eReg_CL(dst, shift, cr);
  8841   %}
  8842 %}
  8844 // ROR expand
  8845 instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8846   effect(USE_DEF dst, USE shift, KILL cr);
  8848   format %{ "ROR    $dst, $shift" %}
  8849   opcode(0xD1,0x1);  /* Opcode D1 /1 */
  8850   ins_encode( OpcP, RegOpc( dst ) );
  8851   ins_pipe( ialu_reg );
  8852 %}
  8854 instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8855   effect (USE_DEF dst, USE shift, KILL cr);
  8857   format %{ "ROR    $dst, $shift" %}
  8858   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  8859   ins_encode( RegOpcImm(dst, shift) );
  8860   ins_pipe( ialu_reg );
  8861 %}
  8863 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  8864   effect(USE_DEF dst, USE shift, KILL cr);
  8866   format %{ "ROR    $dst, $shift" %}
  8867   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  8868   ins_encode(OpcP, RegOpc(dst));
  8869   ins_pipe( ialu_reg_reg );
  8870 %}
  8871 // end of ROR expand
  8873 // ROR right once
  8874 instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  8875   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8877   expand %{
  8878     rorI_eReg_imm1(dst, rshift, cr);
  8879   %}
  8880 %}
  8882 // ROR 32bit by immI8 once
  8883 instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  8884   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8885   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8887   expand %{
  8888     rorI_eReg_imm8(dst, rshift, cr);
  8889   %}
  8890 %}
  8892 // ROR 32bit var by var once
  8893 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8894   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  8896   expand %{
  8897     rorI_eReg_CL(dst, shift, cr);
  8898   %}
  8899 %}
  8901 // ROR 32bit var by var once
  8902 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8903   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  8905   expand %{
  8906     rorI_eReg_CL(dst, shift, cr);
  8907   %}
  8908 %}
  8910 // Xor Instructions
  8911 // Xor Register with Register
  8912 instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8913   match(Set dst (XorI dst src));
  8914   effect(KILL cr);
  8916   size(2);
  8917   format %{ "XOR    $dst,$src" %}
  8918   opcode(0x33);
  8919   ins_encode( OpcP, RegReg( dst, src) );
  8920   ins_pipe( ialu_reg_reg );
  8921 %}
  8923 // Xor Register with Immediate -1
  8924 instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
  8925   match(Set dst (XorI dst imm));  
  8927   size(2);
  8928   format %{ "NOT    $dst" %}  
  8929   ins_encode %{
  8930      __ notl($dst$$Register);
  8931   %}
  8932   ins_pipe( ialu_reg );
  8933 %}
  8935 // Xor Register with Immediate
  8936 instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8937   match(Set dst (XorI dst src));
  8938   effect(KILL cr);
  8940   format %{ "XOR    $dst,$src" %}
  8941   opcode(0x81,0x06);  /* Opcode 81 /6 id */
  8942   // ins_encode( RegImm( dst, src) );
  8943   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8944   ins_pipe( ialu_reg );
  8945 %}
  8947 // Xor Register with Memory
  8948 instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8949   match(Set dst (XorI dst (LoadI src)));
  8950   effect(KILL cr);
  8952   ins_cost(125);
  8953   format %{ "XOR    $dst,$src" %}
  8954   opcode(0x33);
  8955   ins_encode( OpcP, RegMem(dst, src) );
  8956   ins_pipe( ialu_reg_mem );
  8957 %}
  8959 // Xor Memory with Register
  8960 instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8961   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8962   effect(KILL cr);
  8964   ins_cost(150);
  8965   format %{ "XOR    $dst,$src" %}
  8966   opcode(0x31);  /* Opcode 31 /r */
  8967   ins_encode( OpcP, RegMem( src, dst ) );
  8968   ins_pipe( ialu_mem_reg );
  8969 %}
  8971 // Xor Memory with Immediate
  8972 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8973   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8974   effect(KILL cr);
  8976   ins_cost(125);
  8977   format %{ "XOR    $dst,$src" %}
  8978   opcode(0x81,0x6);  /* Opcode 81 /6 id */
  8979   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8980   ins_pipe( ialu_mem_imm );
  8981 %}
  8983 //----------Convert Int to Boolean---------------------------------------------
  8985 instruct movI_nocopy(eRegI dst, eRegI src) %{
  8986   effect( DEF dst, USE src );
  8987   format %{ "MOV    $dst,$src" %}
  8988   ins_encode( enc_Copy( dst, src) );
  8989   ins_pipe( ialu_reg_reg );
  8990 %}
  8992 instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
  8993   effect( USE_DEF dst, USE src, KILL cr );
  8995   size(4);
  8996   format %{ "NEG    $dst\n\t"
  8997             "ADC    $dst,$src" %}
  8998   ins_encode( neg_reg(dst),
  8999               OpcRegReg(0x13,dst,src) );
  9000   ins_pipe( ialu_reg_reg_long );
  9001 %}
  9003 instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9004   match(Set dst (Conv2B src));
  9006   expand %{
  9007     movI_nocopy(dst,src);
  9008     ci2b(dst,src,cr);
  9009   %}
  9010 %}
  9012 instruct movP_nocopy(eRegI dst, eRegP src) %{
  9013   effect( DEF dst, USE src );
  9014   format %{ "MOV    $dst,$src" %}
  9015   ins_encode( enc_Copy( dst, src) );
  9016   ins_pipe( ialu_reg_reg );
  9017 %}
  9019 instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9020   effect( USE_DEF dst, USE src, KILL cr );
  9021   format %{ "NEG    $dst\n\t"
  9022             "ADC    $dst,$src" %}
  9023   ins_encode( neg_reg(dst),
  9024               OpcRegReg(0x13,dst,src) );
  9025   ins_pipe( ialu_reg_reg_long );
  9026 %}
  9028 instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9029   match(Set dst (Conv2B src));
  9031   expand %{
  9032     movP_nocopy(dst,src);
  9033     cp2b(dst,src,cr);
  9034   %}
  9035 %}
  9037 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
  9038   match(Set dst (CmpLTMask p q));
  9039   effect( KILL cr );
  9040   ins_cost(400);
  9042   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  9043   format %{ "XOR    $dst,$dst\n\t"
  9044             "CMP    $p,$q\n\t"
  9045             "SETlt  $dst\n\t"
  9046             "NEG    $dst" %}
  9047   ins_encode( OpcRegReg(0x33,dst,dst),
  9048               OpcRegReg(0x3B,p,q),
  9049               setLT_reg(dst), neg_reg(dst) );
  9050   ins_pipe( pipe_slow );
  9051 %}
  9053 instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
  9054   match(Set dst (CmpLTMask dst zero));
  9055   effect( DEF dst, KILL cr );
  9056   ins_cost(100);
  9058   format %{ "SAR    $dst,31" %}
  9059   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9060   ins_encode( RegOpcImm( dst, 0x1F ) );
  9061   ins_pipe( ialu_reg );
  9062 %}
  9065 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
  9066   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  9067   effect( KILL tmp, KILL cr );
  9068   ins_cost(400);
  9069   // annoyingly, $tmp has no edges so you cant ask for it in
  9070   // any format or encoding
  9071   format %{ "SUB    $p,$q\n\t"
  9072             "SBB    ECX,ECX\n\t"
  9073             "AND    ECX,$y\n\t"
  9074             "ADD    $p,ECX" %}
  9075   ins_encode( enc_cmpLTP(p,q,y,tmp) );
  9076   ins_pipe( pipe_cmplt );
  9077 %}
  9079 /* If I enable this, I encourage spilling in the inner loop of compress.
  9080 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
  9081   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  9082   effect( USE_KILL tmp, KILL cr );
  9083   ins_cost(400);
  9085   format %{ "SUB    $p,$q\n\t"
  9086             "SBB    ECX,ECX\n\t"
  9087             "AND    ECX,$y\n\t"
  9088             "ADD    $p,ECX" %}
  9089   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
  9090 %}
  9091 */
  9093 //----------Long Instructions------------------------------------------------
  9094 // Add Long Register with Register
  9095 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9096   match(Set dst (AddL dst src));
  9097   effect(KILL cr);
  9098   ins_cost(200);
  9099   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9100             "ADC    $dst.hi,$src.hi" %}
  9101   opcode(0x03, 0x13);
  9102   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9103   ins_pipe( ialu_reg_reg_long );
  9104 %}
  9106 // Add Long Register with Immediate
  9107 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9108   match(Set dst (AddL dst src));
  9109   effect(KILL cr);
  9110   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9111             "ADC    $dst.hi,$src.hi" %}
  9112   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  9113   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9114   ins_pipe( ialu_reg_long );
  9115 %}
  9117 // Add Long Register with Memory
  9118 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9119   match(Set dst (AddL dst (LoadL mem)));
  9120   effect(KILL cr);
  9121   ins_cost(125);
  9122   format %{ "ADD    $dst.lo,$mem\n\t"
  9123             "ADC    $dst.hi,$mem+4" %}
  9124   opcode(0x03, 0x13);
  9125   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9126   ins_pipe( ialu_reg_long_mem );
  9127 %}
  9129 // Subtract Long Register with Register.
  9130 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9131   match(Set dst (SubL dst src));
  9132   effect(KILL cr);
  9133   ins_cost(200);
  9134   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9135             "SBB    $dst.hi,$src.hi" %}
  9136   opcode(0x2B, 0x1B);
  9137   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9138   ins_pipe( ialu_reg_reg_long );
  9139 %}
  9141 // Subtract Long Register with Immediate
  9142 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9143   match(Set dst (SubL dst src));
  9144   effect(KILL cr);
  9145   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9146             "SBB    $dst.hi,$src.hi" %}
  9147   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  9148   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9149   ins_pipe( ialu_reg_long );
  9150 %}
  9152 // Subtract Long Register with Memory
  9153 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9154   match(Set dst (SubL dst (LoadL mem)));
  9155   effect(KILL cr);
  9156   ins_cost(125);
  9157   format %{ "SUB    $dst.lo,$mem\n\t"
  9158             "SBB    $dst.hi,$mem+4" %}
  9159   opcode(0x2B, 0x1B);
  9160   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9161   ins_pipe( ialu_reg_long_mem );
  9162 %}
  9164 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  9165   match(Set dst (SubL zero dst));
  9166   effect(KILL cr);
  9167   ins_cost(300);
  9168   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  9169   ins_encode( neg_long(dst) );
  9170   ins_pipe( ialu_reg_reg_long );
  9171 %}
  9173 // And Long Register with Register
  9174 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9175   match(Set dst (AndL dst src));
  9176   effect(KILL cr);
  9177   format %{ "AND    $dst.lo,$src.lo\n\t"
  9178             "AND    $dst.hi,$src.hi" %}
  9179   opcode(0x23,0x23);
  9180   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9181   ins_pipe( ialu_reg_reg_long );
  9182 %}
  9184 // And Long Register with Immediate
  9185 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9186   match(Set dst (AndL dst src));
  9187   effect(KILL cr);
  9188   format %{ "AND    $dst.lo,$src.lo\n\t"
  9189             "AND    $dst.hi,$src.hi" %}
  9190   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  9191   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9192   ins_pipe( ialu_reg_long );
  9193 %}
  9195 // And Long Register with Memory
  9196 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9197   match(Set dst (AndL dst (LoadL mem)));
  9198   effect(KILL cr);
  9199   ins_cost(125);
  9200   format %{ "AND    $dst.lo,$mem\n\t"
  9201             "AND    $dst.hi,$mem+4" %}
  9202   opcode(0x23, 0x23);
  9203   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9204   ins_pipe( ialu_reg_long_mem );
  9205 %}
  9207 // Or Long Register with Register
  9208 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9209   match(Set dst (OrL dst src));
  9210   effect(KILL cr);
  9211   format %{ "OR     $dst.lo,$src.lo\n\t"
  9212             "OR     $dst.hi,$src.hi" %}
  9213   opcode(0x0B,0x0B);
  9214   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9215   ins_pipe( ialu_reg_reg_long );
  9216 %}
  9218 // Or Long Register with Immediate
  9219 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9220   match(Set dst (OrL dst src));
  9221   effect(KILL cr);
  9222   format %{ "OR     $dst.lo,$src.lo\n\t"
  9223             "OR     $dst.hi,$src.hi" %}
  9224   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  9225   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9226   ins_pipe( ialu_reg_long );
  9227 %}
  9229 // Or Long Register with Memory
  9230 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9231   match(Set dst (OrL dst (LoadL mem)));
  9232   effect(KILL cr);
  9233   ins_cost(125);
  9234   format %{ "OR     $dst.lo,$mem\n\t"
  9235             "OR     $dst.hi,$mem+4" %}
  9236   opcode(0x0B,0x0B);
  9237   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9238   ins_pipe( ialu_reg_long_mem );
  9239 %}
  9241 // Xor Long Register with Register
  9242 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9243   match(Set dst (XorL dst src));
  9244   effect(KILL cr);
  9245   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9246             "XOR    $dst.hi,$src.hi" %}
  9247   opcode(0x33,0x33);
  9248   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9249   ins_pipe( ialu_reg_reg_long );
  9250 %}
  9252 // Xor Long Register with Immediate -1
  9253 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  9254   match(Set dst (XorL dst imm));  
  9255   format %{ "NOT    $dst.lo\n\t"
  9256             "NOT    $dst.hi" %}
  9257   ins_encode %{
  9258      __ notl($dst$$Register);
  9259      __ notl(HIGH_FROM_LOW($dst$$Register));
  9260   %}
  9261   ins_pipe( ialu_reg_long );
  9262 %}
  9264 // Xor Long Register with Immediate
  9265 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9266   match(Set dst (XorL dst src));
  9267   effect(KILL cr);
  9268   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9269             "XOR    $dst.hi,$src.hi" %}
  9270   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  9271   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9272   ins_pipe( ialu_reg_long );
  9273 %}
  9275 // Xor Long Register with Memory
  9276 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9277   match(Set dst (XorL dst (LoadL mem)));
  9278   effect(KILL cr);
  9279   ins_cost(125);
  9280   format %{ "XOR    $dst.lo,$mem\n\t"
  9281             "XOR    $dst.hi,$mem+4" %}
  9282   opcode(0x33,0x33);
  9283   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9284   ins_pipe( ialu_reg_long_mem );
  9285 %}
  9287 // Shift Left Long by 1
  9288 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  9289   predicate(UseNewLongLShift);
  9290   match(Set dst (LShiftL dst cnt));
  9291   effect(KILL cr);
  9292   ins_cost(100);
  9293   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9294             "ADC    $dst.hi,$dst.hi" %}
  9295   ins_encode %{
  9296     __ addl($dst$$Register,$dst$$Register);
  9297     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9298   %}
  9299   ins_pipe( ialu_reg_long );
  9300 %}
  9302 // Shift Left Long by 2
  9303 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  9304   predicate(UseNewLongLShift);
  9305   match(Set dst (LShiftL dst cnt));
  9306   effect(KILL cr);
  9307   ins_cost(100);
  9308   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9309             "ADC    $dst.hi,$dst.hi\n\t" 
  9310             "ADD    $dst.lo,$dst.lo\n\t"
  9311             "ADC    $dst.hi,$dst.hi" %}
  9312   ins_encode %{
  9313     __ addl($dst$$Register,$dst$$Register);
  9314     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9315     __ addl($dst$$Register,$dst$$Register);
  9316     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9317   %}
  9318   ins_pipe( ialu_reg_long );
  9319 %}
  9321 // Shift Left Long by 3
  9322 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  9323   predicate(UseNewLongLShift);
  9324   match(Set dst (LShiftL dst cnt));
  9325   effect(KILL cr);
  9326   ins_cost(100);
  9327   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9328             "ADC    $dst.hi,$dst.hi\n\t" 
  9329             "ADD    $dst.lo,$dst.lo\n\t"
  9330             "ADC    $dst.hi,$dst.hi\n\t" 
  9331             "ADD    $dst.lo,$dst.lo\n\t"
  9332             "ADC    $dst.hi,$dst.hi" %}
  9333   ins_encode %{
  9334     __ addl($dst$$Register,$dst$$Register);
  9335     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9336     __ addl($dst$$Register,$dst$$Register);
  9337     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9338     __ addl($dst$$Register,$dst$$Register);
  9339     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9340   %}
  9341   ins_pipe( ialu_reg_long );
  9342 %}
  9344 // Shift Left Long by 1-31
  9345 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9346   match(Set dst (LShiftL dst cnt));
  9347   effect(KILL cr);
  9348   ins_cost(200);
  9349   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
  9350             "SHL    $dst.lo,$cnt" %}
  9351   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  9352   ins_encode( move_long_small_shift(dst,cnt) );
  9353   ins_pipe( ialu_reg_long );
  9354 %}
  9356 // Shift Left Long by 32-63
  9357 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9358   match(Set dst (LShiftL dst cnt));
  9359   effect(KILL cr);
  9360   ins_cost(300);
  9361   format %{ "MOV    $dst.hi,$dst.lo\n"
  9362           "\tSHL    $dst.hi,$cnt-32\n"
  9363           "\tXOR    $dst.lo,$dst.lo" %}
  9364   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9365   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9366   ins_pipe( ialu_reg_long );
  9367 %}
  9369 // Shift Left Long by variable
  9370 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9371   match(Set dst (LShiftL dst shift));
  9372   effect(KILL cr);
  9373   ins_cost(500+200);
  9374   size(17);
  9375   format %{ "TEST   $shift,32\n\t"
  9376             "JEQ,s  small\n\t"
  9377             "MOV    $dst.hi,$dst.lo\n\t"
  9378             "XOR    $dst.lo,$dst.lo\n"
  9379     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
  9380             "SHL    $dst.lo,$shift" %}
  9381   ins_encode( shift_left_long( dst, shift ) );
  9382   ins_pipe( pipe_slow );
  9383 %}
  9385 // Shift Right Long by 1-31
  9386 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9387   match(Set dst (URShiftL dst cnt));
  9388   effect(KILL cr);
  9389   ins_cost(200);
  9390   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9391             "SHR    $dst.hi,$cnt" %}
  9392   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  9393   ins_encode( move_long_small_shift(dst,cnt) );
  9394   ins_pipe( ialu_reg_long );
  9395 %}
  9397 // Shift Right Long by 32-63
  9398 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9399   match(Set dst (URShiftL dst cnt));
  9400   effect(KILL cr);
  9401   ins_cost(300);
  9402   format %{ "MOV    $dst.lo,$dst.hi\n"
  9403           "\tSHR    $dst.lo,$cnt-32\n"
  9404           "\tXOR    $dst.hi,$dst.hi" %}
  9405   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9406   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9407   ins_pipe( ialu_reg_long );
  9408 %}
  9410 // Shift Right Long by variable
  9411 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9412   match(Set dst (URShiftL dst shift));
  9413   effect(KILL cr);
  9414   ins_cost(600);
  9415   size(17);
  9416   format %{ "TEST   $shift,32\n\t"
  9417             "JEQ,s  small\n\t"
  9418             "MOV    $dst.lo,$dst.hi\n\t"
  9419             "XOR    $dst.hi,$dst.hi\n"
  9420     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9421             "SHR    $dst.hi,$shift" %}
  9422   ins_encode( shift_right_long( dst, shift ) );
  9423   ins_pipe( pipe_slow );
  9424 %}
  9426 // Shift Right Long by 1-31
  9427 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9428   match(Set dst (RShiftL dst cnt));
  9429   effect(KILL cr);
  9430   ins_cost(200);
  9431   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9432             "SAR    $dst.hi,$cnt" %}
  9433   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  9434   ins_encode( move_long_small_shift(dst,cnt) );
  9435   ins_pipe( ialu_reg_long );
  9436 %}
  9438 // Shift Right Long by 32-63
  9439 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9440   match(Set dst (RShiftL dst cnt));
  9441   effect(KILL cr);
  9442   ins_cost(300);
  9443   format %{ "MOV    $dst.lo,$dst.hi\n"
  9444           "\tSAR    $dst.lo,$cnt-32\n"
  9445           "\tSAR    $dst.hi,31" %}
  9446   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9447   ins_encode( move_long_big_shift_sign(dst,cnt) );
  9448   ins_pipe( ialu_reg_long );
  9449 %}
  9451 // Shift Right arithmetic Long by variable
  9452 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9453   match(Set dst (RShiftL dst shift));
  9454   effect(KILL cr);
  9455   ins_cost(600);
  9456   size(18);
  9457   format %{ "TEST   $shift,32\n\t"
  9458             "JEQ,s  small\n\t"
  9459             "MOV    $dst.lo,$dst.hi\n\t"
  9460             "SAR    $dst.hi,31\n"
  9461     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9462             "SAR    $dst.hi,$shift" %}
  9463   ins_encode( shift_right_arith_long( dst, shift ) );
  9464   ins_pipe( pipe_slow );
  9465 %}
  9468 //----------Double Instructions------------------------------------------------
  9469 // Double Math
  9471 // Compare & branch
  9473 // P6 version of float compare, sets condition codes in EFLAGS
  9474 instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
  9475   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9476   match(Set cr (CmpD src1 src2));
  9477   effect(KILL rax);
  9478   ins_cost(150);
  9479   format %{ "FLD    $src1\n\t"
  9480             "FUCOMIP ST,$src2  // P6 instruction\n\t"
  9481             "JNP    exit\n\t"
  9482             "MOV    ah,1       // saw a NaN, set CF\n\t"
  9483             "SAHF\n"
  9484      "exit:\tNOP               // avoid branch to branch" %}
  9485   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9486   ins_encode( Push_Reg_D(src1),
  9487               OpcP, RegOpc(src2),
  9488               cmpF_P6_fixup );
  9489   ins_pipe( pipe_slow );
  9490 %}
  9492 instruct cmpD_cc_P6CF(eFlagsRegUCF cr, regD src1, regD src2) %{
  9493   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9494   match(Set cr (CmpD src1 src2));
  9495   ins_cost(150);
  9496   format %{ "FLD    $src1\n\t"
  9497             "FUCOMIP ST,$src2  // P6 instruction" %}
  9498   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9499   ins_encode( Push_Reg_D(src1),
  9500               OpcP, RegOpc(src2));
  9501   ins_pipe( pipe_slow );
  9502 %}
  9504 // Compare & branch
  9505 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
  9506   predicate(UseSSE<=1);
  9507   match(Set cr (CmpD src1 src2));
  9508   effect(KILL rax);
  9509   ins_cost(200);
  9510   format %{ "FLD    $src1\n\t"
  9511             "FCOMp  $src2\n\t"
  9512             "FNSTSW AX\n\t"
  9513             "TEST   AX,0x400\n\t"
  9514             "JZ,s   flags\n\t"
  9515             "MOV    AH,1\t# unordered treat as LT\n"
  9516     "flags:\tSAHF" %}
  9517   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9518   ins_encode( Push_Reg_D(src1),
  9519               OpcP, RegOpc(src2),
  9520               fpu_flags);
  9521   ins_pipe( pipe_slow );
  9522 %}
  9524 // Compare vs zero into -1,0,1
  9525 instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
  9526   predicate(UseSSE<=1);
  9527   match(Set dst (CmpD3 src1 zero));
  9528   effect(KILL cr, KILL rax);
  9529   ins_cost(280);
  9530   format %{ "FTSTD  $dst,$src1" %}
  9531   opcode(0xE4, 0xD9);
  9532   ins_encode( Push_Reg_D(src1),
  9533               OpcS, OpcP, PopFPU,
  9534               CmpF_Result(dst));
  9535   ins_pipe( pipe_slow );
  9536 %}
  9538 // Compare into -1,0,1
  9539 instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
  9540   predicate(UseSSE<=1);
  9541   match(Set dst (CmpD3 src1 src2));
  9542   effect(KILL cr, KILL rax);
  9543   ins_cost(300);
  9544   format %{ "FCMPD  $dst,$src1,$src2" %}
  9545   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9546   ins_encode( Push_Reg_D(src1),
  9547               OpcP, RegOpc(src2),
  9548               CmpF_Result(dst));
  9549   ins_pipe( pipe_slow );
  9550 %}
  9552 // float compare and set condition codes in EFLAGS by XMM regs
  9553 instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
  9554   predicate(UseSSE>=2);
  9555   match(Set cr (CmpD dst src));
  9556   effect(KILL rax);
  9557   ins_cost(125);
  9558   format %{ "COMISD $dst,$src\n"
  9559           "\tJNP    exit\n"
  9560           "\tMOV    ah,1       // saw a NaN, set CF\n"
  9561           "\tSAHF\n"
  9562      "exit:\tNOP               // avoid branch to branch" %}
  9563   opcode(0x66, 0x0F, 0x2F);
  9564   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
  9565   ins_pipe( pipe_slow );
  9566 %}
  9568 instruct cmpXD_ccCF(eFlagsRegUCF cr, regXD dst, regXD src) %{
  9569   predicate(UseSSE>=2);
  9570   match(Set cr (CmpD dst src));
  9571   ins_cost(100);
  9572   format %{ "COMISD $dst,$src" %}
  9573   opcode(0x66, 0x0F, 0x2F);
  9574   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
  9575   ins_pipe( pipe_slow );
  9576 %}
  9578 // float compare and set condition codes in EFLAGS by XMM regs
  9579 instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
  9580   predicate(UseSSE>=2);
  9581   match(Set cr (CmpD dst (LoadD src)));
  9582   effect(KILL rax);
  9583   ins_cost(145);
  9584   format %{ "COMISD $dst,$src\n"
  9585           "\tJNP    exit\n"
  9586           "\tMOV    ah,1       // saw a NaN, set CF\n"
  9587           "\tSAHF\n"
  9588      "exit:\tNOP               // avoid branch to branch" %}
  9589   opcode(0x66, 0x0F, 0x2F);
  9590   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
  9591   ins_pipe( pipe_slow );
  9592 %}
  9594 instruct cmpXD_ccmemCF(eFlagsRegUCF cr, regXD dst, memory src) %{
  9595   predicate(UseSSE>=2);
  9596   match(Set cr (CmpD dst (LoadD src)));
  9597   ins_cost(100);
  9598   format %{ "COMISD $dst,$src" %}
  9599   opcode(0x66, 0x0F, 0x2F);
  9600   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src));
  9601   ins_pipe( pipe_slow );
  9602 %}
  9604 // Compare into -1,0,1 in XMM
  9605 instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
  9606   predicate(UseSSE>=2);
  9607   match(Set dst (CmpD3 src1 src2));
  9608   effect(KILL cr);
  9609   ins_cost(255);
  9610   format %{ "XOR    $dst,$dst\n"
  9611           "\tCOMISD $src1,$src2\n"
  9612           "\tJP,s   nan\n"
  9613           "\tJEQ,s  exit\n"
  9614           "\tJA,s   inc\n"
  9615       "nan:\tDEC    $dst\n"
  9616           "\tJMP,s  exit\n"
  9617       "inc:\tINC    $dst\n"
  9618       "exit:"
  9619                 %}
  9620   opcode(0x66, 0x0F, 0x2F);
  9621   ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
  9622              CmpX_Result(dst));
  9623   ins_pipe( pipe_slow );
  9624 %}
  9626 // Compare into -1,0,1 in XMM and memory
  9627 instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
  9628   predicate(UseSSE>=2);
  9629   match(Set dst (CmpD3 src1 (LoadD mem)));
  9630   effect(KILL cr);
  9631   ins_cost(275);
  9632   format %{ "COMISD $src1,$mem\n"
  9633           "\tMOV    $dst,0\t\t# do not blow flags\n"
  9634           "\tJP,s   nan\n"
  9635           "\tJEQ,s  exit\n"
  9636           "\tJA,s   inc\n"
  9637       "nan:\tDEC    $dst\n"
  9638           "\tJMP,s  exit\n"
  9639       "inc:\tINC    $dst\n"
  9640       "exit:"
  9641                 %}
  9642   opcode(0x66, 0x0F, 0x2F);
  9643   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
  9644              LdImmI(dst,0x0), CmpX_Result(dst));
  9645   ins_pipe( pipe_slow );
  9646 %}
  9649 instruct subD_reg(regD dst, regD src) %{
  9650   predicate (UseSSE <=1);
  9651   match(Set dst (SubD dst src));
  9653   format %{ "FLD    $src\n\t"
  9654             "DSUBp  $dst,ST" %}
  9655   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
  9656   ins_cost(150);
  9657   ins_encode( Push_Reg_D(src),
  9658               OpcP, RegOpc(dst) );
  9659   ins_pipe( fpu_reg_reg );
  9660 %}
  9662 instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
  9663   predicate (UseSSE <=1);
  9664   match(Set dst (RoundDouble (SubD src1 src2)));
  9665   ins_cost(250);
  9667   format %{ "FLD    $src2\n\t"
  9668             "DSUB   ST,$src1\n\t"
  9669             "FSTP_D $dst\t# D-round" %}
  9670   opcode(0xD8, 0x5);
  9671   ins_encode( Push_Reg_D(src2),
  9672               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
  9673   ins_pipe( fpu_mem_reg_reg );
  9674 %}
  9677 instruct subD_reg_mem(regD dst, memory src) %{
  9678   predicate (UseSSE <=1);
  9679   match(Set dst (SubD dst (LoadD src)));
  9680   ins_cost(150);
  9682   format %{ "FLD    $src\n\t"
  9683             "DSUBp  $dst,ST" %}
  9684   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9685   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9686               OpcP, RegOpc(dst) );
  9687   ins_pipe( fpu_reg_mem );
  9688 %}
  9690 instruct absD_reg(regDPR1 dst, regDPR1 src) %{
  9691   predicate (UseSSE<=1);
  9692   match(Set dst (AbsD src));
  9693   ins_cost(100);
  9694   format %{ "FABS" %}
  9695   opcode(0xE1, 0xD9);
  9696   ins_encode( OpcS, OpcP );
  9697   ins_pipe( fpu_reg_reg );
  9698 %}
  9700 instruct absXD_reg( regXD dst ) %{
  9701   predicate(UseSSE>=2);
  9702   match(Set dst (AbsD dst));
  9703   format %{ "ANDPD  $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
  9704   ins_encode( AbsXD_encoding(dst));
  9705   ins_pipe( pipe_slow );
  9706 %}
  9708 instruct negD_reg(regDPR1 dst, regDPR1 src) %{
  9709   predicate(UseSSE<=1);
  9710   match(Set dst (NegD src));
  9711   ins_cost(100);
  9712   format %{ "FCHS" %}
  9713   opcode(0xE0, 0xD9);
  9714   ins_encode( OpcS, OpcP );
  9715   ins_pipe( fpu_reg_reg );
  9716 %}
  9718 instruct negXD_reg( regXD dst ) %{
  9719   predicate(UseSSE>=2);
  9720   match(Set dst (NegD dst));
  9721   format %{ "XORPD  $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
  9722   ins_encode %{
  9723      __ xorpd($dst$$XMMRegister,
  9724               ExternalAddress((address)double_signflip_pool));
  9725   %}
  9726   ins_pipe( pipe_slow );
  9727 %}
  9729 instruct addD_reg(regD dst, regD src) %{
  9730   predicate(UseSSE<=1);
  9731   match(Set dst (AddD dst src));
  9732   format %{ "FLD    $src\n\t"
  9733             "DADD   $dst,ST" %}
  9734   size(4);
  9735   ins_cost(150);
  9736   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
  9737   ins_encode( Push_Reg_D(src),
  9738               OpcP, RegOpc(dst) );
  9739   ins_pipe( fpu_reg_reg );
  9740 %}
  9743 instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
  9744   predicate(UseSSE<=1);
  9745   match(Set dst (RoundDouble (AddD src1 src2)));
  9746   ins_cost(250);
  9748   format %{ "FLD    $src2\n\t"
  9749             "DADD   ST,$src1\n\t"
  9750             "FSTP_D $dst\t# D-round" %}
  9751   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
  9752   ins_encode( Push_Reg_D(src2),
  9753               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
  9754   ins_pipe( fpu_mem_reg_reg );
  9755 %}
  9758 instruct addD_reg_mem(regD dst, memory src) %{
  9759   predicate(UseSSE<=1);
  9760   match(Set dst (AddD dst (LoadD src)));
  9761   ins_cost(150);
  9763   format %{ "FLD    $src\n\t"
  9764             "DADDp  $dst,ST" %}
  9765   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9766   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9767               OpcP, RegOpc(dst) );
  9768   ins_pipe( fpu_reg_mem );
  9769 %}
  9771 // add-to-memory
  9772 instruct addD_mem_reg(memory dst, regD src) %{
  9773   predicate(UseSSE<=1);
  9774   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
  9775   ins_cost(150);
  9777   format %{ "FLD_D  $dst\n\t"
  9778             "DADD   ST,$src\n\t"
  9779             "FST_D  $dst" %}
  9780   opcode(0xDD, 0x0);
  9781   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
  9782               Opcode(0xD8), RegOpc(src),
  9783               set_instruction_start,
  9784               Opcode(0xDD), RMopc_Mem(0x03,dst) );
  9785   ins_pipe( fpu_reg_mem );
  9786 %}
  9788 instruct addD_reg_imm1(regD dst, immD1 src) %{
  9789   predicate(UseSSE<=1);
  9790   match(Set dst (AddD dst src));
  9791   ins_cost(125);
  9792   format %{ "FLD1\n\t"
  9793             "DADDp  $dst,ST" %}
  9794   opcode(0xDE, 0x00);
  9795   ins_encode( LdImmD(src),
  9796               OpcP, RegOpc(dst) );
  9797   ins_pipe( fpu_reg );
  9798 %}
  9800 instruct addD_reg_imm(regD dst, immD src) %{
  9801   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9802   match(Set dst (AddD dst src));
  9803   ins_cost(200);
  9804   format %{ "FLD_D  [$src]\n\t"
  9805             "DADDp  $dst,ST" %}
  9806   opcode(0xDE, 0x00);       /* DE /0 */
  9807   ins_encode( LdImmD(src),
  9808               OpcP, RegOpc(dst));
  9809   ins_pipe( fpu_reg_mem );
  9810 %}
  9812 instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
  9813   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
  9814   match(Set dst (RoundDouble (AddD src con)));
  9815   ins_cost(200);
  9816   format %{ "FLD_D  [$con]\n\t"
  9817             "DADD   ST,$src\n\t"
  9818             "FSTP_D $dst\t# D-round" %}
  9819   opcode(0xD8, 0x00);       /* D8 /0 */
  9820   ins_encode( LdImmD(con),
  9821               OpcP, RegOpc(src), Pop_Mem_D(dst));
  9822   ins_pipe( fpu_mem_reg_con );
  9823 %}
  9825 // Add two double precision floating point values in xmm
  9826 instruct addXD_reg(regXD dst, regXD src) %{
  9827   predicate(UseSSE>=2);
  9828   match(Set dst (AddD dst src));
  9829   format %{ "ADDSD  $dst,$src" %}
  9830   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
  9831   ins_pipe( pipe_slow );
  9832 %}
  9834 instruct addXD_imm(regXD dst, immXD con) %{
  9835   predicate(UseSSE>=2);
  9836   match(Set dst (AddD dst con));
  9837   format %{ "ADDSD  $dst,[$con]" %}
  9838   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), LdImmXD(dst, con) );
  9839   ins_pipe( pipe_slow );
  9840 %}
  9842 instruct addXD_mem(regXD dst, memory mem) %{
  9843   predicate(UseSSE>=2);
  9844   match(Set dst (AddD dst (LoadD mem)));
  9845   format %{ "ADDSD  $dst,$mem" %}
  9846   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
  9847   ins_pipe( pipe_slow );
  9848 %}
  9850 // Sub two double precision floating point values in xmm
  9851 instruct subXD_reg(regXD dst, regXD src) %{
  9852   predicate(UseSSE>=2);
  9853   match(Set dst (SubD dst src));
  9854   format %{ "SUBSD  $dst,$src" %}
  9855   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
  9856   ins_pipe( pipe_slow );
  9857 %}
  9859 instruct subXD_imm(regXD dst, immXD con) %{
  9860   predicate(UseSSE>=2);
  9861   match(Set dst (SubD dst con));
  9862   format %{ "SUBSD  $dst,[$con]" %}
  9863   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), LdImmXD(dst, con) );
  9864   ins_pipe( pipe_slow );
  9865 %}
  9867 instruct subXD_mem(regXD dst, memory mem) %{
  9868   predicate(UseSSE>=2);
  9869   match(Set dst (SubD dst (LoadD mem)));
  9870   format %{ "SUBSD  $dst,$mem" %}
  9871   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
  9872   ins_pipe( pipe_slow );
  9873 %}
  9875 // Mul two double precision floating point values in xmm
  9876 instruct mulXD_reg(regXD dst, regXD src) %{
  9877   predicate(UseSSE>=2);
  9878   match(Set dst (MulD dst src));
  9879   format %{ "MULSD  $dst,$src" %}
  9880   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
  9881   ins_pipe( pipe_slow );
  9882 %}
  9884 instruct mulXD_imm(regXD dst, immXD con) %{
  9885   predicate(UseSSE>=2);
  9886   match(Set dst (MulD dst con));
  9887   format %{ "MULSD  $dst,[$con]" %}
  9888   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), LdImmXD(dst, con) );
  9889   ins_pipe( pipe_slow );
  9890 %}
  9892 instruct mulXD_mem(regXD dst, memory mem) %{
  9893   predicate(UseSSE>=2);
  9894   match(Set dst (MulD dst (LoadD mem)));
  9895   format %{ "MULSD  $dst,$mem" %}
  9896   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
  9897   ins_pipe( pipe_slow );
  9898 %}
  9900 // Div two double precision floating point values in xmm
  9901 instruct divXD_reg(regXD dst, regXD src) %{
  9902   predicate(UseSSE>=2);
  9903   match(Set dst (DivD dst src));
  9904   format %{ "DIVSD  $dst,$src" %}
  9905   opcode(0xF2, 0x0F, 0x5E);
  9906   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
  9907   ins_pipe( pipe_slow );
  9908 %}
  9910 instruct divXD_imm(regXD dst, immXD con) %{
  9911   predicate(UseSSE>=2);
  9912   match(Set dst (DivD dst con));
  9913   format %{ "DIVSD  $dst,[$con]" %}
  9914   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), LdImmXD(dst, con));
  9915   ins_pipe( pipe_slow );
  9916 %}
  9918 instruct divXD_mem(regXD dst, memory mem) %{
  9919   predicate(UseSSE>=2);
  9920   match(Set dst (DivD dst (LoadD mem)));
  9921   format %{ "DIVSD  $dst,$mem" %}
  9922   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
  9923   ins_pipe( pipe_slow );
  9924 %}
  9927 instruct mulD_reg(regD dst, regD src) %{
  9928   predicate(UseSSE<=1);
  9929   match(Set dst (MulD dst src));
  9930   format %{ "FLD    $src\n\t"
  9931             "DMULp  $dst,ST" %}
  9932   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9933   ins_cost(150);
  9934   ins_encode( Push_Reg_D(src),
  9935               OpcP, RegOpc(dst) );
  9936   ins_pipe( fpu_reg_reg );
  9937 %}
  9939 // Strict FP instruction biases argument before multiply then
  9940 // biases result to avoid double rounding of subnormals.
  9941 //
  9942 // scale arg1 by multiplying arg1 by 2^(-15360)
  9943 // load arg2
  9944 // multiply scaled arg1 by arg2
  9945 // rescale product by 2^(15360)
  9946 //
  9947 instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
  9948   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9949   match(Set dst (MulD dst src));
  9950   ins_cost(1);   // Select this instruction for all strict FP double multiplies
  9952   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9953             "DMULp  $dst,ST\n\t"
  9954             "FLD    $src\n\t"
  9955             "DMULp  $dst,ST\n\t"
  9956             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9957             "DMULp  $dst,ST\n\t" %}
  9958   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9959   ins_encode( strictfp_bias1(dst),
  9960               Push_Reg_D(src),
  9961               OpcP, RegOpc(dst),
  9962               strictfp_bias2(dst) );
  9963   ins_pipe( fpu_reg_reg );
  9964 %}
  9966 instruct mulD_reg_imm(regD dst, immD src) %{
  9967   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9968   match(Set dst (MulD dst src));
  9969   ins_cost(200);
  9970   format %{ "FLD_D  [$src]\n\t"
  9971             "DMULp  $dst,ST" %}
  9972   opcode(0xDE, 0x1); /* DE /1 */
  9973   ins_encode( LdImmD(src),
  9974               OpcP, RegOpc(dst) );
  9975   ins_pipe( fpu_reg_mem );
  9976 %}
  9979 instruct mulD_reg_mem(regD dst, memory src) %{
  9980   predicate( UseSSE<=1 );
  9981   match(Set dst (MulD dst (LoadD src)));
  9982   ins_cost(200);
  9983   format %{ "FLD_D  $src\n\t"
  9984             "DMULp  $dst,ST" %}
  9985   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
  9986   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9987               OpcP, RegOpc(dst) );
  9988   ins_pipe( fpu_reg_mem );
  9989 %}
  9991 //
  9992 // Cisc-alternate to reg-reg multiply
  9993 instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
  9994   predicate( UseSSE<=1 );
  9995   match(Set dst (MulD src (LoadD mem)));
  9996   ins_cost(250);
  9997   format %{ "FLD_D  $mem\n\t"
  9998             "DMUL   ST,$src\n\t"
  9999             "FSTP_D $dst" %}
 10000   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
 10001   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
 10002               OpcReg_F(src),
 10003               Pop_Reg_D(dst) );
 10004   ins_pipe( fpu_reg_reg_mem );
 10005 %}
 10008 // MACRO3 -- addD a mulD
 10009 // This instruction is a '2-address' instruction in that the result goes
 10010 // back to src2.  This eliminates a move from the macro; possibly the
 10011 // register allocator will have to add it back (and maybe not).
 10012 instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
 10013   predicate( UseSSE<=1 );
 10014   match(Set src2 (AddD (MulD src0 src1) src2));
 10015   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
 10016             "DMUL   ST,$src1\n\t"
 10017             "DADDp  $src2,ST" %}
 10018   ins_cost(250);
 10019   opcode(0xDD); /* LoadD DD /0 */
 10020   ins_encode( Push_Reg_F(src0),
 10021               FMul_ST_reg(src1),
 10022               FAddP_reg_ST(src2) );
 10023   ins_pipe( fpu_reg_reg_reg );
 10024 %}
 10027 // MACRO3 -- subD a mulD
 10028 instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
 10029   predicate( UseSSE<=1 );
 10030   match(Set src2 (SubD (MulD src0 src1) src2));
 10031   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
 10032             "DMUL   ST,$src1\n\t"
 10033             "DSUBRp $src2,ST" %}
 10034   ins_cost(250);
 10035   ins_encode( Push_Reg_F(src0),
 10036               FMul_ST_reg(src1),
 10037               Opcode(0xDE), Opc_plus(0xE0,src2));
 10038   ins_pipe( fpu_reg_reg_reg );
 10039 %}
 10042 instruct divD_reg(regD dst, regD src) %{
 10043   predicate( UseSSE<=1 );
 10044   match(Set dst (DivD dst src));
 10046   format %{ "FLD    $src\n\t"
 10047             "FDIVp  $dst,ST" %}
 10048   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10049   ins_cost(150);
 10050   ins_encode( Push_Reg_D(src),
 10051               OpcP, RegOpc(dst) );
 10052   ins_pipe( fpu_reg_reg );
 10053 %}
 10055 // Strict FP instruction biases argument before division then
 10056 // biases result, to avoid double rounding of subnormals.
 10057 //
 10058 // scale dividend by multiplying dividend by 2^(-15360)
 10059 // load divisor
 10060 // divide scaled dividend by divisor
 10061 // rescale quotient by 2^(15360)
 10062 //
 10063 instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
 10064   predicate (UseSSE<=1);
 10065   match(Set dst (DivD dst src));
 10066   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
 10067   ins_cost(01);
 10069   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
 10070             "DMULp  $dst,ST\n\t"
 10071             "FLD    $src\n\t"
 10072             "FDIVp  $dst,ST\n\t"
 10073             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
 10074             "DMULp  $dst,ST\n\t" %}
 10075   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10076   ins_encode( strictfp_bias1(dst),
 10077               Push_Reg_D(src),
 10078               OpcP, RegOpc(dst),
 10079               strictfp_bias2(dst) );
 10080   ins_pipe( fpu_reg_reg );
 10081 %}
 10083 instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
 10084   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
 10085   match(Set dst (RoundDouble (DivD src1 src2)));
 10087   format %{ "FLD    $src1\n\t"
 10088             "FDIV   ST,$src2\n\t"
 10089             "FSTP_D $dst\t# D-round" %}
 10090   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
 10091   ins_encode( Push_Reg_D(src1),
 10092               OpcP, RegOpc(src2), Pop_Mem_D(dst) );
 10093   ins_pipe( fpu_mem_reg_reg );
 10094 %}
 10097 instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
 10098   predicate(UseSSE<=1);
 10099   match(Set dst (ModD dst src));
 10100   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 10102   format %{ "DMOD   $dst,$src" %}
 10103   ins_cost(250);
 10104   ins_encode(Push_Reg_Mod_D(dst, src),
 10105               emitModD(),
 10106               Push_Result_Mod_D(src),
 10107               Pop_Reg_D(dst));
 10108   ins_pipe( pipe_slow );
 10109 %}
 10111 instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
 10112   predicate(UseSSE>=2);
 10113   match(Set dst (ModD src0 src1));
 10114   effect(KILL rax, KILL cr);
 10116   format %{ "SUB    ESP,8\t # DMOD\n"
 10117           "\tMOVSD  [ESP+0],$src1\n"
 10118           "\tFLD_D  [ESP+0]\n"
 10119           "\tMOVSD  [ESP+0],$src0\n"
 10120           "\tFLD_D  [ESP+0]\n"
 10121      "loop:\tFPREM\n"
 10122           "\tFWAIT\n"
 10123           "\tFNSTSW AX\n"
 10124           "\tSAHF\n"
 10125           "\tJP     loop\n"
 10126           "\tFSTP_D [ESP+0]\n"
 10127           "\tMOVSD  $dst,[ESP+0]\n"
 10128           "\tADD    ESP,8\n"
 10129           "\tFSTP   ST0\t # Restore FPU Stack"
 10130     %}
 10131   ins_cost(250);
 10132   ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
 10133   ins_pipe( pipe_slow );
 10134 %}
 10136 instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
 10137   predicate (UseSSE<=1);
 10138   match(Set dst (SinD src));
 10139   ins_cost(1800);
 10140   format %{ "DSIN   $dst" %}
 10141   opcode(0xD9, 0xFE);
 10142   ins_encode( OpcP, OpcS );
 10143   ins_pipe( pipe_slow );
 10144 %}
 10146 instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
 10147   predicate (UseSSE>=2);
 10148   match(Set dst (SinD dst));
 10149   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10150   ins_cost(1800);
 10151   format %{ "DSIN   $dst" %}
 10152   opcode(0xD9, 0xFE);
 10153   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10154   ins_pipe( pipe_slow );
 10155 %}
 10157 instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
 10158   predicate (UseSSE<=1);
 10159   match(Set dst (CosD src));
 10160   ins_cost(1800);
 10161   format %{ "DCOS   $dst" %}
 10162   opcode(0xD9, 0xFF);
 10163   ins_encode( OpcP, OpcS );
 10164   ins_pipe( pipe_slow );
 10165 %}
 10167 instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
 10168   predicate (UseSSE>=2);
 10169   match(Set dst (CosD dst));
 10170   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10171   ins_cost(1800);
 10172   format %{ "DCOS   $dst" %}
 10173   opcode(0xD9, 0xFF);
 10174   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10175   ins_pipe( pipe_slow );
 10176 %}
 10178 instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
 10179   predicate (UseSSE<=1);
 10180   match(Set dst(TanD src));
 10181   format %{ "DTAN   $dst" %}
 10182   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
 10183               Opcode(0xDD), Opcode(0xD8));   // fstp st
 10184   ins_pipe( pipe_slow );
 10185 %}
 10187 instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
 10188   predicate (UseSSE>=2);
 10189   match(Set dst(TanD dst));
 10190   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10191   format %{ "DTAN   $dst" %}
 10192   ins_encode( Push_SrcXD(dst),
 10193               Opcode(0xD9), Opcode(0xF2),    // fptan
 10194               Opcode(0xDD), Opcode(0xD8),   // fstp st
 10195               Push_ResultXD(dst) );
 10196   ins_pipe( pipe_slow );
 10197 %}
 10199 instruct atanD_reg(regD dst, regD src) %{
 10200   predicate (UseSSE<=1);
 10201   match(Set dst(AtanD dst src));
 10202   format %{ "DATA   $dst,$src" %}
 10203   opcode(0xD9, 0xF3);
 10204   ins_encode( Push_Reg_D(src),
 10205               OpcP, OpcS, RegOpc(dst) );
 10206   ins_pipe( pipe_slow );
 10207 %}
 10209 instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10210   predicate (UseSSE>=2);
 10211   match(Set dst(AtanD dst src));
 10212   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10213   format %{ "DATA   $dst,$src" %}
 10214   opcode(0xD9, 0xF3);
 10215   ins_encode( Push_SrcXD(src),
 10216               OpcP, OpcS, Push_ResultXD(dst) );
 10217   ins_pipe( pipe_slow );
 10218 %}
 10220 instruct sqrtD_reg(regD dst, regD src) %{
 10221   predicate (UseSSE<=1);
 10222   match(Set dst (SqrtD src));
 10223   format %{ "DSQRT  $dst,$src" %}
 10224   opcode(0xFA, 0xD9);
 10225   ins_encode( Push_Reg_D(src),
 10226               OpcS, OpcP, Pop_Reg_D(dst) );
 10227   ins_pipe( pipe_slow );
 10228 %}
 10230 instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10231   predicate (UseSSE<=1);
 10232   match(Set Y (PowD X Y));  // Raise X to the Yth power
 10233   effect(KILL rax, KILL rbx, KILL rcx);
 10234   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10235             "FLD_D  $X\n\t"
 10236             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10238             "FDUP   \t\t\t# Q Q\n\t"
 10239             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10240             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10241             "FISTP  dword [ESP]\n\t"
 10242             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10243             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10244             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10245             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10246             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10247             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10248             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10249             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10250             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10251             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10252             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10253             "MOV    [ESP+0],0\n\t"
 10254             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10256             "ADD    ESP,8"
 10257              %}
 10258   ins_encode( push_stack_temp_qword,
 10259               Push_Reg_D(X),
 10260               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10261               pow_exp_core_encoding,
 10262               pop_stack_temp_qword);
 10263   ins_pipe( pipe_slow );
 10264 %}
 10266 instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
 10267   predicate (UseSSE>=2);
 10268   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
 10269   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
 10270   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10271             "MOVSD  [ESP],$src1\n\t"
 10272             "FLD    FPR1,$src1\n\t"
 10273             "MOVSD  [ESP],$src0\n\t"
 10274             "FLD    FPR1,$src0\n\t"
 10275             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10277             "FDUP   \t\t\t# Q Q\n\t"
 10278             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10279             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10280             "FISTP  dword [ESP]\n\t"
 10281             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10282             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10283             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10284             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10285             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10286             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10287             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10288             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10289             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10290             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10291             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10292             "MOV    [ESP+0],0\n\t"
 10293             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10295             "FST_D  [ESP]\n\t"
 10296             "MOVSD  $dst,[ESP]\n\t"
 10297             "ADD    ESP,8"
 10298              %}
 10299   ins_encode( push_stack_temp_qword,
 10300               push_xmm_to_fpr1(src1),
 10301               push_xmm_to_fpr1(src0),
 10302               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10303               pow_exp_core_encoding,
 10304               Push_ResultXD(dst) );
 10305   ins_pipe( pipe_slow );
 10306 %}
 10309 instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10310   predicate (UseSSE<=1);
 10311   match(Set dpr1 (ExpD dpr1));
 10312   effect(KILL rax, KILL rbx, KILL rcx);
 10313   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
 10314             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10315             "FMULP  \t\t\t# Q=X*log2(e)\n\t"
 10317             "FDUP   \t\t\t# Q Q\n\t"
 10318             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10319             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10320             "FISTP  dword [ESP]\n\t"
 10321             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10322             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10323             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10324             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10325             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10326             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10327             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10328             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10329             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10330             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10331             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10332             "MOV    [ESP+0],0\n\t"
 10333             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10335             "ADD    ESP,8"
 10336              %}
 10337   ins_encode( push_stack_temp_qword,
 10338               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10339               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10340               pow_exp_core_encoding,
 10341               pop_stack_temp_qword);
 10342   ins_pipe( pipe_slow );
 10343 %}
 10345 instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10346   predicate (UseSSE>=2);
 10347   match(Set dst (ExpD src));
 10348   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
 10349   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
 10350             "MOVSD  [ESP],$src\n\t"
 10351             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10352             "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
 10354             "FDUP   \t\t\t# Q Q\n\t"
 10355             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10356             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10357             "FISTP  dword [ESP]\n\t"
 10358             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10359             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10360             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10361             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10362             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10363             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10364             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10365             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10366             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10367             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10368             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10369             "MOV    [ESP+0],0\n\t"
 10370             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10372             "FST_D  [ESP]\n\t"
 10373             "MOVSD  $dst,[ESP]\n\t"
 10374             "ADD    ESP,8"
 10375              %}
 10376   ins_encode( Push_SrcXD(src),
 10377               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10378               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10379               pow_exp_core_encoding,
 10380               Push_ResultXD(dst) );
 10381   ins_pipe( pipe_slow );
 10382 %}
 10386 instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
 10387   predicate (UseSSE<=1);
 10388   // The source Double operand on FPU stack
 10389   match(Set dst (Log10D src));
 10390   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10391   // fxch         ; swap ST(0) with ST(1)
 10392   // fyl2x        ; compute log_10(2) * log_2(x)
 10393   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10394             "FXCH   \n\t"
 10395             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10396          %}
 10397   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10398               Opcode(0xD9), Opcode(0xC9),   // fxch
 10399               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10401   ins_pipe( pipe_slow );
 10402 %}
 10404 instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10405   predicate (UseSSE>=2);
 10406   effect(KILL cr);
 10407   match(Set dst (Log10D src));
 10408   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10409   // fyl2x        ; compute log_10(2) * log_2(x)
 10410   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10411             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10412          %}
 10413   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10414               Push_SrcXD(src),
 10415               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10416               Push_ResultXD(dst));
 10418   ins_pipe( pipe_slow );
 10419 %}
 10421 instruct logD_reg(regDPR1 dst, regDPR1 src) %{
 10422   predicate (UseSSE<=1);
 10423   // The source Double operand on FPU stack
 10424   match(Set dst (LogD src));
 10425   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10426   // fxch         ; swap ST(0) with ST(1)
 10427   // fyl2x        ; compute log_e(2) * log_2(x)
 10428   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10429             "FXCH   \n\t"
 10430             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10431          %}
 10432   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10433               Opcode(0xD9), Opcode(0xC9),   // fxch
 10434               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10436   ins_pipe( pipe_slow );
 10437 %}
 10439 instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10440   predicate (UseSSE>=2);
 10441   effect(KILL cr);
 10442   // The source and result Double operands in XMM registers
 10443   match(Set dst (LogD src));
 10444   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10445   // fyl2x        ; compute log_e(2) * log_2(x)
 10446   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10447             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10448          %}
 10449   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10450               Push_SrcXD(src),
 10451               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10452               Push_ResultXD(dst));
 10453   ins_pipe( pipe_slow );
 10454 %}
 10456 //-------------Float Instructions-------------------------------
 10457 // Float Math
 10459 // Code for float compare:
 10460 //     fcompp();
 10461 //     fwait(); fnstsw_ax();
 10462 //     sahf();
 10463 //     movl(dst, unordered_result);
 10464 //     jcc(Assembler::parity, exit);
 10465 //     movl(dst, less_result);
 10466 //     jcc(Assembler::below, exit);
 10467 //     movl(dst, equal_result);
 10468 //     jcc(Assembler::equal, exit);
 10469 //     movl(dst, greater_result);
 10470 //   exit:
 10472 // P6 version of float compare, sets condition codes in EFLAGS
 10473 instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
 10474   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10475   match(Set cr (CmpF src1 src2));
 10476   effect(KILL rax);
 10477   ins_cost(150);
 10478   format %{ "FLD    $src1\n\t"
 10479             "FUCOMIP ST,$src2  // P6 instruction\n\t"
 10480             "JNP    exit\n\t"
 10481             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
 10482             "SAHF\n"
 10483      "exit:\tNOP               // avoid branch to branch" %}
 10484   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10485   ins_encode( Push_Reg_D(src1),
 10486               OpcP, RegOpc(src2),
 10487               cmpF_P6_fixup );
 10488   ins_pipe( pipe_slow );
 10489 %}
 10491 instruct cmpF_cc_P6CF(eFlagsRegUCF cr, regF src1, regF src2) %{
 10492   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10493   match(Set cr (CmpF src1 src2));
 10494   ins_cost(100);
 10495   format %{ "FLD    $src1\n\t"
 10496             "FUCOMIP ST,$src2  // P6 instruction" %}
 10497   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10498   ins_encode( Push_Reg_D(src1),
 10499               OpcP, RegOpc(src2));
 10500   ins_pipe( pipe_slow );
 10501 %}
 10504 // Compare & branch
 10505 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
 10506   predicate(UseSSE == 0);
 10507   match(Set cr (CmpF src1 src2));
 10508   effect(KILL rax);
 10509   ins_cost(200);
 10510   format %{ "FLD    $src1\n\t"
 10511             "FCOMp  $src2\n\t"
 10512             "FNSTSW AX\n\t"
 10513             "TEST   AX,0x400\n\t"
 10514             "JZ,s   flags\n\t"
 10515             "MOV    AH,1\t# unordered treat as LT\n"
 10516     "flags:\tSAHF" %}
 10517   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10518   ins_encode( Push_Reg_D(src1),
 10519               OpcP, RegOpc(src2),
 10520               fpu_flags);
 10521   ins_pipe( pipe_slow );
 10522 %}
 10524 // Compare vs zero into -1,0,1
 10525 instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
 10526   predicate(UseSSE == 0);
 10527   match(Set dst (CmpF3 src1 zero));
 10528   effect(KILL cr, KILL rax);
 10529   ins_cost(280);
 10530   format %{ "FTSTF  $dst,$src1" %}
 10531   opcode(0xE4, 0xD9);
 10532   ins_encode( Push_Reg_D(src1),
 10533               OpcS, OpcP, PopFPU,
 10534               CmpF_Result(dst));
 10535   ins_pipe( pipe_slow );
 10536 %}
 10538 // Compare into -1,0,1
 10539 instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
 10540   predicate(UseSSE == 0);
 10541   match(Set dst (CmpF3 src1 src2));
 10542   effect(KILL cr, KILL rax);
 10543   ins_cost(300);
 10544   format %{ "FCMPF  $dst,$src1,$src2" %}
 10545   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10546   ins_encode( Push_Reg_D(src1),
 10547               OpcP, RegOpc(src2),
 10548               CmpF_Result(dst));
 10549   ins_pipe( pipe_slow );
 10550 %}
 10552 // float compare and set condition codes in EFLAGS by XMM regs
 10553 instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
 10554   predicate(UseSSE>=1);
 10555   match(Set cr (CmpF dst src));
 10556   effect(KILL rax);
 10557   ins_cost(145);
 10558   format %{ "COMISS $dst,$src\n"
 10559           "\tJNP    exit\n"
 10560           "\tMOV    ah,1       // saw a NaN, set CF\n"
 10561           "\tSAHF\n"
 10562      "exit:\tNOP               // avoid branch to branch" %}
 10563   opcode(0x0F, 0x2F);
 10564   ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
 10565   ins_pipe( pipe_slow );
 10566 %}
 10568 instruct cmpX_ccCF(eFlagsRegUCF cr, regX dst, regX src) %{
 10569   predicate(UseSSE>=1);
 10570   match(Set cr (CmpF dst src));
 10571   ins_cost(100);
 10572   format %{ "COMISS $dst,$src" %}
 10573   opcode(0x0F, 0x2F);
 10574   ins_encode(OpcP, OpcS, RegReg(dst, src));
 10575   ins_pipe( pipe_slow );
 10576 %}
 10578 // float compare and set condition codes in EFLAGS by XMM regs
 10579 instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
 10580   predicate(UseSSE>=1);
 10581   match(Set cr (CmpF dst (LoadF src)));
 10582   effect(KILL rax);
 10583   ins_cost(165);
 10584   format %{ "COMISS $dst,$src\n"
 10585           "\tJNP    exit\n"
 10586           "\tMOV    ah,1       // saw a NaN, set CF\n"
 10587           "\tSAHF\n"
 10588      "exit:\tNOP               // avoid branch to branch" %}
 10589   opcode(0x0F, 0x2F);
 10590   ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
 10591   ins_pipe( pipe_slow );
 10592 %}
 10594 instruct cmpX_ccmemCF(eFlagsRegUCF cr, regX dst, memory src) %{
 10595   predicate(UseSSE>=1);
 10596   match(Set cr (CmpF dst (LoadF src)));
 10597   ins_cost(100);
 10598   format %{ "COMISS $dst,$src" %}
 10599   opcode(0x0F, 0x2F);
 10600   ins_encode(OpcP, OpcS, RegMem(dst, src));
 10601   ins_pipe( pipe_slow );
 10602 %}
 10604 // Compare into -1,0,1 in XMM
 10605 instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
 10606   predicate(UseSSE>=1);
 10607   match(Set dst (CmpF3 src1 src2));
 10608   effect(KILL cr);
 10609   ins_cost(255);
 10610   format %{ "XOR    $dst,$dst\n"
 10611           "\tCOMISS $src1,$src2\n"
 10612           "\tJP,s   nan\n"
 10613           "\tJEQ,s  exit\n"
 10614           "\tJA,s   inc\n"
 10615       "nan:\tDEC    $dst\n"
 10616           "\tJMP,s  exit\n"
 10617       "inc:\tINC    $dst\n"
 10618       "exit:"
 10619                 %}
 10620   opcode(0x0F, 0x2F);
 10621   ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
 10622   ins_pipe( pipe_slow );
 10623 %}
 10625 // Compare into -1,0,1 in XMM and memory
 10626 instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
 10627   predicate(UseSSE>=1);
 10628   match(Set dst (CmpF3 src1 (LoadF mem)));
 10629   effect(KILL cr);
 10630   ins_cost(275);
 10631   format %{ "COMISS $src1,$mem\n"
 10632           "\tMOV    $dst,0\t\t# do not blow flags\n"
 10633           "\tJP,s   nan\n"
 10634           "\tJEQ,s  exit\n"
 10635           "\tJA,s   inc\n"
 10636       "nan:\tDEC    $dst\n"
 10637           "\tJMP,s  exit\n"
 10638       "inc:\tINC    $dst\n"
 10639       "exit:"
 10640                 %}
 10641   opcode(0x0F, 0x2F);
 10642   ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
 10643   ins_pipe( pipe_slow );
 10644 %}
 10646 // Spill to obtain 24-bit precision
 10647 instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
 10648   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10649   match(Set dst (SubF src1 src2));
 10651   format %{ "FSUB   $dst,$src1 - $src2" %}
 10652   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
 10653   ins_encode( Push_Reg_F(src1),
 10654               OpcReg_F(src2),
 10655               Pop_Mem_F(dst) );
 10656   ins_pipe( fpu_mem_reg_reg );
 10657 %}
 10658 //
 10659 // This instruction does not round to 24-bits
 10660 instruct subF_reg(regF dst, regF src) %{
 10661   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10662   match(Set dst (SubF dst src));
 10664   format %{ "FSUB   $dst,$src" %}
 10665   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 10666   ins_encode( Push_Reg_F(src),
 10667               OpcP, RegOpc(dst) );
 10668   ins_pipe( fpu_reg_reg );
 10669 %}
 10671 // Spill to obtain 24-bit precision
 10672 instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
 10673   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10674   match(Set dst (AddF src1 src2));
 10676   format %{ "FADD   $dst,$src1,$src2" %}
 10677   opcode(0xD8, 0x0); /* D8 C0+i */
 10678   ins_encode( Push_Reg_F(src2),
 10679               OpcReg_F(src1),
 10680               Pop_Mem_F(dst) );
 10681   ins_pipe( fpu_mem_reg_reg );
 10682 %}
 10683 //
 10684 // This instruction does not round to 24-bits
 10685 instruct addF_reg(regF dst, regF src) %{
 10686   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10687   match(Set dst (AddF dst src));
 10689   format %{ "FLD    $src\n\t"
 10690             "FADDp  $dst,ST" %}
 10691   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10692   ins_encode( Push_Reg_F(src),
 10693               OpcP, RegOpc(dst) );
 10694   ins_pipe( fpu_reg_reg );
 10695 %}
 10697 // Add two single precision floating point values in xmm
 10698 instruct addX_reg(regX dst, regX src) %{
 10699   predicate(UseSSE>=1);
 10700   match(Set dst (AddF dst src));
 10701   format %{ "ADDSS  $dst,$src" %}
 10702   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
 10703   ins_pipe( pipe_slow );
 10704 %}
 10706 instruct addX_imm(regX dst, immXF con) %{
 10707   predicate(UseSSE>=1);
 10708   match(Set dst (AddF dst con));
 10709   format %{ "ADDSS  $dst,[$con]" %}
 10710   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), LdImmX(dst, con) );
 10711   ins_pipe( pipe_slow );
 10712 %}
 10714 instruct addX_mem(regX dst, memory mem) %{
 10715   predicate(UseSSE>=1);
 10716   match(Set dst (AddF dst (LoadF mem)));
 10717   format %{ "ADDSS  $dst,$mem" %}
 10718   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
 10719   ins_pipe( pipe_slow );
 10720 %}
 10722 // Subtract two single precision floating point values in xmm
 10723 instruct subX_reg(regX dst, regX src) %{
 10724   predicate(UseSSE>=1);
 10725   match(Set dst (SubF dst src));
 10726   format %{ "SUBSS  $dst,$src" %}
 10727   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
 10728   ins_pipe( pipe_slow );
 10729 %}
 10731 instruct subX_imm(regX dst, immXF con) %{
 10732   predicate(UseSSE>=1);
 10733   match(Set dst (SubF dst con));
 10734   format %{ "SUBSS  $dst,[$con]" %}
 10735   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), LdImmX(dst, con) );
 10736   ins_pipe( pipe_slow );
 10737 %}
 10739 instruct subX_mem(regX dst, memory mem) %{
 10740   predicate(UseSSE>=1);
 10741   match(Set dst (SubF dst (LoadF mem)));
 10742   format %{ "SUBSS  $dst,$mem" %}
 10743   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
 10744   ins_pipe( pipe_slow );
 10745 %}
 10747 // Multiply two single precision floating point values in xmm
 10748 instruct mulX_reg(regX dst, regX src) %{
 10749   predicate(UseSSE>=1);
 10750   match(Set dst (MulF dst src));
 10751   format %{ "MULSS  $dst,$src" %}
 10752   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
 10753   ins_pipe( pipe_slow );
 10754 %}
 10756 instruct mulX_imm(regX dst, immXF con) %{
 10757   predicate(UseSSE>=1);
 10758   match(Set dst (MulF dst con));
 10759   format %{ "MULSS  $dst,[$con]" %}
 10760   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), LdImmX(dst, con) );
 10761   ins_pipe( pipe_slow );
 10762 %}
 10764 instruct mulX_mem(regX dst, memory mem) %{
 10765   predicate(UseSSE>=1);
 10766   match(Set dst (MulF dst (LoadF mem)));
 10767   format %{ "MULSS  $dst,$mem" %}
 10768   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
 10769   ins_pipe( pipe_slow );
 10770 %}
 10772 // Divide two single precision floating point values in xmm
 10773 instruct divX_reg(regX dst, regX src) %{
 10774   predicate(UseSSE>=1);
 10775   match(Set dst (DivF dst src));
 10776   format %{ "DIVSS  $dst,$src" %}
 10777   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
 10778   ins_pipe( pipe_slow );
 10779 %}
 10781 instruct divX_imm(regX dst, immXF con) %{
 10782   predicate(UseSSE>=1);
 10783   match(Set dst (DivF dst con));
 10784   format %{ "DIVSS  $dst,[$con]" %}
 10785   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), LdImmX(dst, con) );
 10786   ins_pipe( pipe_slow );
 10787 %}
 10789 instruct divX_mem(regX dst, memory mem) %{
 10790   predicate(UseSSE>=1);
 10791   match(Set dst (DivF dst (LoadF mem)));
 10792   format %{ "DIVSS  $dst,$mem" %}
 10793   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
 10794   ins_pipe( pipe_slow );
 10795 %}
 10797 // Get the square root of a single precision floating point values in xmm
 10798 instruct sqrtX_reg(regX dst, regX src) %{
 10799   predicate(UseSSE>=1);
 10800   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 10801   format %{ "SQRTSS $dst,$src" %}
 10802   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
 10803   ins_pipe( pipe_slow );
 10804 %}
 10806 instruct sqrtX_mem(regX dst, memory mem) %{
 10807   predicate(UseSSE>=1);
 10808   match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
 10809   format %{ "SQRTSS $dst,$mem" %}
 10810   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
 10811   ins_pipe( pipe_slow );
 10812 %}
 10814 // Get the square root of a double precision floating point values in xmm
 10815 instruct sqrtXD_reg(regXD dst, regXD src) %{
 10816   predicate(UseSSE>=2);
 10817   match(Set dst (SqrtD src));
 10818   format %{ "SQRTSD $dst,$src" %}
 10819   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
 10820   ins_pipe( pipe_slow );
 10821 %}
 10823 instruct sqrtXD_mem(regXD dst, memory mem) %{
 10824   predicate(UseSSE>=2);
 10825   match(Set dst (SqrtD (LoadD mem)));
 10826   format %{ "SQRTSD $dst,$mem" %}
 10827   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
 10828   ins_pipe( pipe_slow );
 10829 %}
 10831 instruct absF_reg(regFPR1 dst, regFPR1 src) %{
 10832   predicate(UseSSE==0);
 10833   match(Set dst (AbsF src));
 10834   ins_cost(100);
 10835   format %{ "FABS" %}
 10836   opcode(0xE1, 0xD9);
 10837   ins_encode( OpcS, OpcP );
 10838   ins_pipe( fpu_reg_reg );
 10839 %}
 10841 instruct absX_reg(regX dst ) %{
 10842   predicate(UseSSE>=1);
 10843   match(Set dst (AbsF dst));
 10844   format %{ "ANDPS  $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
 10845   ins_encode( AbsXF_encoding(dst));
 10846   ins_pipe( pipe_slow );
 10847 %}
 10849 instruct negF_reg(regFPR1 dst, regFPR1 src) %{
 10850   predicate(UseSSE==0);
 10851   match(Set dst (NegF src));
 10852   ins_cost(100);
 10853   format %{ "FCHS" %}
 10854   opcode(0xE0, 0xD9);
 10855   ins_encode( OpcS, OpcP );
 10856   ins_pipe( fpu_reg_reg );
 10857 %}
 10859 instruct negX_reg( regX dst ) %{
 10860   predicate(UseSSE>=1);
 10861   match(Set dst (NegF dst));
 10862   format %{ "XORPS  $dst,[0x80000000]\t# CHS F by sign flipping" %}
 10863   ins_encode( NegXF_encoding(dst));
 10864   ins_pipe( pipe_slow );
 10865 %}
 10867 // Cisc-alternate to addF_reg
 10868 // Spill to obtain 24-bit precision
 10869 instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
 10870   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10871   match(Set dst (AddF src1 (LoadF src2)));
 10873   format %{ "FLD    $src2\n\t"
 10874             "FADD   ST,$src1\n\t"
 10875             "FSTP_S $dst" %}
 10876   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10877   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10878               OpcReg_F(src1),
 10879               Pop_Mem_F(dst) );
 10880   ins_pipe( fpu_mem_reg_mem );
 10881 %}
 10882 //
 10883 // Cisc-alternate to addF_reg
 10884 // This instruction does not round to 24-bits
 10885 instruct addF_reg_mem(regF dst, memory src) %{
 10886   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10887   match(Set dst (AddF dst (LoadF src)));
 10889   format %{ "FADD   $dst,$src" %}
 10890   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
 10891   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10892               OpcP, RegOpc(dst) );
 10893   ins_pipe( fpu_reg_mem );
 10894 %}
 10896 // // Following two instructions for _222_mpegaudio
 10897 // Spill to obtain 24-bit precision
 10898 instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
 10899   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10900   match(Set dst (AddF src1 src2));
 10902   format %{ "FADD   $dst,$src1,$src2" %}
 10903   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10904   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
 10905               OpcReg_F(src2),
 10906               Pop_Mem_F(dst) );
 10907   ins_pipe( fpu_mem_reg_mem );
 10908 %}
 10910 // Cisc-spill variant
 10911 // Spill to obtain 24-bit precision
 10912 instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
 10913   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10914   match(Set dst (AddF src1 (LoadF src2)));
 10916   format %{ "FADD   $dst,$src1,$src2 cisc" %}
 10917   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10918   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10919               set_instruction_start,
 10920               OpcP, RMopc_Mem(secondary,src1),
 10921               Pop_Mem_F(dst) );
 10922   ins_pipe( fpu_mem_mem_mem );
 10923 %}
 10925 // Spill to obtain 24-bit precision
 10926 instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10927   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10928   match(Set dst (AddF src1 src2));
 10930   format %{ "FADD   $dst,$src1,$src2" %}
 10931   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
 10932   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10933               set_instruction_start,
 10934               OpcP, RMopc_Mem(secondary,src1),
 10935               Pop_Mem_F(dst) );
 10936   ins_pipe( fpu_mem_mem_mem );
 10937 %}
 10940 // Spill to obtain 24-bit precision
 10941 instruct addF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
 10942   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10943   match(Set dst (AddF src1 src2));
 10944   format %{ "FLD    $src1\n\t"
 10945             "FADD   $src2\n\t"
 10946             "FSTP_S $dst"  %}
 10947   opcode(0xD8, 0x00);       /* D8 /0 */
 10948   ins_encode( Push_Reg_F(src1),
 10949               Opc_MemImm_F(src2),
 10950               Pop_Mem_F(dst));
 10951   ins_pipe( fpu_mem_reg_con );
 10952 %}
 10953 //
 10954 // This instruction does not round to 24-bits
 10955 instruct addF_reg_imm(regF dst, regF src1, immF src2) %{
 10956   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10957   match(Set dst (AddF src1 src2));
 10958   format %{ "FLD    $src1\n\t"
 10959             "FADD   $src2\n\t"
 10960             "FSTP_S $dst"  %}
 10961   opcode(0xD8, 0x00);       /* D8 /0 */
 10962   ins_encode( Push_Reg_F(src1),
 10963               Opc_MemImm_F(src2),
 10964               Pop_Reg_F(dst));
 10965   ins_pipe( fpu_reg_reg_con );
 10966 %}
 10968 // Spill to obtain 24-bit precision
 10969 instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
 10970   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10971   match(Set dst (MulF src1 src2));
 10973   format %{ "FLD    $src1\n\t"
 10974             "FMUL   $src2\n\t"
 10975             "FSTP_S $dst"  %}
 10976   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
 10977   ins_encode( Push_Reg_F(src1),
 10978               OpcReg_F(src2),
 10979               Pop_Mem_F(dst) );
 10980   ins_pipe( fpu_mem_reg_reg );
 10981 %}
 10982 //
 10983 // This instruction does not round to 24-bits
 10984 instruct mulF_reg(regF dst, regF src1, regF src2) %{
 10985   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10986   match(Set dst (MulF src1 src2));
 10988   format %{ "FLD    $src1\n\t"
 10989             "FMUL   $src2\n\t"
 10990             "FSTP_S $dst"  %}
 10991   opcode(0xD8, 0x1); /* D8 C8+i */
 10992   ins_encode( Push_Reg_F(src2),
 10993               OpcReg_F(src1),
 10994               Pop_Reg_F(dst) );
 10995   ins_pipe( fpu_reg_reg_reg );
 10996 %}
 10999 // Spill to obtain 24-bit precision
 11000 // Cisc-alternate to reg-reg multiply
 11001 instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
 11002   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11003   match(Set dst (MulF src1 (LoadF src2)));
 11005   format %{ "FLD_S  $src2\n\t"
 11006             "FMUL   $src1\n\t"
 11007             "FSTP_S $dst"  %}
 11008   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
 11009   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11010               OpcReg_F(src1),
 11011               Pop_Mem_F(dst) );
 11012   ins_pipe( fpu_mem_reg_mem );
 11013 %}
 11014 //
 11015 // This instruction does not round to 24-bits
 11016 // Cisc-alternate to reg-reg multiply
 11017 instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
 11018   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11019   match(Set dst (MulF src1 (LoadF src2)));
 11021   format %{ "FMUL   $dst,$src1,$src2" %}
 11022   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
 11023   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11024               OpcReg_F(src1),
 11025               Pop_Reg_F(dst) );
 11026   ins_pipe( fpu_reg_reg_mem );
 11027 %}
 11029 // Spill to obtain 24-bit precision
 11030 instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 11031   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11032   match(Set dst (MulF src1 src2));
 11034   format %{ "FMUL   $dst,$src1,$src2" %}
 11035   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
 11036   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11037               set_instruction_start,
 11038               OpcP, RMopc_Mem(secondary,src1),
 11039               Pop_Mem_F(dst) );
 11040   ins_pipe( fpu_mem_mem_mem );
 11041 %}
 11043 // Spill to obtain 24-bit precision
 11044 instruct mulF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
 11045   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11046   match(Set dst (MulF src1 src2));
 11048   format %{ "FMULc $dst,$src1,$src2" %}
 11049   opcode(0xD8, 0x1);  /* D8 /1*/
 11050   ins_encode( Push_Reg_F(src1),
 11051               Opc_MemImm_F(src2),
 11052               Pop_Mem_F(dst));
 11053   ins_pipe( fpu_mem_reg_con );
 11054 %}
 11055 //
 11056 // This instruction does not round to 24-bits
 11057 instruct mulF_reg_imm(regF dst, regF src1, immF src2) %{
 11058   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11059   match(Set dst (MulF src1 src2));
 11061   format %{ "FMULc $dst. $src1, $src2" %}
 11062   opcode(0xD8, 0x1);  /* D8 /1*/
 11063   ins_encode( Push_Reg_F(src1),
 11064               Opc_MemImm_F(src2),
 11065               Pop_Reg_F(dst));
 11066   ins_pipe( fpu_reg_reg_con );
 11067 %}
 11070 //
 11071 // MACRO1 -- subsume unshared load into mulF
 11072 // This instruction does not round to 24-bits
 11073 instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
 11074   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11075   match(Set dst (MulF (LoadF mem1) src));
 11077   format %{ "FLD    $mem1    ===MACRO1===\n\t"
 11078             "FMUL   ST,$src\n\t"
 11079             "FSTP   $dst" %}
 11080   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
 11081   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
 11082               OpcReg_F(src),
 11083               Pop_Reg_F(dst) );
 11084   ins_pipe( fpu_reg_reg_mem );
 11085 %}
 11086 //
 11087 // MACRO2 -- addF a mulF which subsumed an unshared load
 11088 // This instruction does not round to 24-bits
 11089 instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
 11090   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11091   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
 11092   ins_cost(95);
 11094   format %{ "FLD    $mem1     ===MACRO2===\n\t"
 11095             "FMUL   ST,$src1  subsume mulF left load\n\t"
 11096             "FADD   ST,$src2\n\t"
 11097             "FSTP   $dst" %}
 11098   opcode(0xD9); /* LoadF D9 /0 */
 11099   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
 11100               FMul_ST_reg(src1),
 11101               FAdd_ST_reg(src2),
 11102               Pop_Reg_F(dst) );
 11103   ins_pipe( fpu_reg_mem_reg_reg );
 11104 %}
 11106 // MACRO3 -- addF a mulF
 11107 // This instruction does not round to 24-bits.  It is a '2-address'
 11108 // instruction in that the result goes back to src2.  This eliminates
 11109 // a move from the macro; possibly the register allocator will have
 11110 // to add it back (and maybe not).
 11111 instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
 11112   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11113   match(Set src2 (AddF (MulF src0 src1) src2));
 11115   format %{ "FLD    $src0     ===MACRO3===\n\t"
 11116             "FMUL   ST,$src1\n\t"
 11117             "FADDP  $src2,ST" %}
 11118   opcode(0xD9); /* LoadF D9 /0 */
 11119   ins_encode( Push_Reg_F(src0),
 11120               FMul_ST_reg(src1),
 11121               FAddP_reg_ST(src2) );
 11122   ins_pipe( fpu_reg_reg_reg );
 11123 %}
 11125 // MACRO4 -- divF subF
 11126 // This instruction does not round to 24-bits
 11127 instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
 11128   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11129   match(Set dst (DivF (SubF src2 src1) src3));
 11131   format %{ "FLD    $src2   ===MACRO4===\n\t"
 11132             "FSUB   ST,$src1\n\t"
 11133             "FDIV   ST,$src3\n\t"
 11134             "FSTP  $dst" %}
 11135   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 11136   ins_encode( Push_Reg_F(src2),
 11137               subF_divF_encode(src1,src3),
 11138               Pop_Reg_F(dst) );
 11139   ins_pipe( fpu_reg_reg_reg_reg );
 11140 %}
 11142 // Spill to obtain 24-bit precision
 11143 instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11144   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11145   match(Set dst (DivF src1 src2));
 11147   format %{ "FDIV   $dst,$src1,$src2" %}
 11148   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
 11149   ins_encode( Push_Reg_F(src1),
 11150               OpcReg_F(src2),
 11151               Pop_Mem_F(dst) );
 11152   ins_pipe( fpu_mem_reg_reg );
 11153 %}
 11154 //
 11155 // This instruction does not round to 24-bits
 11156 instruct divF_reg(regF dst, regF src) %{
 11157   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11158   match(Set dst (DivF dst src));
 11160   format %{ "FDIV   $dst,$src" %}
 11161   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 11162   ins_encode( Push_Reg_F(src),
 11163               OpcP, RegOpc(dst) );
 11164   ins_pipe( fpu_reg_reg );
 11165 %}
 11168 // Spill to obtain 24-bit precision
 11169 instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
 11170   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11171   match(Set dst (ModF src1 src2));
 11172   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 11174   format %{ "FMOD   $dst,$src1,$src2" %}
 11175   ins_encode( Push_Reg_Mod_D(src1, src2),
 11176               emitModD(),
 11177               Push_Result_Mod_D(src2),
 11178               Pop_Mem_F(dst));
 11179   ins_pipe( pipe_slow );
 11180 %}
 11181 //
 11182 // This instruction does not round to 24-bits
 11183 instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
 11184   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11185   match(Set dst (ModF dst src));
 11186   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 11188   format %{ "FMOD   $dst,$src" %}
 11189   ins_encode(Push_Reg_Mod_D(dst, src),
 11190               emitModD(),
 11191               Push_Result_Mod_D(src),
 11192               Pop_Reg_F(dst));
 11193   ins_pipe( pipe_slow );
 11194 %}
 11196 instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
 11197   predicate(UseSSE>=1);
 11198   match(Set dst (ModF src0 src1));
 11199   effect(KILL rax, KILL cr);
 11200   format %{ "SUB    ESP,4\t # FMOD\n"
 11201           "\tMOVSS  [ESP+0],$src1\n"
 11202           "\tFLD_S  [ESP+0]\n"
 11203           "\tMOVSS  [ESP+0],$src0\n"
 11204           "\tFLD_S  [ESP+0]\n"
 11205      "loop:\tFPREM\n"
 11206           "\tFWAIT\n"
 11207           "\tFNSTSW AX\n"
 11208           "\tSAHF\n"
 11209           "\tJP     loop\n"
 11210           "\tFSTP_S [ESP+0]\n"
 11211           "\tMOVSS  $dst,[ESP+0]\n"
 11212           "\tADD    ESP,4\n"
 11213           "\tFSTP   ST0\t # Restore FPU Stack"
 11214     %}
 11215   ins_cost(250);
 11216   ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
 11217   ins_pipe( pipe_slow );
 11218 %}
 11221 //----------Arithmetic Conversion Instructions---------------------------------
 11222 // The conversions operations are all Alpha sorted.  Please keep it that way!
 11224 instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
 11225   predicate(UseSSE==0);
 11226   match(Set dst (RoundFloat src));
 11227   ins_cost(125);
 11228   format %{ "FST_S  $dst,$src\t# F-round" %}
 11229   ins_encode( Pop_Mem_Reg_F(dst, src) );
 11230   ins_pipe( fpu_mem_reg );
 11231 %}
 11233 instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
 11234   predicate(UseSSE<=1);
 11235   match(Set dst (RoundDouble src));
 11236   ins_cost(125);
 11237   format %{ "FST_D  $dst,$src\t# D-round" %}
 11238   ins_encode( Pop_Mem_Reg_D(dst, src) );
 11239   ins_pipe( fpu_mem_reg );
 11240 %}
 11242 // Force rounding to 24-bit precision and 6-bit exponent
 11243 instruct convD2F_reg(stackSlotF dst, regD src) %{
 11244   predicate(UseSSE==0);
 11245   match(Set dst (ConvD2F src));
 11246   format %{ "FST_S  $dst,$src\t# F-round" %}
 11247   expand %{
 11248     roundFloat_mem_reg(dst,src);
 11249   %}
 11250 %}
 11252 // Force rounding to 24-bit precision and 6-bit exponent
 11253 instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
 11254   predicate(UseSSE==1);
 11255   match(Set dst (ConvD2F src));
 11256   effect( KILL cr );
 11257   format %{ "SUB    ESP,4\n\t"
 11258             "FST_S  [ESP],$src\t# F-round\n\t"
 11259             "MOVSS  $dst,[ESP]\n\t"
 11260             "ADD ESP,4" %}
 11261   ins_encode( D2X_encoding(dst, src) );
 11262   ins_pipe( pipe_slow );
 11263 %}
 11265 // Force rounding double precision to single precision
 11266 instruct convXD2X_reg(regX dst, regXD src) %{
 11267   predicate(UseSSE>=2);
 11268   match(Set dst (ConvD2F src));
 11269   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
 11270   opcode(0xF2, 0x0F, 0x5A);
 11271   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11272   ins_pipe( pipe_slow );
 11273 %}
 11275 instruct convF2D_reg_reg(regD dst, regF src) %{
 11276   predicate(UseSSE==0);
 11277   match(Set dst (ConvF2D src));
 11278   format %{ "FST_S  $dst,$src\t# D-round" %}
 11279   ins_encode( Pop_Reg_Reg_D(dst, src));
 11280   ins_pipe( fpu_reg_reg );
 11281 %}
 11283 instruct convF2D_reg(stackSlotD dst, regF src) %{
 11284   predicate(UseSSE==1);
 11285   match(Set dst (ConvF2D src));
 11286   format %{ "FST_D  $dst,$src\t# D-round" %}
 11287   expand %{
 11288     roundDouble_mem_reg(dst,src);
 11289   %}
 11290 %}
 11292 instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
 11293   predicate(UseSSE==1);
 11294   match(Set dst (ConvF2D src));
 11295   effect( KILL cr );
 11296   format %{ "SUB    ESP,4\n\t"
 11297             "MOVSS  [ESP] $src\n\t"
 11298             "FLD_S  [ESP]\n\t"
 11299             "ADD    ESP,4\n\t"
 11300             "FSTP   $dst\t# D-round" %}
 11301   ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
 11302   ins_pipe( pipe_slow );
 11303 %}
 11305 instruct convX2XD_reg(regXD dst, regX src) %{
 11306   predicate(UseSSE>=2);
 11307   match(Set dst (ConvF2D src));
 11308   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
 11309   opcode(0xF3, 0x0F, 0x5A);
 11310   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11311   ins_pipe( pipe_slow );
 11312 %}
 11314 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11315 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
 11316   predicate(UseSSE<=1);
 11317   match(Set dst (ConvD2I src));
 11318   effect( KILL tmp, KILL cr );
 11319   format %{ "FLD    $src\t# Convert double to int \n\t"
 11320             "FLDCW  trunc mode\n\t"
 11321             "SUB    ESP,4\n\t"
 11322             "FISTp  [ESP + #0]\n\t"
 11323             "FLDCW  std/24-bit mode\n\t"
 11324             "POP    EAX\n\t"
 11325             "CMP    EAX,0x80000000\n\t"
 11326             "JNE,s  fast\n\t"
 11327             "FLD_D  $src\n\t"
 11328             "CALL   d2i_wrapper\n"
 11329       "fast:" %}
 11330   ins_encode( Push_Reg_D(src), D2I_encoding(src) );
 11331   ins_pipe( pipe_slow );
 11332 %}
 11334 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11335 instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
 11336   predicate(UseSSE>=2);
 11337   match(Set dst (ConvD2I src));
 11338   effect( KILL tmp, KILL cr );
 11339   format %{ "CVTTSD2SI $dst, $src\n\t"
 11340             "CMP    $dst,0x80000000\n\t"
 11341             "JNE,s  fast\n\t"
 11342             "SUB    ESP, 8\n\t"
 11343             "MOVSD  [ESP], $src\n\t"
 11344             "FLD_D  [ESP]\n\t"
 11345             "ADD    ESP, 8\n\t"
 11346             "CALL   d2i_wrapper\n"
 11347       "fast:" %}
 11348   opcode(0x1); // double-precision conversion
 11349   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
 11350   ins_pipe( pipe_slow );
 11351 %}
 11353 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
 11354   predicate(UseSSE<=1);
 11355   match(Set dst (ConvD2L src));
 11356   effect( KILL cr );
 11357   format %{ "FLD    $src\t# Convert double to long\n\t"
 11358             "FLDCW  trunc mode\n\t"
 11359             "SUB    ESP,8\n\t"
 11360             "FISTp  [ESP + #0]\n\t"
 11361             "FLDCW  std/24-bit mode\n\t"
 11362             "POP    EAX\n\t"
 11363             "POP    EDX\n\t"
 11364             "CMP    EDX,0x80000000\n\t"
 11365             "JNE,s  fast\n\t"
 11366             "TEST   EAX,EAX\n\t"
 11367             "JNE,s  fast\n\t"
 11368             "FLD    $src\n\t"
 11369             "CALL   d2l_wrapper\n"
 11370       "fast:" %}
 11371   ins_encode( Push_Reg_D(src),  D2L_encoding(src) );
 11372   ins_pipe( pipe_slow );
 11373 %}
 11375 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11376 instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
 11377   predicate (UseSSE>=2);
 11378   match(Set dst (ConvD2L src));
 11379   effect( KILL cr );
 11380   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
 11381             "MOVSD  [ESP],$src\n\t"
 11382             "FLD_D  [ESP]\n\t"
 11383             "FLDCW  trunc mode\n\t"
 11384             "FISTp  [ESP + #0]\n\t"
 11385             "FLDCW  std/24-bit mode\n\t"
 11386             "POP    EAX\n\t"
 11387             "POP    EDX\n\t"
 11388             "CMP    EDX,0x80000000\n\t"
 11389             "JNE,s  fast\n\t"
 11390             "TEST   EAX,EAX\n\t"
 11391             "JNE,s  fast\n\t"
 11392             "SUB    ESP,8\n\t"
 11393             "MOVSD  [ESP],$src\n\t"
 11394             "FLD_D  [ESP]\n\t"
 11395             "CALL   d2l_wrapper\n"
 11396       "fast:" %}
 11397   ins_encode( XD2L_encoding(src) );
 11398   ins_pipe( pipe_slow );
 11399 %}
 11401 // Convert a double to an int.  Java semantics require we do complex
 11402 // manglations in the corner cases.  So we set the rounding mode to
 11403 // 'zero', store the darned double down as an int, and reset the
 11404 // rounding mode to 'nearest'.  The hardware stores a flag value down
 11405 // if we would overflow or converted a NAN; we check for this and
 11406 // and go the slow path if needed.
 11407 instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
 11408   predicate(UseSSE==0);
 11409   match(Set dst (ConvF2I src));
 11410   effect( KILL tmp, KILL cr );
 11411   format %{ "FLD    $src\t# Convert float to int \n\t"
 11412             "FLDCW  trunc mode\n\t"
 11413             "SUB    ESP,4\n\t"
 11414             "FISTp  [ESP + #0]\n\t"
 11415             "FLDCW  std/24-bit mode\n\t"
 11416             "POP    EAX\n\t"
 11417             "CMP    EAX,0x80000000\n\t"
 11418             "JNE,s  fast\n\t"
 11419             "FLD    $src\n\t"
 11420             "CALL   d2i_wrapper\n"
 11421       "fast:" %}
 11422   // D2I_encoding works for F2I
 11423   ins_encode( Push_Reg_F(src), D2I_encoding(src) );
 11424   ins_pipe( pipe_slow );
 11425 %}
 11427 // Convert a float in xmm to an int reg.
 11428 instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
 11429   predicate(UseSSE>=1);
 11430   match(Set dst (ConvF2I src));
 11431   effect( KILL tmp, KILL cr );
 11432   format %{ "CVTTSS2SI $dst, $src\n\t"
 11433             "CMP    $dst,0x80000000\n\t"
 11434             "JNE,s  fast\n\t"
 11435             "SUB    ESP, 4\n\t"
 11436             "MOVSS  [ESP], $src\n\t"
 11437             "FLD    [ESP]\n\t"
 11438             "ADD    ESP, 4\n\t"
 11439             "CALL   d2i_wrapper\n"
 11440       "fast:" %}
 11441   opcode(0x0); // single-precision conversion
 11442   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
 11443   ins_pipe( pipe_slow );
 11444 %}
 11446 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
 11447   predicate(UseSSE==0);
 11448   match(Set dst (ConvF2L src));
 11449   effect( KILL cr );
 11450   format %{ "FLD    $src\t# Convert float to long\n\t"
 11451             "FLDCW  trunc mode\n\t"
 11452             "SUB    ESP,8\n\t"
 11453             "FISTp  [ESP + #0]\n\t"
 11454             "FLDCW  std/24-bit mode\n\t"
 11455             "POP    EAX\n\t"
 11456             "POP    EDX\n\t"
 11457             "CMP    EDX,0x80000000\n\t"
 11458             "JNE,s  fast\n\t"
 11459             "TEST   EAX,EAX\n\t"
 11460             "JNE,s  fast\n\t"
 11461             "FLD    $src\n\t"
 11462             "CALL   d2l_wrapper\n"
 11463       "fast:" %}
 11464   // D2L_encoding works for F2L
 11465   ins_encode( Push_Reg_F(src), D2L_encoding(src) );
 11466   ins_pipe( pipe_slow );
 11467 %}
 11469 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11470 instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
 11471   predicate (UseSSE>=1);
 11472   match(Set dst (ConvF2L src));
 11473   effect( KILL cr );
 11474   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
 11475             "MOVSS  [ESP],$src\n\t"
 11476             "FLD_S  [ESP]\n\t"
 11477             "FLDCW  trunc mode\n\t"
 11478             "FISTp  [ESP + #0]\n\t"
 11479             "FLDCW  std/24-bit mode\n\t"
 11480             "POP    EAX\n\t"
 11481             "POP    EDX\n\t"
 11482             "CMP    EDX,0x80000000\n\t"
 11483             "JNE,s  fast\n\t"
 11484             "TEST   EAX,EAX\n\t"
 11485             "JNE,s  fast\n\t"
 11486             "SUB    ESP,4\t# Convert float to long\n\t"
 11487             "MOVSS  [ESP],$src\n\t"
 11488             "FLD_S  [ESP]\n\t"
 11489             "ADD    ESP,4\n\t"
 11490             "CALL   d2l_wrapper\n"
 11491       "fast:" %}
 11492   ins_encode( X2L_encoding(src) );
 11493   ins_pipe( pipe_slow );
 11494 %}
 11496 instruct convI2D_reg(regD dst, stackSlotI src) %{
 11497   predicate( UseSSE<=1 );
 11498   match(Set dst (ConvI2D src));
 11499   format %{ "FILD   $src\n\t"
 11500             "FSTP   $dst" %}
 11501   opcode(0xDB, 0x0);  /* DB /0 */
 11502   ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
 11503   ins_pipe( fpu_reg_mem );
 11504 %}
 11506 instruct convI2XD_reg(regXD dst, eRegI src) %{
 11507   predicate( UseSSE>=2 && !UseXmmI2D );
 11508   match(Set dst (ConvI2D src));
 11509   format %{ "CVTSI2SD $dst,$src" %}
 11510   opcode(0xF2, 0x0F, 0x2A);
 11511   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11512   ins_pipe( pipe_slow );
 11513 %}
 11515 instruct convI2XD_mem(regXD dst, memory mem) %{
 11516   predicate( UseSSE>=2 );
 11517   match(Set dst (ConvI2D (LoadI mem)));
 11518   format %{ "CVTSI2SD $dst,$mem" %}
 11519   opcode(0xF2, 0x0F, 0x2A);
 11520   ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
 11521   ins_pipe( pipe_slow );
 11522 %}
 11524 instruct convXI2XD_reg(regXD dst, eRegI src)
 11525 %{
 11526   predicate( UseSSE>=2 && UseXmmI2D );
 11527   match(Set dst (ConvI2D src));
 11529   format %{ "MOVD  $dst,$src\n\t"
 11530             "CVTDQ2PD $dst,$dst\t# i2d" %}
 11531   ins_encode %{
 11532     __ movdl($dst$$XMMRegister, $src$$Register);
 11533     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 11534   %}
 11535   ins_pipe(pipe_slow); // XXX
 11536 %}
 11538 instruct convI2D_mem(regD dst, memory mem) %{
 11539   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
 11540   match(Set dst (ConvI2D (LoadI mem)));
 11541   format %{ "FILD   $mem\n\t"
 11542             "FSTP   $dst" %}
 11543   opcode(0xDB);      /* DB /0 */
 11544   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11545               Pop_Reg_D(dst));
 11546   ins_pipe( fpu_reg_mem );
 11547 %}
 11549 // Convert a byte to a float; no rounding step needed.
 11550 instruct conv24I2F_reg(regF dst, stackSlotI src) %{
 11551   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
 11552   match(Set dst (ConvI2F src));
 11553   format %{ "FILD   $src\n\t"
 11554             "FSTP   $dst" %}
 11556   opcode(0xDB, 0x0);  /* DB /0 */
 11557   ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
 11558   ins_pipe( fpu_reg_mem );
 11559 %}
 11561 // In 24-bit mode, force exponent rounding by storing back out
 11562 instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
 11563   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11564   match(Set dst (ConvI2F src));
 11565   ins_cost(200);
 11566   format %{ "FILD   $src\n\t"
 11567             "FSTP_S $dst" %}
 11568   opcode(0xDB, 0x0);  /* DB /0 */
 11569   ins_encode( Push_Mem_I(src),
 11570               Pop_Mem_F(dst));
 11571   ins_pipe( fpu_mem_mem );
 11572 %}
 11574 // In 24-bit mode, force exponent rounding by storing back out
 11575 instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
 11576   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11577   match(Set dst (ConvI2F (LoadI mem)));
 11578   ins_cost(200);
 11579   format %{ "FILD   $mem\n\t"
 11580             "FSTP_S $dst" %}
 11581   opcode(0xDB);  /* DB /0 */
 11582   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11583               Pop_Mem_F(dst));
 11584   ins_pipe( fpu_mem_mem );
 11585 %}
 11587 // This instruction does not round to 24-bits
 11588 instruct convI2F_reg(regF dst, stackSlotI src) %{
 11589   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11590   match(Set dst (ConvI2F src));
 11591   format %{ "FILD   $src\n\t"
 11592             "FSTP   $dst" %}
 11593   opcode(0xDB, 0x0);  /* DB /0 */
 11594   ins_encode( Push_Mem_I(src),
 11595               Pop_Reg_F(dst));
 11596   ins_pipe( fpu_reg_mem );
 11597 %}
 11599 // This instruction does not round to 24-bits
 11600 instruct convI2F_mem(regF dst, memory mem) %{
 11601   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11602   match(Set dst (ConvI2F (LoadI mem)));
 11603   format %{ "FILD   $mem\n\t"
 11604             "FSTP   $dst" %}
 11605   opcode(0xDB);      /* DB /0 */
 11606   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11607               Pop_Reg_F(dst));
 11608   ins_pipe( fpu_reg_mem );
 11609 %}
 11611 // Convert an int to a float in xmm; no rounding step needed.
 11612 instruct convI2X_reg(regX dst, eRegI src) %{
 11613   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
 11614   match(Set dst (ConvI2F src));
 11615   format %{ "CVTSI2SS $dst, $src" %}
 11617   opcode(0xF3, 0x0F, 0x2A);  /* F3 0F 2A /r */
 11618   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11619   ins_pipe( pipe_slow );
 11620 %}
 11622  instruct convXI2X_reg(regX dst, eRegI src)
 11623 %{
 11624   predicate( UseSSE>=2 && UseXmmI2F );
 11625   match(Set dst (ConvI2F src));
 11627   format %{ "MOVD  $dst,$src\n\t"
 11628             "CVTDQ2PS $dst,$dst\t# i2f" %}
 11629   ins_encode %{
 11630     __ movdl($dst$$XMMRegister, $src$$Register);
 11631     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 11632   %}
 11633   ins_pipe(pipe_slow); // XXX
 11634 %}
 11636 instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
 11637   match(Set dst (ConvI2L src));
 11638   effect(KILL cr);
 11639   ins_cost(375);
 11640   format %{ "MOV    $dst.lo,$src\n\t"
 11641             "MOV    $dst.hi,$src\n\t"
 11642             "SAR    $dst.hi,31" %}
 11643   ins_encode(convert_int_long(dst,src));
 11644   ins_pipe( ialu_reg_reg_long );
 11645 %}
 11647 // Zero-extend convert int to long
 11648 instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
 11649   match(Set dst (AndL (ConvI2L src) mask) );
 11650   effect( KILL flags );
 11651   ins_cost(250);
 11652   format %{ "MOV    $dst.lo,$src\n\t"
 11653             "XOR    $dst.hi,$dst.hi" %}
 11654   opcode(0x33); // XOR
 11655   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11656   ins_pipe( ialu_reg_reg_long );
 11657 %}
 11659 // Zero-extend long
 11660 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
 11661   match(Set dst (AndL src mask) );
 11662   effect( KILL flags );
 11663   ins_cost(250);
 11664   format %{ "MOV    $dst.lo,$src.lo\n\t"
 11665             "XOR    $dst.hi,$dst.hi\n\t" %}
 11666   opcode(0x33); // XOR
 11667   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11668   ins_pipe( ialu_reg_reg_long );
 11669 %}
 11671 instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
 11672   predicate (UseSSE<=1);
 11673   match(Set dst (ConvL2D src));
 11674   effect( KILL cr );
 11675   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11676             "PUSH   $src.lo\n\t"
 11677             "FILD   ST,[ESP + #0]\n\t"
 11678             "ADD    ESP,8\n\t"
 11679             "FSTP_D $dst\t# D-round" %}
 11680   opcode(0xDF, 0x5);  /* DF /5 */
 11681   ins_encode(convert_long_double(src), Pop_Mem_D(dst));
 11682   ins_pipe( pipe_slow );
 11683 %}
 11685 instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
 11686   predicate (UseSSE>=2);
 11687   match(Set dst (ConvL2D src));
 11688   effect( KILL cr );
 11689   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11690             "PUSH   $src.lo\n\t"
 11691             "FILD_D [ESP]\n\t"
 11692             "FSTP_D [ESP]\n\t"
 11693             "MOVSD  $dst,[ESP]\n\t"
 11694             "ADD    ESP,8" %}
 11695   opcode(0xDF, 0x5);  /* DF /5 */
 11696   ins_encode(convert_long_double2(src), Push_ResultXD(dst));
 11697   ins_pipe( pipe_slow );
 11698 %}
 11700 instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
 11701   predicate (UseSSE>=1);
 11702   match(Set dst (ConvL2F src));
 11703   effect( KILL cr );
 11704   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11705             "PUSH   $src.lo\n\t"
 11706             "FILD_D [ESP]\n\t"
 11707             "FSTP_S [ESP]\n\t"
 11708             "MOVSS  $dst,[ESP]\n\t"
 11709             "ADD    ESP,8" %}
 11710   opcode(0xDF, 0x5);  /* DF /5 */
 11711   ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
 11712   ins_pipe( pipe_slow );
 11713 %}
 11715 instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
 11716   match(Set dst (ConvL2F src));
 11717   effect( KILL cr );
 11718   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11719             "PUSH   $src.lo\n\t"
 11720             "FILD   ST,[ESP + #0]\n\t"
 11721             "ADD    ESP,8\n\t"
 11722             "FSTP_S $dst\t# F-round" %}
 11723   opcode(0xDF, 0x5);  /* DF /5 */
 11724   ins_encode(convert_long_double(src), Pop_Mem_F(dst));
 11725   ins_pipe( pipe_slow );
 11726 %}
 11728 instruct convL2I_reg( eRegI dst, eRegL src ) %{
 11729   match(Set dst (ConvL2I src));
 11730   effect( DEF dst, USE src );
 11731   format %{ "MOV    $dst,$src.lo" %}
 11732   ins_encode(enc_CopyL_Lo(dst,src));
 11733   ins_pipe( ialu_reg_reg );
 11734 %}
 11737 instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
 11738   match(Set dst (MoveF2I src));
 11739   effect( DEF dst, USE src );
 11740   ins_cost(100);
 11741   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
 11742   opcode(0x8B);
 11743   ins_encode( OpcP, RegMem(dst,src));
 11744   ins_pipe( ialu_reg_mem );
 11745 %}
 11747 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
 11748   predicate(UseSSE==0);
 11749   match(Set dst (MoveF2I src));
 11750   effect( DEF dst, USE src );
 11752   ins_cost(125);
 11753   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
 11754   ins_encode( Pop_Mem_Reg_F(dst, src) );
 11755   ins_pipe( fpu_mem_reg );
 11756 %}
 11758 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
 11759   predicate(UseSSE>=1);
 11760   match(Set dst (MoveF2I src));
 11761   effect( DEF dst, USE src );
 11763   ins_cost(95);
 11764   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
 11765   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
 11766   ins_pipe( pipe_slow );
 11767 %}
 11769 instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
 11770   predicate(UseSSE>=2);
 11771   match(Set dst (MoveF2I src));
 11772   effect( DEF dst, USE src );
 11773   ins_cost(85);
 11774   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
 11775   ins_encode( MovX2I_reg(dst, src));
 11776   ins_pipe( pipe_slow );
 11777 %}
 11779 instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
 11780   match(Set dst (MoveI2F src));
 11781   effect( DEF dst, USE src );
 11783   ins_cost(100);
 11784   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
 11785   opcode(0x89);
 11786   ins_encode( OpcPRegSS( dst, src ) );
 11787   ins_pipe( ialu_mem_reg );
 11788 %}
 11791 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
 11792   predicate(UseSSE==0);
 11793   match(Set dst (MoveI2F src));
 11794   effect(DEF dst, USE src);
 11796   ins_cost(125);
 11797   format %{ "FLD_S  $src\n\t"
 11798             "FSTP   $dst\t# MoveI2F_stack_reg" %}
 11799   opcode(0xD9);               /* D9 /0, FLD m32real */
 11800   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11801               Pop_Reg_F(dst) );
 11802   ins_pipe( fpu_reg_mem );
 11803 %}
 11805 instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
 11806   predicate(UseSSE>=1);
 11807   match(Set dst (MoveI2F src));
 11808   effect( DEF dst, USE src );
 11810   ins_cost(95);
 11811   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
 11812   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
 11813   ins_pipe( pipe_slow );
 11814 %}
 11816 instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
 11817   predicate(UseSSE>=2);
 11818   match(Set dst (MoveI2F src));
 11819   effect( DEF dst, USE src );
 11821   ins_cost(85);
 11822   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
 11823   ins_encode( MovI2X_reg(dst, src) );
 11824   ins_pipe( pipe_slow );
 11825 %}
 11827 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
 11828   match(Set dst (MoveD2L src));
 11829   effect(DEF dst, USE src);
 11831   ins_cost(250);
 11832   format %{ "MOV    $dst.lo,$src\n\t"
 11833             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
 11834   opcode(0x8B, 0x8B);
 11835   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
 11836   ins_pipe( ialu_mem_long_reg );
 11837 %}
 11839 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
 11840   predicate(UseSSE<=1);
 11841   match(Set dst (MoveD2L src));
 11842   effect(DEF dst, USE src);
 11844   ins_cost(125);
 11845   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
 11846   ins_encode( Pop_Mem_Reg_D(dst, src) );
 11847   ins_pipe( fpu_mem_reg );
 11848 %}
 11850 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
 11851   predicate(UseSSE>=2);
 11852   match(Set dst (MoveD2L src));
 11853   effect(DEF dst, USE src);
 11854   ins_cost(95);
 11856   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
 11857   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
 11858   ins_pipe( pipe_slow );
 11859 %}
 11861 instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
 11862   predicate(UseSSE>=2);
 11863   match(Set dst (MoveD2L src));
 11864   effect(DEF dst, USE src, TEMP tmp);
 11865   ins_cost(85);
 11866   format %{ "MOVD   $dst.lo,$src\n\t"
 11867             "PSHUFLW $tmp,$src,0x4E\n\t"
 11868             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
 11869   ins_encode( MovXD2L_reg(dst, src, tmp) );
 11870   ins_pipe( pipe_slow );
 11871 %}
 11873 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
 11874   match(Set dst (MoveL2D src));
 11875   effect(DEF dst, USE src);
 11877   ins_cost(200);
 11878   format %{ "MOV    $dst,$src.lo\n\t"
 11879             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
 11880   opcode(0x89, 0x89);
 11881   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
 11882   ins_pipe( ialu_mem_long_reg );
 11883 %}
 11886 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
 11887   predicate(UseSSE<=1);
 11888   match(Set dst (MoveL2D src));
 11889   effect(DEF dst, USE src);
 11890   ins_cost(125);
 11892   format %{ "FLD_D  $src\n\t"
 11893             "FSTP   $dst\t# MoveL2D_stack_reg" %}
 11894   opcode(0xDD);               /* DD /0, FLD m64real */
 11895   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11896               Pop_Reg_D(dst) );
 11897   ins_pipe( fpu_reg_mem );
 11898 %}
 11901 instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
 11902   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
 11903   match(Set dst (MoveL2D src));
 11904   effect(DEF dst, USE src);
 11906   ins_cost(95);
 11907   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11908   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
 11909   ins_pipe( pipe_slow );
 11910 %}
 11912 instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
 11913   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
 11914   match(Set dst (MoveL2D src));
 11915   effect(DEF dst, USE src);
 11917   ins_cost(95);
 11918   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11919   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
 11920   ins_pipe( pipe_slow );
 11921 %}
 11923 instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
 11924   predicate(UseSSE>=2);
 11925   match(Set dst (MoveL2D src));
 11926   effect(TEMP dst, USE src, TEMP tmp);
 11927   ins_cost(85);
 11928   format %{ "MOVD   $dst,$src.lo\n\t"
 11929             "MOVD   $tmp,$src.hi\n\t"
 11930             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
 11931   ins_encode( MovL2XD_reg(dst, src, tmp) );
 11932   ins_pipe( pipe_slow );
 11933 %}
 11935 // Replicate scalar to packed byte (1 byte) values in xmm
 11936 instruct Repl8B_reg(regXD dst, regXD src) %{
 11937   predicate(UseSSE>=2);
 11938   match(Set dst (Replicate8B src));
 11939   format %{ "MOVDQA  $dst,$src\n\t"
 11940             "PUNPCKLBW $dst,$dst\n\t"
 11941             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 11942   ins_encode( pshufd_8x8(dst, src));
 11943   ins_pipe( pipe_slow );
 11944 %}
 11946 // Replicate scalar to packed byte (1 byte) values in xmm
 11947 instruct Repl8B_eRegI(regXD dst, eRegI src) %{
 11948   predicate(UseSSE>=2);
 11949   match(Set dst (Replicate8B src));
 11950   format %{ "MOVD    $dst,$src\n\t"
 11951             "PUNPCKLBW $dst,$dst\n\t"
 11952             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 11953   ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
 11954   ins_pipe( pipe_slow );
 11955 %}
 11957 // Replicate scalar zero to packed byte (1 byte) values in xmm
 11958 instruct Repl8B_immI0(regXD dst, immI0 zero) %{
 11959   predicate(UseSSE>=2);
 11960   match(Set dst (Replicate8B zero));
 11961   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
 11962   ins_encode( pxor(dst, dst));
 11963   ins_pipe( fpu_reg_reg );
 11964 %}
 11966 // Replicate scalar to packed shore (2 byte) values in xmm
 11967 instruct Repl4S_reg(regXD dst, regXD src) %{
 11968   predicate(UseSSE>=2);
 11969   match(Set dst (Replicate4S src));
 11970   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
 11971   ins_encode( pshufd_4x16(dst, src));
 11972   ins_pipe( fpu_reg_reg );
 11973 %}
 11975 // Replicate scalar to packed shore (2 byte) values in xmm
 11976 instruct Repl4S_eRegI(regXD dst, eRegI src) %{
 11977   predicate(UseSSE>=2);
 11978   match(Set dst (Replicate4S src));
 11979   format %{ "MOVD    $dst,$src\n\t"
 11980             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
 11981   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 11982   ins_pipe( fpu_reg_reg );
 11983 %}
 11985 // Replicate scalar zero to packed short (2 byte) values in xmm
 11986 instruct Repl4S_immI0(regXD dst, immI0 zero) %{
 11987   predicate(UseSSE>=2);
 11988   match(Set dst (Replicate4S zero));
 11989   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
 11990   ins_encode( pxor(dst, dst));
 11991   ins_pipe( fpu_reg_reg );
 11992 %}
 11994 // Replicate scalar to packed char (2 byte) values in xmm
 11995 instruct Repl4C_reg(regXD dst, regXD src) %{
 11996   predicate(UseSSE>=2);
 11997   match(Set dst (Replicate4C src));
 11998   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
 11999   ins_encode( pshufd_4x16(dst, src));
 12000   ins_pipe( fpu_reg_reg );
 12001 %}
 12003 // Replicate scalar to packed char (2 byte) values in xmm
 12004 instruct Repl4C_eRegI(regXD dst, eRegI src) %{
 12005   predicate(UseSSE>=2);
 12006   match(Set dst (Replicate4C src));
 12007   format %{ "MOVD    $dst,$src\n\t"
 12008             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
 12009   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 12010   ins_pipe( fpu_reg_reg );
 12011 %}
 12013 // Replicate scalar zero to packed char (2 byte) values in xmm
 12014 instruct Repl4C_immI0(regXD dst, immI0 zero) %{
 12015   predicate(UseSSE>=2);
 12016   match(Set dst (Replicate4C zero));
 12017   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
 12018   ins_encode( pxor(dst, dst));
 12019   ins_pipe( fpu_reg_reg );
 12020 %}
 12022 // Replicate scalar to packed integer (4 byte) values in xmm
 12023 instruct Repl2I_reg(regXD dst, regXD src) %{
 12024   predicate(UseSSE>=2);
 12025   match(Set dst (Replicate2I src));
 12026   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
 12027   ins_encode( pshufd(dst, src, 0x00));
 12028   ins_pipe( fpu_reg_reg );
 12029 %}
 12031 // Replicate scalar to packed integer (4 byte) values in xmm
 12032 instruct Repl2I_eRegI(regXD dst, eRegI src) %{
 12033   predicate(UseSSE>=2);
 12034   match(Set dst (Replicate2I src));
 12035   format %{ "MOVD   $dst,$src\n\t"
 12036             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
 12037   ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
 12038   ins_pipe( fpu_reg_reg );
 12039 %}
 12041 // Replicate scalar zero to packed integer (2 byte) values in xmm
 12042 instruct Repl2I_immI0(regXD dst, immI0 zero) %{
 12043   predicate(UseSSE>=2);
 12044   match(Set dst (Replicate2I zero));
 12045   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
 12046   ins_encode( pxor(dst, dst));
 12047   ins_pipe( fpu_reg_reg );
 12048 %}
 12050 // Replicate scalar to packed single precision floating point values in xmm
 12051 instruct Repl2F_reg(regXD dst, regXD src) %{
 12052   predicate(UseSSE>=2);
 12053   match(Set dst (Replicate2F src));
 12054   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 12055   ins_encode( pshufd(dst, src, 0xe0));
 12056   ins_pipe( fpu_reg_reg );
 12057 %}
 12059 // Replicate scalar to packed single precision floating point values in xmm
 12060 instruct Repl2F_regX(regXD dst, regX src) %{
 12061   predicate(UseSSE>=2);
 12062   match(Set dst (Replicate2F src));
 12063   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 12064   ins_encode( pshufd(dst, src, 0xe0));
 12065   ins_pipe( fpu_reg_reg );
 12066 %}
 12068 // Replicate scalar to packed single precision floating point values in xmm
 12069 instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
 12070   predicate(UseSSE>=2);
 12071   match(Set dst (Replicate2F zero));
 12072   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
 12073   ins_encode( pxor(dst, dst));
 12074   ins_pipe( fpu_reg_reg );
 12075 %}
 12079 // =======================================================================
 12080 // fast clearing of an array
 12082 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 12083   match(Set dummy (ClearArray cnt base));
 12084   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 12085   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
 12086             "XOR    EAX,EAX\n\t"
 12087             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
 12088   opcode(0,0x4);
 12089   ins_encode( Opcode(0xD1), RegOpc(ECX),
 12090               OpcRegReg(0x33,EAX,EAX),
 12091               Opcode(0xF3), Opcode(0xAB) );
 12092   ins_pipe( pipe_slow );
 12093 %}
 12095 instruct string_compare(eDIRegP str1, eSIRegP str2, eAXRegI tmp1, eBXRegI tmp2, eCXRegI result, eFlagsReg cr) %{
 12096   match(Set result (StrComp str1 str2));
 12097   effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL cr);
 12098   //ins_cost(300);
 12100   format %{ "String Compare $str1,$str2 -> $result    // KILL EAX, EBX" %}
 12101   ins_encode( enc_String_Compare() );
 12102   ins_pipe( pipe_slow );
 12103 %}
 12105 // fast array equals
 12106 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI tmp1, eBXRegI tmp2, eCXRegI result, eFlagsReg cr) %{
 12107   match(Set result (AryEq ary1 ary2));
 12108   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL cr);
 12109   //ins_cost(300);
 12111   format %{ "Array Equals $ary1,$ary2 -> $result    // KILL EAX, EBX" %}
 12112   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, tmp2, result) );
 12113   ins_pipe( pipe_slow );
 12114 %}
 12116 //----------Control Flow Instructions------------------------------------------
 12117 // Signed compare Instructions
 12118 instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
 12119   match(Set cr (CmpI op1 op2));
 12120   effect( DEF cr, USE op1, USE op2 );
 12121   format %{ "CMP    $op1,$op2" %}
 12122   opcode(0x3B);  /* Opcode 3B /r */
 12123   ins_encode( OpcP, RegReg( op1, op2) );
 12124   ins_pipe( ialu_cr_reg_reg );
 12125 %}
 12127 instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
 12128   match(Set cr (CmpI op1 op2));
 12129   effect( DEF cr, USE op1 );
 12130   format %{ "CMP    $op1,$op2" %}
 12131   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12132   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
 12133   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12134   ins_pipe( ialu_cr_reg_imm );
 12135 %}
 12137 // Cisc-spilled version of cmpI_eReg
 12138 instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
 12139   match(Set cr (CmpI op1 (LoadI op2)));
 12141   format %{ "CMP    $op1,$op2" %}
 12142   ins_cost(500);
 12143   opcode(0x3B);  /* Opcode 3B /r */
 12144   ins_encode( OpcP, RegMem( op1, op2) );
 12145   ins_pipe( ialu_cr_reg_mem );
 12146 %}
 12148 instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
 12149   match(Set cr (CmpI src zero));
 12150   effect( DEF cr, USE src );
 12152   format %{ "TEST   $src,$src" %}
 12153   opcode(0x85);
 12154   ins_encode( OpcP, RegReg( src, src ) );
 12155   ins_pipe( ialu_cr_reg_imm );
 12156 %}
 12158 instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
 12159   match(Set cr (CmpI (AndI src con) zero));
 12161   format %{ "TEST   $src,$con" %}
 12162   opcode(0xF7,0x00);
 12163   ins_encode( OpcP, RegOpc(src), Con32(con) );
 12164   ins_pipe( ialu_cr_reg_imm );
 12165 %}
 12167 instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
 12168   match(Set cr (CmpI (AndI src mem) zero));
 12170   format %{ "TEST   $src,$mem" %}
 12171   opcode(0x85);
 12172   ins_encode( OpcP, RegMem( src, mem ) );
 12173   ins_pipe( ialu_cr_reg_mem );
 12174 %}
 12176 // Unsigned compare Instructions; really, same as signed except they
 12177 // produce an eFlagsRegU instead of eFlagsReg.
 12178 instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
 12179   match(Set cr (CmpU op1 op2));
 12181   format %{ "CMPu   $op1,$op2" %}
 12182   opcode(0x3B);  /* Opcode 3B /r */
 12183   ins_encode( OpcP, RegReg( op1, op2) );
 12184   ins_pipe( ialu_cr_reg_reg );
 12185 %}
 12187 instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
 12188   match(Set cr (CmpU op1 op2));
 12190   format %{ "CMPu   $op1,$op2" %}
 12191   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12192   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12193   ins_pipe( ialu_cr_reg_imm );
 12194 %}
 12196 // // Cisc-spilled version of cmpU_eReg
 12197 instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
 12198   match(Set cr (CmpU op1 (LoadI op2)));
 12200   format %{ "CMPu   $op1,$op2" %}
 12201   ins_cost(500);
 12202   opcode(0x3B);  /* Opcode 3B /r */
 12203   ins_encode( OpcP, RegMem( op1, op2) );
 12204   ins_pipe( ialu_cr_reg_mem );
 12205 %}
 12207 // // Cisc-spilled version of cmpU_eReg
 12208 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
 12209 //  match(Set cr (CmpU (LoadI op1) op2));
 12210 //
 12211 //  format %{ "CMPu   $op1,$op2" %}
 12212 //  ins_cost(500);
 12213 //  opcode(0x39);  /* Opcode 39 /r */
 12214 //  ins_encode( OpcP, RegMem( op1, op2) );
 12215 //%}
 12217 instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
 12218   match(Set cr (CmpU src zero));
 12220   format %{ "TESTu  $src,$src" %}
 12221   opcode(0x85);
 12222   ins_encode( OpcP, RegReg( src, src ) );
 12223   ins_pipe( ialu_cr_reg_imm );
 12224 %}
 12226 // Unsigned pointer compare Instructions
 12227 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
 12228   match(Set cr (CmpP op1 op2));
 12230   format %{ "CMPu   $op1,$op2" %}
 12231   opcode(0x3B);  /* Opcode 3B /r */
 12232   ins_encode( OpcP, RegReg( op1, op2) );
 12233   ins_pipe( ialu_cr_reg_reg );
 12234 %}
 12236 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
 12237   match(Set cr (CmpP op1 op2));
 12239   format %{ "CMPu   $op1,$op2" %}
 12240   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12241   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12242   ins_pipe( ialu_cr_reg_imm );
 12243 %}
 12245 // // Cisc-spilled version of cmpP_eReg
 12246 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
 12247   match(Set cr (CmpP op1 (LoadP op2)));
 12249   format %{ "CMPu   $op1,$op2" %}
 12250   ins_cost(500);
 12251   opcode(0x3B);  /* Opcode 3B /r */
 12252   ins_encode( OpcP, RegMem( op1, op2) );
 12253   ins_pipe( ialu_cr_reg_mem );
 12254 %}
 12256 // // Cisc-spilled version of cmpP_eReg
 12257 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
 12258 //  match(Set cr (CmpP (LoadP op1) op2));
 12259 //
 12260 //  format %{ "CMPu   $op1,$op2" %}
 12261 //  ins_cost(500);
 12262 //  opcode(0x39);  /* Opcode 39 /r */
 12263 //  ins_encode( OpcP, RegMem( op1, op2) );
 12264 //%}
 12266 // Compare raw pointer (used in out-of-heap check).
 12267 // Only works because non-oop pointers must be raw pointers
 12268 // and raw pointers have no anti-dependencies.
 12269 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
 12270   predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
 12271   match(Set cr (CmpP op1 (LoadP op2)));
 12273   format %{ "CMPu   $op1,$op2" %}
 12274   opcode(0x3B);  /* Opcode 3B /r */
 12275   ins_encode( OpcP, RegMem( op1, op2) );
 12276   ins_pipe( ialu_cr_reg_mem );
 12277 %}
 12279 //
 12280 // This will generate a signed flags result. This should be ok
 12281 // since any compare to a zero should be eq/neq.
 12282 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
 12283   match(Set cr (CmpP src zero));
 12285   format %{ "TEST   $src,$src" %}
 12286   opcode(0x85);
 12287   ins_encode( OpcP, RegReg( src, src ) );
 12288   ins_pipe( ialu_cr_reg_imm );
 12289 %}
 12291 // Cisc-spilled version of testP_reg
 12292 // This will generate a signed flags result. This should be ok
 12293 // since any compare to a zero should be eq/neq.
 12294 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
 12295   match(Set cr (CmpP (LoadP op) zero));
 12297   format %{ "TEST   $op,0xFFFFFFFF" %}
 12298   ins_cost(500);
 12299   opcode(0xF7);               /* Opcode F7 /0 */
 12300   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
 12301   ins_pipe( ialu_cr_reg_imm );
 12302 %}
 12304 // Yanked all unsigned pointer compare operations.
 12305 // Pointer compares are done with CmpP which is already unsigned.
 12307 //----------Max and Min--------------------------------------------------------
 12308 // Min Instructions
 12309 ////
 12310 //   *** Min and Max using the conditional move are slower than the
 12311 //   *** branch version on a Pentium III.
 12312 // // Conditional move for min
 12313 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12314 //  effect( USE_DEF op2, USE op1, USE cr );
 12315 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 12316 //  opcode(0x4C,0x0F);
 12317 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12318 //  ins_pipe( pipe_cmov_reg );
 12319 //%}
 12320 //
 12321 //// Min Register with Register (P6 version)
 12322 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12323 //  predicate(VM_Version::supports_cmov() );
 12324 //  match(Set op2 (MinI op1 op2));
 12325 //  ins_cost(200);
 12326 //  expand %{
 12327 //    eFlagsReg cr;
 12328 //    compI_eReg(cr,op1,op2);
 12329 //    cmovI_reg_lt(op2,op1,cr);
 12330 //  %}
 12331 //%}
 12333 // Min Register with Register (generic version)
 12334 instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12335   match(Set dst (MinI dst src));
 12336   effect(KILL flags);
 12337   ins_cost(300);
 12339   format %{ "MIN    $dst,$src" %}
 12340   opcode(0xCC);
 12341   ins_encode( min_enc(dst,src) );
 12342   ins_pipe( pipe_slow );
 12343 %}
 12345 // Max Register with Register
 12346 //   *** Min and Max using the conditional move are slower than the
 12347 //   *** branch version on a Pentium III.
 12348 // // Conditional move for max
 12349 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12350 //  effect( USE_DEF op2, USE op1, USE cr );
 12351 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 12352 //  opcode(0x4F,0x0F);
 12353 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12354 //  ins_pipe( pipe_cmov_reg );
 12355 //%}
 12356 //
 12357 // // Max Register with Register (P6 version)
 12358 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12359 //  predicate(VM_Version::supports_cmov() );
 12360 //  match(Set op2 (MaxI op1 op2));
 12361 //  ins_cost(200);
 12362 //  expand %{
 12363 //    eFlagsReg cr;
 12364 //    compI_eReg(cr,op1,op2);
 12365 //    cmovI_reg_gt(op2,op1,cr);
 12366 //  %}
 12367 //%}
 12369 // Max Register with Register (generic version)
 12370 instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12371   match(Set dst (MaxI dst src));
 12372   effect(KILL flags);
 12373   ins_cost(300);
 12375   format %{ "MAX    $dst,$src" %}
 12376   opcode(0xCC);
 12377   ins_encode( max_enc(dst,src) );
 12378   ins_pipe( pipe_slow );
 12379 %}
 12381 // ============================================================================
 12382 // Branch Instructions
 12383 // Jump Table
 12384 instruct jumpXtnd(eRegI switch_val) %{
 12385   match(Jump switch_val);
 12386   ins_cost(350);
 12388   format %{  "JMP    [table_base](,$switch_val,1)\n\t" %}
 12390   ins_encode %{
 12391     address table_base  = __ address_table_constant(_index2label);
 12393     // Jump to Address(table_base + switch_reg)
 12394     InternalAddress table(table_base);
 12395     Address index(noreg, $switch_val$$Register, Address::times_1);
 12396     __ jump(ArrayAddress(table, index));
 12397   %}
 12398   ins_pc_relative(1);
 12399   ins_pipe(pipe_jmp);
 12400 %}
 12402 // Jump Direct - Label defines a relative address from JMP+1
 12403 instruct jmpDir(label labl) %{
 12404   match(Goto);
 12405   effect(USE labl);
 12407   ins_cost(300);
 12408   format %{ "JMP    $labl" %}
 12409   size(5);
 12410   opcode(0xE9);
 12411   ins_encode( OpcP, Lbl( labl ) );
 12412   ins_pipe( pipe_jmp );
 12413   ins_pc_relative(1);
 12414 %}
 12416 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12417 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
 12418   match(If cop cr);
 12419   effect(USE labl);
 12421   ins_cost(300);
 12422   format %{ "J$cop    $labl" %}
 12423   size(6);
 12424   opcode(0x0F, 0x80);
 12425   ins_encode( Jcc( cop, labl) );
 12426   ins_pipe( pipe_jcc );
 12427   ins_pc_relative(1);
 12428 %}
 12430 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12431 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
 12432   match(CountedLoopEnd cop cr);
 12433   effect(USE labl);
 12435   ins_cost(300);
 12436   format %{ "J$cop    $labl\t# Loop end" %}
 12437   size(6);
 12438   opcode(0x0F, 0x80);
 12439   ins_encode( Jcc( cop, labl) );
 12440   ins_pipe( pipe_jcc );
 12441   ins_pc_relative(1);
 12442 %}
 12444 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12445 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12446   match(CountedLoopEnd cop cmp);
 12447   effect(USE labl);
 12449   ins_cost(300);
 12450   format %{ "J$cop,u  $labl\t# Loop end" %}
 12451   size(6);
 12452   opcode(0x0F, 0x80);
 12453   ins_encode( Jcc( cop, labl) );
 12454   ins_pipe( pipe_jcc );
 12455   ins_pc_relative(1);
 12456 %}
 12458 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12459   match(CountedLoopEnd cop cmp);
 12460   effect(USE labl);
 12462   ins_cost(200);
 12463   format %{ "J$cop,u  $labl\t# Loop end" %}
 12464   size(6);
 12465   opcode(0x0F, 0x80);
 12466   ins_encode( Jcc( cop, labl) );
 12467   ins_pipe( pipe_jcc );
 12468   ins_pc_relative(1);
 12469 %}
 12471 // Jump Direct Conditional - using unsigned comparison
 12472 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12473   match(If cop cmp);
 12474   effect(USE labl);
 12476   ins_cost(300);
 12477   format %{ "J$cop,u  $labl" %}
 12478   size(6);
 12479   opcode(0x0F, 0x80);
 12480   ins_encode(Jcc(cop, labl));
 12481   ins_pipe(pipe_jcc);
 12482   ins_pc_relative(1);
 12483 %}
 12485 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12486   match(If cop cmp);
 12487   effect(USE labl);
 12489   ins_cost(200);
 12490   format %{ "J$cop,u  $labl" %}
 12491   size(6);
 12492   opcode(0x0F, 0x80);
 12493   ins_encode(Jcc(cop, labl));
 12494   ins_pipe(pipe_jcc);
 12495   ins_pc_relative(1);
 12496 %}
 12498 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12499   match(If cop cmp);
 12500   effect(USE labl);
 12502   ins_cost(200);
 12503   format %{ $$template
 12504     if ($cop$$cmpcode == Assembler::notEqual) {
 12505       $$emit$$"JP,u   $labl\n\t"
 12506       $$emit$$"J$cop,u   $labl"
 12507     } else {
 12508       $$emit$$"JP,u   done\n\t"
 12509       $$emit$$"J$cop,u   $labl\n\t"
 12510       $$emit$$"done:"
 12512   %}
 12513   size(12);
 12514   opcode(0x0F, 0x80);
 12515   ins_encode %{
 12516     Label* l = $labl$$label;
 12517     $$$emit8$primary;
 12518     emit_cc(cbuf, $secondary, Assembler::parity);
 12519     int parity_disp = -1;
 12520     bool ok = false;
 12521     if ($cop$$cmpcode == Assembler::notEqual) {
 12522        // the two jumps 6 bytes apart so the jump distances are too
 12523        parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
 12524     } else if ($cop$$cmpcode == Assembler::equal) {
 12525        parity_disp = 6;
 12526        ok = true;
 12527     } else {
 12528        ShouldNotReachHere();
 12530     emit_d32(cbuf, parity_disp);
 12531     $$$emit8$primary;
 12532     emit_cc(cbuf, $secondary, $cop$$cmpcode);
 12533     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
 12534     emit_d32(cbuf, disp);
 12535   %}
 12536   ins_pipe(pipe_jcc);
 12537   ins_pc_relative(1);
 12538 %}
 12540 // ============================================================================
 12541 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12542 // array for an instance of the superklass.  Set a hidden internal cache on a
 12543 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12544 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12545 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
 12546   match(Set result (PartialSubtypeCheck sub super));
 12547   effect( KILL rcx, KILL cr );
 12549   ins_cost(1100);  // slightly larger than the next version
 12550   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12551             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12552             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12553             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12554             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
 12555             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
 12556             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
 12557      "miss:\t" %}
 12559   opcode(0x1); // Force a XOR of EDI
 12560   ins_encode( enc_PartialSubtypeCheck() );
 12561   ins_pipe( pipe_slow );
 12562 %}
 12564 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
 12565   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 12566   effect( KILL rcx, KILL result );
 12568   ins_cost(1000);
 12569   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12570             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12571             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12572             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12573             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
 12574             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
 12575      "miss:\t" %}
 12577   opcode(0x0);  // No need to XOR EDI
 12578   ins_encode( enc_PartialSubtypeCheck() );
 12579   ins_pipe( pipe_slow );
 12580 %}
 12582 // ============================================================================
 12583 // Branch Instructions -- short offset versions
 12584 //
 12585 // These instructions are used to replace jumps of a long offset (the default
 12586 // match) with jumps of a shorter offset.  These instructions are all tagged
 12587 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 12588 // match rules in general matching.  Instead, the ADLC generates a conversion
 12589 // method in the MachNode which can be used to do in-place replacement of the
 12590 // long variant with the shorter variant.  The compiler will determine if a
 12591 // branch can be taken by the is_short_branch_offset() predicate in the machine
 12592 // specific code section of the file.
 12594 // Jump Direct - Label defines a relative address from JMP+1
 12595 instruct jmpDir_short(label labl) %{
 12596   match(Goto);
 12597   effect(USE labl);
 12599   ins_cost(300);
 12600   format %{ "JMP,s  $labl" %}
 12601   size(2);
 12602   opcode(0xEB);
 12603   ins_encode( OpcP, LblShort( labl ) );
 12604   ins_pipe( pipe_jmp );
 12605   ins_pc_relative(1);
 12606   ins_short_branch(1);
 12607 %}
 12609 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12610 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12611   match(If cop cr);
 12612   effect(USE labl);
 12614   ins_cost(300);
 12615   format %{ "J$cop,s  $labl" %}
 12616   size(2);
 12617   opcode(0x70);
 12618   ins_encode( JccShort( cop, labl) );
 12619   ins_pipe( pipe_jcc );
 12620   ins_pc_relative(1);
 12621   ins_short_branch(1);
 12622 %}
 12624 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12625 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12626   match(CountedLoopEnd cop cr);
 12627   effect(USE labl);
 12629   ins_cost(300);
 12630   format %{ "J$cop,s  $labl\t# Loop end" %}
 12631   size(2);
 12632   opcode(0x70);
 12633   ins_encode( JccShort( cop, labl) );
 12634   ins_pipe( pipe_jcc );
 12635   ins_pc_relative(1);
 12636   ins_short_branch(1);
 12637 %}
 12639 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12640 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12641   match(CountedLoopEnd cop cmp);
 12642   effect(USE labl);
 12644   ins_cost(300);
 12645   format %{ "J$cop,us $labl\t# Loop end" %}
 12646   size(2);
 12647   opcode(0x70);
 12648   ins_encode( JccShort( cop, labl) );
 12649   ins_pipe( pipe_jcc );
 12650   ins_pc_relative(1);
 12651   ins_short_branch(1);
 12652 %}
 12654 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12655   match(CountedLoopEnd cop cmp);
 12656   effect(USE labl);
 12658   ins_cost(300);
 12659   format %{ "J$cop,us $labl\t# Loop end" %}
 12660   size(2);
 12661   opcode(0x70);
 12662   ins_encode( JccShort( cop, labl) );
 12663   ins_pipe( pipe_jcc );
 12664   ins_pc_relative(1);
 12665   ins_short_branch(1);
 12666 %}
 12668 // Jump Direct Conditional - using unsigned comparison
 12669 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12670   match(If cop cmp);
 12671   effect(USE labl);
 12673   ins_cost(300);
 12674   format %{ "J$cop,us $labl" %}
 12675   size(2);
 12676   opcode(0x70);
 12677   ins_encode( JccShort( cop, labl) );
 12678   ins_pipe( pipe_jcc );
 12679   ins_pc_relative(1);
 12680   ins_short_branch(1);
 12681 %}
 12683 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12684   match(If cop cmp);
 12685   effect(USE labl);
 12687   ins_cost(300);
 12688   format %{ "J$cop,us $labl" %}
 12689   size(2);
 12690   opcode(0x70);
 12691   ins_encode( JccShort( cop, labl) );
 12692   ins_pipe( pipe_jcc );
 12693   ins_pc_relative(1);
 12694   ins_short_branch(1);
 12695 %}
 12697 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12698   match(If cop cmp);
 12699   effect(USE labl);
 12701   ins_cost(300);
 12702   format %{ $$template
 12703     if ($cop$$cmpcode == Assembler::notEqual) {
 12704       $$emit$$"JP,u,s   $labl\n\t"
 12705       $$emit$$"J$cop,u,s   $labl"
 12706     } else {
 12707       $$emit$$"JP,u,s   done\n\t"
 12708       $$emit$$"J$cop,u,s  $labl\n\t"
 12709       $$emit$$"done:"
 12711   %}
 12712   size(4);
 12713   opcode(0x70);
 12714   ins_encode %{
 12715     Label* l = $labl$$label;
 12716     emit_cc(cbuf, $primary, Assembler::parity);
 12717     int parity_disp = -1;
 12718     if ($cop$$cmpcode == Assembler::notEqual) {
 12719       parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
 12720     } else if ($cop$$cmpcode == Assembler::equal) {
 12721       parity_disp = 2;
 12722     } else {
 12723       ShouldNotReachHere();
 12725     emit_d8(cbuf, parity_disp);
 12726     emit_cc(cbuf, $primary, $cop$$cmpcode);
 12727     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
 12728     emit_d8(cbuf, disp);
 12729     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
 12730     assert(-128 <= parity_disp && parity_disp <= 127, "Displacement too large for short jmp");
 12731   %}
 12732   ins_pipe(pipe_jcc);
 12733   ins_pc_relative(1);
 12734   ins_short_branch(1);
 12735 %}
 12737 // ============================================================================
 12738 // Long Compare
 12739 //
 12740 // Currently we hold longs in 2 registers.  Comparing such values efficiently
 12741 // is tricky.  The flavor of compare used depends on whether we are testing
 12742 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
 12743 // The GE test is the negated LT test.  The LE test can be had by commuting
 12744 // the operands (yielding a GE test) and then negating; negate again for the
 12745 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
 12746 // NE test is negated from that.
 12748 // Due to a shortcoming in the ADLC, it mixes up expressions like:
 12749 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
 12750 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
 12751 // are collapsed internally in the ADLC's dfa-gen code.  The match for
 12752 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
 12753 // foo match ends up with the wrong leaf.  One fix is to not match both
 12754 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
 12755 // both forms beat the trinary form of long-compare and both are very useful
 12756 // on Intel which has so few registers.
 12758 // Manifest a CmpL result in an integer register.  Very painful.
 12759 // This is the test to avoid.
 12760 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
 12761   match(Set dst (CmpL3 src1 src2));
 12762   effect( KILL flags );
 12763   ins_cost(1000);
 12764   format %{ "XOR    $dst,$dst\n\t"
 12765             "CMP    $src1.hi,$src2.hi\n\t"
 12766             "JLT,s  m_one\n\t"
 12767             "JGT,s  p_one\n\t"
 12768             "CMP    $src1.lo,$src2.lo\n\t"
 12769             "JB,s   m_one\n\t"
 12770             "JEQ,s  done\n"
 12771     "p_one:\tINC    $dst\n\t"
 12772             "JMP,s  done\n"
 12773     "m_one:\tDEC    $dst\n"
 12774      "done:" %}
 12775   ins_encode %{
 12776     Label p_one, m_one, done;
 12777     __ xorptr($dst$$Register, $dst$$Register);
 12778     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
 12779     __ jccb(Assembler::less,    m_one);
 12780     __ jccb(Assembler::greater, p_one);
 12781     __ cmpl($src1$$Register, $src2$$Register);
 12782     __ jccb(Assembler::below,   m_one);
 12783     __ jccb(Assembler::equal,   done);
 12784     __ bind(p_one);
 12785     __ incrementl($dst$$Register);
 12786     __ jmpb(done);
 12787     __ bind(m_one);
 12788     __ decrementl($dst$$Register);
 12789     __ bind(done);
 12790   %}
 12791   ins_pipe( pipe_slow );
 12792 %}
 12794 //======
 12795 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12796 // compares.  Can be used for LE or GT compares by reversing arguments.
 12797 // NOT GOOD FOR EQ/NE tests.
 12798 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
 12799   match( Set flags (CmpL src zero ));
 12800   ins_cost(100);
 12801   format %{ "TEST   $src.hi,$src.hi" %}
 12802   opcode(0x85);
 12803   ins_encode( OpcP, RegReg_Hi2( src, src ) );
 12804   ins_pipe( ialu_cr_reg_reg );
 12805 %}
 12807 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12808 // compares.  Can be used for LE or GT compares by reversing arguments.
 12809 // NOT GOOD FOR EQ/NE tests.
 12810 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 12811   match( Set flags (CmpL src1 src2 ));
 12812   effect( TEMP tmp );
 12813   ins_cost(300);
 12814   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12815             "MOV    $tmp,$src1.hi\n\t"
 12816             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
 12817   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
 12818   ins_pipe( ialu_cr_reg_reg );
 12819 %}
 12821 // Long compares reg < zero/req OR reg >= zero/req.
 12822 // Just a wrapper for a normal branch, plus the predicate test.
 12823 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
 12824   match(If cmp flags);
 12825   effect(USE labl);
 12826   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12827   expand %{
 12828     jmpCon(cmp,flags,labl);    // JLT or JGE...
 12829   %}
 12830 %}
 12832 // Compare 2 longs and CMOVE longs.
 12833 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
 12834   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12835   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12836   ins_cost(400);
 12837   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12838             "CMOV$cmp $dst.hi,$src.hi" %}
 12839   opcode(0x0F,0x40);
 12840   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12841   ins_pipe( pipe_cmov_reg_long );
 12842 %}
 12844 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
 12845   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12846   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12847   ins_cost(500);
 12848   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12849             "CMOV$cmp $dst.hi,$src.hi" %}
 12850   opcode(0x0F,0x40);
 12851   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12852   ins_pipe( pipe_cmov_reg_long );
 12853 %}
 12855 // Compare 2 longs and CMOVE ints.
 12856 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
 12857   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12858   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12859   ins_cost(200);
 12860   format %{ "CMOV$cmp $dst,$src" %}
 12861   opcode(0x0F,0x40);
 12862   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12863   ins_pipe( pipe_cmov_reg );
 12864 %}
 12866 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
 12867   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12868   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12869   ins_cost(250);
 12870   format %{ "CMOV$cmp $dst,$src" %}
 12871   opcode(0x0F,0x40);
 12872   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12873   ins_pipe( pipe_cmov_mem );
 12874 %}
 12876 // Compare 2 longs and CMOVE ints.
 12877 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
 12878   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12879   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12880   ins_cost(200);
 12881   format %{ "CMOV$cmp $dst,$src" %}
 12882   opcode(0x0F,0x40);
 12883   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12884   ins_pipe( pipe_cmov_reg );
 12885 %}
 12887 // Compare 2 longs and CMOVE doubles
 12888 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
 12889   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12890   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12891   ins_cost(200);
 12892   expand %{
 12893     fcmovD_regS(cmp,flags,dst,src);
 12894   %}
 12895 %}
 12897 // Compare 2 longs and CMOVE doubles
 12898 instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
 12899   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12900   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12901   ins_cost(200);
 12902   expand %{
 12903     fcmovXD_regS(cmp,flags,dst,src);
 12904   %}
 12905 %}
 12907 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
 12908   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12909   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12910   ins_cost(200);
 12911   expand %{
 12912     fcmovF_regS(cmp,flags,dst,src);
 12913   %}
 12914 %}
 12916 instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
 12917   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12918   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12919   ins_cost(200);
 12920   expand %{
 12921     fcmovX_regS(cmp,flags,dst,src);
 12922   %}
 12923 %}
 12925 //======
 12926 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12927 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
 12928   match( Set flags (CmpL src zero ));
 12929   effect(TEMP tmp);
 12930   ins_cost(200);
 12931   format %{ "MOV    $tmp,$src.lo\n\t"
 12932             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
 12933   ins_encode( long_cmp_flags0( src, tmp ) );
 12934   ins_pipe( ialu_reg_reg_long );
 12935 %}
 12937 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12938 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
 12939   match( Set flags (CmpL src1 src2 ));
 12940   ins_cost(200+300);
 12941   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12942             "JNE,s  skip\n\t"
 12943             "CMP    $src1.hi,$src2.hi\n\t"
 12944      "skip:\t" %}
 12945   ins_encode( long_cmp_flags1( src1, src2 ) );
 12946   ins_pipe( ialu_cr_reg_reg );
 12947 %}
 12949 // Long compare reg == zero/reg OR reg != zero/reg
 12950 // Just a wrapper for a normal branch, plus the predicate test.
 12951 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
 12952   match(If cmp flags);
 12953   effect(USE labl);
 12954   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12955   expand %{
 12956     jmpCon(cmp,flags,labl);    // JEQ or JNE...
 12957   %}
 12958 %}
 12960 // Compare 2 longs and CMOVE longs.
 12961 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
 12962   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12963   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12964   ins_cost(400);
 12965   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12966             "CMOV$cmp $dst.hi,$src.hi" %}
 12967   opcode(0x0F,0x40);
 12968   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12969   ins_pipe( pipe_cmov_reg_long );
 12970 %}
 12972 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
 12973   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12974   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12975   ins_cost(500);
 12976   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12977             "CMOV$cmp $dst.hi,$src.hi" %}
 12978   opcode(0x0F,0x40);
 12979   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12980   ins_pipe( pipe_cmov_reg_long );
 12981 %}
 12983 // Compare 2 longs and CMOVE ints.
 12984 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
 12985   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12986   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12987   ins_cost(200);
 12988   format %{ "CMOV$cmp $dst,$src" %}
 12989   opcode(0x0F,0x40);
 12990   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12991   ins_pipe( pipe_cmov_reg );
 12992 %}
 12994 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
 12995   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12996   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12997   ins_cost(250);
 12998   format %{ "CMOV$cmp $dst,$src" %}
 12999   opcode(0x0F,0x40);
 13000   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13001   ins_pipe( pipe_cmov_mem );
 13002 %}
 13004 // Compare 2 longs and CMOVE ints.
 13005 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
 13006   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13007   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13008   ins_cost(200);
 13009   format %{ "CMOV$cmp $dst,$src" %}
 13010   opcode(0x0F,0x40);
 13011   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13012   ins_pipe( pipe_cmov_reg );
 13013 %}
 13015 // Compare 2 longs and CMOVE doubles
 13016 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
 13017   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13018   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13019   ins_cost(200);
 13020   expand %{
 13021     fcmovD_regS(cmp,flags,dst,src);
 13022   %}
 13023 %}
 13025 // Compare 2 longs and CMOVE doubles
 13026 instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
 13027   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13028   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13029   ins_cost(200);
 13030   expand %{
 13031     fcmovXD_regS(cmp,flags,dst,src);
 13032   %}
 13033 %}
 13035 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
 13036   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13037   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13038   ins_cost(200);
 13039   expand %{
 13040     fcmovF_regS(cmp,flags,dst,src);
 13041   %}
 13042 %}
 13044 instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
 13045   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13046   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13047   ins_cost(200);
 13048   expand %{
 13049     fcmovX_regS(cmp,flags,dst,src);
 13050   %}
 13051 %}
 13053 //======
 13054 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13055 // Same as cmpL_reg_flags_LEGT except must negate src
 13056 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
 13057   match( Set flags (CmpL src zero ));
 13058   effect( TEMP tmp );
 13059   ins_cost(300);
 13060   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
 13061             "CMP    $tmp,$src.lo\n\t"
 13062             "SBB    $tmp,$src.hi\n\t" %}
 13063   ins_encode( long_cmp_flags3(src, tmp) );
 13064   ins_pipe( ialu_reg_reg_long );
 13065 %}
 13067 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13068 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
 13069 // requires a commuted test to get the same result.
 13070 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 13071   match( Set flags (CmpL src1 src2 ));
 13072   effect( TEMP tmp );
 13073   ins_cost(300);
 13074   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
 13075             "MOV    $tmp,$src2.hi\n\t"
 13076             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
 13077   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
 13078   ins_pipe( ialu_cr_reg_reg );
 13079 %}
 13081 // Long compares reg < zero/req OR reg >= zero/req.
 13082 // Just a wrapper for a normal branch, plus the predicate test
 13083 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
 13084   match(If cmp flags);
 13085   effect(USE labl);
 13086   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
 13087   ins_cost(300);
 13088   expand %{
 13089     jmpCon(cmp,flags,labl);    // JGT or JLE...
 13090   %}
 13091 %}
 13093 // Compare 2 longs and CMOVE longs.
 13094 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
 13095   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13096   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13097   ins_cost(400);
 13098   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13099             "CMOV$cmp $dst.hi,$src.hi" %}
 13100   opcode(0x0F,0x40);
 13101   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13102   ins_pipe( pipe_cmov_reg_long );
 13103 %}
 13105 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
 13106   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13107   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13108   ins_cost(500);
 13109   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13110             "CMOV$cmp $dst.hi,$src.hi+4" %}
 13111   opcode(0x0F,0x40);
 13112   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13113   ins_pipe( pipe_cmov_reg_long );
 13114 %}
 13116 // Compare 2 longs and CMOVE ints.
 13117 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
 13118   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13119   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13120   ins_cost(200);
 13121   format %{ "CMOV$cmp $dst,$src" %}
 13122   opcode(0x0F,0x40);
 13123   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13124   ins_pipe( pipe_cmov_reg );
 13125 %}
 13127 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
 13128   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13129   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13130   ins_cost(250);
 13131   format %{ "CMOV$cmp $dst,$src" %}
 13132   opcode(0x0F,0x40);
 13133   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13134   ins_pipe( pipe_cmov_mem );
 13135 %}
 13137 // Compare 2 longs and CMOVE ptrs.
 13138 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
 13139   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13140   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13141   ins_cost(200);
 13142   format %{ "CMOV$cmp $dst,$src" %}
 13143   opcode(0x0F,0x40);
 13144   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13145   ins_pipe( pipe_cmov_reg );
 13146 %}
 13148 // Compare 2 longs and CMOVE doubles
 13149 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
 13150   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13151   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13152   ins_cost(200);
 13153   expand %{
 13154     fcmovD_regS(cmp,flags,dst,src);
 13155   %}
 13156 %}
 13158 // Compare 2 longs and CMOVE doubles
 13159 instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
 13160   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13161   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13162   ins_cost(200);
 13163   expand %{
 13164     fcmovXD_regS(cmp,flags,dst,src);
 13165   %}
 13166 %}
 13168 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
 13169   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13170   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13171   ins_cost(200);
 13172   expand %{
 13173     fcmovF_regS(cmp,flags,dst,src);
 13174   %}
 13175 %}
 13178 instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
 13179   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13180   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13181   ins_cost(200);
 13182   expand %{
 13183     fcmovX_regS(cmp,flags,dst,src);
 13184   %}
 13185 %}
 13188 // ============================================================================
 13189 // Procedure Call/Return Instructions
 13190 // Call Java Static Instruction
 13191 // Note: If this code changes, the corresponding ret_addr_offset() and
 13192 //       compute_padding() functions will have to be adjusted.
 13193 instruct CallStaticJavaDirect(method meth) %{
 13194   match(CallStaticJava);
 13195   effect(USE meth);
 13197   ins_cost(300);
 13198   format %{ "CALL,static " %}
 13199   opcode(0xE8); /* E8 cd */
 13200   ins_encode( pre_call_FPU,
 13201               Java_Static_Call( meth ),
 13202               call_epilog,
 13203               post_call_FPU );
 13204   ins_pipe( pipe_slow );
 13205   ins_pc_relative(1);
 13206   ins_alignment(4);
 13207 %}
 13209 // Call Java Dynamic Instruction
 13210 // Note: If this code changes, the corresponding ret_addr_offset() and
 13211 //       compute_padding() functions will have to be adjusted.
 13212 instruct CallDynamicJavaDirect(method meth) %{
 13213   match(CallDynamicJava);
 13214   effect(USE meth);
 13216   ins_cost(300);
 13217   format %{ "MOV    EAX,(oop)-1\n\t"
 13218             "CALL,dynamic" %}
 13219   opcode(0xE8); /* E8 cd */
 13220   ins_encode( pre_call_FPU,
 13221               Java_Dynamic_Call( meth ),
 13222               call_epilog,
 13223               post_call_FPU );
 13224   ins_pipe( pipe_slow );
 13225   ins_pc_relative(1);
 13226   ins_alignment(4);
 13227 %}
 13229 // Call Runtime Instruction
 13230 instruct CallRuntimeDirect(method meth) %{
 13231   match(CallRuntime );
 13232   effect(USE meth);
 13234   ins_cost(300);
 13235   format %{ "CALL,runtime " %}
 13236   opcode(0xE8); /* E8 cd */
 13237   // Use FFREEs to clear entries in float stack
 13238   ins_encode( pre_call_FPU,
 13239               FFree_Float_Stack_All,
 13240               Java_To_Runtime( meth ),
 13241               post_call_FPU );
 13242   ins_pipe( pipe_slow );
 13243   ins_pc_relative(1);
 13244 %}
 13246 // Call runtime without safepoint
 13247 instruct CallLeafDirect(method meth) %{
 13248   match(CallLeaf);
 13249   effect(USE meth);
 13251   ins_cost(300);
 13252   format %{ "CALL_LEAF,runtime " %}
 13253   opcode(0xE8); /* E8 cd */
 13254   ins_encode( pre_call_FPU,
 13255               FFree_Float_Stack_All,
 13256               Java_To_Runtime( meth ),
 13257               Verify_FPU_For_Leaf, post_call_FPU );
 13258   ins_pipe( pipe_slow );
 13259   ins_pc_relative(1);
 13260 %}
 13262 instruct CallLeafNoFPDirect(method meth) %{
 13263   match(CallLeafNoFP);
 13264   effect(USE meth);
 13266   ins_cost(300);
 13267   format %{ "CALL_LEAF_NOFP,runtime " %}
 13268   opcode(0xE8); /* E8 cd */
 13269   ins_encode(Java_To_Runtime(meth));
 13270   ins_pipe( pipe_slow );
 13271   ins_pc_relative(1);
 13272 %}
 13275 // Return Instruction
 13276 // Remove the return address & jump to it.
 13277 instruct Ret() %{
 13278   match(Return);
 13279   format %{ "RET" %}
 13280   opcode(0xC3);
 13281   ins_encode(OpcP);
 13282   ins_pipe( pipe_jmp );
 13283 %}
 13285 // Tail Call; Jump from runtime stub to Java code.
 13286 // Also known as an 'interprocedural jump'.
 13287 // Target of jump will eventually return to caller.
 13288 // TailJump below removes the return address.
 13289 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
 13290   match(TailCall jump_target method_oop );
 13291   ins_cost(300);
 13292   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
 13293   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13294   ins_encode( OpcP, RegOpc(jump_target) );
 13295   ins_pipe( pipe_jmp );
 13296 %}
 13299 // Tail Jump; remove the return address; jump to target.
 13300 // TailCall above leaves the return address around.
 13301 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
 13302   match( TailJump jump_target ex_oop );
 13303   ins_cost(300);
 13304   format %{ "POP    EDX\t# pop return address into dummy\n\t"
 13305             "JMP    $jump_target " %}
 13306   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13307   ins_encode( enc_pop_rdx,
 13308               OpcP, RegOpc(jump_target) );
 13309   ins_pipe( pipe_jmp );
 13310 %}
 13312 // Create exception oop: created by stack-crawling runtime code.
 13313 // Created exception is now available to this handler, and is setup
 13314 // just prior to jumping to this handler.  No code emitted.
 13315 instruct CreateException( eAXRegP ex_oop )
 13316 %{
 13317   match(Set ex_oop (CreateEx));
 13319   size(0);
 13320   // use the following format syntax
 13321   format %{ "# exception oop is in EAX; no code emitted" %}
 13322   ins_encode();
 13323   ins_pipe( empty );
 13324 %}
 13327 // Rethrow exception:
 13328 // The exception oop will come in the first argument position.
 13329 // Then JUMP (not call) to the rethrow stub code.
 13330 instruct RethrowException()
 13331 %{
 13332   match(Rethrow);
 13334   // use the following format syntax
 13335   format %{ "JMP    rethrow_stub" %}
 13336   ins_encode(enc_rethrow);
 13337   ins_pipe( pipe_jmp );
 13338 %}
 13340 // inlined locking and unlocking
 13343 instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
 13344   match( Set cr (FastLock object box) );
 13345   effect( TEMP tmp, TEMP scr );
 13346   ins_cost(300);
 13347   format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
 13348   ins_encode( Fast_Lock(object,box,tmp,scr) );
 13349   ins_pipe( pipe_slow );
 13350   ins_pc_relative(1);
 13351 %}
 13353 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
 13354   match( Set cr (FastUnlock object box) );
 13355   effect( TEMP tmp );
 13356   ins_cost(300);
 13357   format %{ "FASTUNLOCK $object, $box, $tmp" %}
 13358   ins_encode( Fast_Unlock(object,box,tmp) );
 13359   ins_pipe( pipe_slow );
 13360   ins_pc_relative(1);
 13361 %}
 13365 // ============================================================================
 13366 // Safepoint Instruction
 13367 instruct safePoint_poll(eFlagsReg cr) %{
 13368   match(SafePoint);
 13369   effect(KILL cr);
 13371   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
 13372   // On SPARC that might be acceptable as we can generate the address with
 13373   // just a sethi, saving an or.  By polling at offset 0 we can end up
 13374   // putting additional pressure on the index-0 in the D$.  Because of
 13375   // alignment (just like the situation at hand) the lower indices tend
 13376   // to see more traffic.  It'd be better to change the polling address
 13377   // to offset 0 of the last $line in the polling page.
 13379   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
 13380   ins_cost(125);
 13381   size(6) ;
 13382   ins_encode( Safepoint_Poll() );
 13383   ins_pipe( ialu_reg_mem );
 13384 %}
 13386 //----------PEEPHOLE RULES-----------------------------------------------------
 13387 // These must follow all instruction definitions as they use the names
 13388 // defined in the instructions definitions.
 13389 //
 13390 // peepmatch ( root_instr_name [preceding_instruction]* );
 13391 //
 13392 // peepconstraint %{
 13393 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13394 //  [, ...] );
 13395 // // instruction numbers are zero-based using left to right order in peepmatch
 13396 //
 13397 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13398 // // provide an instruction_number.operand_name for each operand that appears
 13399 // // in the replacement instruction's match rule
 13400 //
 13401 // ---------VM FLAGS---------------------------------------------------------
 13402 //
 13403 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13404 //
 13405 // Each peephole rule is given an identifying number starting with zero and
 13406 // increasing by one in the order seen by the parser.  An individual peephole
 13407 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13408 // on the command-line.
 13409 //
 13410 // ---------CURRENT LIMITATIONS----------------------------------------------
 13411 //
 13412 // Only match adjacent instructions in same basic block
 13413 // Only equality constraints
 13414 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13415 // Only one replacement instruction
 13416 //
 13417 // ---------EXAMPLE----------------------------------------------------------
 13418 //
 13419 // // pertinent parts of existing instructions in architecture description
 13420 // instruct movI(eRegI dst, eRegI src) %{
 13421 //   match(Set dst (CopyI src));
 13422 // %}
 13423 //
 13424 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 13425 //   match(Set dst (AddI dst src));
 13426 //   effect(KILL cr);
 13427 // %}
 13428 //
 13429 // // Change (inc mov) to lea
 13430 // peephole %{
 13431 //   // increment preceeded by register-register move
 13432 //   peepmatch ( incI_eReg movI );
 13433 //   // require that the destination register of the increment
 13434 //   // match the destination register of the move
 13435 //   peepconstraint ( 0.dst == 1.dst );
 13436 //   // construct a replacement instruction that sets
 13437 //   // the destination to ( move's source register + one )
 13438 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13439 // %}
 13440 //
 13441 // Implementation no longer uses movX instructions since
 13442 // machine-independent system no longer uses CopyX nodes.
 13443 //
 13444 // peephole %{
 13445 //   peepmatch ( incI_eReg movI );
 13446 //   peepconstraint ( 0.dst == 1.dst );
 13447 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13448 // %}
 13449 //
 13450 // peephole %{
 13451 //   peepmatch ( decI_eReg movI );
 13452 //   peepconstraint ( 0.dst == 1.dst );
 13453 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13454 // %}
 13455 //
 13456 // peephole %{
 13457 //   peepmatch ( addI_eReg_imm movI );
 13458 //   peepconstraint ( 0.dst == 1.dst );
 13459 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13460 // %}
 13461 //
 13462 // peephole %{
 13463 //   peepmatch ( addP_eReg_imm movP );
 13464 //   peepconstraint ( 0.dst == 1.dst );
 13465 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13466 // %}
 13468 // // Change load of spilled value to only a spill
 13469 // instruct storeI(memory mem, eRegI src) %{
 13470 //   match(Set mem (StoreI mem src));
 13471 // %}
 13472 //
 13473 // instruct loadI(eRegI dst, memory mem) %{
 13474 //   match(Set dst (LoadI mem));
 13475 // %}
 13476 //
 13477 peephole %{
 13478   peepmatch ( loadI storeI );
 13479   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13480   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13481 %}
 13483 //----------SMARTSPILL RULES---------------------------------------------------
 13484 // These must follow all instruction definitions as they use the names
 13485 // defined in the instructions definitions.

mercurial