src/cpu/x86/vm/x86_32.ad

Thu, 19 Mar 2009 09:13:24 -0700

author
kvn
date
Thu, 19 Mar 2009 09:13:24 -0700
changeset 1082
bd441136a5ce
parent 1063
7bb995fbd3c0
parent 1079
c517646eef23
child 1106
d0994e5bebce
permissions
-rw-r--r--

Merge

     1 //
     2 // Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20 // CA 95054 USA or visit www.sun.com if you need additional information or
    21 // have any questions.
    22 //
    23 //
    25 // X86 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
    64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
    67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
    68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
    69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
    70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
    71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
    72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
    73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
    74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
    75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
    77 // Special Registers
    78 reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
    80 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
    81 // allocator, and only shows up in the encodings.
    82 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    83 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    84 // Ok so here's the trick FPR1 is really st(0) except in the midst
    85 // of emission of assembly for a machnode. During the emission the fpu stack
    86 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
    87 // the stack will not have this element so FPR1 == st(0) from the
    88 // oopMap viewpoint. This same weirdness with numbering causes
    89 // instruction encoding to have to play games with the register
    90 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
    91 // where it does flt->flt moves to see an example
    92 //
    93 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
    94 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
    95 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
    96 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
    97 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
    98 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
    99 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
   100 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
   101 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
   102 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
   103 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
   104 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
   105 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
   106 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
   108 // XMM registers.  128-bit registers or 4 words each, labeled a-d.
   109 // Word a in each register holds a Float, words ab hold a Double.
   110 // We currently do not use the SIMD capabilities, so registers cd
   111 // are unused at the moment.
   112 reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
   113 reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
   114 reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
   115 reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
   116 reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
   117 reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
   118 reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
   119 reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
   120 reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
   121 reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
   122 reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
   123 reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
   124 reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
   125 reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
   126 reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
   127 reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
   129 // Specify priority of register selection within phases of register
   130 // allocation.  Highest priority is first.  A useful heuristic is to
   131 // give registers a low priority when they are required by machine
   132 // instructions, like EAX and EDX.  Registers which are used as
   133 // pairs must fall on an even boundary (witness the FPR#L's in this list).
   134 // For the Intel integer registers, the equivalent Long pairs are
   135 // EDX:EAX, EBX:ECX, and EDI:EBP.
   136 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
   137                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
   138                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
   139                     FPR6L, FPR6H, FPR7L, FPR7H );
   141 alloc_class chunk1( XMM0a, XMM0b,
   142                     XMM1a, XMM1b,
   143                     XMM2a, XMM2b,
   144                     XMM3a, XMM3b,
   145                     XMM4a, XMM4b,
   146                     XMM5a, XMM5b,
   147                     XMM6a, XMM6b,
   148                     XMM7a, XMM7b, EFLAGS);
   151 //----------Architecture Description Register Classes--------------------------
   152 // Several register classes are automatically defined based upon information in
   153 // this architecture description.
   154 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   155 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   156 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   157 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   158 //
   159 // Class for all registers
   160 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
   161 // Class for general registers
   162 reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
   163 // Class for general registers which may be used for implicit null checks on win95
   164 // Also safe for use by tailjump. We don't want to allocate in rbp,
   165 reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
   166 // Class of "X" registers
   167 reg_class x_reg(EBX, ECX, EDX, EAX);
   168 // Class of registers that can appear in an address with no offset.
   169 // EBP and ESP require an extra instruction byte for zero offset.
   170 // Used in fast-unlock
   171 reg_class p_reg(EDX, EDI, ESI, EBX);
   172 // Class for general registers not including ECX
   173 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
   174 // Class for general registers not including EAX
   175 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
   176 // Class for general registers not including EAX or EBX.
   177 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
   178 // Class of EAX (for multiply and divide operations)
   179 reg_class eax_reg(EAX);
   180 // Class of EBX (for atomic add)
   181 reg_class ebx_reg(EBX);
   182 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
   183 reg_class ecx_reg(ECX);
   184 // Class of EDX (for multiply and divide operations)
   185 reg_class edx_reg(EDX);
   186 // Class of EDI (for synchronization)
   187 reg_class edi_reg(EDI);
   188 // Class of ESI (for synchronization)
   189 reg_class esi_reg(ESI);
   190 // Singleton class for interpreter's stack pointer
   191 reg_class ebp_reg(EBP);
   192 // Singleton class for stack pointer
   193 reg_class sp_reg(ESP);
   194 // Singleton class for instruction pointer
   195 // reg_class ip_reg(EIP);
   196 // Singleton class for condition codes
   197 reg_class int_flags(EFLAGS);
   198 // Class of integer register pairs
   199 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
   200 // Class of integer register pairs that aligns with calling convention
   201 reg_class eadx_reg( EAX,EDX );
   202 reg_class ebcx_reg( ECX,EBX );
   203 // Not AX or DX, used in divides
   204 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
   206 // Floating point registers.  Notice FPR0 is not a choice.
   207 // FPR0 is not ever allocated; we use clever encodings to fake
   208 // a 2-address instructions out of Intels FP stack.
   209 reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
   211 // make a register class for SSE registers
   212 reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
   214 // make a double register class for SSE2 registers
   215 reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
   216                   XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
   218 reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
   219                    FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
   220                    FPR7L,FPR7H );
   222 reg_class flt_reg0( FPR1L );
   223 reg_class dbl_reg0( FPR1L,FPR1H );
   224 reg_class dbl_reg1( FPR2L,FPR2H );
   225 reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
   226                        FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
   228 // XMM6 and XMM7 could be used as temporary registers for long, float and
   229 // double values for SSE2.
   230 reg_class xdb_reg6( XMM6a,XMM6b );
   231 reg_class xdb_reg7( XMM7a,XMM7b );
   232 %}
   235 //----------SOURCE BLOCK-------------------------------------------------------
   236 // This is a block of C++ code which provides values, functions, and
   237 // definitions necessary in the rest of the architecture description
   238 source %{
   239 #define   RELOC_IMM32    Assembler::imm_operand
   240 #define   RELOC_DISP32   Assembler::disp32_operand
   242 #define __ _masm.
   244 // How to find the high register of a Long pair, given the low register
   245 #define   HIGH_FROM_LOW(x) ((x)+2)
   247 // These masks are used to provide 128-bit aligned bitmasks to the XMM
   248 // instructions, to allow sign-masking or sign-bit flipping.  They allow
   249 // fast versions of NegF/NegD and AbsF/AbsD.
   251 // Note: 'double' and 'long long' have 32-bits alignment on x86.
   252 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
   253   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
   254   // of 128-bits operands for SSE instructions.
   255   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
   256   // Store the value to a 128-bits operand.
   257   operand[0] = lo;
   258   operand[1] = hi;
   259   return operand;
   260 }
   262 // Buffer for 128-bits masks used by SSE instructions.
   263 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
   265 // Static initialization during VM startup.
   266 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
   267 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
   268 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
   269 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
   271 // !!!!! Special hack to get all type of calls to specify the byte offset
   272 //       from the start of the call to the point where the return address
   273 //       will point.
   274 int MachCallStaticJavaNode::ret_addr_offset() {
   275   return 5 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0);  // 5 bytes from start of call to where return address points
   276 }
   278 int MachCallDynamicJavaNode::ret_addr_offset() {
   279   return 10 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0);  // 10 bytes from start of call to where return address points
   280 }
   282 static int sizeof_FFree_Float_Stack_All = -1;
   284 int MachCallRuntimeNode::ret_addr_offset() {
   285   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
   286   return sizeof_FFree_Float_Stack_All + 5 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0);
   287 }
   289 // Indicate if the safepoint node needs the polling page as an input.
   290 // Since x86 does have absolute addressing, it doesn't.
   291 bool SafePointNode::needs_polling_address_input() {
   292   return false;
   293 }
   295 //
   296 // Compute padding required for nodes which need alignment
   297 //
   299 // The address of the call instruction needs to be 4-byte aligned to
   300 // ensure that it does not span a cache line so that it can be patched.
   301 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   302   if (Compile::current()->in_24_bit_fp_mode())
   303     current_offset += 6;    // skip fldcw in pre_call_FPU, if any
   304   current_offset += 1;      // skip call opcode byte
   305   return round_to(current_offset, alignment_required()) - current_offset;
   306 }
   308 // The address of the call instruction needs to be 4-byte aligned to
   309 // ensure that it does not span a cache line so that it can be patched.
   310 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   311   if (Compile::current()->in_24_bit_fp_mode())
   312     current_offset += 6;    // skip fldcw in pre_call_FPU, if any
   313   current_offset += 5;      // skip MOV instruction
   314   current_offset += 1;      // skip call opcode byte
   315   return round_to(current_offset, alignment_required()) - current_offset;
   316 }
   318 #ifndef PRODUCT
   319 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
   320   st->print("INT3");
   321 }
   322 #endif
   324 // EMIT_RM()
   325 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
   326   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
   327   *(cbuf.code_end()) = c;
   328   cbuf.set_code_end(cbuf.code_end() + 1);
   329 }
   331 // EMIT_CC()
   332 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
   333   unsigned char c = (unsigned char)( f1 | f2 );
   334   *(cbuf.code_end()) = c;
   335   cbuf.set_code_end(cbuf.code_end() + 1);
   336 }
   338 // EMIT_OPCODE()
   339 void emit_opcode(CodeBuffer &cbuf, int code) {
   340   *(cbuf.code_end()) = (unsigned char)code;
   341   cbuf.set_code_end(cbuf.code_end() + 1);
   342 }
   344 // EMIT_OPCODE() w/ relocation information
   345 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
   346   cbuf.relocate(cbuf.inst_mark() + offset, reloc);
   347   emit_opcode(cbuf, code);
   348 }
   350 // EMIT_D8()
   351 void emit_d8(CodeBuffer &cbuf, int d8) {
   352   *(cbuf.code_end()) = (unsigned char)d8;
   353   cbuf.set_code_end(cbuf.code_end() + 1);
   354 }
   356 // EMIT_D16()
   357 void emit_d16(CodeBuffer &cbuf, int d16) {
   358   *((short *)(cbuf.code_end())) = d16;
   359   cbuf.set_code_end(cbuf.code_end() + 2);
   360 }
   362 // EMIT_D32()
   363 void emit_d32(CodeBuffer &cbuf, int d32) {
   364   *((int *)(cbuf.code_end())) = d32;
   365   cbuf.set_code_end(cbuf.code_end() + 4);
   366 }
   368 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   369 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
   370         int format) {
   371   cbuf.relocate(cbuf.inst_mark(), reloc, format);
   373   *((int *)(cbuf.code_end())) = d32;
   374   cbuf.set_code_end(cbuf.code_end() + 4);
   375 }
   377 // emit 32 bit value and construct relocation entry from RelocationHolder
   378 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
   379         int format) {
   380 #ifdef ASSERT
   381   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
   382     assert(oop(d32)->is_oop() && oop(d32)->is_perm(), "cannot embed non-perm oops in code");
   383   }
   384 #endif
   385   cbuf.relocate(cbuf.inst_mark(), rspec, format);
   387   *((int *)(cbuf.code_end())) = d32;
   388   cbuf.set_code_end(cbuf.code_end() + 4);
   389 }
   391 // Access stack slot for load or store
   392 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
   393   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
   394   if( -128 <= disp && disp <= 127 ) {
   395     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
   396     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   397     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
   398   } else {
   399     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
   400     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   401     emit_d32(cbuf, disp);     // Displacement  // R/M byte
   402   }
   403 }
   405    // eRegI ereg, memory mem) %{    // emit_reg_mem
   406 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
   407   // There is no index & no scale, use form without SIB byte
   408   if ((index == 0x4) &&
   409       (scale == 0) && (base != ESP_enc)) {
   410     // If no displacement, mode is 0x0; unless base is [EBP]
   411     if ( (displace == 0) && (base != EBP_enc) ) {
   412       emit_rm(cbuf, 0x0, reg_encoding, base);
   413     }
   414     else {                    // If 8-bit displacement, mode 0x1
   415       if ((displace >= -128) && (displace <= 127)
   416           && !(displace_is_oop) ) {
   417         emit_rm(cbuf, 0x1, reg_encoding, base);
   418         emit_d8(cbuf, displace);
   419       }
   420       else {                  // If 32-bit displacement
   421         if (base == -1) { // Special flag for absolute address
   422           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
   423           // (manual lies; no SIB needed here)
   424           if ( displace_is_oop ) {
   425             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   426           } else {
   427             emit_d32      (cbuf, displace);
   428           }
   429         }
   430         else {                // Normal base + offset
   431           emit_rm(cbuf, 0x2, reg_encoding, base);
   432           if ( displace_is_oop ) {
   433             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   434           } else {
   435             emit_d32      (cbuf, displace);
   436           }
   437         }
   438       }
   439     }
   440   }
   441   else {                      // Else, encode with the SIB byte
   442     // If no displacement, mode is 0x0; unless base is [EBP]
   443     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
   444       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
   445       emit_rm(cbuf, scale, index, base);
   446     }
   447     else {                    // If 8-bit displacement, mode 0x1
   448       if ((displace >= -128) && (displace <= 127)
   449           && !(displace_is_oop) ) {
   450         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
   451         emit_rm(cbuf, scale, index, base);
   452         emit_d8(cbuf, displace);
   453       }
   454       else {                  // If 32-bit displacement
   455         if (base == 0x04 ) {
   456           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   457           emit_rm(cbuf, scale, index, 0x04);
   458         } else {
   459           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   460           emit_rm(cbuf, scale, index, base);
   461         }
   462         if ( displace_is_oop ) {
   463           emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   464         } else {
   465           emit_d32      (cbuf, displace);
   466         }
   467       }
   468     }
   469   }
   470 }
   473 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   474   if( dst_encoding == src_encoding ) {
   475     // reg-reg copy, use an empty encoding
   476   } else {
   477     emit_opcode( cbuf, 0x8B );
   478     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
   479   }
   480 }
   482 void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   483   if( dst_encoding == src_encoding ) {
   484     // reg-reg copy, use an empty encoding
   485   } else {
   486     MacroAssembler _masm(&cbuf);
   488     __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
   489   }
   490 }
   493 //=============================================================================
   494 #ifndef PRODUCT
   495 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   496   Compile* C = ra_->C;
   497   if( C->in_24_bit_fp_mode() ) {
   498     st->print("FLDCW  24 bit fpu control word");
   499     st->print_cr(""); st->print("\t");
   500   }
   502   int framesize = C->frame_slots() << LogBytesPerInt;
   503   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   504   // Remove two words for return addr and rbp,
   505   framesize -= 2*wordSize;
   507   // Calls to C2R adapters often do not accept exceptional returns.
   508   // We require that their callers must bang for them.  But be careful, because
   509   // some VM calls (such as call site linkage) can use several kilobytes of
   510   // stack.  But the stack safety zone should account for that.
   511   // See bugs 4446381, 4468289, 4497237.
   512   if (C->need_stack_bang(framesize)) {
   513     st->print_cr("# stack bang"); st->print("\t");
   514   }
   515   st->print_cr("PUSHL  EBP"); st->print("\t");
   517   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
   518     st->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
   519     st->print_cr(""); st->print("\t");
   520     framesize -= wordSize;
   521   }
   523   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
   524     if (framesize) {
   525       st->print("SUB    ESP,%d\t# Create frame",framesize);
   526     }
   527   } else {
   528     st->print("SUB    ESP,%d\t# Create frame",framesize);
   529   }
   530 }
   531 #endif
   534 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   535   Compile* C = ra_->C;
   537   if (UseSSE >= 2 && VerifyFPU) {
   538     MacroAssembler masm(&cbuf);
   539     masm.verify_FPU(0, "FPU stack must be clean on entry");
   540   }
   542   // WARNING: Initial instruction MUST be 5 bytes or longer so that
   543   // NativeJump::patch_verified_entry will be able to patch out the entry
   544   // code safely. The fldcw is ok at 6 bytes, the push to verify stack
   545   // depth is ok at 5 bytes, the frame allocation can be either 3 or
   546   // 6 bytes. So if we don't do the fldcw or the push then we must
   547   // use the 6 byte frame allocation even if we have no frame. :-(
   548   // If method sets FPU control word do it now
   549   if( C->in_24_bit_fp_mode() ) {
   550     MacroAssembler masm(&cbuf);
   551     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   552   }
   554   int framesize = C->frame_slots() << LogBytesPerInt;
   555   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   556   // Remove two words for return addr and rbp,
   557   framesize -= 2*wordSize;
   559   // Calls to C2R adapters often do not accept exceptional returns.
   560   // We require that their callers must bang for them.  But be careful, because
   561   // some VM calls (such as call site linkage) can use several kilobytes of
   562   // stack.  But the stack safety zone should account for that.
   563   // See bugs 4446381, 4468289, 4497237.
   564   if (C->need_stack_bang(framesize)) {
   565     MacroAssembler masm(&cbuf);
   566     masm.generate_stack_overflow_check(framesize);
   567   }
   569   // We always push rbp, so that on return to interpreter rbp, will be
   570   // restored correctly and we can correct the stack.
   571   emit_opcode(cbuf, 0x50 | EBP_enc);
   573   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
   574     emit_opcode(cbuf, 0x68); // push 0xbadb100d
   575     emit_d32(cbuf, 0xbadb100d);
   576     framesize -= wordSize;
   577   }
   579   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
   580     if (framesize) {
   581       emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
   582       emit_rm(cbuf, 0x3, 0x05, ESP_enc);
   583       emit_d8(cbuf, framesize);
   584     }
   585   } else {
   586     emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
   587     emit_rm(cbuf, 0x3, 0x05, ESP_enc);
   588     emit_d32(cbuf, framesize);
   589   }
   590   C->set_frame_complete(cbuf.code_end() - cbuf.code_begin());
   592 #ifdef ASSERT
   593   if (VerifyStackAtCalls) {
   594     Label L;
   595     MacroAssembler masm(&cbuf);
   596     masm.push(rax);
   597     masm.mov(rax, rsp);
   598     masm.andptr(rax, StackAlignmentInBytes-1);
   599     masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
   600     masm.pop(rax);
   601     masm.jcc(Assembler::equal, L);
   602     masm.stop("Stack is not properly aligned!");
   603     masm.bind(L);
   604   }
   605 #endif
   607 }
   609 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
   610   return MachNode::size(ra_); // too many variables; just compute it the hard way
   611 }
   613 int MachPrologNode::reloc() const {
   614   return 0; // a large enough number
   615 }
   617 //=============================================================================
   618 #ifndef PRODUCT
   619 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   620   Compile *C = ra_->C;
   621   int framesize = C->frame_slots() << LogBytesPerInt;
   622   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   623   // Remove two words for return addr and rbp,
   624   framesize -= 2*wordSize;
   626   if( C->in_24_bit_fp_mode() ) {
   627     st->print("FLDCW  standard control word");
   628     st->cr(); st->print("\t");
   629   }
   630   if( framesize ) {
   631     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
   632     st->cr(); st->print("\t");
   633   }
   634   st->print_cr("POPL   EBP"); st->print("\t");
   635   if( do_polling() && C->is_method_compilation() ) {
   636     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
   637     st->cr(); st->print("\t");
   638   }
   639 }
   640 #endif
   642 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   643   Compile *C = ra_->C;
   645   // If method set FPU control word, restore to standard control word
   646   if( C->in_24_bit_fp_mode() ) {
   647     MacroAssembler masm(&cbuf);
   648     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   649   }
   651   int framesize = C->frame_slots() << LogBytesPerInt;
   652   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   653   // Remove two words for return addr and rbp,
   654   framesize -= 2*wordSize;
   656   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
   658   if( framesize >= 128 ) {
   659     emit_opcode(cbuf, 0x81); // add  SP, #framesize
   660     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   661     emit_d32(cbuf, framesize);
   662   }
   663   else if( framesize ) {
   664     emit_opcode(cbuf, 0x83); // add  SP, #framesize
   665     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   666     emit_d8(cbuf, framesize);
   667   }
   669   emit_opcode(cbuf, 0x58 | EBP_enc);
   671   if( do_polling() && C->is_method_compilation() ) {
   672     cbuf.relocate(cbuf.code_end(), relocInfo::poll_return_type, 0);
   673     emit_opcode(cbuf,0x85);
   674     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
   675     emit_d32(cbuf, (intptr_t)os::get_polling_page());
   676   }
   677 }
   679 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
   680   Compile *C = ra_->C;
   681   // If method set FPU control word, restore to standard control word
   682   int size = C->in_24_bit_fp_mode() ? 6 : 0;
   683   if( do_polling() && C->is_method_compilation() ) size += 6;
   685   int framesize = C->frame_slots() << LogBytesPerInt;
   686   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   687   // Remove two words for return addr and rbp,
   688   framesize -= 2*wordSize;
   690   size++; // popl rbp,
   692   if( framesize >= 128 ) {
   693     size += 6;
   694   } else {
   695     size += framesize ? 3 : 0;
   696   }
   697   return size;
   698 }
   700 int MachEpilogNode::reloc() const {
   701   return 0; // a large enough number
   702 }
   704 const Pipeline * MachEpilogNode::pipeline() const {
   705   return MachNode::pipeline_class();
   706 }
   708 int MachEpilogNode::safepoint_offset() const { return 0; }
   710 //=============================================================================
   712 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
   713 static enum RC rc_class( OptoReg::Name reg ) {
   715   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   716   if (OptoReg::is_stack(reg)) return rc_stack;
   718   VMReg r = OptoReg::as_VMReg(reg);
   719   if (r->is_Register()) return rc_int;
   720   if (r->is_FloatRegister()) {
   721     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
   722     return rc_float;
   723   }
   724   assert(r->is_XMMRegister(), "must be");
   725   return rc_xmm;
   726 }
   728 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
   729                         int opcode, const char *op_str, int size, outputStream* st ) {
   730   if( cbuf ) {
   731     emit_opcode  (*cbuf, opcode );
   732     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
   733 #ifndef PRODUCT
   734   } else if( !do_size ) {
   735     if( size != 0 ) st->print("\n\t");
   736     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
   737       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
   738       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
   739     } else { // FLD, FST, PUSH, POP
   740       st->print("%s [ESP + #%d]",op_str,offset);
   741     }
   742 #endif
   743   }
   744   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   745   return size+3+offset_size;
   746 }
   748 // Helper for XMM registers.  Extra opcode bits, limited syntax.
   749 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
   750                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
   751   if( cbuf ) {
   752     if( reg_lo+1 == reg_hi ) { // double move?
   753       if( is_load && !UseXmmLoadAndClearUpper )
   754         emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
   755       else
   756         emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
   757     } else {
   758       emit_opcode(*cbuf, 0xF3 );
   759     }
   760     emit_opcode(*cbuf, 0x0F );
   761     if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
   762       emit_opcode(*cbuf, 0x12 );   // use 'movlpd' for load
   763     else
   764       emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
   765     encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
   766 #ifndef PRODUCT
   767   } else if( !do_size ) {
   768     if( size != 0 ) st->print("\n\t");
   769     if( reg_lo+1 == reg_hi ) { // double move?
   770       if( is_load ) st->print("%s %s,[ESP + #%d]",
   771                                UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
   772                                Matcher::regName[reg_lo], offset);
   773       else          st->print("MOVSD  [ESP + #%d],%s",
   774                                offset, Matcher::regName[reg_lo]);
   775     } else {
   776       if( is_load ) st->print("MOVSS  %s,[ESP + #%d]",
   777                                Matcher::regName[reg_lo], offset);
   778       else          st->print("MOVSS  [ESP + #%d],%s",
   779                                offset, Matcher::regName[reg_lo]);
   780     }
   781 #endif
   782   }
   783   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   784   return size+5+offset_size;
   785 }
   788 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   789                             int src_hi, int dst_hi, int size, outputStream* st ) {
   790   if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
   791     if( cbuf ) {
   792       if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
   793         emit_opcode(*cbuf, 0x66 );
   794       }
   795       emit_opcode(*cbuf, 0x0F );
   796       emit_opcode(*cbuf, 0x28 );
   797       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
   798 #ifndef PRODUCT
   799     } else if( !do_size ) {
   800       if( size != 0 ) st->print("\n\t");
   801       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   802         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   803       } else {
   804         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   805       }
   806 #endif
   807     }
   808     return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
   809   } else {
   810     if( cbuf ) {
   811       emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
   812       emit_opcode(*cbuf, 0x0F );
   813       emit_opcode(*cbuf, 0x10 );
   814       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
   815 #ifndef PRODUCT
   816     } else if( !do_size ) {
   817       if( size != 0 ) st->print("\n\t");
   818       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   819         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   820       } else {
   821         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   822       }
   823 #endif
   824     }
   825     return size+4;
   826   }
   827 }
   829 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
   830   if( cbuf ) {
   831     emit_opcode(*cbuf, 0x8B );
   832     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
   833 #ifndef PRODUCT
   834   } else if( !do_size ) {
   835     if( size != 0 ) st->print("\n\t");
   836     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
   837 #endif
   838   }
   839   return size+2;
   840 }
   842 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
   843                                  int offset, int size, outputStream* st ) {
   844   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
   845     if( cbuf ) {
   846       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
   847       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
   848 #ifndef PRODUCT
   849     } else if( !do_size ) {
   850       if( size != 0 ) st->print("\n\t");
   851       st->print("FLD    %s",Matcher::regName[src_lo]);
   852 #endif
   853     }
   854     size += 2;
   855   }
   857   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
   858   const char *op_str;
   859   int op;
   860   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
   861     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
   862     op = 0xDD;
   863   } else {                   // 32-bit store
   864     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
   865     op = 0xD9;
   866     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
   867   }
   869   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
   870 }
   872 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   873   // Get registers to move
   874   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   875   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   876   OptoReg::Name dst_second = ra_->get_reg_second(this );
   877   OptoReg::Name dst_first = ra_->get_reg_first(this );
   879   enum RC src_second_rc = rc_class(src_second);
   880   enum RC src_first_rc = rc_class(src_first);
   881   enum RC dst_second_rc = rc_class(dst_second);
   882   enum RC dst_first_rc = rc_class(dst_first);
   884   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
   886   // Generate spill code!
   887   int size = 0;
   889   if( src_first == dst_first && src_second == dst_second )
   890     return size;            // Self copy, no move
   892   // --------------------------------------
   893   // Check for mem-mem move.  push/pop to move.
   894   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
   895     if( src_second == dst_first ) { // overlapping stack copy ranges
   896       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
   897       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   898       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   899       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
   900     }
   901     // move low bits
   902     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
   903     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
   904     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
   905       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   906       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   907     }
   908     return size;
   909   }
   911   // --------------------------------------
   912   // Check for integer reg-reg copy
   913   if( src_first_rc == rc_int && dst_first_rc == rc_int )
   914     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
   916   // Check for integer store
   917   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
   918     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
   920   // Check for integer load
   921   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
   922     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
   924   // --------------------------------------
   925   // Check for float reg-reg copy
   926   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
   927     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
   928             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
   929     if( cbuf ) {
   931       // Note the mucking with the register encode to compensate for the 0/1
   932       // indexing issue mentioned in a comment in the reg_def sections
   933       // for FPR registers many lines above here.
   935       if( src_first != FPR1L_num ) {
   936         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
   937         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
   938         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
   939         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
   940      } else {
   941         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
   942         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
   943      }
   944 #ifndef PRODUCT
   945     } else if( !do_size ) {
   946       if( size != 0 ) st->print("\n\t");
   947       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
   948       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
   949 #endif
   950     }
   951     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
   952   }
   954   // Check for float store
   955   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
   956     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
   957   }
   959   // Check for float load
   960   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
   961     int offset = ra_->reg2offset(src_first);
   962     const char *op_str;
   963     int op;
   964     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
   965       op_str = "FLD_D";
   966       op = 0xDD;
   967     } else {                   // 32-bit load
   968       op_str = "FLD_S";
   969       op = 0xD9;
   970       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
   971     }
   972     if( cbuf ) {
   973       emit_opcode  (*cbuf, op );
   974       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
   975       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
   976       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
   977 #ifndef PRODUCT
   978     } else if( !do_size ) {
   979       if( size != 0 ) st->print("\n\t");
   980       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
   981 #endif
   982     }
   983     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   984     return size + 3+offset_size+2;
   985   }
   987   // Check for xmm reg-reg copy
   988   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
   989     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
   990             (src_first+1 == src_second && dst_first+1 == dst_second),
   991             "no non-adjacent float-moves" );
   992     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
   993   }
   995   // Check for xmm store
   996   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
   997     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
   998   }
  1000   // Check for float xmm load
  1001   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
  1002     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
  1005   // Copy from float reg to xmm reg
  1006   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
  1007     // copy to the top of stack from floating point reg
  1008     // and use LEA to preserve flags
  1009     if( cbuf ) {
  1010       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
  1011       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1012       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1013       emit_d8(*cbuf,0xF8);
  1014 #ifndef PRODUCT
  1015     } else if( !do_size ) {
  1016       if( size != 0 ) st->print("\n\t");
  1017       st->print("LEA    ESP,[ESP-8]");
  1018 #endif
  1020     size += 4;
  1022     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
  1024     // Copy from the temp memory to the xmm reg.
  1025     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
  1027     if( cbuf ) {
  1028       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
  1029       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1030       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1031       emit_d8(*cbuf,0x08);
  1032 #ifndef PRODUCT
  1033     } else if( !do_size ) {
  1034       if( size != 0 ) st->print("\n\t");
  1035       st->print("LEA    ESP,[ESP+8]");
  1036 #endif
  1038     size += 4;
  1039     return size;
  1042   assert( size > 0, "missed a case" );
  1044   // --------------------------------------------------------------------
  1045   // Check for second bits still needing moving.
  1046   if( src_second == dst_second )
  1047     return size;               // Self copy; no move
  1048   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1050   // Check for second word int-int move
  1051   if( src_second_rc == rc_int && dst_second_rc == rc_int )
  1052     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
  1054   // Check for second word integer store
  1055   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1056     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
  1058   // Check for second word integer load
  1059   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1060     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
  1063   Unimplemented();
  1066 #ifndef PRODUCT
  1067 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1068   implementation( NULL, ra_, false, st );
  1070 #endif
  1072 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1073   implementation( &cbuf, ra_, false, NULL );
  1076 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1077   return implementation( NULL, ra_, true, NULL );
  1080 //=============================================================================
  1081 #ifndef PRODUCT
  1082 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1083   st->print("NOP \t# %d bytes pad for loops and calls", _count);
  1085 #endif
  1087 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1088   MacroAssembler _masm(&cbuf);
  1089   __ nop(_count);
  1092 uint MachNopNode::size(PhaseRegAlloc *) const {
  1093   return _count;
  1097 //=============================================================================
  1098 #ifndef PRODUCT
  1099 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1100   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1101   int reg = ra_->get_reg_first(this);
  1102   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
  1104 #endif
  1106 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1107   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1108   int reg = ra_->get_encode(this);
  1109   if( offset >= 128 ) {
  1110     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1111     emit_rm(cbuf, 0x2, reg, 0x04);
  1112     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1113     emit_d32(cbuf, offset);
  1115   else {
  1116     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1117     emit_rm(cbuf, 0x1, reg, 0x04);
  1118     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1119     emit_d8(cbuf, offset);
  1123 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1124   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1125   if( offset >= 128 ) {
  1126     return 7;
  1128   else {
  1129     return 4;
  1133 //=============================================================================
  1135 // emit call stub, compiled java to interpreter
  1136 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1137   // Stub is fixed up when the corresponding call is converted from calling
  1138   // compiled code to calling interpreted code.
  1139   // mov rbx,0
  1140   // jmp -1
  1142   address mark = cbuf.inst_mark();  // get mark within main instrs section
  1144   // Note that the code buffer's inst_mark is always relative to insts.
  1145   // That's why we must use the macroassembler to generate a stub.
  1146   MacroAssembler _masm(&cbuf);
  1148   address base =
  1149   __ start_a_stub(Compile::MAX_stubs_size);
  1150   if (base == NULL)  return;  // CodeBuffer::expand failed
  1151   // static stub relocation stores the instruction address of the call
  1152   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
  1153   // static stub relocation also tags the methodOop in the code-stream.
  1154   __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
  1155   // This is recognized as unresolved by relocs/nativeInst/ic code
  1156   __ jump(RuntimeAddress(__ pc()));
  1158   __ end_a_stub();
  1159   // Update current stubs pointer and restore code_end.
  1161 // size of call stub, compiled java to interpretor
  1162 uint size_java_to_interp() {
  1163   return 10;  // movl; jmp
  1165 // relocation entries for call stub, compiled java to interpretor
  1166 uint reloc_java_to_interp() {
  1167   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
  1170 //=============================================================================
  1171 #ifndef PRODUCT
  1172 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1173   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  1174   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  1175   st->print_cr("\tNOP");
  1176   st->print_cr("\tNOP");
  1177   if( !OptoBreakpoint )
  1178     st->print_cr("\tNOP");
  1180 #endif
  1182 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1183   MacroAssembler masm(&cbuf);
  1184 #ifdef ASSERT
  1185   uint code_size = cbuf.code_size();
  1186 #endif
  1187   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
  1188   masm.jump_cc(Assembler::notEqual,
  1189                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1190   /* WARNING these NOPs are critical so that verified entry point is properly
  1191      aligned for patching by NativeJump::patch_verified_entry() */
  1192   int nops_cnt = 2;
  1193   if( !OptoBreakpoint ) // Leave space for int3
  1194      nops_cnt += 1;
  1195   masm.nop(nops_cnt);
  1197   assert(cbuf.code_size() - code_size == size(ra_), "checking code size of inline cache node");
  1200 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1201   return OptoBreakpoint ? 11 : 12;
  1205 //=============================================================================
  1206 uint size_exception_handler() {
  1207   // NativeCall instruction size is the same as NativeJump.
  1208   // exception handler starts out as jump and can be patched to
  1209   // a call be deoptimization.  (4932387)
  1210   // Note that this value is also credited (in output.cpp) to
  1211   // the size of the code section.
  1212   return NativeJump::instruction_size;
  1215 // Emit exception handler code.  Stuff framesize into a register
  1216 // and call a VM stub routine.
  1217 int emit_exception_handler(CodeBuffer& cbuf) {
  1219   // Note that the code buffer's inst_mark is always relative to insts.
  1220   // That's why we must use the macroassembler to generate a handler.
  1221   MacroAssembler _masm(&cbuf);
  1222   address base =
  1223   __ start_a_stub(size_exception_handler());
  1224   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1225   int offset = __ offset();
  1226   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin()));
  1227   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1228   __ end_a_stub();
  1229   return offset;
  1232 uint size_deopt_handler() {
  1233   // NativeCall instruction size is the same as NativeJump.
  1234   // exception handler starts out as jump and can be patched to
  1235   // a call be deoptimization.  (4932387)
  1236   // Note that this value is also credited (in output.cpp) to
  1237   // the size of the code section.
  1238   return 5 + NativeJump::instruction_size; // pushl(); jmp;
  1241 // Emit deopt handler code.
  1242 int emit_deopt_handler(CodeBuffer& cbuf) {
  1244   // Note that the code buffer's inst_mark is always relative to insts.
  1245   // That's why we must use the macroassembler to generate a handler.
  1246   MacroAssembler _masm(&cbuf);
  1247   address base =
  1248   __ start_a_stub(size_exception_handler());
  1249   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1250   int offset = __ offset();
  1251   InternalAddress here(__ pc());
  1252   __ pushptr(here.addr());
  1254   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1255   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1256   __ end_a_stub();
  1257   return offset;
  1261 static void emit_double_constant(CodeBuffer& cbuf, double x) {
  1262   int mark = cbuf.insts()->mark_off();
  1263   MacroAssembler _masm(&cbuf);
  1264   address double_address = __ double_constant(x);
  1265   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1266   emit_d32_reloc(cbuf,
  1267                  (int)double_address,
  1268                  internal_word_Relocation::spec(double_address),
  1269                  RELOC_DISP32);
  1272 static void emit_float_constant(CodeBuffer& cbuf, float x) {
  1273   int mark = cbuf.insts()->mark_off();
  1274   MacroAssembler _masm(&cbuf);
  1275   address float_address = __ float_constant(x);
  1276   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1277   emit_d32_reloc(cbuf,
  1278                  (int)float_address,
  1279                  internal_word_Relocation::spec(float_address),
  1280                  RELOC_DISP32);
  1284 int Matcher::regnum_to_fpu_offset(int regnum) {
  1285   return regnum - 32; // The FP registers are in the second chunk
  1288 bool is_positive_zero_float(jfloat f) {
  1289   return jint_cast(f) == jint_cast(0.0F);
  1292 bool is_positive_one_float(jfloat f) {
  1293   return jint_cast(f) == jint_cast(1.0F);
  1296 bool is_positive_zero_double(jdouble d) {
  1297   return jlong_cast(d) == jlong_cast(0.0);
  1300 bool is_positive_one_double(jdouble d) {
  1301   return jlong_cast(d) == jlong_cast(1.0);
  1304 // This is UltraSparc specific, true just means we have fast l2f conversion
  1305 const bool Matcher::convL2FSupported(void) {
  1306   return true;
  1309 // Vector width in bytes
  1310 const uint Matcher::vector_width_in_bytes(void) {
  1311   return UseSSE >= 2 ? 8 : 0;
  1314 // Vector ideal reg
  1315 const uint Matcher::vector_ideal_reg(void) {
  1316   return Op_RegD;
  1319 // Is this branch offset short enough that a short branch can be used?
  1320 //
  1321 // NOTE: If the platform does not provide any short branch variants, then
  1322 //       this method should return false for offset 0.
  1323 bool Matcher::is_short_branch_offset(int rule, int offset) {
  1324   // the short version of jmpConUCF2 contains multiple branches,
  1325   // making the reach slightly less
  1326   if (rule == jmpConUCF2_rule)
  1327     return (-126 <= offset && offset <= 125);
  1328   return (-128 <= offset && offset <= 127);
  1331 const bool Matcher::isSimpleConstant64(jlong value) {
  1332   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1333   return false;
  1336 // The ecx parameter to rep stos for the ClearArray node is in dwords.
  1337 const bool Matcher::init_array_count_is_in_bytes = false;
  1339 // Threshold size for cleararray.
  1340 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1342 // Should the Matcher clone shifts on addressing modes, expecting them to
  1343 // be subsumed into complex addressing expressions or compute them into
  1344 // registers?  True for Intel but false for most RISCs
  1345 const bool Matcher::clone_shift_expressions = true;
  1347 // Is it better to copy float constants, or load them directly from memory?
  1348 // Intel can load a float constant from a direct address, requiring no
  1349 // extra registers.  Most RISCs will have to materialize an address into a
  1350 // register first, so they would do better to copy the constant from stack.
  1351 const bool Matcher::rematerialize_float_constants = true;
  1353 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1354 // needed.  Else we split the double into 2 integer pieces and move it
  1355 // piece-by-piece.  Only happens when passing doubles into C code as the
  1356 // Java calling convention forces doubles to be aligned.
  1357 const bool Matcher::misaligned_doubles_ok = true;
  1360 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1361   // Get the memory operand from the node
  1362   uint numopnds = node->num_opnds();        // Virtual call for number of operands
  1363   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  1364   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  1365   uint opcnt     = 1;                 // First operand
  1366   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  1367   while( idx >= skipped+num_edges ) {
  1368     skipped += num_edges;
  1369     opcnt++;                          // Bump operand count
  1370     assert( opcnt < numopnds, "Accessing non-existent operand" );
  1371     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  1374   MachOper *memory = node->_opnds[opcnt];
  1375   MachOper *new_memory = NULL;
  1376   switch (memory->opcode()) {
  1377   case DIRECT:
  1378   case INDOFFSET32X:
  1379     // No transformation necessary.
  1380     return;
  1381   case INDIRECT:
  1382     new_memory = new (C) indirect_win95_safeOper( );
  1383     break;
  1384   case INDOFFSET8:
  1385     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
  1386     break;
  1387   case INDOFFSET32:
  1388     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
  1389     break;
  1390   case INDINDEXOFFSET:
  1391     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
  1392     break;
  1393   case INDINDEXSCALE:
  1394     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
  1395     break;
  1396   case INDINDEXSCALEOFFSET:
  1397     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
  1398     break;
  1399   case LOAD_LONG_INDIRECT:
  1400   case LOAD_LONG_INDOFFSET32:
  1401     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
  1402     return;
  1403   default:
  1404     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
  1405     return;
  1407   node->_opnds[opcnt] = new_memory;
  1410 // Advertise here if the CPU requires explicit rounding operations
  1411 // to implement the UseStrictFP mode.
  1412 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  1414 // Do floats take an entire double register or just half?
  1415 const bool Matcher::float_in_double = true;
  1416 // Do ints take an entire long register or just half?
  1417 const bool Matcher::int_in_long = false;
  1419 // Return whether or not this register is ever used as an argument.  This
  1420 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1421 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1422 // arguments in those registers not be available to the callee.
  1423 bool Matcher::can_be_java_arg( int reg ) {
  1424   if(  reg == ECX_num   || reg == EDX_num   ) return true;
  1425   if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
  1426   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  1427   return false;
  1430 bool Matcher::is_spillable_arg( int reg ) {
  1431   return can_be_java_arg(reg);
  1434 // Register for DIVI projection of divmodI
  1435 RegMask Matcher::divI_proj_mask() {
  1436   return EAX_REG_mask;
  1439 // Register for MODI projection of divmodI
  1440 RegMask Matcher::modI_proj_mask() {
  1441   return EDX_REG_mask;
  1444 // Register for DIVL projection of divmodL
  1445 RegMask Matcher::divL_proj_mask() {
  1446   ShouldNotReachHere();
  1447   return RegMask();
  1450 // Register for MODL projection of divmodL
  1451 RegMask Matcher::modL_proj_mask() {
  1452   ShouldNotReachHere();
  1453   return RegMask();
  1456 %}
  1458 //----------ENCODING BLOCK-----------------------------------------------------
  1459 // This block specifies the encoding classes used by the compiler to output
  1460 // byte streams.  Encoding classes generate functions which are called by
  1461 // Machine Instruction Nodes in order to generate the bit encoding of the
  1462 // instruction.  Operands specify their base encoding interface with the
  1463 // interface keyword.  There are currently supported four interfaces,
  1464 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1465 // operand to generate a function which returns its register number when
  1466 // queried.   CONST_INTER causes an operand to generate a function which
  1467 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1468 // operand to generate four functions which return the Base Register, the
  1469 // Index Register, the Scale Value, and the Offset Value of the operand when
  1470 // queried.  COND_INTER causes an operand to generate six functions which
  1471 // return the encoding code (ie - encoding bits for the instruction)
  1472 // associated with each basic boolean condition for a conditional instruction.
  1473 // Instructions specify two basic values for encoding.  They use the
  1474 // ins_encode keyword to specify their encoding class (which must be one of
  1475 // the class names specified in the encoding block), and they use the
  1476 // opcode keyword to specify, in order, their primary, secondary, and
  1477 // tertiary opcode.  Only the opcode sections which a particular instruction
  1478 // needs for encoding need to be specified.
  1479 encode %{
  1480   // Build emit functions for each basic byte or larger field in the intel
  1481   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  1482   // code in the enc_class source block.  Emit functions will live in the
  1483   // main source block for now.  In future, we can generalize this by
  1484   // adding a syntax that specifies the sizes of fields in an order,
  1485   // so that the adlc can build the emit functions automagically
  1487   // Emit primary opcode
  1488   enc_class OpcP %{
  1489     emit_opcode(cbuf, $primary);
  1490   %}
  1492   // Emit secondary opcode
  1493   enc_class OpcS %{
  1494     emit_opcode(cbuf, $secondary);
  1495   %}
  1497   // Emit opcode directly
  1498   enc_class Opcode(immI d8) %{
  1499     emit_opcode(cbuf, $d8$$constant);
  1500   %}
  1502   enc_class SizePrefix %{
  1503     emit_opcode(cbuf,0x66);
  1504   %}
  1506   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  1507     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1508   %}
  1510   enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
  1511     emit_opcode(cbuf,$opcode$$constant);
  1512     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1513   %}
  1515   enc_class mov_r32_imm0( eRegI dst ) %{
  1516     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
  1517     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  1518   %}
  1520   enc_class cdq_enc %{
  1521     // Full implementation of Java idiv and irem; checks for
  1522     // special case as described in JVM spec., p.243 & p.271.
  1523     //
  1524     //         normal case                           special case
  1525     //
  1526     // input : rax,: dividend                         min_int
  1527     //         reg: divisor                          -1
  1528     //
  1529     // output: rax,: quotient  (= rax, idiv reg)       min_int
  1530     //         rdx: remainder (= rax, irem reg)       0
  1531     //
  1532     //  Code sequnce:
  1533     //
  1534     //  81 F8 00 00 00 80    cmp         rax,80000000h
  1535     //  0F 85 0B 00 00 00    jne         normal_case
  1536     //  33 D2                xor         rdx,edx
  1537     //  83 F9 FF             cmp         rcx,0FFh
  1538     //  0F 84 03 00 00 00    je          done
  1539     //                  normal_case:
  1540     //  99                   cdq
  1541     //  F7 F9                idiv        rax,ecx
  1542     //                  done:
  1543     //
  1544     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
  1545     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
  1546     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
  1547     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
  1548     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
  1549     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
  1550     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
  1551     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
  1552     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
  1553     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
  1554     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
  1555     // normal_case:
  1556     emit_opcode(cbuf,0x99);                                         // cdq
  1557     // idiv (note: must be emitted by the user of this rule)
  1558     // normal:
  1559   %}
  1561   // Dense encoding for older common ops
  1562   enc_class Opc_plus(immI opcode, eRegI reg) %{
  1563     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  1564   %}
  1567   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  1568   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
  1569     // Check for 8-bit immediate, and set sign extend bit in opcode
  1570     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1571       emit_opcode(cbuf, $primary | 0x02);
  1573     else {                          // If 32-bit immediate
  1574       emit_opcode(cbuf, $primary);
  1576   %}
  1578   enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
  1579     // Emit primary opcode and set sign-extend bit
  1580     // Check for 8-bit immediate, and set sign extend bit in opcode
  1581     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1582       emit_opcode(cbuf, $primary | 0x02);    }
  1583     else {                          // If 32-bit immediate
  1584       emit_opcode(cbuf, $primary);
  1586     // Emit r/m byte with secondary opcode, after primary opcode.
  1587     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1588   %}
  1590   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
  1591     // Check for 8-bit immediate, and set sign extend bit in opcode
  1592     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1593       $$$emit8$imm$$constant;
  1595     else {                          // If 32-bit immediate
  1596       // Output immediate
  1597       $$$emit32$imm$$constant;
  1599   %}
  1601   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
  1602     // Emit primary opcode and set sign-extend bit
  1603     // Check for 8-bit immediate, and set sign extend bit in opcode
  1604     int con = (int)$imm$$constant; // Throw away top bits
  1605     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1606     // Emit r/m byte with secondary opcode, after primary opcode.
  1607     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1608     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1609     else                               emit_d32(cbuf,con);
  1610   %}
  1612   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
  1613     // Emit primary opcode and set sign-extend bit
  1614     // Check for 8-bit immediate, and set sign extend bit in opcode
  1615     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
  1616     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1617     // Emit r/m byte with tertiary opcode, after primary opcode.
  1618     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
  1619     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1620     else                               emit_d32(cbuf,con);
  1621   %}
  1623   enc_class Lbl (label labl) %{ // JMP, CALL
  1624     Label *l = $labl$$label;
  1625     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
  1626   %}
  1628   enc_class LblShort (label labl) %{ // JMP, CALL
  1629     Label *l = $labl$$label;
  1630     int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
  1631     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  1632     emit_d8(cbuf, disp);
  1633   %}
  1635   enc_class OpcSReg (eRegI dst) %{    // BSWAP
  1636     emit_cc(cbuf, $secondary, $dst$$reg );
  1637   %}
  1639   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
  1640     int destlo = $dst$$reg;
  1641     int desthi = HIGH_FROM_LOW(destlo);
  1642     // bswap lo
  1643     emit_opcode(cbuf, 0x0F);
  1644     emit_cc(cbuf, 0xC8, destlo);
  1645     // bswap hi
  1646     emit_opcode(cbuf, 0x0F);
  1647     emit_cc(cbuf, 0xC8, desthi);
  1648     // xchg lo and hi
  1649     emit_opcode(cbuf, 0x87);
  1650     emit_rm(cbuf, 0x3, destlo, desthi);
  1651   %}
  1653   enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
  1654     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  1655   %}
  1657   enc_class Jcc (cmpOp cop, label labl) %{    // JCC
  1658     Label *l = $labl$$label;
  1659     $$$emit8$primary;
  1660     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1661     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
  1662   %}
  1664   enc_class JccShort (cmpOp cop, label labl) %{    // JCC
  1665     Label *l = $labl$$label;
  1666     emit_cc(cbuf, $primary, $cop$$cmpcode);
  1667     int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
  1668     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  1669     emit_d8(cbuf, disp);
  1670   %}
  1672   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
  1673     $$$emit8$primary;
  1674     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1675   %}
  1677   enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
  1678     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
  1679     emit_d8(cbuf, op >> 8 );
  1680     emit_d8(cbuf, op & 255);
  1681   %}
  1683   // emulate a CMOV with a conditional branch around a MOV
  1684   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
  1685     // Invert sense of branch from sense of CMOV
  1686     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
  1687     emit_d8( cbuf, $brOffs$$constant );
  1688   %}
  1690   enc_class enc_PartialSubtypeCheck( ) %{
  1691     Register Redi = as_Register(EDI_enc); // result register
  1692     Register Reax = as_Register(EAX_enc); // super class
  1693     Register Recx = as_Register(ECX_enc); // killed
  1694     Register Resi = as_Register(ESI_enc); // sub class
  1695     Label miss;
  1697     MacroAssembler _masm(&cbuf);
  1698     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
  1699                                      NULL, &miss,
  1700                                      /*set_cond_codes:*/ true);
  1701     if ($primary) {
  1702       __ xorptr(Redi, Redi);
  1704     __ bind(miss);
  1705   %}
  1707   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
  1708     MacroAssembler masm(&cbuf);
  1709     int start = masm.offset();
  1710     if (UseSSE >= 2) {
  1711       if (VerifyFPU) {
  1712         masm.verify_FPU(0, "must be empty in SSE2+ mode");
  1714     } else {
  1715       // External c_calling_convention expects the FPU stack to be 'clean'.
  1716       // Compiled code leaves it dirty.  Do cleanup now.
  1717       masm.empty_FPU_stack();
  1719     if (sizeof_FFree_Float_Stack_All == -1) {
  1720       sizeof_FFree_Float_Stack_All = masm.offset() - start;
  1721     } else {
  1722       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
  1724   %}
  1726   enc_class Verify_FPU_For_Leaf %{
  1727     if( VerifyFPU ) {
  1728       MacroAssembler masm(&cbuf);
  1729       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
  1731   %}
  1733   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  1734     // This is the instruction starting address for relocation info.
  1735     cbuf.set_inst_mark();
  1736     $$$emit8$primary;
  1737     // CALL directly to the runtime
  1738     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1739                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1741     if (UseSSE >= 2) {
  1742       MacroAssembler _masm(&cbuf);
  1743       BasicType rt = tf()->return_type();
  1745       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
  1746         // A C runtime call where the return value is unused.  In SSE2+
  1747         // mode the result needs to be removed from the FPU stack.  It's
  1748         // likely that this function call could be removed by the
  1749         // optimizer if the C function is a pure function.
  1750         __ ffree(0);
  1751       } else if (rt == T_FLOAT) {
  1752         __ lea(rsp, Address(rsp, -4));
  1753         __ fstp_s(Address(rsp, 0));
  1754         __ movflt(xmm0, Address(rsp, 0));
  1755         __ lea(rsp, Address(rsp,  4));
  1756       } else if (rt == T_DOUBLE) {
  1757         __ lea(rsp, Address(rsp, -8));
  1758         __ fstp_d(Address(rsp, 0));
  1759         __ movdbl(xmm0, Address(rsp, 0));
  1760         __ lea(rsp, Address(rsp,  8));
  1763   %}
  1766   enc_class pre_call_FPU %{
  1767     // If method sets FPU control word restore it here
  1768     if( Compile::current()->in_24_bit_fp_mode() ) {
  1769       MacroAssembler masm(&cbuf);
  1770       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1772   %}
  1774   enc_class post_call_FPU %{
  1775     // If method sets FPU control word do it here also
  1776     if( Compile::current()->in_24_bit_fp_mode() ) {
  1777       MacroAssembler masm(&cbuf);
  1778       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  1780   %}
  1782   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1783     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1784     // who we intended to call.
  1785     cbuf.set_inst_mark();
  1786     $$$emit8$primary;
  1787     if ( !_method ) {
  1788       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1789                      runtime_call_Relocation::spec(), RELOC_IMM32 );
  1790     } else if(_optimized_virtual) {
  1791       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1792                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  1793     } else {
  1794       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1795                      static_call_Relocation::spec(), RELOC_IMM32 );
  1797     if( _method ) {  // Emit stub for static call
  1798       emit_java_to_interp(cbuf);
  1800   %}
  1802   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1803     // !!!!!
  1804     // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
  1805     // emit_call_dynamic_prologue( cbuf );
  1806     cbuf.set_inst_mark();
  1807     emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
  1808     emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
  1809     address  virtual_call_oop_addr = cbuf.inst_mark();
  1810     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1811     // who we intended to call.
  1812     cbuf.set_inst_mark();
  1813     $$$emit8$primary;
  1814     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1815                 virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
  1816   %}
  1818   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1819     int disp = in_bytes(methodOopDesc::from_compiled_offset());
  1820     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
  1822     // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
  1823     cbuf.set_inst_mark();
  1824     $$$emit8$primary;
  1825     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
  1826     emit_d8(cbuf, disp);             // Displacement
  1828   %}
  1830   enc_class Xor_Reg (eRegI dst) %{
  1831     emit_opcode(cbuf, 0x33);
  1832     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  1833   %}
  1835 //   Following encoding is no longer used, but may be restored if calling
  1836 //   convention changes significantly.
  1837 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
  1838 //
  1839 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
  1840 //     // int ic_reg     = Matcher::inline_cache_reg();
  1841 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
  1842 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
  1843 //     // int imo_encode = Matcher::_regEncode[imo_reg];
  1844 //
  1845 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
  1846 //     // // so we load it immediately before the call
  1847 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
  1848 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
  1849 //
  1850 //     // xor rbp,ebp
  1851 //     emit_opcode(cbuf, 0x33);
  1852 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
  1853 //
  1854 //     // CALL to interpreter.
  1855 //     cbuf.set_inst_mark();
  1856 //     $$$emit8$primary;
  1857 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.code_end()) - 4),
  1858 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1859 //   %}
  1861   enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
  1862     $$$emit8$primary;
  1863     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1864     $$$emit8$shift$$constant;
  1865   %}
  1867   enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
  1868     // Load immediate does not have a zero or sign extended version
  1869     // for 8-bit immediates
  1870     emit_opcode(cbuf, 0xB8 + $dst$$reg);
  1871     $$$emit32$src$$constant;
  1872   %}
  1874   enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
  1875     // Load immediate does not have a zero or sign extended version
  1876     // for 8-bit immediates
  1877     emit_opcode(cbuf, $primary + $dst$$reg);
  1878     $$$emit32$src$$constant;
  1879   %}
  1881   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
  1882     // Load immediate does not have a zero or sign extended version
  1883     // for 8-bit immediates
  1884     int dst_enc = $dst$$reg;
  1885     int src_con = $src$$constant & 0x0FFFFFFFFL;
  1886     if (src_con == 0) {
  1887       // xor dst, dst
  1888       emit_opcode(cbuf, 0x33);
  1889       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1890     } else {
  1891       emit_opcode(cbuf, $primary + dst_enc);
  1892       emit_d32(cbuf, src_con);
  1894   %}
  1896   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
  1897     // Load immediate does not have a zero or sign extended version
  1898     // for 8-bit immediates
  1899     int dst_enc = $dst$$reg + 2;
  1900     int src_con = ((julong)($src$$constant)) >> 32;
  1901     if (src_con == 0) {
  1902       // xor dst, dst
  1903       emit_opcode(cbuf, 0x33);
  1904       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1905     } else {
  1906       emit_opcode(cbuf, $primary + dst_enc);
  1907       emit_d32(cbuf, src_con);
  1909   %}
  1912   enc_class LdImmD (immD src) %{    // Load Immediate
  1913     if( is_positive_zero_double($src$$constant)) {
  1914       // FLDZ
  1915       emit_opcode(cbuf,0xD9);
  1916       emit_opcode(cbuf,0xEE);
  1917     } else if( is_positive_one_double($src$$constant)) {
  1918       // FLD1
  1919       emit_opcode(cbuf,0xD9);
  1920       emit_opcode(cbuf,0xE8);
  1921     } else {
  1922       emit_opcode(cbuf,0xDD);
  1923       emit_rm(cbuf, 0x0, 0x0, 0x5);
  1924       emit_double_constant(cbuf, $src$$constant);
  1926   %}
  1929   enc_class LdImmF (immF src) %{    // Load Immediate
  1930     if( is_positive_zero_float($src$$constant)) {
  1931       emit_opcode(cbuf,0xD9);
  1932       emit_opcode(cbuf,0xEE);
  1933     } else if( is_positive_one_float($src$$constant)) {
  1934       emit_opcode(cbuf,0xD9);
  1935       emit_opcode(cbuf,0xE8);
  1936     } else {
  1937       $$$emit8$primary;
  1938       // Load immediate does not have a zero or sign extended version
  1939       // for 8-bit immediates
  1940       // First load to TOS, then move to dst
  1941       emit_rm(cbuf, 0x0, 0x0, 0x5);
  1942       emit_float_constant(cbuf, $src$$constant);
  1944   %}
  1946   enc_class LdImmX (regX dst, immXF con) %{    // Load Immediate
  1947     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  1948     emit_float_constant(cbuf, $con$$constant);
  1949   %}
  1951   enc_class LdImmXD (regXD dst, immXD con) %{    // Load Immediate
  1952     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  1953     emit_double_constant(cbuf, $con$$constant);
  1954   %}
  1956   enc_class load_conXD (regXD dst, immXD con) %{ // Load double constant
  1957     // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
  1958     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  1959     emit_opcode(cbuf, 0x0F);
  1960     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  1961     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  1962     emit_double_constant(cbuf, $con$$constant);
  1963   %}
  1965   enc_class Opc_MemImm_F(immF src) %{
  1966     cbuf.set_inst_mark();
  1967     $$$emit8$primary;
  1968     emit_rm(cbuf, 0x0, $secondary, 0x5);
  1969     emit_float_constant(cbuf, $src$$constant);
  1970   %}
  1973   enc_class MovI2X_reg(regX dst, eRegI src) %{
  1974     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
  1975     emit_opcode(cbuf, 0x0F );
  1976     emit_opcode(cbuf, 0x6E );
  1977     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1978   %}
  1980   enc_class MovX2I_reg(eRegI dst, regX src) %{
  1981     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
  1982     emit_opcode(cbuf, 0x0F );
  1983     emit_opcode(cbuf, 0x7E );
  1984     emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
  1985   %}
  1987   enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
  1988     { // MOVD $dst,$src.lo
  1989       emit_opcode(cbuf,0x66);
  1990       emit_opcode(cbuf,0x0F);
  1991       emit_opcode(cbuf,0x6E);
  1992       emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1994     { // MOVD $tmp,$src.hi
  1995       emit_opcode(cbuf,0x66);
  1996       emit_opcode(cbuf,0x0F);
  1997       emit_opcode(cbuf,0x6E);
  1998       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  2000     { // PUNPCKLDQ $dst,$tmp
  2001       emit_opcode(cbuf,0x66);
  2002       emit_opcode(cbuf,0x0F);
  2003       emit_opcode(cbuf,0x62);
  2004       emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
  2006   %}
  2008   enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
  2009     { // MOVD $dst.lo,$src
  2010       emit_opcode(cbuf,0x66);
  2011       emit_opcode(cbuf,0x0F);
  2012       emit_opcode(cbuf,0x7E);
  2013       emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
  2015     { // PSHUFLW $tmp,$src,0x4E  (01001110b)
  2016       emit_opcode(cbuf,0xF2);
  2017       emit_opcode(cbuf,0x0F);
  2018       emit_opcode(cbuf,0x70);
  2019       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  2020       emit_d8(cbuf, 0x4E);
  2022     { // MOVD $dst.hi,$tmp
  2023       emit_opcode(cbuf,0x66);
  2024       emit_opcode(cbuf,0x0F);
  2025       emit_opcode(cbuf,0x7E);
  2026       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
  2028   %}
  2031   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2032   enc_class enc_Copy( eRegI dst, eRegI src ) %{
  2033     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2034   %}
  2036   enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
  2037     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2038   %}
  2040   // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
  2041   enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
  2042     encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
  2043   %}
  2045   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  2046     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2047   %}
  2049   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
  2050     $$$emit8$primary;
  2051     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2052   %}
  2054   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
  2055     $$$emit8$secondary;
  2056     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2057   %}
  2059   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2060     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2061   %}
  2063   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2064     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2065   %}
  2067   enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
  2068     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  2069   %}
  2071   enc_class Con32 (immI src) %{    // Con32(storeImmI)
  2072     // Output immediate
  2073     $$$emit32$src$$constant;
  2074   %}
  2076   enc_class Con32F_as_bits(immF src) %{        // storeF_imm
  2077     // Output Float immediate bits
  2078     jfloat jf = $src$$constant;
  2079     int    jf_as_bits = jint_cast( jf );
  2080     emit_d32(cbuf, jf_as_bits);
  2081   %}
  2083   enc_class Con32XF_as_bits(immXF src) %{      // storeX_imm
  2084     // Output Float immediate bits
  2085     jfloat jf = $src$$constant;
  2086     int    jf_as_bits = jint_cast( jf );
  2087     emit_d32(cbuf, jf_as_bits);
  2088   %}
  2090   enc_class Con16 (immI src) %{    // Con16(storeImmI)
  2091     // Output immediate
  2092     $$$emit16$src$$constant;
  2093   %}
  2095   enc_class Con_d32(immI src) %{
  2096     emit_d32(cbuf,$src$$constant);
  2097   %}
  2099   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
  2100     // Output immediate memory reference
  2101     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2102     emit_d32(cbuf, 0x00);
  2103   %}
  2105   enc_class lock_prefix( ) %{
  2106     if( os::is_MP() )
  2107       emit_opcode(cbuf,0xF0);         // [Lock]
  2108   %}
  2110   // Cmp-xchg long value.
  2111   // Note: we need to swap rbx, and rcx before and after the
  2112   //       cmpxchg8 instruction because the instruction uses
  2113   //       rcx as the high order word of the new value to store but
  2114   //       our register encoding uses rbx,.
  2115   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
  2117     // XCHG  rbx,ecx
  2118     emit_opcode(cbuf,0x87);
  2119     emit_opcode(cbuf,0xD9);
  2120     // [Lock]
  2121     if( os::is_MP() )
  2122       emit_opcode(cbuf,0xF0);
  2123     // CMPXCHG8 [Eptr]
  2124     emit_opcode(cbuf,0x0F);
  2125     emit_opcode(cbuf,0xC7);
  2126     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2127     // XCHG  rbx,ecx
  2128     emit_opcode(cbuf,0x87);
  2129     emit_opcode(cbuf,0xD9);
  2130   %}
  2132   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
  2133     // [Lock]
  2134     if( os::is_MP() )
  2135       emit_opcode(cbuf,0xF0);
  2137     // CMPXCHG [Eptr]
  2138     emit_opcode(cbuf,0x0F);
  2139     emit_opcode(cbuf,0xB1);
  2140     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2141   %}
  2143   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
  2144     int res_encoding = $res$$reg;
  2146     // MOV  res,0
  2147     emit_opcode( cbuf, 0xB8 + res_encoding);
  2148     emit_d32( cbuf, 0 );
  2149     // JNE,s  fail
  2150     emit_opcode(cbuf,0x75);
  2151     emit_d8(cbuf, 5 );
  2152     // MOV  res,1
  2153     emit_opcode( cbuf, 0xB8 + res_encoding);
  2154     emit_d32( cbuf, 1 );
  2155     // fail:
  2156   %}
  2158   enc_class set_instruction_start( ) %{
  2159     cbuf.set_inst_mark();            // Mark start of opcode for reloc info in mem operand
  2160   %}
  2162   enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
  2163     int reg_encoding = $ereg$$reg;
  2164     int base  = $mem$$base;
  2165     int index = $mem$$index;
  2166     int scale = $mem$$scale;
  2167     int displace = $mem$$disp;
  2168     bool disp_is_oop = $mem->disp_is_oop();
  2169     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2170   %}
  2172   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
  2173     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
  2174     int base  = $mem$$base;
  2175     int index = $mem$$index;
  2176     int scale = $mem$$scale;
  2177     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
  2178     assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
  2179     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
  2180   %}
  2182   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
  2183     int r1, r2;
  2184     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2185     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2186     emit_opcode(cbuf,0x0F);
  2187     emit_opcode(cbuf,$tertiary);
  2188     emit_rm(cbuf, 0x3, r1, r2);
  2189     emit_d8(cbuf,$cnt$$constant);
  2190     emit_d8(cbuf,$primary);
  2191     emit_rm(cbuf, 0x3, $secondary, r1);
  2192     emit_d8(cbuf,$cnt$$constant);
  2193   %}
  2195   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
  2196     emit_opcode( cbuf, 0x8B ); // Move
  2197     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2198     emit_d8(cbuf,$primary);
  2199     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  2200     emit_d8(cbuf,$cnt$$constant-32);
  2201     emit_d8(cbuf,$primary);
  2202     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
  2203     emit_d8(cbuf,31);
  2204   %}
  2206   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
  2207     int r1, r2;
  2208     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2209     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2211     emit_opcode( cbuf, 0x8B ); // Move r1,r2
  2212     emit_rm(cbuf, 0x3, r1, r2);
  2213     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2214       emit_opcode(cbuf,$primary);
  2215       emit_rm(cbuf, 0x3, $secondary, r1);
  2216       emit_d8(cbuf,$cnt$$constant-32);
  2218     emit_opcode(cbuf,0x33);  // XOR r2,r2
  2219     emit_rm(cbuf, 0x3, r2, r2);
  2220   %}
  2222   // Clone of RegMem but accepts an extra parameter to access each
  2223   // half of a double in memory; it never needs relocation info.
  2224   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
  2225     emit_opcode(cbuf,$opcode$$constant);
  2226     int reg_encoding = $rm_reg$$reg;
  2227     int base     = $mem$$base;
  2228     int index    = $mem$$index;
  2229     int scale    = $mem$$scale;
  2230     int displace = $mem$$disp + $disp_for_half$$constant;
  2231     bool disp_is_oop = false;
  2232     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2233   %}
  2235   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  2236   //
  2237   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  2238   // and it never needs relocation information.
  2239   // Frequently used to move data between FPU's Stack Top and memory.
  2240   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
  2241     int rm_byte_opcode = $rm_opcode$$constant;
  2242     int base     = $mem$$base;
  2243     int index    = $mem$$index;
  2244     int scale    = $mem$$scale;
  2245     int displace = $mem$$disp;
  2246     assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
  2247     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
  2248   %}
  2250   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
  2251     int rm_byte_opcode = $rm_opcode$$constant;
  2252     int base     = $mem$$base;
  2253     int index    = $mem$$index;
  2254     int scale    = $mem$$scale;
  2255     int displace = $mem$$disp;
  2256     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2257     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  2258   %}
  2260   enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
  2261     int reg_encoding = $dst$$reg;
  2262     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  2263     int index        = 0x04;            // 0x04 indicates no index
  2264     int scale        = 0x00;            // 0x00 indicates no scale
  2265     int displace     = $src1$$constant; // 0x00 indicates no displacement
  2266     bool disp_is_oop = false;
  2267     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2268   %}
  2270   enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
  2271     // Compare dst,src
  2272     emit_opcode(cbuf,0x3B);
  2273     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2274     // jmp dst < src around move
  2275     emit_opcode(cbuf,0x7C);
  2276     emit_d8(cbuf,2);
  2277     // move dst,src
  2278     emit_opcode(cbuf,0x8B);
  2279     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2280   %}
  2282   enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
  2283     // Compare dst,src
  2284     emit_opcode(cbuf,0x3B);
  2285     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2286     // jmp dst > src around move
  2287     emit_opcode(cbuf,0x7F);
  2288     emit_d8(cbuf,2);
  2289     // move dst,src
  2290     emit_opcode(cbuf,0x8B);
  2291     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2292   %}
  2294   enc_class enc_FP_store(memory mem, regD src) %{
  2295     // If src is FPR1, we can just FST to store it.
  2296     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
  2297     int reg_encoding = 0x2; // Just store
  2298     int base  = $mem$$base;
  2299     int index = $mem$$index;
  2300     int scale = $mem$$scale;
  2301     int displace = $mem$$disp;
  2302     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2303     if( $src$$reg != FPR1L_enc ) {
  2304       reg_encoding = 0x3;  // Store & pop
  2305       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
  2306       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2308     cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
  2309     emit_opcode(cbuf,$primary);
  2310     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2311   %}
  2313   enc_class neg_reg(eRegI dst) %{
  2314     // NEG $dst
  2315     emit_opcode(cbuf,0xF7);
  2316     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  2317   %}
  2319   enc_class setLT_reg(eCXRegI dst) %{
  2320     // SETLT $dst
  2321     emit_opcode(cbuf,0x0F);
  2322     emit_opcode(cbuf,0x9C);
  2323     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  2324   %}
  2326   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
  2327     int tmpReg = $tmp$$reg;
  2329     // SUB $p,$q
  2330     emit_opcode(cbuf,0x2B);
  2331     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2332     // SBB $tmp,$tmp
  2333     emit_opcode(cbuf,0x1B);
  2334     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2335     // AND $tmp,$y
  2336     emit_opcode(cbuf,0x23);
  2337     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
  2338     // ADD $p,$tmp
  2339     emit_opcode(cbuf,0x03);
  2340     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2341   %}
  2343   enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
  2344     int tmpReg = $tmp$$reg;
  2346     // SUB $p,$q
  2347     emit_opcode(cbuf,0x2B);
  2348     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2349     // SBB $tmp,$tmp
  2350     emit_opcode(cbuf,0x1B);
  2351     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2352     // AND $tmp,$y
  2353     cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
  2354     emit_opcode(cbuf,0x23);
  2355     int reg_encoding = tmpReg;
  2356     int base  = $mem$$base;
  2357     int index = $mem$$index;
  2358     int scale = $mem$$scale;
  2359     int displace = $mem$$disp;
  2360     bool disp_is_oop = $mem->disp_is_oop();
  2361     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2362     // ADD $p,$tmp
  2363     emit_opcode(cbuf,0x03);
  2364     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2365   %}
  2367   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
  2368     // TEST shift,32
  2369     emit_opcode(cbuf,0xF7);
  2370     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2371     emit_d32(cbuf,0x20);
  2372     // JEQ,s small
  2373     emit_opcode(cbuf, 0x74);
  2374     emit_d8(cbuf, 0x04);
  2375     // MOV    $dst.hi,$dst.lo
  2376     emit_opcode( cbuf, 0x8B );
  2377     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2378     // CLR    $dst.lo
  2379     emit_opcode(cbuf, 0x33);
  2380     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  2381 // small:
  2382     // SHLD   $dst.hi,$dst.lo,$shift
  2383     emit_opcode(cbuf,0x0F);
  2384     emit_opcode(cbuf,0xA5);
  2385     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2386     // SHL    $dst.lo,$shift"
  2387     emit_opcode(cbuf,0xD3);
  2388     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  2389   %}
  2391   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
  2392     // TEST shift,32
  2393     emit_opcode(cbuf,0xF7);
  2394     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2395     emit_d32(cbuf,0x20);
  2396     // JEQ,s small
  2397     emit_opcode(cbuf, 0x74);
  2398     emit_d8(cbuf, 0x04);
  2399     // MOV    $dst.lo,$dst.hi
  2400     emit_opcode( cbuf, 0x8B );
  2401     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2402     // CLR    $dst.hi
  2403     emit_opcode(cbuf, 0x33);
  2404     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
  2405 // small:
  2406     // SHRD   $dst.lo,$dst.hi,$shift
  2407     emit_opcode(cbuf,0x0F);
  2408     emit_opcode(cbuf,0xAD);
  2409     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2410     // SHR    $dst.hi,$shift"
  2411     emit_opcode(cbuf,0xD3);
  2412     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  2413   %}
  2415   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
  2416     // TEST shift,32
  2417     emit_opcode(cbuf,0xF7);
  2418     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2419     emit_d32(cbuf,0x20);
  2420     // JEQ,s small
  2421     emit_opcode(cbuf, 0x74);
  2422     emit_d8(cbuf, 0x05);
  2423     // MOV    $dst.lo,$dst.hi
  2424     emit_opcode( cbuf, 0x8B );
  2425     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2426     // SAR    $dst.hi,31
  2427     emit_opcode(cbuf, 0xC1);
  2428     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
  2429     emit_d8(cbuf, 0x1F );
  2430 // small:
  2431     // SHRD   $dst.lo,$dst.hi,$shift
  2432     emit_opcode(cbuf,0x0F);
  2433     emit_opcode(cbuf,0xAD);
  2434     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2435     // SAR    $dst.hi,$shift"
  2436     emit_opcode(cbuf,0xD3);
  2437     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  2438   %}
  2441   // ----------------- Encodings for floating point unit -----------------
  2442   // May leave result in FPU-TOS or FPU reg depending on opcodes
  2443   enc_class OpcReg_F (regF src) %{    // FMUL, FDIV
  2444     $$$emit8$primary;
  2445     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  2446   %}
  2448   // Pop argument in FPR0 with FSTP ST(0)
  2449   enc_class PopFPU() %{
  2450     emit_opcode( cbuf, 0xDD );
  2451     emit_d8( cbuf, 0xD8 );
  2452   %}
  2454   // !!!!! equivalent to Pop_Reg_F
  2455   enc_class Pop_Reg_D( regD dst ) %{
  2456     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2457     emit_d8( cbuf, 0xD8+$dst$$reg );
  2458   %}
  2460   enc_class Push_Reg_D( regD dst ) %{
  2461     emit_opcode( cbuf, 0xD9 );
  2462     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  2463   %}
  2465   enc_class strictfp_bias1( regD dst ) %{
  2466     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2467     emit_opcode( cbuf, 0x2D );
  2468     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
  2469     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2470     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2471   %}
  2473   enc_class strictfp_bias2( regD dst ) %{
  2474     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2475     emit_opcode( cbuf, 0x2D );
  2476     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
  2477     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2478     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2479   %}
  2481   // Special case for moving an integer register to a stack slot.
  2482   enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2483     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  2484   %}
  2486   // Special case for moving a register to a stack slot.
  2487   enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2488     // Opcode already emitted
  2489     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
  2490     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
  2491     emit_d32(cbuf, $dst$$disp);   // Displacement
  2492   %}
  2494   // Push the integer in stackSlot 'src' onto FP-stack
  2495   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
  2496     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  2497   %}
  2499   // Push the float in stackSlot 'src' onto FP-stack
  2500   enc_class Push_Mem_F( memory src ) %{    // FLD_S   [ESP+src]
  2501     store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
  2502   %}
  2504   // Push the double in stackSlot 'src' onto FP-stack
  2505   enc_class Push_Mem_D( memory src ) %{    // FLD_D   [ESP+src]
  2506     store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
  2507   %}
  2509   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  2510   enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
  2511     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  2512   %}
  2514   // Same as Pop_Mem_F except for opcode
  2515   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  2516   enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
  2517     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  2518   %}
  2520   enc_class Pop_Reg_F( regF dst ) %{
  2521     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2522     emit_d8( cbuf, 0xD8+$dst$$reg );
  2523   %}
  2525   enc_class Push_Reg_F( regF dst ) %{
  2526     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
  2527     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2528   %}
  2530   // Push FPU's float to a stack-slot, and pop FPU-stack
  2531   enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
  2532     int pop = 0x02;
  2533     if ($src$$reg != FPR1L_enc) {
  2534       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2535       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2536       pop = 0x03;
  2538     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  2539   %}
  2541   // Push FPU's double to a stack-slot, and pop FPU-stack
  2542   enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
  2543     int pop = 0x02;
  2544     if ($src$$reg != FPR1L_enc) {
  2545       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2546       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2547       pop = 0x03;
  2549     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  2550   %}
  2552   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  2553   enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
  2554     int pop = 0xD0 - 1; // -1 since we skip FLD
  2555     if ($src$$reg != FPR1L_enc) {
  2556       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
  2557       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2558       pop = 0xD8;
  2560     emit_opcode( cbuf, 0xDD );
  2561     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  2562   %}
  2565   enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
  2566     MacroAssembler masm(&cbuf);
  2567     masm.fld_s(  $src1$$reg-1);   // nothing at TOS, load TOS from src1.reg
  2568     masm.fmul(   $src2$$reg+0);   // value at TOS
  2569     masm.fadd(   $src$$reg+0);    // value at TOS
  2570     masm.fstp_d( $dst$$reg+0);    // value at TOS, popped off after store
  2571   %}
  2574   enc_class Push_Reg_Mod_D( regD dst, regD src) %{
  2575     // load dst in FPR0
  2576     emit_opcode( cbuf, 0xD9 );
  2577     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2578     if ($src$$reg != FPR1L_enc) {
  2579       // fincstp
  2580       emit_opcode (cbuf, 0xD9);
  2581       emit_opcode (cbuf, 0xF7);
  2582       // swap src with FPR1:
  2583       // FXCH FPR1 with src
  2584       emit_opcode(cbuf, 0xD9);
  2585       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2586       // fdecstp
  2587       emit_opcode (cbuf, 0xD9);
  2588       emit_opcode (cbuf, 0xF6);
  2590   %}
  2592   enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
  2593     // Allocate a word
  2594     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2595     emit_opcode(cbuf,0xEC);
  2596     emit_d8(cbuf,0x08);
  2598     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src1
  2599     emit_opcode  (cbuf, 0x0F );
  2600     emit_opcode  (cbuf, 0x11 );
  2601     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
  2603     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2604     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2606     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src0
  2607     emit_opcode  (cbuf, 0x0F );
  2608     emit_opcode  (cbuf, 0x11 );
  2609     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
  2611     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2612     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2614   %}
  2616   enc_class Push_ModX_encoding( regX src0, regX src1) %{
  2617     // Allocate a word
  2618     emit_opcode(cbuf,0x83);            // SUB ESP,4
  2619     emit_opcode(cbuf,0xEC);
  2620     emit_d8(cbuf,0x04);
  2622     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src1
  2623     emit_opcode  (cbuf, 0x0F );
  2624     emit_opcode  (cbuf, 0x11 );
  2625     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
  2627     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
  2628     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2630     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src0
  2631     emit_opcode  (cbuf, 0x0F );
  2632     emit_opcode  (cbuf, 0x11 );
  2633     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
  2635     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
  2636     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2638   %}
  2640   enc_class Push_ResultXD(regXD dst) %{
  2641     store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]
  2643     // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
  2644     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  2645     emit_opcode  (cbuf, 0x0F );
  2646     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  2647     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  2649     emit_opcode(cbuf,0x83);    // ADD ESP,8
  2650     emit_opcode(cbuf,0xC4);
  2651     emit_d8(cbuf,0x08);
  2652   %}
  2654   enc_class Push_ResultX(regX dst, immI d8) %{
  2655     store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]
  2657     emit_opcode  (cbuf, 0xF3 );     // MOVSS dst(xmm), [ESP]
  2658     emit_opcode  (cbuf, 0x0F );
  2659     emit_opcode  (cbuf, 0x10 );
  2660     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  2662     emit_opcode(cbuf,0x83);    // ADD ESP,d8 (4 or 8)
  2663     emit_opcode(cbuf,0xC4);
  2664     emit_d8(cbuf,$d8$$constant);
  2665   %}
  2667   enc_class Push_SrcXD(regXD src) %{
  2668     // Allocate a word
  2669     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2670     emit_opcode(cbuf,0xEC);
  2671     emit_d8(cbuf,0x08);
  2673     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src
  2674     emit_opcode  (cbuf, 0x0F );
  2675     emit_opcode  (cbuf, 0x11 );
  2676     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  2678     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2679     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2680   %}
  2682   enc_class push_stack_temp_qword() %{
  2683     emit_opcode(cbuf,0x83);     // SUB ESP,8
  2684     emit_opcode(cbuf,0xEC);
  2685     emit_d8    (cbuf,0x08);
  2686   %}
  2688   enc_class pop_stack_temp_qword() %{
  2689     emit_opcode(cbuf,0x83);     // ADD ESP,8
  2690     emit_opcode(cbuf,0xC4);
  2691     emit_d8    (cbuf,0x08);
  2692   %}
  2694   enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
  2695     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], xmm_src
  2696     emit_opcode  (cbuf, 0x0F );
  2697     emit_opcode  (cbuf, 0x11 );
  2698     encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);
  2700     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2701     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2702   %}
  2704   // Compute X^Y using Intel's fast hardware instructions, if possible.
  2705   // Otherwise return a NaN.
  2706   enc_class pow_exp_core_encoding %{
  2707     // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
  2708     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
  2709     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
  2710     emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
  2711     emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
  2712     emit_opcode(cbuf,0x1C);
  2713     emit_d8(cbuf,0x24);
  2714     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
  2715     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
  2716     emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
  2717     emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
  2718     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
  2719     emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
  2720     emit_rm(cbuf, 0x3, 0x0, ECX_enc);
  2721     emit_d32(cbuf,0xFFFFF800);
  2722     emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
  2723     emit_rm(cbuf, 0x3, 0x0, EAX_enc);
  2724     emit_d32(cbuf,1023);
  2725     emit_opcode(cbuf,0x8B);                          // mov rbx,eax
  2726     emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
  2727     emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
  2728     emit_rm(cbuf,0x3,0x4,EAX_enc);
  2729     emit_d8(cbuf,20);
  2730     emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
  2731     emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
  2732     emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
  2733     emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
  2734     emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
  2735     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
  2736     emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
  2737     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2738     emit_d32(cbuf,0);
  2739     emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
  2740     encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
  2741   %}
  2743 //   enc_class Pop_Reg_Mod_D( regD dst, regD src)
  2744 //   was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()
  2746   enc_class Push_Result_Mod_D( regD src) %{
  2747     if ($src$$reg != FPR1L_enc) {
  2748       // fincstp
  2749       emit_opcode (cbuf, 0xD9);
  2750       emit_opcode (cbuf, 0xF7);
  2751       // FXCH FPR1 with src
  2752       emit_opcode(cbuf, 0xD9);
  2753       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2754       // fdecstp
  2755       emit_opcode (cbuf, 0xD9);
  2756       emit_opcode (cbuf, 0xF6);
  2758     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
  2759     // // FSTP   FPR$dst$$reg
  2760     // emit_opcode( cbuf, 0xDD );
  2761     // emit_d8( cbuf, 0xD8+$dst$$reg );
  2762   %}
  2764   enc_class fnstsw_sahf_skip_parity() %{
  2765     // fnstsw ax
  2766     emit_opcode( cbuf, 0xDF );
  2767     emit_opcode( cbuf, 0xE0 );
  2768     // sahf
  2769     emit_opcode( cbuf, 0x9E );
  2770     // jnp  ::skip
  2771     emit_opcode( cbuf, 0x7B );
  2772     emit_opcode( cbuf, 0x05 );
  2773   %}
  2775   enc_class emitModD() %{
  2776     // fprem must be iterative
  2777     // :: loop
  2778     // fprem
  2779     emit_opcode( cbuf, 0xD9 );
  2780     emit_opcode( cbuf, 0xF8 );
  2781     // wait
  2782     emit_opcode( cbuf, 0x9b );
  2783     // fnstsw ax
  2784     emit_opcode( cbuf, 0xDF );
  2785     emit_opcode( cbuf, 0xE0 );
  2786     // sahf
  2787     emit_opcode( cbuf, 0x9E );
  2788     // jp  ::loop
  2789     emit_opcode( cbuf, 0x0F );
  2790     emit_opcode( cbuf, 0x8A );
  2791     emit_opcode( cbuf, 0xF4 );
  2792     emit_opcode( cbuf, 0xFF );
  2793     emit_opcode( cbuf, 0xFF );
  2794     emit_opcode( cbuf, 0xFF );
  2795   %}
  2797   enc_class fpu_flags() %{
  2798     // fnstsw_ax
  2799     emit_opcode( cbuf, 0xDF);
  2800     emit_opcode( cbuf, 0xE0);
  2801     // test ax,0x0400
  2802     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
  2803     emit_opcode( cbuf, 0xA9 );
  2804     emit_d16   ( cbuf, 0x0400 );
  2805     // // // This sequence works, but stalls for 12-16 cycles on PPro
  2806     // // test rax,0x0400
  2807     // emit_opcode( cbuf, 0xA9 );
  2808     // emit_d32   ( cbuf, 0x00000400 );
  2809     //
  2810     // jz exit (no unordered comparison)
  2811     emit_opcode( cbuf, 0x74 );
  2812     emit_d8    ( cbuf, 0x02 );
  2813     // mov ah,1 - treat as LT case (set carry flag)
  2814     emit_opcode( cbuf, 0xB4 );
  2815     emit_d8    ( cbuf, 0x01 );
  2816     // sahf
  2817     emit_opcode( cbuf, 0x9E);
  2818   %}
  2820   enc_class cmpF_P6_fixup() %{
  2821     // Fixup the integer flags in case comparison involved a NaN
  2822     //
  2823     // JNP exit (no unordered comparison, P-flag is set by NaN)
  2824     emit_opcode( cbuf, 0x7B );
  2825     emit_d8    ( cbuf, 0x03 );
  2826     // MOV AH,1 - treat as LT case (set carry flag)
  2827     emit_opcode( cbuf, 0xB4 );
  2828     emit_d8    ( cbuf, 0x01 );
  2829     // SAHF
  2830     emit_opcode( cbuf, 0x9E);
  2831     // NOP     // target for branch to avoid branch to branch
  2832     emit_opcode( cbuf, 0x90);
  2833   %}
  2835 //     fnstsw_ax();
  2836 //     sahf();
  2837 //     movl(dst, nan_result);
  2838 //     jcc(Assembler::parity, exit);
  2839 //     movl(dst, less_result);
  2840 //     jcc(Assembler::below, exit);
  2841 //     movl(dst, equal_result);
  2842 //     jcc(Assembler::equal, exit);
  2843 //     movl(dst, greater_result);
  2845 // less_result     =  1;
  2846 // greater_result  = -1;
  2847 // equal_result    = 0;
  2848 // nan_result      = -1;
  2850   enc_class CmpF_Result(eRegI dst) %{
  2851     // fnstsw_ax();
  2852     emit_opcode( cbuf, 0xDF);
  2853     emit_opcode( cbuf, 0xE0);
  2854     // sahf
  2855     emit_opcode( cbuf, 0x9E);
  2856     // movl(dst, nan_result);
  2857     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2858     emit_d32( cbuf, -1 );
  2859     // jcc(Assembler::parity, exit);
  2860     emit_opcode( cbuf, 0x7A );
  2861     emit_d8    ( cbuf, 0x13 );
  2862     // movl(dst, less_result);
  2863     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2864     emit_d32( cbuf, -1 );
  2865     // jcc(Assembler::below, exit);
  2866     emit_opcode( cbuf, 0x72 );
  2867     emit_d8    ( cbuf, 0x0C );
  2868     // movl(dst, equal_result);
  2869     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2870     emit_d32( cbuf, 0 );
  2871     // jcc(Assembler::equal, exit);
  2872     emit_opcode( cbuf, 0x74 );
  2873     emit_d8    ( cbuf, 0x05 );
  2874     // movl(dst, greater_result);
  2875     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2876     emit_d32( cbuf, 1 );
  2877   %}
  2880   // XMM version of CmpF_Result. Because the XMM compare
  2881   // instructions set the EFLAGS directly. It becomes simpler than
  2882   // the float version above.
  2883   enc_class CmpX_Result(eRegI dst) %{
  2884     MacroAssembler _masm(&cbuf);
  2885     Label nan, inc, done;
  2887     __ jccb(Assembler::parity, nan);
  2888     __ jccb(Assembler::equal,  done);
  2889     __ jccb(Assembler::above,  inc);
  2890     __ bind(nan);
  2891     __ decrement(as_Register($dst$$reg)); // NO L qqq
  2892     __ jmpb(done);
  2893     __ bind(inc);
  2894     __ increment(as_Register($dst$$reg)); // NO L qqq
  2895     __ bind(done);
  2896   %}
  2898   // Compare the longs and set flags
  2899   // BROKEN!  Do Not use as-is
  2900   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
  2901     // CMP    $src1.hi,$src2.hi
  2902     emit_opcode( cbuf, 0x3B );
  2903     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2904     // JNE,s  done
  2905     emit_opcode(cbuf,0x75);
  2906     emit_d8(cbuf, 2 );
  2907     // CMP    $src1.lo,$src2.lo
  2908     emit_opcode( cbuf, 0x3B );
  2909     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2910 // done:
  2911   %}
  2913   enc_class convert_int_long( regL dst, eRegI src ) %{
  2914     // mov $dst.lo,$src
  2915     int dst_encoding = $dst$$reg;
  2916     int src_encoding = $src$$reg;
  2917     encode_Copy( cbuf, dst_encoding  , src_encoding );
  2918     // mov $dst.hi,$src
  2919     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
  2920     // sar $dst.hi,31
  2921     emit_opcode( cbuf, 0xC1 );
  2922     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
  2923     emit_d8(cbuf, 0x1F );
  2924   %}
  2926   enc_class convert_long_double( eRegL src ) %{
  2927     // push $src.hi
  2928     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2929     // push $src.lo
  2930     emit_opcode(cbuf, 0x50+$src$$reg  );
  2931     // fild 64-bits at [SP]
  2932     emit_opcode(cbuf,0xdf);
  2933     emit_d8(cbuf, 0x6C);
  2934     emit_d8(cbuf, 0x24);
  2935     emit_d8(cbuf, 0x00);
  2936     // pop stack
  2937     emit_opcode(cbuf, 0x83); // add  SP, #8
  2938     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2939     emit_d8(cbuf, 0x8);
  2940   %}
  2942   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
  2943     // IMUL   EDX:EAX,$src1
  2944     emit_opcode( cbuf, 0xF7 );
  2945     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
  2946     // SAR    EDX,$cnt-32
  2947     int shift_count = ((int)$cnt$$constant) - 32;
  2948     if (shift_count > 0) {
  2949       emit_opcode(cbuf, 0xC1);
  2950       emit_rm(cbuf, 0x3, 7, $dst$$reg );
  2951       emit_d8(cbuf, shift_count);
  2953   %}
  2955   // this version doesn't have add sp, 8
  2956   enc_class convert_long_double2( eRegL src ) %{
  2957     // push $src.hi
  2958     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2959     // push $src.lo
  2960     emit_opcode(cbuf, 0x50+$src$$reg  );
  2961     // fild 64-bits at [SP]
  2962     emit_opcode(cbuf,0xdf);
  2963     emit_d8(cbuf, 0x6C);
  2964     emit_d8(cbuf, 0x24);
  2965     emit_d8(cbuf, 0x00);
  2966   %}
  2968   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
  2969     // Basic idea: long = (long)int * (long)int
  2970     // IMUL EDX:EAX, src
  2971     emit_opcode( cbuf, 0xF7 );
  2972     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  2973   %}
  2975   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
  2976     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  2977     // MUL EDX:EAX, src
  2978     emit_opcode( cbuf, 0xF7 );
  2979     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  2980   %}
  2982   enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
  2983     // Basic idea: lo(result) = lo(x_lo * y_lo)
  2984     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  2985     // MOV    $tmp,$src.lo
  2986     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
  2987     // IMUL   $tmp,EDX
  2988     emit_opcode( cbuf, 0x0F );
  2989     emit_opcode( cbuf, 0xAF );
  2990     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2991     // MOV    EDX,$src.hi
  2992     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
  2993     // IMUL   EDX,EAX
  2994     emit_opcode( cbuf, 0x0F );
  2995     emit_opcode( cbuf, 0xAF );
  2996     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2997     // ADD    $tmp,EDX
  2998     emit_opcode( cbuf, 0x03 );
  2999     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3000     // MUL   EDX:EAX,$src.lo
  3001     emit_opcode( cbuf, 0xF7 );
  3002     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
  3003     // ADD    EDX,ESI
  3004     emit_opcode( cbuf, 0x03 );
  3005     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  3006   %}
  3008   enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
  3009     // Basic idea: lo(result) = lo(src * y_lo)
  3010     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
  3011     // IMUL   $tmp,EDX,$src
  3012     emit_opcode( cbuf, 0x6B );
  3013     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3014     emit_d8( cbuf, (int)$src$$constant );
  3015     // MOV    EDX,$src
  3016     emit_opcode(cbuf, 0xB8 + EDX_enc);
  3017     emit_d32( cbuf, (int)$src$$constant );
  3018     // MUL   EDX:EAX,EDX
  3019     emit_opcode( cbuf, 0xF7 );
  3020     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
  3021     // ADD    EDX,ESI
  3022     emit_opcode( cbuf, 0x03 );
  3023     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  3024   %}
  3026   enc_class long_div( eRegL src1, eRegL src2 ) %{
  3027     // PUSH src1.hi
  3028     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  3029     // PUSH src1.lo
  3030     emit_opcode(cbuf,               0x50+$src1$$reg  );
  3031     // PUSH src2.hi
  3032     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  3033     // PUSH src2.lo
  3034     emit_opcode(cbuf,               0x50+$src2$$reg  );
  3035     // CALL directly to the runtime
  3036     cbuf.set_inst_mark();
  3037     emit_opcode(cbuf,0xE8);       // Call into runtime
  3038     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3039     // Restore stack
  3040     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  3041     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3042     emit_d8(cbuf, 4*4);
  3043   %}
  3045   enc_class long_mod( eRegL src1, eRegL src2 ) %{
  3046     // PUSH src1.hi
  3047     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  3048     // PUSH src1.lo
  3049     emit_opcode(cbuf,               0x50+$src1$$reg  );
  3050     // PUSH src2.hi
  3051     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  3052     // PUSH src2.lo
  3053     emit_opcode(cbuf,               0x50+$src2$$reg  );
  3054     // CALL directly to the runtime
  3055     cbuf.set_inst_mark();
  3056     emit_opcode(cbuf,0xE8);       // Call into runtime
  3057     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3058     // Restore stack
  3059     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  3060     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3061     emit_d8(cbuf, 4*4);
  3062   %}
  3064   enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
  3065     // MOV   $tmp,$src.lo
  3066     emit_opcode(cbuf, 0x8B);
  3067     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  3068     // OR    $tmp,$src.hi
  3069     emit_opcode(cbuf, 0x0B);
  3070     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  3071   %}
  3073   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
  3074     // CMP    $src1.lo,$src2.lo
  3075     emit_opcode( cbuf, 0x3B );
  3076     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3077     // JNE,s  skip
  3078     emit_cc(cbuf, 0x70, 0x5);
  3079     emit_d8(cbuf,2);
  3080     // CMP    $src1.hi,$src2.hi
  3081     emit_opcode( cbuf, 0x3B );
  3082     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  3083   %}
  3085   enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
  3086     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
  3087     emit_opcode( cbuf, 0x3B );
  3088     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3089     // MOV    $tmp,$src1.hi
  3090     emit_opcode( cbuf, 0x8B );
  3091     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
  3092     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
  3093     emit_opcode( cbuf, 0x1B );
  3094     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  3095   %}
  3097   enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
  3098     // XOR    $tmp,$tmp
  3099     emit_opcode(cbuf,0x33);  // XOR
  3100     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
  3101     // CMP    $tmp,$src.lo
  3102     emit_opcode( cbuf, 0x3B );
  3103     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
  3104     // SBB    $tmp,$src.hi
  3105     emit_opcode( cbuf, 0x1B );
  3106     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  3107   %}
  3109  // Sniff, sniff... smells like Gnu Superoptimizer
  3110   enc_class neg_long( eRegL dst ) %{
  3111     emit_opcode(cbuf,0xF7);    // NEG hi
  3112     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  3113     emit_opcode(cbuf,0xF7);    // NEG lo
  3114     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
  3115     emit_opcode(cbuf,0x83);    // SBB hi,0
  3116     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  3117     emit_d8    (cbuf,0 );
  3118   %}
  3120   enc_class movq_ld(regXD dst, memory mem) %{
  3121     MacroAssembler _masm(&cbuf);
  3122     __ movq($dst$$XMMRegister, $mem$$Address);
  3123   %}
  3125   enc_class movq_st(memory mem, regXD src) %{
  3126     MacroAssembler _masm(&cbuf);
  3127     __ movq($mem$$Address, $src$$XMMRegister);
  3128   %}
  3130   enc_class pshufd_8x8(regX dst, regX src) %{
  3131     MacroAssembler _masm(&cbuf);
  3133     encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
  3134     __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
  3135     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
  3136   %}
  3138   enc_class pshufd_4x16(regX dst, regX src) %{
  3139     MacroAssembler _masm(&cbuf);
  3141     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
  3142   %}
  3144   enc_class pshufd(regXD dst, regXD src, int mode) %{
  3145     MacroAssembler _masm(&cbuf);
  3147     __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
  3148   %}
  3150   enc_class pxor(regXD dst, regXD src) %{
  3151     MacroAssembler _masm(&cbuf);
  3153     __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
  3154   %}
  3156   enc_class mov_i2x(regXD dst, eRegI src) %{
  3157     MacroAssembler _masm(&cbuf);
  3159     __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
  3160   %}
  3163   // Because the transitions from emitted code to the runtime
  3164   // monitorenter/exit helper stubs are so slow it's critical that
  3165   // we inline both the stack-locking fast-path and the inflated fast path.
  3166   //
  3167   // See also: cmpFastLock and cmpFastUnlock.
  3168   //
  3169   // What follows is a specialized inline transliteration of the code
  3170   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  3171   // another option would be to emit TrySlowEnter and TrySlowExit methods
  3172   // at startup-time.  These methods would accept arguments as
  3173   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  3174   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  3175   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  3176   // In practice, however, the # of lock sites is bounded and is usually small.
  3177   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  3178   // if the processor uses simple bimodal branch predictors keyed by EIP
  3179   // Since the helper routines would be called from multiple synchronization
  3180   // sites.
  3181   //
  3182   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  3183   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  3184   // to those specialized methods.  That'd give us a mostly platform-independent
  3185   // implementation that the JITs could optimize and inline at their pleasure.
  3186   // Done correctly, the only time we'd need to cross to native could would be
  3187   // to park() or unpark() threads.  We'd also need a few more unsafe operators
  3188   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  3189   // (b) explicit barriers or fence operations.
  3190   //
  3191   // TODO:
  3192   //
  3193   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  3194   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  3195   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  3196   //    the lock operators would typically be faster than reifying Self.
  3197   //
  3198   // *  Ideally I'd define the primitives as:
  3199   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  3200   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  3201   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  3202   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  3203   //    Furthermore the register assignments are overconstrained, possibly resulting in
  3204   //    sub-optimal code near the synchronization site.
  3205   //
  3206   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  3207   //    Alternately, use a better sp-proximity test.
  3208   //
  3209   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  3210   //    Either one is sufficient to uniquely identify a thread.
  3211   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  3212   //
  3213   // *  Intrinsify notify() and notifyAll() for the common cases where the
  3214   //    object is locked by the calling thread but the waitlist is empty.
  3215   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  3216   //
  3217   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  3218   //    But beware of excessive branch density on AMD Opterons.
  3219   //
  3220   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  3221   //    or failure of the fast-path.  If the fast-path fails then we pass
  3222   //    control to the slow-path, typically in C.  In Fast_Lock and
  3223   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  3224   //    will emit a conditional branch immediately after the node.
  3225   //    So we have branches to branches and lots of ICC.ZF games.
  3226   //    Instead, it might be better to have C2 pass a "FailureLabel"
  3227   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  3228   //    will drop through the node.  ICC.ZF is undefined at exit.
  3229   //    In the case of failure, the node will branch directly to the
  3230   //    FailureLabel
  3233   // obj: object to lock
  3234   // box: on-stack box address (displaced header location) - KILLED
  3235   // rax,: tmp -- KILLED
  3236   // scr: tmp -- KILLED
  3237   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
  3239     Register objReg = as_Register($obj$$reg);
  3240     Register boxReg = as_Register($box$$reg);
  3241     Register tmpReg = as_Register($tmp$$reg);
  3242     Register scrReg = as_Register($scr$$reg);
  3244     // Ensure the register assignents are disjoint
  3245     guarantee (objReg != boxReg, "") ;
  3246     guarantee (objReg != tmpReg, "") ;
  3247     guarantee (objReg != scrReg, "") ;
  3248     guarantee (boxReg != tmpReg, "") ;
  3249     guarantee (boxReg != scrReg, "") ;
  3250     guarantee (tmpReg == as_Register(EAX_enc), "") ;
  3252     MacroAssembler masm(&cbuf);
  3254     if (_counters != NULL) {
  3255       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
  3257     if (EmitSync & 1) {
  3258         // set box->dhw = unused_mark (3)
  3259         // Force all sync thru slow-path: slow_enter() and slow_exit() 
  3260         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
  3261         masm.cmpptr (rsp, (int32_t)0) ;                        
  3262     } else 
  3263     if (EmitSync & 2) { 
  3264         Label DONE_LABEL ;           
  3265         if (UseBiasedLocking) {
  3266            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  3267            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3270         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
  3271         masm.orptr (tmpReg, 0x1);
  3272         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
  3273         if (os::is_MP()) { masm.lock();  }
  3274         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
  3275         masm.jcc(Assembler::equal, DONE_LABEL);
  3276         // Recursive locking
  3277         masm.subptr(tmpReg, rsp);
  3278         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
  3279         masm.movptr(Address(boxReg, 0), tmpReg);
  3280         masm.bind(DONE_LABEL) ; 
  3281     } else {  
  3282       // Possible cases that we'll encounter in fast_lock 
  3283       // ------------------------------------------------
  3284       // * Inflated
  3285       //    -- unlocked
  3286       //    -- Locked
  3287       //       = by self
  3288       //       = by other
  3289       // * biased
  3290       //    -- by Self
  3291       //    -- by other
  3292       // * neutral
  3293       // * stack-locked
  3294       //    -- by self
  3295       //       = sp-proximity test hits
  3296       //       = sp-proximity test generates false-negative
  3297       //    -- by other
  3298       //
  3300       Label IsInflated, DONE_LABEL, PopDone ;
  3302       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  3303       // order to reduce the number of conditional branches in the most common cases.
  3304       // Beware -- there's a subtle invariant that fetch of the markword
  3305       // at [FETCH], below, will never observe a biased encoding (*101b).
  3306       // If this invariant is not held we risk exclusion (safety) failure.
  3307       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3308         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3311       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
  3312       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
  3313       masm.jccb  (Assembler::notZero, IsInflated) ;
  3315       // Attempt stack-locking ...
  3316       masm.orptr (tmpReg, 0x1);
  3317       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
  3318       if (os::is_MP()) { masm.lock();  }
  3319       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
  3320       if (_counters != NULL) {
  3321         masm.cond_inc32(Assembler::equal,
  3322                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3324       masm.jccb (Assembler::equal, DONE_LABEL);
  3326       // Recursive locking
  3327       masm.subptr(tmpReg, rsp);
  3328       masm.andptr(tmpReg, 0xFFFFF003 );
  3329       masm.movptr(Address(boxReg, 0), tmpReg);
  3330       if (_counters != NULL) {
  3331         masm.cond_inc32(Assembler::equal,
  3332                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3334       masm.jmp  (DONE_LABEL) ;
  3336       masm.bind (IsInflated) ;
  3338       // The object is inflated.
  3339       //
  3340       // TODO-FIXME: eliminate the ugly use of manifest constants:
  3341       //   Use markOopDesc::monitor_value instead of "2".
  3342       //   use markOop::unused_mark() instead of "3".
  3343       // The tmpReg value is an objectMonitor reference ORed with
  3344       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
  3345       // objectmonitor pointer by masking off the "2" bit or we can just
  3346       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
  3347       // field offsets with "-2" to compensate for and annul the low-order tag bit.
  3348       //
  3349       // I use the latter as it avoids AGI stalls.
  3350       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
  3351       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
  3352       //
  3353       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
  3355       // boxReg refers to the on-stack BasicLock in the current frame.
  3356       // We'd like to write:
  3357       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
  3358       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
  3359       // additional latency as we have another ST in the store buffer that must drain.
  3361       if (EmitSync & 8192) { 
  3362          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
  3363          masm.get_thread (scrReg) ; 
  3364          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
  3365          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
  3366          if (os::is_MP()) { masm.lock(); } 
  3367          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3368       } else 
  3369       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
  3370          masm.movptr(scrReg, boxReg) ; 
  3371          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
  3373          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3374          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
  3375             // prefetchw [eax + Offset(_owner)-2]
  3376             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3379          if ((EmitSync & 64) == 0) {
  3380            // Optimistic form: consider XORL tmpReg,tmpReg
  3381            masm.movptr(tmpReg, NULL_WORD) ; 
  3382          } else { 
  3383            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3384            // Test-And-CAS instead of CAS
  3385            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3386            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3387            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3390          // Appears unlocked - try to swing _owner from null to non-null.
  3391          // Ideally, I'd manifest "Self" with get_thread and then attempt
  3392          // to CAS the register containing Self into m->Owner.
  3393          // But we don't have enough registers, so instead we can either try to CAS
  3394          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
  3395          // we later store "Self" into m->Owner.  Transiently storing a stack address
  3396          // (rsp or the address of the box) into  m->owner is harmless.
  3397          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3398          if (os::is_MP()) { masm.lock();  }
  3399          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3400          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
  3401          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3402          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
  3403          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
  3404          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
  3406          // If the CAS fails we can either retry or pass control to the slow-path.  
  3407          // We use the latter tactic.  
  3408          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3409          // If the CAS was successful ...
  3410          //   Self has acquired the lock
  3411          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3412          // Intentional fall-through into DONE_LABEL ...
  3413       } else {
  3414          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
  3415          masm.movptr(boxReg, tmpReg) ; 
  3417          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3418          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
  3419             // prefetchw [eax + Offset(_owner)-2]
  3420             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3423          if ((EmitSync & 64) == 0) {
  3424            // Optimistic form
  3425            masm.xorptr  (tmpReg, tmpReg) ; 
  3426          } else { 
  3427            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3428            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3429            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3430            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3433          // Appears unlocked - try to swing _owner from null to non-null.
  3434          // Use either "Self" (in scr) or rsp as thread identity in _owner.
  3435          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3436          masm.get_thread (scrReg) ;
  3437          if (os::is_MP()) { masm.lock(); }
  3438          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3440          // If the CAS fails we can either retry or pass control to the slow-path.
  3441          // We use the latter tactic.
  3442          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3443          // If the CAS was successful ...
  3444          //   Self has acquired the lock
  3445          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3446          // Intentional fall-through into DONE_LABEL ...
  3449       // DONE_LABEL is a hot target - we'd really like to place it at the
  3450       // start of cache line by padding with NOPs.
  3451       // See the AMD and Intel software optimization manuals for the
  3452       // most efficient "long" NOP encodings.
  3453       // Unfortunately none of our alignment mechanisms suffice.
  3454       masm.bind(DONE_LABEL);
  3456       // Avoid branch-to-branch on AMD processors
  3457       // This appears to be superstition.
  3458       if (EmitSync & 32) masm.nop() ;
  3461       // At DONE_LABEL the icc ZFlag is set as follows ...
  3462       // Fast_Unlock uses the same protocol.
  3463       // ZFlag == 1 -> Success
  3464       // ZFlag == 0 -> Failure - force control through the slow-path
  3466   %}
  3468   // obj: object to unlock
  3469   // box: box address (displaced header location), killed.  Must be EAX.
  3470   // rbx,: killed tmp; cannot be obj nor box.
  3471   //
  3472   // Some commentary on balanced locking:
  3473   //
  3474   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  3475   // Methods that don't have provably balanced locking are forced to run in the
  3476   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  3477   // The interpreter provides two properties:
  3478   // I1:  At return-time the interpreter automatically and quietly unlocks any
  3479   //      objects acquired the current activation (frame).  Recall that the
  3480   //      interpreter maintains an on-stack list of locks currently held by
  3481   //      a frame.
  3482   // I2:  If a method attempts to unlock an object that is not held by the
  3483   //      the frame the interpreter throws IMSX.
  3484   //
  3485   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  3486   // B() doesn't have provably balanced locking so it runs in the interpreter.
  3487   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  3488   // is still locked by A().
  3489   //
  3490   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  3491   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  3492   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  3493   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  3495   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
  3497     Register objReg = as_Register($obj$$reg);
  3498     Register boxReg = as_Register($box$$reg);
  3499     Register tmpReg = as_Register($tmp$$reg);
  3501     guarantee (objReg != boxReg, "") ;
  3502     guarantee (objReg != tmpReg, "") ;
  3503     guarantee (boxReg != tmpReg, "") ;
  3504     guarantee (boxReg == as_Register(EAX_enc), "") ;
  3505     MacroAssembler masm(&cbuf);
  3507     if (EmitSync & 4) {
  3508       // Disable - inhibit all inlining.  Force control through the slow-path
  3509       masm.cmpptr (rsp, 0) ; 
  3510     } else 
  3511     if (EmitSync & 8) {
  3512       Label DONE_LABEL ;
  3513       if (UseBiasedLocking) {
  3514          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3516       // classic stack-locking code ...
  3517       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3518       masm.testptr(tmpReg, tmpReg) ;
  3519       masm.jcc   (Assembler::zero, DONE_LABEL) ;
  3520       if (os::is_MP()) { masm.lock(); }
  3521       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
  3522       masm.bind(DONE_LABEL);
  3523     } else {
  3524       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
  3526       // Critically, the biased locking test must have precedence over
  3527       // and appear before the (box->dhw == 0) recursive stack-lock test.
  3528       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3529          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3532       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
  3533       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
  3534       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
  3536       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
  3537       masm.jccb  (Assembler::zero, Stacked) ;
  3539       masm.bind  (Inflated) ;
  3540       // It's inflated.
  3541       // Despite our balanced locking property we still check that m->_owner == Self
  3542       // as java routines or native JNI code called by this thread might
  3543       // have released the lock.
  3544       // Refer to the comments in synchronizer.cpp for how we might encode extra
  3545       // state in _succ so we can avoid fetching EntryList|cxq.
  3546       //
  3547       // I'd like to add more cases in fast_lock() and fast_unlock() --
  3548       // such as recursive enter and exit -- but we have to be wary of
  3549       // I$ bloat, T$ effects and BP$ effects.
  3550       //
  3551       // If there's no contention try a 1-0 exit.  That is, exit without
  3552       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  3553       // we detect and recover from the race that the 1-0 exit admits.
  3554       //
  3555       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  3556       // before it STs null into _owner, releasing the lock.  Updates
  3557       // to data protected by the critical section must be visible before
  3558       // we drop the lock (and thus before any other thread could acquire
  3559       // the lock and observe the fields protected by the lock).
  3560       // IA32's memory-model is SPO, so STs are ordered with respect to
  3561       // each other and there's no need for an explicit barrier (fence).
  3562       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  3564       masm.get_thread (boxReg) ;
  3565       if ((EmitSync & 4096) && VM_Version::supports_3dnow() && os::is_MP()) {
  3566         // prefetchw [ebx + Offset(_owner)-2]
  3567         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
  3570       // Note that we could employ various encoding schemes to reduce
  3571       // the number of loads below (currently 4) to just 2 or 3.
  3572       // Refer to the comments in synchronizer.cpp.
  3573       // In practice the chain of fetches doesn't seem to impact performance, however.
  3574       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
  3575          // Attempt to reduce branch density - AMD's branch predictor.
  3576          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3577          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3578          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3579          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3580          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3581          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3582          masm.jmpb  (DONE_LABEL) ; 
  3583       } else { 
  3584          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3585          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3586          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3587          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3588          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3589          masm.jccb  (Assembler::notZero, CheckSucc) ; 
  3590          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3591          masm.jmpb  (DONE_LABEL) ; 
  3594       // The Following code fragment (EmitSync & 65536) improves the performance of
  3595       // contended applications and contended synchronization microbenchmarks.
  3596       // Unfortunately the emission of the code - even though not executed - causes regressions
  3597       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
  3598       // with an equal number of never-executed NOPs results in the same regression.
  3599       // We leave it off by default.
  3601       if ((EmitSync & 65536) != 0) {
  3602          Label LSuccess, LGoSlowPath ;
  3604          masm.bind  (CheckSucc) ;
  3606          // Optional pre-test ... it's safe to elide this
  3607          if ((EmitSync & 16) == 0) { 
  3608             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3609             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
  3612          // We have a classic Dekker-style idiom:
  3613          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
  3614          // There are a number of ways to implement the barrier:
  3615          // (1) lock:andl &m->_owner, 0
  3616          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
  3617          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
  3618          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
  3619          // (2) If supported, an explicit MFENCE is appealing.
  3620          //     In older IA32 processors MFENCE is slower than lock:add or xchg
  3621          //     particularly if the write-buffer is full as might be the case if
  3622          //     if stores closely precede the fence or fence-equivalent instruction.
  3623          //     In more modern implementations MFENCE appears faster, however.
  3624          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
  3625          //     The $lines underlying the top-of-stack should be in M-state.
  3626          //     The locked add instruction is serializing, of course.
  3627          // (4) Use xchg, which is serializing
  3628          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
  3629          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
  3630          //     The integer condition codes will tell us if succ was 0.
  3631          //     Since _succ and _owner should reside in the same $line and
  3632          //     we just stored into _owner, it's likely that the $line
  3633          //     remains in M-state for the lock:orl.
  3634          //
  3635          // We currently use (3), although it's likely that switching to (2)
  3636          // is correct for the future.
  3638          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3639          if (os::is_MP()) { 
  3640             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
  3641               masm.mfence();
  3642             } else { 
  3643               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
  3646          // Ratify _succ remains non-null
  3647          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3648          masm.jccb  (Assembler::notZero, LSuccess) ; 
  3650          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
  3651          if (os::is_MP()) { masm.lock(); }
  3652          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  3653          masm.jccb  (Assembler::notEqual, LSuccess) ;
  3654          // Since we're low on registers we installed rsp as a placeholding in _owner.
  3655          // Now install Self over rsp.  This is safe as we're transitioning from
  3656          // non-null to non=null
  3657          masm.get_thread (boxReg) ;
  3658          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
  3659          // Intentional fall-through into LGoSlowPath ...
  3661          masm.bind  (LGoSlowPath) ; 
  3662          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
  3663          masm.jmpb  (DONE_LABEL) ; 
  3665          masm.bind  (LSuccess) ; 
  3666          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
  3667          masm.jmpb  (DONE_LABEL) ; 
  3670       masm.bind (Stacked) ;
  3671       // It's not inflated and it's not recursively stack-locked and it's not biased.
  3672       // It must be stack-locked.
  3673       // Try to reset the header to displaced header.
  3674       // The "box" value on the stack is stable, so we can reload
  3675       // and be assured we observe the same value as above.
  3676       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3677       if (os::is_MP()) {   masm.lock();    }
  3678       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
  3679       // Intention fall-thru into DONE_LABEL
  3682       // DONE_LABEL is a hot target - we'd really like to place it at the
  3683       // start of cache line by padding with NOPs.
  3684       // See the AMD and Intel software optimization manuals for the
  3685       // most efficient "long" NOP encodings.
  3686       // Unfortunately none of our alignment mechanisms suffice.
  3687       if ((EmitSync & 65536) == 0) {
  3688          masm.bind (CheckSucc) ;
  3690       masm.bind(DONE_LABEL);
  3692       // Avoid branch to branch on AMD processors
  3693       if (EmitSync & 32768) { masm.nop() ; }
  3695   %}
  3697   enc_class enc_String_Compare() %{
  3698     Label ECX_GOOD_LABEL, LENGTH_DIFF_LABEL,
  3699           POP_LABEL, DONE_LABEL, CONT_LABEL,
  3700           WHILE_HEAD_LABEL;
  3701     MacroAssembler masm(&cbuf);
  3703     // Get the first character position in both strings
  3704     //         [8] char array, [12] offset, [16] count
  3705     int value_offset  = java_lang_String::value_offset_in_bytes();
  3706     int offset_offset = java_lang_String::offset_offset_in_bytes();
  3707     int count_offset  = java_lang_String::count_offset_in_bytes();
  3708     int base_offset   = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3710     masm.movptr(rax, Address(rsi, value_offset));
  3711     masm.movl(rcx, Address(rsi, offset_offset));
  3712     masm.lea(rax, Address(rax, rcx, Address::times_2, base_offset));
  3713     masm.movptr(rbx, Address(rdi, value_offset));
  3714     masm.movl(rcx, Address(rdi, offset_offset));
  3715     masm.lea(rbx, Address(rbx, rcx, Address::times_2, base_offset));
  3717     // Compute the minimum of the string lengths(rsi) and the
  3718     // difference of the string lengths (stack)
  3721     if (VM_Version::supports_cmov()) {
  3722       masm.movl(rdi, Address(rdi, count_offset));
  3723       masm.movl(rsi, Address(rsi, count_offset));
  3724       masm.movl(rcx, rdi);
  3725       masm.subl(rdi, rsi);
  3726       masm.push(rdi);
  3727       masm.cmovl(Assembler::lessEqual, rsi, rcx);
  3728     } else {
  3729       masm.movl(rdi, Address(rdi, count_offset));
  3730       masm.movl(rcx, Address(rsi, count_offset));
  3731       masm.movl(rsi, rdi);
  3732       masm.subl(rdi, rcx);
  3733       masm.push(rdi);
  3734       masm.jcc(Assembler::lessEqual, ECX_GOOD_LABEL);
  3735       masm.movl(rsi, rcx);
  3736       // rsi holds min, rcx is unused
  3739     // Is the minimum length zero?
  3740     masm.bind(ECX_GOOD_LABEL);
  3741     masm.testl(rsi, rsi);
  3742     masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  3744     // Load first characters
  3745     masm.load_unsigned_short(rcx, Address(rbx, 0));
  3746     masm.load_unsigned_short(rdi, Address(rax, 0));
  3748     // Compare first characters
  3749     masm.subl(rcx, rdi);
  3750     masm.jcc(Assembler::notZero,  POP_LABEL);
  3751     masm.decrementl(rsi);
  3752     masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  3755       // Check after comparing first character to see if strings are equivalent
  3756       Label LSkip2;
  3757       // Check if the strings start at same location
  3758       masm.cmpptr(rbx,rax);
  3759       masm.jcc(Assembler::notEqual, LSkip2);
  3761       // Check if the length difference is zero (from stack)
  3762       masm.cmpl(Address(rsp, 0), 0x0);
  3763       masm.jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
  3765       // Strings might not be equivalent
  3766       masm.bind(LSkip2);
  3769     // Shift rax, and rbx, to the end of the arrays, negate min
  3770     masm.lea(rax, Address(rax, rsi, Address::times_2, 2));
  3771     masm.lea(rbx, Address(rbx, rsi, Address::times_2, 2));
  3772     masm.negl(rsi);
  3774     // Compare the rest of the characters
  3775     masm.bind(WHILE_HEAD_LABEL);
  3776     masm.load_unsigned_short(rcx, Address(rbx, rsi, Address::times_2, 0));
  3777     masm.load_unsigned_short(rdi, Address(rax, rsi, Address::times_2, 0));
  3778     masm.subl(rcx, rdi);
  3779     masm.jcc(Assembler::notZero, POP_LABEL);
  3780     masm.incrementl(rsi);
  3781     masm.jcc(Assembler::notZero, WHILE_HEAD_LABEL);
  3783     // Strings are equal up to min length.  Return the length difference.
  3784     masm.bind(LENGTH_DIFF_LABEL);
  3785     masm.pop(rcx);
  3786     masm.jmp(DONE_LABEL);
  3788     // Discard the stored length difference
  3789     masm.bind(POP_LABEL);
  3790     masm.addptr(rsp, 4);
  3792     // That's it
  3793     masm.bind(DONE_LABEL);
  3794   %}
  3796   enc_class enc_Array_Equals(eDIRegP ary1, eSIRegP ary2, eAXRegI tmp1, eBXRegI tmp2, eCXRegI result) %{
  3797     Label TRUE_LABEL, FALSE_LABEL, DONE_LABEL, COMPARE_LOOP_HDR, COMPARE_LOOP;
  3798     MacroAssembler masm(&cbuf);
  3800     Register ary1Reg   = as_Register($ary1$$reg);
  3801     Register ary2Reg   = as_Register($ary2$$reg);
  3802     Register tmp1Reg   = as_Register($tmp1$$reg);
  3803     Register tmp2Reg   = as_Register($tmp2$$reg);
  3804     Register resultReg = as_Register($result$$reg);
  3806     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3807     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3809     // Check the input args
  3810     masm.cmpl(ary1Reg, ary2Reg);
  3811     masm.jcc(Assembler::equal, TRUE_LABEL);
  3812     masm.testl(ary1Reg, ary1Reg);
  3813     masm.jcc(Assembler::zero, FALSE_LABEL);
  3814     masm.testl(ary2Reg, ary2Reg);
  3815     masm.jcc(Assembler::zero, FALSE_LABEL);
  3817     // Check the lengths
  3818     masm.movl(tmp2Reg, Address(ary1Reg, length_offset));
  3819     masm.movl(resultReg, Address(ary2Reg, length_offset));
  3820     masm.cmpl(tmp2Reg, resultReg);
  3821     masm.jcc(Assembler::notEqual, FALSE_LABEL);
  3822     masm.testl(resultReg, resultReg);
  3823     masm.jcc(Assembler::zero, TRUE_LABEL);
  3825     // Get the number of 4 byte vectors to compare
  3826     masm.shrl(resultReg, 1);
  3828     // Check for odd-length arrays
  3829     masm.andl(tmp2Reg, 1);
  3830     masm.testl(tmp2Reg, tmp2Reg);
  3831     masm.jcc(Assembler::zero, COMPARE_LOOP_HDR);
  3833     // Compare 2-byte "tail" at end of arrays
  3834     masm.load_unsigned_short(tmp1Reg, Address(ary1Reg, resultReg, Address::times_4, base_offset));
  3835     masm.load_unsigned_short(tmp2Reg, Address(ary2Reg, resultReg, Address::times_4, base_offset));
  3836     masm.cmpl(tmp1Reg, tmp2Reg);
  3837     masm.jcc(Assembler::notEqual, FALSE_LABEL);
  3838     masm.testl(resultReg, resultReg);
  3839     masm.jcc(Assembler::zero, TRUE_LABEL);
  3841     // Setup compare loop
  3842     masm.bind(COMPARE_LOOP_HDR);
  3843     // Shift tmp1Reg and tmp2Reg to the last 4-byte boundary of the arrays
  3844     masm.leal(tmp1Reg, Address(ary1Reg, resultReg, Address::times_4, base_offset));
  3845     masm.leal(tmp2Reg, Address(ary2Reg, resultReg, Address::times_4, base_offset));
  3846     masm.negl(resultReg);
  3848     // 4-byte-wide compare loop
  3849     masm.bind(COMPARE_LOOP);
  3850     masm.movl(ary1Reg, Address(tmp1Reg, resultReg, Address::times_4, 0));
  3851     masm.movl(ary2Reg, Address(tmp2Reg, resultReg, Address::times_4, 0));
  3852     masm.cmpl(ary1Reg, ary2Reg);
  3853     masm.jcc(Assembler::notEqual, FALSE_LABEL);
  3854     masm.increment(resultReg);
  3855     masm.jcc(Assembler::notZero, COMPARE_LOOP);
  3857     masm.bind(TRUE_LABEL);
  3858     masm.movl(resultReg, 1);   // return true
  3859     masm.jmp(DONE_LABEL);
  3861     masm.bind(FALSE_LABEL);
  3862     masm.xorl(resultReg, resultReg); // return false
  3864     // That's it
  3865     masm.bind(DONE_LABEL);
  3866   %}
  3868   enc_class enc_pop_rdx() %{
  3869     emit_opcode(cbuf,0x5A);
  3870   %}
  3872   enc_class enc_rethrow() %{
  3873     cbuf.set_inst_mark();
  3874     emit_opcode(cbuf, 0xE9);        // jmp    entry
  3875     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.code_end())-4,
  3876                    runtime_call_Relocation::spec(), RELOC_IMM32 );
  3877   %}
  3880   // Convert a double to an int.  Java semantics require we do complex
  3881   // manglelations in the corner cases.  So we set the rounding mode to
  3882   // 'zero', store the darned double down as an int, and reset the
  3883   // rounding mode to 'nearest'.  The hardware throws an exception which
  3884   // patches up the correct value directly to the stack.
  3885   enc_class D2I_encoding( regD src ) %{
  3886     // Flip to round-to-zero mode.  We attempted to allow invalid-op
  3887     // exceptions here, so that a NAN or other corner-case value will
  3888     // thrown an exception (but normal values get converted at full speed).
  3889     // However, I2C adapters and other float-stack manglers leave pending
  3890     // invalid-op exceptions hanging.  We would have to clear them before
  3891     // enabling them and that is more expensive than just testing for the
  3892     // invalid value Intel stores down in the corner cases.
  3893     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3894     emit_opcode(cbuf,0x2D);
  3895     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3896     // Allocate a word
  3897     emit_opcode(cbuf,0x83);            // SUB ESP,4
  3898     emit_opcode(cbuf,0xEC);
  3899     emit_d8(cbuf,0x04);
  3900     // Encoding assumes a double has been pushed into FPR0.
  3901     // Store down the double as an int, popping the FPU stack
  3902     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
  3903     emit_opcode(cbuf,0x1C);
  3904     emit_d8(cbuf,0x24);
  3905     // Restore the rounding mode; mask the exception
  3906     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3907     emit_opcode(cbuf,0x2D);
  3908     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3909         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3910         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3912     // Load the converted int; adjust CPU stack
  3913     emit_opcode(cbuf,0x58);       // POP EAX
  3914     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
  3915     emit_d32   (cbuf,0x80000000); //         0x80000000
  3916     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3917     emit_d8    (cbuf,0x07);       // Size of slow_call
  3918     // Push src onto stack slow-path
  3919     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3920     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3921     // CALL directly to the runtime
  3922     cbuf.set_inst_mark();
  3923     emit_opcode(cbuf,0xE8);       // Call into runtime
  3924     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3925     // Carry on here...
  3926   %}
  3928   enc_class D2L_encoding( regD src ) %{
  3929     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3930     emit_opcode(cbuf,0x2D);
  3931     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3932     // Allocate a word
  3933     emit_opcode(cbuf,0x83);            // SUB ESP,8
  3934     emit_opcode(cbuf,0xEC);
  3935     emit_d8(cbuf,0x08);
  3936     // Encoding assumes a double has been pushed into FPR0.
  3937     // Store down the double as a long, popping the FPU stack
  3938     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
  3939     emit_opcode(cbuf,0x3C);
  3940     emit_d8(cbuf,0x24);
  3941     // Restore the rounding mode; mask the exception
  3942     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3943     emit_opcode(cbuf,0x2D);
  3944     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3945         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3946         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3948     // Load the converted int; adjust CPU stack
  3949     emit_opcode(cbuf,0x58);       // POP EAX
  3950     emit_opcode(cbuf,0x5A);       // POP EDX
  3951     emit_opcode(cbuf,0x81);       // CMP EDX,imm
  3952     emit_d8    (cbuf,0xFA);       // rdx
  3953     emit_d32   (cbuf,0x80000000); //         0x80000000
  3954     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3955     emit_d8    (cbuf,0x07+4);     // Size of slow_call
  3956     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
  3957     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
  3958     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3959     emit_d8    (cbuf,0x07);       // Size of slow_call
  3960     // Push src onto stack slow-path
  3961     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3962     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3963     // CALL directly to the runtime
  3964     cbuf.set_inst_mark();
  3965     emit_opcode(cbuf,0xE8);       // Call into runtime
  3966     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3967     // Carry on here...
  3968   %}
  3970   enc_class X2L_encoding( regX src ) %{
  3971     // Allocate a word
  3972     emit_opcode(cbuf,0x83);      // SUB ESP,8
  3973     emit_opcode(cbuf,0xEC);
  3974     emit_d8(cbuf,0x08);
  3976     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
  3977     emit_opcode  (cbuf, 0x0F );
  3978     emit_opcode  (cbuf, 0x11 );
  3979     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3981     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
  3982     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3984     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
  3985     emit_opcode(cbuf,0x2D);
  3986     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3988     // Encoding assumes a double has been pushed into FPR0.
  3989     // Store down the double as a long, popping the FPU stack
  3990     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
  3991     emit_opcode(cbuf,0x3C);
  3992     emit_d8(cbuf,0x24);
  3994     // Restore the rounding mode; mask the exception
  3995     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
  3996     emit_opcode(cbuf,0x2D);
  3997     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3998       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3999       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  4001     // Load the converted int; adjust CPU stack
  4002     emit_opcode(cbuf,0x58);      // POP EAX
  4004     emit_opcode(cbuf,0x5A);      // POP EDX
  4006     emit_opcode(cbuf,0x81);      // CMP EDX,imm
  4007     emit_d8    (cbuf,0xFA);      // rdx
  4008     emit_d32   (cbuf,0x80000000);//         0x80000000
  4010     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  4011     emit_d8    (cbuf,0x13+4);    // Size of slow_call
  4013     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
  4014     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
  4016     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  4017     emit_d8    (cbuf,0x13);      // Size of slow_call
  4019     // Allocate a word
  4020     emit_opcode(cbuf,0x83);      // SUB ESP,4
  4021     emit_opcode(cbuf,0xEC);
  4022     emit_d8(cbuf,0x04);
  4024     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
  4025     emit_opcode  (cbuf, 0x0F );
  4026     emit_opcode  (cbuf, 0x11 );
  4027     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4029     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
  4030     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4032     emit_opcode(cbuf,0x83);      // ADD ESP,4
  4033     emit_opcode(cbuf,0xC4);
  4034     emit_d8(cbuf,0x04);
  4036     // CALL directly to the runtime
  4037     cbuf.set_inst_mark();
  4038     emit_opcode(cbuf,0xE8);       // Call into runtime
  4039     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  4040     // Carry on here...
  4041   %}
  4043   enc_class XD2L_encoding( regXD src ) %{
  4044     // Allocate a word
  4045     emit_opcode(cbuf,0x83);      // SUB ESP,8
  4046     emit_opcode(cbuf,0xEC);
  4047     emit_d8(cbuf,0x08);
  4049     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
  4050     emit_opcode  (cbuf, 0x0F );
  4051     emit_opcode  (cbuf, 0x11 );
  4052     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4054     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
  4055     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4057     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
  4058     emit_opcode(cbuf,0x2D);
  4059     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  4061     // Encoding assumes a double has been pushed into FPR0.
  4062     // Store down the double as a long, popping the FPU stack
  4063     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
  4064     emit_opcode(cbuf,0x3C);
  4065     emit_d8(cbuf,0x24);
  4067     // Restore the rounding mode; mask the exception
  4068     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
  4069     emit_opcode(cbuf,0x2D);
  4070     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  4071       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  4072       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  4074     // Load the converted int; adjust CPU stack
  4075     emit_opcode(cbuf,0x58);      // POP EAX
  4077     emit_opcode(cbuf,0x5A);      // POP EDX
  4079     emit_opcode(cbuf,0x81);      // CMP EDX,imm
  4080     emit_d8    (cbuf,0xFA);      // rdx
  4081     emit_d32   (cbuf,0x80000000); //         0x80000000
  4083     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  4084     emit_d8    (cbuf,0x13+4);    // Size of slow_call
  4086     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
  4087     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
  4089     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  4090     emit_d8    (cbuf,0x13);      // Size of slow_call
  4092     // Push src onto stack slow-path
  4093     // Allocate a word
  4094     emit_opcode(cbuf,0x83);      // SUB ESP,8
  4095     emit_opcode(cbuf,0xEC);
  4096     emit_d8(cbuf,0x08);
  4098     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
  4099     emit_opcode  (cbuf, 0x0F );
  4100     emit_opcode  (cbuf, 0x11 );
  4101     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4103     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
  4104     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4106     emit_opcode(cbuf,0x83);      // ADD ESP,8
  4107     emit_opcode(cbuf,0xC4);
  4108     emit_d8(cbuf,0x08);
  4110     // CALL directly to the runtime
  4111     cbuf.set_inst_mark();
  4112     emit_opcode(cbuf,0xE8);      // Call into runtime
  4113     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  4114     // Carry on here...
  4115   %}
  4117   enc_class D2X_encoding( regX dst, regD src ) %{
  4118     // Allocate a word
  4119     emit_opcode(cbuf,0x83);            // SUB ESP,4
  4120     emit_opcode(cbuf,0xEC);
  4121     emit_d8(cbuf,0x04);
  4122     int pop = 0x02;
  4123     if ($src$$reg != FPR1L_enc) {
  4124       emit_opcode( cbuf, 0xD9 );       // FLD    ST(i-1)
  4125       emit_d8( cbuf, 0xC0-1+$src$$reg );
  4126       pop = 0x03;
  4128     store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S  [ESP]
  4130     emit_opcode  (cbuf, 0xF3 );        // MOVSS dst(xmm), [ESP]
  4131     emit_opcode  (cbuf, 0x0F );
  4132     emit_opcode  (cbuf, 0x10 );
  4133     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  4135     emit_opcode(cbuf,0x83);            // ADD ESP,4
  4136     emit_opcode(cbuf,0xC4);
  4137     emit_d8(cbuf,0x04);
  4138     // Carry on here...
  4139   %}
  4141   enc_class FX2I_encoding( regX src, eRegI dst ) %{
  4142     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  4144     // Compare the result to see if we need to go to the slow path
  4145     emit_opcode(cbuf,0x81);       // CMP dst,imm
  4146     emit_rm    (cbuf,0x3,0x7,$dst$$reg);
  4147     emit_d32   (cbuf,0x80000000); //         0x80000000
  4149     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  4150     emit_d8    (cbuf,0x13);       // Size of slow_call
  4151     // Store xmm to a temp memory
  4152     // location and push it onto stack.
  4154     emit_opcode(cbuf,0x83);  // SUB ESP,4
  4155     emit_opcode(cbuf,0xEC);
  4156     emit_d8(cbuf, $primary ? 0x8 : 0x4);
  4158     emit_opcode  (cbuf, $primary ? 0xF2 : 0xF3 );   // MOVSS [ESP], xmm
  4159     emit_opcode  (cbuf, 0x0F );
  4160     emit_opcode  (cbuf, 0x11 );
  4161     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4163     emit_opcode(cbuf, $primary ? 0xDD : 0xD9 );      // FLD [ESP]
  4164     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4166     emit_opcode(cbuf,0x83);    // ADD ESP,4
  4167     emit_opcode(cbuf,0xC4);
  4168     emit_d8(cbuf, $primary ? 0x8 : 0x4);
  4170     // CALL directly to the runtime
  4171     cbuf.set_inst_mark();
  4172     emit_opcode(cbuf,0xE8);       // Call into runtime
  4173     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  4175     // Carry on here...
  4176   %}
  4178   enc_class X2D_encoding( regD dst, regX src ) %{
  4179     // Allocate a word
  4180     emit_opcode(cbuf,0x83);     // SUB ESP,4
  4181     emit_opcode(cbuf,0xEC);
  4182     emit_d8(cbuf,0x04);
  4184     emit_opcode  (cbuf, 0xF3 ); // MOVSS [ESP], xmm
  4185     emit_opcode  (cbuf, 0x0F );
  4186     emit_opcode  (cbuf, 0x11 );
  4187     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4189     emit_opcode(cbuf,0xD9 );    // FLD_S [ESP]
  4190     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4192     emit_opcode(cbuf,0x83);     // ADD ESP,4
  4193     emit_opcode(cbuf,0xC4);
  4194     emit_d8(cbuf,0x04);
  4196     // Carry on here...
  4197   %}
  4199   enc_class AbsXF_encoding(regX dst) %{
  4200     address signmask_address=(address)float_signmask_pool;
  4201     // andpd:\tANDPS  $dst,[signconst]
  4202     emit_opcode(cbuf, 0x0F);
  4203     emit_opcode(cbuf, 0x54);
  4204     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4205     emit_d32(cbuf, (int)signmask_address);
  4206   %}
  4208   enc_class AbsXD_encoding(regXD dst) %{
  4209     address signmask_address=(address)double_signmask_pool;
  4210     // andpd:\tANDPD  $dst,[signconst]
  4211     emit_opcode(cbuf, 0x66);
  4212     emit_opcode(cbuf, 0x0F);
  4213     emit_opcode(cbuf, 0x54);
  4214     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4215     emit_d32(cbuf, (int)signmask_address);
  4216   %}
  4218   enc_class NegXF_encoding(regX dst) %{
  4219     address signmask_address=(address)float_signflip_pool;
  4220     // andpd:\tXORPS  $dst,[signconst]
  4221     emit_opcode(cbuf, 0x0F);
  4222     emit_opcode(cbuf, 0x57);
  4223     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4224     emit_d32(cbuf, (int)signmask_address);
  4225   %}
  4227   enc_class NegXD_encoding(regXD dst) %{
  4228     address signmask_address=(address)double_signflip_pool;
  4229     // andpd:\tXORPD  $dst,[signconst]
  4230     emit_opcode(cbuf, 0x66);
  4231     emit_opcode(cbuf, 0x0F);
  4232     emit_opcode(cbuf, 0x57);
  4233     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4234     emit_d32(cbuf, (int)signmask_address);
  4235   %}
  4237   enc_class FMul_ST_reg( eRegF src1 ) %{
  4238     // Operand was loaded from memory into fp ST (stack top)
  4239     // FMUL   ST,$src  /* D8 C8+i */
  4240     emit_opcode(cbuf, 0xD8);
  4241     emit_opcode(cbuf, 0xC8 + $src1$$reg);
  4242   %}
  4244   enc_class FAdd_ST_reg( eRegF src2 ) %{
  4245     // FADDP  ST,src2  /* D8 C0+i */
  4246     emit_opcode(cbuf, 0xD8);
  4247     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  4248     //could use FADDP  src2,fpST  /* DE C0+i */
  4249   %}
  4251   enc_class FAddP_reg_ST( eRegF src2 ) %{
  4252     // FADDP  src2,ST  /* DE C0+i */
  4253     emit_opcode(cbuf, 0xDE);
  4254     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  4255   %}
  4257   enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
  4258     // Operand has been loaded into fp ST (stack top)
  4259       // FSUB   ST,$src1
  4260       emit_opcode(cbuf, 0xD8);
  4261       emit_opcode(cbuf, 0xE0 + $src1$$reg);
  4263       // FDIV
  4264       emit_opcode(cbuf, 0xD8);
  4265       emit_opcode(cbuf, 0xF0 + $src2$$reg);
  4266   %}
  4268   enc_class MulFAddF (eRegF src1, eRegF src2) %{
  4269     // Operand was loaded from memory into fp ST (stack top)
  4270     // FADD   ST,$src  /* D8 C0+i */
  4271     emit_opcode(cbuf, 0xD8);
  4272     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  4274     // FMUL  ST,src2  /* D8 C*+i */
  4275     emit_opcode(cbuf, 0xD8);
  4276     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  4277   %}
  4280   enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
  4281     // Operand was loaded from memory into fp ST (stack top)
  4282     // FADD   ST,$src  /* D8 C0+i */
  4283     emit_opcode(cbuf, 0xD8);
  4284     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  4286     // FMULP  src2,ST  /* DE C8+i */
  4287     emit_opcode(cbuf, 0xDE);
  4288     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  4289   %}
  4291   enc_class enc_membar_acquire %{
  4292     // Doug Lea believes this is not needed with current Sparcs and TSO.
  4293     // MacroAssembler masm(&cbuf);
  4294     // masm.membar();
  4295   %}
  4297   enc_class enc_membar_release %{
  4298     // Doug Lea believes this is not needed with current Sparcs and TSO.
  4299     // MacroAssembler masm(&cbuf);
  4300     // masm.membar();
  4301   %}
  4303   enc_class enc_membar_volatile %{
  4304     MacroAssembler masm(&cbuf);
  4305     masm.membar(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  4306                                             Assembler::StoreStore));
  4307   %}
  4309   // Atomically load the volatile long
  4310   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
  4311     emit_opcode(cbuf,0xDF);
  4312     int rm_byte_opcode = 0x05;
  4313     int base     = $mem$$base;
  4314     int index    = $mem$$index;
  4315     int scale    = $mem$$scale;
  4316     int displace = $mem$$disp;
  4317     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4318     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  4319     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  4320   %}
  4322   enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
  4323     { // Atomic long load
  4324       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
  4325       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4326       emit_opcode(cbuf,0x0F);
  4327       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4328       int base     = $mem$$base;
  4329       int index    = $mem$$index;
  4330       int scale    = $mem$$scale;
  4331       int displace = $mem$$disp;
  4332       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4333       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4335     { // MOVSD $dst,$tmp ! atomic long store
  4336       emit_opcode(cbuf,0xF2);
  4337       emit_opcode(cbuf,0x0F);
  4338       emit_opcode(cbuf,0x11);
  4339       int base     = $dst$$base;
  4340       int index    = $dst$$index;
  4341       int scale    = $dst$$scale;
  4342       int displace = $dst$$disp;
  4343       bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
  4344       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4346   %}
  4348   enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
  4349     { // Atomic long load
  4350       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
  4351       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4352       emit_opcode(cbuf,0x0F);
  4353       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4354       int base     = $mem$$base;
  4355       int index    = $mem$$index;
  4356       int scale    = $mem$$scale;
  4357       int displace = $mem$$disp;
  4358       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4359       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4361     { // MOVD $dst.lo,$tmp
  4362       emit_opcode(cbuf,0x66);
  4363       emit_opcode(cbuf,0x0F);
  4364       emit_opcode(cbuf,0x7E);
  4365       emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
  4367     { // PSRLQ $tmp,32
  4368       emit_opcode(cbuf,0x66);
  4369       emit_opcode(cbuf,0x0F);
  4370       emit_opcode(cbuf,0x73);
  4371       emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
  4372       emit_d8(cbuf, 0x20);
  4374     { // MOVD $dst.hi,$tmp
  4375       emit_opcode(cbuf,0x66);
  4376       emit_opcode(cbuf,0x0F);
  4377       emit_opcode(cbuf,0x7E);
  4378       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
  4380   %}
  4382   // Volatile Store Long.  Must be atomic, so move it into
  4383   // the FP TOS and then do a 64-bit FIST.  Has to probe the
  4384   // target address before the store (for null-ptr checks)
  4385   // so the memory operand is used twice in the encoding.
  4386   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
  4387     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
  4388     cbuf.set_inst_mark();            // Mark start of FIST in case $mem has an oop
  4389     emit_opcode(cbuf,0xDF);
  4390     int rm_byte_opcode = 0x07;
  4391     int base     = $mem$$base;
  4392     int index    = $mem$$index;
  4393     int scale    = $mem$$scale;
  4394     int displace = $mem$$disp;
  4395     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4396     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  4397   %}
  4399   enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
  4400     { // Atomic long load
  4401       // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
  4402       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4403       emit_opcode(cbuf,0x0F);
  4404       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4405       int base     = $src$$base;
  4406       int index    = $src$$index;
  4407       int scale    = $src$$scale;
  4408       int displace = $src$$disp;
  4409       bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
  4410       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4412     cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
  4413     { // MOVSD $mem,$tmp ! atomic long store
  4414       emit_opcode(cbuf,0xF2);
  4415       emit_opcode(cbuf,0x0F);
  4416       emit_opcode(cbuf,0x11);
  4417       int base     = $mem$$base;
  4418       int index    = $mem$$index;
  4419       int scale    = $mem$$scale;
  4420       int displace = $mem$$disp;
  4421       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4422       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4424   %}
  4426   enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
  4427     { // MOVD $tmp,$src.lo
  4428       emit_opcode(cbuf,0x66);
  4429       emit_opcode(cbuf,0x0F);
  4430       emit_opcode(cbuf,0x6E);
  4431       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  4433     { // MOVD $tmp2,$src.hi
  4434       emit_opcode(cbuf,0x66);
  4435       emit_opcode(cbuf,0x0F);
  4436       emit_opcode(cbuf,0x6E);
  4437       emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
  4439     { // PUNPCKLDQ $tmp,$tmp2
  4440       emit_opcode(cbuf,0x66);
  4441       emit_opcode(cbuf,0x0F);
  4442       emit_opcode(cbuf,0x62);
  4443       emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
  4445     cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
  4446     { // MOVSD $mem,$tmp ! atomic long store
  4447       emit_opcode(cbuf,0xF2);
  4448       emit_opcode(cbuf,0x0F);
  4449       emit_opcode(cbuf,0x11);
  4450       int base     = $mem$$base;
  4451       int index    = $mem$$index;
  4452       int scale    = $mem$$scale;
  4453       int displace = $mem$$disp;
  4454       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4455       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4457   %}
  4459   // Safepoint Poll.  This polls the safepoint page, and causes an
  4460   // exception if it is not readable. Unfortunately, it kills the condition code
  4461   // in the process
  4462   // We current use TESTL [spp],EDI
  4463   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
  4465   enc_class Safepoint_Poll() %{
  4466     cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0);
  4467     emit_opcode(cbuf,0x85);
  4468     emit_rm (cbuf, 0x0, 0x7, 0x5);
  4469     emit_d32(cbuf, (intptr_t)os::get_polling_page());
  4470   %}
  4471 %}
  4474 //----------FRAME--------------------------------------------------------------
  4475 // Definition of frame structure and management information.
  4476 //
  4477 //  S T A C K   L A Y O U T    Allocators stack-slot number
  4478 //                             |   (to get allocators register number
  4479 //  G  Owned by    |        |  v    add OptoReg::stack0())
  4480 //  r   CALLER     |        |
  4481 //  o     |        +--------+      pad to even-align allocators stack-slot
  4482 //  w     V        |  pad0  |        numbers; owned by CALLER
  4483 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  4484 //  h     ^        |   in   |  5
  4485 //        |        |  args  |  4   Holes in incoming args owned by SELF
  4486 //  |     |        |        |  3
  4487 //  |     |        +--------+
  4488 //  V     |        | old out|      Empty on Intel, window on Sparc
  4489 //        |    old |preserve|      Must be even aligned.
  4490 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  4491 //        |        |   in   |  3   area for Intel ret address
  4492 //     Owned by    |preserve|      Empty on Sparc.
  4493 //       SELF      +--------+
  4494 //        |        |  pad2  |  2   pad to align old SP
  4495 //        |        +--------+  1
  4496 //        |        | locks  |  0
  4497 //        |        +--------+----> OptoReg::stack0(), even aligned
  4498 //        |        |  pad1  | 11   pad to align new SP
  4499 //        |        +--------+
  4500 //        |        |        | 10
  4501 //        |        | spills |  9   spills
  4502 //        V        |        |  8   (pad0 slot for callee)
  4503 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  4504 //        ^        |  out   |  7
  4505 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  4506 //     Owned by    +--------+
  4507 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  4508 //        |    new |preserve|      Must be even-aligned.
  4509 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  4510 //        |        |        |
  4511 //
  4512 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  4513 //         known from SELF's arguments and the Java calling convention.
  4514 //         Region 6-7 is determined per call site.
  4515 // Note 2: If the calling convention leaves holes in the incoming argument
  4516 //         area, those holes are owned by SELF.  Holes in the outgoing area
  4517 //         are owned by the CALLEE.  Holes should not be nessecary in the
  4518 //         incoming area, as the Java calling convention is completely under
  4519 //         the control of the AD file.  Doubles can be sorted and packed to
  4520 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  4521 //         varargs C calling conventions.
  4522 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  4523 //         even aligned with pad0 as needed.
  4524 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  4525 //         region 6-11 is even aligned; it may be padded out more so that
  4526 //         the region from SP to FP meets the minimum stack alignment.
  4528 frame %{
  4529   // What direction does stack grow in (assumed to be same for C & Java)
  4530   stack_direction(TOWARDS_LOW);
  4532   // These three registers define part of the calling convention
  4533   // between compiled code and the interpreter.
  4534   inline_cache_reg(EAX);                // Inline Cache Register
  4535   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
  4537   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  4538   cisc_spilling_operand_name(indOffset32);
  4540   // Number of stack slots consumed by locking an object
  4541   sync_stack_slots(1);
  4543   // Compiled code's Frame Pointer
  4544   frame_pointer(ESP);
  4545   // Interpreter stores its frame pointer in a register which is
  4546   // stored to the stack by I2CAdaptors.
  4547   // I2CAdaptors convert from interpreted java to compiled java.
  4548   interpreter_frame_pointer(EBP);
  4550   // Stack alignment requirement
  4551   // Alignment size in bytes (128-bit -> 16 bytes)
  4552   stack_alignment(StackAlignmentInBytes);
  4554   // Number of stack slots between incoming argument block and the start of
  4555   // a new frame.  The PROLOG must add this many slots to the stack.  The
  4556   // EPILOG must remove this many slots.  Intel needs one slot for
  4557   // return address and one for rbp, (must save rbp)
  4558   in_preserve_stack_slots(2+VerifyStackAtCalls);
  4560   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  4561   // for calls to C.  Supports the var-args backing area for register parms.
  4562   varargs_C_out_slots_killed(0);
  4564   // The after-PROLOG location of the return address.  Location of
  4565   // return address specifies a type (REG or STACK) and a number
  4566   // representing the register number (i.e. - use a register name) or
  4567   // stack slot.
  4568   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  4569   // Otherwise, it is above the locks and verification slot and alignment word
  4570   return_addr(STACK - 1 +
  4571               round_to(1+VerifyStackAtCalls+
  4572               Compile::current()->fixed_slots(),
  4573               (StackAlignmentInBytes/wordSize)));
  4575   // Body of function which returns an integer array locating
  4576   // arguments either in registers or in stack slots.  Passed an array
  4577   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4578   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4579   // arguments for a CALLEE.  Incoming stack arguments are
  4580   // automatically biased by the preserve_stack_slots field above.
  4581   calling_convention %{
  4582     // No difference between ingoing/outgoing just pass false
  4583     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  4584   %}
  4587   // Body of function which returns an integer array locating
  4588   // arguments either in registers or in stack slots.  Passed an array
  4589   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4590   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4591   // arguments for a CALLEE.  Incoming stack arguments are
  4592   // automatically biased by the preserve_stack_slots field above.
  4593   c_calling_convention %{
  4594     // This is obviously always outgoing
  4595     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  4596   %}
  4598   // Location of C & interpreter return values
  4599   c_return_value %{
  4600     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  4601     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  4602     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  4604     // in SSE2+ mode we want to keep the FPU stack clean so pretend
  4605     // that C functions return float and double results in XMM0.
  4606     if( ideal_reg == Op_RegD && UseSSE>=2 )
  4607       return OptoRegPair(XMM0b_num,XMM0a_num);
  4608     if( ideal_reg == Op_RegF && UseSSE>=2 )
  4609       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  4611     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  4612   %}
  4614   // Location of return values
  4615   return_value %{
  4616     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  4617     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  4618     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  4619     if( ideal_reg == Op_RegD && UseSSE>=2 )
  4620       return OptoRegPair(XMM0b_num,XMM0a_num);
  4621     if( ideal_reg == Op_RegF && UseSSE>=1 )
  4622       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  4623     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  4624   %}
  4626 %}
  4628 //----------ATTRIBUTES---------------------------------------------------------
  4629 //----------Operand Attributes-------------------------------------------------
  4630 op_attrib op_cost(0);        // Required cost attribute
  4632 //----------Instruction Attributes---------------------------------------------
  4633 ins_attrib ins_cost(100);       // Required cost attribute
  4634 ins_attrib ins_size(8);         // Required size attribute (in bits)
  4635 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
  4636 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  4637                                 // non-matching short branch variant of some
  4638                                                             // long branch?
  4639 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
  4640                                 // specifies the alignment that some part of the instruction (not
  4641                                 // necessarily the start) requires.  If > 1, a compute_padding()
  4642                                 // function must be provided for the instruction
  4644 //----------OPERANDS-----------------------------------------------------------
  4645 // Operand definitions must precede instruction definitions for correct parsing
  4646 // in the ADLC because operands constitute user defined types which are used in
  4647 // instruction definitions.
  4649 //----------Simple Operands----------------------------------------------------
  4650 // Immediate Operands
  4651 // Integer Immediate
  4652 operand immI() %{
  4653   match(ConI);
  4655   op_cost(10);
  4656   format %{ %}
  4657   interface(CONST_INTER);
  4658 %}
  4660 // Constant for test vs zero
  4661 operand immI0() %{
  4662   predicate(n->get_int() == 0);
  4663   match(ConI);
  4665   op_cost(0);
  4666   format %{ %}
  4667   interface(CONST_INTER);
  4668 %}
  4670 // Constant for increment
  4671 operand immI1() %{
  4672   predicate(n->get_int() == 1);
  4673   match(ConI);
  4675   op_cost(0);
  4676   format %{ %}
  4677   interface(CONST_INTER);
  4678 %}
  4680 // Constant for decrement
  4681 operand immI_M1() %{
  4682   predicate(n->get_int() == -1);
  4683   match(ConI);
  4685   op_cost(0);
  4686   format %{ %}
  4687   interface(CONST_INTER);
  4688 %}
  4690 // Valid scale values for addressing modes
  4691 operand immI2() %{
  4692   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  4693   match(ConI);
  4695   format %{ %}
  4696   interface(CONST_INTER);
  4697 %}
  4699 operand immI8() %{
  4700   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  4701   match(ConI);
  4703   op_cost(5);
  4704   format %{ %}
  4705   interface(CONST_INTER);
  4706 %}
  4708 operand immI16() %{
  4709   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  4710   match(ConI);
  4712   op_cost(10);
  4713   format %{ %}
  4714   interface(CONST_INTER);
  4715 %}
  4717 // Constant for long shifts
  4718 operand immI_32() %{
  4719   predicate( n->get_int() == 32 );
  4720   match(ConI);
  4722   op_cost(0);
  4723   format %{ %}
  4724   interface(CONST_INTER);
  4725 %}
  4727 operand immI_1_31() %{
  4728   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  4729   match(ConI);
  4731   op_cost(0);
  4732   format %{ %}
  4733   interface(CONST_INTER);
  4734 %}
  4736 operand immI_32_63() %{
  4737   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  4738   match(ConI);
  4739   op_cost(0);
  4741   format %{ %}
  4742   interface(CONST_INTER);
  4743 %}
  4745 operand immI_1() %{
  4746   predicate( n->get_int() == 1 );
  4747   match(ConI);
  4749   op_cost(0);
  4750   format %{ %}
  4751   interface(CONST_INTER);
  4752 %}
  4754 operand immI_2() %{
  4755   predicate( n->get_int() == 2 );
  4756   match(ConI);
  4758   op_cost(0);
  4759   format %{ %}
  4760   interface(CONST_INTER);
  4761 %}
  4763 operand immI_3() %{
  4764   predicate( n->get_int() == 3 );
  4765   match(ConI);
  4767   op_cost(0);
  4768   format %{ %}
  4769   interface(CONST_INTER);
  4770 %}
  4772 // Pointer Immediate
  4773 operand immP() %{
  4774   match(ConP);
  4776   op_cost(10);
  4777   format %{ %}
  4778   interface(CONST_INTER);
  4779 %}
  4781 // NULL Pointer Immediate
  4782 operand immP0() %{
  4783   predicate( n->get_ptr() == 0 );
  4784   match(ConP);
  4785   op_cost(0);
  4787   format %{ %}
  4788   interface(CONST_INTER);
  4789 %}
  4791 // Long Immediate
  4792 operand immL() %{
  4793   match(ConL);
  4795   op_cost(20);
  4796   format %{ %}
  4797   interface(CONST_INTER);
  4798 %}
  4800 // Long Immediate zero
  4801 operand immL0() %{
  4802   predicate( n->get_long() == 0L );
  4803   match(ConL);
  4804   op_cost(0);
  4806   format %{ %}
  4807   interface(CONST_INTER);
  4808 %}
  4810 // Long Immediate zero
  4811 operand immL_M1() %{
  4812   predicate( n->get_long() == -1L );
  4813   match(ConL);
  4814   op_cost(0);
  4816   format %{ %}
  4817   interface(CONST_INTER);
  4818 %}
  4820 // Long immediate from 0 to 127.
  4821 // Used for a shorter form of long mul by 10.
  4822 operand immL_127() %{
  4823   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  4824   match(ConL);
  4825   op_cost(0);
  4827   format %{ %}
  4828   interface(CONST_INTER);
  4829 %}
  4831 // Long Immediate: low 32-bit mask
  4832 operand immL_32bits() %{
  4833   predicate(n->get_long() == 0xFFFFFFFFL);
  4834   match(ConL);
  4835   op_cost(0);
  4837   format %{ %}
  4838   interface(CONST_INTER);
  4839 %}
  4841 // Long Immediate: low 32-bit mask
  4842 operand immL32() %{
  4843   predicate(n->get_long() == (int)(n->get_long()));
  4844   match(ConL);
  4845   op_cost(20);
  4847   format %{ %}
  4848   interface(CONST_INTER);
  4849 %}
  4851 //Double Immediate zero
  4852 operand immD0() %{
  4853   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4854   // bug that generates code such that NaNs compare equal to 0.0
  4855   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  4856   match(ConD);
  4858   op_cost(5);
  4859   format %{ %}
  4860   interface(CONST_INTER);
  4861 %}
  4863 // Double Immediate
  4864 operand immD1() %{
  4865   predicate( UseSSE<=1 && n->getd() == 1.0 );
  4866   match(ConD);
  4868   op_cost(5);
  4869   format %{ %}
  4870   interface(CONST_INTER);
  4871 %}
  4873 // Double Immediate
  4874 operand immD() %{
  4875   predicate(UseSSE<=1);
  4876   match(ConD);
  4878   op_cost(5);
  4879   format %{ %}
  4880   interface(CONST_INTER);
  4881 %}
  4883 operand immXD() %{
  4884   predicate(UseSSE>=2);
  4885   match(ConD);
  4887   op_cost(5);
  4888   format %{ %}
  4889   interface(CONST_INTER);
  4890 %}
  4892 // Double Immediate zero
  4893 operand immXD0() %{
  4894   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4895   // bug that generates code such that NaNs compare equal to 0.0 AND do not
  4896   // compare equal to -0.0.
  4897   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  4898   match(ConD);
  4900   format %{ %}
  4901   interface(CONST_INTER);
  4902 %}
  4904 // Float Immediate zero
  4905 operand immF0() %{
  4906   predicate( UseSSE == 0 && n->getf() == 0.0 );
  4907   match(ConF);
  4909   op_cost(5);
  4910   format %{ %}
  4911   interface(CONST_INTER);
  4912 %}
  4914 // Float Immediate
  4915 operand immF() %{
  4916   predicate( UseSSE == 0 );
  4917   match(ConF);
  4919   op_cost(5);
  4920   format %{ %}
  4921   interface(CONST_INTER);
  4922 %}
  4924 // Float Immediate
  4925 operand immXF() %{
  4926   predicate(UseSSE >= 1);
  4927   match(ConF);
  4929   op_cost(5);
  4930   format %{ %}
  4931   interface(CONST_INTER);
  4932 %}
  4934 // Float Immediate zero.  Zero and not -0.0
  4935 operand immXF0() %{
  4936   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  4937   match(ConF);
  4939   op_cost(5);
  4940   format %{ %}
  4941   interface(CONST_INTER);
  4942 %}
  4944 // Immediates for special shifts (sign extend)
  4946 // Constants for increment
  4947 operand immI_16() %{
  4948   predicate( n->get_int() == 16 );
  4949   match(ConI);
  4951   format %{ %}
  4952   interface(CONST_INTER);
  4953 %}
  4955 operand immI_24() %{
  4956   predicate( n->get_int() == 24 );
  4957   match(ConI);
  4959   format %{ %}
  4960   interface(CONST_INTER);
  4961 %}
  4963 // Constant for byte-wide masking
  4964 operand immI_255() %{
  4965   predicate( n->get_int() == 255 );
  4966   match(ConI);
  4968   format %{ %}
  4969   interface(CONST_INTER);
  4970 %}
  4972 // Register Operands
  4973 // Integer Register
  4974 operand eRegI() %{
  4975   constraint(ALLOC_IN_RC(e_reg));
  4976   match(RegI);
  4977   match(xRegI);
  4978   match(eAXRegI);
  4979   match(eBXRegI);
  4980   match(eCXRegI);
  4981   match(eDXRegI);
  4982   match(eDIRegI);
  4983   match(eSIRegI);
  4985   format %{ %}
  4986   interface(REG_INTER);
  4987 %}
  4989 // Subset of Integer Register
  4990 operand xRegI(eRegI reg) %{
  4991   constraint(ALLOC_IN_RC(x_reg));
  4992   match(reg);
  4993   match(eAXRegI);
  4994   match(eBXRegI);
  4995   match(eCXRegI);
  4996   match(eDXRegI);
  4998   format %{ %}
  4999   interface(REG_INTER);
  5000 %}
  5002 // Special Registers
  5003 operand eAXRegI(xRegI reg) %{
  5004   constraint(ALLOC_IN_RC(eax_reg));
  5005   match(reg);
  5006   match(eRegI);
  5008   format %{ "EAX" %}
  5009   interface(REG_INTER);
  5010 %}
  5012 // Special Registers
  5013 operand eBXRegI(xRegI reg) %{
  5014   constraint(ALLOC_IN_RC(ebx_reg));
  5015   match(reg);
  5016   match(eRegI);
  5018   format %{ "EBX" %}
  5019   interface(REG_INTER);
  5020 %}
  5022 operand eCXRegI(xRegI reg) %{
  5023   constraint(ALLOC_IN_RC(ecx_reg));
  5024   match(reg);
  5025   match(eRegI);
  5027   format %{ "ECX" %}
  5028   interface(REG_INTER);
  5029 %}
  5031 operand eDXRegI(xRegI reg) %{
  5032   constraint(ALLOC_IN_RC(edx_reg));
  5033   match(reg);
  5034   match(eRegI);
  5036   format %{ "EDX" %}
  5037   interface(REG_INTER);
  5038 %}
  5040 operand eDIRegI(xRegI reg) %{
  5041   constraint(ALLOC_IN_RC(edi_reg));
  5042   match(reg);
  5043   match(eRegI);
  5045   format %{ "EDI" %}
  5046   interface(REG_INTER);
  5047 %}
  5049 operand naxRegI() %{
  5050   constraint(ALLOC_IN_RC(nax_reg));
  5051   match(RegI);
  5052   match(eCXRegI);
  5053   match(eDXRegI);
  5054   match(eSIRegI);
  5055   match(eDIRegI);
  5057   format %{ %}
  5058   interface(REG_INTER);
  5059 %}
  5061 operand nadxRegI() %{
  5062   constraint(ALLOC_IN_RC(nadx_reg));
  5063   match(RegI);
  5064   match(eBXRegI);
  5065   match(eCXRegI);
  5066   match(eSIRegI);
  5067   match(eDIRegI);
  5069   format %{ %}
  5070   interface(REG_INTER);
  5071 %}
  5073 operand ncxRegI() %{
  5074   constraint(ALLOC_IN_RC(ncx_reg));
  5075   match(RegI);
  5076   match(eAXRegI);
  5077   match(eDXRegI);
  5078   match(eSIRegI);
  5079   match(eDIRegI);
  5081   format %{ %}
  5082   interface(REG_INTER);
  5083 %}
  5085 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
  5086 // //
  5087 operand eSIRegI(xRegI reg) %{
  5088    constraint(ALLOC_IN_RC(esi_reg));
  5089    match(reg);
  5090    match(eRegI);
  5092    format %{ "ESI" %}
  5093    interface(REG_INTER);
  5094 %}
  5096 // Pointer Register
  5097 operand anyRegP() %{
  5098   constraint(ALLOC_IN_RC(any_reg));
  5099   match(RegP);
  5100   match(eAXRegP);
  5101   match(eBXRegP);
  5102   match(eCXRegP);
  5103   match(eDIRegP);
  5104   match(eRegP);
  5106   format %{ %}
  5107   interface(REG_INTER);
  5108 %}
  5110 operand eRegP() %{
  5111   constraint(ALLOC_IN_RC(e_reg));
  5112   match(RegP);
  5113   match(eAXRegP);
  5114   match(eBXRegP);
  5115   match(eCXRegP);
  5116   match(eDIRegP);
  5118   format %{ %}
  5119   interface(REG_INTER);
  5120 %}
  5122 // On windows95, EBP is not safe to use for implicit null tests.
  5123 operand eRegP_no_EBP() %{
  5124   constraint(ALLOC_IN_RC(e_reg_no_rbp));
  5125   match(RegP);
  5126   match(eAXRegP);
  5127   match(eBXRegP);
  5128   match(eCXRegP);
  5129   match(eDIRegP);
  5131   op_cost(100);
  5132   format %{ %}
  5133   interface(REG_INTER);
  5134 %}
  5136 operand naxRegP() %{
  5137   constraint(ALLOC_IN_RC(nax_reg));
  5138   match(RegP);
  5139   match(eBXRegP);
  5140   match(eDXRegP);
  5141   match(eCXRegP);
  5142   match(eSIRegP);
  5143   match(eDIRegP);
  5145   format %{ %}
  5146   interface(REG_INTER);
  5147 %}
  5149 operand nabxRegP() %{
  5150   constraint(ALLOC_IN_RC(nabx_reg));
  5151   match(RegP);
  5152   match(eCXRegP);
  5153   match(eDXRegP);
  5154   match(eSIRegP);
  5155   match(eDIRegP);
  5157   format %{ %}
  5158   interface(REG_INTER);
  5159 %}
  5161 operand pRegP() %{
  5162   constraint(ALLOC_IN_RC(p_reg));
  5163   match(RegP);
  5164   match(eBXRegP);
  5165   match(eDXRegP);
  5166   match(eSIRegP);
  5167   match(eDIRegP);
  5169   format %{ %}
  5170   interface(REG_INTER);
  5171 %}
  5173 // Special Registers
  5174 // Return a pointer value
  5175 operand eAXRegP(eRegP reg) %{
  5176   constraint(ALLOC_IN_RC(eax_reg));
  5177   match(reg);
  5178   format %{ "EAX" %}
  5179   interface(REG_INTER);
  5180 %}
  5182 // Used in AtomicAdd
  5183 operand eBXRegP(eRegP reg) %{
  5184   constraint(ALLOC_IN_RC(ebx_reg));
  5185   match(reg);
  5186   format %{ "EBX" %}
  5187   interface(REG_INTER);
  5188 %}
  5190 // Tail-call (interprocedural jump) to interpreter
  5191 operand eCXRegP(eRegP reg) %{
  5192   constraint(ALLOC_IN_RC(ecx_reg));
  5193   match(reg);
  5194   format %{ "ECX" %}
  5195   interface(REG_INTER);
  5196 %}
  5198 operand eSIRegP(eRegP reg) %{
  5199   constraint(ALLOC_IN_RC(esi_reg));
  5200   match(reg);
  5201   format %{ "ESI" %}
  5202   interface(REG_INTER);
  5203 %}
  5205 // Used in rep stosw
  5206 operand eDIRegP(eRegP reg) %{
  5207   constraint(ALLOC_IN_RC(edi_reg));
  5208   match(reg);
  5209   format %{ "EDI" %}
  5210   interface(REG_INTER);
  5211 %}
  5213 operand eBPRegP() %{
  5214   constraint(ALLOC_IN_RC(ebp_reg));
  5215   match(RegP);
  5216   format %{ "EBP" %}
  5217   interface(REG_INTER);
  5218 %}
  5220 operand eRegL() %{
  5221   constraint(ALLOC_IN_RC(long_reg));
  5222   match(RegL);
  5223   match(eADXRegL);
  5225   format %{ %}
  5226   interface(REG_INTER);
  5227 %}
  5229 operand eADXRegL( eRegL reg ) %{
  5230   constraint(ALLOC_IN_RC(eadx_reg));
  5231   match(reg);
  5233   format %{ "EDX:EAX" %}
  5234   interface(REG_INTER);
  5235 %}
  5237 operand eBCXRegL( eRegL reg ) %{
  5238   constraint(ALLOC_IN_RC(ebcx_reg));
  5239   match(reg);
  5241   format %{ "EBX:ECX" %}
  5242   interface(REG_INTER);
  5243 %}
  5245 // Special case for integer high multiply
  5246 operand eADXRegL_low_only() %{
  5247   constraint(ALLOC_IN_RC(eadx_reg));
  5248   match(RegL);
  5250   format %{ "EAX" %}
  5251   interface(REG_INTER);
  5252 %}
  5254 // Flags register, used as output of compare instructions
  5255 operand eFlagsReg() %{
  5256   constraint(ALLOC_IN_RC(int_flags));
  5257   match(RegFlags);
  5259   format %{ "EFLAGS" %}
  5260   interface(REG_INTER);
  5261 %}
  5263 // Flags register, used as output of FLOATING POINT compare instructions
  5264 operand eFlagsRegU() %{
  5265   constraint(ALLOC_IN_RC(int_flags));
  5266   match(RegFlags);
  5268   format %{ "EFLAGS_U" %}
  5269   interface(REG_INTER);
  5270 %}
  5272 operand eFlagsRegUCF() %{
  5273   constraint(ALLOC_IN_RC(int_flags));
  5274   match(RegFlags);
  5275   predicate(false);
  5277   format %{ "EFLAGS_U_CF" %}
  5278   interface(REG_INTER);
  5279 %}
  5281 // Condition Code Register used by long compare
  5282 operand flagsReg_long_LTGE() %{
  5283   constraint(ALLOC_IN_RC(int_flags));
  5284   match(RegFlags);
  5285   format %{ "FLAGS_LTGE" %}
  5286   interface(REG_INTER);
  5287 %}
  5288 operand flagsReg_long_EQNE() %{
  5289   constraint(ALLOC_IN_RC(int_flags));
  5290   match(RegFlags);
  5291   format %{ "FLAGS_EQNE" %}
  5292   interface(REG_INTER);
  5293 %}
  5294 operand flagsReg_long_LEGT() %{
  5295   constraint(ALLOC_IN_RC(int_flags));
  5296   match(RegFlags);
  5297   format %{ "FLAGS_LEGT" %}
  5298   interface(REG_INTER);
  5299 %}
  5301 // Float register operands
  5302 operand regD() %{
  5303   predicate( UseSSE < 2 );
  5304   constraint(ALLOC_IN_RC(dbl_reg));
  5305   match(RegD);
  5306   match(regDPR1);
  5307   match(regDPR2);
  5308   format %{ %}
  5309   interface(REG_INTER);
  5310 %}
  5312 operand regDPR1(regD reg) %{
  5313   predicate( UseSSE < 2 );
  5314   constraint(ALLOC_IN_RC(dbl_reg0));
  5315   match(reg);
  5316   format %{ "FPR1" %}
  5317   interface(REG_INTER);
  5318 %}
  5320 operand regDPR2(regD reg) %{
  5321   predicate( UseSSE < 2 );
  5322   constraint(ALLOC_IN_RC(dbl_reg1));
  5323   match(reg);
  5324   format %{ "FPR2" %}
  5325   interface(REG_INTER);
  5326 %}
  5328 operand regnotDPR1(regD reg) %{
  5329   predicate( UseSSE < 2 );
  5330   constraint(ALLOC_IN_RC(dbl_notreg0));
  5331   match(reg);
  5332   format %{ %}
  5333   interface(REG_INTER);
  5334 %}
  5336 // XMM Double register operands
  5337 operand regXD() %{
  5338   predicate( UseSSE>=2 );
  5339   constraint(ALLOC_IN_RC(xdb_reg));
  5340   match(RegD);
  5341   match(regXD6);
  5342   match(regXD7);
  5343   format %{ %}
  5344   interface(REG_INTER);
  5345 %}
  5347 // XMM6 double register operands
  5348 operand regXD6(regXD reg) %{
  5349   predicate( UseSSE>=2 );
  5350   constraint(ALLOC_IN_RC(xdb_reg6));
  5351   match(reg);
  5352   format %{ "XMM6" %}
  5353   interface(REG_INTER);
  5354 %}
  5356 // XMM7 double register operands
  5357 operand regXD7(regXD reg) %{
  5358   predicate( UseSSE>=2 );
  5359   constraint(ALLOC_IN_RC(xdb_reg7));
  5360   match(reg);
  5361   format %{ "XMM7" %}
  5362   interface(REG_INTER);
  5363 %}
  5365 // Float register operands
  5366 operand regF() %{
  5367   predicate( UseSSE < 2 );
  5368   constraint(ALLOC_IN_RC(flt_reg));
  5369   match(RegF);
  5370   match(regFPR1);
  5371   format %{ %}
  5372   interface(REG_INTER);
  5373 %}
  5375 // Float register operands
  5376 operand regFPR1(regF reg) %{
  5377   predicate( UseSSE < 2 );
  5378   constraint(ALLOC_IN_RC(flt_reg0));
  5379   match(reg);
  5380   format %{ "FPR1" %}
  5381   interface(REG_INTER);
  5382 %}
  5384 // XMM register operands
  5385 operand regX() %{
  5386   predicate( UseSSE>=1 );
  5387   constraint(ALLOC_IN_RC(xmm_reg));
  5388   match(RegF);
  5389   format %{ %}
  5390   interface(REG_INTER);
  5391 %}
  5394 //----------Memory Operands----------------------------------------------------
  5395 // Direct Memory Operand
  5396 operand direct(immP addr) %{
  5397   match(addr);
  5399   format %{ "[$addr]" %}
  5400   interface(MEMORY_INTER) %{
  5401     base(0xFFFFFFFF);
  5402     index(0x4);
  5403     scale(0x0);
  5404     disp($addr);
  5405   %}
  5406 %}
  5408 // Indirect Memory Operand
  5409 operand indirect(eRegP reg) %{
  5410   constraint(ALLOC_IN_RC(e_reg));
  5411   match(reg);
  5413   format %{ "[$reg]" %}
  5414   interface(MEMORY_INTER) %{
  5415     base($reg);
  5416     index(0x4);
  5417     scale(0x0);
  5418     disp(0x0);
  5419   %}
  5420 %}
  5422 // Indirect Memory Plus Short Offset Operand
  5423 operand indOffset8(eRegP reg, immI8 off) %{
  5424   match(AddP reg off);
  5426   format %{ "[$reg + $off]" %}
  5427   interface(MEMORY_INTER) %{
  5428     base($reg);
  5429     index(0x4);
  5430     scale(0x0);
  5431     disp($off);
  5432   %}
  5433 %}
  5435 // Indirect Memory Plus Long Offset Operand
  5436 operand indOffset32(eRegP reg, immI off) %{
  5437   match(AddP reg off);
  5439   format %{ "[$reg + $off]" %}
  5440   interface(MEMORY_INTER) %{
  5441     base($reg);
  5442     index(0x4);
  5443     scale(0x0);
  5444     disp($off);
  5445   %}
  5446 %}
  5448 // Indirect Memory Plus Long Offset Operand
  5449 operand indOffset32X(eRegI reg, immP off) %{
  5450   match(AddP off reg);
  5452   format %{ "[$reg + $off]" %}
  5453   interface(MEMORY_INTER) %{
  5454     base($reg);
  5455     index(0x4);
  5456     scale(0x0);
  5457     disp($off);
  5458   %}
  5459 %}
  5461 // Indirect Memory Plus Index Register Plus Offset Operand
  5462 operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
  5463   match(AddP (AddP reg ireg) off);
  5465   op_cost(10);
  5466   format %{"[$reg + $off + $ireg]" %}
  5467   interface(MEMORY_INTER) %{
  5468     base($reg);
  5469     index($ireg);
  5470     scale(0x0);
  5471     disp($off);
  5472   %}
  5473 %}
  5475 // Indirect Memory Plus Index Register Plus Offset Operand
  5476 operand indIndex(eRegP reg, eRegI ireg) %{
  5477   match(AddP reg ireg);
  5479   op_cost(10);
  5480   format %{"[$reg + $ireg]" %}
  5481   interface(MEMORY_INTER) %{
  5482     base($reg);
  5483     index($ireg);
  5484     scale(0x0);
  5485     disp(0x0);
  5486   %}
  5487 %}
  5489 // // -------------------------------------------------------------------------
  5490 // // 486 architecture doesn't support "scale * index + offset" with out a base
  5491 // // -------------------------------------------------------------------------
  5492 // // Scaled Memory Operands
  5493 // // Indirect Memory Times Scale Plus Offset Operand
  5494 // operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
  5495 //   match(AddP off (LShiftI ireg scale));
  5496 //
  5497 //   op_cost(10);
  5498 //   format %{"[$off + $ireg << $scale]" %}
  5499 //   interface(MEMORY_INTER) %{
  5500 //     base(0x4);
  5501 //     index($ireg);
  5502 //     scale($scale);
  5503 //     disp($off);
  5504 //   %}
  5505 // %}
  5507 // Indirect Memory Times Scale Plus Index Register
  5508 operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
  5509   match(AddP reg (LShiftI ireg scale));
  5511   op_cost(10);
  5512   format %{"[$reg + $ireg << $scale]" %}
  5513   interface(MEMORY_INTER) %{
  5514     base($reg);
  5515     index($ireg);
  5516     scale($scale);
  5517     disp(0x0);
  5518   %}
  5519 %}
  5521 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5522 operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
  5523   match(AddP (AddP reg (LShiftI ireg scale)) off);
  5525   op_cost(10);
  5526   format %{"[$reg + $off + $ireg << $scale]" %}
  5527   interface(MEMORY_INTER) %{
  5528     base($reg);
  5529     index($ireg);
  5530     scale($scale);
  5531     disp($off);
  5532   %}
  5533 %}
  5535 //----------Load Long Memory Operands------------------------------------------
  5536 // The load-long idiom will use it's address expression again after loading
  5537 // the first word of the long.  If the load-long destination overlaps with
  5538 // registers used in the addressing expression, the 2nd half will be loaded
  5539 // from a clobbered address.  Fix this by requiring that load-long use
  5540 // address registers that do not overlap with the load-long target.
  5542 // load-long support
  5543 operand load_long_RegP() %{
  5544   constraint(ALLOC_IN_RC(esi_reg));
  5545   match(RegP);
  5546   match(eSIRegP);
  5547   op_cost(100);
  5548   format %{  %}
  5549   interface(REG_INTER);
  5550 %}
  5552 // Indirect Memory Operand Long
  5553 operand load_long_indirect(load_long_RegP reg) %{
  5554   constraint(ALLOC_IN_RC(esi_reg));
  5555   match(reg);
  5557   format %{ "[$reg]" %}
  5558   interface(MEMORY_INTER) %{
  5559     base($reg);
  5560     index(0x4);
  5561     scale(0x0);
  5562     disp(0x0);
  5563   %}
  5564 %}
  5566 // Indirect Memory Plus Long Offset Operand
  5567 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  5568   match(AddP reg off);
  5570   format %{ "[$reg + $off]" %}
  5571   interface(MEMORY_INTER) %{
  5572     base($reg);
  5573     index(0x4);
  5574     scale(0x0);
  5575     disp($off);
  5576   %}
  5577 %}
  5579 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
  5582 //----------Special Memory Operands--------------------------------------------
  5583 // Stack Slot Operand - This operand is used for loading and storing temporary
  5584 //                      values on the stack where a match requires a value to
  5585 //                      flow through memory.
  5586 operand stackSlotP(sRegP reg) %{
  5587   constraint(ALLOC_IN_RC(stack_slots));
  5588   // No match rule because this operand is only generated in matching
  5589   format %{ "[$reg]" %}
  5590   interface(MEMORY_INTER) %{
  5591     base(0x4);   // ESP
  5592     index(0x4);  // No Index
  5593     scale(0x0);  // No Scale
  5594     disp($reg);  // Stack Offset
  5595   %}
  5596 %}
  5598 operand stackSlotI(sRegI reg) %{
  5599   constraint(ALLOC_IN_RC(stack_slots));
  5600   // No match rule because this operand is only generated in matching
  5601   format %{ "[$reg]" %}
  5602   interface(MEMORY_INTER) %{
  5603     base(0x4);   // ESP
  5604     index(0x4);  // No Index
  5605     scale(0x0);  // No Scale
  5606     disp($reg);  // Stack Offset
  5607   %}
  5608 %}
  5610 operand stackSlotF(sRegF reg) %{
  5611   constraint(ALLOC_IN_RC(stack_slots));
  5612   // No match rule because this operand is only generated in matching
  5613   format %{ "[$reg]" %}
  5614   interface(MEMORY_INTER) %{
  5615     base(0x4);   // ESP
  5616     index(0x4);  // No Index
  5617     scale(0x0);  // No Scale
  5618     disp($reg);  // Stack Offset
  5619   %}
  5620 %}
  5622 operand stackSlotD(sRegD reg) %{
  5623   constraint(ALLOC_IN_RC(stack_slots));
  5624   // No match rule because this operand is only generated in matching
  5625   format %{ "[$reg]" %}
  5626   interface(MEMORY_INTER) %{
  5627     base(0x4);   // ESP
  5628     index(0x4);  // No Index
  5629     scale(0x0);  // No Scale
  5630     disp($reg);  // Stack Offset
  5631   %}
  5632 %}
  5634 operand stackSlotL(sRegL reg) %{
  5635   constraint(ALLOC_IN_RC(stack_slots));
  5636   // No match rule because this operand is only generated in matching
  5637   format %{ "[$reg]" %}
  5638   interface(MEMORY_INTER) %{
  5639     base(0x4);   // ESP
  5640     index(0x4);  // No Index
  5641     scale(0x0);  // No Scale
  5642     disp($reg);  // Stack Offset
  5643   %}
  5644 %}
  5646 //----------Memory Operands - Win95 Implicit Null Variants----------------
  5647 // Indirect Memory Operand
  5648 operand indirect_win95_safe(eRegP_no_EBP reg)
  5649 %{
  5650   constraint(ALLOC_IN_RC(e_reg));
  5651   match(reg);
  5653   op_cost(100);
  5654   format %{ "[$reg]" %}
  5655   interface(MEMORY_INTER) %{
  5656     base($reg);
  5657     index(0x4);
  5658     scale(0x0);
  5659     disp(0x0);
  5660   %}
  5661 %}
  5663 // Indirect Memory Plus Short Offset Operand
  5664 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
  5665 %{
  5666   match(AddP reg off);
  5668   op_cost(100);
  5669   format %{ "[$reg + $off]" %}
  5670   interface(MEMORY_INTER) %{
  5671     base($reg);
  5672     index(0x4);
  5673     scale(0x0);
  5674     disp($off);
  5675   %}
  5676 %}
  5678 // Indirect Memory Plus Long Offset Operand
  5679 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
  5680 %{
  5681   match(AddP reg off);
  5683   op_cost(100);
  5684   format %{ "[$reg + $off]" %}
  5685   interface(MEMORY_INTER) %{
  5686     base($reg);
  5687     index(0x4);
  5688     scale(0x0);
  5689     disp($off);
  5690   %}
  5691 %}
  5693 // Indirect Memory Plus Index Register Plus Offset Operand
  5694 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
  5695 %{
  5696   match(AddP (AddP reg ireg) off);
  5698   op_cost(100);
  5699   format %{"[$reg + $off + $ireg]" %}
  5700   interface(MEMORY_INTER) %{
  5701     base($reg);
  5702     index($ireg);
  5703     scale(0x0);
  5704     disp($off);
  5705   %}
  5706 %}
  5708 // Indirect Memory Times Scale Plus Index Register
  5709 operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
  5710 %{
  5711   match(AddP reg (LShiftI ireg scale));
  5713   op_cost(100);
  5714   format %{"[$reg + $ireg << $scale]" %}
  5715   interface(MEMORY_INTER) %{
  5716     base($reg);
  5717     index($ireg);
  5718     scale($scale);
  5719     disp(0x0);
  5720   %}
  5721 %}
  5723 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5724 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
  5725 %{
  5726   match(AddP (AddP reg (LShiftI ireg scale)) off);
  5728   op_cost(100);
  5729   format %{"[$reg + $off + $ireg << $scale]" %}
  5730   interface(MEMORY_INTER) %{
  5731     base($reg);
  5732     index($ireg);
  5733     scale($scale);
  5734     disp($off);
  5735   %}
  5736 %}
  5738 //----------Conditional Branch Operands----------------------------------------
  5739 // Comparison Op  - This is the operation of the comparison, and is limited to
  5740 //                  the following set of codes:
  5741 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  5742 //
  5743 // Other attributes of the comparison, such as unsignedness, are specified
  5744 // by the comparison instruction that sets a condition code flags register.
  5745 // That result is represented by a flags operand whose subtype is appropriate
  5746 // to the unsignedness (etc.) of the comparison.
  5747 //
  5748 // Later, the instruction which matches both the Comparison Op (a Bool) and
  5749 // the flags (produced by the Cmp) specifies the coding of the comparison op
  5750 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  5752 // Comparision Code
  5753 operand cmpOp() %{
  5754   match(Bool);
  5756   format %{ "" %}
  5757   interface(COND_INTER) %{
  5758     equal(0x4, "e");
  5759     not_equal(0x5, "ne");
  5760     less(0xC, "l");
  5761     greater_equal(0xD, "ge");
  5762     less_equal(0xE, "le");
  5763     greater(0xF, "g");
  5764   %}
  5765 %}
  5767 // Comparison Code, unsigned compare.  Used by FP also, with
  5768 // C2 (unordered) turned into GT or LT already.  The other bits
  5769 // C0 and C3 are turned into Carry & Zero flags.
  5770 operand cmpOpU() %{
  5771   match(Bool);
  5773   format %{ "" %}
  5774   interface(COND_INTER) %{
  5775     equal(0x4, "e");
  5776     not_equal(0x5, "ne");
  5777     less(0x2, "b");
  5778     greater_equal(0x3, "nb");
  5779     less_equal(0x6, "be");
  5780     greater(0x7, "nbe");
  5781   %}
  5782 %}
  5784 // Floating comparisons that don't require any fixup for the unordered case
  5785 operand cmpOpUCF() %{
  5786   match(Bool);
  5787   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  5788             n->as_Bool()->_test._test == BoolTest::ge ||
  5789             n->as_Bool()->_test._test == BoolTest::le ||
  5790             n->as_Bool()->_test._test == BoolTest::gt);
  5791   format %{ "" %}
  5792   interface(COND_INTER) %{
  5793     equal(0x4, "e");
  5794     not_equal(0x5, "ne");
  5795     less(0x2, "b");
  5796     greater_equal(0x3, "nb");
  5797     less_equal(0x6, "be");
  5798     greater(0x7, "nbe");
  5799   %}
  5800 %}
  5803 // Floating comparisons that can be fixed up with extra conditional jumps
  5804 operand cmpOpUCF2() %{
  5805   match(Bool);
  5806   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  5807             n->as_Bool()->_test._test == BoolTest::eq);
  5808   format %{ "" %}
  5809   interface(COND_INTER) %{
  5810     equal(0x4, "e");
  5811     not_equal(0x5, "ne");
  5812     less(0x2, "b");
  5813     greater_equal(0x3, "nb");
  5814     less_equal(0x6, "be");
  5815     greater(0x7, "nbe");
  5816   %}
  5817 %}
  5819 // Comparison Code for FP conditional move
  5820 operand cmpOp_fcmov() %{
  5821   match(Bool);
  5823   format %{ "" %}
  5824   interface(COND_INTER) %{
  5825     equal        (0x0C8);
  5826     not_equal    (0x1C8);
  5827     less         (0x0C0);
  5828     greater_equal(0x1C0);
  5829     less_equal   (0x0D0);
  5830     greater      (0x1D0);
  5831   %}
  5832 %}
  5834 // Comparision Code used in long compares
  5835 operand cmpOp_commute() %{
  5836   match(Bool);
  5838   format %{ "" %}
  5839   interface(COND_INTER) %{
  5840     equal(0x4, "e");
  5841     not_equal(0x5, "ne");
  5842     less(0xF, "g");
  5843     greater_equal(0xE, "le");
  5844     less_equal(0xD, "ge");
  5845     greater(0xC, "l");
  5846   %}
  5847 %}
  5849 //----------OPERAND CLASSES----------------------------------------------------
  5850 // Operand Classes are groups of operands that are used as to simplify
  5851 // instruction definitions by not requiring the AD writer to specify separate
  5852 // instructions for every form of operand when the instruction accepts
  5853 // multiple operand types with the same basic encoding and format.  The classic
  5854 // case of this is memory operands.
  5856 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
  5857                indIndex, indIndexScale, indIndexScaleOffset);
  5859 // Long memory operations are encoded in 2 instructions and a +4 offset.
  5860 // This means some kind of offset is always required and you cannot use
  5861 // an oop as the offset (done when working on static globals).
  5862 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
  5863                     indIndex, indIndexScale, indIndexScaleOffset);
  5866 //----------PIPELINE-----------------------------------------------------------
  5867 // Rules which define the behavior of the target architectures pipeline.
  5868 pipeline %{
  5870 //----------ATTRIBUTES---------------------------------------------------------
  5871 attributes %{
  5872   variable_size_instructions;        // Fixed size instructions
  5873   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  5874   instruction_unit_size = 1;         // An instruction is 1 bytes long
  5875   instruction_fetch_unit_size = 16;  // The processor fetches one line
  5876   instruction_fetch_units = 1;       // of 16 bytes
  5878   // List of nop instructions
  5879   nops( MachNop );
  5880 %}
  5882 //----------RESOURCES----------------------------------------------------------
  5883 // Resources are the functional units available to the machine
  5885 // Generic P2/P3 pipeline
  5886 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  5887 // 3 instructions decoded per cycle.
  5888 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  5889 // 2 ALU op, only ALU0 handles mul/div instructions.
  5890 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  5891            MS0, MS1, MEM = MS0 | MS1,
  5892            BR, FPU,
  5893            ALU0, ALU1, ALU = ALU0 | ALU1 );
  5895 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5896 // Pipeline Description specifies the stages in the machine's pipeline
  5898 // Generic P2/P3 pipeline
  5899 pipe_desc(S0, S1, S2, S3, S4, S5);
  5901 //----------PIPELINE CLASSES---------------------------------------------------
  5902 // Pipeline Classes describe the stages in which input and output are
  5903 // referenced by the hardware pipeline.
  5905 // Naming convention: ialu or fpu
  5906 // Then: _reg
  5907 // Then: _reg if there is a 2nd register
  5908 // Then: _long if it's a pair of instructions implementing a long
  5909 // Then: _fat if it requires the big decoder
  5910 //   Or: _mem if it requires the big decoder and a memory unit.
  5912 // Integer ALU reg operation
  5913 pipe_class ialu_reg(eRegI dst) %{
  5914     single_instruction;
  5915     dst    : S4(write);
  5916     dst    : S3(read);
  5917     DECODE : S0;        // any decoder
  5918     ALU    : S3;        // any alu
  5919 %}
  5921 // Long ALU reg operation
  5922 pipe_class ialu_reg_long(eRegL dst) %{
  5923     instruction_count(2);
  5924     dst    : S4(write);
  5925     dst    : S3(read);
  5926     DECODE : S0(2);     // any 2 decoders
  5927     ALU    : S3(2);     // both alus
  5928 %}
  5930 // Integer ALU reg operation using big decoder
  5931 pipe_class ialu_reg_fat(eRegI dst) %{
  5932     single_instruction;
  5933     dst    : S4(write);
  5934     dst    : S3(read);
  5935     D0     : S0;        // big decoder only
  5936     ALU    : S3;        // any alu
  5937 %}
  5939 // Long ALU reg operation using big decoder
  5940 pipe_class ialu_reg_long_fat(eRegL dst) %{
  5941     instruction_count(2);
  5942     dst    : S4(write);
  5943     dst    : S3(read);
  5944     D0     : S0(2);     // big decoder only; twice
  5945     ALU    : S3(2);     // any 2 alus
  5946 %}
  5948 // Integer ALU reg-reg operation
  5949 pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
  5950     single_instruction;
  5951     dst    : S4(write);
  5952     src    : S3(read);
  5953     DECODE : S0;        // any decoder
  5954     ALU    : S3;        // any alu
  5955 %}
  5957 // Long ALU reg-reg operation
  5958 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
  5959     instruction_count(2);
  5960     dst    : S4(write);
  5961     src    : S3(read);
  5962     DECODE : S0(2);     // any 2 decoders
  5963     ALU    : S3(2);     // both alus
  5964 %}
  5966 // Integer ALU reg-reg operation
  5967 pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
  5968     single_instruction;
  5969     dst    : S4(write);
  5970     src    : S3(read);
  5971     D0     : S0;        // big decoder only
  5972     ALU    : S3;        // any alu
  5973 %}
  5975 // Long ALU reg-reg operation
  5976 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
  5977     instruction_count(2);
  5978     dst    : S4(write);
  5979     src    : S3(read);
  5980     D0     : S0(2);     // big decoder only; twice
  5981     ALU    : S3(2);     // both alus
  5982 %}
  5984 // Integer ALU reg-mem operation
  5985 pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
  5986     single_instruction;
  5987     dst    : S5(write);
  5988     mem    : S3(read);
  5989     D0     : S0;        // big decoder only
  5990     ALU    : S4;        // any alu
  5991     MEM    : S3;        // any mem
  5992 %}
  5994 // Long ALU reg-mem operation
  5995 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
  5996     instruction_count(2);
  5997     dst    : S5(write);
  5998     mem    : S3(read);
  5999     D0     : S0(2);     // big decoder only; twice
  6000     ALU    : S4(2);     // any 2 alus
  6001     MEM    : S3(2);     // both mems
  6002 %}
  6004 // Integer mem operation (prefetch)
  6005 pipe_class ialu_mem(memory mem)
  6006 %{
  6007     single_instruction;
  6008     mem    : S3(read);
  6009     D0     : S0;        // big decoder only
  6010     MEM    : S3;        // any mem
  6011 %}
  6013 // Integer Store to Memory
  6014 pipe_class ialu_mem_reg(memory mem, eRegI src) %{
  6015     single_instruction;
  6016     mem    : S3(read);
  6017     src    : S5(read);
  6018     D0     : S0;        // big decoder only
  6019     ALU    : S4;        // any alu
  6020     MEM    : S3;
  6021 %}
  6023 // Long Store to Memory
  6024 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
  6025     instruction_count(2);
  6026     mem    : S3(read);
  6027     src    : S5(read);
  6028     D0     : S0(2);     // big decoder only; twice
  6029     ALU    : S4(2);     // any 2 alus
  6030     MEM    : S3(2);     // Both mems
  6031 %}
  6033 // Integer Store to Memory
  6034 pipe_class ialu_mem_imm(memory mem) %{
  6035     single_instruction;
  6036     mem    : S3(read);
  6037     D0     : S0;        // big decoder only
  6038     ALU    : S4;        // any alu
  6039     MEM    : S3;
  6040 %}
  6042 // Integer ALU0 reg-reg operation
  6043 pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
  6044     single_instruction;
  6045     dst    : S4(write);
  6046     src    : S3(read);
  6047     D0     : S0;        // Big decoder only
  6048     ALU0   : S3;        // only alu0
  6049 %}
  6051 // Integer ALU0 reg-mem operation
  6052 pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
  6053     single_instruction;
  6054     dst    : S5(write);
  6055     mem    : S3(read);
  6056     D0     : S0;        // big decoder only
  6057     ALU0   : S4;        // ALU0 only
  6058     MEM    : S3;        // any mem
  6059 %}
  6061 // Integer ALU reg-reg operation
  6062 pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
  6063     single_instruction;
  6064     cr     : S4(write);
  6065     src1   : S3(read);
  6066     src2   : S3(read);
  6067     DECODE : S0;        // any decoder
  6068     ALU    : S3;        // any alu
  6069 %}
  6071 // Integer ALU reg-imm operation
  6072 pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
  6073     single_instruction;
  6074     cr     : S4(write);
  6075     src1   : S3(read);
  6076     DECODE : S0;        // any decoder
  6077     ALU    : S3;        // any alu
  6078 %}
  6080 // Integer ALU reg-mem operation
  6081 pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
  6082     single_instruction;
  6083     cr     : S4(write);
  6084     src1   : S3(read);
  6085     src2   : S3(read);
  6086     D0     : S0;        // big decoder only
  6087     ALU    : S4;        // any alu
  6088     MEM    : S3;
  6089 %}
  6091 // Conditional move reg-reg
  6092 pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
  6093     instruction_count(4);
  6094     y      : S4(read);
  6095     q      : S3(read);
  6096     p      : S3(read);
  6097     DECODE : S0(4);     // any decoder
  6098 %}
  6100 // Conditional move reg-reg
  6101 pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
  6102     single_instruction;
  6103     dst    : S4(write);
  6104     src    : S3(read);
  6105     cr     : S3(read);
  6106     DECODE : S0;        // any decoder
  6107 %}
  6109 // Conditional move reg-mem
  6110 pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
  6111     single_instruction;
  6112     dst    : S4(write);
  6113     src    : S3(read);
  6114     cr     : S3(read);
  6115     DECODE : S0;        // any decoder
  6116     MEM    : S3;
  6117 %}
  6119 // Conditional move reg-reg long
  6120 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
  6121     single_instruction;
  6122     dst    : S4(write);
  6123     src    : S3(read);
  6124     cr     : S3(read);
  6125     DECODE : S0(2);     // any 2 decoders
  6126 %}
  6128 // Conditional move double reg-reg
  6129 pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
  6130     single_instruction;
  6131     dst    : S4(write);
  6132     src    : S3(read);
  6133     cr     : S3(read);
  6134     DECODE : S0;        // any decoder
  6135 %}
  6137 // Float reg-reg operation
  6138 pipe_class fpu_reg(regD dst) %{
  6139     instruction_count(2);
  6140     dst    : S3(read);
  6141     DECODE : S0(2);     // any 2 decoders
  6142     FPU    : S3;
  6143 %}
  6145 // Float reg-reg operation
  6146 pipe_class fpu_reg_reg(regD dst, regD src) %{
  6147     instruction_count(2);
  6148     dst    : S4(write);
  6149     src    : S3(read);
  6150     DECODE : S0(2);     // any 2 decoders
  6151     FPU    : S3;
  6152 %}
  6154 // Float reg-reg operation
  6155 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
  6156     instruction_count(3);
  6157     dst    : S4(write);
  6158     src1   : S3(read);
  6159     src2   : S3(read);
  6160     DECODE : S0(3);     // any 3 decoders
  6161     FPU    : S3(2);
  6162 %}
  6164 // Float reg-reg operation
  6165 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
  6166     instruction_count(4);
  6167     dst    : S4(write);
  6168     src1   : S3(read);
  6169     src2   : S3(read);
  6170     src3   : S3(read);
  6171     DECODE : S0(4);     // any 3 decoders
  6172     FPU    : S3(2);
  6173 %}
  6175 // Float reg-reg operation
  6176 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
  6177     instruction_count(4);
  6178     dst    : S4(write);
  6179     src1   : S3(read);
  6180     src2   : S3(read);
  6181     src3   : S3(read);
  6182     DECODE : S1(3);     // any 3 decoders
  6183     D0     : S0;        // Big decoder only
  6184     FPU    : S3(2);
  6185     MEM    : S3;
  6186 %}
  6188 // Float reg-mem operation
  6189 pipe_class fpu_reg_mem(regD dst, memory mem) %{
  6190     instruction_count(2);
  6191     dst    : S5(write);
  6192     mem    : S3(read);
  6193     D0     : S0;        // big decoder only
  6194     DECODE : S1;        // any decoder for FPU POP
  6195     FPU    : S4;
  6196     MEM    : S3;        // any mem
  6197 %}
  6199 // Float reg-mem operation
  6200 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
  6201     instruction_count(3);
  6202     dst    : S5(write);
  6203     src1   : S3(read);
  6204     mem    : S3(read);
  6205     D0     : S0;        // big decoder only
  6206     DECODE : S1(2);     // any decoder for FPU POP
  6207     FPU    : S4;
  6208     MEM    : S3;        // any mem
  6209 %}
  6211 // Float mem-reg operation
  6212 pipe_class fpu_mem_reg(memory mem, regD src) %{
  6213     instruction_count(2);
  6214     src    : S5(read);
  6215     mem    : S3(read);
  6216     DECODE : S0;        // any decoder for FPU PUSH
  6217     D0     : S1;        // big decoder only
  6218     FPU    : S4;
  6219     MEM    : S3;        // any mem
  6220 %}
  6222 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
  6223     instruction_count(3);
  6224     src1   : S3(read);
  6225     src2   : S3(read);
  6226     mem    : S3(read);
  6227     DECODE : S0(2);     // any decoder for FPU PUSH
  6228     D0     : S1;        // big decoder only
  6229     FPU    : S4;
  6230     MEM    : S3;        // any mem
  6231 %}
  6233 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
  6234     instruction_count(3);
  6235     src1   : S3(read);
  6236     src2   : S3(read);
  6237     mem    : S4(read);
  6238     DECODE : S0;        // any decoder for FPU PUSH
  6239     D0     : S0(2);     // big decoder only
  6240     FPU    : S4;
  6241     MEM    : S3(2);     // any mem
  6242 %}
  6244 pipe_class fpu_mem_mem(memory dst, memory src1) %{
  6245     instruction_count(2);
  6246     src1   : S3(read);
  6247     dst    : S4(read);
  6248     D0     : S0(2);     // big decoder only
  6249     MEM    : S3(2);     // any mem
  6250 %}
  6252 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
  6253     instruction_count(3);
  6254     src1   : S3(read);
  6255     src2   : S3(read);
  6256     dst    : S4(read);
  6257     D0     : S0(3);     // big decoder only
  6258     FPU    : S4;
  6259     MEM    : S3(3);     // any mem
  6260 %}
  6262 pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
  6263     instruction_count(3);
  6264     src1   : S4(read);
  6265     mem    : S4(read);
  6266     DECODE : S0;        // any decoder for FPU PUSH
  6267     D0     : S0(2);     // big decoder only
  6268     FPU    : S4;
  6269     MEM    : S3(2);     // any mem
  6270 %}
  6272 // Float load constant
  6273 pipe_class fpu_reg_con(regD dst) %{
  6274     instruction_count(2);
  6275     dst    : S5(write);
  6276     D0     : S0;        // big decoder only for the load
  6277     DECODE : S1;        // any decoder for FPU POP
  6278     FPU    : S4;
  6279     MEM    : S3;        // any mem
  6280 %}
  6282 // Float load constant
  6283 pipe_class fpu_reg_reg_con(regD dst, regD src) %{
  6284     instruction_count(3);
  6285     dst    : S5(write);
  6286     src    : S3(read);
  6287     D0     : S0;        // big decoder only for the load
  6288     DECODE : S1(2);     // any decoder for FPU POP
  6289     FPU    : S4;
  6290     MEM    : S3;        // any mem
  6291 %}
  6293 // UnConditional branch
  6294 pipe_class pipe_jmp( label labl ) %{
  6295     single_instruction;
  6296     BR   : S3;
  6297 %}
  6299 // Conditional branch
  6300 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
  6301     single_instruction;
  6302     cr    : S1(read);
  6303     BR    : S3;
  6304 %}
  6306 // Allocation idiom
  6307 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
  6308     instruction_count(1); force_serialization;
  6309     fixed_latency(6);
  6310     heap_ptr : S3(read);
  6311     DECODE   : S0(3);
  6312     D0       : S2;
  6313     MEM      : S3;
  6314     ALU      : S3(2);
  6315     dst      : S5(write);
  6316     BR       : S5;
  6317 %}
  6319 // Generic big/slow expanded idiom
  6320 pipe_class pipe_slow(  ) %{
  6321     instruction_count(10); multiple_bundles; force_serialization;
  6322     fixed_latency(100);
  6323     D0  : S0(2);
  6324     MEM : S3(2);
  6325 %}
  6327 // The real do-nothing guy
  6328 pipe_class empty( ) %{
  6329     instruction_count(0);
  6330 %}
  6332 // Define the class for the Nop node
  6333 define %{
  6334    MachNop = empty;
  6335 %}
  6337 %}
  6339 //----------INSTRUCTIONS-------------------------------------------------------
  6340 //
  6341 // match      -- States which machine-independent subtree may be replaced
  6342 //               by this instruction.
  6343 // ins_cost   -- The estimated cost of this instruction is used by instruction
  6344 //               selection to identify a minimum cost tree of machine
  6345 //               instructions that matches a tree of machine-independent
  6346 //               instructions.
  6347 // format     -- A string providing the disassembly for this instruction.
  6348 //               The value of an instruction's operand may be inserted
  6349 //               by referring to it with a '$' prefix.
  6350 // opcode     -- Three instruction opcodes may be provided.  These are referred
  6351 //               to within an encode class as $primary, $secondary, and $tertiary
  6352 //               respectively.  The primary opcode is commonly used to
  6353 //               indicate the type of machine instruction, while secondary
  6354 //               and tertiary are often used for prefix options or addressing
  6355 //               modes.
  6356 // ins_encode -- A list of encode classes with parameters. The encode class
  6357 //               name must have been defined in an 'enc_class' specification
  6358 //               in the encode section of the architecture description.
  6360 //----------BSWAP-Instruction--------------------------------------------------
  6361 instruct bytes_reverse_int(eRegI dst) %{
  6362   match(Set dst (ReverseBytesI dst));
  6364   format %{ "BSWAP  $dst" %}
  6365   opcode(0x0F, 0xC8);
  6366   ins_encode( OpcP, OpcSReg(dst) );
  6367   ins_pipe( ialu_reg );
  6368 %}
  6370 instruct bytes_reverse_long(eRegL dst) %{
  6371   match(Set dst (ReverseBytesL dst));
  6373   format %{ "BSWAP  $dst.lo\n\t"
  6374             "BSWAP  $dst.hi\n\t"
  6375             "XCHG   $dst.lo $dst.hi" %}
  6377   ins_cost(125);
  6378   ins_encode( bswap_long_bytes(dst) );
  6379   ins_pipe( ialu_reg_reg);
  6380 %}
  6383 //---------- Population Count Instructions -------------------------------------
  6385 instruct popCountI(eRegI dst, eRegI src) %{
  6386   predicate(UsePopCountInstruction);
  6387   match(Set dst (PopCountI src));
  6389   format %{ "POPCNT $dst, $src" %}
  6390   ins_encode %{
  6391     __ popcntl($dst$$Register, $src$$Register);
  6392   %}
  6393   ins_pipe(ialu_reg);
  6394 %}
  6396 instruct popCountI_mem(eRegI dst, memory mem) %{
  6397   predicate(UsePopCountInstruction);
  6398   match(Set dst (PopCountI (LoadI mem)));
  6400   format %{ "POPCNT $dst, $mem" %}
  6401   ins_encode %{
  6402     __ popcntl($dst$$Register, $mem$$Address);
  6403   %}
  6404   ins_pipe(ialu_reg);
  6405 %}
  6407 // Note: Long.bitCount(long) returns an int.
  6408 instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  6409   predicate(UsePopCountInstruction);
  6410   match(Set dst (PopCountL src));
  6411   effect(KILL cr, TEMP tmp, TEMP dst);
  6413   format %{ "POPCNT $dst, $src.lo\n\t"
  6414             "POPCNT $tmp, $src.hi\n\t"
  6415             "ADD    $dst, $tmp" %}
  6416   ins_encode %{
  6417     __ popcntl($dst$$Register, $src$$Register);
  6418     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  6419     __ addl($dst$$Register, $tmp$$Register);
  6420   %}
  6421   ins_pipe(ialu_reg);
  6422 %}
  6424 // Note: Long.bitCount(long) returns an int.
  6425 instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{
  6426   predicate(UsePopCountInstruction);
  6427   match(Set dst (PopCountL (LoadL mem)));
  6428   effect(KILL cr, TEMP tmp, TEMP dst);
  6430   format %{ "POPCNT $dst, $mem\n\t"
  6431             "POPCNT $tmp, $mem+4\n\t"
  6432             "ADD    $dst, $tmp" %}
  6433   ins_encode %{
  6434     //__ popcntl($dst$$Register, $mem$$Address$$first);
  6435     //__ popcntl($tmp$$Register, $mem$$Address$$second);
  6436     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
  6437     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
  6438     __ addl($dst$$Register, $tmp$$Register);
  6439   %}
  6440   ins_pipe(ialu_reg);
  6441 %}
  6444 //----------Load/Store/Move Instructions---------------------------------------
  6445 //----------Load Instructions--------------------------------------------------
  6446 // Load Byte (8bit signed)
  6447 instruct loadB(xRegI dst, memory mem) %{
  6448   match(Set dst (LoadB mem));
  6450   ins_cost(125);
  6451   format %{ "MOVSX8 $dst,$mem\t# byte" %}
  6453   ins_encode %{
  6454     __ movsbl($dst$$Register, $mem$$Address);
  6455   %}
  6457   ins_pipe(ialu_reg_mem);
  6458 %}
  6460 // Load Byte (8bit signed) into Long Register
  6461 instruct loadB2L(eRegL dst, memory mem) %{
  6462   match(Set dst (ConvI2L (LoadB mem)));
  6464   ins_cost(375);
  6465   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
  6466             "MOV    $dst.hi,$dst.lo\n\t"
  6467             "SAR    $dst.hi,7" %}
  6469   ins_encode %{
  6470     __ movsbl($dst$$Register, $mem$$Address);
  6471     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6472     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  6473   %}
  6475   ins_pipe(ialu_reg_mem);
  6476 %}
  6478 // Load Unsigned Byte (8bit UNsigned)
  6479 instruct loadUB(xRegI dst, memory mem) %{
  6480   match(Set dst (LoadUB mem));
  6482   ins_cost(125);
  6483   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
  6485   ins_encode %{
  6486     __ movzbl($dst$$Register, $mem$$Address);
  6487   %}
  6489   ins_pipe(ialu_reg_mem);
  6490 %}
  6492 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  6493 instruct loadUB2L(eRegL dst, memory mem)
  6494 %{
  6495   match(Set dst (ConvI2L (LoadUB mem)));
  6497   ins_cost(250);
  6498   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
  6499             "XOR    $dst.hi,$dst.hi" %}
  6501   ins_encode %{
  6502     __ movzbl($dst$$Register, $mem$$Address);
  6503     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6504   %}
  6506   ins_pipe(ialu_reg_mem);
  6507 %}
  6509 // Load Short (16bit signed)
  6510 instruct loadS(eRegI dst, memory mem) %{
  6511   match(Set dst (LoadS mem));
  6513   ins_cost(125);
  6514   format %{ "MOVSX  $dst,$mem\t# short" %}
  6516   ins_encode %{
  6517     __ movswl($dst$$Register, $mem$$Address);
  6518   %}
  6520   ins_pipe(ialu_reg_mem);
  6521 %}
  6523 // Load Short (16bit signed) into Long Register
  6524 instruct loadS2L(eRegL dst, memory mem) %{
  6525   match(Set dst (ConvI2L (LoadS mem)));
  6527   ins_cost(375);
  6528   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
  6529             "MOV    $dst.hi,$dst.lo\n\t"
  6530             "SAR    $dst.hi,15" %}
  6532   ins_encode %{
  6533     __ movswl($dst$$Register, $mem$$Address);
  6534     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6535     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  6536   %}
  6538   ins_pipe(ialu_reg_mem);
  6539 %}
  6541 // Load Unsigned Short/Char (16bit unsigned)
  6542 instruct loadUS(eRegI dst, memory mem) %{
  6543   match(Set dst (LoadUS mem));
  6545   ins_cost(125);
  6546   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
  6548   ins_encode %{
  6549     __ movzwl($dst$$Register, $mem$$Address);
  6550   %}
  6552   ins_pipe(ialu_reg_mem);
  6553 %}
  6555 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  6556 instruct loadUS2L(eRegL dst, memory mem)
  6557 %{
  6558   match(Set dst (ConvI2L (LoadUS mem)));
  6560   ins_cost(250);
  6561   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
  6562             "XOR    $dst.hi,$dst.hi" %}
  6564   ins_encode %{
  6565     __ movzwl($dst$$Register, $mem$$Address);
  6566     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6567   %}
  6569   ins_pipe(ialu_reg_mem);
  6570 %}
  6572 // Load Integer
  6573 instruct loadI(eRegI dst, memory mem) %{
  6574   match(Set dst (LoadI mem));
  6576   ins_cost(125);
  6577   format %{ "MOV    $dst,$mem\t# int" %}
  6579   ins_encode %{
  6580     __ movl($dst$$Register, $mem$$Address);
  6581   %}
  6583   ins_pipe(ialu_reg_mem);
  6584 %}
  6586 // Load Integer into Long Register
  6587 instruct loadI2L(eRegL dst, memory mem) %{
  6588   match(Set dst (ConvI2L (LoadI mem)));
  6590   ins_cost(375);
  6591   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
  6592             "MOV    $dst.hi,$dst.lo\n\t"
  6593             "SAR    $dst.hi,31" %}
  6595   ins_encode %{
  6596     __ movl($dst$$Register, $mem$$Address);
  6597     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6598     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  6599   %}
  6601   ins_pipe(ialu_reg_mem);
  6602 %}
  6604 // Load Unsigned Integer into Long Register
  6605 instruct loadUI2L(eRegL dst, memory mem) %{
  6606   match(Set dst (LoadUI2L mem));
  6608   ins_cost(250);
  6609   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
  6610             "XOR    $dst.hi,$dst.hi" %}
  6612   ins_encode %{
  6613     __ movl($dst$$Register, $mem$$Address);
  6614     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6615   %}
  6617   ins_pipe(ialu_reg_mem);
  6618 %}
  6620 // Load Long.  Cannot clobber address while loading, so restrict address
  6621 // register to ESI
  6622 instruct loadL(eRegL dst, load_long_memory mem) %{
  6623   predicate(!((LoadLNode*)n)->require_atomic_access());
  6624   match(Set dst (LoadL mem));
  6626   ins_cost(250);
  6627   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
  6628             "MOV    $dst.hi,$mem+4" %}
  6630   ins_encode %{
  6631     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
  6632     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
  6633     __ movl($dst$$Register, Amemlo);
  6634     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  6635   %}
  6637   ins_pipe(ialu_reg_long_mem);
  6638 %}
  6640 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
  6641 // then store it down to the stack and reload on the int
  6642 // side.
  6643 instruct loadL_volatile(stackSlotL dst, memory mem) %{
  6644   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  6645   match(Set dst (LoadL mem));
  6647   ins_cost(200);
  6648   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  6649             "FISTp  $dst" %}
  6650   ins_encode(enc_loadL_volatile(mem,dst));
  6651   ins_pipe( fpu_reg_mem );
  6652 %}
  6654 instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
  6655   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6656   match(Set dst (LoadL mem));
  6657   effect(TEMP tmp);
  6658   ins_cost(180);
  6659   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6660             "MOVSD  $dst,$tmp" %}
  6661   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
  6662   ins_pipe( pipe_slow );
  6663 %}
  6665 instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
  6666   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6667   match(Set dst (LoadL mem));
  6668   effect(TEMP tmp);
  6669   ins_cost(160);
  6670   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6671             "MOVD   $dst.lo,$tmp\n\t"
  6672             "PSRLQ  $tmp,32\n\t"
  6673             "MOVD   $dst.hi,$tmp" %}
  6674   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
  6675   ins_pipe( pipe_slow );
  6676 %}
  6678 // Load Range
  6679 instruct loadRange(eRegI dst, memory mem) %{
  6680   match(Set dst (LoadRange mem));
  6682   ins_cost(125);
  6683   format %{ "MOV    $dst,$mem" %}
  6684   opcode(0x8B);
  6685   ins_encode( OpcP, RegMem(dst,mem));
  6686   ins_pipe( ialu_reg_mem );
  6687 %}
  6690 // Load Pointer
  6691 instruct loadP(eRegP dst, memory mem) %{
  6692   match(Set dst (LoadP mem));
  6694   ins_cost(125);
  6695   format %{ "MOV    $dst,$mem" %}
  6696   opcode(0x8B);
  6697   ins_encode( OpcP, RegMem(dst,mem));
  6698   ins_pipe( ialu_reg_mem );
  6699 %}
  6701 // Load Klass Pointer
  6702 instruct loadKlass(eRegP dst, memory mem) %{
  6703   match(Set dst (LoadKlass mem));
  6705   ins_cost(125);
  6706   format %{ "MOV    $dst,$mem" %}
  6707   opcode(0x8B);
  6708   ins_encode( OpcP, RegMem(dst,mem));
  6709   ins_pipe( ialu_reg_mem );
  6710 %}
  6712 // Load Double
  6713 instruct loadD(regD dst, memory mem) %{
  6714   predicate(UseSSE<=1);
  6715   match(Set dst (LoadD mem));
  6717   ins_cost(150);
  6718   format %{ "FLD_D  ST,$mem\n\t"
  6719             "FSTP   $dst" %}
  6720   opcode(0xDD);               /* DD /0 */
  6721   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6722               Pop_Reg_D(dst) );
  6723   ins_pipe( fpu_reg_mem );
  6724 %}
  6726 // Load Double to XMM
  6727 instruct loadXD(regXD dst, memory mem) %{
  6728   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  6729   match(Set dst (LoadD mem));
  6730   ins_cost(145);
  6731   format %{ "MOVSD  $dst,$mem" %}
  6732   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
  6733   ins_pipe( pipe_slow );
  6734 %}
  6736 instruct loadXD_partial(regXD dst, memory mem) %{
  6737   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  6738   match(Set dst (LoadD mem));
  6739   ins_cost(145);
  6740   format %{ "MOVLPD $dst,$mem" %}
  6741   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
  6742   ins_pipe( pipe_slow );
  6743 %}
  6745 // Load to XMM register (single-precision floating point)
  6746 // MOVSS instruction
  6747 instruct loadX(regX dst, memory mem) %{
  6748   predicate(UseSSE>=1);
  6749   match(Set dst (LoadF mem));
  6750   ins_cost(145);
  6751   format %{ "MOVSS  $dst,$mem" %}
  6752   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
  6753   ins_pipe( pipe_slow );
  6754 %}
  6756 // Load Float
  6757 instruct loadF(regF dst, memory mem) %{
  6758   predicate(UseSSE==0);
  6759   match(Set dst (LoadF mem));
  6761   ins_cost(150);
  6762   format %{ "FLD_S  ST,$mem\n\t"
  6763             "FSTP   $dst" %}
  6764   opcode(0xD9);               /* D9 /0 */
  6765   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6766               Pop_Reg_F(dst) );
  6767   ins_pipe( fpu_reg_mem );
  6768 %}
  6770 // Load Aligned Packed Byte to XMM register
  6771 instruct loadA8B(regXD dst, memory mem) %{
  6772   predicate(UseSSE>=1);
  6773   match(Set dst (Load8B mem));
  6774   ins_cost(125);
  6775   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
  6776   ins_encode( movq_ld(dst, mem));
  6777   ins_pipe( pipe_slow );
  6778 %}
  6780 // Load Aligned Packed Short to XMM register
  6781 instruct loadA4S(regXD dst, memory mem) %{
  6782   predicate(UseSSE>=1);
  6783   match(Set dst (Load4S mem));
  6784   ins_cost(125);
  6785   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
  6786   ins_encode( movq_ld(dst, mem));
  6787   ins_pipe( pipe_slow );
  6788 %}
  6790 // Load Aligned Packed Char to XMM register
  6791 instruct loadA4C(regXD dst, memory mem) %{
  6792   predicate(UseSSE>=1);
  6793   match(Set dst (Load4C mem));
  6794   ins_cost(125);
  6795   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
  6796   ins_encode( movq_ld(dst, mem));
  6797   ins_pipe( pipe_slow );
  6798 %}
  6800 // Load Aligned Packed Integer to XMM register
  6801 instruct load2IU(regXD dst, memory mem) %{
  6802   predicate(UseSSE>=1);
  6803   match(Set dst (Load2I mem));
  6804   ins_cost(125);
  6805   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
  6806   ins_encode( movq_ld(dst, mem));
  6807   ins_pipe( pipe_slow );
  6808 %}
  6810 // Load Aligned Packed Single to XMM
  6811 instruct loadA2F(regXD dst, memory mem) %{
  6812   predicate(UseSSE>=1);
  6813   match(Set dst (Load2F mem));
  6814   ins_cost(145);
  6815   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
  6816   ins_encode( movq_ld(dst, mem));
  6817   ins_pipe( pipe_slow );
  6818 %}
  6820 // Load Effective Address
  6821 instruct leaP8(eRegP dst, indOffset8 mem) %{
  6822   match(Set dst mem);
  6824   ins_cost(110);
  6825   format %{ "LEA    $dst,$mem" %}
  6826   opcode(0x8D);
  6827   ins_encode( OpcP, RegMem(dst,mem));
  6828   ins_pipe( ialu_reg_reg_fat );
  6829 %}
  6831 instruct leaP32(eRegP dst, indOffset32 mem) %{
  6832   match(Set dst mem);
  6834   ins_cost(110);
  6835   format %{ "LEA    $dst,$mem" %}
  6836   opcode(0x8D);
  6837   ins_encode( OpcP, RegMem(dst,mem));
  6838   ins_pipe( ialu_reg_reg_fat );
  6839 %}
  6841 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  6842   match(Set dst mem);
  6844   ins_cost(110);
  6845   format %{ "LEA    $dst,$mem" %}
  6846   opcode(0x8D);
  6847   ins_encode( OpcP, RegMem(dst,mem));
  6848   ins_pipe( ialu_reg_reg_fat );
  6849 %}
  6851 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  6852   match(Set dst mem);
  6854   ins_cost(110);
  6855   format %{ "LEA    $dst,$mem" %}
  6856   opcode(0x8D);
  6857   ins_encode( OpcP, RegMem(dst,mem));
  6858   ins_pipe( ialu_reg_reg_fat );
  6859 %}
  6861 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  6862   match(Set dst mem);
  6864   ins_cost(110);
  6865   format %{ "LEA    $dst,$mem" %}
  6866   opcode(0x8D);
  6867   ins_encode( OpcP, RegMem(dst,mem));
  6868   ins_pipe( ialu_reg_reg_fat );
  6869 %}
  6871 // Load Constant
  6872 instruct loadConI(eRegI dst, immI src) %{
  6873   match(Set dst src);
  6875   format %{ "MOV    $dst,$src" %}
  6876   ins_encode( LdImmI(dst, src) );
  6877   ins_pipe( ialu_reg_fat );
  6878 %}
  6880 // Load Constant zero
  6881 instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
  6882   match(Set dst src);
  6883   effect(KILL cr);
  6885   ins_cost(50);
  6886   format %{ "XOR    $dst,$dst" %}
  6887   opcode(0x33);  /* + rd */
  6888   ins_encode( OpcP, RegReg( dst, dst ) );
  6889   ins_pipe( ialu_reg );
  6890 %}
  6892 instruct loadConP(eRegP dst, immP src) %{
  6893   match(Set dst src);
  6895   format %{ "MOV    $dst,$src" %}
  6896   opcode(0xB8);  /* + rd */
  6897   ins_encode( LdImmP(dst, src) );
  6898   ins_pipe( ialu_reg_fat );
  6899 %}
  6901 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  6902   match(Set dst src);
  6903   effect(KILL cr);
  6904   ins_cost(200);
  6905   format %{ "MOV    $dst.lo,$src.lo\n\t"
  6906             "MOV    $dst.hi,$src.hi" %}
  6907   opcode(0xB8);
  6908   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  6909   ins_pipe( ialu_reg_long_fat );
  6910 %}
  6912 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  6913   match(Set dst src);
  6914   effect(KILL cr);
  6915   ins_cost(150);
  6916   format %{ "XOR    $dst.lo,$dst.lo\n\t"
  6917             "XOR    $dst.hi,$dst.hi" %}
  6918   opcode(0x33,0x33);
  6919   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  6920   ins_pipe( ialu_reg_long );
  6921 %}
  6923 // The instruction usage is guarded by predicate in operand immF().
  6924 instruct loadConF(regF dst, immF src) %{
  6925   match(Set dst src);
  6926   ins_cost(125);
  6928   format %{ "FLD_S  ST,$src\n\t"
  6929             "FSTP   $dst" %}
  6930   opcode(0xD9, 0x00);       /* D9 /0 */
  6931   ins_encode(LdImmF(src), Pop_Reg_F(dst) );
  6932   ins_pipe( fpu_reg_con );
  6933 %}
  6935 // The instruction usage is guarded by predicate in operand immXF().
  6936 instruct loadConX(regX dst, immXF con) %{
  6937   match(Set dst con);
  6938   ins_cost(125);
  6939   format %{ "MOVSS  $dst,[$con]" %}
  6940   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), LdImmX(dst, con));
  6941   ins_pipe( pipe_slow );
  6942 %}
  6944 // The instruction usage is guarded by predicate in operand immXF0().
  6945 instruct loadConX0(regX dst, immXF0 src) %{
  6946   match(Set dst src);
  6947   ins_cost(100);
  6948   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  6949   ins_encode( Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
  6950   ins_pipe( pipe_slow );
  6951 %}
  6953 // The instruction usage is guarded by predicate in operand immD().
  6954 instruct loadConD(regD dst, immD src) %{
  6955   match(Set dst src);
  6956   ins_cost(125);
  6958   format %{ "FLD_D  ST,$src\n\t"
  6959             "FSTP   $dst" %}
  6960   ins_encode(LdImmD(src), Pop_Reg_D(dst) );
  6961   ins_pipe( fpu_reg_con );
  6962 %}
  6964 // The instruction usage is guarded by predicate in operand immXD().
  6965 instruct loadConXD(regXD dst, immXD con) %{
  6966   match(Set dst con);
  6967   ins_cost(125);
  6968   format %{ "MOVSD  $dst,[$con]" %}
  6969   ins_encode(load_conXD(dst, con));
  6970   ins_pipe( pipe_slow );
  6971 %}
  6973 // The instruction usage is guarded by predicate in operand immXD0().
  6974 instruct loadConXD0(regXD dst, immXD0 src) %{
  6975   match(Set dst src);
  6976   ins_cost(100);
  6977   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  6978   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
  6979   ins_pipe( pipe_slow );
  6980 %}
  6982 // Load Stack Slot
  6983 instruct loadSSI(eRegI dst, stackSlotI src) %{
  6984   match(Set dst src);
  6985   ins_cost(125);
  6987   format %{ "MOV    $dst,$src" %}
  6988   opcode(0x8B);
  6989   ins_encode( OpcP, RegMem(dst,src));
  6990   ins_pipe( ialu_reg_mem );
  6991 %}
  6993 instruct loadSSL(eRegL dst, stackSlotL src) %{
  6994   match(Set dst src);
  6996   ins_cost(200);
  6997   format %{ "MOV    $dst,$src.lo\n\t"
  6998             "MOV    $dst+4,$src.hi" %}
  6999   opcode(0x8B, 0x8B);
  7000   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  7001   ins_pipe( ialu_mem_long_reg );
  7002 %}
  7004 // Load Stack Slot
  7005 instruct loadSSP(eRegP dst, stackSlotP src) %{
  7006   match(Set dst src);
  7007   ins_cost(125);
  7009   format %{ "MOV    $dst,$src" %}
  7010   opcode(0x8B);
  7011   ins_encode( OpcP, RegMem(dst,src));
  7012   ins_pipe( ialu_reg_mem );
  7013 %}
  7015 // Load Stack Slot
  7016 instruct loadSSF(regF dst, stackSlotF src) %{
  7017   match(Set dst src);
  7018   ins_cost(125);
  7020   format %{ "FLD_S  $src\n\t"
  7021             "FSTP   $dst" %}
  7022   opcode(0xD9);               /* D9 /0, FLD m32real */
  7023   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  7024               Pop_Reg_F(dst) );
  7025   ins_pipe( fpu_reg_mem );
  7026 %}
  7028 // Load Stack Slot
  7029 instruct loadSSD(regD dst, stackSlotD src) %{
  7030   match(Set dst src);
  7031   ins_cost(125);
  7033   format %{ "FLD_D  $src\n\t"
  7034             "FSTP   $dst" %}
  7035   opcode(0xDD);               /* DD /0, FLD m64real */
  7036   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  7037               Pop_Reg_D(dst) );
  7038   ins_pipe( fpu_reg_mem );
  7039 %}
  7041 // Prefetch instructions.
  7042 // Must be safe to execute with invalid address (cannot fault).
  7044 instruct prefetchr0( memory mem ) %{
  7045   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
  7046   match(PrefetchRead mem);
  7047   ins_cost(0);
  7048   size(0);
  7049   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  7050   ins_encode();
  7051   ins_pipe(empty);
  7052 %}
  7054 instruct prefetchr( memory mem ) %{
  7055   predicate(UseSSE==0 && VM_Version::supports_3dnow() || ReadPrefetchInstr==3);
  7056   match(PrefetchRead mem);
  7057   ins_cost(100);
  7059   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  7060   opcode(0x0F, 0x0d);     /* Opcode 0F 0d /0 */
  7061   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7062   ins_pipe(ialu_mem);
  7063 %}
  7065 instruct prefetchrNTA( memory mem ) %{
  7066   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  7067   match(PrefetchRead mem);
  7068   ins_cost(100);
  7070   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  7071   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  7072   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7073   ins_pipe(ialu_mem);
  7074 %}
  7076 instruct prefetchrT0( memory mem ) %{
  7077   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  7078   match(PrefetchRead mem);
  7079   ins_cost(100);
  7081   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  7082   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  7083   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7084   ins_pipe(ialu_mem);
  7085 %}
  7087 instruct prefetchrT2( memory mem ) %{
  7088   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  7089   match(PrefetchRead mem);
  7090   ins_cost(100);
  7092   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  7093   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  7094   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
  7095   ins_pipe(ialu_mem);
  7096 %}
  7098 instruct prefetchw0( memory mem ) %{
  7099   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
  7100   match(PrefetchWrite mem);
  7101   ins_cost(0);
  7102   size(0);
  7103   format %{ "Prefetch (non-SSE is empty encoding)" %}
  7104   ins_encode();
  7105   ins_pipe(empty);
  7106 %}
  7108 instruct prefetchw( memory mem ) %{
  7109   predicate(UseSSE==0 && VM_Version::supports_3dnow() || AllocatePrefetchInstr==3);
  7110   match( PrefetchWrite mem );
  7111   ins_cost(100);
  7113   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  7114   opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
  7115   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7116   ins_pipe(ialu_mem);
  7117 %}
  7119 instruct prefetchwNTA( memory mem ) %{
  7120   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  7121   match(PrefetchWrite mem);
  7122   ins_cost(100);
  7124   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  7125   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  7126   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7127   ins_pipe(ialu_mem);
  7128 %}
  7130 instruct prefetchwT0( memory mem ) %{
  7131   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  7132   match(PrefetchWrite mem);
  7133   ins_cost(100);
  7135   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %}
  7136   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  7137   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7138   ins_pipe(ialu_mem);
  7139 %}
  7141 instruct prefetchwT2( memory mem ) %{
  7142   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  7143   match(PrefetchWrite mem);
  7144   ins_cost(100);
  7146   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %}
  7147   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  7148   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
  7149   ins_pipe(ialu_mem);
  7150 %}
  7152 //----------Store Instructions-------------------------------------------------
  7154 // Store Byte
  7155 instruct storeB(memory mem, xRegI src) %{
  7156   match(Set mem (StoreB mem src));
  7158   ins_cost(125);
  7159   format %{ "MOV8   $mem,$src" %}
  7160   opcode(0x88);
  7161   ins_encode( OpcP, RegMem( src, mem ) );
  7162   ins_pipe( ialu_mem_reg );
  7163 %}
  7165 // Store Char/Short
  7166 instruct storeC(memory mem, eRegI src) %{
  7167   match(Set mem (StoreC mem src));
  7169   ins_cost(125);
  7170   format %{ "MOV16  $mem,$src" %}
  7171   opcode(0x89, 0x66);
  7172   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  7173   ins_pipe( ialu_mem_reg );
  7174 %}
  7176 // Store Integer
  7177 instruct storeI(memory mem, eRegI src) %{
  7178   match(Set mem (StoreI mem src));
  7180   ins_cost(125);
  7181   format %{ "MOV    $mem,$src" %}
  7182   opcode(0x89);
  7183   ins_encode( OpcP, RegMem( src, mem ) );
  7184   ins_pipe( ialu_mem_reg );
  7185 %}
  7187 // Store Long
  7188 instruct storeL(long_memory mem, eRegL src) %{
  7189   predicate(!((StoreLNode*)n)->require_atomic_access());
  7190   match(Set mem (StoreL mem src));
  7192   ins_cost(200);
  7193   format %{ "MOV    $mem,$src.lo\n\t"
  7194             "MOV    $mem+4,$src.hi" %}
  7195   opcode(0x89, 0x89);
  7196   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  7197   ins_pipe( ialu_mem_long_reg );
  7198 %}
  7200 // Volatile Store Long.  Must be atomic, so move it into
  7201 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  7202 // target address before the store (for null-ptr checks)
  7203 // so the memory operand is used twice in the encoding.
  7204 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  7205   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  7206   match(Set mem (StoreL mem src));
  7207   effect( KILL cr );
  7208   ins_cost(400);
  7209   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7210             "FILD   $src\n\t"
  7211             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  7212   opcode(0x3B);
  7213   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  7214   ins_pipe( fpu_reg_mem );
  7215 %}
  7217 instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
  7218   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  7219   match(Set mem (StoreL mem src));
  7220   effect( TEMP tmp, KILL cr );
  7221   ins_cost(380);
  7222   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7223             "MOVSD  $tmp,$src\n\t"
  7224             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  7225   opcode(0x3B);
  7226   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
  7227   ins_pipe( pipe_slow );
  7228 %}
  7230 instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
  7231   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  7232   match(Set mem (StoreL mem src));
  7233   effect( TEMP tmp2 , TEMP tmp, KILL cr );
  7234   ins_cost(360);
  7235   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7236             "MOVD   $tmp,$src.lo\n\t"
  7237             "MOVD   $tmp2,$src.hi\n\t"
  7238             "PUNPCKLDQ $tmp,$tmp2\n\t"
  7239             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  7240   opcode(0x3B);
  7241   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
  7242   ins_pipe( pipe_slow );
  7243 %}
  7245 // Store Pointer; for storing unknown oops and raw pointers
  7246 instruct storeP(memory mem, anyRegP src) %{
  7247   match(Set mem (StoreP mem src));
  7249   ins_cost(125);
  7250   format %{ "MOV    $mem,$src" %}
  7251   opcode(0x89);
  7252   ins_encode( OpcP, RegMem( src, mem ) );
  7253   ins_pipe( ialu_mem_reg );
  7254 %}
  7256 // Store Integer Immediate
  7257 instruct storeImmI(memory mem, immI src) %{
  7258   match(Set mem (StoreI mem src));
  7260   ins_cost(150);
  7261   format %{ "MOV    $mem,$src" %}
  7262   opcode(0xC7);               /* C7 /0 */
  7263   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7264   ins_pipe( ialu_mem_imm );
  7265 %}
  7267 // Store Short/Char Immediate
  7268 instruct storeImmI16(memory mem, immI16 src) %{
  7269   predicate(UseStoreImmI16);
  7270   match(Set mem (StoreC mem src));
  7272   ins_cost(150);
  7273   format %{ "MOV16  $mem,$src" %}
  7274   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  7275   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  7276   ins_pipe( ialu_mem_imm );
  7277 %}
  7279 // Store Pointer Immediate; null pointers or constant oops that do not
  7280 // need card-mark barriers.
  7281 instruct storeImmP(memory mem, immP src) %{
  7282   match(Set mem (StoreP mem src));
  7284   ins_cost(150);
  7285   format %{ "MOV    $mem,$src" %}
  7286   opcode(0xC7);               /* C7 /0 */
  7287   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7288   ins_pipe( ialu_mem_imm );
  7289 %}
  7291 // Store Byte Immediate
  7292 instruct storeImmB(memory mem, immI8 src) %{
  7293   match(Set mem (StoreB mem src));
  7295   ins_cost(150);
  7296   format %{ "MOV8   $mem,$src" %}
  7297   opcode(0xC6);               /* C6 /0 */
  7298   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7299   ins_pipe( ialu_mem_imm );
  7300 %}
  7302 // Store Aligned Packed Byte XMM register to memory
  7303 instruct storeA8B(memory mem, regXD src) %{
  7304   predicate(UseSSE>=1);
  7305   match(Set mem (Store8B mem src));
  7306   ins_cost(145);
  7307   format %{ "MOVQ  $mem,$src\t! packed8B" %}
  7308   ins_encode( movq_st(mem, src));
  7309   ins_pipe( pipe_slow );
  7310 %}
  7312 // Store Aligned Packed Char/Short XMM register to memory
  7313 instruct storeA4C(memory mem, regXD src) %{
  7314   predicate(UseSSE>=1);
  7315   match(Set mem (Store4C mem src));
  7316   ins_cost(145);
  7317   format %{ "MOVQ  $mem,$src\t! packed4C" %}
  7318   ins_encode( movq_st(mem, src));
  7319   ins_pipe( pipe_slow );
  7320 %}
  7322 // Store Aligned Packed Integer XMM register to memory
  7323 instruct storeA2I(memory mem, regXD src) %{
  7324   predicate(UseSSE>=1);
  7325   match(Set mem (Store2I mem src));
  7326   ins_cost(145);
  7327   format %{ "MOVQ  $mem,$src\t! packed2I" %}
  7328   ins_encode( movq_st(mem, src));
  7329   ins_pipe( pipe_slow );
  7330 %}
  7332 // Store CMS card-mark Immediate
  7333 instruct storeImmCM(memory mem, immI8 src) %{
  7334   match(Set mem (StoreCM mem src));
  7336   ins_cost(150);
  7337   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  7338   opcode(0xC6);               /* C6 /0 */
  7339   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7340   ins_pipe( ialu_mem_imm );
  7341 %}
  7343 // Store Double
  7344 instruct storeD( memory mem, regDPR1 src) %{
  7345   predicate(UseSSE<=1);
  7346   match(Set mem (StoreD mem src));
  7348   ins_cost(100);
  7349   format %{ "FST_D  $mem,$src" %}
  7350   opcode(0xDD);       /* DD /2 */
  7351   ins_encode( enc_FP_store(mem,src) );
  7352   ins_pipe( fpu_mem_reg );
  7353 %}
  7355 // Store double does rounding on x86
  7356 instruct storeD_rounded( memory mem, regDPR1 src) %{
  7357   predicate(UseSSE<=1);
  7358   match(Set mem (StoreD mem (RoundDouble src)));
  7360   ins_cost(100);
  7361   format %{ "FST_D  $mem,$src\t# round" %}
  7362   opcode(0xDD);       /* DD /2 */
  7363   ins_encode( enc_FP_store(mem,src) );
  7364   ins_pipe( fpu_mem_reg );
  7365 %}
  7367 // Store XMM register to memory (double-precision floating points)
  7368 // MOVSD instruction
  7369 instruct storeXD(memory mem, regXD src) %{
  7370   predicate(UseSSE>=2);
  7371   match(Set mem (StoreD mem src));
  7372   ins_cost(95);
  7373   format %{ "MOVSD  $mem,$src" %}
  7374   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
  7375   ins_pipe( pipe_slow );
  7376 %}
  7378 // Store XMM register to memory (single-precision floating point)
  7379 // MOVSS instruction
  7380 instruct storeX(memory mem, regX src) %{
  7381   predicate(UseSSE>=1);
  7382   match(Set mem (StoreF mem src));
  7383   ins_cost(95);
  7384   format %{ "MOVSS  $mem,$src" %}
  7385   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
  7386   ins_pipe( pipe_slow );
  7387 %}
  7389 // Store Aligned Packed Single Float XMM register to memory
  7390 instruct storeA2F(memory mem, regXD src) %{
  7391   predicate(UseSSE>=1);
  7392   match(Set mem (Store2F mem src));
  7393   ins_cost(145);
  7394   format %{ "MOVQ  $mem,$src\t! packed2F" %}
  7395   ins_encode( movq_st(mem, src));
  7396   ins_pipe( pipe_slow );
  7397 %}
  7399 // Store Float
  7400 instruct storeF( memory mem, regFPR1 src) %{
  7401   predicate(UseSSE==0);
  7402   match(Set mem (StoreF mem src));
  7404   ins_cost(100);
  7405   format %{ "FST_S  $mem,$src" %}
  7406   opcode(0xD9);       /* D9 /2 */
  7407   ins_encode( enc_FP_store(mem,src) );
  7408   ins_pipe( fpu_mem_reg );
  7409 %}
  7411 // Store Float does rounding on x86
  7412 instruct storeF_rounded( memory mem, regFPR1 src) %{
  7413   predicate(UseSSE==0);
  7414   match(Set mem (StoreF mem (RoundFloat src)));
  7416   ins_cost(100);
  7417   format %{ "FST_S  $mem,$src\t# round" %}
  7418   opcode(0xD9);       /* D9 /2 */
  7419   ins_encode( enc_FP_store(mem,src) );
  7420   ins_pipe( fpu_mem_reg );
  7421 %}
  7423 // Store Float does rounding on x86
  7424 instruct storeF_Drounded( memory mem, regDPR1 src) %{
  7425   predicate(UseSSE<=1);
  7426   match(Set mem (StoreF mem (ConvD2F src)));
  7428   ins_cost(100);
  7429   format %{ "FST_S  $mem,$src\t# D-round" %}
  7430   opcode(0xD9);       /* D9 /2 */
  7431   ins_encode( enc_FP_store(mem,src) );
  7432   ins_pipe( fpu_mem_reg );
  7433 %}
  7435 // Store immediate Float value (it is faster than store from FPU register)
  7436 // The instruction usage is guarded by predicate in operand immF().
  7437 instruct storeF_imm( memory mem, immF src) %{
  7438   match(Set mem (StoreF mem src));
  7440   ins_cost(50);
  7441   format %{ "MOV    $mem,$src\t# store float" %}
  7442   opcode(0xC7);               /* C7 /0 */
  7443   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  7444   ins_pipe( ialu_mem_imm );
  7445 %}
  7447 // Store immediate Float value (it is faster than store from XMM register)
  7448 // The instruction usage is guarded by predicate in operand immXF().
  7449 instruct storeX_imm( memory mem, immXF src) %{
  7450   match(Set mem (StoreF mem src));
  7452   ins_cost(50);
  7453   format %{ "MOV    $mem,$src\t# store float" %}
  7454   opcode(0xC7);               /* C7 /0 */
  7455   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32XF_as_bits( src ));
  7456   ins_pipe( ialu_mem_imm );
  7457 %}
  7459 // Store Integer to stack slot
  7460 instruct storeSSI(stackSlotI dst, eRegI src) %{
  7461   match(Set dst src);
  7463   ins_cost(100);
  7464   format %{ "MOV    $dst,$src" %}
  7465   opcode(0x89);
  7466   ins_encode( OpcPRegSS( dst, src ) );
  7467   ins_pipe( ialu_mem_reg );
  7468 %}
  7470 // Store Integer to stack slot
  7471 instruct storeSSP(stackSlotP dst, eRegP src) %{
  7472   match(Set dst src);
  7474   ins_cost(100);
  7475   format %{ "MOV    $dst,$src" %}
  7476   opcode(0x89);
  7477   ins_encode( OpcPRegSS( dst, src ) );
  7478   ins_pipe( ialu_mem_reg );
  7479 %}
  7481 // Store Long to stack slot
  7482 instruct storeSSL(stackSlotL dst, eRegL src) %{
  7483   match(Set dst src);
  7485   ins_cost(200);
  7486   format %{ "MOV    $dst,$src.lo\n\t"
  7487             "MOV    $dst+4,$src.hi" %}
  7488   opcode(0x89, 0x89);
  7489   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  7490   ins_pipe( ialu_mem_long_reg );
  7491 %}
  7493 //----------MemBar Instructions-----------------------------------------------
  7494 // Memory barrier flavors
  7496 instruct membar_acquire() %{
  7497   match(MemBarAcquire);
  7498   ins_cost(400);
  7500   size(0);
  7501   format %{ "MEMBAR-acquire" %}
  7502   ins_encode( enc_membar_acquire );
  7503   ins_pipe(pipe_slow);
  7504 %}
  7506 instruct membar_acquire_lock() %{
  7507   match(MemBarAcquire);
  7508   predicate(Matcher::prior_fast_lock(n));
  7509   ins_cost(0);
  7511   size(0);
  7512   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  7513   ins_encode( );
  7514   ins_pipe(empty);
  7515 %}
  7517 instruct membar_release() %{
  7518   match(MemBarRelease);
  7519   ins_cost(400);
  7521   size(0);
  7522   format %{ "MEMBAR-release" %}
  7523   ins_encode( enc_membar_release );
  7524   ins_pipe(pipe_slow);
  7525 %}
  7527 instruct membar_release_lock() %{
  7528   match(MemBarRelease);
  7529   predicate(Matcher::post_fast_unlock(n));
  7530   ins_cost(0);
  7532   size(0);
  7533   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  7534   ins_encode( );
  7535   ins_pipe(empty);
  7536 %}
  7538 instruct membar_volatile() %{
  7539   match(MemBarVolatile);
  7540   ins_cost(400);
  7542   format %{ "MEMBAR-volatile" %}
  7543   ins_encode( enc_membar_volatile );
  7544   ins_pipe(pipe_slow);
  7545 %}
  7547 instruct unnecessary_membar_volatile() %{
  7548   match(MemBarVolatile);
  7549   predicate(Matcher::post_store_load_barrier(n));
  7550   ins_cost(0);
  7552   size(0);
  7553   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  7554   ins_encode( );
  7555   ins_pipe(empty);
  7556 %}
  7558 //----------Move Instructions--------------------------------------------------
  7559 instruct castX2P(eAXRegP dst, eAXRegI src) %{
  7560   match(Set dst (CastX2P src));
  7561   format %{ "# X2P  $dst, $src" %}
  7562   ins_encode( /*empty encoding*/ );
  7563   ins_cost(0);
  7564   ins_pipe(empty);
  7565 %}
  7567 instruct castP2X(eRegI dst, eRegP src ) %{
  7568   match(Set dst (CastP2X src));
  7569   ins_cost(50);
  7570   format %{ "MOV    $dst, $src\t# CastP2X" %}
  7571   ins_encode( enc_Copy( dst, src) );
  7572   ins_pipe( ialu_reg_reg );
  7573 %}
  7575 //----------Conditional Move---------------------------------------------------
  7576 // Conditional move
  7577 instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
  7578   predicate(VM_Version::supports_cmov() );
  7579   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7580   ins_cost(200);
  7581   format %{ "CMOV$cop $dst,$src" %}
  7582   opcode(0x0F,0x40);
  7583   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7584   ins_pipe( pipe_cmov_reg );
  7585 %}
  7587 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
  7588   predicate(VM_Version::supports_cmov() );
  7589   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7590   ins_cost(200);
  7591   format %{ "CMOV$cop $dst,$src" %}
  7592   opcode(0x0F,0x40);
  7593   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7594   ins_pipe( pipe_cmov_reg );
  7595 %}
  7597 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
  7598   predicate(VM_Version::supports_cmov() );
  7599   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7600   ins_cost(200);
  7601   expand %{
  7602     cmovI_regU(cop, cr, dst, src);
  7603   %}
  7604 %}
  7606 // Conditional move
  7607 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
  7608   predicate(VM_Version::supports_cmov() );
  7609   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7610   ins_cost(250);
  7611   format %{ "CMOV$cop $dst,$src" %}
  7612   opcode(0x0F,0x40);
  7613   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7614   ins_pipe( pipe_cmov_mem );
  7615 %}
  7617 // Conditional move
  7618 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
  7619   predicate(VM_Version::supports_cmov() );
  7620   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7621   ins_cost(250);
  7622   format %{ "CMOV$cop $dst,$src" %}
  7623   opcode(0x0F,0x40);
  7624   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7625   ins_pipe( pipe_cmov_mem );
  7626 %}
  7628 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
  7629   predicate(VM_Version::supports_cmov() );
  7630   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7631   ins_cost(250);
  7632   expand %{
  7633     cmovI_memU(cop, cr, dst, src);
  7634   %}
  7635 %}
  7637 // Conditional move
  7638 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7639   predicate(VM_Version::supports_cmov() );
  7640   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7641   ins_cost(200);
  7642   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7643   opcode(0x0F,0x40);
  7644   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7645   ins_pipe( pipe_cmov_reg );
  7646 %}
  7648 // Conditional move (non-P6 version)
  7649 // Note:  a CMoveP is generated for  stubs and native wrappers
  7650 //        regardless of whether we are on a P6, so we
  7651 //        emulate a cmov here
  7652 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7653   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7654   ins_cost(300);
  7655   format %{ "Jn$cop   skip\n\t"
  7656           "MOV    $dst,$src\t# pointer\n"
  7657       "skip:" %}
  7658   opcode(0x8b);
  7659   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  7660   ins_pipe( pipe_cmov_reg );
  7661 %}
  7663 // Conditional move
  7664 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
  7665   predicate(VM_Version::supports_cmov() );
  7666   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7667   ins_cost(200);
  7668   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7669   opcode(0x0F,0x40);
  7670   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7671   ins_pipe( pipe_cmov_reg );
  7672 %}
  7674 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  7675   predicate(VM_Version::supports_cmov() );
  7676   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7677   ins_cost(200);
  7678   expand %{
  7679     cmovP_regU(cop, cr, dst, src);
  7680   %}
  7681 %}
  7683 // DISABLED: Requires the ADLC to emit a bottom_type call that
  7684 // correctly meets the two pointer arguments; one is an incoming
  7685 // register but the other is a memory operand.  ALSO appears to
  7686 // be buggy with implicit null checks.
  7687 //
  7688 //// Conditional move
  7689 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
  7690 //  predicate(VM_Version::supports_cmov() );
  7691 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7692 //  ins_cost(250);
  7693 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7694 //  opcode(0x0F,0x40);
  7695 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7696 //  ins_pipe( pipe_cmov_mem );
  7697 //%}
  7698 //
  7699 //// Conditional move
  7700 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
  7701 //  predicate(VM_Version::supports_cmov() );
  7702 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7703 //  ins_cost(250);
  7704 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7705 //  opcode(0x0F,0x40);
  7706 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7707 //  ins_pipe( pipe_cmov_mem );
  7708 //%}
  7710 // Conditional move
  7711 instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
  7712   predicate(UseSSE<=1);
  7713   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7714   ins_cost(200);
  7715   format %{ "FCMOV$cop $dst,$src\t# double" %}
  7716   opcode(0xDA);
  7717   ins_encode( enc_cmov_d(cop,src) );
  7718   ins_pipe( pipe_cmovD_reg );
  7719 %}
  7721 // Conditional move
  7722 instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
  7723   predicate(UseSSE==0);
  7724   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7725   ins_cost(200);
  7726   format %{ "FCMOV$cop $dst,$src\t# float" %}
  7727   opcode(0xDA);
  7728   ins_encode( enc_cmov_d(cop,src) );
  7729   ins_pipe( pipe_cmovD_reg );
  7730 %}
  7732 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7733 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  7734   predicate(UseSSE<=1);
  7735   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7736   ins_cost(200);
  7737   format %{ "Jn$cop   skip\n\t"
  7738             "MOV    $dst,$src\t# double\n"
  7739       "skip:" %}
  7740   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7741   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
  7742   ins_pipe( pipe_cmovD_reg );
  7743 %}
  7745 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7746 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  7747   predicate(UseSSE==0);
  7748   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7749   ins_cost(200);
  7750   format %{ "Jn$cop    skip\n\t"
  7751             "MOV    $dst,$src\t# float\n"
  7752       "skip:" %}
  7753   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7754   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
  7755   ins_pipe( pipe_cmovD_reg );
  7756 %}
  7758 // No CMOVE with SSE/SSE2
  7759 instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
  7760   predicate (UseSSE>=1);
  7761   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7762   ins_cost(200);
  7763   format %{ "Jn$cop   skip\n\t"
  7764             "MOVSS  $dst,$src\t# float\n"
  7765       "skip:" %}
  7766   ins_encode %{
  7767     Label skip;
  7768     // Invert sense of branch from sense of CMOV
  7769     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7770     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  7771     __ bind(skip);
  7772   %}
  7773   ins_pipe( pipe_slow );
  7774 %}
  7776 // No CMOVE with SSE/SSE2
  7777 instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
  7778   predicate (UseSSE>=2);
  7779   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7780   ins_cost(200);
  7781   format %{ "Jn$cop   skip\n\t"
  7782             "MOVSD  $dst,$src\t# float\n"
  7783       "skip:" %}
  7784   ins_encode %{
  7785     Label skip;
  7786     // Invert sense of branch from sense of CMOV
  7787     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7788     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  7789     __ bind(skip);
  7790   %}
  7791   ins_pipe( pipe_slow );
  7792 %}
  7794 // unsigned version
  7795 instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
  7796   predicate (UseSSE>=1);
  7797   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7798   ins_cost(200);
  7799   format %{ "Jn$cop   skip\n\t"
  7800             "MOVSS  $dst,$src\t# float\n"
  7801       "skip:" %}
  7802   ins_encode %{
  7803     Label skip;
  7804     // Invert sense of branch from sense of CMOV
  7805     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7806     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  7807     __ bind(skip);
  7808   %}
  7809   ins_pipe( pipe_slow );
  7810 %}
  7812 instruct fcmovX_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regX dst, regX src) %{
  7813   predicate (UseSSE>=1);
  7814   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7815   ins_cost(200);
  7816   expand %{
  7817     fcmovX_regU(cop, cr, dst, src);
  7818   %}
  7819 %}
  7821 // unsigned version
  7822 instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
  7823   predicate (UseSSE>=2);
  7824   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7825   ins_cost(200);
  7826   format %{ "Jn$cop   skip\n\t"
  7827             "MOVSD  $dst,$src\t# float\n"
  7828       "skip:" %}
  7829   ins_encode %{
  7830     Label skip;
  7831     // Invert sense of branch from sense of CMOV
  7832     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7833     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  7834     __ bind(skip);
  7835   %}
  7836   ins_pipe( pipe_slow );
  7837 %}
  7839 instruct fcmovXD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regXD dst, regXD src) %{
  7840   predicate (UseSSE>=2);
  7841   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7842   ins_cost(200);
  7843   expand %{
  7844     fcmovXD_regU(cop, cr, dst, src);
  7845   %}
  7846 %}
  7848 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  7849   predicate(VM_Version::supports_cmov() );
  7850   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7851   ins_cost(200);
  7852   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7853             "CMOV$cop $dst.hi,$src.hi" %}
  7854   opcode(0x0F,0x40);
  7855   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7856   ins_pipe( pipe_cmov_reg_long );
  7857 %}
  7859 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  7860   predicate(VM_Version::supports_cmov() );
  7861   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7862   ins_cost(200);
  7863   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7864             "CMOV$cop $dst.hi,$src.hi" %}
  7865   opcode(0x0F,0x40);
  7866   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7867   ins_pipe( pipe_cmov_reg_long );
  7868 %}
  7870 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  7871   predicate(VM_Version::supports_cmov() );
  7872   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7873   ins_cost(200);
  7874   expand %{
  7875     cmovL_regU(cop, cr, dst, src);
  7876   %}
  7877 %}
  7879 //----------Arithmetic Instructions--------------------------------------------
  7880 //----------Addition Instructions----------------------------------------------
  7881 // Integer Addition Instructions
  7882 instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  7883   match(Set dst (AddI dst src));
  7884   effect(KILL cr);
  7886   size(2);
  7887   format %{ "ADD    $dst,$src" %}
  7888   opcode(0x03);
  7889   ins_encode( OpcP, RegReg( dst, src) );
  7890   ins_pipe( ialu_reg_reg );
  7891 %}
  7893 instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  7894   match(Set dst (AddI dst src));
  7895   effect(KILL cr);
  7897   format %{ "ADD    $dst,$src" %}
  7898   opcode(0x81, 0x00); /* /0 id */
  7899   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7900   ins_pipe( ialu_reg );
  7901 %}
  7903 instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  7904   predicate(UseIncDec);
  7905   match(Set dst (AddI dst src));
  7906   effect(KILL cr);
  7908   size(1);
  7909   format %{ "INC    $dst" %}
  7910   opcode(0x40); /*  */
  7911   ins_encode( Opc_plus( primary, dst ) );
  7912   ins_pipe( ialu_reg );
  7913 %}
  7915 instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
  7916   match(Set dst (AddI src0 src1));
  7917   ins_cost(110);
  7919   format %{ "LEA    $dst,[$src0 + $src1]" %}
  7920   opcode(0x8D); /* 0x8D /r */
  7921   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7922   ins_pipe( ialu_reg_reg );
  7923 %}
  7925 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  7926   match(Set dst (AddP src0 src1));
  7927   ins_cost(110);
  7929   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  7930   opcode(0x8D); /* 0x8D /r */
  7931   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7932   ins_pipe( ialu_reg_reg );
  7933 %}
  7935 instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
  7936   predicate(UseIncDec);
  7937   match(Set dst (AddI dst src));
  7938   effect(KILL cr);
  7940   size(1);
  7941   format %{ "DEC    $dst" %}
  7942   opcode(0x48); /*  */
  7943   ins_encode( Opc_plus( primary, dst ) );
  7944   ins_pipe( ialu_reg );
  7945 %}
  7947 instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
  7948   match(Set dst (AddP dst src));
  7949   effect(KILL cr);
  7951   size(2);
  7952   format %{ "ADD    $dst,$src" %}
  7953   opcode(0x03);
  7954   ins_encode( OpcP, RegReg( dst, src) );
  7955   ins_pipe( ialu_reg_reg );
  7956 %}
  7958 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  7959   match(Set dst (AddP dst src));
  7960   effect(KILL cr);
  7962   format %{ "ADD    $dst,$src" %}
  7963   opcode(0x81,0x00); /* Opcode 81 /0 id */
  7964   // ins_encode( RegImm( dst, src) );
  7965   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7966   ins_pipe( ialu_reg );
  7967 %}
  7969 instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  7970   match(Set dst (AddI dst (LoadI src)));
  7971   effect(KILL cr);
  7973   ins_cost(125);
  7974   format %{ "ADD    $dst,$src" %}
  7975   opcode(0x03);
  7976   ins_encode( OpcP, RegMem( dst, src) );
  7977   ins_pipe( ialu_reg_mem );
  7978 %}
  7980 instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  7981   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7982   effect(KILL cr);
  7984   ins_cost(150);
  7985   format %{ "ADD    $dst,$src" %}
  7986   opcode(0x01);  /* Opcode 01 /r */
  7987   ins_encode( OpcP, RegMem( src, dst ) );
  7988   ins_pipe( ialu_mem_reg );
  7989 %}
  7991 // Add Memory with Immediate
  7992 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  7993   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7994   effect(KILL cr);
  7996   ins_cost(125);
  7997   format %{ "ADD    $dst,$src" %}
  7998   opcode(0x81);               /* Opcode 81 /0 id */
  7999   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  8000   ins_pipe( ialu_mem_imm );
  8001 %}
  8003 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  8004   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8005   effect(KILL cr);
  8007   ins_cost(125);
  8008   format %{ "INC    $dst" %}
  8009   opcode(0xFF);               /* Opcode FF /0 */
  8010   ins_encode( OpcP, RMopc_Mem(0x00,dst));
  8011   ins_pipe( ialu_mem_imm );
  8012 %}
  8014 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  8015   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8016   effect(KILL cr);
  8018   ins_cost(125);
  8019   format %{ "DEC    $dst" %}
  8020   opcode(0xFF);               /* Opcode FF /1 */
  8021   ins_encode( OpcP, RMopc_Mem(0x01,dst));
  8022   ins_pipe( ialu_mem_imm );
  8023 %}
  8026 instruct checkCastPP( eRegP dst ) %{
  8027   match(Set dst (CheckCastPP dst));
  8029   size(0);
  8030   format %{ "#checkcastPP of $dst" %}
  8031   ins_encode( /*empty encoding*/ );
  8032   ins_pipe( empty );
  8033 %}
  8035 instruct castPP( eRegP dst ) %{
  8036   match(Set dst (CastPP dst));
  8037   format %{ "#castPP of $dst" %}
  8038   ins_encode( /*empty encoding*/ );
  8039   ins_pipe( empty );
  8040 %}
  8042 instruct castII( eRegI dst ) %{
  8043   match(Set dst (CastII dst));
  8044   format %{ "#castII of $dst" %}
  8045   ins_encode( /*empty encoding*/ );
  8046   ins_cost(0);
  8047   ins_pipe( empty );
  8048 %}
  8051 // Load-locked - same as a regular pointer load when used with compare-swap
  8052 instruct loadPLocked(eRegP dst, memory mem) %{
  8053   match(Set dst (LoadPLocked mem));
  8055   ins_cost(125);
  8056   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  8057   opcode(0x8B);
  8058   ins_encode( OpcP, RegMem(dst,mem));
  8059   ins_pipe( ialu_reg_mem );
  8060 %}
  8062 // LoadLong-locked - same as a volatile long load when used with compare-swap
  8063 instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
  8064   predicate(UseSSE<=1);
  8065   match(Set dst (LoadLLocked mem));
  8067   ins_cost(200);
  8068   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  8069             "FISTp  $dst" %}
  8070   ins_encode(enc_loadL_volatile(mem,dst));
  8071   ins_pipe( fpu_reg_mem );
  8072 %}
  8074 instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
  8075   predicate(UseSSE>=2);
  8076   match(Set dst (LoadLLocked mem));
  8077   effect(TEMP tmp);
  8078   ins_cost(180);
  8079   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  8080             "MOVSD  $dst,$tmp" %}
  8081   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
  8082   ins_pipe( pipe_slow );
  8083 %}
  8085 instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
  8086   predicate(UseSSE>=2);
  8087   match(Set dst (LoadLLocked mem));
  8088   effect(TEMP tmp);
  8089   ins_cost(160);
  8090   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  8091             "MOVD   $dst.lo,$tmp\n\t"
  8092             "PSRLQ  $tmp,32\n\t"
  8093             "MOVD   $dst.hi,$tmp" %}
  8094   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
  8095   ins_pipe( pipe_slow );
  8096 %}
  8098 // Conditional-store of the updated heap-top.
  8099 // Used during allocation of the shared heap.
  8100 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  8101 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  8102   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  8103   // EAX is killed if there is contention, but then it's also unused.
  8104   // In the common case of no contention, EAX holds the new oop address.
  8105   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  8106   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  8107   ins_pipe( pipe_cmpxchg );
  8108 %}
  8110 // Conditional-store of an int value.
  8111 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
  8112 instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
  8113   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  8114   effect(KILL oldval);
  8115   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  8116   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
  8117   ins_pipe( pipe_cmpxchg );
  8118 %}
  8120 // Conditional-store of a long value.
  8121 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
  8122 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  8123   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  8124   effect(KILL oldval);
  8125   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
  8126             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
  8127             "XCHG   EBX,ECX"
  8128   %}
  8129   ins_encode %{
  8130     // Note: we need to swap rbx, and rcx before and after the
  8131     //       cmpxchg8 instruction because the instruction uses
  8132     //       rcx as the high order word of the new value to store but
  8133     //       our register encoding uses rbx.
  8134     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  8135     if( os::is_MP() )
  8136       __ lock();
  8137     __ cmpxchg8($mem$$Address);
  8138     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  8139   %}
  8140   ins_pipe( pipe_cmpxchg );
  8141 %}
  8143 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  8145 instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  8146   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  8147   effect(KILL cr, KILL oldval);
  8148   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8149             "MOV    $res,0\n\t"
  8150             "JNE,s  fail\n\t"
  8151             "MOV    $res,1\n"
  8152           "fail:" %}
  8153   ins_encode( enc_cmpxchg8(mem_ptr),
  8154               enc_flags_ne_to_boolean(res) );
  8155   ins_pipe( pipe_cmpxchg );
  8156 %}
  8158 instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  8159   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  8160   effect(KILL cr, KILL oldval);
  8161   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8162             "MOV    $res,0\n\t"
  8163             "JNE,s  fail\n\t"
  8164             "MOV    $res,1\n"
  8165           "fail:" %}
  8166   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  8167   ins_pipe( pipe_cmpxchg );
  8168 %}
  8170 instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  8171   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  8172   effect(KILL cr, KILL oldval);
  8173   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8174             "MOV    $res,0\n\t"
  8175             "JNE,s  fail\n\t"
  8176             "MOV    $res,1\n"
  8177           "fail:" %}
  8178   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  8179   ins_pipe( pipe_cmpxchg );
  8180 %}
  8182 //----------Subtraction Instructions-------------------------------------------
  8183 // Integer Subtraction Instructions
  8184 instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8185   match(Set dst (SubI dst src));
  8186   effect(KILL cr);
  8188   size(2);
  8189   format %{ "SUB    $dst,$src" %}
  8190   opcode(0x2B);
  8191   ins_encode( OpcP, RegReg( dst, src) );
  8192   ins_pipe( ialu_reg_reg );
  8193 %}
  8195 instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8196   match(Set dst (SubI dst src));
  8197   effect(KILL cr);
  8199   format %{ "SUB    $dst,$src" %}
  8200   opcode(0x81,0x05);  /* Opcode 81 /5 */
  8201   // ins_encode( RegImm( dst, src) );
  8202   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8203   ins_pipe( ialu_reg );
  8204 %}
  8206 instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8207   match(Set dst (SubI dst (LoadI src)));
  8208   effect(KILL cr);
  8210   ins_cost(125);
  8211   format %{ "SUB    $dst,$src" %}
  8212   opcode(0x2B);
  8213   ins_encode( OpcP, RegMem( dst, src) );
  8214   ins_pipe( ialu_reg_mem );
  8215 %}
  8217 instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8218   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  8219   effect(KILL cr);
  8221   ins_cost(150);
  8222   format %{ "SUB    $dst,$src" %}
  8223   opcode(0x29);  /* Opcode 29 /r */
  8224   ins_encode( OpcP, RegMem( src, dst ) );
  8225   ins_pipe( ialu_mem_reg );
  8226 %}
  8228 // Subtract from a pointer
  8229 instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
  8230   match(Set dst (AddP dst (SubI zero src)));
  8231   effect(KILL cr);
  8233   size(2);
  8234   format %{ "SUB    $dst,$src" %}
  8235   opcode(0x2B);
  8236   ins_encode( OpcP, RegReg( dst, src) );
  8237   ins_pipe( ialu_reg_reg );
  8238 %}
  8240 instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
  8241   match(Set dst (SubI zero dst));
  8242   effect(KILL cr);
  8244   size(2);
  8245   format %{ "NEG    $dst" %}
  8246   opcode(0xF7,0x03);  // Opcode F7 /3
  8247   ins_encode( OpcP, RegOpc( dst ) );
  8248   ins_pipe( ialu_reg );
  8249 %}
  8252 //----------Multiplication/Division Instructions-------------------------------
  8253 // Integer Multiplication Instructions
  8254 // Multiply Register
  8255 instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8256   match(Set dst (MulI dst src));
  8257   effect(KILL cr);
  8259   size(3);
  8260   ins_cost(300);
  8261   format %{ "IMUL   $dst,$src" %}
  8262   opcode(0xAF, 0x0F);
  8263   ins_encode( OpcS, OpcP, RegReg( dst, src) );
  8264   ins_pipe( ialu_reg_reg_alu0 );
  8265 %}
  8267 // Multiply 32-bit Immediate
  8268 instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
  8269   match(Set dst (MulI src imm));
  8270   effect(KILL cr);
  8272   ins_cost(300);
  8273   format %{ "IMUL   $dst,$src,$imm" %}
  8274   opcode(0x69);  /* 69 /r id */
  8275   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  8276   ins_pipe( ialu_reg_reg_alu0 );
  8277 %}
  8279 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  8280   match(Set dst src);
  8281   effect(KILL cr);
  8283   // Note that this is artificially increased to make it more expensive than loadConL
  8284   ins_cost(250);
  8285   format %{ "MOV    EAX,$src\t// low word only" %}
  8286   opcode(0xB8);
  8287   ins_encode( LdImmL_Lo(dst, src) );
  8288   ins_pipe( ialu_reg_fat );
  8289 %}
  8291 // Multiply by 32-bit Immediate, taking the shifted high order results
  8292 //  (special case for shift by 32)
  8293 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  8294   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8295   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8296              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8297              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8298   effect(USE src1, KILL cr);
  8300   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8301   ins_cost(0*100 + 1*400 - 150);
  8302   format %{ "IMUL   EDX:EAX,$src1" %}
  8303   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8304   ins_pipe( pipe_slow );
  8305 %}
  8307 // Multiply by 32-bit Immediate, taking the shifted high order results
  8308 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  8309   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8310   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8311              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8312              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8313   effect(USE src1, KILL cr);
  8315   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8316   ins_cost(1*100 + 1*400 - 150);
  8317   format %{ "IMUL   EDX:EAX,$src1\n\t"
  8318             "SAR    EDX,$cnt-32" %}
  8319   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8320   ins_pipe( pipe_slow );
  8321 %}
  8323 // Multiply Memory 32-bit Immediate
  8324 instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
  8325   match(Set dst (MulI (LoadI src) imm));
  8326   effect(KILL cr);
  8328   ins_cost(300);
  8329   format %{ "IMUL   $dst,$src,$imm" %}
  8330   opcode(0x69);  /* 69 /r id */
  8331   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  8332   ins_pipe( ialu_reg_mem_alu0 );
  8333 %}
  8335 // Multiply Memory
  8336 instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
  8337   match(Set dst (MulI dst (LoadI src)));
  8338   effect(KILL cr);
  8340   ins_cost(350);
  8341   format %{ "IMUL   $dst,$src" %}
  8342   opcode(0xAF, 0x0F);
  8343   ins_encode( OpcS, OpcP, RegMem( dst, src) );
  8344   ins_pipe( ialu_reg_mem_alu0 );
  8345 %}
  8347 // Multiply Register Int to Long
  8348 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  8349   // Basic Idea: long = (long)int * (long)int
  8350   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  8351   effect(DEF dst, USE src, USE src1, KILL flags);
  8353   ins_cost(300);
  8354   format %{ "IMUL   $dst,$src1" %}
  8356   ins_encode( long_int_multiply( dst, src1 ) );
  8357   ins_pipe( ialu_reg_reg_alu0 );
  8358 %}
  8360 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  8361   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  8362   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  8363   effect(KILL flags);
  8365   ins_cost(300);
  8366   format %{ "MUL    $dst,$src1" %}
  8368   ins_encode( long_uint_multiply(dst, src1) );
  8369   ins_pipe( ialu_reg_reg_alu0 );
  8370 %}
  8372 // Multiply Register Long
  8373 instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8374   match(Set dst (MulL dst src));
  8375   effect(KILL cr, TEMP tmp);
  8376   ins_cost(4*100+3*400);
  8377 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8378 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  8379   format %{ "MOV    $tmp,$src.lo\n\t"
  8380             "IMUL   $tmp,EDX\n\t"
  8381             "MOV    EDX,$src.hi\n\t"
  8382             "IMUL   EDX,EAX\n\t"
  8383             "ADD    $tmp,EDX\n\t"
  8384             "MUL    EDX:EAX,$src.lo\n\t"
  8385             "ADD    EDX,$tmp" %}
  8386   ins_encode( long_multiply( dst, src, tmp ) );
  8387   ins_pipe( pipe_slow );
  8388 %}
  8390 // Multiply Register Long by small constant
  8391 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
  8392   match(Set dst (MulL dst src));
  8393   effect(KILL cr, TEMP tmp);
  8394   ins_cost(2*100+2*400);
  8395   size(12);
  8396 // Basic idea: lo(result) = lo(src * EAX)
  8397 //             hi(result) = hi(src * EAX) + lo(src * EDX)
  8398   format %{ "IMUL   $tmp,EDX,$src\n\t"
  8399             "MOV    EDX,$src\n\t"
  8400             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
  8401             "ADD    EDX,$tmp" %}
  8402   ins_encode( long_multiply_con( dst, src, tmp ) );
  8403   ins_pipe( pipe_slow );
  8404 %}
  8406 // Integer DIV with Register
  8407 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8408   match(Set rax (DivI rax div));
  8409   effect(KILL rdx, KILL cr);
  8410   size(26);
  8411   ins_cost(30*100+10*100);
  8412   format %{ "CMP    EAX,0x80000000\n\t"
  8413             "JNE,s  normal\n\t"
  8414             "XOR    EDX,EDX\n\t"
  8415             "CMP    ECX,-1\n\t"
  8416             "JE,s   done\n"
  8417     "normal: CDQ\n\t"
  8418             "IDIV   $div\n\t"
  8419     "done:"        %}
  8420   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8421   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8422   ins_pipe( ialu_reg_reg_alu0 );
  8423 %}
  8425 // Divide Register Long
  8426 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8427   match(Set dst (DivL src1 src2));
  8428   effect( KILL cr, KILL cx, KILL bx );
  8429   ins_cost(10000);
  8430   format %{ "PUSH   $src1.hi\n\t"
  8431             "PUSH   $src1.lo\n\t"
  8432             "PUSH   $src2.hi\n\t"
  8433             "PUSH   $src2.lo\n\t"
  8434             "CALL   SharedRuntime::ldiv\n\t"
  8435             "ADD    ESP,16" %}
  8436   ins_encode( long_div(src1,src2) );
  8437   ins_pipe( pipe_slow );
  8438 %}
  8440 // Integer DIVMOD with Register, both quotient and mod results
  8441 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8442   match(DivModI rax div);
  8443   effect(KILL cr);
  8444   size(26);
  8445   ins_cost(30*100+10*100);
  8446   format %{ "CMP    EAX,0x80000000\n\t"
  8447             "JNE,s  normal\n\t"
  8448             "XOR    EDX,EDX\n\t"
  8449             "CMP    ECX,-1\n\t"
  8450             "JE,s   done\n"
  8451     "normal: CDQ\n\t"
  8452             "IDIV   $div\n\t"
  8453     "done:"        %}
  8454   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8455   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8456   ins_pipe( pipe_slow );
  8457 %}
  8459 // Integer MOD with Register
  8460 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  8461   match(Set rdx (ModI rax div));
  8462   effect(KILL rax, KILL cr);
  8464   size(26);
  8465   ins_cost(300);
  8466   format %{ "CDQ\n\t"
  8467             "IDIV   $div" %}
  8468   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8469   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8470   ins_pipe( ialu_reg_reg_alu0 );
  8471 %}
  8473 // Remainder Register Long
  8474 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8475   match(Set dst (ModL src1 src2));
  8476   effect( KILL cr, KILL cx, KILL bx );
  8477   ins_cost(10000);
  8478   format %{ "PUSH   $src1.hi\n\t"
  8479             "PUSH   $src1.lo\n\t"
  8480             "PUSH   $src2.hi\n\t"
  8481             "PUSH   $src2.lo\n\t"
  8482             "CALL   SharedRuntime::lrem\n\t"
  8483             "ADD    ESP,16" %}
  8484   ins_encode( long_mod(src1,src2) );
  8485   ins_pipe( pipe_slow );
  8486 %}
  8488 // Integer Shift Instructions
  8489 // Shift Left by one
  8490 instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8491   match(Set dst (LShiftI dst shift));
  8492   effect(KILL cr);
  8494   size(2);
  8495   format %{ "SHL    $dst,$shift" %}
  8496   opcode(0xD1, 0x4);  /* D1 /4 */
  8497   ins_encode( OpcP, RegOpc( dst ) );
  8498   ins_pipe( ialu_reg );
  8499 %}
  8501 // Shift Left by 8-bit immediate
  8502 instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8503   match(Set dst (LShiftI dst shift));
  8504   effect(KILL cr);
  8506   size(3);
  8507   format %{ "SHL    $dst,$shift" %}
  8508   opcode(0xC1, 0x4);  /* C1 /4 ib */
  8509   ins_encode( RegOpcImm( dst, shift) );
  8510   ins_pipe( ialu_reg );
  8511 %}
  8513 // Shift Left by variable
  8514 instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8515   match(Set dst (LShiftI dst shift));
  8516   effect(KILL cr);
  8518   size(2);
  8519   format %{ "SHL    $dst,$shift" %}
  8520   opcode(0xD3, 0x4);  /* D3 /4 */
  8521   ins_encode( OpcP, RegOpc( dst ) );
  8522   ins_pipe( ialu_reg_reg );
  8523 %}
  8525 // Arithmetic shift right by one
  8526 instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8527   match(Set dst (RShiftI dst shift));
  8528   effect(KILL cr);
  8530   size(2);
  8531   format %{ "SAR    $dst,$shift" %}
  8532   opcode(0xD1, 0x7);  /* D1 /7 */
  8533   ins_encode( OpcP, RegOpc( dst ) );
  8534   ins_pipe( ialu_reg );
  8535 %}
  8537 // Arithmetic shift right by one
  8538 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  8539   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8540   effect(KILL cr);
  8541   format %{ "SAR    $dst,$shift" %}
  8542   opcode(0xD1, 0x7);  /* D1 /7 */
  8543   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  8544   ins_pipe( ialu_mem_imm );
  8545 %}
  8547 // Arithmetic Shift Right by 8-bit immediate
  8548 instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8549   match(Set dst (RShiftI dst shift));
  8550   effect(KILL cr);
  8552   size(3);
  8553   format %{ "SAR    $dst,$shift" %}
  8554   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8555   ins_encode( RegOpcImm( dst, shift ) );
  8556   ins_pipe( ialu_mem_imm );
  8557 %}
  8559 // Arithmetic Shift Right by 8-bit immediate
  8560 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  8561   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8562   effect(KILL cr);
  8564   format %{ "SAR    $dst,$shift" %}
  8565   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8566   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  8567   ins_pipe( ialu_mem_imm );
  8568 %}
  8570 // Arithmetic Shift Right by variable
  8571 instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8572   match(Set dst (RShiftI dst shift));
  8573   effect(KILL cr);
  8575   size(2);
  8576   format %{ "SAR    $dst,$shift" %}
  8577   opcode(0xD3, 0x7);  /* D3 /7 */
  8578   ins_encode( OpcP, RegOpc( dst ) );
  8579   ins_pipe( ialu_reg_reg );
  8580 %}
  8582 // Logical shift right by one
  8583 instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8584   match(Set dst (URShiftI dst shift));
  8585   effect(KILL cr);
  8587   size(2);
  8588   format %{ "SHR    $dst,$shift" %}
  8589   opcode(0xD1, 0x5);  /* D1 /5 */
  8590   ins_encode( OpcP, RegOpc( dst ) );
  8591   ins_pipe( ialu_reg );
  8592 %}
  8594 // Logical Shift Right by 8-bit immediate
  8595 instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8596   match(Set dst (URShiftI dst shift));
  8597   effect(KILL cr);
  8599   size(3);
  8600   format %{ "SHR    $dst,$shift" %}
  8601   opcode(0xC1, 0x5);  /* C1 /5 ib */
  8602   ins_encode( RegOpcImm( dst, shift) );
  8603   ins_pipe( ialu_reg );
  8604 %}
  8607 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  8608 // This idiom is used by the compiler for the i2b bytecode.
  8609 instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour, eFlagsReg cr) %{
  8610   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  8611   effect(KILL cr);
  8613   size(3);
  8614   format %{ "MOVSX  $dst,$src :8" %}
  8615   opcode(0xBE, 0x0F);
  8616   ins_encode( OpcS, OpcP, RegReg( dst, src));
  8617   ins_pipe( ialu_reg_reg );
  8618 %}
  8620 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  8621 // This idiom is used by the compiler the i2s bytecode.
  8622 instruct i2s(eRegI dst, xRegI src, immI_16 sixteen, eFlagsReg cr) %{
  8623   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  8624   effect(KILL cr);
  8626   size(3);
  8627   format %{ "MOVSX  $dst,$src :16" %}
  8628   opcode(0xBF, 0x0F);
  8629   ins_encode( OpcS, OpcP, RegReg( dst, src));
  8630   ins_pipe( ialu_reg_reg );
  8631 %}
  8634 // Logical Shift Right by variable
  8635 instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8636   match(Set dst (URShiftI dst shift));
  8637   effect(KILL cr);
  8639   size(2);
  8640   format %{ "SHR    $dst,$shift" %}
  8641   opcode(0xD3, 0x5);  /* D3 /5 */
  8642   ins_encode( OpcP, RegOpc( dst ) );
  8643   ins_pipe( ialu_reg_reg );
  8644 %}
  8647 //----------Logical Instructions-----------------------------------------------
  8648 //----------Integer Logical Instructions---------------------------------------
  8649 // And Instructions
  8650 // And Register with Register
  8651 instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8652   match(Set dst (AndI dst src));
  8653   effect(KILL cr);
  8655   size(2);
  8656   format %{ "AND    $dst,$src" %}
  8657   opcode(0x23);
  8658   ins_encode( OpcP, RegReg( dst, src) );
  8659   ins_pipe( ialu_reg_reg );
  8660 %}
  8662 // And Register with Immediate
  8663 instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8664   match(Set dst (AndI dst src));
  8665   effect(KILL cr);
  8667   format %{ "AND    $dst,$src" %}
  8668   opcode(0x81,0x04);  /* Opcode 81 /4 */
  8669   // ins_encode( RegImm( dst, src) );
  8670   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8671   ins_pipe( ialu_reg );
  8672 %}
  8674 // And Register with Memory
  8675 instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8676   match(Set dst (AndI dst (LoadI src)));
  8677   effect(KILL cr);
  8679   ins_cost(125);
  8680   format %{ "AND    $dst,$src" %}
  8681   opcode(0x23);
  8682   ins_encode( OpcP, RegMem( dst, src) );
  8683   ins_pipe( ialu_reg_mem );
  8684 %}
  8686 // And Memory with Register
  8687 instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8688   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8689   effect(KILL cr);
  8691   ins_cost(150);
  8692   format %{ "AND    $dst,$src" %}
  8693   opcode(0x21);  /* Opcode 21 /r */
  8694   ins_encode( OpcP, RegMem( src, dst ) );
  8695   ins_pipe( ialu_mem_reg );
  8696 %}
  8698 // And Memory with Immediate
  8699 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8700   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8701   effect(KILL cr);
  8703   ins_cost(125);
  8704   format %{ "AND    $dst,$src" %}
  8705   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  8706   // ins_encode( MemImm( dst, src) );
  8707   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8708   ins_pipe( ialu_mem_imm );
  8709 %}
  8711 // Or Instructions
  8712 // Or Register with Register
  8713 instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8714   match(Set dst (OrI dst src));
  8715   effect(KILL cr);
  8717   size(2);
  8718   format %{ "OR     $dst,$src" %}
  8719   opcode(0x0B);
  8720   ins_encode( OpcP, RegReg( dst, src) );
  8721   ins_pipe( ialu_reg_reg );
  8722 %}
  8724 instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
  8725   match(Set dst (OrI dst (CastP2X src)));
  8726   effect(KILL cr);
  8728   size(2);
  8729   format %{ "OR     $dst,$src" %}
  8730   opcode(0x0B);
  8731   ins_encode( OpcP, RegReg( dst, src) );
  8732   ins_pipe( ialu_reg_reg );
  8733 %}
  8736 // Or Register with Immediate
  8737 instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8738   match(Set dst (OrI dst src));
  8739   effect(KILL cr);
  8741   format %{ "OR     $dst,$src" %}
  8742   opcode(0x81,0x01);  /* Opcode 81 /1 id */
  8743   // ins_encode( RegImm( dst, src) );
  8744   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8745   ins_pipe( ialu_reg );
  8746 %}
  8748 // Or Register with Memory
  8749 instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8750   match(Set dst (OrI dst (LoadI src)));
  8751   effect(KILL cr);
  8753   ins_cost(125);
  8754   format %{ "OR     $dst,$src" %}
  8755   opcode(0x0B);
  8756   ins_encode( OpcP, RegMem( dst, src) );
  8757   ins_pipe( ialu_reg_mem );
  8758 %}
  8760 // Or Memory with Register
  8761 instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8762   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8763   effect(KILL cr);
  8765   ins_cost(150);
  8766   format %{ "OR     $dst,$src" %}
  8767   opcode(0x09);  /* Opcode 09 /r */
  8768   ins_encode( OpcP, RegMem( src, dst ) );
  8769   ins_pipe( ialu_mem_reg );
  8770 %}
  8772 // Or Memory with Immediate
  8773 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8774   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8775   effect(KILL cr);
  8777   ins_cost(125);
  8778   format %{ "OR     $dst,$src" %}
  8779   opcode(0x81,0x1);  /* Opcode 81 /1 id */
  8780   // ins_encode( MemImm( dst, src) );
  8781   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8782   ins_pipe( ialu_mem_imm );
  8783 %}
  8785 // ROL/ROR
  8786 // ROL expand
  8787 instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8788   effect(USE_DEF dst, USE shift, KILL cr);
  8790   format %{ "ROL    $dst, $shift" %}
  8791   opcode(0xD1, 0x0); /* Opcode D1 /0 */
  8792   ins_encode( OpcP, RegOpc( dst ));
  8793   ins_pipe( ialu_reg );
  8794 %}
  8796 instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8797   effect(USE_DEF dst, USE shift, KILL cr);
  8799   format %{ "ROL    $dst, $shift" %}
  8800   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  8801   ins_encode( RegOpcImm(dst, shift) );
  8802   ins_pipe(ialu_reg);
  8803 %}
  8805 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8806   effect(USE_DEF dst, USE shift, KILL cr);
  8808   format %{ "ROL    $dst, $shift" %}
  8809   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  8810   ins_encode(OpcP, RegOpc(dst));
  8811   ins_pipe( ialu_reg_reg );
  8812 %}
  8813 // end of ROL expand
  8815 // ROL 32bit by one once
  8816 instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  8817   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8819   expand %{
  8820     rolI_eReg_imm1(dst, lshift, cr);
  8821   %}
  8822 %}
  8824 // ROL 32bit var by imm8 once
  8825 instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  8826   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8827   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8829   expand %{
  8830     rolI_eReg_imm8(dst, lshift, cr);
  8831   %}
  8832 %}
  8834 // ROL 32bit var by var once
  8835 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8836   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  8838   expand %{
  8839     rolI_eReg_CL(dst, shift, cr);
  8840   %}
  8841 %}
  8843 // ROL 32bit var by var once
  8844 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8845   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  8847   expand %{
  8848     rolI_eReg_CL(dst, shift, cr);
  8849   %}
  8850 %}
  8852 // ROR expand
  8853 instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8854   effect(USE_DEF dst, USE shift, KILL cr);
  8856   format %{ "ROR    $dst, $shift" %}
  8857   opcode(0xD1,0x1);  /* Opcode D1 /1 */
  8858   ins_encode( OpcP, RegOpc( dst ) );
  8859   ins_pipe( ialu_reg );
  8860 %}
  8862 instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8863   effect (USE_DEF dst, USE shift, KILL cr);
  8865   format %{ "ROR    $dst, $shift" %}
  8866   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  8867   ins_encode( RegOpcImm(dst, shift) );
  8868   ins_pipe( ialu_reg );
  8869 %}
  8871 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  8872   effect(USE_DEF dst, USE shift, KILL cr);
  8874   format %{ "ROR    $dst, $shift" %}
  8875   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  8876   ins_encode(OpcP, RegOpc(dst));
  8877   ins_pipe( ialu_reg_reg );
  8878 %}
  8879 // end of ROR expand
  8881 // ROR right once
  8882 instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  8883   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8885   expand %{
  8886     rorI_eReg_imm1(dst, rshift, cr);
  8887   %}
  8888 %}
  8890 // ROR 32bit by immI8 once
  8891 instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  8892   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8893   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8895   expand %{
  8896     rorI_eReg_imm8(dst, rshift, cr);
  8897   %}
  8898 %}
  8900 // ROR 32bit var by var once
  8901 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8902   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  8904   expand %{
  8905     rorI_eReg_CL(dst, shift, cr);
  8906   %}
  8907 %}
  8909 // ROR 32bit var by var once
  8910 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8911   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  8913   expand %{
  8914     rorI_eReg_CL(dst, shift, cr);
  8915   %}
  8916 %}
  8918 // Xor Instructions
  8919 // Xor Register with Register
  8920 instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8921   match(Set dst (XorI dst src));
  8922   effect(KILL cr);
  8924   size(2);
  8925   format %{ "XOR    $dst,$src" %}
  8926   opcode(0x33);
  8927   ins_encode( OpcP, RegReg( dst, src) );
  8928   ins_pipe( ialu_reg_reg );
  8929 %}
  8931 // Xor Register with Immediate -1
  8932 instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
  8933   match(Set dst (XorI dst imm));  
  8935   size(2);
  8936   format %{ "NOT    $dst" %}  
  8937   ins_encode %{
  8938      __ notl($dst$$Register);
  8939   %}
  8940   ins_pipe( ialu_reg );
  8941 %}
  8943 // Xor Register with Immediate
  8944 instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8945   match(Set dst (XorI dst src));
  8946   effect(KILL cr);
  8948   format %{ "XOR    $dst,$src" %}
  8949   opcode(0x81,0x06);  /* Opcode 81 /6 id */
  8950   // ins_encode( RegImm( dst, src) );
  8951   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8952   ins_pipe( ialu_reg );
  8953 %}
  8955 // Xor Register with Memory
  8956 instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8957   match(Set dst (XorI dst (LoadI src)));
  8958   effect(KILL cr);
  8960   ins_cost(125);
  8961   format %{ "XOR    $dst,$src" %}
  8962   opcode(0x33);
  8963   ins_encode( OpcP, RegMem(dst, src) );
  8964   ins_pipe( ialu_reg_mem );
  8965 %}
  8967 // Xor Memory with Register
  8968 instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8969   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8970   effect(KILL cr);
  8972   ins_cost(150);
  8973   format %{ "XOR    $dst,$src" %}
  8974   opcode(0x31);  /* Opcode 31 /r */
  8975   ins_encode( OpcP, RegMem( src, dst ) );
  8976   ins_pipe( ialu_mem_reg );
  8977 %}
  8979 // Xor Memory with Immediate
  8980 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8981   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8982   effect(KILL cr);
  8984   ins_cost(125);
  8985   format %{ "XOR    $dst,$src" %}
  8986   opcode(0x81,0x6);  /* Opcode 81 /6 id */
  8987   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8988   ins_pipe( ialu_mem_imm );
  8989 %}
  8991 //----------Convert Int to Boolean---------------------------------------------
  8993 instruct movI_nocopy(eRegI dst, eRegI src) %{
  8994   effect( DEF dst, USE src );
  8995   format %{ "MOV    $dst,$src" %}
  8996   ins_encode( enc_Copy( dst, src) );
  8997   ins_pipe( ialu_reg_reg );
  8998 %}
  9000 instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9001   effect( USE_DEF dst, USE src, KILL cr );
  9003   size(4);
  9004   format %{ "NEG    $dst\n\t"
  9005             "ADC    $dst,$src" %}
  9006   ins_encode( neg_reg(dst),
  9007               OpcRegReg(0x13,dst,src) );
  9008   ins_pipe( ialu_reg_reg_long );
  9009 %}
  9011 instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9012   match(Set dst (Conv2B src));
  9014   expand %{
  9015     movI_nocopy(dst,src);
  9016     ci2b(dst,src,cr);
  9017   %}
  9018 %}
  9020 instruct movP_nocopy(eRegI dst, eRegP src) %{
  9021   effect( DEF dst, USE src );
  9022   format %{ "MOV    $dst,$src" %}
  9023   ins_encode( enc_Copy( dst, src) );
  9024   ins_pipe( ialu_reg_reg );
  9025 %}
  9027 instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9028   effect( USE_DEF dst, USE src, KILL cr );
  9029   format %{ "NEG    $dst\n\t"
  9030             "ADC    $dst,$src" %}
  9031   ins_encode( neg_reg(dst),
  9032               OpcRegReg(0x13,dst,src) );
  9033   ins_pipe( ialu_reg_reg_long );
  9034 %}
  9036 instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9037   match(Set dst (Conv2B src));
  9039   expand %{
  9040     movP_nocopy(dst,src);
  9041     cp2b(dst,src,cr);
  9042   %}
  9043 %}
  9045 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
  9046   match(Set dst (CmpLTMask p q));
  9047   effect( KILL cr );
  9048   ins_cost(400);
  9050   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  9051   format %{ "XOR    $dst,$dst\n\t"
  9052             "CMP    $p,$q\n\t"
  9053             "SETlt  $dst\n\t"
  9054             "NEG    $dst" %}
  9055   ins_encode( OpcRegReg(0x33,dst,dst),
  9056               OpcRegReg(0x3B,p,q),
  9057               setLT_reg(dst), neg_reg(dst) );
  9058   ins_pipe( pipe_slow );
  9059 %}
  9061 instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
  9062   match(Set dst (CmpLTMask dst zero));
  9063   effect( DEF dst, KILL cr );
  9064   ins_cost(100);
  9066   format %{ "SAR    $dst,31" %}
  9067   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9068   ins_encode( RegOpcImm( dst, 0x1F ) );
  9069   ins_pipe( ialu_reg );
  9070 %}
  9073 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
  9074   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  9075   effect( KILL tmp, KILL cr );
  9076   ins_cost(400);
  9077   // annoyingly, $tmp has no edges so you cant ask for it in
  9078   // any format or encoding
  9079   format %{ "SUB    $p,$q\n\t"
  9080             "SBB    ECX,ECX\n\t"
  9081             "AND    ECX,$y\n\t"
  9082             "ADD    $p,ECX" %}
  9083   ins_encode( enc_cmpLTP(p,q,y,tmp) );
  9084   ins_pipe( pipe_cmplt );
  9085 %}
  9087 /* If I enable this, I encourage spilling in the inner loop of compress.
  9088 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
  9089   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  9090   effect( USE_KILL tmp, KILL cr );
  9091   ins_cost(400);
  9093   format %{ "SUB    $p,$q\n\t"
  9094             "SBB    ECX,ECX\n\t"
  9095             "AND    ECX,$y\n\t"
  9096             "ADD    $p,ECX" %}
  9097   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
  9098 %}
  9099 */
  9101 //----------Long Instructions------------------------------------------------
  9102 // Add Long Register with Register
  9103 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9104   match(Set dst (AddL dst src));
  9105   effect(KILL cr);
  9106   ins_cost(200);
  9107   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9108             "ADC    $dst.hi,$src.hi" %}
  9109   opcode(0x03, 0x13);
  9110   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9111   ins_pipe( ialu_reg_reg_long );
  9112 %}
  9114 // Add Long Register with Immediate
  9115 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9116   match(Set dst (AddL dst src));
  9117   effect(KILL cr);
  9118   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9119             "ADC    $dst.hi,$src.hi" %}
  9120   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  9121   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9122   ins_pipe( ialu_reg_long );
  9123 %}
  9125 // Add Long Register with Memory
  9126 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9127   match(Set dst (AddL dst (LoadL mem)));
  9128   effect(KILL cr);
  9129   ins_cost(125);
  9130   format %{ "ADD    $dst.lo,$mem\n\t"
  9131             "ADC    $dst.hi,$mem+4" %}
  9132   opcode(0x03, 0x13);
  9133   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9134   ins_pipe( ialu_reg_long_mem );
  9135 %}
  9137 // Subtract Long Register with Register.
  9138 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9139   match(Set dst (SubL dst src));
  9140   effect(KILL cr);
  9141   ins_cost(200);
  9142   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9143             "SBB    $dst.hi,$src.hi" %}
  9144   opcode(0x2B, 0x1B);
  9145   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9146   ins_pipe( ialu_reg_reg_long );
  9147 %}
  9149 // Subtract Long Register with Immediate
  9150 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9151   match(Set dst (SubL dst src));
  9152   effect(KILL cr);
  9153   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9154             "SBB    $dst.hi,$src.hi" %}
  9155   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  9156   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9157   ins_pipe( ialu_reg_long );
  9158 %}
  9160 // Subtract Long Register with Memory
  9161 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9162   match(Set dst (SubL dst (LoadL mem)));
  9163   effect(KILL cr);
  9164   ins_cost(125);
  9165   format %{ "SUB    $dst.lo,$mem\n\t"
  9166             "SBB    $dst.hi,$mem+4" %}
  9167   opcode(0x2B, 0x1B);
  9168   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9169   ins_pipe( ialu_reg_long_mem );
  9170 %}
  9172 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  9173   match(Set dst (SubL zero dst));
  9174   effect(KILL cr);
  9175   ins_cost(300);
  9176   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  9177   ins_encode( neg_long(dst) );
  9178   ins_pipe( ialu_reg_reg_long );
  9179 %}
  9181 // And Long Register with Register
  9182 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9183   match(Set dst (AndL dst src));
  9184   effect(KILL cr);
  9185   format %{ "AND    $dst.lo,$src.lo\n\t"
  9186             "AND    $dst.hi,$src.hi" %}
  9187   opcode(0x23,0x23);
  9188   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9189   ins_pipe( ialu_reg_reg_long );
  9190 %}
  9192 // And Long Register with Immediate
  9193 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9194   match(Set dst (AndL dst src));
  9195   effect(KILL cr);
  9196   format %{ "AND    $dst.lo,$src.lo\n\t"
  9197             "AND    $dst.hi,$src.hi" %}
  9198   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  9199   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9200   ins_pipe( ialu_reg_long );
  9201 %}
  9203 // And Long Register with Memory
  9204 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9205   match(Set dst (AndL dst (LoadL mem)));
  9206   effect(KILL cr);
  9207   ins_cost(125);
  9208   format %{ "AND    $dst.lo,$mem\n\t"
  9209             "AND    $dst.hi,$mem+4" %}
  9210   opcode(0x23, 0x23);
  9211   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9212   ins_pipe( ialu_reg_long_mem );
  9213 %}
  9215 // Or Long Register with Register
  9216 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9217   match(Set dst (OrL dst src));
  9218   effect(KILL cr);
  9219   format %{ "OR     $dst.lo,$src.lo\n\t"
  9220             "OR     $dst.hi,$src.hi" %}
  9221   opcode(0x0B,0x0B);
  9222   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9223   ins_pipe( ialu_reg_reg_long );
  9224 %}
  9226 // Or Long Register with Immediate
  9227 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9228   match(Set dst (OrL dst src));
  9229   effect(KILL cr);
  9230   format %{ "OR     $dst.lo,$src.lo\n\t"
  9231             "OR     $dst.hi,$src.hi" %}
  9232   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  9233   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9234   ins_pipe( ialu_reg_long );
  9235 %}
  9237 // Or Long Register with Memory
  9238 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9239   match(Set dst (OrL dst (LoadL mem)));
  9240   effect(KILL cr);
  9241   ins_cost(125);
  9242   format %{ "OR     $dst.lo,$mem\n\t"
  9243             "OR     $dst.hi,$mem+4" %}
  9244   opcode(0x0B,0x0B);
  9245   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9246   ins_pipe( ialu_reg_long_mem );
  9247 %}
  9249 // Xor Long Register with Register
  9250 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9251   match(Set dst (XorL dst src));
  9252   effect(KILL cr);
  9253   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9254             "XOR    $dst.hi,$src.hi" %}
  9255   opcode(0x33,0x33);
  9256   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9257   ins_pipe( ialu_reg_reg_long );
  9258 %}
  9260 // Xor Long Register with Immediate -1
  9261 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  9262   match(Set dst (XorL dst imm));  
  9263   format %{ "NOT    $dst.lo\n\t"
  9264             "NOT    $dst.hi" %}
  9265   ins_encode %{
  9266      __ notl($dst$$Register);
  9267      __ notl(HIGH_FROM_LOW($dst$$Register));
  9268   %}
  9269   ins_pipe( ialu_reg_long );
  9270 %}
  9272 // Xor Long Register with Immediate
  9273 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9274   match(Set dst (XorL dst src));
  9275   effect(KILL cr);
  9276   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9277             "XOR    $dst.hi,$src.hi" %}
  9278   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  9279   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9280   ins_pipe( ialu_reg_long );
  9281 %}
  9283 // Xor Long Register with Memory
  9284 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9285   match(Set dst (XorL dst (LoadL mem)));
  9286   effect(KILL cr);
  9287   ins_cost(125);
  9288   format %{ "XOR    $dst.lo,$mem\n\t"
  9289             "XOR    $dst.hi,$mem+4" %}
  9290   opcode(0x33,0x33);
  9291   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9292   ins_pipe( ialu_reg_long_mem );
  9293 %}
  9295 // Shift Left Long by 1
  9296 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  9297   predicate(UseNewLongLShift);
  9298   match(Set dst (LShiftL dst cnt));
  9299   effect(KILL cr);
  9300   ins_cost(100);
  9301   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9302             "ADC    $dst.hi,$dst.hi" %}
  9303   ins_encode %{
  9304     __ addl($dst$$Register,$dst$$Register);
  9305     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9306   %}
  9307   ins_pipe( ialu_reg_long );
  9308 %}
  9310 // Shift Left Long by 2
  9311 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  9312   predicate(UseNewLongLShift);
  9313   match(Set dst (LShiftL dst cnt));
  9314   effect(KILL cr);
  9315   ins_cost(100);
  9316   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9317             "ADC    $dst.hi,$dst.hi\n\t" 
  9318             "ADD    $dst.lo,$dst.lo\n\t"
  9319             "ADC    $dst.hi,$dst.hi" %}
  9320   ins_encode %{
  9321     __ addl($dst$$Register,$dst$$Register);
  9322     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9323     __ addl($dst$$Register,$dst$$Register);
  9324     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9325   %}
  9326   ins_pipe( ialu_reg_long );
  9327 %}
  9329 // Shift Left Long by 3
  9330 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  9331   predicate(UseNewLongLShift);
  9332   match(Set dst (LShiftL dst cnt));
  9333   effect(KILL cr);
  9334   ins_cost(100);
  9335   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9336             "ADC    $dst.hi,$dst.hi\n\t" 
  9337             "ADD    $dst.lo,$dst.lo\n\t"
  9338             "ADC    $dst.hi,$dst.hi\n\t" 
  9339             "ADD    $dst.lo,$dst.lo\n\t"
  9340             "ADC    $dst.hi,$dst.hi" %}
  9341   ins_encode %{
  9342     __ addl($dst$$Register,$dst$$Register);
  9343     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9344     __ addl($dst$$Register,$dst$$Register);
  9345     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9346     __ addl($dst$$Register,$dst$$Register);
  9347     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9348   %}
  9349   ins_pipe( ialu_reg_long );
  9350 %}
  9352 // Shift Left Long by 1-31
  9353 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9354   match(Set dst (LShiftL dst cnt));
  9355   effect(KILL cr);
  9356   ins_cost(200);
  9357   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
  9358             "SHL    $dst.lo,$cnt" %}
  9359   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  9360   ins_encode( move_long_small_shift(dst,cnt) );
  9361   ins_pipe( ialu_reg_long );
  9362 %}
  9364 // Shift Left Long by 32-63
  9365 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9366   match(Set dst (LShiftL dst cnt));
  9367   effect(KILL cr);
  9368   ins_cost(300);
  9369   format %{ "MOV    $dst.hi,$dst.lo\n"
  9370           "\tSHL    $dst.hi,$cnt-32\n"
  9371           "\tXOR    $dst.lo,$dst.lo" %}
  9372   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9373   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9374   ins_pipe( ialu_reg_long );
  9375 %}
  9377 // Shift Left Long by variable
  9378 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9379   match(Set dst (LShiftL dst shift));
  9380   effect(KILL cr);
  9381   ins_cost(500+200);
  9382   size(17);
  9383   format %{ "TEST   $shift,32\n\t"
  9384             "JEQ,s  small\n\t"
  9385             "MOV    $dst.hi,$dst.lo\n\t"
  9386             "XOR    $dst.lo,$dst.lo\n"
  9387     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
  9388             "SHL    $dst.lo,$shift" %}
  9389   ins_encode( shift_left_long( dst, shift ) );
  9390   ins_pipe( pipe_slow );
  9391 %}
  9393 // Shift Right Long by 1-31
  9394 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9395   match(Set dst (URShiftL dst cnt));
  9396   effect(KILL cr);
  9397   ins_cost(200);
  9398   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9399             "SHR    $dst.hi,$cnt" %}
  9400   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  9401   ins_encode( move_long_small_shift(dst,cnt) );
  9402   ins_pipe( ialu_reg_long );
  9403 %}
  9405 // Shift Right Long by 32-63
  9406 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9407   match(Set dst (URShiftL dst cnt));
  9408   effect(KILL cr);
  9409   ins_cost(300);
  9410   format %{ "MOV    $dst.lo,$dst.hi\n"
  9411           "\tSHR    $dst.lo,$cnt-32\n"
  9412           "\tXOR    $dst.hi,$dst.hi" %}
  9413   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9414   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9415   ins_pipe( ialu_reg_long );
  9416 %}
  9418 // Shift Right Long by variable
  9419 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9420   match(Set dst (URShiftL dst shift));
  9421   effect(KILL cr);
  9422   ins_cost(600);
  9423   size(17);
  9424   format %{ "TEST   $shift,32\n\t"
  9425             "JEQ,s  small\n\t"
  9426             "MOV    $dst.lo,$dst.hi\n\t"
  9427             "XOR    $dst.hi,$dst.hi\n"
  9428     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9429             "SHR    $dst.hi,$shift" %}
  9430   ins_encode( shift_right_long( dst, shift ) );
  9431   ins_pipe( pipe_slow );
  9432 %}
  9434 // Shift Right Long by 1-31
  9435 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9436   match(Set dst (RShiftL dst cnt));
  9437   effect(KILL cr);
  9438   ins_cost(200);
  9439   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9440             "SAR    $dst.hi,$cnt" %}
  9441   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  9442   ins_encode( move_long_small_shift(dst,cnt) );
  9443   ins_pipe( ialu_reg_long );
  9444 %}
  9446 // Shift Right Long by 32-63
  9447 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9448   match(Set dst (RShiftL dst cnt));
  9449   effect(KILL cr);
  9450   ins_cost(300);
  9451   format %{ "MOV    $dst.lo,$dst.hi\n"
  9452           "\tSAR    $dst.lo,$cnt-32\n"
  9453           "\tSAR    $dst.hi,31" %}
  9454   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9455   ins_encode( move_long_big_shift_sign(dst,cnt) );
  9456   ins_pipe( ialu_reg_long );
  9457 %}
  9459 // Shift Right arithmetic Long by variable
  9460 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9461   match(Set dst (RShiftL dst shift));
  9462   effect(KILL cr);
  9463   ins_cost(600);
  9464   size(18);
  9465   format %{ "TEST   $shift,32\n\t"
  9466             "JEQ,s  small\n\t"
  9467             "MOV    $dst.lo,$dst.hi\n\t"
  9468             "SAR    $dst.hi,31\n"
  9469     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9470             "SAR    $dst.hi,$shift" %}
  9471   ins_encode( shift_right_arith_long( dst, shift ) );
  9472   ins_pipe( pipe_slow );
  9473 %}
  9476 //----------Double Instructions------------------------------------------------
  9477 // Double Math
  9479 // Compare & branch
  9481 // P6 version of float compare, sets condition codes in EFLAGS
  9482 instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
  9483   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9484   match(Set cr (CmpD src1 src2));
  9485   effect(KILL rax);
  9486   ins_cost(150);
  9487   format %{ "FLD    $src1\n\t"
  9488             "FUCOMIP ST,$src2  // P6 instruction\n\t"
  9489             "JNP    exit\n\t"
  9490             "MOV    ah,1       // saw a NaN, set CF\n\t"
  9491             "SAHF\n"
  9492      "exit:\tNOP               // avoid branch to branch" %}
  9493   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9494   ins_encode( Push_Reg_D(src1),
  9495               OpcP, RegOpc(src2),
  9496               cmpF_P6_fixup );
  9497   ins_pipe( pipe_slow );
  9498 %}
  9500 instruct cmpD_cc_P6CF(eFlagsRegUCF cr, regD src1, regD src2) %{
  9501   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9502   match(Set cr (CmpD src1 src2));
  9503   ins_cost(150);
  9504   format %{ "FLD    $src1\n\t"
  9505             "FUCOMIP ST,$src2  // P6 instruction" %}
  9506   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9507   ins_encode( Push_Reg_D(src1),
  9508               OpcP, RegOpc(src2));
  9509   ins_pipe( pipe_slow );
  9510 %}
  9512 // Compare & branch
  9513 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
  9514   predicate(UseSSE<=1);
  9515   match(Set cr (CmpD src1 src2));
  9516   effect(KILL rax);
  9517   ins_cost(200);
  9518   format %{ "FLD    $src1\n\t"
  9519             "FCOMp  $src2\n\t"
  9520             "FNSTSW AX\n\t"
  9521             "TEST   AX,0x400\n\t"
  9522             "JZ,s   flags\n\t"
  9523             "MOV    AH,1\t# unordered treat as LT\n"
  9524     "flags:\tSAHF" %}
  9525   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9526   ins_encode( Push_Reg_D(src1),
  9527               OpcP, RegOpc(src2),
  9528               fpu_flags);
  9529   ins_pipe( pipe_slow );
  9530 %}
  9532 // Compare vs zero into -1,0,1
  9533 instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
  9534   predicate(UseSSE<=1);
  9535   match(Set dst (CmpD3 src1 zero));
  9536   effect(KILL cr, KILL rax);
  9537   ins_cost(280);
  9538   format %{ "FTSTD  $dst,$src1" %}
  9539   opcode(0xE4, 0xD9);
  9540   ins_encode( Push_Reg_D(src1),
  9541               OpcS, OpcP, PopFPU,
  9542               CmpF_Result(dst));
  9543   ins_pipe( pipe_slow );
  9544 %}
  9546 // Compare into -1,0,1
  9547 instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
  9548   predicate(UseSSE<=1);
  9549   match(Set dst (CmpD3 src1 src2));
  9550   effect(KILL cr, KILL rax);
  9551   ins_cost(300);
  9552   format %{ "FCMPD  $dst,$src1,$src2" %}
  9553   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9554   ins_encode( Push_Reg_D(src1),
  9555               OpcP, RegOpc(src2),
  9556               CmpF_Result(dst));
  9557   ins_pipe( pipe_slow );
  9558 %}
  9560 // float compare and set condition codes in EFLAGS by XMM regs
  9561 instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
  9562   predicate(UseSSE>=2);
  9563   match(Set cr (CmpD dst src));
  9564   effect(KILL rax);
  9565   ins_cost(125);
  9566   format %{ "COMISD $dst,$src\n"
  9567           "\tJNP    exit\n"
  9568           "\tMOV    ah,1       // saw a NaN, set CF\n"
  9569           "\tSAHF\n"
  9570      "exit:\tNOP               // avoid branch to branch" %}
  9571   opcode(0x66, 0x0F, 0x2F);
  9572   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
  9573   ins_pipe( pipe_slow );
  9574 %}
  9576 instruct cmpXD_ccCF(eFlagsRegUCF cr, regXD dst, regXD src) %{
  9577   predicate(UseSSE>=2);
  9578   match(Set cr (CmpD dst src));
  9579   ins_cost(100);
  9580   format %{ "COMISD $dst,$src" %}
  9581   opcode(0x66, 0x0F, 0x2F);
  9582   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
  9583   ins_pipe( pipe_slow );
  9584 %}
  9586 // float compare and set condition codes in EFLAGS by XMM regs
  9587 instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
  9588   predicate(UseSSE>=2);
  9589   match(Set cr (CmpD dst (LoadD src)));
  9590   effect(KILL rax);
  9591   ins_cost(145);
  9592   format %{ "COMISD $dst,$src\n"
  9593           "\tJNP    exit\n"
  9594           "\tMOV    ah,1       // saw a NaN, set CF\n"
  9595           "\tSAHF\n"
  9596      "exit:\tNOP               // avoid branch to branch" %}
  9597   opcode(0x66, 0x0F, 0x2F);
  9598   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
  9599   ins_pipe( pipe_slow );
  9600 %}
  9602 instruct cmpXD_ccmemCF(eFlagsRegUCF cr, regXD dst, memory src) %{
  9603   predicate(UseSSE>=2);
  9604   match(Set cr (CmpD dst (LoadD src)));
  9605   ins_cost(100);
  9606   format %{ "COMISD $dst,$src" %}
  9607   opcode(0x66, 0x0F, 0x2F);
  9608   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src));
  9609   ins_pipe( pipe_slow );
  9610 %}
  9612 // Compare into -1,0,1 in XMM
  9613 instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
  9614   predicate(UseSSE>=2);
  9615   match(Set dst (CmpD3 src1 src2));
  9616   effect(KILL cr);
  9617   ins_cost(255);
  9618   format %{ "XOR    $dst,$dst\n"
  9619           "\tCOMISD $src1,$src2\n"
  9620           "\tJP,s   nan\n"
  9621           "\tJEQ,s  exit\n"
  9622           "\tJA,s   inc\n"
  9623       "nan:\tDEC    $dst\n"
  9624           "\tJMP,s  exit\n"
  9625       "inc:\tINC    $dst\n"
  9626       "exit:"
  9627                 %}
  9628   opcode(0x66, 0x0F, 0x2F);
  9629   ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
  9630              CmpX_Result(dst));
  9631   ins_pipe( pipe_slow );
  9632 %}
  9634 // Compare into -1,0,1 in XMM and memory
  9635 instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
  9636   predicate(UseSSE>=2);
  9637   match(Set dst (CmpD3 src1 (LoadD mem)));
  9638   effect(KILL cr);
  9639   ins_cost(275);
  9640   format %{ "COMISD $src1,$mem\n"
  9641           "\tMOV    $dst,0\t\t# do not blow flags\n"
  9642           "\tJP,s   nan\n"
  9643           "\tJEQ,s  exit\n"
  9644           "\tJA,s   inc\n"
  9645       "nan:\tDEC    $dst\n"
  9646           "\tJMP,s  exit\n"
  9647       "inc:\tINC    $dst\n"
  9648       "exit:"
  9649                 %}
  9650   opcode(0x66, 0x0F, 0x2F);
  9651   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
  9652              LdImmI(dst,0x0), CmpX_Result(dst));
  9653   ins_pipe( pipe_slow );
  9654 %}
  9657 instruct subD_reg(regD dst, regD src) %{
  9658   predicate (UseSSE <=1);
  9659   match(Set dst (SubD dst src));
  9661   format %{ "FLD    $src\n\t"
  9662             "DSUBp  $dst,ST" %}
  9663   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
  9664   ins_cost(150);
  9665   ins_encode( Push_Reg_D(src),
  9666               OpcP, RegOpc(dst) );
  9667   ins_pipe( fpu_reg_reg );
  9668 %}
  9670 instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
  9671   predicate (UseSSE <=1);
  9672   match(Set dst (RoundDouble (SubD src1 src2)));
  9673   ins_cost(250);
  9675   format %{ "FLD    $src2\n\t"
  9676             "DSUB   ST,$src1\n\t"
  9677             "FSTP_D $dst\t# D-round" %}
  9678   opcode(0xD8, 0x5);
  9679   ins_encode( Push_Reg_D(src2),
  9680               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
  9681   ins_pipe( fpu_mem_reg_reg );
  9682 %}
  9685 instruct subD_reg_mem(regD dst, memory src) %{
  9686   predicate (UseSSE <=1);
  9687   match(Set dst (SubD dst (LoadD src)));
  9688   ins_cost(150);
  9690   format %{ "FLD    $src\n\t"
  9691             "DSUBp  $dst,ST" %}
  9692   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9693   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9694               OpcP, RegOpc(dst) );
  9695   ins_pipe( fpu_reg_mem );
  9696 %}
  9698 instruct absD_reg(regDPR1 dst, regDPR1 src) %{
  9699   predicate (UseSSE<=1);
  9700   match(Set dst (AbsD src));
  9701   ins_cost(100);
  9702   format %{ "FABS" %}
  9703   opcode(0xE1, 0xD9);
  9704   ins_encode( OpcS, OpcP );
  9705   ins_pipe( fpu_reg_reg );
  9706 %}
  9708 instruct absXD_reg( regXD dst ) %{
  9709   predicate(UseSSE>=2);
  9710   match(Set dst (AbsD dst));
  9711   format %{ "ANDPD  $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
  9712   ins_encode( AbsXD_encoding(dst));
  9713   ins_pipe( pipe_slow );
  9714 %}
  9716 instruct negD_reg(regDPR1 dst, regDPR1 src) %{
  9717   predicate(UseSSE<=1);
  9718   match(Set dst (NegD src));
  9719   ins_cost(100);
  9720   format %{ "FCHS" %}
  9721   opcode(0xE0, 0xD9);
  9722   ins_encode( OpcS, OpcP );
  9723   ins_pipe( fpu_reg_reg );
  9724 %}
  9726 instruct negXD_reg( regXD dst ) %{
  9727   predicate(UseSSE>=2);
  9728   match(Set dst (NegD dst));
  9729   format %{ "XORPD  $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
  9730   ins_encode %{
  9731      __ xorpd($dst$$XMMRegister,
  9732               ExternalAddress((address)double_signflip_pool));
  9733   %}
  9734   ins_pipe( pipe_slow );
  9735 %}
  9737 instruct addD_reg(regD dst, regD src) %{
  9738   predicate(UseSSE<=1);
  9739   match(Set dst (AddD dst src));
  9740   format %{ "FLD    $src\n\t"
  9741             "DADD   $dst,ST" %}
  9742   size(4);
  9743   ins_cost(150);
  9744   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
  9745   ins_encode( Push_Reg_D(src),
  9746               OpcP, RegOpc(dst) );
  9747   ins_pipe( fpu_reg_reg );
  9748 %}
  9751 instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
  9752   predicate(UseSSE<=1);
  9753   match(Set dst (RoundDouble (AddD src1 src2)));
  9754   ins_cost(250);
  9756   format %{ "FLD    $src2\n\t"
  9757             "DADD   ST,$src1\n\t"
  9758             "FSTP_D $dst\t# D-round" %}
  9759   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
  9760   ins_encode( Push_Reg_D(src2),
  9761               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
  9762   ins_pipe( fpu_mem_reg_reg );
  9763 %}
  9766 instruct addD_reg_mem(regD dst, memory src) %{
  9767   predicate(UseSSE<=1);
  9768   match(Set dst (AddD dst (LoadD src)));
  9769   ins_cost(150);
  9771   format %{ "FLD    $src\n\t"
  9772             "DADDp  $dst,ST" %}
  9773   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9774   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9775               OpcP, RegOpc(dst) );
  9776   ins_pipe( fpu_reg_mem );
  9777 %}
  9779 // add-to-memory
  9780 instruct addD_mem_reg(memory dst, regD src) %{
  9781   predicate(UseSSE<=1);
  9782   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
  9783   ins_cost(150);
  9785   format %{ "FLD_D  $dst\n\t"
  9786             "DADD   ST,$src\n\t"
  9787             "FST_D  $dst" %}
  9788   opcode(0xDD, 0x0);
  9789   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
  9790               Opcode(0xD8), RegOpc(src),
  9791               set_instruction_start,
  9792               Opcode(0xDD), RMopc_Mem(0x03,dst) );
  9793   ins_pipe( fpu_reg_mem );
  9794 %}
  9796 instruct addD_reg_imm1(regD dst, immD1 src) %{
  9797   predicate(UseSSE<=1);
  9798   match(Set dst (AddD dst src));
  9799   ins_cost(125);
  9800   format %{ "FLD1\n\t"
  9801             "DADDp  $dst,ST" %}
  9802   opcode(0xDE, 0x00);
  9803   ins_encode( LdImmD(src),
  9804               OpcP, RegOpc(dst) );
  9805   ins_pipe( fpu_reg );
  9806 %}
  9808 instruct addD_reg_imm(regD dst, immD src) %{
  9809   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9810   match(Set dst (AddD dst src));
  9811   ins_cost(200);
  9812   format %{ "FLD_D  [$src]\n\t"
  9813             "DADDp  $dst,ST" %}
  9814   opcode(0xDE, 0x00);       /* DE /0 */
  9815   ins_encode( LdImmD(src),
  9816               OpcP, RegOpc(dst));
  9817   ins_pipe( fpu_reg_mem );
  9818 %}
  9820 instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
  9821   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
  9822   match(Set dst (RoundDouble (AddD src con)));
  9823   ins_cost(200);
  9824   format %{ "FLD_D  [$con]\n\t"
  9825             "DADD   ST,$src\n\t"
  9826             "FSTP_D $dst\t# D-round" %}
  9827   opcode(0xD8, 0x00);       /* D8 /0 */
  9828   ins_encode( LdImmD(con),
  9829               OpcP, RegOpc(src), Pop_Mem_D(dst));
  9830   ins_pipe( fpu_mem_reg_con );
  9831 %}
  9833 // Add two double precision floating point values in xmm
  9834 instruct addXD_reg(regXD dst, regXD src) %{
  9835   predicate(UseSSE>=2);
  9836   match(Set dst (AddD dst src));
  9837   format %{ "ADDSD  $dst,$src" %}
  9838   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
  9839   ins_pipe( pipe_slow );
  9840 %}
  9842 instruct addXD_imm(regXD dst, immXD con) %{
  9843   predicate(UseSSE>=2);
  9844   match(Set dst (AddD dst con));
  9845   format %{ "ADDSD  $dst,[$con]" %}
  9846   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), LdImmXD(dst, con) );
  9847   ins_pipe( pipe_slow );
  9848 %}
  9850 instruct addXD_mem(regXD dst, memory mem) %{
  9851   predicate(UseSSE>=2);
  9852   match(Set dst (AddD dst (LoadD mem)));
  9853   format %{ "ADDSD  $dst,$mem" %}
  9854   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
  9855   ins_pipe( pipe_slow );
  9856 %}
  9858 // Sub two double precision floating point values in xmm
  9859 instruct subXD_reg(regXD dst, regXD src) %{
  9860   predicate(UseSSE>=2);
  9861   match(Set dst (SubD dst src));
  9862   format %{ "SUBSD  $dst,$src" %}
  9863   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
  9864   ins_pipe( pipe_slow );
  9865 %}
  9867 instruct subXD_imm(regXD dst, immXD con) %{
  9868   predicate(UseSSE>=2);
  9869   match(Set dst (SubD dst con));
  9870   format %{ "SUBSD  $dst,[$con]" %}
  9871   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), LdImmXD(dst, con) );
  9872   ins_pipe( pipe_slow );
  9873 %}
  9875 instruct subXD_mem(regXD dst, memory mem) %{
  9876   predicate(UseSSE>=2);
  9877   match(Set dst (SubD dst (LoadD mem)));
  9878   format %{ "SUBSD  $dst,$mem" %}
  9879   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
  9880   ins_pipe( pipe_slow );
  9881 %}
  9883 // Mul two double precision floating point values in xmm
  9884 instruct mulXD_reg(regXD dst, regXD src) %{
  9885   predicate(UseSSE>=2);
  9886   match(Set dst (MulD dst src));
  9887   format %{ "MULSD  $dst,$src" %}
  9888   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
  9889   ins_pipe( pipe_slow );
  9890 %}
  9892 instruct mulXD_imm(regXD dst, immXD con) %{
  9893   predicate(UseSSE>=2);
  9894   match(Set dst (MulD dst con));
  9895   format %{ "MULSD  $dst,[$con]" %}
  9896   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), LdImmXD(dst, con) );
  9897   ins_pipe( pipe_slow );
  9898 %}
  9900 instruct mulXD_mem(regXD dst, memory mem) %{
  9901   predicate(UseSSE>=2);
  9902   match(Set dst (MulD dst (LoadD mem)));
  9903   format %{ "MULSD  $dst,$mem" %}
  9904   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
  9905   ins_pipe( pipe_slow );
  9906 %}
  9908 // Div two double precision floating point values in xmm
  9909 instruct divXD_reg(regXD dst, regXD src) %{
  9910   predicate(UseSSE>=2);
  9911   match(Set dst (DivD dst src));
  9912   format %{ "DIVSD  $dst,$src" %}
  9913   opcode(0xF2, 0x0F, 0x5E);
  9914   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
  9915   ins_pipe( pipe_slow );
  9916 %}
  9918 instruct divXD_imm(regXD dst, immXD con) %{
  9919   predicate(UseSSE>=2);
  9920   match(Set dst (DivD dst con));
  9921   format %{ "DIVSD  $dst,[$con]" %}
  9922   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), LdImmXD(dst, con));
  9923   ins_pipe( pipe_slow );
  9924 %}
  9926 instruct divXD_mem(regXD dst, memory mem) %{
  9927   predicate(UseSSE>=2);
  9928   match(Set dst (DivD dst (LoadD mem)));
  9929   format %{ "DIVSD  $dst,$mem" %}
  9930   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
  9931   ins_pipe( pipe_slow );
  9932 %}
  9935 instruct mulD_reg(regD dst, regD src) %{
  9936   predicate(UseSSE<=1);
  9937   match(Set dst (MulD dst src));
  9938   format %{ "FLD    $src\n\t"
  9939             "DMULp  $dst,ST" %}
  9940   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9941   ins_cost(150);
  9942   ins_encode( Push_Reg_D(src),
  9943               OpcP, RegOpc(dst) );
  9944   ins_pipe( fpu_reg_reg );
  9945 %}
  9947 // Strict FP instruction biases argument before multiply then
  9948 // biases result to avoid double rounding of subnormals.
  9949 //
  9950 // scale arg1 by multiplying arg1 by 2^(-15360)
  9951 // load arg2
  9952 // multiply scaled arg1 by arg2
  9953 // rescale product by 2^(15360)
  9954 //
  9955 instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
  9956   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9957   match(Set dst (MulD dst src));
  9958   ins_cost(1);   // Select this instruction for all strict FP double multiplies
  9960   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9961             "DMULp  $dst,ST\n\t"
  9962             "FLD    $src\n\t"
  9963             "DMULp  $dst,ST\n\t"
  9964             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9965             "DMULp  $dst,ST\n\t" %}
  9966   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9967   ins_encode( strictfp_bias1(dst),
  9968               Push_Reg_D(src),
  9969               OpcP, RegOpc(dst),
  9970               strictfp_bias2(dst) );
  9971   ins_pipe( fpu_reg_reg );
  9972 %}
  9974 instruct mulD_reg_imm(regD dst, immD src) %{
  9975   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9976   match(Set dst (MulD dst src));
  9977   ins_cost(200);
  9978   format %{ "FLD_D  [$src]\n\t"
  9979             "DMULp  $dst,ST" %}
  9980   opcode(0xDE, 0x1); /* DE /1 */
  9981   ins_encode( LdImmD(src),
  9982               OpcP, RegOpc(dst) );
  9983   ins_pipe( fpu_reg_mem );
  9984 %}
  9987 instruct mulD_reg_mem(regD dst, memory src) %{
  9988   predicate( UseSSE<=1 );
  9989   match(Set dst (MulD dst (LoadD src)));
  9990   ins_cost(200);
  9991   format %{ "FLD_D  $src\n\t"
  9992             "DMULp  $dst,ST" %}
  9993   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
  9994   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9995               OpcP, RegOpc(dst) );
  9996   ins_pipe( fpu_reg_mem );
  9997 %}
  9999 //
 10000 // Cisc-alternate to reg-reg multiply
 10001 instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
 10002   predicate( UseSSE<=1 );
 10003   match(Set dst (MulD src (LoadD mem)));
 10004   ins_cost(250);
 10005   format %{ "FLD_D  $mem\n\t"
 10006             "DMUL   ST,$src\n\t"
 10007             "FSTP_D $dst" %}
 10008   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
 10009   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
 10010               OpcReg_F(src),
 10011               Pop_Reg_D(dst) );
 10012   ins_pipe( fpu_reg_reg_mem );
 10013 %}
 10016 // MACRO3 -- addD a mulD
 10017 // This instruction is a '2-address' instruction in that the result goes
 10018 // back to src2.  This eliminates a move from the macro; possibly the
 10019 // register allocator will have to add it back (and maybe not).
 10020 instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
 10021   predicate( UseSSE<=1 );
 10022   match(Set src2 (AddD (MulD src0 src1) src2));
 10023   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
 10024             "DMUL   ST,$src1\n\t"
 10025             "DADDp  $src2,ST" %}
 10026   ins_cost(250);
 10027   opcode(0xDD); /* LoadD DD /0 */
 10028   ins_encode( Push_Reg_F(src0),
 10029               FMul_ST_reg(src1),
 10030               FAddP_reg_ST(src2) );
 10031   ins_pipe( fpu_reg_reg_reg );
 10032 %}
 10035 // MACRO3 -- subD a mulD
 10036 instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
 10037   predicate( UseSSE<=1 );
 10038   match(Set src2 (SubD (MulD src0 src1) src2));
 10039   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
 10040             "DMUL   ST,$src1\n\t"
 10041             "DSUBRp $src2,ST" %}
 10042   ins_cost(250);
 10043   ins_encode( Push_Reg_F(src0),
 10044               FMul_ST_reg(src1),
 10045               Opcode(0xDE), Opc_plus(0xE0,src2));
 10046   ins_pipe( fpu_reg_reg_reg );
 10047 %}
 10050 instruct divD_reg(regD dst, regD src) %{
 10051   predicate( UseSSE<=1 );
 10052   match(Set dst (DivD dst src));
 10054   format %{ "FLD    $src\n\t"
 10055             "FDIVp  $dst,ST" %}
 10056   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10057   ins_cost(150);
 10058   ins_encode( Push_Reg_D(src),
 10059               OpcP, RegOpc(dst) );
 10060   ins_pipe( fpu_reg_reg );
 10061 %}
 10063 // Strict FP instruction biases argument before division then
 10064 // biases result, to avoid double rounding of subnormals.
 10065 //
 10066 // scale dividend by multiplying dividend by 2^(-15360)
 10067 // load divisor
 10068 // divide scaled dividend by divisor
 10069 // rescale quotient by 2^(15360)
 10070 //
 10071 instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
 10072   predicate (UseSSE<=1);
 10073   match(Set dst (DivD dst src));
 10074   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
 10075   ins_cost(01);
 10077   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
 10078             "DMULp  $dst,ST\n\t"
 10079             "FLD    $src\n\t"
 10080             "FDIVp  $dst,ST\n\t"
 10081             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
 10082             "DMULp  $dst,ST\n\t" %}
 10083   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10084   ins_encode( strictfp_bias1(dst),
 10085               Push_Reg_D(src),
 10086               OpcP, RegOpc(dst),
 10087               strictfp_bias2(dst) );
 10088   ins_pipe( fpu_reg_reg );
 10089 %}
 10091 instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
 10092   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
 10093   match(Set dst (RoundDouble (DivD src1 src2)));
 10095   format %{ "FLD    $src1\n\t"
 10096             "FDIV   ST,$src2\n\t"
 10097             "FSTP_D $dst\t# D-round" %}
 10098   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
 10099   ins_encode( Push_Reg_D(src1),
 10100               OpcP, RegOpc(src2), Pop_Mem_D(dst) );
 10101   ins_pipe( fpu_mem_reg_reg );
 10102 %}
 10105 instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
 10106   predicate(UseSSE<=1);
 10107   match(Set dst (ModD dst src));
 10108   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 10110   format %{ "DMOD   $dst,$src" %}
 10111   ins_cost(250);
 10112   ins_encode(Push_Reg_Mod_D(dst, src),
 10113               emitModD(),
 10114               Push_Result_Mod_D(src),
 10115               Pop_Reg_D(dst));
 10116   ins_pipe( pipe_slow );
 10117 %}
 10119 instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
 10120   predicate(UseSSE>=2);
 10121   match(Set dst (ModD src0 src1));
 10122   effect(KILL rax, KILL cr);
 10124   format %{ "SUB    ESP,8\t # DMOD\n"
 10125           "\tMOVSD  [ESP+0],$src1\n"
 10126           "\tFLD_D  [ESP+0]\n"
 10127           "\tMOVSD  [ESP+0],$src0\n"
 10128           "\tFLD_D  [ESP+0]\n"
 10129      "loop:\tFPREM\n"
 10130           "\tFWAIT\n"
 10131           "\tFNSTSW AX\n"
 10132           "\tSAHF\n"
 10133           "\tJP     loop\n"
 10134           "\tFSTP_D [ESP+0]\n"
 10135           "\tMOVSD  $dst,[ESP+0]\n"
 10136           "\tADD    ESP,8\n"
 10137           "\tFSTP   ST0\t # Restore FPU Stack"
 10138     %}
 10139   ins_cost(250);
 10140   ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
 10141   ins_pipe( pipe_slow );
 10142 %}
 10144 instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
 10145   predicate (UseSSE<=1);
 10146   match(Set dst (SinD src));
 10147   ins_cost(1800);
 10148   format %{ "DSIN   $dst" %}
 10149   opcode(0xD9, 0xFE);
 10150   ins_encode( OpcP, OpcS );
 10151   ins_pipe( pipe_slow );
 10152 %}
 10154 instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
 10155   predicate (UseSSE>=2);
 10156   match(Set dst (SinD dst));
 10157   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10158   ins_cost(1800);
 10159   format %{ "DSIN   $dst" %}
 10160   opcode(0xD9, 0xFE);
 10161   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10162   ins_pipe( pipe_slow );
 10163 %}
 10165 instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
 10166   predicate (UseSSE<=1);
 10167   match(Set dst (CosD src));
 10168   ins_cost(1800);
 10169   format %{ "DCOS   $dst" %}
 10170   opcode(0xD9, 0xFF);
 10171   ins_encode( OpcP, OpcS );
 10172   ins_pipe( pipe_slow );
 10173 %}
 10175 instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
 10176   predicate (UseSSE>=2);
 10177   match(Set dst (CosD dst));
 10178   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10179   ins_cost(1800);
 10180   format %{ "DCOS   $dst" %}
 10181   opcode(0xD9, 0xFF);
 10182   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10183   ins_pipe( pipe_slow );
 10184 %}
 10186 instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
 10187   predicate (UseSSE<=1);
 10188   match(Set dst(TanD src));
 10189   format %{ "DTAN   $dst" %}
 10190   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
 10191               Opcode(0xDD), Opcode(0xD8));   // fstp st
 10192   ins_pipe( pipe_slow );
 10193 %}
 10195 instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
 10196   predicate (UseSSE>=2);
 10197   match(Set dst(TanD dst));
 10198   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10199   format %{ "DTAN   $dst" %}
 10200   ins_encode( Push_SrcXD(dst),
 10201               Opcode(0xD9), Opcode(0xF2),    // fptan
 10202               Opcode(0xDD), Opcode(0xD8),   // fstp st
 10203               Push_ResultXD(dst) );
 10204   ins_pipe( pipe_slow );
 10205 %}
 10207 instruct atanD_reg(regD dst, regD src) %{
 10208   predicate (UseSSE<=1);
 10209   match(Set dst(AtanD dst src));
 10210   format %{ "DATA   $dst,$src" %}
 10211   opcode(0xD9, 0xF3);
 10212   ins_encode( Push_Reg_D(src),
 10213               OpcP, OpcS, RegOpc(dst) );
 10214   ins_pipe( pipe_slow );
 10215 %}
 10217 instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10218   predicate (UseSSE>=2);
 10219   match(Set dst(AtanD dst src));
 10220   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10221   format %{ "DATA   $dst,$src" %}
 10222   opcode(0xD9, 0xF3);
 10223   ins_encode( Push_SrcXD(src),
 10224               OpcP, OpcS, Push_ResultXD(dst) );
 10225   ins_pipe( pipe_slow );
 10226 %}
 10228 instruct sqrtD_reg(regD dst, regD src) %{
 10229   predicate (UseSSE<=1);
 10230   match(Set dst (SqrtD src));
 10231   format %{ "DSQRT  $dst,$src" %}
 10232   opcode(0xFA, 0xD9);
 10233   ins_encode( Push_Reg_D(src),
 10234               OpcS, OpcP, Pop_Reg_D(dst) );
 10235   ins_pipe( pipe_slow );
 10236 %}
 10238 instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10239   predicate (UseSSE<=1);
 10240   match(Set Y (PowD X Y));  // Raise X to the Yth power
 10241   effect(KILL rax, KILL rbx, KILL rcx);
 10242   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10243             "FLD_D  $X\n\t"
 10244             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10246             "FDUP   \t\t\t# Q Q\n\t"
 10247             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10248             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10249             "FISTP  dword [ESP]\n\t"
 10250             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10251             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10252             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10253             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10254             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10255             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10256             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10257             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10258             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10259             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10260             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10261             "MOV    [ESP+0],0\n\t"
 10262             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10264             "ADD    ESP,8"
 10265              %}
 10266   ins_encode( push_stack_temp_qword,
 10267               Push_Reg_D(X),
 10268               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10269               pow_exp_core_encoding,
 10270               pop_stack_temp_qword);
 10271   ins_pipe( pipe_slow );
 10272 %}
 10274 instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
 10275   predicate (UseSSE>=2);
 10276   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
 10277   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
 10278   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10279             "MOVSD  [ESP],$src1\n\t"
 10280             "FLD    FPR1,$src1\n\t"
 10281             "MOVSD  [ESP],$src0\n\t"
 10282             "FLD    FPR1,$src0\n\t"
 10283             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10285             "FDUP   \t\t\t# Q Q\n\t"
 10286             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10287             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10288             "FISTP  dword [ESP]\n\t"
 10289             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10290             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10291             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10292             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10293             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10294             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10295             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10296             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10297             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10298             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10299             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10300             "MOV    [ESP+0],0\n\t"
 10301             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10303             "FST_D  [ESP]\n\t"
 10304             "MOVSD  $dst,[ESP]\n\t"
 10305             "ADD    ESP,8"
 10306              %}
 10307   ins_encode( push_stack_temp_qword,
 10308               push_xmm_to_fpr1(src1),
 10309               push_xmm_to_fpr1(src0),
 10310               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10311               pow_exp_core_encoding,
 10312               Push_ResultXD(dst) );
 10313   ins_pipe( pipe_slow );
 10314 %}
 10317 instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10318   predicate (UseSSE<=1);
 10319   match(Set dpr1 (ExpD dpr1));
 10320   effect(KILL rax, KILL rbx, KILL rcx);
 10321   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
 10322             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10323             "FMULP  \t\t\t# Q=X*log2(e)\n\t"
 10325             "FDUP   \t\t\t# Q Q\n\t"
 10326             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10327             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10328             "FISTP  dword [ESP]\n\t"
 10329             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10330             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10331             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10332             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10333             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10334             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10335             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10336             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10337             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10338             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10339             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10340             "MOV    [ESP+0],0\n\t"
 10341             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10343             "ADD    ESP,8"
 10344              %}
 10345   ins_encode( push_stack_temp_qword,
 10346               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10347               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10348               pow_exp_core_encoding,
 10349               pop_stack_temp_qword);
 10350   ins_pipe( pipe_slow );
 10351 %}
 10353 instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10354   predicate (UseSSE>=2);
 10355   match(Set dst (ExpD src));
 10356   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
 10357   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
 10358             "MOVSD  [ESP],$src\n\t"
 10359             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10360             "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
 10362             "FDUP   \t\t\t# Q Q\n\t"
 10363             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10364             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10365             "FISTP  dword [ESP]\n\t"
 10366             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10367             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10368             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10369             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10370             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10371             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10372             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10373             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10374             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10375             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10376             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10377             "MOV    [ESP+0],0\n\t"
 10378             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10380             "FST_D  [ESP]\n\t"
 10381             "MOVSD  $dst,[ESP]\n\t"
 10382             "ADD    ESP,8"
 10383              %}
 10384   ins_encode( Push_SrcXD(src),
 10385               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10386               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10387               pow_exp_core_encoding,
 10388               Push_ResultXD(dst) );
 10389   ins_pipe( pipe_slow );
 10390 %}
 10394 instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
 10395   predicate (UseSSE<=1);
 10396   // The source Double operand on FPU stack
 10397   match(Set dst (Log10D src));
 10398   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10399   // fxch         ; swap ST(0) with ST(1)
 10400   // fyl2x        ; compute log_10(2) * log_2(x)
 10401   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10402             "FXCH   \n\t"
 10403             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10404          %}
 10405   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10406               Opcode(0xD9), Opcode(0xC9),   // fxch
 10407               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10409   ins_pipe( pipe_slow );
 10410 %}
 10412 instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10413   predicate (UseSSE>=2);
 10414   effect(KILL cr);
 10415   match(Set dst (Log10D src));
 10416   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10417   // fyl2x        ; compute log_10(2) * log_2(x)
 10418   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10419             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10420          %}
 10421   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10422               Push_SrcXD(src),
 10423               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10424               Push_ResultXD(dst));
 10426   ins_pipe( pipe_slow );
 10427 %}
 10429 instruct logD_reg(regDPR1 dst, regDPR1 src) %{
 10430   predicate (UseSSE<=1);
 10431   // The source Double operand on FPU stack
 10432   match(Set dst (LogD src));
 10433   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10434   // fxch         ; swap ST(0) with ST(1)
 10435   // fyl2x        ; compute log_e(2) * log_2(x)
 10436   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10437             "FXCH   \n\t"
 10438             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10439          %}
 10440   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10441               Opcode(0xD9), Opcode(0xC9),   // fxch
 10442               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10444   ins_pipe( pipe_slow );
 10445 %}
 10447 instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10448   predicate (UseSSE>=2);
 10449   effect(KILL cr);
 10450   // The source and result Double operands in XMM registers
 10451   match(Set dst (LogD src));
 10452   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10453   // fyl2x        ; compute log_e(2) * log_2(x)
 10454   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10455             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10456          %}
 10457   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10458               Push_SrcXD(src),
 10459               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10460               Push_ResultXD(dst));
 10461   ins_pipe( pipe_slow );
 10462 %}
 10464 //-------------Float Instructions-------------------------------
 10465 // Float Math
 10467 // Code for float compare:
 10468 //     fcompp();
 10469 //     fwait(); fnstsw_ax();
 10470 //     sahf();
 10471 //     movl(dst, unordered_result);
 10472 //     jcc(Assembler::parity, exit);
 10473 //     movl(dst, less_result);
 10474 //     jcc(Assembler::below, exit);
 10475 //     movl(dst, equal_result);
 10476 //     jcc(Assembler::equal, exit);
 10477 //     movl(dst, greater_result);
 10478 //   exit:
 10480 // P6 version of float compare, sets condition codes in EFLAGS
 10481 instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
 10482   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10483   match(Set cr (CmpF src1 src2));
 10484   effect(KILL rax);
 10485   ins_cost(150);
 10486   format %{ "FLD    $src1\n\t"
 10487             "FUCOMIP ST,$src2  // P6 instruction\n\t"
 10488             "JNP    exit\n\t"
 10489             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
 10490             "SAHF\n"
 10491      "exit:\tNOP               // avoid branch to branch" %}
 10492   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10493   ins_encode( Push_Reg_D(src1),
 10494               OpcP, RegOpc(src2),
 10495               cmpF_P6_fixup );
 10496   ins_pipe( pipe_slow );
 10497 %}
 10499 instruct cmpF_cc_P6CF(eFlagsRegUCF cr, regF src1, regF src2) %{
 10500   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10501   match(Set cr (CmpF src1 src2));
 10502   ins_cost(100);
 10503   format %{ "FLD    $src1\n\t"
 10504             "FUCOMIP ST,$src2  // P6 instruction" %}
 10505   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10506   ins_encode( Push_Reg_D(src1),
 10507               OpcP, RegOpc(src2));
 10508   ins_pipe( pipe_slow );
 10509 %}
 10512 // Compare & branch
 10513 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
 10514   predicate(UseSSE == 0);
 10515   match(Set cr (CmpF src1 src2));
 10516   effect(KILL rax);
 10517   ins_cost(200);
 10518   format %{ "FLD    $src1\n\t"
 10519             "FCOMp  $src2\n\t"
 10520             "FNSTSW AX\n\t"
 10521             "TEST   AX,0x400\n\t"
 10522             "JZ,s   flags\n\t"
 10523             "MOV    AH,1\t# unordered treat as LT\n"
 10524     "flags:\tSAHF" %}
 10525   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10526   ins_encode( Push_Reg_D(src1),
 10527               OpcP, RegOpc(src2),
 10528               fpu_flags);
 10529   ins_pipe( pipe_slow );
 10530 %}
 10532 // Compare vs zero into -1,0,1
 10533 instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
 10534   predicate(UseSSE == 0);
 10535   match(Set dst (CmpF3 src1 zero));
 10536   effect(KILL cr, KILL rax);
 10537   ins_cost(280);
 10538   format %{ "FTSTF  $dst,$src1" %}
 10539   opcode(0xE4, 0xD9);
 10540   ins_encode( Push_Reg_D(src1),
 10541               OpcS, OpcP, PopFPU,
 10542               CmpF_Result(dst));
 10543   ins_pipe( pipe_slow );
 10544 %}
 10546 // Compare into -1,0,1
 10547 instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
 10548   predicate(UseSSE == 0);
 10549   match(Set dst (CmpF3 src1 src2));
 10550   effect(KILL cr, KILL rax);
 10551   ins_cost(300);
 10552   format %{ "FCMPF  $dst,$src1,$src2" %}
 10553   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10554   ins_encode( Push_Reg_D(src1),
 10555               OpcP, RegOpc(src2),
 10556               CmpF_Result(dst));
 10557   ins_pipe( pipe_slow );
 10558 %}
 10560 // float compare and set condition codes in EFLAGS by XMM regs
 10561 instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
 10562   predicate(UseSSE>=1);
 10563   match(Set cr (CmpF dst src));
 10564   effect(KILL rax);
 10565   ins_cost(145);
 10566   format %{ "COMISS $dst,$src\n"
 10567           "\tJNP    exit\n"
 10568           "\tMOV    ah,1       // saw a NaN, set CF\n"
 10569           "\tSAHF\n"
 10570      "exit:\tNOP               // avoid branch to branch" %}
 10571   opcode(0x0F, 0x2F);
 10572   ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
 10573   ins_pipe( pipe_slow );
 10574 %}
 10576 instruct cmpX_ccCF(eFlagsRegUCF cr, regX dst, regX src) %{
 10577   predicate(UseSSE>=1);
 10578   match(Set cr (CmpF dst src));
 10579   ins_cost(100);
 10580   format %{ "COMISS $dst,$src" %}
 10581   opcode(0x0F, 0x2F);
 10582   ins_encode(OpcP, OpcS, RegReg(dst, src));
 10583   ins_pipe( pipe_slow );
 10584 %}
 10586 // float compare and set condition codes in EFLAGS by XMM regs
 10587 instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
 10588   predicate(UseSSE>=1);
 10589   match(Set cr (CmpF dst (LoadF src)));
 10590   effect(KILL rax);
 10591   ins_cost(165);
 10592   format %{ "COMISS $dst,$src\n"
 10593           "\tJNP    exit\n"
 10594           "\tMOV    ah,1       // saw a NaN, set CF\n"
 10595           "\tSAHF\n"
 10596      "exit:\tNOP               // avoid branch to branch" %}
 10597   opcode(0x0F, 0x2F);
 10598   ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
 10599   ins_pipe( pipe_slow );
 10600 %}
 10602 instruct cmpX_ccmemCF(eFlagsRegUCF cr, regX dst, memory src) %{
 10603   predicate(UseSSE>=1);
 10604   match(Set cr (CmpF dst (LoadF src)));
 10605   ins_cost(100);
 10606   format %{ "COMISS $dst,$src" %}
 10607   opcode(0x0F, 0x2F);
 10608   ins_encode(OpcP, OpcS, RegMem(dst, src));
 10609   ins_pipe( pipe_slow );
 10610 %}
 10612 // Compare into -1,0,1 in XMM
 10613 instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
 10614   predicate(UseSSE>=1);
 10615   match(Set dst (CmpF3 src1 src2));
 10616   effect(KILL cr);
 10617   ins_cost(255);
 10618   format %{ "XOR    $dst,$dst\n"
 10619           "\tCOMISS $src1,$src2\n"
 10620           "\tJP,s   nan\n"
 10621           "\tJEQ,s  exit\n"
 10622           "\tJA,s   inc\n"
 10623       "nan:\tDEC    $dst\n"
 10624           "\tJMP,s  exit\n"
 10625       "inc:\tINC    $dst\n"
 10626       "exit:"
 10627                 %}
 10628   opcode(0x0F, 0x2F);
 10629   ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
 10630   ins_pipe( pipe_slow );
 10631 %}
 10633 // Compare into -1,0,1 in XMM and memory
 10634 instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
 10635   predicate(UseSSE>=1);
 10636   match(Set dst (CmpF3 src1 (LoadF mem)));
 10637   effect(KILL cr);
 10638   ins_cost(275);
 10639   format %{ "COMISS $src1,$mem\n"
 10640           "\tMOV    $dst,0\t\t# do not blow flags\n"
 10641           "\tJP,s   nan\n"
 10642           "\tJEQ,s  exit\n"
 10643           "\tJA,s   inc\n"
 10644       "nan:\tDEC    $dst\n"
 10645           "\tJMP,s  exit\n"
 10646       "inc:\tINC    $dst\n"
 10647       "exit:"
 10648                 %}
 10649   opcode(0x0F, 0x2F);
 10650   ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
 10651   ins_pipe( pipe_slow );
 10652 %}
 10654 // Spill to obtain 24-bit precision
 10655 instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
 10656   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10657   match(Set dst (SubF src1 src2));
 10659   format %{ "FSUB   $dst,$src1 - $src2" %}
 10660   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
 10661   ins_encode( Push_Reg_F(src1),
 10662               OpcReg_F(src2),
 10663               Pop_Mem_F(dst) );
 10664   ins_pipe( fpu_mem_reg_reg );
 10665 %}
 10666 //
 10667 // This instruction does not round to 24-bits
 10668 instruct subF_reg(regF dst, regF src) %{
 10669   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10670   match(Set dst (SubF dst src));
 10672   format %{ "FSUB   $dst,$src" %}
 10673   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 10674   ins_encode( Push_Reg_F(src),
 10675               OpcP, RegOpc(dst) );
 10676   ins_pipe( fpu_reg_reg );
 10677 %}
 10679 // Spill to obtain 24-bit precision
 10680 instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
 10681   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10682   match(Set dst (AddF src1 src2));
 10684   format %{ "FADD   $dst,$src1,$src2" %}
 10685   opcode(0xD8, 0x0); /* D8 C0+i */
 10686   ins_encode( Push_Reg_F(src2),
 10687               OpcReg_F(src1),
 10688               Pop_Mem_F(dst) );
 10689   ins_pipe( fpu_mem_reg_reg );
 10690 %}
 10691 //
 10692 // This instruction does not round to 24-bits
 10693 instruct addF_reg(regF dst, regF src) %{
 10694   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10695   match(Set dst (AddF dst src));
 10697   format %{ "FLD    $src\n\t"
 10698             "FADDp  $dst,ST" %}
 10699   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10700   ins_encode( Push_Reg_F(src),
 10701               OpcP, RegOpc(dst) );
 10702   ins_pipe( fpu_reg_reg );
 10703 %}
 10705 // Add two single precision floating point values in xmm
 10706 instruct addX_reg(regX dst, regX src) %{
 10707   predicate(UseSSE>=1);
 10708   match(Set dst (AddF dst src));
 10709   format %{ "ADDSS  $dst,$src" %}
 10710   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
 10711   ins_pipe( pipe_slow );
 10712 %}
 10714 instruct addX_imm(regX dst, immXF con) %{
 10715   predicate(UseSSE>=1);
 10716   match(Set dst (AddF dst con));
 10717   format %{ "ADDSS  $dst,[$con]" %}
 10718   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), LdImmX(dst, con) );
 10719   ins_pipe( pipe_slow );
 10720 %}
 10722 instruct addX_mem(regX dst, memory mem) %{
 10723   predicate(UseSSE>=1);
 10724   match(Set dst (AddF dst (LoadF mem)));
 10725   format %{ "ADDSS  $dst,$mem" %}
 10726   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
 10727   ins_pipe( pipe_slow );
 10728 %}
 10730 // Subtract two single precision floating point values in xmm
 10731 instruct subX_reg(regX dst, regX src) %{
 10732   predicate(UseSSE>=1);
 10733   match(Set dst (SubF dst src));
 10734   format %{ "SUBSS  $dst,$src" %}
 10735   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
 10736   ins_pipe( pipe_slow );
 10737 %}
 10739 instruct subX_imm(regX dst, immXF con) %{
 10740   predicate(UseSSE>=1);
 10741   match(Set dst (SubF dst con));
 10742   format %{ "SUBSS  $dst,[$con]" %}
 10743   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), LdImmX(dst, con) );
 10744   ins_pipe( pipe_slow );
 10745 %}
 10747 instruct subX_mem(regX dst, memory mem) %{
 10748   predicate(UseSSE>=1);
 10749   match(Set dst (SubF dst (LoadF mem)));
 10750   format %{ "SUBSS  $dst,$mem" %}
 10751   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
 10752   ins_pipe( pipe_slow );
 10753 %}
 10755 // Multiply two single precision floating point values in xmm
 10756 instruct mulX_reg(regX dst, regX src) %{
 10757   predicate(UseSSE>=1);
 10758   match(Set dst (MulF dst src));
 10759   format %{ "MULSS  $dst,$src" %}
 10760   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
 10761   ins_pipe( pipe_slow );
 10762 %}
 10764 instruct mulX_imm(regX dst, immXF con) %{
 10765   predicate(UseSSE>=1);
 10766   match(Set dst (MulF dst con));
 10767   format %{ "MULSS  $dst,[$con]" %}
 10768   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), LdImmX(dst, con) );
 10769   ins_pipe( pipe_slow );
 10770 %}
 10772 instruct mulX_mem(regX dst, memory mem) %{
 10773   predicate(UseSSE>=1);
 10774   match(Set dst (MulF dst (LoadF mem)));
 10775   format %{ "MULSS  $dst,$mem" %}
 10776   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
 10777   ins_pipe( pipe_slow );
 10778 %}
 10780 // Divide two single precision floating point values in xmm
 10781 instruct divX_reg(regX dst, regX src) %{
 10782   predicate(UseSSE>=1);
 10783   match(Set dst (DivF dst src));
 10784   format %{ "DIVSS  $dst,$src" %}
 10785   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
 10786   ins_pipe( pipe_slow );
 10787 %}
 10789 instruct divX_imm(regX dst, immXF con) %{
 10790   predicate(UseSSE>=1);
 10791   match(Set dst (DivF dst con));
 10792   format %{ "DIVSS  $dst,[$con]" %}
 10793   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), LdImmX(dst, con) );
 10794   ins_pipe( pipe_slow );
 10795 %}
 10797 instruct divX_mem(regX dst, memory mem) %{
 10798   predicate(UseSSE>=1);
 10799   match(Set dst (DivF dst (LoadF mem)));
 10800   format %{ "DIVSS  $dst,$mem" %}
 10801   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
 10802   ins_pipe( pipe_slow );
 10803 %}
 10805 // Get the square root of a single precision floating point values in xmm
 10806 instruct sqrtX_reg(regX dst, regX src) %{
 10807   predicate(UseSSE>=1);
 10808   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 10809   format %{ "SQRTSS $dst,$src" %}
 10810   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
 10811   ins_pipe( pipe_slow );
 10812 %}
 10814 instruct sqrtX_mem(regX dst, memory mem) %{
 10815   predicate(UseSSE>=1);
 10816   match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
 10817   format %{ "SQRTSS $dst,$mem" %}
 10818   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
 10819   ins_pipe( pipe_slow );
 10820 %}
 10822 // Get the square root of a double precision floating point values in xmm
 10823 instruct sqrtXD_reg(regXD dst, regXD src) %{
 10824   predicate(UseSSE>=2);
 10825   match(Set dst (SqrtD src));
 10826   format %{ "SQRTSD $dst,$src" %}
 10827   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
 10828   ins_pipe( pipe_slow );
 10829 %}
 10831 instruct sqrtXD_mem(regXD dst, memory mem) %{
 10832   predicate(UseSSE>=2);
 10833   match(Set dst (SqrtD (LoadD mem)));
 10834   format %{ "SQRTSD $dst,$mem" %}
 10835   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
 10836   ins_pipe( pipe_slow );
 10837 %}
 10839 instruct absF_reg(regFPR1 dst, regFPR1 src) %{
 10840   predicate(UseSSE==0);
 10841   match(Set dst (AbsF src));
 10842   ins_cost(100);
 10843   format %{ "FABS" %}
 10844   opcode(0xE1, 0xD9);
 10845   ins_encode( OpcS, OpcP );
 10846   ins_pipe( fpu_reg_reg );
 10847 %}
 10849 instruct absX_reg(regX dst ) %{
 10850   predicate(UseSSE>=1);
 10851   match(Set dst (AbsF dst));
 10852   format %{ "ANDPS  $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
 10853   ins_encode( AbsXF_encoding(dst));
 10854   ins_pipe( pipe_slow );
 10855 %}
 10857 instruct negF_reg(regFPR1 dst, regFPR1 src) %{
 10858   predicate(UseSSE==0);
 10859   match(Set dst (NegF src));
 10860   ins_cost(100);
 10861   format %{ "FCHS" %}
 10862   opcode(0xE0, 0xD9);
 10863   ins_encode( OpcS, OpcP );
 10864   ins_pipe( fpu_reg_reg );
 10865 %}
 10867 instruct negX_reg( regX dst ) %{
 10868   predicate(UseSSE>=1);
 10869   match(Set dst (NegF dst));
 10870   format %{ "XORPS  $dst,[0x80000000]\t# CHS F by sign flipping" %}
 10871   ins_encode( NegXF_encoding(dst));
 10872   ins_pipe( pipe_slow );
 10873 %}
 10875 // Cisc-alternate to addF_reg
 10876 // Spill to obtain 24-bit precision
 10877 instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
 10878   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10879   match(Set dst (AddF src1 (LoadF src2)));
 10881   format %{ "FLD    $src2\n\t"
 10882             "FADD   ST,$src1\n\t"
 10883             "FSTP_S $dst" %}
 10884   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10885   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10886               OpcReg_F(src1),
 10887               Pop_Mem_F(dst) );
 10888   ins_pipe( fpu_mem_reg_mem );
 10889 %}
 10890 //
 10891 // Cisc-alternate to addF_reg
 10892 // This instruction does not round to 24-bits
 10893 instruct addF_reg_mem(regF dst, memory src) %{
 10894   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10895   match(Set dst (AddF dst (LoadF src)));
 10897   format %{ "FADD   $dst,$src" %}
 10898   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
 10899   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10900               OpcP, RegOpc(dst) );
 10901   ins_pipe( fpu_reg_mem );
 10902 %}
 10904 // // Following two instructions for _222_mpegaudio
 10905 // Spill to obtain 24-bit precision
 10906 instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
 10907   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10908   match(Set dst (AddF src1 src2));
 10910   format %{ "FADD   $dst,$src1,$src2" %}
 10911   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10912   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
 10913               OpcReg_F(src2),
 10914               Pop_Mem_F(dst) );
 10915   ins_pipe( fpu_mem_reg_mem );
 10916 %}
 10918 // Cisc-spill variant
 10919 // Spill to obtain 24-bit precision
 10920 instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
 10921   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10922   match(Set dst (AddF src1 (LoadF src2)));
 10924   format %{ "FADD   $dst,$src1,$src2 cisc" %}
 10925   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10926   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10927               set_instruction_start,
 10928               OpcP, RMopc_Mem(secondary,src1),
 10929               Pop_Mem_F(dst) );
 10930   ins_pipe( fpu_mem_mem_mem );
 10931 %}
 10933 // Spill to obtain 24-bit precision
 10934 instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10935   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10936   match(Set dst (AddF src1 src2));
 10938   format %{ "FADD   $dst,$src1,$src2" %}
 10939   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
 10940   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10941               set_instruction_start,
 10942               OpcP, RMopc_Mem(secondary,src1),
 10943               Pop_Mem_F(dst) );
 10944   ins_pipe( fpu_mem_mem_mem );
 10945 %}
 10948 // Spill to obtain 24-bit precision
 10949 instruct addF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
 10950   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10951   match(Set dst (AddF src1 src2));
 10952   format %{ "FLD    $src1\n\t"
 10953             "FADD   $src2\n\t"
 10954             "FSTP_S $dst"  %}
 10955   opcode(0xD8, 0x00);       /* D8 /0 */
 10956   ins_encode( Push_Reg_F(src1),
 10957               Opc_MemImm_F(src2),
 10958               Pop_Mem_F(dst));
 10959   ins_pipe( fpu_mem_reg_con );
 10960 %}
 10961 //
 10962 // This instruction does not round to 24-bits
 10963 instruct addF_reg_imm(regF dst, regF src1, immF src2) %{
 10964   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10965   match(Set dst (AddF src1 src2));
 10966   format %{ "FLD    $src1\n\t"
 10967             "FADD   $src2\n\t"
 10968             "FSTP_S $dst"  %}
 10969   opcode(0xD8, 0x00);       /* D8 /0 */
 10970   ins_encode( Push_Reg_F(src1),
 10971               Opc_MemImm_F(src2),
 10972               Pop_Reg_F(dst));
 10973   ins_pipe( fpu_reg_reg_con );
 10974 %}
 10976 // Spill to obtain 24-bit precision
 10977 instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
 10978   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10979   match(Set dst (MulF src1 src2));
 10981   format %{ "FLD    $src1\n\t"
 10982             "FMUL   $src2\n\t"
 10983             "FSTP_S $dst"  %}
 10984   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
 10985   ins_encode( Push_Reg_F(src1),
 10986               OpcReg_F(src2),
 10987               Pop_Mem_F(dst) );
 10988   ins_pipe( fpu_mem_reg_reg );
 10989 %}
 10990 //
 10991 // This instruction does not round to 24-bits
 10992 instruct mulF_reg(regF dst, regF src1, regF src2) %{
 10993   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10994   match(Set dst (MulF src1 src2));
 10996   format %{ "FLD    $src1\n\t"
 10997             "FMUL   $src2\n\t"
 10998             "FSTP_S $dst"  %}
 10999   opcode(0xD8, 0x1); /* D8 C8+i */
 11000   ins_encode( Push_Reg_F(src2),
 11001               OpcReg_F(src1),
 11002               Pop_Reg_F(dst) );
 11003   ins_pipe( fpu_reg_reg_reg );
 11004 %}
 11007 // Spill to obtain 24-bit precision
 11008 // Cisc-alternate to reg-reg multiply
 11009 instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
 11010   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11011   match(Set dst (MulF src1 (LoadF src2)));
 11013   format %{ "FLD_S  $src2\n\t"
 11014             "FMUL   $src1\n\t"
 11015             "FSTP_S $dst"  %}
 11016   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
 11017   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11018               OpcReg_F(src1),
 11019               Pop_Mem_F(dst) );
 11020   ins_pipe( fpu_mem_reg_mem );
 11021 %}
 11022 //
 11023 // This instruction does not round to 24-bits
 11024 // Cisc-alternate to reg-reg multiply
 11025 instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
 11026   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11027   match(Set dst (MulF src1 (LoadF src2)));
 11029   format %{ "FMUL   $dst,$src1,$src2" %}
 11030   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
 11031   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11032               OpcReg_F(src1),
 11033               Pop_Reg_F(dst) );
 11034   ins_pipe( fpu_reg_reg_mem );
 11035 %}
 11037 // Spill to obtain 24-bit precision
 11038 instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 11039   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11040   match(Set dst (MulF src1 src2));
 11042   format %{ "FMUL   $dst,$src1,$src2" %}
 11043   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
 11044   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11045               set_instruction_start,
 11046               OpcP, RMopc_Mem(secondary,src1),
 11047               Pop_Mem_F(dst) );
 11048   ins_pipe( fpu_mem_mem_mem );
 11049 %}
 11051 // Spill to obtain 24-bit precision
 11052 instruct mulF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
 11053   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11054   match(Set dst (MulF src1 src2));
 11056   format %{ "FMULc $dst,$src1,$src2" %}
 11057   opcode(0xD8, 0x1);  /* D8 /1*/
 11058   ins_encode( Push_Reg_F(src1),
 11059               Opc_MemImm_F(src2),
 11060               Pop_Mem_F(dst));
 11061   ins_pipe( fpu_mem_reg_con );
 11062 %}
 11063 //
 11064 // This instruction does not round to 24-bits
 11065 instruct mulF_reg_imm(regF dst, regF src1, immF src2) %{
 11066   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11067   match(Set dst (MulF src1 src2));
 11069   format %{ "FMULc $dst. $src1, $src2" %}
 11070   opcode(0xD8, 0x1);  /* D8 /1*/
 11071   ins_encode( Push_Reg_F(src1),
 11072               Opc_MemImm_F(src2),
 11073               Pop_Reg_F(dst));
 11074   ins_pipe( fpu_reg_reg_con );
 11075 %}
 11078 //
 11079 // MACRO1 -- subsume unshared load into mulF
 11080 // This instruction does not round to 24-bits
 11081 instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
 11082   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11083   match(Set dst (MulF (LoadF mem1) src));
 11085   format %{ "FLD    $mem1    ===MACRO1===\n\t"
 11086             "FMUL   ST,$src\n\t"
 11087             "FSTP   $dst" %}
 11088   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
 11089   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
 11090               OpcReg_F(src),
 11091               Pop_Reg_F(dst) );
 11092   ins_pipe( fpu_reg_reg_mem );
 11093 %}
 11094 //
 11095 // MACRO2 -- addF a mulF which subsumed an unshared load
 11096 // This instruction does not round to 24-bits
 11097 instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
 11098   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11099   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
 11100   ins_cost(95);
 11102   format %{ "FLD    $mem1     ===MACRO2===\n\t"
 11103             "FMUL   ST,$src1  subsume mulF left load\n\t"
 11104             "FADD   ST,$src2\n\t"
 11105             "FSTP   $dst" %}
 11106   opcode(0xD9); /* LoadF D9 /0 */
 11107   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
 11108               FMul_ST_reg(src1),
 11109               FAdd_ST_reg(src2),
 11110               Pop_Reg_F(dst) );
 11111   ins_pipe( fpu_reg_mem_reg_reg );
 11112 %}
 11114 // MACRO3 -- addF a mulF
 11115 // This instruction does not round to 24-bits.  It is a '2-address'
 11116 // instruction in that the result goes back to src2.  This eliminates
 11117 // a move from the macro; possibly the register allocator will have
 11118 // to add it back (and maybe not).
 11119 instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
 11120   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11121   match(Set src2 (AddF (MulF src0 src1) src2));
 11123   format %{ "FLD    $src0     ===MACRO3===\n\t"
 11124             "FMUL   ST,$src1\n\t"
 11125             "FADDP  $src2,ST" %}
 11126   opcode(0xD9); /* LoadF D9 /0 */
 11127   ins_encode( Push_Reg_F(src0),
 11128               FMul_ST_reg(src1),
 11129               FAddP_reg_ST(src2) );
 11130   ins_pipe( fpu_reg_reg_reg );
 11131 %}
 11133 // MACRO4 -- divF subF
 11134 // This instruction does not round to 24-bits
 11135 instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
 11136   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11137   match(Set dst (DivF (SubF src2 src1) src3));
 11139   format %{ "FLD    $src2   ===MACRO4===\n\t"
 11140             "FSUB   ST,$src1\n\t"
 11141             "FDIV   ST,$src3\n\t"
 11142             "FSTP  $dst" %}
 11143   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 11144   ins_encode( Push_Reg_F(src2),
 11145               subF_divF_encode(src1,src3),
 11146               Pop_Reg_F(dst) );
 11147   ins_pipe( fpu_reg_reg_reg_reg );
 11148 %}
 11150 // Spill to obtain 24-bit precision
 11151 instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11152   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11153   match(Set dst (DivF src1 src2));
 11155   format %{ "FDIV   $dst,$src1,$src2" %}
 11156   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
 11157   ins_encode( Push_Reg_F(src1),
 11158               OpcReg_F(src2),
 11159               Pop_Mem_F(dst) );
 11160   ins_pipe( fpu_mem_reg_reg );
 11161 %}
 11162 //
 11163 // This instruction does not round to 24-bits
 11164 instruct divF_reg(regF dst, regF src) %{
 11165   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11166   match(Set dst (DivF dst src));
 11168   format %{ "FDIV   $dst,$src" %}
 11169   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 11170   ins_encode( Push_Reg_F(src),
 11171               OpcP, RegOpc(dst) );
 11172   ins_pipe( fpu_reg_reg );
 11173 %}
 11176 // Spill to obtain 24-bit precision
 11177 instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
 11178   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11179   match(Set dst (ModF src1 src2));
 11180   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 11182   format %{ "FMOD   $dst,$src1,$src2" %}
 11183   ins_encode( Push_Reg_Mod_D(src1, src2),
 11184               emitModD(),
 11185               Push_Result_Mod_D(src2),
 11186               Pop_Mem_F(dst));
 11187   ins_pipe( pipe_slow );
 11188 %}
 11189 //
 11190 // This instruction does not round to 24-bits
 11191 instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
 11192   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11193   match(Set dst (ModF dst src));
 11194   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 11196   format %{ "FMOD   $dst,$src" %}
 11197   ins_encode(Push_Reg_Mod_D(dst, src),
 11198               emitModD(),
 11199               Push_Result_Mod_D(src),
 11200               Pop_Reg_F(dst));
 11201   ins_pipe( pipe_slow );
 11202 %}
 11204 instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
 11205   predicate(UseSSE>=1);
 11206   match(Set dst (ModF src0 src1));
 11207   effect(KILL rax, KILL cr);
 11208   format %{ "SUB    ESP,4\t # FMOD\n"
 11209           "\tMOVSS  [ESP+0],$src1\n"
 11210           "\tFLD_S  [ESP+0]\n"
 11211           "\tMOVSS  [ESP+0],$src0\n"
 11212           "\tFLD_S  [ESP+0]\n"
 11213      "loop:\tFPREM\n"
 11214           "\tFWAIT\n"
 11215           "\tFNSTSW AX\n"
 11216           "\tSAHF\n"
 11217           "\tJP     loop\n"
 11218           "\tFSTP_S [ESP+0]\n"
 11219           "\tMOVSS  $dst,[ESP+0]\n"
 11220           "\tADD    ESP,4\n"
 11221           "\tFSTP   ST0\t # Restore FPU Stack"
 11222     %}
 11223   ins_cost(250);
 11224   ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
 11225   ins_pipe( pipe_slow );
 11226 %}
 11229 //----------Arithmetic Conversion Instructions---------------------------------
 11230 // The conversions operations are all Alpha sorted.  Please keep it that way!
 11232 instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
 11233   predicate(UseSSE==0);
 11234   match(Set dst (RoundFloat src));
 11235   ins_cost(125);
 11236   format %{ "FST_S  $dst,$src\t# F-round" %}
 11237   ins_encode( Pop_Mem_Reg_F(dst, src) );
 11238   ins_pipe( fpu_mem_reg );
 11239 %}
 11241 instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
 11242   predicate(UseSSE<=1);
 11243   match(Set dst (RoundDouble src));
 11244   ins_cost(125);
 11245   format %{ "FST_D  $dst,$src\t# D-round" %}
 11246   ins_encode( Pop_Mem_Reg_D(dst, src) );
 11247   ins_pipe( fpu_mem_reg );
 11248 %}
 11250 // Force rounding to 24-bit precision and 6-bit exponent
 11251 instruct convD2F_reg(stackSlotF dst, regD src) %{
 11252   predicate(UseSSE==0);
 11253   match(Set dst (ConvD2F src));
 11254   format %{ "FST_S  $dst,$src\t# F-round" %}
 11255   expand %{
 11256     roundFloat_mem_reg(dst,src);
 11257   %}
 11258 %}
 11260 // Force rounding to 24-bit precision and 6-bit exponent
 11261 instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
 11262   predicate(UseSSE==1);
 11263   match(Set dst (ConvD2F src));
 11264   effect( KILL cr );
 11265   format %{ "SUB    ESP,4\n\t"
 11266             "FST_S  [ESP],$src\t# F-round\n\t"
 11267             "MOVSS  $dst,[ESP]\n\t"
 11268             "ADD ESP,4" %}
 11269   ins_encode( D2X_encoding(dst, src) );
 11270   ins_pipe( pipe_slow );
 11271 %}
 11273 // Force rounding double precision to single precision
 11274 instruct convXD2X_reg(regX dst, regXD src) %{
 11275   predicate(UseSSE>=2);
 11276   match(Set dst (ConvD2F src));
 11277   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
 11278   opcode(0xF2, 0x0F, 0x5A);
 11279   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11280   ins_pipe( pipe_slow );
 11281 %}
 11283 instruct convF2D_reg_reg(regD dst, regF src) %{
 11284   predicate(UseSSE==0);
 11285   match(Set dst (ConvF2D src));
 11286   format %{ "FST_S  $dst,$src\t# D-round" %}
 11287   ins_encode( Pop_Reg_Reg_D(dst, src));
 11288   ins_pipe( fpu_reg_reg );
 11289 %}
 11291 instruct convF2D_reg(stackSlotD dst, regF src) %{
 11292   predicate(UseSSE==1);
 11293   match(Set dst (ConvF2D src));
 11294   format %{ "FST_D  $dst,$src\t# D-round" %}
 11295   expand %{
 11296     roundDouble_mem_reg(dst,src);
 11297   %}
 11298 %}
 11300 instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
 11301   predicate(UseSSE==1);
 11302   match(Set dst (ConvF2D src));
 11303   effect( KILL cr );
 11304   format %{ "SUB    ESP,4\n\t"
 11305             "MOVSS  [ESP] $src\n\t"
 11306             "FLD_S  [ESP]\n\t"
 11307             "ADD    ESP,4\n\t"
 11308             "FSTP   $dst\t# D-round" %}
 11309   ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
 11310   ins_pipe( pipe_slow );
 11311 %}
 11313 instruct convX2XD_reg(regXD dst, regX src) %{
 11314   predicate(UseSSE>=2);
 11315   match(Set dst (ConvF2D src));
 11316   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
 11317   opcode(0xF3, 0x0F, 0x5A);
 11318   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11319   ins_pipe( pipe_slow );
 11320 %}
 11322 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11323 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
 11324   predicate(UseSSE<=1);
 11325   match(Set dst (ConvD2I src));
 11326   effect( KILL tmp, KILL cr );
 11327   format %{ "FLD    $src\t# Convert double to int \n\t"
 11328             "FLDCW  trunc mode\n\t"
 11329             "SUB    ESP,4\n\t"
 11330             "FISTp  [ESP + #0]\n\t"
 11331             "FLDCW  std/24-bit mode\n\t"
 11332             "POP    EAX\n\t"
 11333             "CMP    EAX,0x80000000\n\t"
 11334             "JNE,s  fast\n\t"
 11335             "FLD_D  $src\n\t"
 11336             "CALL   d2i_wrapper\n"
 11337       "fast:" %}
 11338   ins_encode( Push_Reg_D(src), D2I_encoding(src) );
 11339   ins_pipe( pipe_slow );
 11340 %}
 11342 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11343 instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
 11344   predicate(UseSSE>=2);
 11345   match(Set dst (ConvD2I src));
 11346   effect( KILL tmp, KILL cr );
 11347   format %{ "CVTTSD2SI $dst, $src\n\t"
 11348             "CMP    $dst,0x80000000\n\t"
 11349             "JNE,s  fast\n\t"
 11350             "SUB    ESP, 8\n\t"
 11351             "MOVSD  [ESP], $src\n\t"
 11352             "FLD_D  [ESP]\n\t"
 11353             "ADD    ESP, 8\n\t"
 11354             "CALL   d2i_wrapper\n"
 11355       "fast:" %}
 11356   opcode(0x1); // double-precision conversion
 11357   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
 11358   ins_pipe( pipe_slow );
 11359 %}
 11361 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
 11362   predicate(UseSSE<=1);
 11363   match(Set dst (ConvD2L src));
 11364   effect( KILL cr );
 11365   format %{ "FLD    $src\t# Convert double to long\n\t"
 11366             "FLDCW  trunc mode\n\t"
 11367             "SUB    ESP,8\n\t"
 11368             "FISTp  [ESP + #0]\n\t"
 11369             "FLDCW  std/24-bit mode\n\t"
 11370             "POP    EAX\n\t"
 11371             "POP    EDX\n\t"
 11372             "CMP    EDX,0x80000000\n\t"
 11373             "JNE,s  fast\n\t"
 11374             "TEST   EAX,EAX\n\t"
 11375             "JNE,s  fast\n\t"
 11376             "FLD    $src\n\t"
 11377             "CALL   d2l_wrapper\n"
 11378       "fast:" %}
 11379   ins_encode( Push_Reg_D(src),  D2L_encoding(src) );
 11380   ins_pipe( pipe_slow );
 11381 %}
 11383 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11384 instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
 11385   predicate (UseSSE>=2);
 11386   match(Set dst (ConvD2L src));
 11387   effect( KILL cr );
 11388   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
 11389             "MOVSD  [ESP],$src\n\t"
 11390             "FLD_D  [ESP]\n\t"
 11391             "FLDCW  trunc mode\n\t"
 11392             "FISTp  [ESP + #0]\n\t"
 11393             "FLDCW  std/24-bit mode\n\t"
 11394             "POP    EAX\n\t"
 11395             "POP    EDX\n\t"
 11396             "CMP    EDX,0x80000000\n\t"
 11397             "JNE,s  fast\n\t"
 11398             "TEST   EAX,EAX\n\t"
 11399             "JNE,s  fast\n\t"
 11400             "SUB    ESP,8\n\t"
 11401             "MOVSD  [ESP],$src\n\t"
 11402             "FLD_D  [ESP]\n\t"
 11403             "CALL   d2l_wrapper\n"
 11404       "fast:" %}
 11405   ins_encode( XD2L_encoding(src) );
 11406   ins_pipe( pipe_slow );
 11407 %}
 11409 // Convert a double to an int.  Java semantics require we do complex
 11410 // manglations in the corner cases.  So we set the rounding mode to
 11411 // 'zero', store the darned double down as an int, and reset the
 11412 // rounding mode to 'nearest'.  The hardware stores a flag value down
 11413 // if we would overflow or converted a NAN; we check for this and
 11414 // and go the slow path if needed.
 11415 instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
 11416   predicate(UseSSE==0);
 11417   match(Set dst (ConvF2I src));
 11418   effect( KILL tmp, KILL cr );
 11419   format %{ "FLD    $src\t# Convert float to int \n\t"
 11420             "FLDCW  trunc mode\n\t"
 11421             "SUB    ESP,4\n\t"
 11422             "FISTp  [ESP + #0]\n\t"
 11423             "FLDCW  std/24-bit mode\n\t"
 11424             "POP    EAX\n\t"
 11425             "CMP    EAX,0x80000000\n\t"
 11426             "JNE,s  fast\n\t"
 11427             "FLD    $src\n\t"
 11428             "CALL   d2i_wrapper\n"
 11429       "fast:" %}
 11430   // D2I_encoding works for F2I
 11431   ins_encode( Push_Reg_F(src), D2I_encoding(src) );
 11432   ins_pipe( pipe_slow );
 11433 %}
 11435 // Convert a float in xmm to an int reg.
 11436 instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
 11437   predicate(UseSSE>=1);
 11438   match(Set dst (ConvF2I src));
 11439   effect( KILL tmp, KILL cr );
 11440   format %{ "CVTTSS2SI $dst, $src\n\t"
 11441             "CMP    $dst,0x80000000\n\t"
 11442             "JNE,s  fast\n\t"
 11443             "SUB    ESP, 4\n\t"
 11444             "MOVSS  [ESP], $src\n\t"
 11445             "FLD    [ESP]\n\t"
 11446             "ADD    ESP, 4\n\t"
 11447             "CALL   d2i_wrapper\n"
 11448       "fast:" %}
 11449   opcode(0x0); // single-precision conversion
 11450   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
 11451   ins_pipe( pipe_slow );
 11452 %}
 11454 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
 11455   predicate(UseSSE==0);
 11456   match(Set dst (ConvF2L src));
 11457   effect( KILL cr );
 11458   format %{ "FLD    $src\t# Convert float to long\n\t"
 11459             "FLDCW  trunc mode\n\t"
 11460             "SUB    ESP,8\n\t"
 11461             "FISTp  [ESP + #0]\n\t"
 11462             "FLDCW  std/24-bit mode\n\t"
 11463             "POP    EAX\n\t"
 11464             "POP    EDX\n\t"
 11465             "CMP    EDX,0x80000000\n\t"
 11466             "JNE,s  fast\n\t"
 11467             "TEST   EAX,EAX\n\t"
 11468             "JNE,s  fast\n\t"
 11469             "FLD    $src\n\t"
 11470             "CALL   d2l_wrapper\n"
 11471       "fast:" %}
 11472   // D2L_encoding works for F2L
 11473   ins_encode( Push_Reg_F(src), D2L_encoding(src) );
 11474   ins_pipe( pipe_slow );
 11475 %}
 11477 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11478 instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
 11479   predicate (UseSSE>=1);
 11480   match(Set dst (ConvF2L src));
 11481   effect( KILL cr );
 11482   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
 11483             "MOVSS  [ESP],$src\n\t"
 11484             "FLD_S  [ESP]\n\t"
 11485             "FLDCW  trunc mode\n\t"
 11486             "FISTp  [ESP + #0]\n\t"
 11487             "FLDCW  std/24-bit mode\n\t"
 11488             "POP    EAX\n\t"
 11489             "POP    EDX\n\t"
 11490             "CMP    EDX,0x80000000\n\t"
 11491             "JNE,s  fast\n\t"
 11492             "TEST   EAX,EAX\n\t"
 11493             "JNE,s  fast\n\t"
 11494             "SUB    ESP,4\t# Convert float to long\n\t"
 11495             "MOVSS  [ESP],$src\n\t"
 11496             "FLD_S  [ESP]\n\t"
 11497             "ADD    ESP,4\n\t"
 11498             "CALL   d2l_wrapper\n"
 11499       "fast:" %}
 11500   ins_encode( X2L_encoding(src) );
 11501   ins_pipe( pipe_slow );
 11502 %}
 11504 instruct convI2D_reg(regD dst, stackSlotI src) %{
 11505   predicate( UseSSE<=1 );
 11506   match(Set dst (ConvI2D src));
 11507   format %{ "FILD   $src\n\t"
 11508             "FSTP   $dst" %}
 11509   opcode(0xDB, 0x0);  /* DB /0 */
 11510   ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
 11511   ins_pipe( fpu_reg_mem );
 11512 %}
 11514 instruct convI2XD_reg(regXD dst, eRegI src) %{
 11515   predicate( UseSSE>=2 && !UseXmmI2D );
 11516   match(Set dst (ConvI2D src));
 11517   format %{ "CVTSI2SD $dst,$src" %}
 11518   opcode(0xF2, 0x0F, 0x2A);
 11519   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11520   ins_pipe( pipe_slow );
 11521 %}
 11523 instruct convI2XD_mem(regXD dst, memory mem) %{
 11524   predicate( UseSSE>=2 );
 11525   match(Set dst (ConvI2D (LoadI mem)));
 11526   format %{ "CVTSI2SD $dst,$mem" %}
 11527   opcode(0xF2, 0x0F, 0x2A);
 11528   ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
 11529   ins_pipe( pipe_slow );
 11530 %}
 11532 instruct convXI2XD_reg(regXD dst, eRegI src)
 11533 %{
 11534   predicate( UseSSE>=2 && UseXmmI2D );
 11535   match(Set dst (ConvI2D src));
 11537   format %{ "MOVD  $dst,$src\n\t"
 11538             "CVTDQ2PD $dst,$dst\t# i2d" %}
 11539   ins_encode %{
 11540     __ movdl($dst$$XMMRegister, $src$$Register);
 11541     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 11542   %}
 11543   ins_pipe(pipe_slow); // XXX
 11544 %}
 11546 instruct convI2D_mem(regD dst, memory mem) %{
 11547   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
 11548   match(Set dst (ConvI2D (LoadI mem)));
 11549   format %{ "FILD   $mem\n\t"
 11550             "FSTP   $dst" %}
 11551   opcode(0xDB);      /* DB /0 */
 11552   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11553               Pop_Reg_D(dst));
 11554   ins_pipe( fpu_reg_mem );
 11555 %}
 11557 // Convert a byte to a float; no rounding step needed.
 11558 instruct conv24I2F_reg(regF dst, stackSlotI src) %{
 11559   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
 11560   match(Set dst (ConvI2F src));
 11561   format %{ "FILD   $src\n\t"
 11562             "FSTP   $dst" %}
 11564   opcode(0xDB, 0x0);  /* DB /0 */
 11565   ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
 11566   ins_pipe( fpu_reg_mem );
 11567 %}
 11569 // In 24-bit mode, force exponent rounding by storing back out
 11570 instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
 11571   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11572   match(Set dst (ConvI2F src));
 11573   ins_cost(200);
 11574   format %{ "FILD   $src\n\t"
 11575             "FSTP_S $dst" %}
 11576   opcode(0xDB, 0x0);  /* DB /0 */
 11577   ins_encode( Push_Mem_I(src),
 11578               Pop_Mem_F(dst));
 11579   ins_pipe( fpu_mem_mem );
 11580 %}
 11582 // In 24-bit mode, force exponent rounding by storing back out
 11583 instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
 11584   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11585   match(Set dst (ConvI2F (LoadI mem)));
 11586   ins_cost(200);
 11587   format %{ "FILD   $mem\n\t"
 11588             "FSTP_S $dst" %}
 11589   opcode(0xDB);  /* DB /0 */
 11590   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11591               Pop_Mem_F(dst));
 11592   ins_pipe( fpu_mem_mem );
 11593 %}
 11595 // This instruction does not round to 24-bits
 11596 instruct convI2F_reg(regF dst, stackSlotI src) %{
 11597   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11598   match(Set dst (ConvI2F src));
 11599   format %{ "FILD   $src\n\t"
 11600             "FSTP   $dst" %}
 11601   opcode(0xDB, 0x0);  /* DB /0 */
 11602   ins_encode( Push_Mem_I(src),
 11603               Pop_Reg_F(dst));
 11604   ins_pipe( fpu_reg_mem );
 11605 %}
 11607 // This instruction does not round to 24-bits
 11608 instruct convI2F_mem(regF dst, memory mem) %{
 11609   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11610   match(Set dst (ConvI2F (LoadI mem)));
 11611   format %{ "FILD   $mem\n\t"
 11612             "FSTP   $dst" %}
 11613   opcode(0xDB);      /* DB /0 */
 11614   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11615               Pop_Reg_F(dst));
 11616   ins_pipe( fpu_reg_mem );
 11617 %}
 11619 // Convert an int to a float in xmm; no rounding step needed.
 11620 instruct convI2X_reg(regX dst, eRegI src) %{
 11621   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
 11622   match(Set dst (ConvI2F src));
 11623   format %{ "CVTSI2SS $dst, $src" %}
 11625   opcode(0xF3, 0x0F, 0x2A);  /* F3 0F 2A /r */
 11626   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11627   ins_pipe( pipe_slow );
 11628 %}
 11630  instruct convXI2X_reg(regX dst, eRegI src)
 11631 %{
 11632   predicate( UseSSE>=2 && UseXmmI2F );
 11633   match(Set dst (ConvI2F src));
 11635   format %{ "MOVD  $dst,$src\n\t"
 11636             "CVTDQ2PS $dst,$dst\t# i2f" %}
 11637   ins_encode %{
 11638     __ movdl($dst$$XMMRegister, $src$$Register);
 11639     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 11640   %}
 11641   ins_pipe(pipe_slow); // XXX
 11642 %}
 11644 instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
 11645   match(Set dst (ConvI2L src));
 11646   effect(KILL cr);
 11647   ins_cost(375);
 11648   format %{ "MOV    $dst.lo,$src\n\t"
 11649             "MOV    $dst.hi,$src\n\t"
 11650             "SAR    $dst.hi,31" %}
 11651   ins_encode(convert_int_long(dst,src));
 11652   ins_pipe( ialu_reg_reg_long );
 11653 %}
 11655 // Zero-extend convert int to long
 11656 instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
 11657   match(Set dst (AndL (ConvI2L src) mask) );
 11658   effect( KILL flags );
 11659   ins_cost(250);
 11660   format %{ "MOV    $dst.lo,$src\n\t"
 11661             "XOR    $dst.hi,$dst.hi" %}
 11662   opcode(0x33); // XOR
 11663   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11664   ins_pipe( ialu_reg_reg_long );
 11665 %}
 11667 // Zero-extend long
 11668 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
 11669   match(Set dst (AndL src mask) );
 11670   effect( KILL flags );
 11671   ins_cost(250);
 11672   format %{ "MOV    $dst.lo,$src.lo\n\t"
 11673             "XOR    $dst.hi,$dst.hi\n\t" %}
 11674   opcode(0x33); // XOR
 11675   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11676   ins_pipe( ialu_reg_reg_long );
 11677 %}
 11679 instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
 11680   predicate (UseSSE<=1);
 11681   match(Set dst (ConvL2D src));
 11682   effect( KILL cr );
 11683   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11684             "PUSH   $src.lo\n\t"
 11685             "FILD   ST,[ESP + #0]\n\t"
 11686             "ADD    ESP,8\n\t"
 11687             "FSTP_D $dst\t# D-round" %}
 11688   opcode(0xDF, 0x5);  /* DF /5 */
 11689   ins_encode(convert_long_double(src), Pop_Mem_D(dst));
 11690   ins_pipe( pipe_slow );
 11691 %}
 11693 instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
 11694   predicate (UseSSE>=2);
 11695   match(Set dst (ConvL2D src));
 11696   effect( KILL cr );
 11697   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11698             "PUSH   $src.lo\n\t"
 11699             "FILD_D [ESP]\n\t"
 11700             "FSTP_D [ESP]\n\t"
 11701             "MOVSD  $dst,[ESP]\n\t"
 11702             "ADD    ESP,8" %}
 11703   opcode(0xDF, 0x5);  /* DF /5 */
 11704   ins_encode(convert_long_double2(src), Push_ResultXD(dst));
 11705   ins_pipe( pipe_slow );
 11706 %}
 11708 instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
 11709   predicate (UseSSE>=1);
 11710   match(Set dst (ConvL2F src));
 11711   effect( KILL cr );
 11712   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11713             "PUSH   $src.lo\n\t"
 11714             "FILD_D [ESP]\n\t"
 11715             "FSTP_S [ESP]\n\t"
 11716             "MOVSS  $dst,[ESP]\n\t"
 11717             "ADD    ESP,8" %}
 11718   opcode(0xDF, 0x5);  /* DF /5 */
 11719   ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
 11720   ins_pipe( pipe_slow );
 11721 %}
 11723 instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
 11724   match(Set dst (ConvL2F src));
 11725   effect( KILL cr );
 11726   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11727             "PUSH   $src.lo\n\t"
 11728             "FILD   ST,[ESP + #0]\n\t"
 11729             "ADD    ESP,8\n\t"
 11730             "FSTP_S $dst\t# F-round" %}
 11731   opcode(0xDF, 0x5);  /* DF /5 */
 11732   ins_encode(convert_long_double(src), Pop_Mem_F(dst));
 11733   ins_pipe( pipe_slow );
 11734 %}
 11736 instruct convL2I_reg( eRegI dst, eRegL src ) %{
 11737   match(Set dst (ConvL2I src));
 11738   effect( DEF dst, USE src );
 11739   format %{ "MOV    $dst,$src.lo" %}
 11740   ins_encode(enc_CopyL_Lo(dst,src));
 11741   ins_pipe( ialu_reg_reg );
 11742 %}
 11745 instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
 11746   match(Set dst (MoveF2I src));
 11747   effect( DEF dst, USE src );
 11748   ins_cost(100);
 11749   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
 11750   opcode(0x8B);
 11751   ins_encode( OpcP, RegMem(dst,src));
 11752   ins_pipe( ialu_reg_mem );
 11753 %}
 11755 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
 11756   predicate(UseSSE==0);
 11757   match(Set dst (MoveF2I src));
 11758   effect( DEF dst, USE src );
 11760   ins_cost(125);
 11761   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
 11762   ins_encode( Pop_Mem_Reg_F(dst, src) );
 11763   ins_pipe( fpu_mem_reg );
 11764 %}
 11766 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
 11767   predicate(UseSSE>=1);
 11768   match(Set dst (MoveF2I src));
 11769   effect( DEF dst, USE src );
 11771   ins_cost(95);
 11772   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
 11773   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
 11774   ins_pipe( pipe_slow );
 11775 %}
 11777 instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
 11778   predicate(UseSSE>=2);
 11779   match(Set dst (MoveF2I src));
 11780   effect( DEF dst, USE src );
 11781   ins_cost(85);
 11782   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
 11783   ins_encode( MovX2I_reg(dst, src));
 11784   ins_pipe( pipe_slow );
 11785 %}
 11787 instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
 11788   match(Set dst (MoveI2F src));
 11789   effect( DEF dst, USE src );
 11791   ins_cost(100);
 11792   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
 11793   opcode(0x89);
 11794   ins_encode( OpcPRegSS( dst, src ) );
 11795   ins_pipe( ialu_mem_reg );
 11796 %}
 11799 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
 11800   predicate(UseSSE==0);
 11801   match(Set dst (MoveI2F src));
 11802   effect(DEF dst, USE src);
 11804   ins_cost(125);
 11805   format %{ "FLD_S  $src\n\t"
 11806             "FSTP   $dst\t# MoveI2F_stack_reg" %}
 11807   opcode(0xD9);               /* D9 /0, FLD m32real */
 11808   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11809               Pop_Reg_F(dst) );
 11810   ins_pipe( fpu_reg_mem );
 11811 %}
 11813 instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
 11814   predicate(UseSSE>=1);
 11815   match(Set dst (MoveI2F src));
 11816   effect( DEF dst, USE src );
 11818   ins_cost(95);
 11819   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
 11820   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
 11821   ins_pipe( pipe_slow );
 11822 %}
 11824 instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
 11825   predicate(UseSSE>=2);
 11826   match(Set dst (MoveI2F src));
 11827   effect( DEF dst, USE src );
 11829   ins_cost(85);
 11830   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
 11831   ins_encode( MovI2X_reg(dst, src) );
 11832   ins_pipe( pipe_slow );
 11833 %}
 11835 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
 11836   match(Set dst (MoveD2L src));
 11837   effect(DEF dst, USE src);
 11839   ins_cost(250);
 11840   format %{ "MOV    $dst.lo,$src\n\t"
 11841             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
 11842   opcode(0x8B, 0x8B);
 11843   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
 11844   ins_pipe( ialu_mem_long_reg );
 11845 %}
 11847 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
 11848   predicate(UseSSE<=1);
 11849   match(Set dst (MoveD2L src));
 11850   effect(DEF dst, USE src);
 11852   ins_cost(125);
 11853   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
 11854   ins_encode( Pop_Mem_Reg_D(dst, src) );
 11855   ins_pipe( fpu_mem_reg );
 11856 %}
 11858 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
 11859   predicate(UseSSE>=2);
 11860   match(Set dst (MoveD2L src));
 11861   effect(DEF dst, USE src);
 11862   ins_cost(95);
 11864   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
 11865   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
 11866   ins_pipe( pipe_slow );
 11867 %}
 11869 instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
 11870   predicate(UseSSE>=2);
 11871   match(Set dst (MoveD2L src));
 11872   effect(DEF dst, USE src, TEMP tmp);
 11873   ins_cost(85);
 11874   format %{ "MOVD   $dst.lo,$src\n\t"
 11875             "PSHUFLW $tmp,$src,0x4E\n\t"
 11876             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
 11877   ins_encode( MovXD2L_reg(dst, src, tmp) );
 11878   ins_pipe( pipe_slow );
 11879 %}
 11881 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
 11882   match(Set dst (MoveL2D src));
 11883   effect(DEF dst, USE src);
 11885   ins_cost(200);
 11886   format %{ "MOV    $dst,$src.lo\n\t"
 11887             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
 11888   opcode(0x89, 0x89);
 11889   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
 11890   ins_pipe( ialu_mem_long_reg );
 11891 %}
 11894 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
 11895   predicate(UseSSE<=1);
 11896   match(Set dst (MoveL2D src));
 11897   effect(DEF dst, USE src);
 11898   ins_cost(125);
 11900   format %{ "FLD_D  $src\n\t"
 11901             "FSTP   $dst\t# MoveL2D_stack_reg" %}
 11902   opcode(0xDD);               /* DD /0, FLD m64real */
 11903   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11904               Pop_Reg_D(dst) );
 11905   ins_pipe( fpu_reg_mem );
 11906 %}
 11909 instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
 11910   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
 11911   match(Set dst (MoveL2D src));
 11912   effect(DEF dst, USE src);
 11914   ins_cost(95);
 11915   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11916   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
 11917   ins_pipe( pipe_slow );
 11918 %}
 11920 instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
 11921   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
 11922   match(Set dst (MoveL2D src));
 11923   effect(DEF dst, USE src);
 11925   ins_cost(95);
 11926   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11927   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
 11928   ins_pipe( pipe_slow );
 11929 %}
 11931 instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
 11932   predicate(UseSSE>=2);
 11933   match(Set dst (MoveL2D src));
 11934   effect(TEMP dst, USE src, TEMP tmp);
 11935   ins_cost(85);
 11936   format %{ "MOVD   $dst,$src.lo\n\t"
 11937             "MOVD   $tmp,$src.hi\n\t"
 11938             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
 11939   ins_encode( MovL2XD_reg(dst, src, tmp) );
 11940   ins_pipe( pipe_slow );
 11941 %}
 11943 // Replicate scalar to packed byte (1 byte) values in xmm
 11944 instruct Repl8B_reg(regXD dst, regXD src) %{
 11945   predicate(UseSSE>=2);
 11946   match(Set dst (Replicate8B src));
 11947   format %{ "MOVDQA  $dst,$src\n\t"
 11948             "PUNPCKLBW $dst,$dst\n\t"
 11949             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 11950   ins_encode( pshufd_8x8(dst, src));
 11951   ins_pipe( pipe_slow );
 11952 %}
 11954 // Replicate scalar to packed byte (1 byte) values in xmm
 11955 instruct Repl8B_eRegI(regXD dst, eRegI src) %{
 11956   predicate(UseSSE>=2);
 11957   match(Set dst (Replicate8B src));
 11958   format %{ "MOVD    $dst,$src\n\t"
 11959             "PUNPCKLBW $dst,$dst\n\t"
 11960             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 11961   ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
 11962   ins_pipe( pipe_slow );
 11963 %}
 11965 // Replicate scalar zero to packed byte (1 byte) values in xmm
 11966 instruct Repl8B_immI0(regXD dst, immI0 zero) %{
 11967   predicate(UseSSE>=2);
 11968   match(Set dst (Replicate8B zero));
 11969   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
 11970   ins_encode( pxor(dst, dst));
 11971   ins_pipe( fpu_reg_reg );
 11972 %}
 11974 // Replicate scalar to packed shore (2 byte) values in xmm
 11975 instruct Repl4S_reg(regXD dst, regXD src) %{
 11976   predicate(UseSSE>=2);
 11977   match(Set dst (Replicate4S src));
 11978   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
 11979   ins_encode( pshufd_4x16(dst, src));
 11980   ins_pipe( fpu_reg_reg );
 11981 %}
 11983 // Replicate scalar to packed shore (2 byte) values in xmm
 11984 instruct Repl4S_eRegI(regXD dst, eRegI src) %{
 11985   predicate(UseSSE>=2);
 11986   match(Set dst (Replicate4S src));
 11987   format %{ "MOVD    $dst,$src\n\t"
 11988             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
 11989   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 11990   ins_pipe( fpu_reg_reg );
 11991 %}
 11993 // Replicate scalar zero to packed short (2 byte) values in xmm
 11994 instruct Repl4S_immI0(regXD dst, immI0 zero) %{
 11995   predicate(UseSSE>=2);
 11996   match(Set dst (Replicate4S zero));
 11997   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
 11998   ins_encode( pxor(dst, dst));
 11999   ins_pipe( fpu_reg_reg );
 12000 %}
 12002 // Replicate scalar to packed char (2 byte) values in xmm
 12003 instruct Repl4C_reg(regXD dst, regXD src) %{
 12004   predicate(UseSSE>=2);
 12005   match(Set dst (Replicate4C src));
 12006   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
 12007   ins_encode( pshufd_4x16(dst, src));
 12008   ins_pipe( fpu_reg_reg );
 12009 %}
 12011 // Replicate scalar to packed char (2 byte) values in xmm
 12012 instruct Repl4C_eRegI(regXD dst, eRegI src) %{
 12013   predicate(UseSSE>=2);
 12014   match(Set dst (Replicate4C src));
 12015   format %{ "MOVD    $dst,$src\n\t"
 12016             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
 12017   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 12018   ins_pipe( fpu_reg_reg );
 12019 %}
 12021 // Replicate scalar zero to packed char (2 byte) values in xmm
 12022 instruct Repl4C_immI0(regXD dst, immI0 zero) %{
 12023   predicate(UseSSE>=2);
 12024   match(Set dst (Replicate4C zero));
 12025   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
 12026   ins_encode( pxor(dst, dst));
 12027   ins_pipe( fpu_reg_reg );
 12028 %}
 12030 // Replicate scalar to packed integer (4 byte) values in xmm
 12031 instruct Repl2I_reg(regXD dst, regXD src) %{
 12032   predicate(UseSSE>=2);
 12033   match(Set dst (Replicate2I src));
 12034   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
 12035   ins_encode( pshufd(dst, src, 0x00));
 12036   ins_pipe( fpu_reg_reg );
 12037 %}
 12039 // Replicate scalar to packed integer (4 byte) values in xmm
 12040 instruct Repl2I_eRegI(regXD dst, eRegI src) %{
 12041   predicate(UseSSE>=2);
 12042   match(Set dst (Replicate2I src));
 12043   format %{ "MOVD   $dst,$src\n\t"
 12044             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
 12045   ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
 12046   ins_pipe( fpu_reg_reg );
 12047 %}
 12049 // Replicate scalar zero to packed integer (2 byte) values in xmm
 12050 instruct Repl2I_immI0(regXD dst, immI0 zero) %{
 12051   predicate(UseSSE>=2);
 12052   match(Set dst (Replicate2I zero));
 12053   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
 12054   ins_encode( pxor(dst, dst));
 12055   ins_pipe( fpu_reg_reg );
 12056 %}
 12058 // Replicate scalar to packed single precision floating point values in xmm
 12059 instruct Repl2F_reg(regXD dst, regXD src) %{
 12060   predicate(UseSSE>=2);
 12061   match(Set dst (Replicate2F src));
 12062   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 12063   ins_encode( pshufd(dst, src, 0xe0));
 12064   ins_pipe( fpu_reg_reg );
 12065 %}
 12067 // Replicate scalar to packed single precision floating point values in xmm
 12068 instruct Repl2F_regX(regXD dst, regX src) %{
 12069   predicate(UseSSE>=2);
 12070   match(Set dst (Replicate2F src));
 12071   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 12072   ins_encode( pshufd(dst, src, 0xe0));
 12073   ins_pipe( fpu_reg_reg );
 12074 %}
 12076 // Replicate scalar to packed single precision floating point values in xmm
 12077 instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
 12078   predicate(UseSSE>=2);
 12079   match(Set dst (Replicate2F zero));
 12080   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
 12081   ins_encode( pxor(dst, dst));
 12082   ins_pipe( fpu_reg_reg );
 12083 %}
 12087 // =======================================================================
 12088 // fast clearing of an array
 12090 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 12091   match(Set dummy (ClearArray cnt base));
 12092   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 12093   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
 12094             "XOR    EAX,EAX\n\t"
 12095             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
 12096   opcode(0,0x4);
 12097   ins_encode( Opcode(0xD1), RegOpc(ECX),
 12098               OpcRegReg(0x33,EAX,EAX),
 12099               Opcode(0xF3), Opcode(0xAB) );
 12100   ins_pipe( pipe_slow );
 12101 %}
 12103 instruct string_compare(eDIRegP str1, eSIRegP str2, eAXRegI tmp1, eBXRegI tmp2, eCXRegI result, eFlagsReg cr) %{
 12104   match(Set result (StrComp str1 str2));
 12105   effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL cr);
 12106   //ins_cost(300);
 12108   format %{ "String Compare $str1,$str2 -> $result    // KILL EAX, EBX" %}
 12109   ins_encode( enc_String_Compare() );
 12110   ins_pipe( pipe_slow );
 12111 %}
 12113 // fast array equals
 12114 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI tmp1, eBXRegI tmp2, eCXRegI result, eFlagsReg cr) %{
 12115   match(Set result (AryEq ary1 ary2));
 12116   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL cr);
 12117   //ins_cost(300);
 12119   format %{ "Array Equals $ary1,$ary2 -> $result    // KILL EAX, EBX" %}
 12120   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, tmp2, result) );
 12121   ins_pipe( pipe_slow );
 12122 %}
 12124 //----------Control Flow Instructions------------------------------------------
 12125 // Signed compare Instructions
 12126 instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
 12127   match(Set cr (CmpI op1 op2));
 12128   effect( DEF cr, USE op1, USE op2 );
 12129   format %{ "CMP    $op1,$op2" %}
 12130   opcode(0x3B);  /* Opcode 3B /r */
 12131   ins_encode( OpcP, RegReg( op1, op2) );
 12132   ins_pipe( ialu_cr_reg_reg );
 12133 %}
 12135 instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
 12136   match(Set cr (CmpI op1 op2));
 12137   effect( DEF cr, USE op1 );
 12138   format %{ "CMP    $op1,$op2" %}
 12139   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12140   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
 12141   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12142   ins_pipe( ialu_cr_reg_imm );
 12143 %}
 12145 // Cisc-spilled version of cmpI_eReg
 12146 instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
 12147   match(Set cr (CmpI op1 (LoadI op2)));
 12149   format %{ "CMP    $op1,$op2" %}
 12150   ins_cost(500);
 12151   opcode(0x3B);  /* Opcode 3B /r */
 12152   ins_encode( OpcP, RegMem( op1, op2) );
 12153   ins_pipe( ialu_cr_reg_mem );
 12154 %}
 12156 instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
 12157   match(Set cr (CmpI src zero));
 12158   effect( DEF cr, USE src );
 12160   format %{ "TEST   $src,$src" %}
 12161   opcode(0x85);
 12162   ins_encode( OpcP, RegReg( src, src ) );
 12163   ins_pipe( ialu_cr_reg_imm );
 12164 %}
 12166 instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
 12167   match(Set cr (CmpI (AndI src con) zero));
 12169   format %{ "TEST   $src,$con" %}
 12170   opcode(0xF7,0x00);
 12171   ins_encode( OpcP, RegOpc(src), Con32(con) );
 12172   ins_pipe( ialu_cr_reg_imm );
 12173 %}
 12175 instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
 12176   match(Set cr (CmpI (AndI src mem) zero));
 12178   format %{ "TEST   $src,$mem" %}
 12179   opcode(0x85);
 12180   ins_encode( OpcP, RegMem( src, mem ) );
 12181   ins_pipe( ialu_cr_reg_mem );
 12182 %}
 12184 // Unsigned compare Instructions; really, same as signed except they
 12185 // produce an eFlagsRegU instead of eFlagsReg.
 12186 instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
 12187   match(Set cr (CmpU op1 op2));
 12189   format %{ "CMPu   $op1,$op2" %}
 12190   opcode(0x3B);  /* Opcode 3B /r */
 12191   ins_encode( OpcP, RegReg( op1, op2) );
 12192   ins_pipe( ialu_cr_reg_reg );
 12193 %}
 12195 instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
 12196   match(Set cr (CmpU op1 op2));
 12198   format %{ "CMPu   $op1,$op2" %}
 12199   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12200   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12201   ins_pipe( ialu_cr_reg_imm );
 12202 %}
 12204 // // Cisc-spilled version of cmpU_eReg
 12205 instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
 12206   match(Set cr (CmpU op1 (LoadI op2)));
 12208   format %{ "CMPu   $op1,$op2" %}
 12209   ins_cost(500);
 12210   opcode(0x3B);  /* Opcode 3B /r */
 12211   ins_encode( OpcP, RegMem( op1, op2) );
 12212   ins_pipe( ialu_cr_reg_mem );
 12213 %}
 12215 // // Cisc-spilled version of cmpU_eReg
 12216 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
 12217 //  match(Set cr (CmpU (LoadI op1) op2));
 12218 //
 12219 //  format %{ "CMPu   $op1,$op2" %}
 12220 //  ins_cost(500);
 12221 //  opcode(0x39);  /* Opcode 39 /r */
 12222 //  ins_encode( OpcP, RegMem( op1, op2) );
 12223 //%}
 12225 instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
 12226   match(Set cr (CmpU src zero));
 12228   format %{ "TESTu  $src,$src" %}
 12229   opcode(0x85);
 12230   ins_encode( OpcP, RegReg( src, src ) );
 12231   ins_pipe( ialu_cr_reg_imm );
 12232 %}
 12234 // Unsigned pointer compare Instructions
 12235 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
 12236   match(Set cr (CmpP op1 op2));
 12238   format %{ "CMPu   $op1,$op2" %}
 12239   opcode(0x3B);  /* Opcode 3B /r */
 12240   ins_encode( OpcP, RegReg( op1, op2) );
 12241   ins_pipe( ialu_cr_reg_reg );
 12242 %}
 12244 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
 12245   match(Set cr (CmpP op1 op2));
 12247   format %{ "CMPu   $op1,$op2" %}
 12248   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12249   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12250   ins_pipe( ialu_cr_reg_imm );
 12251 %}
 12253 // // Cisc-spilled version of cmpP_eReg
 12254 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
 12255   match(Set cr (CmpP op1 (LoadP op2)));
 12257   format %{ "CMPu   $op1,$op2" %}
 12258   ins_cost(500);
 12259   opcode(0x3B);  /* Opcode 3B /r */
 12260   ins_encode( OpcP, RegMem( op1, op2) );
 12261   ins_pipe( ialu_cr_reg_mem );
 12262 %}
 12264 // // Cisc-spilled version of cmpP_eReg
 12265 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
 12266 //  match(Set cr (CmpP (LoadP op1) op2));
 12267 //
 12268 //  format %{ "CMPu   $op1,$op2" %}
 12269 //  ins_cost(500);
 12270 //  opcode(0x39);  /* Opcode 39 /r */
 12271 //  ins_encode( OpcP, RegMem( op1, op2) );
 12272 //%}
 12274 // Compare raw pointer (used in out-of-heap check).
 12275 // Only works because non-oop pointers must be raw pointers
 12276 // and raw pointers have no anti-dependencies.
 12277 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
 12278   predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
 12279   match(Set cr (CmpP op1 (LoadP op2)));
 12281   format %{ "CMPu   $op1,$op2" %}
 12282   opcode(0x3B);  /* Opcode 3B /r */
 12283   ins_encode( OpcP, RegMem( op1, op2) );
 12284   ins_pipe( ialu_cr_reg_mem );
 12285 %}
 12287 //
 12288 // This will generate a signed flags result. This should be ok
 12289 // since any compare to a zero should be eq/neq.
 12290 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
 12291   match(Set cr (CmpP src zero));
 12293   format %{ "TEST   $src,$src" %}
 12294   opcode(0x85);
 12295   ins_encode( OpcP, RegReg( src, src ) );
 12296   ins_pipe( ialu_cr_reg_imm );
 12297 %}
 12299 // Cisc-spilled version of testP_reg
 12300 // This will generate a signed flags result. This should be ok
 12301 // since any compare to a zero should be eq/neq.
 12302 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
 12303   match(Set cr (CmpP (LoadP op) zero));
 12305   format %{ "TEST   $op,0xFFFFFFFF" %}
 12306   ins_cost(500);
 12307   opcode(0xF7);               /* Opcode F7 /0 */
 12308   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
 12309   ins_pipe( ialu_cr_reg_imm );
 12310 %}
 12312 // Yanked all unsigned pointer compare operations.
 12313 // Pointer compares are done with CmpP which is already unsigned.
 12315 //----------Max and Min--------------------------------------------------------
 12316 // Min Instructions
 12317 ////
 12318 //   *** Min and Max using the conditional move are slower than the
 12319 //   *** branch version on a Pentium III.
 12320 // // Conditional move for min
 12321 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12322 //  effect( USE_DEF op2, USE op1, USE cr );
 12323 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 12324 //  opcode(0x4C,0x0F);
 12325 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12326 //  ins_pipe( pipe_cmov_reg );
 12327 //%}
 12328 //
 12329 //// Min Register with Register (P6 version)
 12330 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12331 //  predicate(VM_Version::supports_cmov() );
 12332 //  match(Set op2 (MinI op1 op2));
 12333 //  ins_cost(200);
 12334 //  expand %{
 12335 //    eFlagsReg cr;
 12336 //    compI_eReg(cr,op1,op2);
 12337 //    cmovI_reg_lt(op2,op1,cr);
 12338 //  %}
 12339 //%}
 12341 // Min Register with Register (generic version)
 12342 instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12343   match(Set dst (MinI dst src));
 12344   effect(KILL flags);
 12345   ins_cost(300);
 12347   format %{ "MIN    $dst,$src" %}
 12348   opcode(0xCC);
 12349   ins_encode( min_enc(dst,src) );
 12350   ins_pipe( pipe_slow );
 12351 %}
 12353 // Max Register with Register
 12354 //   *** Min and Max using the conditional move are slower than the
 12355 //   *** branch version on a Pentium III.
 12356 // // Conditional move for max
 12357 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12358 //  effect( USE_DEF op2, USE op1, USE cr );
 12359 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 12360 //  opcode(0x4F,0x0F);
 12361 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12362 //  ins_pipe( pipe_cmov_reg );
 12363 //%}
 12364 //
 12365 // // Max Register with Register (P6 version)
 12366 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12367 //  predicate(VM_Version::supports_cmov() );
 12368 //  match(Set op2 (MaxI op1 op2));
 12369 //  ins_cost(200);
 12370 //  expand %{
 12371 //    eFlagsReg cr;
 12372 //    compI_eReg(cr,op1,op2);
 12373 //    cmovI_reg_gt(op2,op1,cr);
 12374 //  %}
 12375 //%}
 12377 // Max Register with Register (generic version)
 12378 instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12379   match(Set dst (MaxI dst src));
 12380   effect(KILL flags);
 12381   ins_cost(300);
 12383   format %{ "MAX    $dst,$src" %}
 12384   opcode(0xCC);
 12385   ins_encode( max_enc(dst,src) );
 12386   ins_pipe( pipe_slow );
 12387 %}
 12389 // ============================================================================
 12390 // Branch Instructions
 12391 // Jump Table
 12392 instruct jumpXtnd(eRegI switch_val) %{
 12393   match(Jump switch_val);
 12394   ins_cost(350);
 12396   format %{  "JMP    [table_base](,$switch_val,1)\n\t" %}
 12398   ins_encode %{
 12399     address table_base  = __ address_table_constant(_index2label);
 12401     // Jump to Address(table_base + switch_reg)
 12402     InternalAddress table(table_base);
 12403     Address index(noreg, $switch_val$$Register, Address::times_1);
 12404     __ jump(ArrayAddress(table, index));
 12405   %}
 12406   ins_pc_relative(1);
 12407   ins_pipe(pipe_jmp);
 12408 %}
 12410 // Jump Direct - Label defines a relative address from JMP+1
 12411 instruct jmpDir(label labl) %{
 12412   match(Goto);
 12413   effect(USE labl);
 12415   ins_cost(300);
 12416   format %{ "JMP    $labl" %}
 12417   size(5);
 12418   opcode(0xE9);
 12419   ins_encode( OpcP, Lbl( labl ) );
 12420   ins_pipe( pipe_jmp );
 12421   ins_pc_relative(1);
 12422 %}
 12424 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12425 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
 12426   match(If cop cr);
 12427   effect(USE labl);
 12429   ins_cost(300);
 12430   format %{ "J$cop    $labl" %}
 12431   size(6);
 12432   opcode(0x0F, 0x80);
 12433   ins_encode( Jcc( cop, labl) );
 12434   ins_pipe( pipe_jcc );
 12435   ins_pc_relative(1);
 12436 %}
 12438 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12439 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
 12440   match(CountedLoopEnd cop cr);
 12441   effect(USE labl);
 12443   ins_cost(300);
 12444   format %{ "J$cop    $labl\t# Loop end" %}
 12445   size(6);
 12446   opcode(0x0F, 0x80);
 12447   ins_encode( Jcc( cop, labl) );
 12448   ins_pipe( pipe_jcc );
 12449   ins_pc_relative(1);
 12450 %}
 12452 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12453 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12454   match(CountedLoopEnd cop cmp);
 12455   effect(USE labl);
 12457   ins_cost(300);
 12458   format %{ "J$cop,u  $labl\t# Loop end" %}
 12459   size(6);
 12460   opcode(0x0F, 0x80);
 12461   ins_encode( Jcc( cop, labl) );
 12462   ins_pipe( pipe_jcc );
 12463   ins_pc_relative(1);
 12464 %}
 12466 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12467   match(CountedLoopEnd cop cmp);
 12468   effect(USE labl);
 12470   ins_cost(200);
 12471   format %{ "J$cop,u  $labl\t# Loop end" %}
 12472   size(6);
 12473   opcode(0x0F, 0x80);
 12474   ins_encode( Jcc( cop, labl) );
 12475   ins_pipe( pipe_jcc );
 12476   ins_pc_relative(1);
 12477 %}
 12479 // Jump Direct Conditional - using unsigned comparison
 12480 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12481   match(If cop cmp);
 12482   effect(USE labl);
 12484   ins_cost(300);
 12485   format %{ "J$cop,u  $labl" %}
 12486   size(6);
 12487   opcode(0x0F, 0x80);
 12488   ins_encode(Jcc(cop, labl));
 12489   ins_pipe(pipe_jcc);
 12490   ins_pc_relative(1);
 12491 %}
 12493 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12494   match(If cop cmp);
 12495   effect(USE labl);
 12497   ins_cost(200);
 12498   format %{ "J$cop,u  $labl" %}
 12499   size(6);
 12500   opcode(0x0F, 0x80);
 12501   ins_encode(Jcc(cop, labl));
 12502   ins_pipe(pipe_jcc);
 12503   ins_pc_relative(1);
 12504 %}
 12506 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12507   match(If cop cmp);
 12508   effect(USE labl);
 12510   ins_cost(200);
 12511   format %{ $$template
 12512     if ($cop$$cmpcode == Assembler::notEqual) {
 12513       $$emit$$"JP,u   $labl\n\t"
 12514       $$emit$$"J$cop,u   $labl"
 12515     } else {
 12516       $$emit$$"JP,u   done\n\t"
 12517       $$emit$$"J$cop,u   $labl\n\t"
 12518       $$emit$$"done:"
 12520   %}
 12521   size(12);
 12522   opcode(0x0F, 0x80);
 12523   ins_encode %{
 12524     Label* l = $labl$$label;
 12525     $$$emit8$primary;
 12526     emit_cc(cbuf, $secondary, Assembler::parity);
 12527     int parity_disp = -1;
 12528     bool ok = false;
 12529     if ($cop$$cmpcode == Assembler::notEqual) {
 12530        // the two jumps 6 bytes apart so the jump distances are too
 12531        parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
 12532     } else if ($cop$$cmpcode == Assembler::equal) {
 12533        parity_disp = 6;
 12534        ok = true;
 12535     } else {
 12536        ShouldNotReachHere();
 12538     emit_d32(cbuf, parity_disp);
 12539     $$$emit8$primary;
 12540     emit_cc(cbuf, $secondary, $cop$$cmpcode);
 12541     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
 12542     emit_d32(cbuf, disp);
 12543   %}
 12544   ins_pipe(pipe_jcc);
 12545   ins_pc_relative(1);
 12546 %}
 12548 // ============================================================================
 12549 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12550 // array for an instance of the superklass.  Set a hidden internal cache on a
 12551 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12552 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12553 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
 12554   match(Set result (PartialSubtypeCheck sub super));
 12555   effect( KILL rcx, KILL cr );
 12557   ins_cost(1100);  // slightly larger than the next version
 12558   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12559             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12560             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12561             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12562             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
 12563             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
 12564             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
 12565      "miss:\t" %}
 12567   opcode(0x1); // Force a XOR of EDI
 12568   ins_encode( enc_PartialSubtypeCheck() );
 12569   ins_pipe( pipe_slow );
 12570 %}
 12572 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
 12573   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 12574   effect( KILL rcx, KILL result );
 12576   ins_cost(1000);
 12577   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12578             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12579             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12580             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12581             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
 12582             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
 12583      "miss:\t" %}
 12585   opcode(0x0);  // No need to XOR EDI
 12586   ins_encode( enc_PartialSubtypeCheck() );
 12587   ins_pipe( pipe_slow );
 12588 %}
 12590 // ============================================================================
 12591 // Branch Instructions -- short offset versions
 12592 //
 12593 // These instructions are used to replace jumps of a long offset (the default
 12594 // match) with jumps of a shorter offset.  These instructions are all tagged
 12595 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 12596 // match rules in general matching.  Instead, the ADLC generates a conversion
 12597 // method in the MachNode which can be used to do in-place replacement of the
 12598 // long variant with the shorter variant.  The compiler will determine if a
 12599 // branch can be taken by the is_short_branch_offset() predicate in the machine
 12600 // specific code section of the file.
 12602 // Jump Direct - Label defines a relative address from JMP+1
 12603 instruct jmpDir_short(label labl) %{
 12604   match(Goto);
 12605   effect(USE labl);
 12607   ins_cost(300);
 12608   format %{ "JMP,s  $labl" %}
 12609   size(2);
 12610   opcode(0xEB);
 12611   ins_encode( OpcP, LblShort( labl ) );
 12612   ins_pipe( pipe_jmp );
 12613   ins_pc_relative(1);
 12614   ins_short_branch(1);
 12615 %}
 12617 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12618 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12619   match(If cop cr);
 12620   effect(USE labl);
 12622   ins_cost(300);
 12623   format %{ "J$cop,s  $labl" %}
 12624   size(2);
 12625   opcode(0x70);
 12626   ins_encode( JccShort( cop, labl) );
 12627   ins_pipe( pipe_jcc );
 12628   ins_pc_relative(1);
 12629   ins_short_branch(1);
 12630 %}
 12632 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12633 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12634   match(CountedLoopEnd cop cr);
 12635   effect(USE labl);
 12637   ins_cost(300);
 12638   format %{ "J$cop,s  $labl\t# Loop end" %}
 12639   size(2);
 12640   opcode(0x70);
 12641   ins_encode( JccShort( cop, labl) );
 12642   ins_pipe( pipe_jcc );
 12643   ins_pc_relative(1);
 12644   ins_short_branch(1);
 12645 %}
 12647 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12648 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12649   match(CountedLoopEnd cop cmp);
 12650   effect(USE labl);
 12652   ins_cost(300);
 12653   format %{ "J$cop,us $labl\t# Loop end" %}
 12654   size(2);
 12655   opcode(0x70);
 12656   ins_encode( JccShort( cop, labl) );
 12657   ins_pipe( pipe_jcc );
 12658   ins_pc_relative(1);
 12659   ins_short_branch(1);
 12660 %}
 12662 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12663   match(CountedLoopEnd cop cmp);
 12664   effect(USE labl);
 12666   ins_cost(300);
 12667   format %{ "J$cop,us $labl\t# Loop end" %}
 12668   size(2);
 12669   opcode(0x70);
 12670   ins_encode( JccShort( cop, labl) );
 12671   ins_pipe( pipe_jcc );
 12672   ins_pc_relative(1);
 12673   ins_short_branch(1);
 12674 %}
 12676 // Jump Direct Conditional - using unsigned comparison
 12677 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12678   match(If cop cmp);
 12679   effect(USE labl);
 12681   ins_cost(300);
 12682   format %{ "J$cop,us $labl" %}
 12683   size(2);
 12684   opcode(0x70);
 12685   ins_encode( JccShort( cop, labl) );
 12686   ins_pipe( pipe_jcc );
 12687   ins_pc_relative(1);
 12688   ins_short_branch(1);
 12689 %}
 12691 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12692   match(If cop cmp);
 12693   effect(USE labl);
 12695   ins_cost(300);
 12696   format %{ "J$cop,us $labl" %}
 12697   size(2);
 12698   opcode(0x70);
 12699   ins_encode( JccShort( cop, labl) );
 12700   ins_pipe( pipe_jcc );
 12701   ins_pc_relative(1);
 12702   ins_short_branch(1);
 12703 %}
 12705 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12706   match(If cop cmp);
 12707   effect(USE labl);
 12709   ins_cost(300);
 12710   format %{ $$template
 12711     if ($cop$$cmpcode == Assembler::notEqual) {
 12712       $$emit$$"JP,u,s   $labl\n\t"
 12713       $$emit$$"J$cop,u,s   $labl"
 12714     } else {
 12715       $$emit$$"JP,u,s   done\n\t"
 12716       $$emit$$"J$cop,u,s  $labl\n\t"
 12717       $$emit$$"done:"
 12719   %}
 12720   size(4);
 12721   opcode(0x70);
 12722   ins_encode %{
 12723     Label* l = $labl$$label;
 12724     emit_cc(cbuf, $primary, Assembler::parity);
 12725     int parity_disp = -1;
 12726     if ($cop$$cmpcode == Assembler::notEqual) {
 12727       parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
 12728     } else if ($cop$$cmpcode == Assembler::equal) {
 12729       parity_disp = 2;
 12730     } else {
 12731       ShouldNotReachHere();
 12733     emit_d8(cbuf, parity_disp);
 12734     emit_cc(cbuf, $primary, $cop$$cmpcode);
 12735     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
 12736     emit_d8(cbuf, disp);
 12737     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
 12738     assert(-128 <= parity_disp && parity_disp <= 127, "Displacement too large for short jmp");
 12739   %}
 12740   ins_pipe(pipe_jcc);
 12741   ins_pc_relative(1);
 12742   ins_short_branch(1);
 12743 %}
 12745 // ============================================================================
 12746 // Long Compare
 12747 //
 12748 // Currently we hold longs in 2 registers.  Comparing such values efficiently
 12749 // is tricky.  The flavor of compare used depends on whether we are testing
 12750 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
 12751 // The GE test is the negated LT test.  The LE test can be had by commuting
 12752 // the operands (yielding a GE test) and then negating; negate again for the
 12753 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
 12754 // NE test is negated from that.
 12756 // Due to a shortcoming in the ADLC, it mixes up expressions like:
 12757 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
 12758 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
 12759 // are collapsed internally in the ADLC's dfa-gen code.  The match for
 12760 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
 12761 // foo match ends up with the wrong leaf.  One fix is to not match both
 12762 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
 12763 // both forms beat the trinary form of long-compare and both are very useful
 12764 // on Intel which has so few registers.
 12766 // Manifest a CmpL result in an integer register.  Very painful.
 12767 // This is the test to avoid.
 12768 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
 12769   match(Set dst (CmpL3 src1 src2));
 12770   effect( KILL flags );
 12771   ins_cost(1000);
 12772   format %{ "XOR    $dst,$dst\n\t"
 12773             "CMP    $src1.hi,$src2.hi\n\t"
 12774             "JLT,s  m_one\n\t"
 12775             "JGT,s  p_one\n\t"
 12776             "CMP    $src1.lo,$src2.lo\n\t"
 12777             "JB,s   m_one\n\t"
 12778             "JEQ,s  done\n"
 12779     "p_one:\tINC    $dst\n\t"
 12780             "JMP,s  done\n"
 12781     "m_one:\tDEC    $dst\n"
 12782      "done:" %}
 12783   ins_encode %{
 12784     Label p_one, m_one, done;
 12785     __ xorptr($dst$$Register, $dst$$Register);
 12786     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
 12787     __ jccb(Assembler::less,    m_one);
 12788     __ jccb(Assembler::greater, p_one);
 12789     __ cmpl($src1$$Register, $src2$$Register);
 12790     __ jccb(Assembler::below,   m_one);
 12791     __ jccb(Assembler::equal,   done);
 12792     __ bind(p_one);
 12793     __ incrementl($dst$$Register);
 12794     __ jmpb(done);
 12795     __ bind(m_one);
 12796     __ decrementl($dst$$Register);
 12797     __ bind(done);
 12798   %}
 12799   ins_pipe( pipe_slow );
 12800 %}
 12802 //======
 12803 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12804 // compares.  Can be used for LE or GT compares by reversing arguments.
 12805 // NOT GOOD FOR EQ/NE tests.
 12806 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
 12807   match( Set flags (CmpL src zero ));
 12808   ins_cost(100);
 12809   format %{ "TEST   $src.hi,$src.hi" %}
 12810   opcode(0x85);
 12811   ins_encode( OpcP, RegReg_Hi2( src, src ) );
 12812   ins_pipe( ialu_cr_reg_reg );
 12813 %}
 12815 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12816 // compares.  Can be used for LE or GT compares by reversing arguments.
 12817 // NOT GOOD FOR EQ/NE tests.
 12818 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 12819   match( Set flags (CmpL src1 src2 ));
 12820   effect( TEMP tmp );
 12821   ins_cost(300);
 12822   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12823             "MOV    $tmp,$src1.hi\n\t"
 12824             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
 12825   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
 12826   ins_pipe( ialu_cr_reg_reg );
 12827 %}
 12829 // Long compares reg < zero/req OR reg >= zero/req.
 12830 // Just a wrapper for a normal branch, plus the predicate test.
 12831 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
 12832   match(If cmp flags);
 12833   effect(USE labl);
 12834   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12835   expand %{
 12836     jmpCon(cmp,flags,labl);    // JLT or JGE...
 12837   %}
 12838 %}
 12840 // Compare 2 longs and CMOVE longs.
 12841 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
 12842   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12843   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12844   ins_cost(400);
 12845   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12846             "CMOV$cmp $dst.hi,$src.hi" %}
 12847   opcode(0x0F,0x40);
 12848   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12849   ins_pipe( pipe_cmov_reg_long );
 12850 %}
 12852 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
 12853   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12854   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12855   ins_cost(500);
 12856   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12857             "CMOV$cmp $dst.hi,$src.hi" %}
 12858   opcode(0x0F,0x40);
 12859   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12860   ins_pipe( pipe_cmov_reg_long );
 12861 %}
 12863 // Compare 2 longs and CMOVE ints.
 12864 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
 12865   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12866   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12867   ins_cost(200);
 12868   format %{ "CMOV$cmp $dst,$src" %}
 12869   opcode(0x0F,0x40);
 12870   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12871   ins_pipe( pipe_cmov_reg );
 12872 %}
 12874 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
 12875   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12876   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12877   ins_cost(250);
 12878   format %{ "CMOV$cmp $dst,$src" %}
 12879   opcode(0x0F,0x40);
 12880   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12881   ins_pipe( pipe_cmov_mem );
 12882 %}
 12884 // Compare 2 longs and CMOVE ints.
 12885 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
 12886   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12887   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12888   ins_cost(200);
 12889   format %{ "CMOV$cmp $dst,$src" %}
 12890   opcode(0x0F,0x40);
 12891   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12892   ins_pipe( pipe_cmov_reg );
 12893 %}
 12895 // Compare 2 longs and CMOVE doubles
 12896 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
 12897   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12898   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12899   ins_cost(200);
 12900   expand %{
 12901     fcmovD_regS(cmp,flags,dst,src);
 12902   %}
 12903 %}
 12905 // Compare 2 longs and CMOVE doubles
 12906 instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
 12907   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12908   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12909   ins_cost(200);
 12910   expand %{
 12911     fcmovXD_regS(cmp,flags,dst,src);
 12912   %}
 12913 %}
 12915 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
 12916   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12917   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12918   ins_cost(200);
 12919   expand %{
 12920     fcmovF_regS(cmp,flags,dst,src);
 12921   %}
 12922 %}
 12924 instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
 12925   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12926   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12927   ins_cost(200);
 12928   expand %{
 12929     fcmovX_regS(cmp,flags,dst,src);
 12930   %}
 12931 %}
 12933 //======
 12934 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12935 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
 12936   match( Set flags (CmpL src zero ));
 12937   effect(TEMP tmp);
 12938   ins_cost(200);
 12939   format %{ "MOV    $tmp,$src.lo\n\t"
 12940             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
 12941   ins_encode( long_cmp_flags0( src, tmp ) );
 12942   ins_pipe( ialu_reg_reg_long );
 12943 %}
 12945 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12946 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
 12947   match( Set flags (CmpL src1 src2 ));
 12948   ins_cost(200+300);
 12949   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12950             "JNE,s  skip\n\t"
 12951             "CMP    $src1.hi,$src2.hi\n\t"
 12952      "skip:\t" %}
 12953   ins_encode( long_cmp_flags1( src1, src2 ) );
 12954   ins_pipe( ialu_cr_reg_reg );
 12955 %}
 12957 // Long compare reg == zero/reg OR reg != zero/reg
 12958 // Just a wrapper for a normal branch, plus the predicate test.
 12959 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
 12960   match(If cmp flags);
 12961   effect(USE labl);
 12962   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12963   expand %{
 12964     jmpCon(cmp,flags,labl);    // JEQ or JNE...
 12965   %}
 12966 %}
 12968 // Compare 2 longs and CMOVE longs.
 12969 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
 12970   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12971   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12972   ins_cost(400);
 12973   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12974             "CMOV$cmp $dst.hi,$src.hi" %}
 12975   opcode(0x0F,0x40);
 12976   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12977   ins_pipe( pipe_cmov_reg_long );
 12978 %}
 12980 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
 12981   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12982   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12983   ins_cost(500);
 12984   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12985             "CMOV$cmp $dst.hi,$src.hi" %}
 12986   opcode(0x0F,0x40);
 12987   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12988   ins_pipe( pipe_cmov_reg_long );
 12989 %}
 12991 // Compare 2 longs and CMOVE ints.
 12992 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
 12993   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12994   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12995   ins_cost(200);
 12996   format %{ "CMOV$cmp $dst,$src" %}
 12997   opcode(0x0F,0x40);
 12998   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12999   ins_pipe( pipe_cmov_reg );
 13000 %}
 13002 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
 13003   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13004   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13005   ins_cost(250);
 13006   format %{ "CMOV$cmp $dst,$src" %}
 13007   opcode(0x0F,0x40);
 13008   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13009   ins_pipe( pipe_cmov_mem );
 13010 %}
 13012 // Compare 2 longs and CMOVE ints.
 13013 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
 13014   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13015   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13016   ins_cost(200);
 13017   format %{ "CMOV$cmp $dst,$src" %}
 13018   opcode(0x0F,0x40);
 13019   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13020   ins_pipe( pipe_cmov_reg );
 13021 %}
 13023 // Compare 2 longs and CMOVE doubles
 13024 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
 13025   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13026   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13027   ins_cost(200);
 13028   expand %{
 13029     fcmovD_regS(cmp,flags,dst,src);
 13030   %}
 13031 %}
 13033 // Compare 2 longs and CMOVE doubles
 13034 instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
 13035   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13036   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13037   ins_cost(200);
 13038   expand %{
 13039     fcmovXD_regS(cmp,flags,dst,src);
 13040   %}
 13041 %}
 13043 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
 13044   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13045   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13046   ins_cost(200);
 13047   expand %{
 13048     fcmovF_regS(cmp,flags,dst,src);
 13049   %}
 13050 %}
 13052 instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
 13053   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13054   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13055   ins_cost(200);
 13056   expand %{
 13057     fcmovX_regS(cmp,flags,dst,src);
 13058   %}
 13059 %}
 13061 //======
 13062 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13063 // Same as cmpL_reg_flags_LEGT except must negate src
 13064 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
 13065   match( Set flags (CmpL src zero ));
 13066   effect( TEMP tmp );
 13067   ins_cost(300);
 13068   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
 13069             "CMP    $tmp,$src.lo\n\t"
 13070             "SBB    $tmp,$src.hi\n\t" %}
 13071   ins_encode( long_cmp_flags3(src, tmp) );
 13072   ins_pipe( ialu_reg_reg_long );
 13073 %}
 13075 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13076 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
 13077 // requires a commuted test to get the same result.
 13078 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 13079   match( Set flags (CmpL src1 src2 ));
 13080   effect( TEMP tmp );
 13081   ins_cost(300);
 13082   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
 13083             "MOV    $tmp,$src2.hi\n\t"
 13084             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
 13085   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
 13086   ins_pipe( ialu_cr_reg_reg );
 13087 %}
 13089 // Long compares reg < zero/req OR reg >= zero/req.
 13090 // Just a wrapper for a normal branch, plus the predicate test
 13091 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
 13092   match(If cmp flags);
 13093   effect(USE labl);
 13094   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
 13095   ins_cost(300);
 13096   expand %{
 13097     jmpCon(cmp,flags,labl);    // JGT or JLE...
 13098   %}
 13099 %}
 13101 // Compare 2 longs and CMOVE longs.
 13102 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
 13103   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13104   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13105   ins_cost(400);
 13106   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13107             "CMOV$cmp $dst.hi,$src.hi" %}
 13108   opcode(0x0F,0x40);
 13109   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13110   ins_pipe( pipe_cmov_reg_long );
 13111 %}
 13113 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
 13114   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13115   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13116   ins_cost(500);
 13117   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13118             "CMOV$cmp $dst.hi,$src.hi+4" %}
 13119   opcode(0x0F,0x40);
 13120   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13121   ins_pipe( pipe_cmov_reg_long );
 13122 %}
 13124 // Compare 2 longs and CMOVE ints.
 13125 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
 13126   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13127   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13128   ins_cost(200);
 13129   format %{ "CMOV$cmp $dst,$src" %}
 13130   opcode(0x0F,0x40);
 13131   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13132   ins_pipe( pipe_cmov_reg );
 13133 %}
 13135 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
 13136   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13137   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13138   ins_cost(250);
 13139   format %{ "CMOV$cmp $dst,$src" %}
 13140   opcode(0x0F,0x40);
 13141   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13142   ins_pipe( pipe_cmov_mem );
 13143 %}
 13145 // Compare 2 longs and CMOVE ptrs.
 13146 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
 13147   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13148   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13149   ins_cost(200);
 13150   format %{ "CMOV$cmp $dst,$src" %}
 13151   opcode(0x0F,0x40);
 13152   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13153   ins_pipe( pipe_cmov_reg );
 13154 %}
 13156 // Compare 2 longs and CMOVE doubles
 13157 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
 13158   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13159   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13160   ins_cost(200);
 13161   expand %{
 13162     fcmovD_regS(cmp,flags,dst,src);
 13163   %}
 13164 %}
 13166 // Compare 2 longs and CMOVE doubles
 13167 instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
 13168   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13169   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13170   ins_cost(200);
 13171   expand %{
 13172     fcmovXD_regS(cmp,flags,dst,src);
 13173   %}
 13174 %}
 13176 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
 13177   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13178   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13179   ins_cost(200);
 13180   expand %{
 13181     fcmovF_regS(cmp,flags,dst,src);
 13182   %}
 13183 %}
 13186 instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
 13187   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13188   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13189   ins_cost(200);
 13190   expand %{
 13191     fcmovX_regS(cmp,flags,dst,src);
 13192   %}
 13193 %}
 13196 // ============================================================================
 13197 // Procedure Call/Return Instructions
 13198 // Call Java Static Instruction
 13199 // Note: If this code changes, the corresponding ret_addr_offset() and
 13200 //       compute_padding() functions will have to be adjusted.
 13201 instruct CallStaticJavaDirect(method meth) %{
 13202   match(CallStaticJava);
 13203   effect(USE meth);
 13205   ins_cost(300);
 13206   format %{ "CALL,static " %}
 13207   opcode(0xE8); /* E8 cd */
 13208   ins_encode( pre_call_FPU,
 13209               Java_Static_Call( meth ),
 13210               call_epilog,
 13211               post_call_FPU );
 13212   ins_pipe( pipe_slow );
 13213   ins_pc_relative(1);
 13214   ins_alignment(4);
 13215 %}
 13217 // Call Java Dynamic Instruction
 13218 // Note: If this code changes, the corresponding ret_addr_offset() and
 13219 //       compute_padding() functions will have to be adjusted.
 13220 instruct CallDynamicJavaDirect(method meth) %{
 13221   match(CallDynamicJava);
 13222   effect(USE meth);
 13224   ins_cost(300);
 13225   format %{ "MOV    EAX,(oop)-1\n\t"
 13226             "CALL,dynamic" %}
 13227   opcode(0xE8); /* E8 cd */
 13228   ins_encode( pre_call_FPU,
 13229               Java_Dynamic_Call( meth ),
 13230               call_epilog,
 13231               post_call_FPU );
 13232   ins_pipe( pipe_slow );
 13233   ins_pc_relative(1);
 13234   ins_alignment(4);
 13235 %}
 13237 // Call Runtime Instruction
 13238 instruct CallRuntimeDirect(method meth) %{
 13239   match(CallRuntime );
 13240   effect(USE meth);
 13242   ins_cost(300);
 13243   format %{ "CALL,runtime " %}
 13244   opcode(0xE8); /* E8 cd */
 13245   // Use FFREEs to clear entries in float stack
 13246   ins_encode( pre_call_FPU,
 13247               FFree_Float_Stack_All,
 13248               Java_To_Runtime( meth ),
 13249               post_call_FPU );
 13250   ins_pipe( pipe_slow );
 13251   ins_pc_relative(1);
 13252 %}
 13254 // Call runtime without safepoint
 13255 instruct CallLeafDirect(method meth) %{
 13256   match(CallLeaf);
 13257   effect(USE meth);
 13259   ins_cost(300);
 13260   format %{ "CALL_LEAF,runtime " %}
 13261   opcode(0xE8); /* E8 cd */
 13262   ins_encode( pre_call_FPU,
 13263               FFree_Float_Stack_All,
 13264               Java_To_Runtime( meth ),
 13265               Verify_FPU_For_Leaf, post_call_FPU );
 13266   ins_pipe( pipe_slow );
 13267   ins_pc_relative(1);
 13268 %}
 13270 instruct CallLeafNoFPDirect(method meth) %{
 13271   match(CallLeafNoFP);
 13272   effect(USE meth);
 13274   ins_cost(300);
 13275   format %{ "CALL_LEAF_NOFP,runtime " %}
 13276   opcode(0xE8); /* E8 cd */
 13277   ins_encode(Java_To_Runtime(meth));
 13278   ins_pipe( pipe_slow );
 13279   ins_pc_relative(1);
 13280 %}
 13283 // Return Instruction
 13284 // Remove the return address & jump to it.
 13285 instruct Ret() %{
 13286   match(Return);
 13287   format %{ "RET" %}
 13288   opcode(0xC3);
 13289   ins_encode(OpcP);
 13290   ins_pipe( pipe_jmp );
 13291 %}
 13293 // Tail Call; Jump from runtime stub to Java code.
 13294 // Also known as an 'interprocedural jump'.
 13295 // Target of jump will eventually return to caller.
 13296 // TailJump below removes the return address.
 13297 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
 13298   match(TailCall jump_target method_oop );
 13299   ins_cost(300);
 13300   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
 13301   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13302   ins_encode( OpcP, RegOpc(jump_target) );
 13303   ins_pipe( pipe_jmp );
 13304 %}
 13307 // Tail Jump; remove the return address; jump to target.
 13308 // TailCall above leaves the return address around.
 13309 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
 13310   match( TailJump jump_target ex_oop );
 13311   ins_cost(300);
 13312   format %{ "POP    EDX\t# pop return address into dummy\n\t"
 13313             "JMP    $jump_target " %}
 13314   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13315   ins_encode( enc_pop_rdx,
 13316               OpcP, RegOpc(jump_target) );
 13317   ins_pipe( pipe_jmp );
 13318 %}
 13320 // Create exception oop: created by stack-crawling runtime code.
 13321 // Created exception is now available to this handler, and is setup
 13322 // just prior to jumping to this handler.  No code emitted.
 13323 instruct CreateException( eAXRegP ex_oop )
 13324 %{
 13325   match(Set ex_oop (CreateEx));
 13327   size(0);
 13328   // use the following format syntax
 13329   format %{ "# exception oop is in EAX; no code emitted" %}
 13330   ins_encode();
 13331   ins_pipe( empty );
 13332 %}
 13335 // Rethrow exception:
 13336 // The exception oop will come in the first argument position.
 13337 // Then JUMP (not call) to the rethrow stub code.
 13338 instruct RethrowException()
 13339 %{
 13340   match(Rethrow);
 13342   // use the following format syntax
 13343   format %{ "JMP    rethrow_stub" %}
 13344   ins_encode(enc_rethrow);
 13345   ins_pipe( pipe_jmp );
 13346 %}
 13348 // inlined locking and unlocking
 13351 instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
 13352   match( Set cr (FastLock object box) );
 13353   effect( TEMP tmp, TEMP scr );
 13354   ins_cost(300);
 13355   format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
 13356   ins_encode( Fast_Lock(object,box,tmp,scr) );
 13357   ins_pipe( pipe_slow );
 13358   ins_pc_relative(1);
 13359 %}
 13361 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
 13362   match( Set cr (FastUnlock object box) );
 13363   effect( TEMP tmp );
 13364   ins_cost(300);
 13365   format %{ "FASTUNLOCK $object, $box, $tmp" %}
 13366   ins_encode( Fast_Unlock(object,box,tmp) );
 13367   ins_pipe( pipe_slow );
 13368   ins_pc_relative(1);
 13369 %}
 13373 // ============================================================================
 13374 // Safepoint Instruction
 13375 instruct safePoint_poll(eFlagsReg cr) %{
 13376   match(SafePoint);
 13377   effect(KILL cr);
 13379   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
 13380   // On SPARC that might be acceptable as we can generate the address with
 13381   // just a sethi, saving an or.  By polling at offset 0 we can end up
 13382   // putting additional pressure on the index-0 in the D$.  Because of
 13383   // alignment (just like the situation at hand) the lower indices tend
 13384   // to see more traffic.  It'd be better to change the polling address
 13385   // to offset 0 of the last $line in the polling page.
 13387   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
 13388   ins_cost(125);
 13389   size(6) ;
 13390   ins_encode( Safepoint_Poll() );
 13391   ins_pipe( ialu_reg_mem );
 13392 %}
 13394 //----------PEEPHOLE RULES-----------------------------------------------------
 13395 // These must follow all instruction definitions as they use the names
 13396 // defined in the instructions definitions.
 13397 //
 13398 // peepmatch ( root_instr_name [preceding_instruction]* );
 13399 //
 13400 // peepconstraint %{
 13401 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13402 //  [, ...] );
 13403 // // instruction numbers are zero-based using left to right order in peepmatch
 13404 //
 13405 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13406 // // provide an instruction_number.operand_name for each operand that appears
 13407 // // in the replacement instruction's match rule
 13408 //
 13409 // ---------VM FLAGS---------------------------------------------------------
 13410 //
 13411 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13412 //
 13413 // Each peephole rule is given an identifying number starting with zero and
 13414 // increasing by one in the order seen by the parser.  An individual peephole
 13415 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13416 // on the command-line.
 13417 //
 13418 // ---------CURRENT LIMITATIONS----------------------------------------------
 13419 //
 13420 // Only match adjacent instructions in same basic block
 13421 // Only equality constraints
 13422 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13423 // Only one replacement instruction
 13424 //
 13425 // ---------EXAMPLE----------------------------------------------------------
 13426 //
 13427 // // pertinent parts of existing instructions in architecture description
 13428 // instruct movI(eRegI dst, eRegI src) %{
 13429 //   match(Set dst (CopyI src));
 13430 // %}
 13431 //
 13432 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 13433 //   match(Set dst (AddI dst src));
 13434 //   effect(KILL cr);
 13435 // %}
 13436 //
 13437 // // Change (inc mov) to lea
 13438 // peephole %{
 13439 //   // increment preceeded by register-register move
 13440 //   peepmatch ( incI_eReg movI );
 13441 //   // require that the destination register of the increment
 13442 //   // match the destination register of the move
 13443 //   peepconstraint ( 0.dst == 1.dst );
 13444 //   // construct a replacement instruction that sets
 13445 //   // the destination to ( move's source register + one )
 13446 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13447 // %}
 13448 //
 13449 // Implementation no longer uses movX instructions since
 13450 // machine-independent system no longer uses CopyX nodes.
 13451 //
 13452 // peephole %{
 13453 //   peepmatch ( incI_eReg movI );
 13454 //   peepconstraint ( 0.dst == 1.dst );
 13455 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13456 // %}
 13457 //
 13458 // peephole %{
 13459 //   peepmatch ( decI_eReg movI );
 13460 //   peepconstraint ( 0.dst == 1.dst );
 13461 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13462 // %}
 13463 //
 13464 // peephole %{
 13465 //   peepmatch ( addI_eReg_imm movI );
 13466 //   peepconstraint ( 0.dst == 1.dst );
 13467 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13468 // %}
 13469 //
 13470 // peephole %{
 13471 //   peepmatch ( addP_eReg_imm movP );
 13472 //   peepconstraint ( 0.dst == 1.dst );
 13473 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13474 // %}
 13476 // // Change load of spilled value to only a spill
 13477 // instruct storeI(memory mem, eRegI src) %{
 13478 //   match(Set mem (StoreI mem src));
 13479 // %}
 13480 //
 13481 // instruct loadI(eRegI dst, memory mem) %{
 13482 //   match(Set dst (LoadI mem));
 13483 // %}
 13484 //
 13485 peephole %{
 13486   peepmatch ( loadI storeI );
 13487   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13488   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13489 %}
 13491 //----------SMARTSPILL RULES---------------------------------------------------
 13492 // These must follow all instruction definitions as they use the names
 13493 // defined in the instructions definitions.

mercurial