src/share/vm/opto/library_call.cpp

Wed, 17 Oct 2012 12:09:32 -0700

author
kvn
date
Wed, 17 Oct 2012 12:09:32 -0700
changeset 4199
cfe522e6461c
parent 4164
d804e148cff8
child 4205
a3ecd773a7b9
permissions
-rw-r--r--

8000623: tools/javac/Diagnostics/6769027/T6769027.java crashes in PSPromotionManager::copy_to_survivor_space
Summary: Fix type of method pointer load from vtable.
Reviewed-by: twisti, johnc, roland

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/mulnode.hpp"
    36 #include "opto/parse.hpp"
    37 #include "opto/runtime.hpp"
    38 #include "opto/subnode.hpp"
    39 #include "prims/nativeLookup.hpp"
    40 #include "runtime/sharedRuntime.hpp"
    42 class LibraryIntrinsic : public InlineCallGenerator {
    43   // Extend the set of intrinsics known to the runtime:
    44  public:
    45  private:
    46   bool             _is_virtual;
    47   vmIntrinsics::ID _intrinsic_id;
    49  public:
    50   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
    51     : InlineCallGenerator(m),
    52       _is_virtual(is_virtual),
    53       _intrinsic_id(id)
    54   {
    55   }
    56   virtual bool is_intrinsic() const { return true; }
    57   virtual bool is_virtual()   const { return _is_virtual; }
    58   virtual JVMState* generate(JVMState* jvms);
    59   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    60 };
    63 // Local helper class for LibraryIntrinsic:
    64 class LibraryCallKit : public GraphKit {
    65  private:
    66   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
    68   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
    70  public:
    71   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
    72     : GraphKit(caller),
    73       _intrinsic(intrinsic)
    74   {
    75   }
    77   ciMethod*         caller()    const    { return jvms()->method(); }
    78   int               bci()       const    { return jvms()->bci(); }
    79   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
    80   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
    81   ciMethod*         callee()    const    { return _intrinsic->method(); }
    82   ciSignature*      signature() const    { return callee()->signature(); }
    83   int               arg_size()  const    { return callee()->arg_size(); }
    85   bool try_to_inline();
    87   // Helper functions to inline natives
    88   void push_result(RegionNode* region, PhiNode* value);
    89   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
    90   Node* generate_slow_guard(Node* test, RegionNode* region);
    91   Node* generate_fair_guard(Node* test, RegionNode* region);
    92   Node* generate_negative_guard(Node* index, RegionNode* region,
    93                                 // resulting CastII of index:
    94                                 Node* *pos_index = NULL);
    95   Node* generate_nonpositive_guard(Node* index, bool never_negative,
    96                                    // resulting CastII of index:
    97                                    Node* *pos_index = NULL);
    98   Node* generate_limit_guard(Node* offset, Node* subseq_length,
    99                              Node* array_length,
   100                              RegionNode* region);
   101   Node* generate_current_thread(Node* &tls_output);
   102   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   103                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   104   Node* load_mirror_from_klass(Node* klass);
   105   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   106                                       int nargs,
   107                                       RegionNode* region, int null_path,
   108                                       int offset);
   109   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
   110                                RegionNode* region, int null_path) {
   111     int offset = java_lang_Class::klass_offset_in_bytes();
   112     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   113                                          region, null_path,
   114                                          offset);
   115   }
   116   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   117                                      int nargs,
   118                                      RegionNode* region, int null_path) {
   119     int offset = java_lang_Class::array_klass_offset_in_bytes();
   120     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   121                                          region, null_path,
   122                                          offset);
   123   }
   124   Node* generate_access_flags_guard(Node* kls,
   125                                     int modifier_mask, int modifier_bits,
   126                                     RegionNode* region);
   127   Node* generate_interface_guard(Node* kls, RegionNode* region);
   128   Node* generate_array_guard(Node* kls, RegionNode* region) {
   129     return generate_array_guard_common(kls, region, false, false);
   130   }
   131   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   132     return generate_array_guard_common(kls, region, false, true);
   133   }
   134   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   135     return generate_array_guard_common(kls, region, true, false);
   136   }
   137   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   138     return generate_array_guard_common(kls, region, true, true);
   139   }
   140   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   141                                     bool obj_array, bool not_array);
   142   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   143   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   144                                      bool is_virtual = false, bool is_static = false);
   145   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   146     return generate_method_call(method_id, false, true);
   147   }
   148   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   149     return generate_method_call(method_id, true, false);
   150   }
   152   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
   153   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
   154   bool inline_string_compareTo();
   155   bool inline_string_indexOf();
   156   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   157   bool inline_string_equals();
   158   Node* pop_math_arg();
   159   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   160   bool inline_math_native(vmIntrinsics::ID id);
   161   bool inline_trig(vmIntrinsics::ID id);
   162   bool inline_trans(vmIntrinsics::ID id);
   163   bool inline_abs(vmIntrinsics::ID id);
   164   bool inline_sqrt(vmIntrinsics::ID id);
   165   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
   166   bool inline_pow(vmIntrinsics::ID id);
   167   bool inline_exp(vmIntrinsics::ID id);
   168   bool inline_min_max(vmIntrinsics::ID id);
   169   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   170   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   171   int classify_unsafe_addr(Node* &base, Node* &offset);
   172   Node* make_unsafe_address(Node* base, Node* offset);
   173   // Helper for inline_unsafe_access.
   174   // Generates the guards that check whether the result of
   175   // Unsafe.getObject should be recorded in an SATB log buffer.
   176   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, int nargs, bool need_mem_bar);
   177   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   178   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   179   bool inline_unsafe_allocate();
   180   bool inline_unsafe_copyMemory();
   181   bool inline_native_currentThread();
   182 #ifdef TRACE_HAVE_INTRINSICS
   183   bool inline_native_classID();
   184   bool inline_native_threadID();
   185 #endif
   186   bool inline_native_time_funcs(address method, const char* funcName);
   187   bool inline_native_isInterrupted();
   188   bool inline_native_Class_query(vmIntrinsics::ID id);
   189   bool inline_native_subtype_check();
   191   bool inline_native_newArray();
   192   bool inline_native_getLength();
   193   bool inline_array_copyOf(bool is_copyOfRange);
   194   bool inline_array_equals();
   195   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   196   bool inline_native_clone(bool is_virtual);
   197   bool inline_native_Reflection_getCallerClass();
   198   bool is_method_invoke_or_aux_frame(JVMState* jvms);
   199   // Helper function for inlining native object hash method
   200   bool inline_native_hashcode(bool is_virtual, bool is_static);
   201   bool inline_native_getClass();
   203   // Helper functions for inlining arraycopy
   204   bool inline_arraycopy();
   205   void generate_arraycopy(const TypePtr* adr_type,
   206                           BasicType basic_elem_type,
   207                           Node* src,  Node* src_offset,
   208                           Node* dest, Node* dest_offset,
   209                           Node* copy_length,
   210                           bool disjoint_bases = false,
   211                           bool length_never_negative = false,
   212                           RegionNode* slow_region = NULL);
   213   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   214                                                 RegionNode* slow_region);
   215   void generate_clear_array(const TypePtr* adr_type,
   216                             Node* dest,
   217                             BasicType basic_elem_type,
   218                             Node* slice_off,
   219                             Node* slice_len,
   220                             Node* slice_end);
   221   bool generate_block_arraycopy(const TypePtr* adr_type,
   222                                 BasicType basic_elem_type,
   223                                 AllocateNode* alloc,
   224                                 Node* src,  Node* src_offset,
   225                                 Node* dest, Node* dest_offset,
   226                                 Node* dest_size, bool dest_uninitialized);
   227   void generate_slow_arraycopy(const TypePtr* adr_type,
   228                                Node* src,  Node* src_offset,
   229                                Node* dest, Node* dest_offset,
   230                                Node* copy_length, bool dest_uninitialized);
   231   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   232                                      Node* dest_elem_klass,
   233                                      Node* src,  Node* src_offset,
   234                                      Node* dest, Node* dest_offset,
   235                                      Node* copy_length, bool dest_uninitialized);
   236   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   237                                    Node* src,  Node* src_offset,
   238                                    Node* dest, Node* dest_offset,
   239                                    Node* copy_length, bool dest_uninitialized);
   240   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   241                                     BasicType basic_elem_type,
   242                                     bool disjoint_bases,
   243                                     Node* src,  Node* src_offset,
   244                                     Node* dest, Node* dest_offset,
   245                                     Node* copy_length, bool dest_uninitialized);
   246   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
   247   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
   248   bool inline_unsafe_ordered_store(BasicType type);
   249   bool inline_fp_conversions(vmIntrinsics::ID id);
   250   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
   251   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
   252   bool inline_bitCount(vmIntrinsics::ID id);
   253   bool inline_reverseBytes(vmIntrinsics::ID id);
   255   bool inline_reference_get();
   256 };
   259 //---------------------------make_vm_intrinsic----------------------------
   260 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   261   vmIntrinsics::ID id = m->intrinsic_id();
   262   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   264   if (DisableIntrinsic[0] != '\0'
   265       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   266     // disabled by a user request on the command line:
   267     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   268     return NULL;
   269   }
   271   if (!m->is_loaded()) {
   272     // do not attempt to inline unloaded methods
   273     return NULL;
   274   }
   276   // Only a few intrinsics implement a virtual dispatch.
   277   // They are expensive calls which are also frequently overridden.
   278   if (is_virtual) {
   279     switch (id) {
   280     case vmIntrinsics::_hashCode:
   281     case vmIntrinsics::_clone:
   282       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   283       break;
   284     default:
   285       return NULL;
   286     }
   287   }
   289   // -XX:-InlineNatives disables nearly all intrinsics:
   290   if (!InlineNatives) {
   291     switch (id) {
   292     case vmIntrinsics::_indexOf:
   293     case vmIntrinsics::_compareTo:
   294     case vmIntrinsics::_equals:
   295     case vmIntrinsics::_equalsC:
   296     case vmIntrinsics::_getAndAddInt:
   297     case vmIntrinsics::_getAndAddLong:
   298     case vmIntrinsics::_getAndSetInt:
   299     case vmIntrinsics::_getAndSetLong:
   300     case vmIntrinsics::_getAndSetObject:
   301       break;  // InlineNatives does not control String.compareTo
   302     case vmIntrinsics::_Reference_get:
   303       break;  // InlineNatives does not control Reference.get
   304     default:
   305       return NULL;
   306     }
   307   }
   309   switch (id) {
   310   case vmIntrinsics::_compareTo:
   311     if (!SpecialStringCompareTo)  return NULL;
   312     break;
   313   case vmIntrinsics::_indexOf:
   314     if (!SpecialStringIndexOf)  return NULL;
   315     break;
   316   case vmIntrinsics::_equals:
   317     if (!SpecialStringEquals)  return NULL;
   318     break;
   319   case vmIntrinsics::_equalsC:
   320     if (!SpecialArraysEquals)  return NULL;
   321     break;
   322   case vmIntrinsics::_arraycopy:
   323     if (!InlineArrayCopy)  return NULL;
   324     break;
   325   case vmIntrinsics::_copyMemory:
   326     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   327     if (!InlineArrayCopy)  return NULL;
   328     break;
   329   case vmIntrinsics::_hashCode:
   330     if (!InlineObjectHash)  return NULL;
   331     break;
   332   case vmIntrinsics::_clone:
   333   case vmIntrinsics::_copyOf:
   334   case vmIntrinsics::_copyOfRange:
   335     if (!InlineObjectCopy)  return NULL;
   336     // These also use the arraycopy intrinsic mechanism:
   337     if (!InlineArrayCopy)  return NULL;
   338     break;
   339   case vmIntrinsics::_checkIndex:
   340     // We do not intrinsify this.  The optimizer does fine with it.
   341     return NULL;
   343   case vmIntrinsics::_getCallerClass:
   344     if (!UseNewReflection)  return NULL;
   345     if (!InlineReflectionGetCallerClass)  return NULL;
   346     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
   347     break;
   349   case vmIntrinsics::_bitCount_i:
   350     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
   351     break;
   353   case vmIntrinsics::_bitCount_l:
   354     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
   355     break;
   357   case vmIntrinsics::_numberOfLeadingZeros_i:
   358     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
   359     break;
   361   case vmIntrinsics::_numberOfLeadingZeros_l:
   362     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
   363     break;
   365   case vmIntrinsics::_numberOfTrailingZeros_i:
   366     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
   367     break;
   369   case vmIntrinsics::_numberOfTrailingZeros_l:
   370     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
   371     break;
   373   case vmIntrinsics::_Reference_get:
   374     // Use the intrinsic version of Reference.get() so that the value in
   375     // the referent field can be registered by the G1 pre-barrier code.
   376     // Also add memory barrier to prevent commoning reads from this field
   377     // across safepoint since GC can change it value.
   378     break;
   380   case vmIntrinsics::_compareAndSwapObject:
   381 #ifdef _LP64
   382     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
   383 #endif
   384     break;
   386   case vmIntrinsics::_compareAndSwapLong:
   387     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
   388     break;
   390   case vmIntrinsics::_getAndAddInt:
   391     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
   392     break;
   394   case vmIntrinsics::_getAndAddLong:
   395     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
   396     break;
   398   case vmIntrinsics::_getAndSetInt:
   399     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
   400     break;
   402   case vmIntrinsics::_getAndSetLong:
   403     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
   404     break;
   406   case vmIntrinsics::_getAndSetObject:
   407 #ifdef _LP64
   408     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   409     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
   410     break;
   411 #else
   412     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   413     break;
   414 #endif
   416  default:
   417     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   418     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   419     break;
   420   }
   422   // -XX:-InlineClassNatives disables natives from the Class class.
   423   // The flag applies to all reflective calls, notably Array.newArray
   424   // (visible to Java programmers as Array.newInstance).
   425   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   426       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   427     if (!InlineClassNatives)  return NULL;
   428   }
   430   // -XX:-InlineThreadNatives disables natives from the Thread class.
   431   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   432     if (!InlineThreadNatives)  return NULL;
   433   }
   435   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   436   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   437       m->holder()->name() == ciSymbol::java_lang_Float() ||
   438       m->holder()->name() == ciSymbol::java_lang_Double()) {
   439     if (!InlineMathNatives)  return NULL;
   440   }
   442   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   443   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   444     if (!InlineUnsafeOps)  return NULL;
   445   }
   447   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
   448 }
   450 //----------------------register_library_intrinsics-----------------------
   451 // Initialize this file's data structures, for each Compile instance.
   452 void Compile::register_library_intrinsics() {
   453   // Nothing to do here.
   454 }
   456 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   457   LibraryCallKit kit(jvms, this);
   458   Compile* C = kit.C;
   459   int nodes = C->unique();
   460 #ifndef PRODUCT
   461   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   462     char buf[1000];
   463     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   464     tty->print_cr("Intrinsic %s", str);
   465   }
   466 #endif
   468   if (kit.try_to_inline()) {
   469     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   470       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   471     }
   472     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   473     if (C->log()) {
   474       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   475                      vmIntrinsics::name_at(intrinsic_id()),
   476                      (is_virtual() ? " virtual='1'" : ""),
   477                      C->unique() - nodes);
   478     }
   479     return kit.transfer_exceptions_into_jvms();
   480   }
   482   // The intrinsic bailed out
   483   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   484     if (jvms->has_method()) {
   485       // Not a root compile.
   486       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
   487       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), msg);
   488     } else {
   489       // Root compile
   490       tty->print("Did not generate intrinsic %s%s at bci:%d in",
   491                vmIntrinsics::name_at(intrinsic_id()),
   492                (is_virtual() ? " (virtual)" : ""), kit.bci());
   493     }
   494   }
   495   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   496   return NULL;
   497 }
   499 bool LibraryCallKit::try_to_inline() {
   500   // Handle symbolic names for otherwise undistinguished boolean switches:
   501   const bool is_store       = true;
   502   const bool is_native_ptr  = true;
   503   const bool is_static      = true;
   505   if (!jvms()->has_method()) {
   506     // Root JVMState has a null method.
   507     assert(map()->memory()->Opcode() == Op_Parm, "");
   508     // Insert the memory aliasing node
   509     set_all_memory(reset_memory());
   510   }
   511   assert(merged_memory(), "");
   513   switch (intrinsic_id()) {
   514   case vmIntrinsics::_hashCode:
   515     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   516   case vmIntrinsics::_identityHashCode:
   517     return inline_native_hashcode(/*!virtual*/ false, is_static);
   518   case vmIntrinsics::_getClass:
   519     return inline_native_getClass();
   521   case vmIntrinsics::_dsin:
   522   case vmIntrinsics::_dcos:
   523   case vmIntrinsics::_dtan:
   524   case vmIntrinsics::_dabs:
   525   case vmIntrinsics::_datan2:
   526   case vmIntrinsics::_dsqrt:
   527   case vmIntrinsics::_dexp:
   528   case vmIntrinsics::_dlog:
   529   case vmIntrinsics::_dlog10:
   530   case vmIntrinsics::_dpow:
   531     return inline_math_native(intrinsic_id());
   533   case vmIntrinsics::_min:
   534   case vmIntrinsics::_max:
   535     return inline_min_max(intrinsic_id());
   537   case vmIntrinsics::_arraycopy:
   538     return inline_arraycopy();
   540   case vmIntrinsics::_compareTo:
   541     return inline_string_compareTo();
   542   case vmIntrinsics::_indexOf:
   543     return inline_string_indexOf();
   544   case vmIntrinsics::_equals:
   545     return inline_string_equals();
   547   case vmIntrinsics::_getObject:
   548     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
   549   case vmIntrinsics::_getBoolean:
   550     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
   551   case vmIntrinsics::_getByte:
   552     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
   553   case vmIntrinsics::_getShort:
   554     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
   555   case vmIntrinsics::_getChar:
   556     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
   557   case vmIntrinsics::_getInt:
   558     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
   559   case vmIntrinsics::_getLong:
   560     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
   561   case vmIntrinsics::_getFloat:
   562     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
   563   case vmIntrinsics::_getDouble:
   564     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
   566   case vmIntrinsics::_putObject:
   567     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
   568   case vmIntrinsics::_putBoolean:
   569     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
   570   case vmIntrinsics::_putByte:
   571     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
   572   case vmIntrinsics::_putShort:
   573     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
   574   case vmIntrinsics::_putChar:
   575     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
   576   case vmIntrinsics::_putInt:
   577     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
   578   case vmIntrinsics::_putLong:
   579     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
   580   case vmIntrinsics::_putFloat:
   581     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
   582   case vmIntrinsics::_putDouble:
   583     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
   585   case vmIntrinsics::_getByte_raw:
   586     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
   587   case vmIntrinsics::_getShort_raw:
   588     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
   589   case vmIntrinsics::_getChar_raw:
   590     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
   591   case vmIntrinsics::_getInt_raw:
   592     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
   593   case vmIntrinsics::_getLong_raw:
   594     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
   595   case vmIntrinsics::_getFloat_raw:
   596     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
   597   case vmIntrinsics::_getDouble_raw:
   598     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
   599   case vmIntrinsics::_getAddress_raw:
   600     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
   602   case vmIntrinsics::_putByte_raw:
   603     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
   604   case vmIntrinsics::_putShort_raw:
   605     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
   606   case vmIntrinsics::_putChar_raw:
   607     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
   608   case vmIntrinsics::_putInt_raw:
   609     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
   610   case vmIntrinsics::_putLong_raw:
   611     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
   612   case vmIntrinsics::_putFloat_raw:
   613     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
   614   case vmIntrinsics::_putDouble_raw:
   615     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
   616   case vmIntrinsics::_putAddress_raw:
   617     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
   619   case vmIntrinsics::_getObjectVolatile:
   620     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
   621   case vmIntrinsics::_getBooleanVolatile:
   622     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
   623   case vmIntrinsics::_getByteVolatile:
   624     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
   625   case vmIntrinsics::_getShortVolatile:
   626     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
   627   case vmIntrinsics::_getCharVolatile:
   628     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
   629   case vmIntrinsics::_getIntVolatile:
   630     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
   631   case vmIntrinsics::_getLongVolatile:
   632     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
   633   case vmIntrinsics::_getFloatVolatile:
   634     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
   635   case vmIntrinsics::_getDoubleVolatile:
   636     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
   638   case vmIntrinsics::_putObjectVolatile:
   639     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
   640   case vmIntrinsics::_putBooleanVolatile:
   641     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
   642   case vmIntrinsics::_putByteVolatile:
   643     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
   644   case vmIntrinsics::_putShortVolatile:
   645     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
   646   case vmIntrinsics::_putCharVolatile:
   647     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
   648   case vmIntrinsics::_putIntVolatile:
   649     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
   650   case vmIntrinsics::_putLongVolatile:
   651     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
   652   case vmIntrinsics::_putFloatVolatile:
   653     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
   654   case vmIntrinsics::_putDoubleVolatile:
   655     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
   657   case vmIntrinsics::_prefetchRead:
   658     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   659   case vmIntrinsics::_prefetchWrite:
   660     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
   661   case vmIntrinsics::_prefetchReadStatic:
   662     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
   663   case vmIntrinsics::_prefetchWriteStatic:
   664     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
   666   case vmIntrinsics::_compareAndSwapObject:
   667     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
   668   case vmIntrinsics::_compareAndSwapInt:
   669     return inline_unsafe_load_store(T_INT, LS_cmpxchg);
   670   case vmIntrinsics::_compareAndSwapLong:
   671     return inline_unsafe_load_store(T_LONG, LS_cmpxchg);
   673   case vmIntrinsics::_putOrderedObject:
   674     return inline_unsafe_ordered_store(T_OBJECT);
   675   case vmIntrinsics::_putOrderedInt:
   676     return inline_unsafe_ordered_store(T_INT);
   677   case vmIntrinsics::_putOrderedLong:
   678     return inline_unsafe_ordered_store(T_LONG);
   680   case vmIntrinsics::_getAndAddInt:
   681     return inline_unsafe_load_store(T_INT, LS_xadd);
   682   case vmIntrinsics::_getAndAddLong:
   683     return inline_unsafe_load_store(T_LONG, LS_xadd);
   684   case vmIntrinsics::_getAndSetInt:
   685     return inline_unsafe_load_store(T_INT, LS_xchg);
   686   case vmIntrinsics::_getAndSetLong:
   687     return inline_unsafe_load_store(T_LONG, LS_xchg);
   688   case vmIntrinsics::_getAndSetObject:
   689     return inline_unsafe_load_store(T_OBJECT, LS_xchg);
   691   case vmIntrinsics::_currentThread:
   692     return inline_native_currentThread();
   693   case vmIntrinsics::_isInterrupted:
   694     return inline_native_isInterrupted();
   696 #ifdef TRACE_HAVE_INTRINSICS
   697   case vmIntrinsics::_classID:
   698     return inline_native_classID();
   699   case vmIntrinsics::_threadID:
   700     return inline_native_threadID();
   701   case vmIntrinsics::_counterTime:
   702     return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
   703 #endif
   704   case vmIntrinsics::_currentTimeMillis:
   705     return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
   706   case vmIntrinsics::_nanoTime:
   707     return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
   708   case vmIntrinsics::_allocateInstance:
   709     return inline_unsafe_allocate();
   710   case vmIntrinsics::_copyMemory:
   711     return inline_unsafe_copyMemory();
   712   case vmIntrinsics::_newArray:
   713     return inline_native_newArray();
   714   case vmIntrinsics::_getLength:
   715     return inline_native_getLength();
   716   case vmIntrinsics::_copyOf:
   717     return inline_array_copyOf(false);
   718   case vmIntrinsics::_copyOfRange:
   719     return inline_array_copyOf(true);
   720   case vmIntrinsics::_equalsC:
   721     return inline_array_equals();
   722   case vmIntrinsics::_clone:
   723     return inline_native_clone(intrinsic()->is_virtual());
   725   case vmIntrinsics::_isAssignableFrom:
   726     return inline_native_subtype_check();
   728   case vmIntrinsics::_isInstance:
   729   case vmIntrinsics::_getModifiers:
   730   case vmIntrinsics::_isInterface:
   731   case vmIntrinsics::_isArray:
   732   case vmIntrinsics::_isPrimitive:
   733   case vmIntrinsics::_getSuperclass:
   734   case vmIntrinsics::_getComponentType:
   735   case vmIntrinsics::_getClassAccessFlags:
   736     return inline_native_Class_query(intrinsic_id());
   738   case vmIntrinsics::_floatToRawIntBits:
   739   case vmIntrinsics::_floatToIntBits:
   740   case vmIntrinsics::_intBitsToFloat:
   741   case vmIntrinsics::_doubleToRawLongBits:
   742   case vmIntrinsics::_doubleToLongBits:
   743   case vmIntrinsics::_longBitsToDouble:
   744     return inline_fp_conversions(intrinsic_id());
   746   case vmIntrinsics::_numberOfLeadingZeros_i:
   747   case vmIntrinsics::_numberOfLeadingZeros_l:
   748     return inline_numberOfLeadingZeros(intrinsic_id());
   750   case vmIntrinsics::_numberOfTrailingZeros_i:
   751   case vmIntrinsics::_numberOfTrailingZeros_l:
   752     return inline_numberOfTrailingZeros(intrinsic_id());
   754   case vmIntrinsics::_bitCount_i:
   755   case vmIntrinsics::_bitCount_l:
   756     return inline_bitCount(intrinsic_id());
   758   case vmIntrinsics::_reverseBytes_i:
   759   case vmIntrinsics::_reverseBytes_l:
   760   case vmIntrinsics::_reverseBytes_s:
   761   case vmIntrinsics::_reverseBytes_c:
   762     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
   764   case vmIntrinsics::_getCallerClass:
   765     return inline_native_Reflection_getCallerClass();
   767   case vmIntrinsics::_Reference_get:
   768     return inline_reference_get();
   770   default:
   771     // If you get here, it may be that someone has added a new intrinsic
   772     // to the list in vmSymbols.hpp without implementing it here.
   773 #ifndef PRODUCT
   774     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   775       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   776                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   777     }
   778 #endif
   779     return false;
   780   }
   781 }
   783 //------------------------------push_result------------------------------
   784 // Helper function for finishing intrinsics.
   785 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
   786   record_for_igvn(region);
   787   set_control(_gvn.transform(region));
   788   BasicType value_type = value->type()->basic_type();
   789   push_node(value_type, _gvn.transform(value));
   790 }
   792 //------------------------------generate_guard---------------------------
   793 // Helper function for generating guarded fast-slow graph structures.
   794 // The given 'test', if true, guards a slow path.  If the test fails
   795 // then a fast path can be taken.  (We generally hope it fails.)
   796 // In all cases, GraphKit::control() is updated to the fast path.
   797 // The returned value represents the control for the slow path.
   798 // The return value is never 'top'; it is either a valid control
   799 // or NULL if it is obvious that the slow path can never be taken.
   800 // Also, if region and the slow control are not NULL, the slow edge
   801 // is appended to the region.
   802 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   803   if (stopped()) {
   804     // Already short circuited.
   805     return NULL;
   806   }
   808   // Build an if node and its projections.
   809   // If test is true we take the slow path, which we assume is uncommon.
   810   if (_gvn.type(test) == TypeInt::ZERO) {
   811     // The slow branch is never taken.  No need to build this guard.
   812     return NULL;
   813   }
   815   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   817   Node* if_slow = _gvn.transform( new (C) IfTrueNode(iff) );
   818   if (if_slow == top()) {
   819     // The slow branch is never taken.  No need to build this guard.
   820     return NULL;
   821   }
   823   if (region != NULL)
   824     region->add_req(if_slow);
   826   Node* if_fast = _gvn.transform( new (C) IfFalseNode(iff) );
   827   set_control(if_fast);
   829   return if_slow;
   830 }
   832 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   833   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   834 }
   835 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   836   return generate_guard(test, region, PROB_FAIR);
   837 }
   839 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   840                                                      Node* *pos_index) {
   841   if (stopped())
   842     return NULL;                // already stopped
   843   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   844     return NULL;                // index is already adequately typed
   845   Node* cmp_lt = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
   846   Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
   847   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   848   if (is_neg != NULL && pos_index != NULL) {
   849     // Emulate effect of Parse::adjust_map_after_if.
   850     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
   851     ccast->set_req(0, control());
   852     (*pos_index) = _gvn.transform(ccast);
   853   }
   854   return is_neg;
   855 }
   857 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   858                                                         Node* *pos_index) {
   859   if (stopped())
   860     return NULL;                // already stopped
   861   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   862     return NULL;                // index is already adequately typed
   863   Node* cmp_le = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
   864   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   865   Node* bol_le = _gvn.transform( new (C) BoolNode(cmp_le, le_or_eq) );
   866   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   867   if (is_notp != NULL && pos_index != NULL) {
   868     // Emulate effect of Parse::adjust_map_after_if.
   869     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
   870     ccast->set_req(0, control());
   871     (*pos_index) = _gvn.transform(ccast);
   872   }
   873   return is_notp;
   874 }
   876 // Make sure that 'position' is a valid limit index, in [0..length].
   877 // There are two equivalent plans for checking this:
   878 //   A. (offset + copyLength)  unsigned<=  arrayLength
   879 //   B. offset  <=  (arrayLength - copyLength)
   880 // We require that all of the values above, except for the sum and
   881 // difference, are already known to be non-negative.
   882 // Plan A is robust in the face of overflow, if offset and copyLength
   883 // are both hugely positive.
   884 //
   885 // Plan B is less direct and intuitive, but it does not overflow at
   886 // all, since the difference of two non-negatives is always
   887 // representable.  Whenever Java methods must perform the equivalent
   888 // check they generally use Plan B instead of Plan A.
   889 // For the moment we use Plan A.
   890 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   891                                                   Node* subseq_length,
   892                                                   Node* array_length,
   893                                                   RegionNode* region) {
   894   if (stopped())
   895     return NULL;                // already stopped
   896   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
   897   if (zero_offset && subseq_length->eqv_uncast(array_length))
   898     return NULL;                // common case of whole-array copy
   899   Node* last = subseq_length;
   900   if (!zero_offset)             // last += offset
   901     last = _gvn.transform( new (C) AddINode(last, offset));
   902   Node* cmp_lt = _gvn.transform( new (C) CmpUNode(array_length, last) );
   903   Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
   904   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
   905   return is_over;
   906 }
   909 //--------------------------generate_current_thread--------------------
   910 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
   911   ciKlass*    thread_klass = env()->Thread_klass();
   912   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
   913   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
   914   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
   915   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
   916   tls_output = thread;
   917   return threadObj;
   918 }
   921 //------------------------------make_string_method_node------------------------
   922 // Helper method for String intrinsic functions. This version is called
   923 // with str1 and str2 pointing to String object nodes.
   924 //
   925 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
   926   Node* no_ctrl = NULL;
   928   // Get start addr of string
   929   Node* str1_value   = load_String_value(no_ctrl, str1);
   930   Node* str1_offset  = load_String_offset(no_ctrl, str1);
   931   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
   933   // Get length of string 1
   934   Node* str1_len  = load_String_length(no_ctrl, str1);
   936   Node* str2_value   = load_String_value(no_ctrl, str2);
   937   Node* str2_offset  = load_String_offset(no_ctrl, str2);
   938   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
   940   Node* str2_len = NULL;
   941   Node* result = NULL;
   943   switch (opcode) {
   944   case Op_StrIndexOf:
   945     // Get length of string 2
   946     str2_len = load_String_length(no_ctrl, str2);
   948     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
   949                                  str1_start, str1_len, str2_start, str2_len);
   950     break;
   951   case Op_StrComp:
   952     // Get length of string 2
   953     str2_len = load_String_length(no_ctrl, str2);
   955     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
   956                                  str1_start, str1_len, str2_start, str2_len);
   957     break;
   958   case Op_StrEquals:
   959     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
   960                                str1_start, str2_start, str1_len);
   961     break;
   962   default:
   963     ShouldNotReachHere();
   964     return NULL;
   965   }
   967   // All these intrinsics have checks.
   968   C->set_has_split_ifs(true); // Has chance for split-if optimization
   970   return _gvn.transform(result);
   971 }
   973 // Helper method for String intrinsic functions. This version is called
   974 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
   975 // to Int nodes containing the lenghts of str1 and str2.
   976 //
   977 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
   979   Node* result = NULL;
   980   switch (opcode) {
   981   case Op_StrIndexOf:
   982     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
   983                                  str1_start, cnt1, str2_start, cnt2);
   984     break;
   985   case Op_StrComp:
   986     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
   987                                  str1_start, cnt1, str2_start, cnt2);
   988     break;
   989   case Op_StrEquals:
   990     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
   991                                  str1_start, str2_start, cnt1);
   992     break;
   993   default:
   994     ShouldNotReachHere();
   995     return NULL;
   996   }
   998   // All these intrinsics have checks.
   999   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1001   return _gvn.transform(result);
  1004 //------------------------------inline_string_compareTo------------------------
  1005 bool LibraryCallKit::inline_string_compareTo() {
  1007   if (!Matcher::has_match_rule(Op_StrComp)) return false;
  1009   _sp += 2;
  1010   Node *argument = pop();  // pop non-receiver first:  it was pushed second
  1011   Node *receiver = pop();
  1013   // Null check on self without removing any arguments.  The argument
  1014   // null check technically happens in the wrong place, which can lead to
  1015   // invalid stack traces when string compare is inlined into a method
  1016   // which handles NullPointerExceptions.
  1017   _sp += 2;
  1018   receiver = do_null_check(receiver, T_OBJECT);
  1019   argument = do_null_check(argument, T_OBJECT);
  1020   _sp -= 2;
  1021   if (stopped()) {
  1022     return true;
  1025   Node* compare = make_string_method_node(Op_StrComp, receiver, argument);
  1026   push(compare);
  1027   return true;
  1030 //------------------------------inline_string_equals------------------------
  1031 bool LibraryCallKit::inline_string_equals() {
  1033   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
  1035   int nargs = 2;
  1036   _sp += nargs;
  1037   Node* argument = pop();  // pop non-receiver first:  it was pushed second
  1038   Node* receiver = pop();
  1040   // Null check on self without removing any arguments.  The argument
  1041   // null check technically happens in the wrong place, which can lead to
  1042   // invalid stack traces when string compare is inlined into a method
  1043   // which handles NullPointerExceptions.
  1044   _sp += nargs;
  1045   receiver = do_null_check(receiver, T_OBJECT);
  1046   //should not do null check for argument for String.equals(), because spec
  1047   //allows to specify NULL as argument.
  1048   _sp -= nargs;
  1050   if (stopped()) {
  1051     return true;
  1054   // paths (plus control) merge
  1055   RegionNode* region = new (C) RegionNode(5);
  1056   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
  1058   // does source == target string?
  1059   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
  1060   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
  1062   Node* if_eq = generate_slow_guard(bol, NULL);
  1063   if (if_eq != NULL) {
  1064     // receiver == argument
  1065     phi->init_req(2, intcon(1));
  1066     region->init_req(2, if_eq);
  1069   // get String klass for instanceOf
  1070   ciInstanceKlass* klass = env()->String_klass();
  1072   if (!stopped()) {
  1073     _sp += nargs;          // gen_instanceof might do an uncommon trap
  1074     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
  1075     _sp -= nargs;
  1076     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
  1077     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  1079     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
  1080     //instanceOf == true, fallthrough
  1082     if (inst_false != NULL) {
  1083       phi->init_req(3, intcon(0));
  1084       region->init_req(3, inst_false);
  1088   if (!stopped()) {
  1089     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1091     // Properly cast the argument to String
  1092     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
  1093     // This path is taken only when argument's type is String:NotNull.
  1094     argument = cast_not_null(argument, false);
  1096     Node* no_ctrl = NULL;
  1098     // Get start addr of receiver
  1099     Node* receiver_val    = load_String_value(no_ctrl, receiver);
  1100     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
  1101     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
  1103     // Get length of receiver
  1104     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
  1106     // Get start addr of argument
  1107     Node* argument_val   = load_String_value(no_ctrl, argument);
  1108     Node* argument_offset = load_String_offset(no_ctrl, argument);
  1109     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
  1111     // Get length of argument
  1112     Node* argument_cnt  = load_String_length(no_ctrl, argument);
  1114     // Check for receiver count != argument count
  1115     Node* cmp = _gvn.transform( new(C) CmpINode(receiver_cnt, argument_cnt) );
  1116     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::ne) );
  1117     Node* if_ne = generate_slow_guard(bol, NULL);
  1118     if (if_ne != NULL) {
  1119       phi->init_req(4, intcon(0));
  1120       region->init_req(4, if_ne);
  1123     // Check for count == 0 is done by assembler code for StrEquals.
  1125     if (!stopped()) {
  1126       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
  1127       phi->init_req(1, equals);
  1128       region->init_req(1, control());
  1132   // post merge
  1133   set_control(_gvn.transform(region));
  1134   record_for_igvn(region);
  1136   push(_gvn.transform(phi));
  1138   return true;
  1141 //------------------------------inline_array_equals----------------------------
  1142 bool LibraryCallKit::inline_array_equals() {
  1144   if (!Matcher::has_match_rule(Op_AryEq)) return false;
  1146   _sp += 2;
  1147   Node *argument2 = pop();
  1148   Node *argument1 = pop();
  1150   Node* equals =
  1151     _gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS),
  1152                                         argument1, argument2) );
  1153   push(equals);
  1154   return true;
  1157 // Java version of String.indexOf(constant string)
  1158 // class StringDecl {
  1159 //   StringDecl(char[] ca) {
  1160 //     offset = 0;
  1161 //     count = ca.length;
  1162 //     value = ca;
  1163 //   }
  1164 //   int offset;
  1165 //   int count;
  1166 //   char[] value;
  1167 // }
  1168 //
  1169 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1170 //                             int targetOffset, int cache_i, int md2) {
  1171 //   int cache = cache_i;
  1172 //   int sourceOffset = string_object.offset;
  1173 //   int sourceCount = string_object.count;
  1174 //   int targetCount = target_object.length;
  1175 //
  1176 //   int targetCountLess1 = targetCount - 1;
  1177 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1178 //
  1179 //   char[] source = string_object.value;
  1180 //   char[] target = target_object;
  1181 //   int lastChar = target[targetCountLess1];
  1182 //
  1183 //  outer_loop:
  1184 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1185 //     int src = source[i + targetCountLess1];
  1186 //     if (src == lastChar) {
  1187 //       // With random strings and a 4-character alphabet,
  1188 //       // reverse matching at this point sets up 0.8% fewer
  1189 //       // frames, but (paradoxically) makes 0.3% more probes.
  1190 //       // Since those probes are nearer the lastChar probe,
  1191 //       // there is may be a net D$ win with reverse matching.
  1192 //       // But, reversing loop inhibits unroll of inner loop
  1193 //       // for unknown reason.  So, does running outer loop from
  1194 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1195 //       for (int j = 0; j < targetCountLess1; j++) {
  1196 //         if (target[targetOffset + j] != source[i+j]) {
  1197 //           if ((cache & (1 << source[i+j])) == 0) {
  1198 //             if (md2 < j+1) {
  1199 //               i += j+1;
  1200 //               continue outer_loop;
  1201 //             }
  1202 //           }
  1203 //           i += md2;
  1204 //           continue outer_loop;
  1205 //         }
  1206 //       }
  1207 //       return i - sourceOffset;
  1208 //     }
  1209 //     if ((cache & (1 << src)) == 0) {
  1210 //       i += targetCountLess1;
  1211 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1212 //     i++;
  1213 //   }
  1214 //   return -1;
  1215 // }
  1217 //------------------------------string_indexOf------------------------
  1218 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1219                                      jint cache_i, jint md2_i) {
  1221   Node* no_ctrl  = NULL;
  1222   float likely   = PROB_LIKELY(0.9);
  1223   float unlikely = PROB_UNLIKELY(0.9);
  1225   const int nargs = 2; // number of arguments to push back for uncommon trap in predicate
  1227   Node* source        = load_String_value(no_ctrl, string_object);
  1228   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
  1229   Node* sourceCount   = load_String_length(no_ctrl, string_object);
  1231   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
  1232   jint target_length = target_array->length();
  1233   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1234   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1236   IdealKit kit(this, false, true);
  1237 #define __ kit.
  1238   Node* zero             = __ ConI(0);
  1239   Node* one              = __ ConI(1);
  1240   Node* cache            = __ ConI(cache_i);
  1241   Node* md2              = __ ConI(md2_i);
  1242   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1243   Node* targetCount      = __ ConI(target_length);
  1244   Node* targetCountLess1 = __ ConI(target_length - 1);
  1245   Node* targetOffset     = __ ConI(targetOffset_i);
  1246   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1248   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1249   Node* outer_loop = __ make_label(2 /* goto */);
  1250   Node* return_    = __ make_label(1);
  1252   __ set(rtn,__ ConI(-1));
  1253   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1254        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1255        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1256        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1257        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1258          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1259               Node* tpj = __ AddI(targetOffset, __ value(j));
  1260               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1261               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1262               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1263               __ if_then(targ, BoolTest::ne, src2); {
  1264                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1265                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1266                     __ increment(i, __ AddI(__ value(j), one));
  1267                     __ goto_(outer_loop);
  1268                   } __ end_if(); __ dead(j);
  1269                 }__ end_if(); __ dead(j);
  1270                 __ increment(i, md2);
  1271                 __ goto_(outer_loop);
  1272               }__ end_if();
  1273               __ increment(j, one);
  1274          }__ end_loop(); __ dead(j);
  1275          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1276          __ goto_(return_);
  1277        }__ end_if();
  1278        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1279          __ increment(i, targetCountLess1);
  1280        }__ end_if();
  1281        __ increment(i, one);
  1282        __ bind(outer_loop);
  1283   }__ end_loop(); __ dead(i);
  1284   __ bind(return_);
  1286   // Final sync IdealKit and GraphKit.
  1287   final_sync(kit);
  1288   Node* result = __ value(rtn);
  1289 #undef __
  1290   C->set_has_loops(true);
  1291   return result;
  1294 //------------------------------inline_string_indexOf------------------------
  1295 bool LibraryCallKit::inline_string_indexOf() {
  1297   _sp += 2;
  1298   Node *argument = pop();  // pop non-receiver first:  it was pushed second
  1299   Node *receiver = pop();
  1301   Node* result;
  1302   // Disable the use of pcmpestri until it can be guaranteed that
  1303   // the load doesn't cross into the uncommited space.
  1304   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1305       UseSSE42Intrinsics) {
  1306     // Generate SSE4.2 version of indexOf
  1307     // We currently only have match rules that use SSE4.2
  1309     // Null check on self without removing any arguments.  The argument
  1310     // null check technically happens in the wrong place, which can lead to
  1311     // invalid stack traces when string compare is inlined into a method
  1312     // which handles NullPointerExceptions.
  1313     _sp += 2;
  1314     receiver = do_null_check(receiver, T_OBJECT);
  1315     argument = do_null_check(argument, T_OBJECT);
  1316     _sp -= 2;
  1318     if (stopped()) {
  1319       return true;
  1322     ciInstanceKlass* str_klass = env()->String_klass();
  1323     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1325     // Make the merge point
  1326     RegionNode* result_rgn = new (C) RegionNode(4);
  1327     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
  1328     Node* no_ctrl  = NULL;
  1330     // Get start addr of source string
  1331     Node* source = load_String_value(no_ctrl, receiver);
  1332     Node* source_offset = load_String_offset(no_ctrl, receiver);
  1333     Node* source_start = array_element_address(source, source_offset, T_CHAR);
  1335     // Get length of source string
  1336     Node* source_cnt  = load_String_length(no_ctrl, receiver);
  1338     // Get start addr of substring
  1339     Node* substr = load_String_value(no_ctrl, argument);
  1340     Node* substr_offset = load_String_offset(no_ctrl, argument);
  1341     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
  1343     // Get length of source string
  1344     Node* substr_cnt  = load_String_length(no_ctrl, argument);
  1346     // Check for substr count > string count
  1347     Node* cmp = _gvn.transform( new(C) CmpINode(substr_cnt, source_cnt) );
  1348     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::gt) );
  1349     Node* if_gt = generate_slow_guard(bol, NULL);
  1350     if (if_gt != NULL) {
  1351       result_phi->init_req(2, intcon(-1));
  1352       result_rgn->init_req(2, if_gt);
  1355     if (!stopped()) {
  1356       // Check for substr count == 0
  1357       cmp = _gvn.transform( new(C) CmpINode(substr_cnt, intcon(0)) );
  1358       bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
  1359       Node* if_zero = generate_slow_guard(bol, NULL);
  1360       if (if_zero != NULL) {
  1361         result_phi->init_req(3, intcon(0));
  1362         result_rgn->init_req(3, if_zero);
  1366     if (!stopped()) {
  1367       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
  1368       result_phi->init_req(1, result);
  1369       result_rgn->init_req(1, control());
  1371     set_control(_gvn.transform(result_rgn));
  1372     record_for_igvn(result_rgn);
  1373     result = _gvn.transform(result_phi);
  1375   } else { // Use LibraryCallKit::string_indexOf
  1376     // don't intrinsify if argument isn't a constant string.
  1377     if (!argument->is_Con()) {
  1378      return false;
  1380     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
  1381     if (str_type == NULL) {
  1382       return false;
  1384     ciInstanceKlass* klass = env()->String_klass();
  1385     ciObject* str_const = str_type->const_oop();
  1386     if (str_const == NULL || str_const->klass() != klass) {
  1387       return false;
  1389     ciInstance* str = str_const->as_instance();
  1390     assert(str != NULL, "must be instance");
  1392     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
  1393     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1395     int o;
  1396     int c;
  1397     if (java_lang_String::has_offset_field()) {
  1398       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
  1399       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
  1400     } else {
  1401       o = 0;
  1402       c = pat->length();
  1405     // constant strings have no offset and count == length which
  1406     // simplifies the resulting code somewhat so lets optimize for that.
  1407     if (o != 0 || c != pat->length()) {
  1408      return false;
  1411     // Null check on self without removing any arguments.  The argument
  1412     // null check technically happens in the wrong place, which can lead to
  1413     // invalid stack traces when string compare is inlined into a method
  1414     // which handles NullPointerExceptions.
  1415     _sp += 2;
  1416     receiver = do_null_check(receiver, T_OBJECT);
  1417     // No null check on the argument is needed since it's a constant String oop.
  1418     _sp -= 2;
  1419     if (stopped()) {
  1420       return true;
  1423     // The null string as a pattern always returns 0 (match at beginning of string)
  1424     if (c == 0) {
  1425       push(intcon(0));
  1426       return true;
  1429     // Generate default indexOf
  1430     jchar lastChar = pat->char_at(o + (c - 1));
  1431     int cache = 0;
  1432     int i;
  1433     for (i = 0; i < c - 1; i++) {
  1434       assert(i < pat->length(), "out of range");
  1435       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1438     int md2 = c;
  1439     for (i = 0; i < c - 1; i++) {
  1440       assert(i < pat->length(), "out of range");
  1441       if (pat->char_at(o + i) == lastChar) {
  1442         md2 = (c - 1) - i;
  1446     result = string_indexOf(receiver, pat, o, cache, md2);
  1449   push(result);
  1450   return true;
  1453 //--------------------------pop_math_arg--------------------------------
  1454 // Pop a double argument to a math function from the stack
  1455 // rounding it if necessary.
  1456 Node * LibraryCallKit::pop_math_arg() {
  1457   Node *arg = pop_pair();
  1458   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
  1459     arg = _gvn.transform( new (C) RoundDoubleNode(0, arg) );
  1460   return arg;
  1463 //------------------------------inline_trig----------------------------------
  1464 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1465 // argument reduction which will turn into a fast/slow diamond.
  1466 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1467   _sp += arg_size();            // restore stack pointer
  1468   Node* arg = pop_math_arg();
  1469   Node* trig = NULL;
  1471   switch (id) {
  1472   case vmIntrinsics::_dsin:
  1473     trig = _gvn.transform((Node*)new (C) SinDNode(arg));
  1474     break;
  1475   case vmIntrinsics::_dcos:
  1476     trig = _gvn.transform((Node*)new (C) CosDNode(arg));
  1477     break;
  1478   case vmIntrinsics::_dtan:
  1479     trig = _gvn.transform((Node*)new (C) TanDNode(arg));
  1480     break;
  1481   default:
  1482     assert(false, "bad intrinsic was passed in");
  1483     return false;
  1486   // Rounding required?  Check for argument reduction!
  1487   if( Matcher::strict_fp_requires_explicit_rounding ) {
  1489     static const double     pi_4 =  0.7853981633974483;
  1490     static const double neg_pi_4 = -0.7853981633974483;
  1491     // pi/2 in 80-bit extended precision
  1492     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1493     // -pi/2 in 80-bit extended precision
  1494     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1495     // Cutoff value for using this argument reduction technique
  1496     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1497     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1499     // Pseudocode for sin:
  1500     // if (x <= Math.PI / 4.0) {
  1501     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1502     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1503     // } else {
  1504     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1505     // }
  1506     // return StrictMath.sin(x);
  1508     // Pseudocode for cos:
  1509     // if (x <= Math.PI / 4.0) {
  1510     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1511     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1512     // } else {
  1513     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1514     // }
  1515     // return StrictMath.cos(x);
  1517     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1518     // requires a special machine instruction to load it.  Instead we'll try
  1519     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1520     // probably do the math inside the SIN encoding.
  1522     // Make the merge point
  1523     RegionNode *r = new (C) RegionNode(3);
  1524     Node *phi = new (C) PhiNode(r,Type::DOUBLE);
  1526     // Flatten arg so we need only 1 test
  1527     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
  1528     // Node for PI/4 constant
  1529     Node *pi4 = makecon(TypeD::make(pi_4));
  1530     // Check PI/4 : abs(arg)
  1531     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
  1532     // Check: If PI/4 < abs(arg) then go slow
  1533     Node *bol = _gvn.transform( new (C) BoolNode( cmp, BoolTest::lt ) );
  1534     // Branch either way
  1535     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1536     set_control(opt_iff(r,iff));
  1538     // Set fast path result
  1539     phi->init_req(2,trig);
  1541     // Slow path - non-blocking leaf call
  1542     Node* call = NULL;
  1543     switch (id) {
  1544     case vmIntrinsics::_dsin:
  1545       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1546                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1547                                "Sin", NULL, arg, top());
  1548       break;
  1549     case vmIntrinsics::_dcos:
  1550       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1551                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1552                                "Cos", NULL, arg, top());
  1553       break;
  1554     case vmIntrinsics::_dtan:
  1555       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1556                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1557                                "Tan", NULL, arg, top());
  1558       break;
  1560     assert(control()->in(0) == call, "");
  1561     Node* slow_result = _gvn.transform(new (C) ProjNode(call,TypeFunc::Parms));
  1562     r->init_req(1,control());
  1563     phi->init_req(1,slow_result);
  1565     // Post-merge
  1566     set_control(_gvn.transform(r));
  1567     record_for_igvn(r);
  1568     trig = _gvn.transform(phi);
  1570     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1572   // Push result back on JVM stack
  1573   push_pair(trig);
  1574   return true;
  1577 //------------------------------inline_sqrt-------------------------------------
  1578 // Inline square root instruction, if possible.
  1579 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
  1580   assert(id == vmIntrinsics::_dsqrt, "Not square root");
  1581   _sp += arg_size();        // restore stack pointer
  1582   push_pair(_gvn.transform(new (C) SqrtDNode(0, pop_math_arg())));
  1583   return true;
  1586 //------------------------------inline_abs-------------------------------------
  1587 // Inline absolute value instruction, if possible.
  1588 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
  1589   assert(id == vmIntrinsics::_dabs, "Not absolute value");
  1590   _sp += arg_size();        // restore stack pointer
  1591   push_pair(_gvn.transform(new (C) AbsDNode(pop_math_arg())));
  1592   return true;
  1595 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1596   //-------------------
  1597   //result=(result.isNaN())? funcAddr():result;
  1598   // Check: If isNaN() by checking result!=result? then either trap
  1599   // or go to runtime
  1600   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result,result));
  1601   // Build the boolean node
  1602   Node* bolisnum = _gvn.transform( new (C) BoolNode(cmpisnan, BoolTest::eq) );
  1604   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1606       BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1607       // End the current control-flow path
  1608       push_pair(x);
  1609       if (y != NULL) {
  1610         push_pair(y);
  1612       // The pow or exp intrinsic returned a NaN, which requires a call
  1613       // to the runtime.  Recompile with the runtime call.
  1614       uncommon_trap(Deoptimization::Reason_intrinsic,
  1615                     Deoptimization::Action_make_not_entrant);
  1617     push_pair(result);
  1618   } else {
  1619     // If this inlining ever returned NaN in the past, we compile a call
  1620     // to the runtime to properly handle corner cases
  1622     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1623     Node* if_slow = _gvn.transform( new (C) IfFalseNode(iff) );
  1624     Node* if_fast = _gvn.transform( new (C) IfTrueNode(iff) );
  1626     if (!if_slow->is_top()) {
  1627       RegionNode* result_region = new(C) RegionNode(3);
  1628       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
  1630       result_region->init_req(1, if_fast);
  1631       result_val->init_req(1, result);
  1633       set_control(if_slow);
  1635       const TypePtr* no_memory_effects = NULL;
  1636       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1637                                    no_memory_effects,
  1638                                    x, top(), y, y ? top() : NULL);
  1639       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
  1640 #ifdef ASSERT
  1641       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
  1642       assert(value_top == top(), "second value must be top");
  1643 #endif
  1645       result_region->init_req(2, control());
  1646       result_val->init_req(2, value);
  1647       push_result(result_region, result_val);
  1648     } else {
  1649       push_pair(result);
  1654 //------------------------------inline_exp-------------------------------------
  1655 // Inline exp instructions, if possible.  The Intel hardware only misses
  1656 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1657 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
  1658   assert(id == vmIntrinsics::_dexp, "Not exp");
  1660   _sp += arg_size();        // restore stack pointer
  1661   Node *x = pop_math_arg();
  1662   Node *result = _gvn.transform(new (C) ExpDNode(0,x));
  1664   finish_pow_exp(result, x, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1666   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1668   return true;
  1671 //------------------------------inline_pow-------------------------------------
  1672 // Inline power instructions, if possible.
  1673 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
  1674   assert(id == vmIntrinsics::_dpow, "Not pow");
  1676   // Pseudocode for pow
  1677   // if (x <= 0.0) {
  1678   //   long longy = (long)y;
  1679   //   if ((double)longy == y) { // if y is long
  1680   //     if (y + 1 == y) longy = 0; // huge number: even
  1681   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
  1682   //   } else {
  1683   //     result = NaN;
  1684   //   }
  1685   // } else {
  1686   //   result = DPow(x,y);
  1687   // }
  1688   // if (result != result)?  {
  1689   //   result = uncommon_trap() or runtime_call();
  1690   // }
  1691   // return result;
  1693   _sp += arg_size();        // restore stack pointer
  1694   Node* y = pop_math_arg();
  1695   Node* x = pop_math_arg();
  1697   Node* result = NULL;
  1699   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1700     // Short form: skip the fancy tests and just check for NaN result.
  1701     result = _gvn.transform( new (C) PowDNode(0, x, y) );
  1702   } else {
  1703     // If this inlining ever returned NaN in the past, include all
  1704     // checks + call to the runtime.
  1706     // Set the merge point for If node with condition of (x <= 0.0)
  1707     // There are four possible paths to region node and phi node
  1708     RegionNode *r = new (C) RegionNode(4);
  1709     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1711     // Build the first if node: if (x <= 0.0)
  1712     // Node for 0 constant
  1713     Node *zeronode = makecon(TypeD::ZERO);
  1714     // Check x:0
  1715     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
  1716     // Check: If (x<=0) then go complex path
  1717     Node *bol1 = _gvn.transform( new (C) BoolNode( cmp, BoolTest::le ) );
  1718     // Branch either way
  1719     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1720     // Fast path taken; set region slot 3
  1721     Node *fast_taken = _gvn.transform( new (C) IfFalseNode(if1) );
  1722     r->init_req(3,fast_taken); // Capture fast-control
  1724     // Fast path not-taken, i.e. slow path
  1725     Node *complex_path = _gvn.transform( new (C) IfTrueNode(if1) );
  1727     // Set fast path result
  1728     Node *fast_result = _gvn.transform( new (C) PowDNode(0, x, y) );
  1729     phi->init_req(3, fast_result);
  1731     // Complex path
  1732     // Build the second if node (if y is long)
  1733     // Node for (long)y
  1734     Node *longy = _gvn.transform( new (C) ConvD2LNode(y));
  1735     // Node for (double)((long) y)
  1736     Node *doublelongy= _gvn.transform( new (C) ConvL2DNode(longy));
  1737     // Check (double)((long) y) : y
  1738     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
  1739     // Check if (y isn't long) then go to slow path
  1741     Node *bol2 = _gvn.transform( new (C) BoolNode( cmplongy, BoolTest::ne ) );
  1742     // Branch either way
  1743     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1744     Node* ylong_path = _gvn.transform( new (C) IfFalseNode(if2));
  1746     Node *slow_path = _gvn.transform( new (C) IfTrueNode(if2) );
  1748     // Calculate DPow(abs(x), y)*(1 & (long)y)
  1749     // Node for constant 1
  1750     Node *conone = longcon(1);
  1751     // 1& (long)y
  1752     Node *signnode= _gvn.transform( new (C) AndLNode(conone, longy) );
  1754     // A huge number is always even. Detect a huge number by checking
  1755     // if y + 1 == y and set integer to be tested for parity to 0.
  1756     // Required for corner case:
  1757     // (long)9.223372036854776E18 = max_jlong
  1758     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
  1759     // max_jlong is odd but 9.223372036854776E18 is even
  1760     Node* yplus1 = _gvn.transform( new (C) AddDNode(y, makecon(TypeD::make(1))));
  1761     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
  1762     Node *bolyplus1 = _gvn.transform( new (C) BoolNode( cmpyplus1, BoolTest::eq ) );
  1763     Node* correctedsign = NULL;
  1764     if (ConditionalMoveLimit != 0) {
  1765       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
  1766     } else {
  1767       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
  1768       RegionNode *r = new (C) RegionNode(3);
  1769       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  1770       r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyplus1)));
  1771       r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyplus1)));
  1772       phi->init_req(1, signnode);
  1773       phi->init_req(2, longcon(0));
  1774       correctedsign = _gvn.transform(phi);
  1775       ylong_path = _gvn.transform(r);
  1776       record_for_igvn(r);
  1779     // zero node
  1780     Node *conzero = longcon(0);
  1781     // Check (1&(long)y)==0?
  1782     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
  1783     // Check if (1&(long)y)!=0?, if so the result is negative
  1784     Node *bol3 = _gvn.transform( new (C) BoolNode( cmpeq1, BoolTest::ne ) );
  1785     // abs(x)
  1786     Node *absx=_gvn.transform( new (C) AbsDNode(x));
  1787     // abs(x)^y
  1788     Node *absxpowy = _gvn.transform( new (C) PowDNode(0, absx, y) );
  1789     // -abs(x)^y
  1790     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
  1791     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1792     Node *signresult = NULL;
  1793     if (ConditionalMoveLimit != 0) {
  1794       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1795     } else {
  1796       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
  1797       RegionNode *r = new (C) RegionNode(3);
  1798       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1799       r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyeven)));
  1800       r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyeven)));
  1801       phi->init_req(1, absxpowy);
  1802       phi->init_req(2, negabsxpowy);
  1803       signresult = _gvn.transform(phi);
  1804       ylong_path = _gvn.transform(r);
  1805       record_for_igvn(r);
  1807     // Set complex path fast result
  1808     r->init_req(2, ylong_path);
  1809     phi->init_req(2, signresult);
  1811     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1812     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1813     r->init_req(1,slow_path);
  1814     phi->init_req(1,slow_result);
  1816     // Post merge
  1817     set_control(_gvn.transform(r));
  1818     record_for_igvn(r);
  1819     result=_gvn.transform(phi);
  1822   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1824   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1826   return true;
  1829 //------------------------------inline_trans-------------------------------------
  1830 // Inline transcendental instructions, if possible.  The Intel hardware gets
  1831 // these right, no funny corner cases missed.
  1832 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
  1833   _sp += arg_size();        // restore stack pointer
  1834   Node* arg = pop_math_arg();
  1835   Node* trans = NULL;
  1837   switch (id) {
  1838   case vmIntrinsics::_dlog:
  1839     trans = _gvn.transform((Node*)new (C) LogDNode(arg));
  1840     break;
  1841   case vmIntrinsics::_dlog10:
  1842     trans = _gvn.transform((Node*)new (C) Log10DNode(arg));
  1843     break;
  1844   default:
  1845     assert(false, "bad intrinsic was passed in");
  1846     return false;
  1849   // Push result back on JVM stack
  1850   push_pair(trans);
  1851   return true;
  1854 //------------------------------runtime_math-----------------------------
  1855 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1856   Node* a = NULL;
  1857   Node* b = NULL;
  1859   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1860          "must be (DD)D or (D)D type");
  1862   // Inputs
  1863   _sp += arg_size();        // restore stack pointer
  1864   if (call_type == OptoRuntime::Math_DD_D_Type()) {
  1865     b = pop_math_arg();
  1867   a = pop_math_arg();
  1869   const TypePtr* no_memory_effects = NULL;
  1870   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1871                                  no_memory_effects,
  1872                                  a, top(), b, b ? top() : NULL);
  1873   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
  1874 #ifdef ASSERT
  1875   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
  1876   assert(value_top == top(), "second value must be top");
  1877 #endif
  1879   push_pair(value);
  1880   return true;
  1883 //------------------------------inline_math_native-----------------------------
  1884 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1885   switch (id) {
  1886     // These intrinsics are not properly supported on all hardware
  1887   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
  1888     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
  1889   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
  1890     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
  1891   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
  1892     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
  1894   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
  1895     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
  1896   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
  1897     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
  1899     // These intrinsics are supported on all hardware
  1900   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
  1901   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
  1903   case vmIntrinsics::_dexp:  return
  1904     Matcher::has_match_rule(Op_ExpD) ? inline_exp(id) :
  1905     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1906   case vmIntrinsics::_dpow:  return
  1907     Matcher::has_match_rule(Op_PowD) ? inline_pow(id) :
  1908     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1910    // These intrinsics are not yet correctly implemented
  1911   case vmIntrinsics::_datan2:
  1912     return false;
  1914   default:
  1915     ShouldNotReachHere();
  1916     return false;
  1920 static bool is_simple_name(Node* n) {
  1921   return (n->req() == 1         // constant
  1922           || (n->is_Type() && n->as_Type()->type()->singleton())
  1923           || n->is_Proj()       // parameter or return value
  1924           || n->is_Phi()        // local of some sort
  1925           );
  1928 //----------------------------inline_min_max-----------------------------------
  1929 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1930   push(generate_min_max(id, argument(0), argument(1)));
  1932   return true;
  1935 Node*
  1936 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1937   // These are the candidate return value:
  1938   Node* xvalue = x0;
  1939   Node* yvalue = y0;
  1941   if (xvalue == yvalue) {
  1942     return xvalue;
  1945   bool want_max = (id == vmIntrinsics::_max);
  1947   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1948   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1949   if (txvalue == NULL || tyvalue == NULL)  return top();
  1950   // This is not really necessary, but it is consistent with a
  1951   // hypothetical MaxINode::Value method:
  1952   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1954   // %%% This folding logic should (ideally) be in a different place.
  1955   // Some should be inside IfNode, and there to be a more reliable
  1956   // transformation of ?: style patterns into cmoves.  We also want
  1957   // more powerful optimizations around cmove and min/max.
  1959   // Try to find a dominating comparison of these guys.
  1960   // It can simplify the index computation for Arrays.copyOf
  1961   // and similar uses of System.arraycopy.
  1962   // First, compute the normalized version of CmpI(x, y).
  1963   int   cmp_op = Op_CmpI;
  1964   Node* xkey = xvalue;
  1965   Node* ykey = yvalue;
  1966   Node* ideal_cmpxy = _gvn.transform( new(C) CmpINode(xkey, ykey) );
  1967   if (ideal_cmpxy->is_Cmp()) {
  1968     // E.g., if we have CmpI(length - offset, count),
  1969     // it might idealize to CmpI(length, count + offset)
  1970     cmp_op = ideal_cmpxy->Opcode();
  1971     xkey = ideal_cmpxy->in(1);
  1972     ykey = ideal_cmpxy->in(2);
  1975   // Start by locating any relevant comparisons.
  1976   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  1977   Node* cmpxy = NULL;
  1978   Node* cmpyx = NULL;
  1979   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  1980     Node* cmp = start_from->fast_out(k);
  1981     if (cmp->outcnt() > 0 &&            // must have prior uses
  1982         cmp->in(0) == NULL &&           // must be context-independent
  1983         cmp->Opcode() == cmp_op) {      // right kind of compare
  1984       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  1985       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  1989   const int NCMPS = 2;
  1990   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  1991   int cmpn;
  1992   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1993     if (cmps[cmpn] != NULL)  break;     // find a result
  1995   if (cmpn < NCMPS) {
  1996     // Look for a dominating test that tells us the min and max.
  1997     int depth = 0;                // Limit search depth for speed
  1998     Node* dom = control();
  1999     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  2000       if (++depth >= 100)  break;
  2001       Node* ifproj = dom;
  2002       if (!ifproj->is_Proj())  continue;
  2003       Node* iff = ifproj->in(0);
  2004       if (!iff->is_If())  continue;
  2005       Node* bol = iff->in(1);
  2006       if (!bol->is_Bool())  continue;
  2007       Node* cmp = bol->in(1);
  2008       if (cmp == NULL)  continue;
  2009       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  2010         if (cmps[cmpn] == cmp)  break;
  2011       if (cmpn == NCMPS)  continue;
  2012       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2013       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  2014       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  2015       // At this point, we know that 'x btest y' is true.
  2016       switch (btest) {
  2017       case BoolTest::eq:
  2018         // They are proven equal, so we can collapse the min/max.
  2019         // Either value is the answer.  Choose the simpler.
  2020         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  2021           return yvalue;
  2022         return xvalue;
  2023       case BoolTest::lt:          // x < y
  2024       case BoolTest::le:          // x <= y
  2025         return (want_max ? yvalue : xvalue);
  2026       case BoolTest::gt:          // x > y
  2027       case BoolTest::ge:          // x >= y
  2028         return (want_max ? xvalue : yvalue);
  2033   // We failed to find a dominating test.
  2034   // Let's pick a test that might GVN with prior tests.
  2035   Node*          best_bol   = NULL;
  2036   BoolTest::mask best_btest = BoolTest::illegal;
  2037   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2038     Node* cmp = cmps[cmpn];
  2039     if (cmp == NULL)  continue;
  2040     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  2041       Node* bol = cmp->fast_out(j);
  2042       if (!bol->is_Bool())  continue;
  2043       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2044       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  2045       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  2046       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  2047         best_bol   = bol->as_Bool();
  2048         best_btest = btest;
  2053   Node* answer_if_true  = NULL;
  2054   Node* answer_if_false = NULL;
  2055   switch (best_btest) {
  2056   default:
  2057     if (cmpxy == NULL)
  2058       cmpxy = ideal_cmpxy;
  2059     best_bol = _gvn.transform( new(C) BoolNode(cmpxy, BoolTest::lt) );
  2060     // and fall through:
  2061   case BoolTest::lt:          // x < y
  2062   case BoolTest::le:          // x <= y
  2063     answer_if_true  = (want_max ? yvalue : xvalue);
  2064     answer_if_false = (want_max ? xvalue : yvalue);
  2065     break;
  2066   case BoolTest::gt:          // x > y
  2067   case BoolTest::ge:          // x >= y
  2068     answer_if_true  = (want_max ? xvalue : yvalue);
  2069     answer_if_false = (want_max ? yvalue : xvalue);
  2070     break;
  2073   jint hi, lo;
  2074   if (want_max) {
  2075     // We can sharpen the minimum.
  2076     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  2077     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  2078   } else {
  2079     // We can sharpen the maximum.
  2080     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  2081     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  2084   // Use a flow-free graph structure, to avoid creating excess control edges
  2085   // which could hinder other optimizations.
  2086   // Since Math.min/max is often used with arraycopy, we want
  2087   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  2088   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  2089                                answer_if_false, answer_if_true,
  2090                                TypeInt::make(lo, hi, widen));
  2092   return _gvn.transform(cmov);
  2094   /*
  2095   // This is not as desirable as it may seem, since Min and Max
  2096   // nodes do not have a full set of optimizations.
  2097   // And they would interfere, anyway, with 'if' optimizations
  2098   // and with CMoveI canonical forms.
  2099   switch (id) {
  2100   case vmIntrinsics::_min:
  2101     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  2102   case vmIntrinsics::_max:
  2103     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  2104   default:
  2105     ShouldNotReachHere();
  2107   */
  2110 inline int
  2111 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  2112   const TypePtr* base_type = TypePtr::NULL_PTR;
  2113   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  2114   if (base_type == NULL) {
  2115     // Unknown type.
  2116     return Type::AnyPtr;
  2117   } else if (base_type == TypePtr::NULL_PTR) {
  2118     // Since this is a NULL+long form, we have to switch to a rawptr.
  2119     base   = _gvn.transform( new (C) CastX2PNode(offset) );
  2120     offset = MakeConX(0);
  2121     return Type::RawPtr;
  2122   } else if (base_type->base() == Type::RawPtr) {
  2123     return Type::RawPtr;
  2124   } else if (base_type->isa_oopptr()) {
  2125     // Base is never null => always a heap address.
  2126     if (base_type->ptr() == TypePtr::NotNull) {
  2127       return Type::OopPtr;
  2129     // Offset is small => always a heap address.
  2130     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  2131     if (offset_type != NULL &&
  2132         base_type->offset() == 0 &&     // (should always be?)
  2133         offset_type->_lo >= 0 &&
  2134         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  2135       return Type::OopPtr;
  2137     // Otherwise, it might either be oop+off or NULL+addr.
  2138     return Type::AnyPtr;
  2139   } else {
  2140     // No information:
  2141     return Type::AnyPtr;
  2145 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  2146   int kind = classify_unsafe_addr(base, offset);
  2147   if (kind == Type::RawPtr) {
  2148     return basic_plus_adr(top(), base, offset);
  2149   } else {
  2150     return basic_plus_adr(base, offset);
  2154 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
  2155 // inline int Integer.numberOfLeadingZeros(int)
  2156 // inline int Long.numberOfLeadingZeros(long)
  2157 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
  2158   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
  2159   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
  2160   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
  2161   _sp += arg_size();  // restore stack pointer
  2162   switch (id) {
  2163   case vmIntrinsics::_numberOfLeadingZeros_i:
  2164     push(_gvn.transform(new (C) CountLeadingZerosINode(pop())));
  2165     break;
  2166   case vmIntrinsics::_numberOfLeadingZeros_l:
  2167     push(_gvn.transform(new (C) CountLeadingZerosLNode(pop_pair())));
  2168     break;
  2169   default:
  2170     ShouldNotReachHere();
  2172   return true;
  2175 //-------------------inline_numberOfTrailingZeros_int/long----------------------
  2176 // inline int Integer.numberOfTrailingZeros(int)
  2177 // inline int Long.numberOfTrailingZeros(long)
  2178 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
  2179   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
  2180   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
  2181   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
  2182   _sp += arg_size();  // restore stack pointer
  2183   switch (id) {
  2184   case vmIntrinsics::_numberOfTrailingZeros_i:
  2185     push(_gvn.transform(new (C) CountTrailingZerosINode(pop())));
  2186     break;
  2187   case vmIntrinsics::_numberOfTrailingZeros_l:
  2188     push(_gvn.transform(new (C) CountTrailingZerosLNode(pop_pair())));
  2189     break;
  2190   default:
  2191     ShouldNotReachHere();
  2193   return true;
  2196 //----------------------------inline_bitCount_int/long-----------------------
  2197 // inline int Integer.bitCount(int)
  2198 // inline int Long.bitCount(long)
  2199 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
  2200   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
  2201   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
  2202   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
  2203   _sp += arg_size();  // restore stack pointer
  2204   switch (id) {
  2205   case vmIntrinsics::_bitCount_i:
  2206     push(_gvn.transform(new (C) PopCountINode(pop())));
  2207     break;
  2208   case vmIntrinsics::_bitCount_l:
  2209     push(_gvn.transform(new (C) PopCountLNode(pop_pair())));
  2210     break;
  2211   default:
  2212     ShouldNotReachHere();
  2214   return true;
  2217 //----------------------------inline_reverseBytes_int/long/char/short-------------------
  2218 // inline Integer.reverseBytes(int)
  2219 // inline Long.reverseBytes(long)
  2220 // inline Character.reverseBytes(char)
  2221 // inline Short.reverseBytes(short)
  2222 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
  2223   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
  2224          id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
  2225          "not reverse Bytes");
  2226   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI))  return false;
  2227   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL))  return false;
  2228   if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
  2229   if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS))  return false;
  2230   _sp += arg_size();  // restore stack pointer
  2231   switch (id) {
  2232   case vmIntrinsics::_reverseBytes_i:
  2233     push(_gvn.transform(new (C) ReverseBytesINode(0, pop())));
  2234     break;
  2235   case vmIntrinsics::_reverseBytes_l:
  2236     push_pair(_gvn.transform(new (C) ReverseBytesLNode(0, pop_pair())));
  2237     break;
  2238   case vmIntrinsics::_reverseBytes_c:
  2239     push(_gvn.transform(new (C) ReverseBytesUSNode(0, pop())));
  2240     break;
  2241   case vmIntrinsics::_reverseBytes_s:
  2242     push(_gvn.transform(new (C) ReverseBytesSNode(0, pop())));
  2243     break;
  2244   default:
  2247   return true;
  2250 //----------------------------inline_unsafe_access----------------------------
  2252 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2254 // Helper that guards and inserts a pre-barrier.
  2255 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
  2256                                         Node* pre_val, int nargs, bool need_mem_bar) {
  2257   // We could be accessing the referent field of a reference object. If so, when G1
  2258   // is enabled, we need to log the value in the referent field in an SATB buffer.
  2259   // This routine performs some compile time filters and generates suitable
  2260   // runtime filters that guard the pre-barrier code.
  2261   // Also add memory barrier for non volatile load from the referent field
  2262   // to prevent commoning of loads across safepoint.
  2263   if (!UseG1GC && !need_mem_bar)
  2264     return;
  2266   // Some compile time checks.
  2268   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  2269   const TypeX* otype = offset->find_intptr_t_type();
  2270   if (otype != NULL && otype->is_con() &&
  2271       otype->get_con() != java_lang_ref_Reference::referent_offset) {
  2272     // Constant offset but not the reference_offset so just return
  2273     return;
  2276   // We only need to generate the runtime guards for instances.
  2277   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  2278   if (btype != NULL) {
  2279     if (btype->isa_aryptr()) {
  2280       // Array type so nothing to do
  2281       return;
  2284     const TypeInstPtr* itype = btype->isa_instptr();
  2285     if (itype != NULL) {
  2286       // Can the klass of base_oop be statically determined to be
  2287       // _not_ a sub-class of Reference and _not_ Object?
  2288       ciKlass* klass = itype->klass();
  2289       if ( klass->is_loaded() &&
  2290           !klass->is_subtype_of(env()->Reference_klass()) &&
  2291           !env()->Object_klass()->is_subtype_of(klass)) {
  2292         return;
  2297   // The compile time filters did not reject base_oop/offset so
  2298   // we need to generate the following runtime filters
  2299   //
  2300   // if (offset == java_lang_ref_Reference::_reference_offset) {
  2301   //   if (instance_of(base, java.lang.ref.Reference)) {
  2302   //     pre_barrier(_, pre_val, ...);
  2303   //   }
  2304   // }
  2306   float likely  = PROB_LIKELY(0.999);
  2307   float unlikely  = PROB_UNLIKELY(0.999);
  2309   IdealKit ideal(this);
  2310 #define __ ideal.
  2312   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
  2314   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  2315       // Update graphKit memory and control from IdealKit.
  2316       sync_kit(ideal);
  2318       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  2319       _sp += nargs;  // gen_instanceof might do an uncommon trap
  2320       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  2321       _sp -= nargs;
  2323       // Update IdealKit memory and control from graphKit.
  2324       __ sync_kit(this);
  2326       Node* one = __ ConI(1);
  2327       // is_instof == 0 if base_oop == NULL
  2328       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  2330         // Update graphKit from IdeakKit.
  2331         sync_kit(ideal);
  2333         // Use the pre-barrier to record the value in the referent field
  2334         pre_barrier(false /* do_load */,
  2335                     __ ctrl(),
  2336                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  2337                     pre_val /* pre_val */,
  2338                     T_OBJECT);
  2339         if (need_mem_bar) {
  2340           // Add memory barrier to prevent commoning reads from this field
  2341           // across safepoint since GC can change its value.
  2342           insert_mem_bar(Op_MemBarCPUOrder);
  2344         // Update IdealKit from graphKit.
  2345         __ sync_kit(this);
  2347       } __ end_if(); // _ref_type != ref_none
  2348   } __ end_if(); // offset == referent_offset
  2350   // Final sync IdealKit and GraphKit.
  2351   final_sync(ideal);
  2352 #undef __
  2356 // Interpret Unsafe.fieldOffset cookies correctly:
  2357 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2359 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
  2360   // Attempt to infer a sharper value type from the offset and base type.
  2361   ciKlass* sharpened_klass = NULL;
  2363   // See if it is an instance field, with an object type.
  2364   if (alias_type->field() != NULL) {
  2365     assert(!is_native_ptr, "native pointer op cannot use a java address");
  2366     if (alias_type->field()->type()->is_klass()) {
  2367       sharpened_klass = alias_type->field()->type()->as_klass();
  2371   // See if it is a narrow oop array.
  2372   if (adr_type->isa_aryptr()) {
  2373     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2374       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2375       if (elem_type != NULL) {
  2376         sharpened_klass = elem_type->klass();
  2381   // The sharpened class might be unloaded if there is no class loader
  2382   // contraint in place.
  2383   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
  2384     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2386 #ifndef PRODUCT
  2387     if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2388       tty->print("  from base type: ");  adr_type->dump();
  2389       tty->print("  sharpened value: ");  tjp->dump();
  2391 #endif
  2392     // Sharpen the value type.
  2393     return tjp;
  2395   return NULL;
  2398 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2399   if (callee()->is_static())  return false;  // caller must have the capability!
  2401 #ifndef PRODUCT
  2403     ResourceMark rm;
  2404     // Check the signatures.
  2405     ciSignature* sig = signature();
  2406 #ifdef ASSERT
  2407     if (!is_store) {
  2408       // Object getObject(Object base, int/long offset), etc.
  2409       BasicType rtype = sig->return_type()->basic_type();
  2410       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2411           rtype = T_ADDRESS;  // it is really a C void*
  2412       assert(rtype == type, "getter must return the expected value");
  2413       if (!is_native_ptr) {
  2414         assert(sig->count() == 2, "oop getter has 2 arguments");
  2415         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2416         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2417       } else {
  2418         assert(sig->count() == 1, "native getter has 1 argument");
  2419         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2421     } else {
  2422       // void putObject(Object base, int/long offset, Object x), etc.
  2423       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2424       if (!is_native_ptr) {
  2425         assert(sig->count() == 3, "oop putter has 3 arguments");
  2426         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2427         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2428       } else {
  2429         assert(sig->count() == 2, "native putter has 2 arguments");
  2430         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2432       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2433       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2434         vtype = T_ADDRESS;  // it is really a C void*
  2435       assert(vtype == type, "putter must accept the expected value");
  2437 #endif // ASSERT
  2439 #endif //PRODUCT
  2441   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2443   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
  2445   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
  2446   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
  2447   assert(callee()->arg_size() == nargs, "must be");
  2449   debug_only(int saved_sp = _sp);
  2450   _sp += nargs;
  2452   Node* val;
  2453   debug_only(val = (Node*)(uintptr_t)-1);
  2456   if (is_store) {
  2457     // Get the value being stored.  (Pop it first; it was pushed last.)
  2458     switch (type) {
  2459     case T_DOUBLE:
  2460     case T_LONG:
  2461     case T_ADDRESS:
  2462       val = pop_pair();
  2463       break;
  2464     default:
  2465       val = pop();
  2469   // Build address expression.  See the code in inline_unsafe_prefetch.
  2470   Node *adr;
  2471   Node *heap_base_oop = top();
  2472   Node* offset = top();
  2474   if (!is_native_ptr) {
  2475     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2476     offset = pop_pair();
  2477     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2478     Node* base   = pop();
  2479     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2480     // to be plain byte offsets, which are also the same as those accepted
  2481     // by oopDesc::field_base.
  2482     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2483            "fieldOffset must be byte-scaled");
  2484     // 32-bit machines ignore the high half!
  2485     offset = ConvL2X(offset);
  2486     adr = make_unsafe_address(base, offset);
  2487     heap_base_oop = base;
  2488   } else {
  2489     Node* ptr = pop_pair();
  2490     // Adjust Java long to machine word:
  2491     ptr = ConvL2X(ptr);
  2492     adr = make_unsafe_address(NULL, ptr);
  2495   // Pop receiver last:  it was pushed first.
  2496   Node *receiver = pop();
  2498   assert(saved_sp == _sp, "must have correct argument count");
  2500   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2502   // First guess at the value type.
  2503   const Type *value_type = Type::get_const_basic_type(type);
  2505   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2506   // there was not enough information to nail it down.
  2507   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2508   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2510   // We will need memory barriers unless we can determine a unique
  2511   // alias category for this reference.  (Note:  If for some reason
  2512   // the barriers get omitted and the unsafe reference begins to "pollute"
  2513   // the alias analysis of the rest of the graph, either Compile::can_alias
  2514   // or Compile::must_alias will throw a diagnostic assert.)
  2515   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2517   // If we are reading the value of the referent field of a Reference
  2518   // object (either by using Unsafe directly or through reflection)
  2519   // then, if G1 is enabled, we need to record the referent in an
  2520   // SATB log buffer using the pre-barrier mechanism.
  2521   // Also we need to add memory barrier to prevent commoning reads
  2522   // from this field across safepoint since GC can change its value.
  2523   bool need_read_barrier = !is_native_ptr && !is_store &&
  2524                            offset != top() && heap_base_oop != top();
  2526   if (!is_store && type == T_OBJECT) {
  2527     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
  2528     if (tjp != NULL) {
  2529       value_type = tjp;
  2533   // Null check on self without removing any arguments.  The argument
  2534   // null check technically happens in the wrong place, which can lead to
  2535   // invalid stack traces when the primitive is inlined into a method
  2536   // which handles NullPointerExceptions.
  2537   _sp += nargs;
  2538   do_null_check(receiver, T_OBJECT);
  2539   _sp -= nargs;
  2540   if (stopped()) {
  2541     return true;
  2543   // Heap pointers get a null-check from the interpreter,
  2544   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2545   // and it is not possible to fully distinguish unintended nulls
  2546   // from intended ones in this API.
  2548   if (is_volatile) {
  2549     // We need to emit leading and trailing CPU membars (see below) in
  2550     // addition to memory membars when is_volatile. This is a little
  2551     // too strong, but avoids the need to insert per-alias-type
  2552     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2553     // we cannot do effectively here because we probably only have a
  2554     // rough approximation of type.
  2555     need_mem_bar = true;
  2556     // For Stores, place a memory ordering barrier now.
  2557     if (is_store)
  2558       insert_mem_bar(Op_MemBarRelease);
  2561   // Memory barrier to prevent normal and 'unsafe' accesses from
  2562   // bypassing each other.  Happens after null checks, so the
  2563   // exception paths do not take memory state from the memory barrier,
  2564   // so there's no problems making a strong assert about mixing users
  2565   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2566   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2567   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2569   if (!is_store) {
  2570     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  2571     // load value and push onto stack
  2572     switch (type) {
  2573     case T_BOOLEAN:
  2574     case T_CHAR:
  2575     case T_BYTE:
  2576     case T_SHORT:
  2577     case T_INT:
  2578     case T_FLOAT:
  2579       push(p);
  2580       break;
  2581     case T_OBJECT:
  2582       if (need_read_barrier) {
  2583         insert_pre_barrier(heap_base_oop, offset, p, nargs, !(is_volatile || need_mem_bar));
  2585       push(p);
  2586       break;
  2587     case T_ADDRESS:
  2588       // Cast to an int type.
  2589       p = _gvn.transform( new (C) CastP2XNode(NULL,p) );
  2590       p = ConvX2L(p);
  2591       push_pair(p);
  2592       break;
  2593     case T_DOUBLE:
  2594     case T_LONG:
  2595       push_pair( p );
  2596       break;
  2597     default: ShouldNotReachHere();
  2599   } else {
  2600     // place effect of store into memory
  2601     switch (type) {
  2602     case T_DOUBLE:
  2603       val = dstore_rounding(val);
  2604       break;
  2605     case T_ADDRESS:
  2606       // Repackage the long as a pointer.
  2607       val = ConvL2X(val);
  2608       val = _gvn.transform( new (C) CastX2PNode(val) );
  2609       break;
  2612     if (type != T_OBJECT ) {
  2613       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2614     } else {
  2615       // Possibly an oop being stored to Java heap or native memory
  2616       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2617         // oop to Java heap.
  2618         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2619       } else {
  2620         // We can't tell at compile time if we are storing in the Java heap or outside
  2621         // of it. So we need to emit code to conditionally do the proper type of
  2622         // store.
  2624         IdealKit ideal(this);
  2625 #define __ ideal.
  2626         // QQQ who knows what probability is here??
  2627         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2628           // Sync IdealKit and graphKit.
  2629           sync_kit(ideal);
  2630           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2631           // Update IdealKit memory.
  2632           __ sync_kit(this);
  2633         } __ else_(); {
  2634           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
  2635         } __ end_if();
  2636         // Final sync IdealKit and GraphKit.
  2637         final_sync(ideal);
  2638 #undef __
  2643   if (is_volatile) {
  2644     if (!is_store)
  2645       insert_mem_bar(Op_MemBarAcquire);
  2646     else
  2647       insert_mem_bar(Op_MemBarVolatile);
  2650   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2652   return true;
  2655 //----------------------------inline_unsafe_prefetch----------------------------
  2657 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2658 #ifndef PRODUCT
  2660     ResourceMark rm;
  2661     // Check the signatures.
  2662     ciSignature* sig = signature();
  2663 #ifdef ASSERT
  2664     // Object getObject(Object base, int/long offset), etc.
  2665     BasicType rtype = sig->return_type()->basic_type();
  2666     if (!is_native_ptr) {
  2667       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2668       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2669       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2670     } else {
  2671       assert(sig->count() == 1, "native prefetch has 1 argument");
  2672       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2674 #endif // ASSERT
  2676 #endif // !PRODUCT
  2678   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2680   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
  2681   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
  2683   debug_only(int saved_sp = _sp);
  2684   _sp += nargs;
  2686   // Build address expression.  See the code in inline_unsafe_access.
  2687   Node *adr;
  2688   if (!is_native_ptr) {
  2689     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2690     Node* offset = pop_pair();
  2691     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2692     Node* base   = pop();
  2693     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2694     // to be plain byte offsets, which are also the same as those accepted
  2695     // by oopDesc::field_base.
  2696     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2697            "fieldOffset must be byte-scaled");
  2698     // 32-bit machines ignore the high half!
  2699     offset = ConvL2X(offset);
  2700     adr = make_unsafe_address(base, offset);
  2701   } else {
  2702     Node* ptr = pop_pair();
  2703     // Adjust Java long to machine word:
  2704     ptr = ConvL2X(ptr);
  2705     adr = make_unsafe_address(NULL, ptr);
  2708   if (is_static) {
  2709     assert(saved_sp == _sp, "must have correct argument count");
  2710   } else {
  2711     // Pop receiver last:  it was pushed first.
  2712     Node *receiver = pop();
  2713     assert(saved_sp == _sp, "must have correct argument count");
  2715     // Null check on self without removing any arguments.  The argument
  2716     // null check technically happens in the wrong place, which can lead to
  2717     // invalid stack traces when the primitive is inlined into a method
  2718     // which handles NullPointerExceptions.
  2719     _sp += nargs;
  2720     do_null_check(receiver, T_OBJECT);
  2721     _sp -= nargs;
  2722     if (stopped()) {
  2723       return true;
  2727   // Generate the read or write prefetch
  2728   Node *prefetch;
  2729   if (is_store) {
  2730     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
  2731   } else {
  2732     prefetch = new (C) PrefetchReadNode(i_o(), adr);
  2734   prefetch->init_req(0, control());
  2735   set_i_o(_gvn.transform(prefetch));
  2737   return true;
  2740 //----------------------------inline_unsafe_load_store----------------------------
  2742 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
  2743   // This basic scheme here is the same as inline_unsafe_access, but
  2744   // differs in enough details that combining them would make the code
  2745   // overly confusing.  (This is a true fact! I originally combined
  2746   // them, but even I was confused by it!) As much code/comments as
  2747   // possible are retained from inline_unsafe_access though to make
  2748   // the correspondences clearer. - dl
  2750   if (callee()->is_static())  return false;  // caller must have the capability!
  2752 #ifndef PRODUCT
  2753   BasicType rtype;
  2755     ResourceMark rm;
  2756     ciSignature* sig = signature();
  2757     rtype = sig->return_type()->basic_type();
  2758     if (kind == LS_xadd || kind == LS_xchg) {
  2759       // Check the signatures.
  2760 #ifdef ASSERT
  2761       assert(rtype == type, "get and set must return the expected type");
  2762       assert(sig->count() == 3, "get and set has 3 arguments");
  2763       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
  2764       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
  2765       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
  2766 #endif // ASSERT
  2767     } else if (kind == LS_cmpxchg) {
  2768       // Check the signatures.
  2769 #ifdef ASSERT
  2770       assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2771       assert(sig->count() == 4, "CAS has 4 arguments");
  2772       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2773       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2774 #endif // ASSERT
  2775     } else {
  2776       ShouldNotReachHere();
  2779 #endif //PRODUCT
  2781   // number of stack slots per value argument (1 or 2)
  2782   int type_words = type2size[type];
  2784   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2786   // Argument words:  "this" plus oop plus offset (plus oldvalue) plus newvalue/delta;
  2787   int nargs = 1 + 1 + 2  + ((kind == LS_cmpxchg) ? type_words : 0) + type_words;
  2789   // pop arguments: newval, offset, base, and receiver
  2790   debug_only(int saved_sp = _sp);
  2791   _sp += nargs;
  2792   Node* newval   = (type_words == 1) ? pop() : pop_pair();
  2793   Node* oldval   = (kind == LS_cmpxchg) ? ((type_words == 1) ? pop() : pop_pair()) : NULL;
  2794   Node *offset   = pop_pair();
  2795   Node *base     = pop();
  2796   Node *receiver = pop();
  2797   assert(saved_sp == _sp, "must have correct argument count");
  2799   //  Null check receiver.
  2800   _sp += nargs;
  2801   do_null_check(receiver, T_OBJECT);
  2802   _sp -= nargs;
  2803   if (stopped()) {
  2804     return true;
  2807   // Build field offset expression.
  2808   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2809   // to be plain byte offsets, which are also the same as those accepted
  2810   // by oopDesc::field_base.
  2811   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2812   // 32-bit machines ignore the high half of long offsets
  2813   offset = ConvL2X(offset);
  2814   Node* adr = make_unsafe_address(base, offset);
  2815   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2817   // For CAS, unlike inline_unsafe_access, there seems no point in
  2818   // trying to refine types. Just use the coarse types here.
  2819   const Type *value_type = Type::get_const_basic_type(type);
  2820   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2821   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2823   if (kind == LS_xchg && type == T_OBJECT) {
  2824     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
  2825     if (tjp != NULL) {
  2826       value_type = tjp;
  2830   int alias_idx = C->get_alias_index(adr_type);
  2832   // Memory-model-wise, a LoadStore acts like a little synchronized
  2833   // block, so needs barriers on each side.  These don't translate
  2834   // into actual barriers on most machines, but we still need rest of
  2835   // compiler to respect ordering.
  2837   insert_mem_bar(Op_MemBarRelease);
  2838   insert_mem_bar(Op_MemBarCPUOrder);
  2840   // 4984716: MemBars must be inserted before this
  2841   //          memory node in order to avoid a false
  2842   //          dependency which will confuse the scheduler.
  2843   Node *mem = memory(alias_idx);
  2845   // For now, we handle only those cases that actually exist: ints,
  2846   // longs, and Object. Adding others should be straightforward.
  2847   Node* load_store;
  2848   switch(type) {
  2849   case T_INT:
  2850     if (kind == LS_xadd) {
  2851       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
  2852     } else if (kind == LS_xchg) {
  2853       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
  2854     } else if (kind == LS_cmpxchg) {
  2855       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2856     } else {
  2857       ShouldNotReachHere();
  2859     break;
  2860   case T_LONG:
  2861     if (kind == LS_xadd) {
  2862       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
  2863     } else if (kind == LS_xchg) {
  2864       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
  2865     } else if (kind == LS_cmpxchg) {
  2866       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2867     } else {
  2868       ShouldNotReachHere();
  2870     break;
  2871   case T_OBJECT:
  2872     // Transformation of a value which could be NULL pointer (CastPP #NULL)
  2873     // could be delayed during Parse (for example, in adjust_map_after_if()).
  2874     // Execute transformation here to avoid barrier generation in such case.
  2875     if (_gvn.type(newval) == TypePtr::NULL_PTR)
  2876       newval = _gvn.makecon(TypePtr::NULL_PTR);
  2878     // Reference stores need a store barrier.
  2879     pre_barrier(true /* do_load*/,
  2880                 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  2881                 NULL /* pre_val*/,
  2882                 T_OBJECT);
  2883 #ifdef _LP64
  2884     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2885       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2886       if (kind == LS_xchg) {
  2887         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
  2888                                                               newval_enc, adr_type, value_type->make_narrowoop()));
  2889       } else {
  2890         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  2891         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2892         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
  2893                                                                    newval_enc, oldval_enc));
  2895     } else
  2896 #endif
  2898       if (kind == LS_xchg) {
  2899         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
  2900       } else {
  2901         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  2902         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2905     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
  2906     break;
  2907   default:
  2908     ShouldNotReachHere();
  2909     break;
  2912   // SCMemProjNodes represent the memory state of a LoadStore. Their
  2913   // main role is to prevent LoadStore nodes from being optimized away
  2914   // when their results aren't used.
  2915   Node* proj = _gvn.transform( new (C) SCMemProjNode(load_store));
  2916   set_memory(proj, alias_idx);
  2918   // Add the trailing membar surrounding the access
  2919   insert_mem_bar(Op_MemBarCPUOrder);
  2920   insert_mem_bar(Op_MemBarAcquire);
  2922 #ifdef _LP64
  2923   if (type == T_OBJECT && adr->bottom_type()->is_ptr_to_narrowoop() && kind == LS_xchg) {
  2924     load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->bottom_type()->make_ptr()));
  2926 #endif
  2928   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
  2929   push_node(load_store->bottom_type()->basic_type(), load_store);
  2930   return true;
  2933 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2934   // This is another variant of inline_unsafe_access, differing in
  2935   // that it always issues store-store ("release") barrier and ensures
  2936   // store-atomicity (which only matters for "long").
  2938   if (callee()->is_static())  return false;  // caller must have the capability!
  2940 #ifndef PRODUCT
  2942     ResourceMark rm;
  2943     // Check the signatures.
  2944     ciSignature* sig = signature();
  2945 #ifdef ASSERT
  2946     BasicType rtype = sig->return_type()->basic_type();
  2947     assert(rtype == T_VOID, "must return void");
  2948     assert(sig->count() == 3, "has 3 arguments");
  2949     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2950     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2951 #endif // ASSERT
  2953 #endif //PRODUCT
  2955   // number of stack slots per value argument (1 or 2)
  2956   int type_words = type2size[type];
  2958   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2960   // Argument words:  "this" plus oop plus offset plus value;
  2961   int nargs = 1 + 1 + 2 + type_words;
  2963   // pop arguments: val, offset, base, and receiver
  2964   debug_only(int saved_sp = _sp);
  2965   _sp += nargs;
  2966   Node* val      = (type_words == 1) ? pop() : pop_pair();
  2967   Node *offset   = pop_pair();
  2968   Node *base     = pop();
  2969   Node *receiver = pop();
  2970   assert(saved_sp == _sp, "must have correct argument count");
  2972   //  Null check receiver.
  2973   _sp += nargs;
  2974   do_null_check(receiver, T_OBJECT);
  2975   _sp -= nargs;
  2976   if (stopped()) {
  2977     return true;
  2980   // Build field offset expression.
  2981   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2982   // 32-bit machines ignore the high half of long offsets
  2983   offset = ConvL2X(offset);
  2984   Node* adr = make_unsafe_address(base, offset);
  2985   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2986   const Type *value_type = Type::get_const_basic_type(type);
  2987   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2989   insert_mem_bar(Op_MemBarRelease);
  2990   insert_mem_bar(Op_MemBarCPUOrder);
  2991   // Ensure that the store is atomic for longs:
  2992   bool require_atomic_access = true;
  2993   Node* store;
  2994   if (type == T_OBJECT) // reference stores need a store barrier.
  2995     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
  2996   else {
  2997     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  2999   insert_mem_bar(Op_MemBarCPUOrder);
  3000   return true;
  3003 bool LibraryCallKit::inline_unsafe_allocate() {
  3004   if (callee()->is_static())  return false;  // caller must have the capability!
  3005   int nargs = 1 + 1;
  3006   assert(signature()->size() == nargs-1, "alloc has 1 argument");
  3007   null_check_receiver(callee());  // check then ignore argument(0)
  3008   _sp += nargs;  // set original stack for use by uncommon_trap
  3009   Node* cls = do_null_check(argument(1), T_OBJECT);
  3010   _sp -= nargs;
  3011   if (stopped())  return true;
  3013   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  3014   _sp += nargs;  // set original stack for use by uncommon_trap
  3015   kls = do_null_check(kls, T_OBJECT);
  3016   _sp -= nargs;
  3017   if (stopped())  return true;  // argument was like int.class
  3019   // Note:  The argument might still be an illegal value like
  3020   // Serializable.class or Object[].class.   The runtime will handle it.
  3021   // But we must make an explicit check for initialization.
  3022   Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
  3023   // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
  3024   // can generate code to load it as unsigned byte.
  3025   Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
  3026   Node* bits = intcon(InstanceKlass::fully_initialized);
  3027   Node* test = _gvn.transform( new (C) SubINode(inst, bits) );
  3028   // The 'test' is non-zero if we need to take a slow path.
  3030   Node* obj = new_instance(kls, test);
  3031   push(obj);
  3033   return true;
  3036 #ifdef TRACE_HAVE_INTRINSICS
  3037 /*
  3038  * oop -> myklass
  3039  * myklass->trace_id |= USED
  3040  * return myklass->trace_id & ~0x3
  3041  */
  3042 bool LibraryCallKit::inline_native_classID() {
  3043   int nargs = 1 + 1;
  3044   null_check_receiver(callee());  // check then ignore argument(0)
  3045   _sp += nargs;
  3046   Node* cls = do_null_check(argument(1), T_OBJECT);
  3047   _sp -= nargs;
  3048   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  3049   _sp += nargs;
  3050   kls = do_null_check(kls, T_OBJECT);
  3051   _sp -= nargs;
  3052   ByteSize offset = TRACE_ID_OFFSET;
  3053   Node* insp = basic_plus_adr(kls, in_bytes(offset));
  3054   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
  3055   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
  3056   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
  3057   Node* clsused = longcon(0x01l); // set the class bit
  3058   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
  3060   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
  3061   store_to_memory(control(), insp, orl, T_LONG, adr_type);
  3062   push_pair(andl);
  3063   return true;
  3066 bool LibraryCallKit::inline_native_threadID() {
  3067   Node* tls_ptr = NULL;
  3068   Node* cur_thr = generate_current_thread(tls_ptr);
  3069   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3070   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  3071   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
  3073   Node* threadid = NULL;
  3074   size_t thread_id_size = OSThread::thread_id_size();
  3075   if (thread_id_size == (size_t) BytesPerLong) {
  3076     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
  3077     push(threadid);
  3078   } else if (thread_id_size == (size_t) BytesPerInt) {
  3079     threadid = make_load(control(), p, TypeInt::INT, T_INT);
  3080     push(threadid);
  3081   } else {
  3082     ShouldNotReachHere();
  3084   return true;
  3086 #endif
  3088 //------------------------inline_native_time_funcs--------------
  3089 // inline code for System.currentTimeMillis() and System.nanoTime()
  3090 // these have the same type and signature
  3091 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
  3092   const TypeFunc *tf = OptoRuntime::void_long_Type();
  3093   const TypePtr* no_memory_effects = NULL;
  3094   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  3095   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
  3096 #ifdef ASSERT
  3097   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms + 1));
  3098   assert(value_top == top(), "second value must be top");
  3099 #endif
  3100   push_pair(value);
  3101   return true;
  3104 //------------------------inline_native_currentThread------------------
  3105 bool LibraryCallKit::inline_native_currentThread() {
  3106   Node* junk = NULL;
  3107   push(generate_current_thread(junk));
  3108   return true;
  3111 //------------------------inline_native_isInterrupted------------------
  3112 bool LibraryCallKit::inline_native_isInterrupted() {
  3113   const int nargs = 1+1;  // receiver + boolean
  3114   assert(nargs == arg_size(), "sanity");
  3115   // Add a fast path to t.isInterrupted(clear_int):
  3116   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  3117   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  3118   // So, in the common case that the interrupt bit is false,
  3119   // we avoid making a call into the VM.  Even if the interrupt bit
  3120   // is true, if the clear_int argument is false, we avoid the VM call.
  3121   // However, if the receiver is not currentThread, we must call the VM,
  3122   // because there must be some locking done around the operation.
  3124   // We only go to the fast case code if we pass two guards.
  3125   // Paths which do not pass are accumulated in the slow_region.
  3126   RegionNode* slow_region = new (C) RegionNode(1);
  3127   record_for_igvn(slow_region);
  3128   RegionNode* result_rgn = new (C) RegionNode(1+3); // fast1, fast2, slow
  3129   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
  3130   enum { no_int_result_path   = 1,
  3131          no_clear_result_path = 2,
  3132          slow_result_path     = 3
  3133   };
  3135   // (a) Receiving thread must be the current thread.
  3136   Node* rec_thr = argument(0);
  3137   Node* tls_ptr = NULL;
  3138   Node* cur_thr = generate_current_thread(tls_ptr);
  3139   Node* cmp_thr = _gvn.transform( new (C) CmpPNode(cur_thr, rec_thr) );
  3140   Node* bol_thr = _gvn.transform( new (C) BoolNode(cmp_thr, BoolTest::ne) );
  3142   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
  3143   if (!known_current_thread)
  3144     generate_slow_guard(bol_thr, slow_region);
  3146   // (b) Interrupt bit on TLS must be false.
  3147   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3148   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  3149   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  3150   // Set the control input on the field _interrupted read to prevent it floating up.
  3151   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
  3152   Node* cmp_bit = _gvn.transform( new (C) CmpINode(int_bit, intcon(0)) );
  3153   Node* bol_bit = _gvn.transform( new (C) BoolNode(cmp_bit, BoolTest::ne) );
  3155   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  3157   // First fast path:  if (!TLS._interrupted) return false;
  3158   Node* false_bit = _gvn.transform( new (C) IfFalseNode(iff_bit) );
  3159   result_rgn->init_req(no_int_result_path, false_bit);
  3160   result_val->init_req(no_int_result_path, intcon(0));
  3162   // drop through to next case
  3163   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)) );
  3165   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  3166   Node* clr_arg = argument(1);
  3167   Node* cmp_arg = _gvn.transform( new (C) CmpINode(clr_arg, intcon(0)) );
  3168   Node* bol_arg = _gvn.transform( new (C) BoolNode(cmp_arg, BoolTest::ne) );
  3169   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  3171   // Second fast path:  ... else if (!clear_int) return true;
  3172   Node* false_arg = _gvn.transform( new (C) IfFalseNode(iff_arg) );
  3173   result_rgn->init_req(no_clear_result_path, false_arg);
  3174   result_val->init_req(no_clear_result_path, intcon(1));
  3176   // drop through to next case
  3177   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)) );
  3179   // (d) Otherwise, go to the slow path.
  3180   slow_region->add_req(control());
  3181   set_control( _gvn.transform(slow_region) );
  3183   if (stopped()) {
  3184     // There is no slow path.
  3185     result_rgn->init_req(slow_result_path, top());
  3186     result_val->init_req(slow_result_path, top());
  3187   } else {
  3188     // non-virtual because it is a private non-static
  3189     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  3191     Node* slow_val = set_results_for_java_call(slow_call);
  3192     // this->control() comes from set_results_for_java_call
  3194     // If we know that the result of the slow call will be true, tell the optimizer!
  3195     if (known_current_thread)  slow_val = intcon(1);
  3197     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  3198     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  3199     // These two phis are pre-filled with copies of of the fast IO and Memory
  3200     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  3201     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  3203     result_rgn->init_req(slow_result_path, control());
  3204     io_phi    ->init_req(slow_result_path, i_o());
  3205     mem_phi   ->init_req(slow_result_path, reset_memory());
  3206     result_val->init_req(slow_result_path, slow_val);
  3208     set_all_memory( _gvn.transform(mem_phi) );
  3209     set_i_o(        _gvn.transform(io_phi) );
  3212   push_result(result_rgn, result_val);
  3213   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3215   return true;
  3218 //---------------------------load_mirror_from_klass----------------------------
  3219 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  3220 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  3221   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
  3222   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  3225 //-----------------------load_klass_from_mirror_common-------------------------
  3226 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  3227 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  3228 // and branch to the given path on the region.
  3229 // If never_see_null, take an uncommon trap on null, so we can optimistically
  3230 // compile for the non-null case.
  3231 // If the region is NULL, force never_see_null = true.
  3232 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  3233                                                     bool never_see_null,
  3234                                                     int nargs,
  3235                                                     RegionNode* region,
  3236                                                     int null_path,
  3237                                                     int offset) {
  3238   if (region == NULL)  never_see_null = true;
  3239   Node* p = basic_plus_adr(mirror, offset);
  3240   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3241   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
  3242   _sp += nargs; // any deopt will start just before call to enclosing method
  3243   Node* null_ctl = top();
  3244   kls = null_check_oop(kls, &null_ctl, never_see_null);
  3245   if (region != NULL) {
  3246     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  3247     region->init_req(null_path, null_ctl);
  3248   } else {
  3249     assert(null_ctl == top(), "no loose ends");
  3251   _sp -= nargs;
  3252   return kls;
  3255 //--------------------(inline_native_Class_query helpers)---------------------
  3256 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  3257 // Fall through if (mods & mask) == bits, take the guard otherwise.
  3258 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  3259   // Branch around if the given klass has the given modifier bit set.
  3260   // Like generate_guard, adds a new path onto the region.
  3261   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3262   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  3263   Node* mask = intcon(modifier_mask);
  3264   Node* bits = intcon(modifier_bits);
  3265   Node* mbit = _gvn.transform( new (C) AndINode(mods, mask) );
  3266   Node* cmp  = _gvn.transform( new (C) CmpINode(mbit, bits) );
  3267   Node* bol  = _gvn.transform( new (C) BoolNode(cmp, BoolTest::ne) );
  3268   return generate_fair_guard(bol, region);
  3270 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  3271   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  3274 //-------------------------inline_native_Class_query-------------------
  3275 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  3276   int nargs = 1+0;  // just the Class mirror, in most cases
  3277   const Type* return_type = TypeInt::BOOL;
  3278   Node* prim_return_value = top();  // what happens if it's a primitive class?
  3279   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3280   bool expect_prim = false;     // most of these guys expect to work on refs
  3282   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  3284   switch (id) {
  3285   case vmIntrinsics::_isInstance:
  3286     nargs = 1+1;  // the Class mirror, plus the object getting queried about
  3287     // nothing is an instance of a primitive type
  3288     prim_return_value = intcon(0);
  3289     break;
  3290   case vmIntrinsics::_getModifiers:
  3291     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3292     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  3293     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  3294     break;
  3295   case vmIntrinsics::_isInterface:
  3296     prim_return_value = intcon(0);
  3297     break;
  3298   case vmIntrinsics::_isArray:
  3299     prim_return_value = intcon(0);
  3300     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  3301     break;
  3302   case vmIntrinsics::_isPrimitive:
  3303     prim_return_value = intcon(1);
  3304     expect_prim = true;  // obviously
  3305     break;
  3306   case vmIntrinsics::_getSuperclass:
  3307     prim_return_value = null();
  3308     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3309     break;
  3310   case vmIntrinsics::_getComponentType:
  3311     prim_return_value = null();
  3312     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3313     break;
  3314   case vmIntrinsics::_getClassAccessFlags:
  3315     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3316     return_type = TypeInt::INT;  // not bool!  6297094
  3317     break;
  3318   default:
  3319     ShouldNotReachHere();
  3322   Node* mirror =                      argument(0);
  3323   Node* obj    = (nargs <= 1)? top(): argument(1);
  3325   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  3326   if (mirror_con == NULL)  return false;  // cannot happen?
  3328 #ifndef PRODUCT
  3329   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  3330     ciType* k = mirror_con->java_mirror_type();
  3331     if (k) {
  3332       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  3333       k->print_name();
  3334       tty->cr();
  3337 #endif
  3339   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  3340   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3341   record_for_igvn(region);
  3342   PhiNode* phi = new (C) PhiNode(region, return_type);
  3344   // The mirror will never be null of Reflection.getClassAccessFlags, however
  3345   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  3346   // if it is. See bug 4774291.
  3348   // For Reflection.getClassAccessFlags(), the null check occurs in
  3349   // the wrong place; see inline_unsafe_access(), above, for a similar
  3350   // situation.
  3351   _sp += nargs;  // set original stack for use by uncommon_trap
  3352   mirror = do_null_check(mirror, T_OBJECT);
  3353   _sp -= nargs;
  3354   // If mirror or obj is dead, only null-path is taken.
  3355   if (stopped())  return true;
  3357   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  3359   // Now load the mirror's klass metaobject, and null-check it.
  3360   // Side-effects region with the control path if the klass is null.
  3361   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
  3362                                      region, _prim_path);
  3363   // If kls is null, we have a primitive mirror.
  3364   phi->init_req(_prim_path, prim_return_value);
  3365   if (stopped()) { push_result(region, phi); return true; }
  3367   Node* p;  // handy temp
  3368   Node* null_ctl;
  3370   // Now that we have the non-null klass, we can perform the real query.
  3371   // For constant classes, the query will constant-fold in LoadNode::Value.
  3372   Node* query_value = top();
  3373   switch (id) {
  3374   case vmIntrinsics::_isInstance:
  3375     // nothing is an instance of a primitive type
  3376     _sp += nargs;          // gen_instanceof might do an uncommon trap
  3377     query_value = gen_instanceof(obj, kls);
  3378     _sp -= nargs;
  3379     break;
  3381   case vmIntrinsics::_getModifiers:
  3382     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
  3383     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3384     break;
  3386   case vmIntrinsics::_isInterface:
  3387     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3388     if (generate_interface_guard(kls, region) != NULL)
  3389       // A guard was added.  If the guard is taken, it was an interface.
  3390       phi->add_req(intcon(1));
  3391     // If we fall through, it's a plain class.
  3392     query_value = intcon(0);
  3393     break;
  3395   case vmIntrinsics::_isArray:
  3396     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  3397     if (generate_array_guard(kls, region) != NULL)
  3398       // A guard was added.  If the guard is taken, it was an array.
  3399       phi->add_req(intcon(1));
  3400     // If we fall through, it's a plain class.
  3401     query_value = intcon(0);
  3402     break;
  3404   case vmIntrinsics::_isPrimitive:
  3405     query_value = intcon(0); // "normal" path produces false
  3406     break;
  3408   case vmIntrinsics::_getSuperclass:
  3409     // The rules here are somewhat unfortunate, but we can still do better
  3410     // with random logic than with a JNI call.
  3411     // Interfaces store null or Object as _super, but must report null.
  3412     // Arrays store an intermediate super as _super, but must report Object.
  3413     // Other types can report the actual _super.
  3414     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3415     if (generate_interface_guard(kls, region) != NULL)
  3416       // A guard was added.  If the guard is taken, it was an interface.
  3417       phi->add_req(null());
  3418     if (generate_array_guard(kls, region) != NULL)
  3419       // A guard was added.  If the guard is taken, it was an array.
  3420       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3421     // If we fall through, it's a plain class.  Get its _super.
  3422     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
  3423     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
  3424     null_ctl = top();
  3425     kls = null_check_oop(kls, &null_ctl);
  3426     if (null_ctl != top()) {
  3427       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3428       region->add_req(null_ctl);
  3429       phi   ->add_req(null());
  3431     if (!stopped()) {
  3432       query_value = load_mirror_from_klass(kls);
  3434     break;
  3436   case vmIntrinsics::_getComponentType:
  3437     if (generate_array_guard(kls, region) != NULL) {
  3438       // Be sure to pin the oop load to the guard edge just created:
  3439       Node* is_array_ctrl = region->in(region->req()-1);
  3440       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
  3441       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  3442       phi->add_req(cmo);
  3444     query_value = null();  // non-array case is null
  3445     break;
  3447   case vmIntrinsics::_getClassAccessFlags:
  3448     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3449     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3450     break;
  3452   default:
  3453     ShouldNotReachHere();
  3456   // Fall-through is the normal case of a query to a real class.
  3457   phi->init_req(1, query_value);
  3458   region->init_req(1, control());
  3460   push_result(region, phi);
  3461   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3463   return true;
  3466 //--------------------------inline_native_subtype_check------------------------
  3467 // This intrinsic takes the JNI calls out of the heart of
  3468 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3469 bool LibraryCallKit::inline_native_subtype_check() {
  3470   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
  3472   // Pull both arguments off the stack.
  3473   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3474   args[0] = argument(0);
  3475   args[1] = argument(1);
  3476   Node* klasses[2];             // corresponding Klasses: superk, subk
  3477   klasses[0] = klasses[1] = top();
  3479   enum {
  3480     // A full decision tree on {superc is prim, subc is prim}:
  3481     _prim_0_path = 1,           // {P,N} => false
  3482                                 // {P,P} & superc!=subc => false
  3483     _prim_same_path,            // {P,P} & superc==subc => true
  3484     _prim_1_path,               // {N,P} => false
  3485     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3486     _both_ref_path,             // {N,N} & subtype check loses => false
  3487     PATH_LIMIT
  3488   };
  3490   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3491   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
  3492   record_for_igvn(region);
  3494   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3495   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3496   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3498   // First null-check both mirrors and load each mirror's klass metaobject.
  3499   int which_arg;
  3500   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3501     Node* arg = args[which_arg];
  3502     _sp += nargs;  // set original stack for use by uncommon_trap
  3503     arg = do_null_check(arg, T_OBJECT);
  3504     _sp -= nargs;
  3505     if (stopped())  break;
  3506     args[which_arg] = _gvn.transform(arg);
  3508     Node* p = basic_plus_adr(arg, class_klass_offset);
  3509     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3510     klasses[which_arg] = _gvn.transform(kls);
  3513   // Having loaded both klasses, test each for null.
  3514   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3515   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3516     Node* kls = klasses[which_arg];
  3517     Node* null_ctl = top();
  3518     _sp += nargs;  // set original stack for use by uncommon_trap
  3519     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3520     _sp -= nargs;
  3521     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3522     region->init_req(prim_path, null_ctl);
  3523     if (stopped())  break;
  3524     klasses[which_arg] = kls;
  3527   if (!stopped()) {
  3528     // now we have two reference types, in klasses[0..1]
  3529     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3530     Node* superk = klasses[0];  // the receiver
  3531     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3532     // now we have a successful reference subtype check
  3533     region->set_req(_ref_subtype_path, control());
  3536   // If both operands are primitive (both klasses null), then
  3537   // we must return true when they are identical primitives.
  3538   // It is convenient to test this after the first null klass check.
  3539   set_control(region->in(_prim_0_path)); // go back to first null check
  3540   if (!stopped()) {
  3541     // Since superc is primitive, make a guard for the superc==subc case.
  3542     Node* cmp_eq = _gvn.transform( new (C) CmpPNode(args[0], args[1]) );
  3543     Node* bol_eq = _gvn.transform( new (C) BoolNode(cmp_eq, BoolTest::eq) );
  3544     generate_guard(bol_eq, region, PROB_FAIR);
  3545     if (region->req() == PATH_LIMIT+1) {
  3546       // A guard was added.  If the added guard is taken, superc==subc.
  3547       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3548       region->del_req(PATH_LIMIT);
  3550     region->set_req(_prim_0_path, control()); // Not equal after all.
  3553   // these are the only paths that produce 'true':
  3554   phi->set_req(_prim_same_path,   intcon(1));
  3555   phi->set_req(_ref_subtype_path, intcon(1));
  3557   // pull together the cases:
  3558   assert(region->req() == PATH_LIMIT, "sane region");
  3559   for (uint i = 1; i < region->req(); i++) {
  3560     Node* ctl = region->in(i);
  3561     if (ctl == NULL || ctl == top()) {
  3562       region->set_req(i, top());
  3563       phi   ->set_req(i, top());
  3564     } else if (phi->in(i) == NULL) {
  3565       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3569   set_control(_gvn.transform(region));
  3570   push(_gvn.transform(phi));
  3572   return true;
  3575 //---------------------generate_array_guard_common------------------------
  3576 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3577                                                   bool obj_array, bool not_array) {
  3578   // If obj_array/non_array==false/false:
  3579   // Branch around if the given klass is in fact an array (either obj or prim).
  3580   // If obj_array/non_array==false/true:
  3581   // Branch around if the given klass is not an array klass of any kind.
  3582   // If obj_array/non_array==true/true:
  3583   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3584   // If obj_array/non_array==true/false:
  3585   // Branch around if the kls is an oop array (Object[] or subtype)
  3586   //
  3587   // Like generate_guard, adds a new path onto the region.
  3588   jint  layout_con = 0;
  3589   Node* layout_val = get_layout_helper(kls, layout_con);
  3590   if (layout_val == NULL) {
  3591     bool query = (obj_array
  3592                   ? Klass::layout_helper_is_objArray(layout_con)
  3593                   : Klass::layout_helper_is_array(layout_con));
  3594     if (query == not_array) {
  3595       return NULL;                       // never a branch
  3596     } else {                             // always a branch
  3597       Node* always_branch = control();
  3598       if (region != NULL)
  3599         region->add_req(always_branch);
  3600       set_control(top());
  3601       return always_branch;
  3604   // Now test the correct condition.
  3605   jint  nval = (obj_array
  3606                 ? ((jint)Klass::_lh_array_tag_type_value
  3607                    <<    Klass::_lh_array_tag_shift)
  3608                 : Klass::_lh_neutral_value);
  3609   Node* cmp = _gvn.transform( new(C) CmpINode(layout_val, intcon(nval)) );
  3610   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3611   // invert the test if we are looking for a non-array
  3612   if (not_array)  btest = BoolTest(btest).negate();
  3613   Node* bol = _gvn.transform( new(C) BoolNode(cmp, btest) );
  3614   return generate_fair_guard(bol, region);
  3618 //-----------------------inline_native_newArray--------------------------
  3619 bool LibraryCallKit::inline_native_newArray() {
  3620   int nargs = 2;
  3621   Node* mirror    = argument(0);
  3622   Node* count_val = argument(1);
  3624   _sp += nargs;  // set original stack for use by uncommon_trap
  3625   mirror = do_null_check(mirror, T_OBJECT);
  3626   _sp -= nargs;
  3627   // If mirror or obj is dead, only null-path is taken.
  3628   if (stopped())  return true;
  3630   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3631   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3632   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3633                                           TypeInstPtr::NOTNULL);
  3634   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3635   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3636                                           TypePtr::BOTTOM);
  3638   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3639   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3640                                                   nargs,
  3641                                                   result_reg, _slow_path);
  3642   Node* normal_ctl   = control();
  3643   Node* no_array_ctl = result_reg->in(_slow_path);
  3645   // Generate code for the slow case.  We make a call to newArray().
  3646   set_control(no_array_ctl);
  3647   if (!stopped()) {
  3648     // Either the input type is void.class, or else the
  3649     // array klass has not yet been cached.  Either the
  3650     // ensuing call will throw an exception, or else it
  3651     // will cache the array klass for next time.
  3652     PreserveJVMState pjvms(this);
  3653     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3654     Node* slow_result = set_results_for_java_call(slow_call);
  3655     // this->control() comes from set_results_for_java_call
  3656     result_reg->set_req(_slow_path, control());
  3657     result_val->set_req(_slow_path, slow_result);
  3658     result_io ->set_req(_slow_path, i_o());
  3659     result_mem->set_req(_slow_path, reset_memory());
  3662   set_control(normal_ctl);
  3663   if (!stopped()) {
  3664     // Normal case:  The array type has been cached in the java.lang.Class.
  3665     // The following call works fine even if the array type is polymorphic.
  3666     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3667     Node* obj = new_array(klass_node, count_val, nargs);
  3668     result_reg->init_req(_normal_path, control());
  3669     result_val->init_req(_normal_path, obj);
  3670     result_io ->init_req(_normal_path, i_o());
  3671     result_mem->init_req(_normal_path, reset_memory());
  3674   // Return the combined state.
  3675   set_i_o(        _gvn.transform(result_io)  );
  3676   set_all_memory( _gvn.transform(result_mem) );
  3677   push_result(result_reg, result_val);
  3678   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3680   return true;
  3683 //----------------------inline_native_getLength--------------------------
  3684 bool LibraryCallKit::inline_native_getLength() {
  3685   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3687   int nargs = 1;
  3688   Node* array = argument(0);
  3690   _sp += nargs;  // set original stack for use by uncommon_trap
  3691   array = do_null_check(array, T_OBJECT);
  3692   _sp -= nargs;
  3694   // If array is dead, only null-path is taken.
  3695   if (stopped())  return true;
  3697   // Deoptimize if it is a non-array.
  3698   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3700   if (non_array != NULL) {
  3701     PreserveJVMState pjvms(this);
  3702     set_control(non_array);
  3703     _sp += nargs;  // push the arguments back on the stack
  3704     uncommon_trap(Deoptimization::Reason_intrinsic,
  3705                   Deoptimization::Action_maybe_recompile);
  3708   // If control is dead, only non-array-path is taken.
  3709   if (stopped())  return true;
  3711   // The works fine even if the array type is polymorphic.
  3712   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3713   push( load_array_length(array) );
  3715   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3717   return true;
  3720 //------------------------inline_array_copyOf----------------------------
  3721 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3722   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3724   // Restore the stack and pop off the arguments.
  3725   int nargs = 3 + (is_copyOfRange? 1: 0);
  3726   Node* original          = argument(0);
  3727   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3728   Node* end               = is_copyOfRange? argument(2): argument(1);
  3729   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3731   Node* newcopy;
  3733   //set the original stack and the reexecute bit for the interpreter to reexecute
  3734   //the bytecode that invokes Arrays.copyOf if deoptimization happens
  3735   { PreserveReexecuteState preexecs(this);
  3736     _sp += nargs;
  3737     jvms()->set_should_reexecute(true);
  3739     array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
  3740     original          = do_null_check(original, T_OBJECT);
  3742     // Check if a null path was taken unconditionally.
  3743     if (stopped())  return true;
  3745     Node* orig_length = load_array_length(original);
  3747     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
  3748                                               NULL, 0);
  3749     klass_node = do_null_check(klass_node, T_OBJECT);
  3751     RegionNode* bailout = new (C) RegionNode(1);
  3752     record_for_igvn(bailout);
  3754     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3755     // Bail out if that is so.
  3756     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3757     if (not_objArray != NULL) {
  3758       // Improve the klass node's type from the new optimistic assumption:
  3759       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3760       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3761       Node* cast = new (C) CastPPNode(klass_node, akls);
  3762       cast->init_req(0, control());
  3763       klass_node = _gvn.transform(cast);
  3766     // Bail out if either start or end is negative.
  3767     generate_negative_guard(start, bailout, &start);
  3768     generate_negative_guard(end,   bailout, &end);
  3770     Node* length = end;
  3771     if (_gvn.type(start) != TypeInt::ZERO) {
  3772       length = _gvn.transform( new (C) SubINode(end, start) );
  3775     // Bail out if length is negative.
  3776     // Without this the new_array would throw
  3777     // NegativeArraySizeException but IllegalArgumentException is what
  3778     // should be thrown
  3779     generate_negative_guard(length, bailout, &length);
  3781     if (bailout->req() > 1) {
  3782       PreserveJVMState pjvms(this);
  3783       set_control( _gvn.transform(bailout) );
  3784       uncommon_trap(Deoptimization::Reason_intrinsic,
  3785                     Deoptimization::Action_maybe_recompile);
  3788     if (!stopped()) {
  3790       // How many elements will we copy from the original?
  3791       // The answer is MinI(orig_length - start, length).
  3792       Node* orig_tail = _gvn.transform( new(C) SubINode(orig_length, start) );
  3793       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3795       newcopy = new_array(klass_node, length, 0);
  3797       // Generate a direct call to the right arraycopy function(s).
  3798       // We know the copy is disjoint but we might not know if the
  3799       // oop stores need checking.
  3800       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3801       // This will fail a store-check if x contains any non-nulls.
  3802       bool disjoint_bases = true;
  3803       // if start > orig_length then the length of the copy may be
  3804       // negative.
  3805       bool length_never_negative = !is_copyOfRange;
  3806       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3807                          original, start, newcopy, intcon(0), moved,
  3808                          disjoint_bases, length_never_negative);
  3810   } //original reexecute and sp are set back here
  3812   if(!stopped()) {
  3813     push(newcopy);
  3816   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3818   return true;
  3822 //----------------------generate_virtual_guard---------------------------
  3823 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3824 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3825                                              RegionNode* slow_region) {
  3826   ciMethod* method = callee();
  3827   int vtable_index = method->vtable_index();
  3828   // Get the Method* out of the appropriate vtable entry.
  3829   int entry_offset  = (InstanceKlass::vtable_start_offset() +
  3830                      vtable_index*vtableEntry::size()) * wordSize +
  3831                      vtableEntry::method_offset_in_bytes();
  3832   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3833   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
  3835   // Compare the target method with the expected method (e.g., Object.hashCode).
  3836   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
  3838   Node* native_call = makecon(native_call_addr);
  3839   Node* chk_native  = _gvn.transform( new(C) CmpPNode(target_call, native_call) );
  3840   Node* test_native = _gvn.transform( new(C) BoolNode(chk_native, BoolTest::ne) );
  3842   return generate_slow_guard(test_native, slow_region);
  3845 //-----------------------generate_method_call----------------------------
  3846 // Use generate_method_call to make a slow-call to the real
  3847 // method if the fast path fails.  An alternative would be to
  3848 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3849 // This only works for expanding the current library call,
  3850 // not another intrinsic.  (E.g., don't use this for making an
  3851 // arraycopy call inside of the copyOf intrinsic.)
  3852 CallJavaNode*
  3853 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3854   // When compiling the intrinsic method itself, do not use this technique.
  3855   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3857   ciMethod* method = callee();
  3858   // ensure the JVMS we have will be correct for this call
  3859   guarantee(method_id == method->intrinsic_id(), "must match");
  3861   const TypeFunc* tf = TypeFunc::make(method);
  3862   CallJavaNode* slow_call;
  3863   if (is_static) {
  3864     assert(!is_virtual, "");
  3865     slow_call = new(C) CallStaticJavaNode(tf,
  3866                            SharedRuntime::get_resolve_static_call_stub(),
  3867                            method, bci());
  3868   } else if (is_virtual) {
  3869     null_check_receiver(method);
  3870     int vtable_index = Method::invalid_vtable_index;
  3871     if (UseInlineCaches) {
  3872       // Suppress the vtable call
  3873     } else {
  3874       // hashCode and clone are not a miranda methods,
  3875       // so the vtable index is fixed.
  3876       // No need to use the linkResolver to get it.
  3877        vtable_index = method->vtable_index();
  3879     slow_call = new(C) CallDynamicJavaNode(tf,
  3880                           SharedRuntime::get_resolve_virtual_call_stub(),
  3881                           method, vtable_index, bci());
  3882   } else {  // neither virtual nor static:  opt_virtual
  3883     null_check_receiver(method);
  3884     slow_call = new(C) CallStaticJavaNode(tf,
  3885                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3886                                 method, bci());
  3887     slow_call->set_optimized_virtual(true);
  3889   set_arguments_for_java_call(slow_call);
  3890   set_edges_for_java_call(slow_call);
  3891   return slow_call;
  3895 //------------------------------inline_native_hashcode--------------------
  3896 // Build special case code for calls to hashCode on an object.
  3897 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3898   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3899   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3901   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3903   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3904   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3905                                           TypeInt::INT);
  3906   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3907   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3908                                           TypePtr::BOTTOM);
  3909   Node* obj = NULL;
  3910   if (!is_static) {
  3911     // Check for hashing null object
  3912     obj = null_check_receiver(callee());
  3913     if (stopped())  return true;        // unconditionally null
  3914     result_reg->init_req(_null_path, top());
  3915     result_val->init_req(_null_path, top());
  3916   } else {
  3917     // Do a null check, and return zero if null.
  3918     // System.identityHashCode(null) == 0
  3919     obj = argument(0);
  3920     Node* null_ctl = top();
  3921     obj = null_check_oop(obj, &null_ctl);
  3922     result_reg->init_req(_null_path, null_ctl);
  3923     result_val->init_req(_null_path, _gvn.intcon(0));
  3926   // Unconditionally null?  Then return right away.
  3927   if (stopped()) {
  3928     set_control( result_reg->in(_null_path) );
  3929     if (!stopped())
  3930       push(      result_val ->in(_null_path) );
  3931     return true;
  3934   // After null check, get the object's klass.
  3935   Node* obj_klass = load_object_klass(obj);
  3937   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3938   // For each case we generate slightly different code.
  3940   // We only go to the fast case code if we pass a number of guards.  The
  3941   // paths which do not pass are accumulated in the slow_region.
  3942   RegionNode* slow_region = new (C) RegionNode(1);
  3943   record_for_igvn(slow_region);
  3945   // If this is a virtual call, we generate a funny guard.  We pull out
  3946   // the vtable entry corresponding to hashCode() from the target object.
  3947   // If the target method which we are calling happens to be the native
  3948   // Object hashCode() method, we pass the guard.  We do not need this
  3949   // guard for non-virtual calls -- the caller is known to be the native
  3950   // Object hashCode().
  3951   if (is_virtual) {
  3952     generate_virtual_guard(obj_klass, slow_region);
  3955   // Get the header out of the object, use LoadMarkNode when available
  3956   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  3957   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
  3959   // Test the header to see if it is unlocked.
  3960   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  3961   Node *lmasked_header = _gvn.transform( new (C) AndXNode(header, lock_mask) );
  3962   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  3963   Node *chk_unlocked   = _gvn.transform( new (C) CmpXNode( lmasked_header, unlocked_val));
  3964   Node *test_unlocked  = _gvn.transform( new (C) BoolNode( chk_unlocked, BoolTest::ne) );
  3966   generate_slow_guard(test_unlocked, slow_region);
  3968   // Get the hash value and check to see that it has been properly assigned.
  3969   // We depend on hash_mask being at most 32 bits and avoid the use of
  3970   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  3971   // vm: see markOop.hpp.
  3972   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  3973   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  3974   Node *hshifted_header= _gvn.transform( new (C) URShiftXNode(header, hash_shift) );
  3975   // This hack lets the hash bits live anywhere in the mark object now, as long
  3976   // as the shift drops the relevant bits into the low 32 bits.  Note that
  3977   // Java spec says that HashCode is an int so there's no point in capturing
  3978   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  3979   hshifted_header      = ConvX2I(hshifted_header);
  3980   Node *hash_val       = _gvn.transform( new (C) AndINode(hshifted_header, hash_mask) );
  3982   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  3983   Node *chk_assigned   = _gvn.transform( new (C) CmpINode( hash_val, no_hash_val));
  3984   Node *test_assigned  = _gvn.transform( new (C) BoolNode( chk_assigned, BoolTest::eq) );
  3986   generate_slow_guard(test_assigned, slow_region);
  3988   Node* init_mem = reset_memory();
  3989   // fill in the rest of the null path:
  3990   result_io ->init_req(_null_path, i_o());
  3991   result_mem->init_req(_null_path, init_mem);
  3993   result_val->init_req(_fast_path, hash_val);
  3994   result_reg->init_req(_fast_path, control());
  3995   result_io ->init_req(_fast_path, i_o());
  3996   result_mem->init_req(_fast_path, init_mem);
  3998   // Generate code for the slow case.  We make a call to hashCode().
  3999   set_control(_gvn.transform(slow_region));
  4000   if (!stopped()) {
  4001     // No need for PreserveJVMState, because we're using up the present state.
  4002     set_all_memory(init_mem);
  4003     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
  4004     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
  4005     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  4006     Node* slow_result = set_results_for_java_call(slow_call);
  4007     // this->control() comes from set_results_for_java_call
  4008     result_reg->init_req(_slow_path, control());
  4009     result_val->init_req(_slow_path, slow_result);
  4010     result_io  ->set_req(_slow_path, i_o());
  4011     result_mem ->set_req(_slow_path, reset_memory());
  4014   // Return the combined state.
  4015   set_i_o(        _gvn.transform(result_io)  );
  4016   set_all_memory( _gvn.transform(result_mem) );
  4017   push_result(result_reg, result_val);
  4019   return true;
  4022 //---------------------------inline_native_getClass----------------------------
  4023 // Build special case code for calls to getClass on an object.
  4024 bool LibraryCallKit::inline_native_getClass() {
  4025   Node* obj = null_check_receiver(callee());
  4026   if (stopped())  return true;
  4027   push( load_mirror_from_klass(load_object_klass(obj)) );
  4028   return true;
  4031 //-----------------inline_native_Reflection_getCallerClass---------------------
  4032 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  4033 //
  4034 // NOTE that this code must perform the same logic as
  4035 // vframeStream::security_get_caller_frame in that it must skip
  4036 // Method.invoke() and auxiliary frames.
  4041 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  4042   ciMethod*       method = callee();
  4044 #ifndef PRODUCT
  4045   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  4046     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  4048 #endif
  4050   debug_only(int saved_sp = _sp);
  4052   // Argument words:  (int depth)
  4053   int nargs = 1;
  4055   _sp += nargs;
  4056   Node* caller_depth_node = pop();
  4058   assert(saved_sp == _sp, "must have correct argument count");
  4060   // The depth value must be a constant in order for the runtime call
  4061   // to be eliminated.
  4062   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
  4063   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
  4064 #ifndef PRODUCT
  4065     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  4066       tty->print_cr("  Bailing out because caller depth was not a constant");
  4068 #endif
  4069     return false;
  4071   // Note that the JVM state at this point does not include the
  4072   // getCallerClass() frame which we are trying to inline. The
  4073   // semantics of getCallerClass(), however, are that the "first"
  4074   // frame is the getCallerClass() frame, so we subtract one from the
  4075   // requested depth before continuing. We don't inline requests of
  4076   // getCallerClass(0).
  4077   int caller_depth = caller_depth_type->get_con() - 1;
  4078   if (caller_depth < 0) {
  4079 #ifndef PRODUCT
  4080     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  4081       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
  4083 #endif
  4084     return false;
  4087   if (!jvms()->has_method()) {
  4088 #ifndef PRODUCT
  4089     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  4090       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  4092 #endif
  4093     return false;
  4095   int _depth = jvms()->depth();  // cache call chain depth
  4097   // Walk back up the JVM state to find the caller at the required
  4098   // depth. NOTE that this code must perform the same logic as
  4099   // vframeStream::security_get_caller_frame in that it must skip
  4100   // Method.invoke() and auxiliary frames. Note also that depth is
  4101   // 1-based (1 is the bottom of the inlining).
  4102   int inlining_depth = _depth;
  4103   JVMState* caller_jvms = NULL;
  4105   if (inlining_depth > 0) {
  4106     caller_jvms = jvms();
  4107     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
  4108     do {
  4109       // The following if-tests should be performed in this order
  4110       if (is_method_invoke_or_aux_frame(caller_jvms)) {
  4111         // Skip a Method.invoke() or auxiliary frame
  4112       } else if (caller_depth > 0) {
  4113         // Skip real frame
  4114         --caller_depth;
  4115       } else {
  4116         // We're done: reached desired caller after skipping.
  4117         break;
  4119       caller_jvms = caller_jvms->caller();
  4120       --inlining_depth;
  4121     } while (inlining_depth > 0);
  4124   if (inlining_depth == 0) {
  4125 #ifndef PRODUCT
  4126     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  4127       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
  4128       tty->print_cr("  JVM state at this point:");
  4129       for (int i = _depth; i >= 1; i--) {
  4130         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  4133 #endif
  4134     return false; // Reached end of inlining
  4137   // Acquire method holder as java.lang.Class
  4138   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
  4139   ciInstance*      caller_mirror = caller_klass->java_mirror();
  4140   // Push this as a constant
  4141   push(makecon(TypeInstPtr::make(caller_mirror)));
  4142 #ifndef PRODUCT
  4143   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  4144     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
  4145     tty->print_cr("  JVM state at this point:");
  4146     for (int i = _depth; i >= 1; i--) {
  4147       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  4150 #endif
  4151   return true;
  4154 // Helper routine for above
  4155 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
  4156   ciMethod* method = jvms->method();
  4158   // Is this the Method.invoke method itself?
  4159   if (method->intrinsic_id() == vmIntrinsics::_invoke)
  4160     return true;
  4162   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
  4163   ciKlass* k = method->holder();
  4164   if (k->is_instance_klass()) {
  4165     ciInstanceKlass* ik = k->as_instance_klass();
  4166     for (; ik != NULL; ik = ik->super()) {
  4167       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
  4168           ik == env()->find_system_klass(ik->name())) {
  4169         return true;
  4173   else if (method->is_method_handle_intrinsic() ||
  4174            method->is_compiled_lambda_form()) {
  4175     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
  4176     return true;
  4179   return false;
  4182 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  4183   // restore the arguments
  4184   _sp += arg_size();
  4186   switch (id) {
  4187   case vmIntrinsics::_floatToRawIntBits:
  4188     push(_gvn.transform( new (C) MoveF2INode(pop())));
  4189     break;
  4191   case vmIntrinsics::_intBitsToFloat:
  4192     push(_gvn.transform( new (C) MoveI2FNode(pop())));
  4193     break;
  4195   case vmIntrinsics::_doubleToRawLongBits:
  4196     push_pair(_gvn.transform( new (C) MoveD2LNode(pop_pair())));
  4197     break;
  4199   case vmIntrinsics::_longBitsToDouble:
  4200     push_pair(_gvn.transform( new (C) MoveL2DNode(pop_pair())));
  4201     break;
  4203   case vmIntrinsics::_doubleToLongBits: {
  4204     Node* value = pop_pair();
  4206     // two paths (plus control) merge in a wood
  4207     RegionNode *r = new (C) RegionNode(3);
  4208     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  4210     Node *cmpisnan = _gvn.transform( new (C) CmpDNode(value, value));
  4211     // Build the boolean node
  4212     Node *bolisnan = _gvn.transform( new (C) BoolNode( cmpisnan, BoolTest::ne ) );
  4214     // Branch either way.
  4215     // NaN case is less traveled, which makes all the difference.
  4216     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4217     Node *opt_isnan = _gvn.transform(ifisnan);
  4218     assert( opt_isnan->is_If(), "Expect an IfNode");
  4219     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4220     Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
  4222     set_control(iftrue);
  4224     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  4225     Node *slow_result = longcon(nan_bits); // return NaN
  4226     phi->init_req(1, _gvn.transform( slow_result ));
  4227     r->init_req(1, iftrue);
  4229     // Else fall through
  4230     Node *iffalse = _gvn.transform( new (C) IfFalseNode(opt_ifisnan) );
  4231     set_control(iffalse);
  4233     phi->init_req(2, _gvn.transform( new (C) MoveD2LNode(value)));
  4234     r->init_req(2, iffalse);
  4236     // Post merge
  4237     set_control(_gvn.transform(r));
  4238     record_for_igvn(r);
  4240     Node* result = _gvn.transform(phi);
  4241     assert(result->bottom_type()->isa_long(), "must be");
  4242     push_pair(result);
  4244     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4246     break;
  4249   case vmIntrinsics::_floatToIntBits: {
  4250     Node* value = pop();
  4252     // two paths (plus control) merge in a wood
  4253     RegionNode *r = new (C) RegionNode(3);
  4254     Node *phi = new (C) PhiNode(r, TypeInt::INT);
  4256     Node *cmpisnan = _gvn.transform( new (C) CmpFNode(value, value));
  4257     // Build the boolean node
  4258     Node *bolisnan = _gvn.transform( new (C) BoolNode( cmpisnan, BoolTest::ne ) );
  4260     // Branch either way.
  4261     // NaN case is less traveled, which makes all the difference.
  4262     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4263     Node *opt_isnan = _gvn.transform(ifisnan);
  4264     assert( opt_isnan->is_If(), "Expect an IfNode");
  4265     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4266     Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
  4268     set_control(iftrue);
  4270     static const jint nan_bits = 0x7fc00000;
  4271     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  4272     phi->init_req(1, _gvn.transform( slow_result ));
  4273     r->init_req(1, iftrue);
  4275     // Else fall through
  4276     Node *iffalse = _gvn.transform( new (C) IfFalseNode(opt_ifisnan) );
  4277     set_control(iffalse);
  4279     phi->init_req(2, _gvn.transform( new (C) MoveF2INode(value)));
  4280     r->init_req(2, iffalse);
  4282     // Post merge
  4283     set_control(_gvn.transform(r));
  4284     record_for_igvn(r);
  4286     Node* result = _gvn.transform(phi);
  4287     assert(result->bottom_type()->isa_int(), "must be");
  4288     push(result);
  4290     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4292     break;
  4295   default:
  4296     ShouldNotReachHere();
  4299   return true;
  4302 #ifdef _LP64
  4303 #define XTOP ,top() /*additional argument*/
  4304 #else  //_LP64
  4305 #define XTOP        /*no additional argument*/
  4306 #endif //_LP64
  4308 //----------------------inline_unsafe_copyMemory-------------------------
  4309 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4310   if (callee()->is_static())  return false;  // caller must have the capability!
  4311   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
  4312   assert(signature()->size() == nargs-1, "copy has 5 arguments");
  4313   null_check_receiver(callee());  // check then ignore argument(0)
  4314   if (stopped())  return true;
  4316   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4318   Node* src_ptr = argument(1);
  4319   Node* src_off = ConvL2X(argument(2));
  4320   assert(argument(3)->is_top(), "2nd half of long");
  4321   Node* dst_ptr = argument(4);
  4322   Node* dst_off = ConvL2X(argument(5));
  4323   assert(argument(6)->is_top(), "2nd half of long");
  4324   Node* size    = ConvL2X(argument(7));
  4325   assert(argument(8)->is_top(), "2nd half of long");
  4327   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4328          "fieldOffset must be byte-scaled");
  4330   Node* src = make_unsafe_address(src_ptr, src_off);
  4331   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4333   // Conservatively insert a memory barrier on all memory slices.
  4334   // Do not let writes of the copy source or destination float below the copy.
  4335   insert_mem_bar(Op_MemBarCPUOrder);
  4337   // Call it.  Note that the length argument is not scaled.
  4338   make_runtime_call(RC_LEAF|RC_NO_FP,
  4339                     OptoRuntime::fast_arraycopy_Type(),
  4340                     StubRoutines::unsafe_arraycopy(),
  4341                     "unsafe_arraycopy",
  4342                     TypeRawPtr::BOTTOM,
  4343                     src, dst, size XTOP);
  4345   // Do not let reads of the copy destination float above the copy.
  4346   insert_mem_bar(Op_MemBarCPUOrder);
  4348   return true;
  4351 //------------------------clone_coping-----------------------------------
  4352 // Helper function for inline_native_clone.
  4353 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4354   assert(obj_size != NULL, "");
  4355   Node* raw_obj = alloc_obj->in(1);
  4356   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4358   AllocateNode* alloc = NULL;
  4359   if (ReduceBulkZeroing) {
  4360     // We will be completely responsible for initializing this object -
  4361     // mark Initialize node as complete.
  4362     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4363     // The object was just allocated - there should be no any stores!
  4364     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4365     // Mark as complete_with_arraycopy so that on AllocateNode
  4366     // expansion, we know this AllocateNode is initialized by an array
  4367     // copy and a StoreStore barrier exists after the array copy.
  4368     alloc->initialization()->set_complete_with_arraycopy();
  4371   // Copy the fastest available way.
  4372   // TODO: generate fields copies for small objects instead.
  4373   Node* src  = obj;
  4374   Node* dest = alloc_obj;
  4375   Node* size = _gvn.transform(obj_size);
  4377   // Exclude the header but include array length to copy by 8 bytes words.
  4378   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4379   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4380                             instanceOopDesc::base_offset_in_bytes();
  4381   // base_off:
  4382   // 8  - 32-bit VM
  4383   // 12 - 64-bit VM, compressed klass
  4384   // 16 - 64-bit VM, normal klass
  4385   if (base_off % BytesPerLong != 0) {
  4386     assert(UseCompressedKlassPointers, "");
  4387     if (is_array) {
  4388       // Exclude length to copy by 8 bytes words.
  4389       base_off += sizeof(int);
  4390     } else {
  4391       // Include klass to copy by 8 bytes words.
  4392       base_off = instanceOopDesc::klass_offset_in_bytes();
  4394     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4396   src  = basic_plus_adr(src,  base_off);
  4397   dest = basic_plus_adr(dest, base_off);
  4399   // Compute the length also, if needed:
  4400   Node* countx = size;
  4401   countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(base_off)) );
  4402   countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4404   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4405   bool disjoint_bases = true;
  4406   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4407                                src, NULL, dest, NULL, countx,
  4408                                /*dest_uninitialized*/true);
  4410   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4411   if (card_mark) {
  4412     assert(!is_array, "");
  4413     // Put in store barrier for any and all oops we are sticking
  4414     // into this object.  (We could avoid this if we could prove
  4415     // that the object type contains no oop fields at all.)
  4416     Node* no_particular_value = NULL;
  4417     Node* no_particular_field = NULL;
  4418     int raw_adr_idx = Compile::AliasIdxRaw;
  4419     post_barrier(control(),
  4420                  memory(raw_adr_type),
  4421                  alloc_obj,
  4422                  no_particular_field,
  4423                  raw_adr_idx,
  4424                  no_particular_value,
  4425                  T_OBJECT,
  4426                  false);
  4429   // Do not let reads from the cloned object float above the arraycopy.
  4430   if (alloc != NULL) {
  4431     // Do not let stores that initialize this object be reordered with
  4432     // a subsequent store that would make this object accessible by
  4433     // other threads.
  4434     // Record what AllocateNode this StoreStore protects so that
  4435     // escape analysis can go from the MemBarStoreStoreNode to the
  4436     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4437     // based on the escape status of the AllocateNode.
  4438     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4439   } else {
  4440     insert_mem_bar(Op_MemBarCPUOrder);
  4444 //------------------------inline_native_clone----------------------------
  4445 // Here are the simple edge cases:
  4446 //  null receiver => normal trap
  4447 //  virtual and clone was overridden => slow path to out-of-line clone
  4448 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4449 //
  4450 // The general case has two steps, allocation and copying.
  4451 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4452 //
  4453 // Copying also has two cases, oop arrays and everything else.
  4454 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4455 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4456 //
  4457 // These steps fold up nicely if and when the cloned object's klass
  4458 // can be sharply typed as an object array, a type array, or an instance.
  4459 //
  4460 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4461   int nargs = 1;
  4462   PhiNode* result_val;
  4464   //set the original stack and the reexecute bit for the interpreter to reexecute
  4465   //the bytecode that invokes Object.clone if deoptimization happens
  4466   { PreserveReexecuteState preexecs(this);
  4467     jvms()->set_should_reexecute(true);
  4469     //null_check_receiver will adjust _sp (push and pop)
  4470     Node* obj = null_check_receiver(callee());
  4471     if (stopped())  return true;
  4473     _sp += nargs;
  4475     Node* obj_klass = load_object_klass(obj);
  4476     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4477     const TypeOopPtr*   toop   = ((tklass != NULL)
  4478                                 ? tklass->as_instance_type()
  4479                                 : TypeInstPtr::NOTNULL);
  4481     // Conservatively insert a memory barrier on all memory slices.
  4482     // Do not let writes into the original float below the clone.
  4483     insert_mem_bar(Op_MemBarCPUOrder);
  4485     // paths into result_reg:
  4486     enum {
  4487       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4488       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4489       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4490       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4491       PATH_LIMIT
  4492     };
  4493     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4494     result_val             = new(C) PhiNode(result_reg,
  4495                                             TypeInstPtr::NOTNULL);
  4496     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
  4497     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  4498                                             TypePtr::BOTTOM);
  4499     record_for_igvn(result_reg);
  4501     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4502     int raw_adr_idx = Compile::AliasIdxRaw;
  4504     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4505     if (array_ctl != NULL) {
  4506       // It's an array.
  4507       PreserveJVMState pjvms(this);
  4508       set_control(array_ctl);
  4509       Node* obj_length = load_array_length(obj);
  4510       Node* obj_size  = NULL;
  4511       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);
  4513       if (!use_ReduceInitialCardMarks()) {
  4514         // If it is an oop array, it requires very special treatment,
  4515         // because card marking is required on each card of the array.
  4516         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4517         if (is_obja != NULL) {
  4518           PreserveJVMState pjvms2(this);
  4519           set_control(is_obja);
  4520           // Generate a direct call to the right arraycopy function(s).
  4521           bool disjoint_bases = true;
  4522           bool length_never_negative = true;
  4523           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4524                              obj, intcon(0), alloc_obj, intcon(0),
  4525                              obj_length,
  4526                              disjoint_bases, length_never_negative);
  4527           result_reg->init_req(_objArray_path, control());
  4528           result_val->init_req(_objArray_path, alloc_obj);
  4529           result_i_o ->set_req(_objArray_path, i_o());
  4530           result_mem ->set_req(_objArray_path, reset_memory());
  4533       // Otherwise, there are no card marks to worry about.
  4534       // (We can dispense with card marks if we know the allocation
  4535       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4536       //  causes the non-eden paths to take compensating steps to
  4537       //  simulate a fresh allocation, so that no further
  4538       //  card marks are required in compiled code to initialize
  4539       //  the object.)
  4541       if (!stopped()) {
  4542         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4544         // Present the results of the copy.
  4545         result_reg->init_req(_array_path, control());
  4546         result_val->init_req(_array_path, alloc_obj);
  4547         result_i_o ->set_req(_array_path, i_o());
  4548         result_mem ->set_req(_array_path, reset_memory());
  4552     // We only go to the instance fast case code if we pass a number of guards.
  4553     // The paths which do not pass are accumulated in the slow_region.
  4554     RegionNode* slow_region = new (C) RegionNode(1);
  4555     record_for_igvn(slow_region);
  4556     if (!stopped()) {
  4557       // It's an instance (we did array above).  Make the slow-path tests.
  4558       // If this is a virtual call, we generate a funny guard.  We grab
  4559       // the vtable entry corresponding to clone() from the target object.
  4560       // If the target method which we are calling happens to be the
  4561       // Object clone() method, we pass the guard.  We do not need this
  4562       // guard for non-virtual calls; the caller is known to be the native
  4563       // Object clone().
  4564       if (is_virtual) {
  4565         generate_virtual_guard(obj_klass, slow_region);
  4568       // The object must be cloneable and must not have a finalizer.
  4569       // Both of these conditions may be checked in a single test.
  4570       // We could optimize the cloneable test further, but we don't care.
  4571       generate_access_flags_guard(obj_klass,
  4572                                   // Test both conditions:
  4573                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4574                                   // Must be cloneable but not finalizer:
  4575                                   JVM_ACC_IS_CLONEABLE,
  4576                                   slow_region);
  4579     if (!stopped()) {
  4580       // It's an instance, and it passed the slow-path tests.
  4581       PreserveJVMState pjvms(this);
  4582       Node* obj_size  = NULL;
  4583       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
  4585       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4587       // Present the results of the slow call.
  4588       result_reg->init_req(_instance_path, control());
  4589       result_val->init_req(_instance_path, alloc_obj);
  4590       result_i_o ->set_req(_instance_path, i_o());
  4591       result_mem ->set_req(_instance_path, reset_memory());
  4594     // Generate code for the slow case.  We make a call to clone().
  4595     set_control(_gvn.transform(slow_region));
  4596     if (!stopped()) {
  4597       PreserveJVMState pjvms(this);
  4598       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4599       Node* slow_result = set_results_for_java_call(slow_call);
  4600       // this->control() comes from set_results_for_java_call
  4601       result_reg->init_req(_slow_path, control());
  4602       result_val->init_req(_slow_path, slow_result);
  4603       result_i_o ->set_req(_slow_path, i_o());
  4604       result_mem ->set_req(_slow_path, reset_memory());
  4607     // Return the combined state.
  4608     set_control(    _gvn.transform(result_reg) );
  4609     set_i_o(        _gvn.transform(result_i_o) );
  4610     set_all_memory( _gvn.transform(result_mem) );
  4611   } //original reexecute and sp are set back here
  4613   push(_gvn.transform(result_val));
  4615   return true;
  4618 //------------------------------basictype2arraycopy----------------------------
  4619 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4620                                             Node* src_offset,
  4621                                             Node* dest_offset,
  4622                                             bool disjoint_bases,
  4623                                             const char* &name,
  4624                                             bool dest_uninitialized) {
  4625   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4626   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4628   bool aligned = false;
  4629   bool disjoint = disjoint_bases;
  4631   // if the offsets are the same, we can treat the memory regions as
  4632   // disjoint, because either the memory regions are in different arrays,
  4633   // or they are identical (which we can treat as disjoint.)  We can also
  4634   // treat a copy with a destination index  less that the source index
  4635   // as disjoint since a low->high copy will work correctly in this case.
  4636   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4637       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4638     // both indices are constants
  4639     int s_offs = src_offset_inttype->get_con();
  4640     int d_offs = dest_offset_inttype->get_con();
  4641     int element_size = type2aelembytes(t);
  4642     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4643               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4644     if (s_offs >= d_offs)  disjoint = true;
  4645   } else if (src_offset == dest_offset && src_offset != NULL) {
  4646     // This can occur if the offsets are identical non-constants.
  4647     disjoint = true;
  4650   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4654 //------------------------------inline_arraycopy-----------------------
  4655 bool LibraryCallKit::inline_arraycopy() {
  4656   // Restore the stack and pop off the arguments.
  4657   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
  4658   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
  4660   Node *src         = argument(0);
  4661   Node *src_offset  = argument(1);
  4662   Node *dest        = argument(2);
  4663   Node *dest_offset = argument(3);
  4664   Node *length      = argument(4);
  4666   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4667   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4668   // is.  The checks we choose to mandate at compile time are:
  4669   //
  4670   // (1) src and dest are arrays.
  4671   const Type* src_type = src->Value(&_gvn);
  4672   const Type* dest_type = dest->Value(&_gvn);
  4673   const TypeAryPtr* top_src = src_type->isa_aryptr();
  4674   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4675   if (top_src  == NULL || top_src->klass()  == NULL ||
  4676       top_dest == NULL || top_dest->klass() == NULL) {
  4677     // Conservatively insert a memory barrier on all memory slices.
  4678     // Do not let writes into the source float below the arraycopy.
  4679     insert_mem_bar(Op_MemBarCPUOrder);
  4681     // Call StubRoutines::generic_arraycopy stub.
  4682     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4683                        src, src_offset, dest, dest_offset, length);
  4685     // Do not let reads from the destination float above the arraycopy.
  4686     // Since we cannot type the arrays, we don't know which slices
  4687     // might be affected.  We could restrict this barrier only to those
  4688     // memory slices which pertain to array elements--but don't bother.
  4689     if (!InsertMemBarAfterArraycopy)
  4690       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4691       insert_mem_bar(Op_MemBarCPUOrder);
  4692     return true;
  4695   // (2) src and dest arrays must have elements of the same BasicType
  4696   // Figure out the size and type of the elements we will be copying.
  4697   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4698   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4699   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4700   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4702   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4703     // The component types are not the same or are not recognized.  Punt.
  4704     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4705     generate_slow_arraycopy(TypePtr::BOTTOM,
  4706                             src, src_offset, dest, dest_offset, length,
  4707                             /*dest_uninitialized*/false);
  4708     return true;
  4711   //---------------------------------------------------------------------------
  4712   // We will make a fast path for this call to arraycopy.
  4714   // We have the following tests left to perform:
  4715   //
  4716   // (3) src and dest must not be null.
  4717   // (4) src_offset must not be negative.
  4718   // (5) dest_offset must not be negative.
  4719   // (6) length must not be negative.
  4720   // (7) src_offset + length must not exceed length of src.
  4721   // (8) dest_offset + length must not exceed length of dest.
  4722   // (9) each element of an oop array must be assignable
  4724   RegionNode* slow_region = new (C) RegionNode(1);
  4725   record_for_igvn(slow_region);
  4727   // (3) operands must not be null
  4728   // We currently perform our null checks with the do_null_check routine.
  4729   // This means that the null exceptions will be reported in the caller
  4730   // rather than (correctly) reported inside of the native arraycopy call.
  4731   // This should be corrected, given time.  We do our null check with the
  4732   // stack pointer restored.
  4733   _sp += nargs;
  4734   src  = do_null_check(src,  T_ARRAY);
  4735   dest = do_null_check(dest, T_ARRAY);
  4736   _sp -= nargs;
  4738   // (4) src_offset must not be negative.
  4739   generate_negative_guard(src_offset, slow_region);
  4741   // (5) dest_offset must not be negative.
  4742   generate_negative_guard(dest_offset, slow_region);
  4744   // (6) length must not be negative (moved to generate_arraycopy()).
  4745   // generate_negative_guard(length, slow_region);
  4747   // (7) src_offset + length must not exceed length of src.
  4748   generate_limit_guard(src_offset, length,
  4749                        load_array_length(src),
  4750                        slow_region);
  4752   // (8) dest_offset + length must not exceed length of dest.
  4753   generate_limit_guard(dest_offset, length,
  4754                        load_array_length(dest),
  4755                        slow_region);
  4757   // (9) each element of an oop array must be assignable
  4758   // The generate_arraycopy subroutine checks this.
  4760   // This is where the memory effects are placed:
  4761   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4762   generate_arraycopy(adr_type, dest_elem,
  4763                      src, src_offset, dest, dest_offset, length,
  4764                      false, false, slow_region);
  4766   return true;
  4769 //-----------------------------generate_arraycopy----------------------
  4770 // Generate an optimized call to arraycopy.
  4771 // Caller must guard against non-arrays.
  4772 // Caller must determine a common array basic-type for both arrays.
  4773 // Caller must validate offsets against array bounds.
  4774 // The slow_region has already collected guard failure paths
  4775 // (such as out of bounds length or non-conformable array types).
  4776 // The generated code has this shape, in general:
  4777 //
  4778 //     if (length == 0)  return   // via zero_path
  4779 //     slowval = -1
  4780 //     if (types unknown) {
  4781 //       slowval = call generic copy loop
  4782 //       if (slowval == 0)  return  // via checked_path
  4783 //     } else if (indexes in bounds) {
  4784 //       if ((is object array) && !(array type check)) {
  4785 //         slowval = call checked copy loop
  4786 //         if (slowval == 0)  return  // via checked_path
  4787 //       } else {
  4788 //         call bulk copy loop
  4789 //         return  // via fast_path
  4790 //       }
  4791 //     }
  4792 //     // adjust params for remaining work:
  4793 //     if (slowval != -1) {
  4794 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4795 //     }
  4796 //   slow_region:
  4797 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4798 //     return  // via slow_call_path
  4799 //
  4800 // This routine is used from several intrinsics:  System.arraycopy,
  4801 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4802 //
  4803 void
  4804 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4805                                    BasicType basic_elem_type,
  4806                                    Node* src,  Node* src_offset,
  4807                                    Node* dest, Node* dest_offset,
  4808                                    Node* copy_length,
  4809                                    bool disjoint_bases,
  4810                                    bool length_never_negative,
  4811                                    RegionNode* slow_region) {
  4813   if (slow_region == NULL) {
  4814     slow_region = new(C) RegionNode(1);
  4815     record_for_igvn(slow_region);
  4818   Node* original_dest      = dest;
  4819   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4820   bool  dest_uninitialized = false;
  4822   // See if this is the initialization of a newly-allocated array.
  4823   // If so, we will take responsibility here for initializing it to zero.
  4824   // (Note:  Because tightly_coupled_allocation performs checks on the
  4825   // out-edges of the dest, we need to avoid making derived pointers
  4826   // from it until we have checked its uses.)
  4827   if (ReduceBulkZeroing
  4828       && !ZeroTLAB              // pointless if already zeroed
  4829       && basic_elem_type != T_CONFLICT // avoid corner case
  4830       && !src->eqv_uncast(dest)
  4831       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4832           != NULL)
  4833       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4834       && alloc->maybe_set_complete(&_gvn)) {
  4835     // "You break it, you buy it."
  4836     InitializeNode* init = alloc->initialization();
  4837     assert(init->is_complete(), "we just did this");
  4838     init->set_complete_with_arraycopy();
  4839     assert(dest->is_CheckCastPP(), "sanity");
  4840     assert(dest->in(0)->in(0) == init, "dest pinned");
  4841     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4842     // From this point on, every exit path is responsible for
  4843     // initializing any non-copied parts of the object to zero.
  4844     // Also, if this flag is set we make sure that arraycopy interacts properly
  4845     // with G1, eliding pre-barriers. See CR 6627983.
  4846     dest_uninitialized = true;
  4847   } else {
  4848     // No zeroing elimination here.
  4849     alloc             = NULL;
  4850     //original_dest   = dest;
  4851     //dest_uninitialized = false;
  4854   // Results are placed here:
  4855   enum { fast_path        = 1,  // normal void-returning assembly stub
  4856          checked_path     = 2,  // special assembly stub with cleanup
  4857          slow_call_path   = 3,  // something went wrong; call the VM
  4858          zero_path        = 4,  // bypass when length of copy is zero
  4859          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4860          PATH_LIMIT       = 6
  4861   };
  4862   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
  4863   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
  4864   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
  4865   record_for_igvn(result_region);
  4866   _gvn.set_type_bottom(result_i_o);
  4867   _gvn.set_type_bottom(result_memory);
  4868   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4870   // The slow_control path:
  4871   Node* slow_control;
  4872   Node* slow_i_o = i_o();
  4873   Node* slow_mem = memory(adr_type);
  4874   debug_only(slow_control = (Node*) badAddress);
  4876   // Checked control path:
  4877   Node* checked_control = top();
  4878   Node* checked_mem     = NULL;
  4879   Node* checked_i_o     = NULL;
  4880   Node* checked_value   = NULL;
  4882   if (basic_elem_type == T_CONFLICT) {
  4883     assert(!dest_uninitialized, "");
  4884     Node* cv = generate_generic_arraycopy(adr_type,
  4885                                           src, src_offset, dest, dest_offset,
  4886                                           copy_length, dest_uninitialized);
  4887     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4888     checked_control = control();
  4889     checked_i_o     = i_o();
  4890     checked_mem     = memory(adr_type);
  4891     checked_value   = cv;
  4892     set_control(top());         // no fast path
  4895   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4896   if (not_pos != NULL) {
  4897     PreserveJVMState pjvms(this);
  4898     set_control(not_pos);
  4900     // (6) length must not be negative.
  4901     if (!length_never_negative) {
  4902       generate_negative_guard(copy_length, slow_region);
  4905     // copy_length is 0.
  4906     if (!stopped() && dest_uninitialized) {
  4907       Node* dest_length = alloc->in(AllocateNode::ALength);
  4908       if (copy_length->eqv_uncast(dest_length)
  4909           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4910         // There is no zeroing to do. No need for a secondary raw memory barrier.
  4911       } else {
  4912         // Clear the whole thing since there are no source elements to copy.
  4913         generate_clear_array(adr_type, dest, basic_elem_type,
  4914                              intcon(0), NULL,
  4915                              alloc->in(AllocateNode::AllocSize));
  4916         // Use a secondary InitializeNode as raw memory barrier.
  4917         // Currently it is needed only on this path since other
  4918         // paths have stub or runtime calls as raw memory barriers.
  4919         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4920                                                        Compile::AliasIdxRaw,
  4921                                                        top())->as_Initialize();
  4922         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4926     // Present the results of the fast call.
  4927     result_region->init_req(zero_path, control());
  4928     result_i_o   ->init_req(zero_path, i_o());
  4929     result_memory->init_req(zero_path, memory(adr_type));
  4932   if (!stopped() && dest_uninitialized) {
  4933     // We have to initialize the *uncopied* part of the array to zero.
  4934     // The copy destination is the slice dest[off..off+len].  The other slices
  4935     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4936     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4937     Node* dest_length = alloc->in(AllocateNode::ALength);
  4938     Node* dest_tail   = _gvn.transform( new(C) AddINode(dest_offset,
  4939                                                           copy_length) );
  4941     // If there is a head section that needs zeroing, do it now.
  4942     if (find_int_con(dest_offset, -1) != 0) {
  4943       generate_clear_array(adr_type, dest, basic_elem_type,
  4944                            intcon(0), dest_offset,
  4945                            NULL);
  4948     // Next, perform a dynamic check on the tail length.
  4949     // It is often zero, and we can win big if we prove this.
  4950     // There are two wins:  Avoid generating the ClearArray
  4951     // with its attendant messy index arithmetic, and upgrade
  4952     // the copy to a more hardware-friendly word size of 64 bits.
  4953     Node* tail_ctl = NULL;
  4954     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
  4955       Node* cmp_lt   = _gvn.transform( new(C) CmpINode(dest_tail, dest_length) );
  4956       Node* bol_lt   = _gvn.transform( new(C) BoolNode(cmp_lt, BoolTest::lt) );
  4957       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4958       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  4961     // At this point, let's assume there is no tail.
  4962     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  4963       // There is no tail.  Try an upgrade to a 64-bit copy.
  4964       bool didit = false;
  4965       { PreserveJVMState pjvms(this);
  4966         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  4967                                          src, src_offset, dest, dest_offset,
  4968                                          dest_size, dest_uninitialized);
  4969         if (didit) {
  4970           // Present the results of the block-copying fast call.
  4971           result_region->init_req(bcopy_path, control());
  4972           result_i_o   ->init_req(bcopy_path, i_o());
  4973           result_memory->init_req(bcopy_path, memory(adr_type));
  4976       if (didit)
  4977         set_control(top());     // no regular fast path
  4980     // Clear the tail, if any.
  4981     if (tail_ctl != NULL) {
  4982       Node* notail_ctl = stopped() ? NULL : control();
  4983       set_control(tail_ctl);
  4984       if (notail_ctl == NULL) {
  4985         generate_clear_array(adr_type, dest, basic_elem_type,
  4986                              dest_tail, NULL,
  4987                              dest_size);
  4988       } else {
  4989         // Make a local merge.
  4990         Node* done_ctl = new(C) RegionNode(3);
  4991         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
  4992         done_ctl->init_req(1, notail_ctl);
  4993         done_mem->init_req(1, memory(adr_type));
  4994         generate_clear_array(adr_type, dest, basic_elem_type,
  4995                              dest_tail, NULL,
  4996                              dest_size);
  4997         done_ctl->init_req(2, control());
  4998         done_mem->init_req(2, memory(adr_type));
  4999         set_control( _gvn.transform(done_ctl) );
  5000         set_memory(  _gvn.transform(done_mem), adr_type );
  5005   BasicType copy_type = basic_elem_type;
  5006   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  5007   if (!stopped() && copy_type == T_OBJECT) {
  5008     // If src and dest have compatible element types, we can copy bits.
  5009     // Types S[] and D[] are compatible if D is a supertype of S.
  5010     //
  5011     // If they are not, we will use checked_oop_disjoint_arraycopy,
  5012     // which performs a fast optimistic per-oop check, and backs off
  5013     // further to JVM_ArrayCopy on the first per-oop check that fails.
  5014     // (Actually, we don't move raw bits only; the GC requires card marks.)
  5016     // Get the Klass* for both src and dest
  5017     Node* src_klass  = load_object_klass(src);
  5018     Node* dest_klass = load_object_klass(dest);
  5020     // Generate the subtype check.
  5021     // This might fold up statically, or then again it might not.
  5022     //
  5023     // Non-static example:  Copying List<String>.elements to a new String[].
  5024     // The backing store for a List<String> is always an Object[],
  5025     // but its elements are always type String, if the generic types
  5026     // are correct at the source level.
  5027     //
  5028     // Test S[] against D[], not S against D, because (probably)
  5029     // the secondary supertype cache is less busy for S[] than S.
  5030     // This usually only matters when D is an interface.
  5031     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  5032     // Plug failing path into checked_oop_disjoint_arraycopy
  5033     if (not_subtype_ctrl != top()) {
  5034       PreserveJVMState pjvms(this);
  5035       set_control(not_subtype_ctrl);
  5036       // (At this point we can assume disjoint_bases, since types differ.)
  5037       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  5038       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  5039       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  5040       Node* dest_elem_klass = _gvn.transform(n1);
  5041       Node* cv = generate_checkcast_arraycopy(adr_type,
  5042                                               dest_elem_klass,
  5043                                               src, src_offset, dest, dest_offset,
  5044                                               ConvI2X(copy_length), dest_uninitialized);
  5045       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  5046       checked_control = control();
  5047       checked_i_o     = i_o();
  5048       checked_mem     = memory(adr_type);
  5049       checked_value   = cv;
  5051     // At this point we know we do not need type checks on oop stores.
  5053     // Let's see if we need card marks:
  5054     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  5055       // If we do not need card marks, copy using the jint or jlong stub.
  5056       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  5057       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  5058              "sizes agree");
  5062   if (!stopped()) {
  5063     // Generate the fast path, if possible.
  5064     PreserveJVMState pjvms(this);
  5065     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  5066                                  src, src_offset, dest, dest_offset,
  5067                                  ConvI2X(copy_length), dest_uninitialized);
  5069     // Present the results of the fast call.
  5070     result_region->init_req(fast_path, control());
  5071     result_i_o   ->init_req(fast_path, i_o());
  5072     result_memory->init_req(fast_path, memory(adr_type));
  5075   // Here are all the slow paths up to this point, in one bundle:
  5076   slow_control = top();
  5077   if (slow_region != NULL)
  5078     slow_control = _gvn.transform(slow_region);
  5079   debug_only(slow_region = (RegionNode*)badAddress);
  5081   set_control(checked_control);
  5082   if (!stopped()) {
  5083     // Clean up after the checked call.
  5084     // The returned value is either 0 or -1^K,
  5085     // where K = number of partially transferred array elements.
  5086     Node* cmp = _gvn.transform( new(C) CmpINode(checked_value, intcon(0)) );
  5087     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
  5088     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  5090     // If it is 0, we are done, so transfer to the end.
  5091     Node* checks_done = _gvn.transform( new(C) IfTrueNode(iff) );
  5092     result_region->init_req(checked_path, checks_done);
  5093     result_i_o   ->init_req(checked_path, checked_i_o);
  5094     result_memory->init_req(checked_path, checked_mem);
  5096     // If it is not zero, merge into the slow call.
  5097     set_control( _gvn.transform( new(C) IfFalseNode(iff) ));
  5098     RegionNode* slow_reg2 = new(C) RegionNode(3);
  5099     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
  5100     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  5101     record_for_igvn(slow_reg2);
  5102     slow_reg2  ->init_req(1, slow_control);
  5103     slow_i_o2  ->init_req(1, slow_i_o);
  5104     slow_mem2  ->init_req(1, slow_mem);
  5105     slow_reg2  ->init_req(2, control());
  5106     slow_i_o2  ->init_req(2, checked_i_o);
  5107     slow_mem2  ->init_req(2, checked_mem);
  5109     slow_control = _gvn.transform(slow_reg2);
  5110     slow_i_o     = _gvn.transform(slow_i_o2);
  5111     slow_mem     = _gvn.transform(slow_mem2);
  5113     if (alloc != NULL) {
  5114       // We'll restart from the very beginning, after zeroing the whole thing.
  5115       // This can cause double writes, but that's OK since dest is brand new.
  5116       // So we ignore the low 31 bits of the value returned from the stub.
  5117     } else {
  5118       // We must continue the copy exactly where it failed, or else
  5119       // another thread might see the wrong number of writes to dest.
  5120       Node* checked_offset = _gvn.transform( new(C) XorINode(checked_value, intcon(-1)) );
  5121       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
  5122       slow_offset->init_req(1, intcon(0));
  5123       slow_offset->init_req(2, checked_offset);
  5124       slow_offset  = _gvn.transform(slow_offset);
  5126       // Adjust the arguments by the conditionally incoming offset.
  5127       Node* src_off_plus  = _gvn.transform( new(C) AddINode(src_offset,  slow_offset) );
  5128       Node* dest_off_plus = _gvn.transform( new(C) AddINode(dest_offset, slow_offset) );
  5129       Node* length_minus  = _gvn.transform( new(C) SubINode(copy_length, slow_offset) );
  5131       // Tweak the node variables to adjust the code produced below:
  5132       src_offset  = src_off_plus;
  5133       dest_offset = dest_off_plus;
  5134       copy_length = length_minus;
  5138   set_control(slow_control);
  5139   if (!stopped()) {
  5140     // Generate the slow path, if needed.
  5141     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  5143     set_memory(slow_mem, adr_type);
  5144     set_i_o(slow_i_o);
  5146     if (dest_uninitialized) {
  5147       generate_clear_array(adr_type, dest, basic_elem_type,
  5148                            intcon(0), NULL,
  5149                            alloc->in(AllocateNode::AllocSize));
  5152     generate_slow_arraycopy(adr_type,
  5153                             src, src_offset, dest, dest_offset,
  5154                             copy_length, /*dest_uninitialized*/false);
  5156     result_region->init_req(slow_call_path, control());
  5157     result_i_o   ->init_req(slow_call_path, i_o());
  5158     result_memory->init_req(slow_call_path, memory(adr_type));
  5161   // Remove unused edges.
  5162   for (uint i = 1; i < result_region->req(); i++) {
  5163     if (result_region->in(i) == NULL)
  5164       result_region->init_req(i, top());
  5167   // Finished; return the combined state.
  5168   set_control( _gvn.transform(result_region) );
  5169   set_i_o(     _gvn.transform(result_i_o)    );
  5170   set_memory(  _gvn.transform(result_memory), adr_type );
  5172   // The memory edges above are precise in order to model effects around
  5173   // array copies accurately to allow value numbering of field loads around
  5174   // arraycopy.  Such field loads, both before and after, are common in Java
  5175   // collections and similar classes involving header/array data structures.
  5176   //
  5177   // But with low number of register or when some registers are used or killed
  5178   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  5179   // The next memory barrier is added to avoid it. If the arraycopy can be
  5180   // optimized away (which it can, sometimes) then we can manually remove
  5181   // the membar also.
  5182   //
  5183   // Do not let reads from the cloned object float above the arraycopy.
  5184   if (alloc != NULL) {
  5185     // Do not let stores that initialize this object be reordered with
  5186     // a subsequent store that would make this object accessible by
  5187     // other threads.
  5188     // Record what AllocateNode this StoreStore protects so that
  5189     // escape analysis can go from the MemBarStoreStoreNode to the
  5190     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  5191     // based on the escape status of the AllocateNode.
  5192     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  5193   } else if (InsertMemBarAfterArraycopy)
  5194     insert_mem_bar(Op_MemBarCPUOrder);
  5198 // Helper function which determines if an arraycopy immediately follows
  5199 // an allocation, with no intervening tests or other escapes for the object.
  5200 AllocateArrayNode*
  5201 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  5202                                            RegionNode* slow_region) {
  5203   if (stopped())             return NULL;  // no fast path
  5204   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  5206   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  5207   if (alloc == NULL)  return NULL;
  5209   Node* rawmem = memory(Compile::AliasIdxRaw);
  5210   // Is the allocation's memory state untouched?
  5211   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  5212     // Bail out if there have been raw-memory effects since the allocation.
  5213     // (Example:  There might have been a call or safepoint.)
  5214     return NULL;
  5216   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  5217   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  5218     return NULL;
  5221   // There must be no unexpected observers of this allocation.
  5222   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  5223     Node* obs = ptr->fast_out(i);
  5224     if (obs != this->map()) {
  5225       return NULL;
  5229   // This arraycopy must unconditionally follow the allocation of the ptr.
  5230   Node* alloc_ctl = ptr->in(0);
  5231   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  5233   Node* ctl = control();
  5234   while (ctl != alloc_ctl) {
  5235     // There may be guards which feed into the slow_region.
  5236     // Any other control flow means that we might not get a chance
  5237     // to finish initializing the allocated object.
  5238     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  5239       IfNode* iff = ctl->in(0)->as_If();
  5240       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  5241       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  5242       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  5243         ctl = iff->in(0);       // This test feeds the known slow_region.
  5244         continue;
  5246       // One more try:  Various low-level checks bottom out in
  5247       // uncommon traps.  If the debug-info of the trap omits
  5248       // any reference to the allocation, as we've already
  5249       // observed, then there can be no objection to the trap.
  5250       bool found_trap = false;
  5251       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  5252         Node* obs = not_ctl->fast_out(j);
  5253         if (obs->in(0) == not_ctl && obs->is_Call() &&
  5254             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  5255           found_trap = true; break;
  5258       if (found_trap) {
  5259         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  5260         continue;
  5263     return NULL;
  5266   // If we get this far, we have an allocation which immediately
  5267   // precedes the arraycopy, and we can take over zeroing the new object.
  5268   // The arraycopy will finish the initialization, and provide
  5269   // a new control state to which we will anchor the destination pointer.
  5271   return alloc;
  5274 // Helper for initialization of arrays, creating a ClearArray.
  5275 // It writes zero bits in [start..end), within the body of an array object.
  5276 // The memory effects are all chained onto the 'adr_type' alias category.
  5277 //
  5278 // Since the object is otherwise uninitialized, we are free
  5279 // to put a little "slop" around the edges of the cleared area,
  5280 // as long as it does not go back into the array's header,
  5281 // or beyond the array end within the heap.
  5282 //
  5283 // The lower edge can be rounded down to the nearest jint and the
  5284 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5285 //
  5286 // Arguments:
  5287 //   adr_type           memory slice where writes are generated
  5288 //   dest               oop of the destination array
  5289 //   basic_elem_type    element type of the destination
  5290 //   slice_idx          array index of first element to store
  5291 //   slice_len          number of elements to store (or NULL)
  5292 //   dest_size          total size in bytes of the array object
  5293 //
  5294 // Exactly one of slice_len or dest_size must be non-NULL.
  5295 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5296 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5297 void
  5298 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5299                                      Node* dest,
  5300                                      BasicType basic_elem_type,
  5301                                      Node* slice_idx,
  5302                                      Node* slice_len,
  5303                                      Node* dest_size) {
  5304   // one or the other but not both of slice_len and dest_size:
  5305   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5306   if (slice_len == NULL)  slice_len = top();
  5307   if (dest_size == NULL)  dest_size = top();
  5309   // operate on this memory slice:
  5310   Node* mem = memory(adr_type); // memory slice to operate on
  5312   // scaling and rounding of indexes:
  5313   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5314   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5315   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5316   int bump_bit  = (-1 << scale) & BytesPerInt;
  5318   // determine constant starts and ends
  5319   const intptr_t BIG_NEG = -128;
  5320   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5321   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5322   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5323   if (slice_len_con == 0) {
  5324     return;                     // nothing to do here
  5326   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5327   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5328   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5329     assert(end_con < 0, "not two cons");
  5330     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5331                        BytesPerLong);
  5334   if (start_con >= 0 && end_con >= 0) {
  5335     // Constant start and end.  Simple.
  5336     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5337                                        start_con, end_con, &_gvn);
  5338   } else if (start_con >= 0 && dest_size != top()) {
  5339     // Constant start, pre-rounded end after the tail of the array.
  5340     Node* end = dest_size;
  5341     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5342                                        start_con, end, &_gvn);
  5343   } else if (start_con >= 0 && slice_len != top()) {
  5344     // Constant start, non-constant end.  End needs rounding up.
  5345     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5346     intptr_t end_base  = abase + (slice_idx_con << scale);
  5347     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5348     Node*    end       = ConvI2X(slice_len);
  5349     if (scale != 0)
  5350       end = _gvn.transform( new(C) LShiftXNode(end, intcon(scale) ));
  5351     end_base += end_round;
  5352     end = _gvn.transform( new(C) AddXNode(end, MakeConX(end_base)) );
  5353     end = _gvn.transform( new(C) AndXNode(end, MakeConX(~end_round)) );
  5354     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5355                                        start_con, end, &_gvn);
  5356   } else if (start_con < 0 && dest_size != top()) {
  5357     // Non-constant start, pre-rounded end after the tail of the array.
  5358     // This is almost certainly a "round-to-end" operation.
  5359     Node* start = slice_idx;
  5360     start = ConvI2X(start);
  5361     if (scale != 0)
  5362       start = _gvn.transform( new(C) LShiftXNode( start, intcon(scale) ));
  5363     start = _gvn.transform( new(C) AddXNode(start, MakeConX(abase)) );
  5364     if ((bump_bit | clear_low) != 0) {
  5365       int to_clear = (bump_bit | clear_low);
  5366       // Align up mod 8, then store a jint zero unconditionally
  5367       // just before the mod-8 boundary.
  5368       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5369           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5370         bump_bit = 0;
  5371         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5372       } else {
  5373         // Bump 'start' up to (or past) the next jint boundary:
  5374         start = _gvn.transform( new(C) AddXNode(start, MakeConX(bump_bit)) );
  5375         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5377       // Round bumped 'start' down to jlong boundary in body of array.
  5378       start = _gvn.transform( new(C) AndXNode(start, MakeConX(~to_clear)) );
  5379       if (bump_bit != 0) {
  5380         // Store a zero to the immediately preceding jint:
  5381         Node* x1 = _gvn.transform( new(C) AddXNode(start, MakeConX(-bump_bit)) );
  5382         Node* p1 = basic_plus_adr(dest, x1);
  5383         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  5384         mem = _gvn.transform(mem);
  5387     Node* end = dest_size; // pre-rounded
  5388     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5389                                        start, end, &_gvn);
  5390   } else {
  5391     // Non-constant start, unrounded non-constant end.
  5392     // (Nobody zeroes a random midsection of an array using this routine.)
  5393     ShouldNotReachHere();       // fix caller
  5396   // Done.
  5397   set_memory(mem, adr_type);
  5401 bool
  5402 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5403                                          BasicType basic_elem_type,
  5404                                          AllocateNode* alloc,
  5405                                          Node* src,  Node* src_offset,
  5406                                          Node* dest, Node* dest_offset,
  5407                                          Node* dest_size, bool dest_uninitialized) {
  5408   // See if there is an advantage from block transfer.
  5409   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5410   if (scale >= LogBytesPerLong)
  5411     return false;               // it is already a block transfer
  5413   // Look at the alignment of the starting offsets.
  5414   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5416   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
  5417   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
  5418   if (src_off_con < 0 || dest_off_con < 0)
  5419     // At present, we can only understand constants.
  5420     return false;
  5422   intptr_t src_off  = abase + (src_off_con  << scale);
  5423   intptr_t dest_off = abase + (dest_off_con << scale);
  5425   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5426     // Non-aligned; too bad.
  5427     // One more chance:  Pick off an initial 32-bit word.
  5428     // This is a common case, since abase can be odd mod 8.
  5429     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5430         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5431       Node* sptr = basic_plus_adr(src,  src_off);
  5432       Node* dptr = basic_plus_adr(dest, dest_off);
  5433       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  5434       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  5435       src_off += BytesPerInt;
  5436       dest_off += BytesPerInt;
  5437     } else {
  5438       return false;
  5441   assert(src_off % BytesPerLong == 0, "");
  5442   assert(dest_off % BytesPerLong == 0, "");
  5444   // Do this copy by giant steps.
  5445   Node* sptr  = basic_plus_adr(src,  src_off);
  5446   Node* dptr  = basic_plus_adr(dest, dest_off);
  5447   Node* countx = dest_size;
  5448   countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(dest_off)) );
  5449   countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong)) );
  5451   bool disjoint_bases = true;   // since alloc != NULL
  5452   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5453                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5455   return true;
  5459 // Helper function; generates code for the slow case.
  5460 // We make a call to a runtime method which emulates the native method,
  5461 // but without the native wrapper overhead.
  5462 void
  5463 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5464                                         Node* src,  Node* src_offset,
  5465                                         Node* dest, Node* dest_offset,
  5466                                         Node* copy_length, bool dest_uninitialized) {
  5467   assert(!dest_uninitialized, "Invariant");
  5468   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5469                                  OptoRuntime::slow_arraycopy_Type(),
  5470                                  OptoRuntime::slow_arraycopy_Java(),
  5471                                  "slow_arraycopy", adr_type,
  5472                                  src, src_offset, dest, dest_offset,
  5473                                  copy_length);
  5475   // Handle exceptions thrown by this fellow:
  5476   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5479 // Helper function; generates code for cases requiring runtime checks.
  5480 Node*
  5481 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5482                                              Node* dest_elem_klass,
  5483                                              Node* src,  Node* src_offset,
  5484                                              Node* dest, Node* dest_offset,
  5485                                              Node* copy_length, bool dest_uninitialized) {
  5486   if (stopped())  return NULL;
  5488   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5489   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5490     return NULL;
  5493   // Pick out the parameters required to perform a store-check
  5494   // for the target array.  This is an optimistic check.  It will
  5495   // look in each non-null element's class, at the desired klass's
  5496   // super_check_offset, for the desired klass.
  5497   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  5498   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5499   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
  5500   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5501   Node* check_value  = dest_elem_klass;
  5503   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5504   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5506   // (We know the arrays are never conjoint, because their types differ.)
  5507   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5508                                  OptoRuntime::checkcast_arraycopy_Type(),
  5509                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5510                                  // five arguments, of which two are
  5511                                  // intptr_t (jlong in LP64)
  5512                                  src_start, dest_start,
  5513                                  copy_length XTOP,
  5514                                  check_offset XTOP,
  5515                                  check_value);
  5517   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5521 // Helper function; generates code for cases requiring runtime checks.
  5522 Node*
  5523 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5524                                            Node* src,  Node* src_offset,
  5525                                            Node* dest, Node* dest_offset,
  5526                                            Node* copy_length, bool dest_uninitialized) {
  5527   assert(!dest_uninitialized, "Invariant");
  5528   if (stopped())  return NULL;
  5529   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5530   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5531     return NULL;
  5534   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5535                     OptoRuntime::generic_arraycopy_Type(),
  5536                     copyfunc_addr, "generic_arraycopy", adr_type,
  5537                     src, src_offset, dest, dest_offset, copy_length);
  5539   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5542 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5543 void
  5544 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5545                                              BasicType basic_elem_type,
  5546                                              bool disjoint_bases,
  5547                                              Node* src,  Node* src_offset,
  5548                                              Node* dest, Node* dest_offset,
  5549                                              Node* copy_length, bool dest_uninitialized) {
  5550   if (stopped())  return;               // nothing to do
  5552   Node* src_start  = src;
  5553   Node* dest_start = dest;
  5554   if (src_offset != NULL || dest_offset != NULL) {
  5555     assert(src_offset != NULL && dest_offset != NULL, "");
  5556     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5557     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5560   // Figure out which arraycopy runtime method to call.
  5561   const char* copyfunc_name = "arraycopy";
  5562   address     copyfunc_addr =
  5563       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5564                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5566   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5567   make_runtime_call(RC_LEAF|RC_NO_FP,
  5568                     OptoRuntime::fast_arraycopy_Type(),
  5569                     copyfunc_addr, copyfunc_name, adr_type,
  5570                     src_start, dest_start, copy_length XTOP);
  5573 //----------------------------inline_reference_get----------------------------
  5575 bool LibraryCallKit::inline_reference_get() {
  5576   const int nargs = 1; // self
  5578   guarantee(java_lang_ref_Reference::referent_offset > 0,
  5579             "should have already been set");
  5581   int referent_offset = java_lang_ref_Reference::referent_offset;
  5583   // Restore the stack and pop off the argument
  5584   _sp += nargs;
  5585   Node *reference_obj = pop();
  5587   // Null check on self without removing any arguments.
  5588   _sp += nargs;
  5589   reference_obj = do_null_check(reference_obj, T_OBJECT);
  5590   _sp -= nargs;;
  5592   if (stopped()) return true;
  5594   Node *adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  5596   ciInstanceKlass* klass = env()->Object_klass();
  5597   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  5599   Node* no_ctrl = NULL;
  5600   Node *result = make_load(no_ctrl, adr, object_type, T_OBJECT);
  5602   // Use the pre-barrier to record the value in the referent field
  5603   pre_barrier(false /* do_load */,
  5604               control(),
  5605               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  5606               result /* pre_val */,
  5607               T_OBJECT);
  5609   // Add memory barrier to prevent commoning reads from this field
  5610   // across safepoint since GC can change its value.
  5611   insert_mem_bar(Op_MemBarCPUOrder);
  5613   push(result);
  5614   return true;

mercurial